Science.gov

Sample records for human plasma carboxypeptidase

  1. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases

    SciTech Connect

    Reynolds, D.S.; Gurley, D.S.; Stevens, R.L.; Austen, K.F.; Serafin, W.E. Brigham and Women's Hospital, Boston, MA ); Sugarbaker, D.J. )

    1989-12-01

    Human skin and lung mast cells and rodent peritoneal cells contain a carboxypeptidase in their secretory granules. The authors have screened human lung cDNA libraries with a mouse mast cell carboxypeptidase A (MC-CPA) cDNA probe to isolate a near-full-length cDNA that encodes human MC-CPA. The 5{prime} end of the human MC-CPA transcript was defined by direct mRNA sequencing and by isolation and partial sequencing of the human MC-CPA gene. Human MC-CPA is predicted to be translated as a 417 amino acid preproenzyme which includes a 15 amino acid signal peptide and a 94-amino acid activation peptide. The mature human MC-CPA enzyme has a predicted size of 36.1 kDa, a net positive charge of 16 at neutral pH, and 86% amino acid sequence identity with mouse MC-CPA. DNA blot analyses showed that human MC-CPA mRNA is transcribed from a single locus in the human genome. Comparison of the human MC-CPA with mouse MC-CPA and with three rat pancreatic carboxypeptidases shows that these enzymes are encoded by distinct but homologous genes.

  2. Expression of glutamate carboxypeptidase II in human brain.

    PubMed

    Sácha, P; Zámecník, J; Barinka, C; Hlouchová, K; Vícha, A; Mlcochová, P; Hilgert, I; Eckschlager, T; Konvalinka, J

    2007-02-23

    Glutamate carboxypeptidase II (GCPII) is a transmembrane glycoprotein expressed in various tissues. When expressed in the brain it cleaves the neurotransmitter N-acetylaspartylglutamate (NAAG), yielding free glutamate. In jejunum it hydrolyzes folylpoly-gamma-glutamate, thus facilitating folate absorption. The prostate form of GCPII, known as prostate specific membrane antigen (PSMA), is an established cancer marker. The NAAG-hydrolyzing activity of GCPII has been implicated in a number of pathological conditions in which glutamate is neurotoxic (e.g. amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, epilepsy, schizophrenia, and stroke). Inhibition of GCPII was shown to be neuroprotective in tissue culture and in animal models. GCPII is therefore an interesting putative therapeutic target. However, only very limited and controversial data on the expression and localization of GCPII in human brain are available. Therefore, we set out to analyze the activity and expression of GCPII in various compartments of the human brain using a radiolabeled substrate of the enzyme and the novel monoclonal antibody GCP-04, which recognizes an epitope on the extracellular portion of the enzyme and is more sensitive to GCPII than to the homologous GCPIII. We show that this antibody is more sensitive in immunoblots than the widely used antibody 7E11. By Western blot, we show that there are approximately 50-300 ng of GCPII/mg of total protein in human brain, depending on the specific area. Immunohistochemical analysis revealed that astrocytes specifically express GCPII in all parts of the brain. GCPII is enzymatically active and the level of activity follows the expression pattern. Using pure recombinant GCPII and homologous GCPIII, we conclude that GCPII is responsible for the majority of overall NAAG-hydrolyzing activity in the human brain. PMID:17150306

  3. Human carboxypeptidase A identifies a BglII RFLP and maps to 7q31-qter.

    PubMed Central

    Stewart, E A; Craik, C S; Hake, L; Bowcock, A M

    1990-01-01

    A genomic clone for human carboxypeptidase has been isolated with a probe for rat CPA1 cDNA. A 1.7-kb HindIII/EcoRI fragment from the 3' flanking region of human carboxypeptidase detects a DNA polymorphism with BglIII. Multipoint linkage analysis with an established map of chromosome 7 markers shows that the most likely location of carboxypeptidase is at 7q31-qter, between D7S87 and D7S93. All other placements can be excluded with odds greater than 100:1. These and other markers confirm that carboxypeptidase lies distal to the locus for cystic fibrosis, at a distance of approximately 12 centimorgans. The regions containing identity to the rat gene were sequenced and shown to be 82% identical to exons 9 and 10 of the rat gene. The presence of a codon for isoleucine at the residues corresponding to codon 255 of rat CPA1 cDNA strongly suggests that the A form of human carboxypeptidase has been isolated. Images Figure 2 PMID:1969228

  4. Amyloid Formation by Human Carboxypeptidase D Transthyretin-like Domain under Physiological Conditions*

    PubMed Central

    Garcia-Pardo, Javier; Graña-Montes, Ricardo; Fernandez-Mendez, Marc; Ruyra, Angels; Roher, Nerea; Aviles, Francesc X.; Lorenzo, Julia; Ventura, Salvador

    2014-01-01

    Protein aggregation is linked to a growing list of diseases, but it is also an intrinsic property of polypeptides, because the formation of functional globular proteins comes at the expense of an inherent aggregation propensity. Certain proteins can access aggregation-prone states from native-like conformations without the need to cross the energy barrier for unfolding. This is the case of transthyretin (TTR), a homotetrameric protein whose dissociation into its monomers initiates the aggregation cascade. Domains with structural homology to TTR exist in a number of proteins, including the M14B subfamily carboxypeptidases. We show here that the monomeric transthyretin-like domain of human carboxypeptidase D aggregates under close to physiological conditions into amyloid structures, with the population of folded but aggregation-prone states being controlled by the conformational stability of the domain. We thus confirm that the TTR fold keeps a generic residual aggregation propensity upon folding, resulting from the presence of preformed amyloidogenic β-strands in the native state. These structural elements should serve for functional/structural purposes, because they have not been purged out by evolution, but at the same time they put proteins like carboxypeptidase D at risk of aggregation in biological environments and thus can potentially lead to deposition diseases. PMID:25294878

  5. Crystal Structure of Novel Metallocarboxypeptidase Inhibitor from Marine Mollusk Nerita versicolor in Complex with Human Carboxypeptidase A4*

    PubMed Central

    Covaleda, Giovanni; Alonso del Rivero, Maday; Chávez, María A.; Avilés, Francesc X.; Reverter, David

    2012-01-01

    NvCI is a novel exogenous proteinaceous inhibitor of metallocarboxypeptidases from the marine snail Nerita versicolor. The complex between human carboxypeptidase A4 and NvCI has been crystallized and determined at 1.7 Å resolution. The NvCI structure defines a distinctive protein fold basically composed of a two-stranded antiparallel β-sheet connected by three loops and the inhibitory C-terminal tail and stabilized by three disulfide bridges. NvCI is a tight-binding inhibitor that interacts with the active site of the enzyme in a substrate-like manner. NvCI displays an extended and novel interface with human carboxypeptidase A4, responsible for inhibitory constants in the picomolar range for some members of the M14A subfamily of carboxypeptidases. This makes NvCI the strongest inhibitor reported so far for this family. The structural homology displayed by the C-terminal tails of different carboxypeptidase inhibitors represents a relevant example of convergent evolution. PMID:22294694

  6. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization

    SciTech Connect

    Barinka, Cyril; Byun, Youngjoo; Dusich, Crystal L.; Banerjee, Sangeeta R.; Chen, Ying; Castanares, Mark; Kozikowski, Alan P.; Mease, Ronnie C.; Pomper, Martin G.; Lubkowski, Jacek

    2009-01-21

    Urea-based, low molecular weight ligands of glutamate carboxypeptidase II (GCPII) have demonstrated efficacy in various models of neurological disorders and can serve as imaging agents for prostate cancer. To enhance further development of such compounds, we determined X-ray structures of four complexes between human GCPII and urea-based inhibitors at high resolution. All ligands demonstrate an invariant glutarate moiety within the S1{prime} pocket of the enzyme. The ureido linkage between P1 and P1{prime} inhibitor sites interacts with the active-site Zn{sub 1}{sup 2+} ion and the side chains of Tyr552 and His553. Interactions within the S1 pocket are defined primarily by a network of hydrogen bonds between the P1 carboxylate group of the inhibitors and the side chains of Arg534, Arg536, and Asn519. Importantly, we have identified a hydrophobic pocket accessory to the S1 site that can be exploited for structure-based design of novel GCPII inhibitors with increased lipophilicity.

  7. Novel Substrate-Based Inhibitors of Human Glutamate Carboxypeptidase II with Enhanced Lipophilicity

    SciTech Connect

    Plechanovová, Anna; Byun, Youngjoo; Alquicer, Glenda; Škultétyová, L; ubica; Ml; #269; ochová, Petra; N; #283; mcová, Adriana; Kim, Hyung-Joon; Navrátil, Michal; Mease, Ronnie; Lubkowski, Jacek; Pomper, Martin; Konvalinka, Jan; Rulíšek, Lubomír; Ba; #345; inka, Cyril

    2012-10-09

    Virtually all low molecular weight inhibitors of human glutamate carboxypeptidase II (GCPII) are highly polar compounds that have limited use in settings where more lipophilic molecules are desired. Here we report the identification and characterization of GCPII inhibitors with enhanced liphophilicity that are derived from a series of newly identified dipeptidic GCPII substrates featuring nonpolar aliphatic side chains at the C-terminus. To analyze the interactions governing the substrate recognition by GCPII, we determined crystal structures of the inactive GCPII(E424A) mutant in complex with selected dipeptides and complemented the structural data with quantum mechanics/molecular mechanics calculations. Results reveal the importance of nonpolar interactions governing GCPII affinity toward novel substrates as well as formerly unnoticed plasticity of the S1' specificity pocket. On the basis of those data, we designed, synthesized, and evaluated a series of novel GCPII inhibitors with enhanced lipophilicity, with the best candidates having low nanomolar inhibition constants and clogD > -0.3. Our findings offer new insights into the design of more lipophilic inhibitors targeting GCPII.

  8. Glutamate carboxypeptidase II gene expression in the human frontal and temporal lobe in schizophrenia.

    PubMed

    Ghose, Subroto; Weickert, Cynthia Shannon; Colvin, Sarah M; Coyle, Joseph T; Herman, Mary M; Hyde, Thomas M; Kleinman, Joel E

    2004-01-01

    There is decreased activity of glutamate carboxypeptidase II (GCP II) in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of patients with schizophrenia. GCP II hydrolzses N-acetyl-alpha L-aspartyl-L-glutamate (NAAG), a peptide in the mammalian brain that binds to the N-methyl D-aspartate (NMDA) receptor and a group II metabotropic glutamate receptor, both of which have been implicated in the pathophysiology of schizophrenia. We examined the expression of GCP II mRNA in the DLPFC, entorhinal cortex (ERC), and hippocampus in postmortem samples from patients with schizophrenia and normal controls using in situ hybridization followed by silver grain detection. GCP II mRNA was detected in glial cells. Glial-rich regions, specifically the DLPFC and ERC white matter and the molecular and polymorphic layers in the hippocampus, express high levels of GCP II mRNA. Given the earlier finding of decreased GCP II activity in brains of subjects with schizophrenia, we expected to find lower GCP II mRNA levels in schizophrenia. Contrary to this expectation, we found a significantly higher expression of GCP II mRNA in one of the brain areas examined, the hippocampal CA3 polymorphic region. This may reflect a compensatory increase to correct for the decreased activity of GCP II activity. Our findings support the notion that the hydrolysis of NAAG is disrupted in schizophrenia and that specific anatomical regions may show discrete abnormalities in GCP II synthesis. PMID:14560319

  9. Structural and biochemical characterization of the folyl-poly-γ-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II.

    PubMed

    Navrátil, Michal; Ptáček, Jakub; Šácha, Pavel; Starková, Jana; Lubkowski, Jacek; Bařinka, Cyril; Konvalinka, Jan

    2014-07-01

    In addition to its well-characterized role in the central nervous system, human glutamate carboxypeptidase II (GCPII; Uniprot ID Q04609) acts as a folate hydrolase in the small intestine, participating in the absorption of dietary polyglutamylated folates (folyl-n-γ-l-glutamic acid), which are the provitamin form of folic acid (also known as vitamin B9 ). Despite the role of GCPII as a folate hydrolase, nothing is known about the processing of polyglutamylated folates by GCPII at the structural or enzymological level. Moreover, many epidemiologic studies on the relationship of the naturally occurring His475Tyr polymorphism to folic acid status suggest that this polymorphism may be associated with several pathologies linked to impaired folate metabolism. In the present study, we report: (a) a series X-ray structures of complexes between a catalytically inactive GCPII mutant (Glu424Ala) and a panel of naturally occurring polyglutamylated folates; (b) the X-ray structure of the His475Tyr variant at a resolution of 1.83 Å; (c) the study of the recently identified arene-binding site of GCPII through mutagenesis (Arg463Leu, Arg511Leu and Trp541Ala), inhibitor binding and enzyme kinetics with polyglutamylated folates as substrates; and (d) a comparison of the thermal stabilities and folate-hydrolyzing activities of GCPII wild-type and His475Tyr variants. As a result, the crystallographic data reveal considerable details about the binding mode of polyglutamylated folates to GCPII, especially the engagement of the arene binding site in recognizing the folic acid moiety. Additionally, the combined structural and kinetic data suggest that GCPII wild-type and His475Tyr variant are functionally identical. PMID:24863754

  10. Physical map location of the human carboxypeptidase M gene (CPM) distal to D12S375 and proximal to D12S8 at chromosome 12q15

    SciTech Connect

    Kas, K.; Schoenmakers, E.F.P.M.; Van de Ven, W.J.M.

    1995-11-20

    Chromosome aberrations involving human chromosome 12 region q13-q15 are frequently observed in a wide variety of solid tumors, benign as well as malignant ones. In an approach to isolating through positional cloning the pathogenetically relevant genes, we have carried out directional chromosome walking from locus D12S8 toward the centromere. This resulted in the construction of a YAC contig consisting of 75 overlapping YAC clones, the composite insert DNA of which was about 6.5 Mb, and, more recently, in the identification of the high-mobility group protein gene, HMGI-C, as the target gene consistently found to be rearranged by the chromosome 12 aberrations in at least eight different mesenchymal tumor types. To establish sequence-tagged sites (STSs), we sequenced the ends of a number of YAC clones using the methodology described by Geurts et al. Within the right end sequences of CEPH mark 1 YAC 499C5, originally designated RM46 and now also known as D12S1501, a BLAST search revealed a stretch of 135 nucleotides that matches perfectly with known cDNA sequences of the human carboxypeptidase M gene, the chromosomal localization of which has not yet been established. The region of sequence identity starts at nucleotide 794 of the HUMC-ARM{sup 2} cDNA and ends coinciding with a splice donor site at nucleotide 930. It should be noted that the sequence similarity extends 2 bp into the intron sequence. 11 refs., 2 figs.

  11. Aortic Carboxypeptidase-Like Protein Is Expressed in Fibrotic Human Lung and its Absence Protects against Bleomycin-Induced Lung Fibrosis

    PubMed Central

    Schissel, Scott L.; Dunsmore, Sarah E.; Liu, Xiaoli; Shine, Robert W.; Perrella, Mark A.; Layne, Matthew D.

    2009-01-01

    The pathological hallmarks of idiopathic pulmonary fibrosis include proliferating fibroblasts and myofibroblasts, as well as excessive collagen matrix deposition. In addition, both myofibroblast contraction and remodeling of the collagen-rich matrix contribute to the abnormal structure and function of the fibrotic lung. Little is known, however, about collagen-associated proteins that promote fibroblast and myofibroblast retention, as well as the proliferation of these cells on the extracellular matrix. In this study, we demonstrate that aortic carboxypeptidase-like protein (ACLP), a collagen-associated protein with a discoidin-like domain, is expressed at high levels in human fibrotic lung tissue and human fibroblasts, and that its expression increases markedly in the lungs of bleomycin-injured mice. Importantly, ACLP-deficient mice accumulated significantly fewer myofibroblasts and less collagen in the lung after bleomycin injury, as compared with wild-type controls, despite equivalent levels of bleomycin-induced inflammation. ACLP that is secreted by lung fibroblasts was retained on fibrillar collagen, and ACLP-deficient lung fibroblasts that were cultured on collagen exhibited changes in cell spreading, proliferation, and contraction of the collagen matrix. Finally, the addition of recombinant discoidin-like domain of ACLP to cultured ACLP-deficient lung fibroblasts restored cell spreading and increased the contraction of collagen gels. Therefore, both ACLP and its discoidin-like domain may be novel targets for anti-myofibroblast-based therapies for the treatment of pulmonary fibrosis. PMID:19179605

  12. Enhanced expression of human prostaglandin H synthase-2 in the yeast Pichia pastoris and removal of the C-terminal tag with bovine carboxypeptidase A.

    PubMed

    Kukk, Kaia; Samel, Nigulas

    2016-08-10

    Vertebrate prostaglandin H synthases (PGHSs) are membrane-bound disulphide-containing hemoglycoproteins. Therefore, eukaryotic expression systems are required for the production of recombinant PGHSs. Recently we announced the expression of human PGHS-2 (hPGHS-2) in the yeast Pichia pastoris. Here we report improved production of hPGHS-2 in P. pastoris and a convenient method for the purification and de-tagging of the protein. An affinity tag comprised of a proline, a glycine and eight histidines was introduced into the C-terminal end of hPGHS-2. The tagged hPGHS-2 was expressed intracellularly in P. pastoris under the control of a constitutive or methanol-inducible promoter. Compared to constitutive expression, methanol-induced expression yielded approximately four times more protein. The analysis of high and low gene copy number recombinants revealed a positive correlation between the gene copy number and the expression level of hPGHS-2. The recombinant hPGHS-2 was purified using immobilised metal ion affinity chromatography. A novel elution method, treatment of the affinity resin with bovine carboxypeptidase A, was employed. The yield of pure de-tagged hPGHS-2 from 1l of yeast culture was approximately 3mg. The protein purification process with simultaneous removal of the C-terminal polyhistidine tag could be easily applied for the affinity purification of other proteins. PMID:27316830

  13. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    SciTech Connect

    Tykvart, J.; Sacha, P.; Barinka, C.; Knedlik, T.; Starkova, J.; Lubkowski, J.; Konvalinka, J.

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.

  14. Prolactin/Stat5 and androgen R1881 coactivate carboxypeptidase-D gene in breast cancer cells.

    PubMed

    Koirala, Samir; Thomas, Lynn N; Too, Catherine K L

    2014-03-01

    Plasma membrane-bound carboxypeptidase-D (CPD) cleaves C-terminal arginine from extracellular substrates. In the cell, arginine is converted to nitric oxide (NO). We have reported that up-regulation of CPD mRNA/protein levels by 17β-estradiol and prolactin (PRL) in breast cancer cells, and by testosterone in prostate cancer cells, increased NO production and cell survival. The CPD promoter contains a consensus γ-interferon-activated sequence (GAS) and 3 putative androgen response elements (ARE.1, ARE.2, ARE.3) that could potentially bind PRL-activated transcription factor Stat5 (signal transducer and activator of transcription 5) and the liganded androgen receptor (AR), respectively. This study showed that synthetic androgen R1881 and PRL elevated CPD mRNA/protein levels in human MCF-7 and T47D breast cancer cells in a time-/dose-dependent manner. PRL/R1881-elevated CPD expression was blocked by actinomycin-D, and a CPD promoter construct containing these GAS and AREs was stimulated by PRL or R1881, indicating transcriptional regulation by both hormones. Luciferase reporter assays showed that GAS and the adjacent ARE.1 only were active. Mutation of GAS in the ΔGAS-CPD construct (ARE.1 intact) abolished CPD promoter activity in response to PRL and, surprisingly, to R1881 as well. ΔGAS-CPD promoter activity was restored by PRL+R1881 in combination, and enhanced by ectopic Stat5, but abolished by Stat5 gene knockdown. Chromatin immunoprecipitation analysis confirmed binding of activated Stat5 and liganded AR to GAS and ARE.1, respectively. Activated Stat5 also induced binding of unliganded AR to ARE.1, and liganded AR induced binding of unactivated Stat5 to GAS. In summary, PRL and R1881, acting through Stat5 and AR, act cooperatively to stimulate CPD gene transcription in breast cancer cells. PMID:24433040

  15. Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae.

    PubMed

    Wolf, D H; Ehmann, C

    1981-08-01

    A new carboxypeptidase (carboxypeptidase S) was found in a Saccharomyces cerevisiae strain lacking carboxypeptidase Y (D. H. Wolf and U. Weiser, Eur. J. Biochem. 73:553-556, 1977). Mutants devoid of carboxypeptidase S activity were isolated from a mutant strain that was also deficient in carboxypeptidase Y. Four mutants were analyzed in detail and fell into one complementation group. The defect segregated 2:2 in meiotic tetrads. Gene dosage experiments indicated that the mutation might reside in the structural gene of carboxypeptidase S. The absence of both enzymes, carboxypeptidases Y and S, did not affect mitotic growth. Ascopore formation was only slightly affected by the absence of both carboxypeptidases. Protein degradation under conditions of nutrient deprivation and under sporulation conditions showed no obvious alteration in the absence of carboxypeptidases Y and S. When a proteinase B mutation, which led to the absence of proteinase B activity and resulted in the partial reduction of sporulation, was introduced into a mutant lacking both carboxypeptidases, the ability of diploid cells to sporulate was nearly completely lost. Mutants lacking both carboxypeptidases were unable to grow on the dipeptide benzyloxycarbonylglycyl-l-leucine as a sole nitrogen source, which indicates an additional function for carboxypeptidases Y and S in supplying nutrients from exogenous peptides. Catabolite inactivation of fructose-1,6-bisphosphatase, cytoplasmic malate dehydrogenase, and phosphoenolpyruvate carboxykinase and inactivation of nicotin-amide adenine dinucleotide phosphate-dependent, glutamate dehydrogenase, events which have been proposed to involve proteolysis in vivo, were not dependent on the presence of carboxypeptidase Y and S. In a mutant lacking both carboxypeptidases, four new proteolytic enzymes with carboxypeptidase activity were detected. PMID:7021530

  16. Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II.

    PubMed

    Tykvart, Jan; Schimer, Jiří; Jančařík, Andrej; Bařinková, Jitka; Navrátil, Václav; Starková, Jana; Šrámková, Karolína; Konvalinka, Jan; Majer, Pavel; Šácha, Pavel

    2015-05-28

    We present here a structure-aided design of inhibitors targeting the active site as well as exosites of glutamate carboxypeptidase II (GCPII), a prostate cancer marker, preparing potent and selective inhibitors that are more than 1000-fold more active toward GCPII than its closest human homologue, glutamate carboxypeptidase III (GCPIII). Additionally, we demonstrate that the prepared inhibitor conjugate can be used for sensitive and selective imaging of GCPII in mammalian cells. PMID:25923815

  17. Proteolytic Processing of Angiotensin-I in Human Blood Plasma

    PubMed Central

    Hildebrand, Diana; Merkel, Philipp; Eggers, Lars Florian; Schlüter, Hartmut

    2013-01-01

    In mammalian species, except humans, N-terminal processing of the precursor peptide angiotensin I (ANG-1-10) into ANG-2-10 or ANG-3-10 was reported. Here we hypothesize that aminopeptidase-generated angiotensins bearing the same C-terminus as ANG-1-10 are also present in humans. We demonstrate the time dependent generation of ANG-2-10, ANG-3-10, ANG-4-10, ANG-5-10 and ANG-6-10 from the precursor ANG-1-10 by human plasma proteins. The endogenous presence of ANG-4-10, ANG-5-10 and ANG-6-10 in human plasma was confirmed by an immuno-fluorescence assay. Generation of ANG-2-10, ANG-3-10 and ANG-4-10 from ANG-1-10 by immobilized human plasma proteins was sensitive to the cysteine/serine protease inhibitor antipain. The metal ion chelator EDTA inhibited Ang-6-10-generation. Incubation of the substrates ANG-3-10, ANG-4-10 and ANG-5-10 with recombinant aminopeptidase N (APN) resulted in a successive N-terminal processing, finally releasing ANG-6-10 as a stable end product, demonstrating a high similarity concerning the processing pattern of the angiotensin peptides compared to the angiotensin generating activity in plasma. Recombinant ACE-1 hydrolyzed the peptides ANG-2-10, ANG-3-10, ANG-4-10 and ANG-5-10 into ANG-2-8, ANG-3-8, ANG-4-8 and ANG-5-8. Since ANG-2-10 was processed into ANG-2-8, ANG-4-8 and ANG-5-8 by plasma proteases the angiotensin peptides bearing the same C-terminus as ANG-1-10 likely have a precursor function in human plasma. Our results confirm the hypothesis of aminopeptidase mediated processing of ANG-1-10 in humans. We show the existence of an aminopeptidase mediated pathway in humans that bypasses the known ANG-1-8-carboxypeptidase pathway. This expands the knowledge about the known human renin angiotensin system, showing how efficiently the precursor ANG-1-10 is used by nature. PMID:23724017

  18. Proteome-derived Peptide Libraries to Study the Substrate Specificity Profiles of Carboxypeptidases*

    PubMed Central

    Tanco, Sebastian; Lorenzo, Julia; Garcia-Pardo, Javier; Degroeve, Sven; Martens, Lennart; Aviles, Francesc Xavier; Gevaert, Kris; Van Damme, Petra

    2013-01-01

    Through processing peptide and protein C termini, carboxypeptidases participate in the regulation of various biological processes. Few tools are however available to study the substrate specificity profiles of these enzymes. We developed a proteome-derived peptide library approach to study the substrate preferences of carboxypeptidases. Our COFRADIC-based approach takes advantage of the distinct chromatographic behavior of intact peptides and the proteolytic products generated by the action of carboxypeptidases, to enrich the latter and facilitate its MS-based identification. Two different peptide libraries, generated either by chymotrypsin or by metalloendopeptidase Lys-N, were used to determine the substrate preferences of human metallocarboxypeptidases A1 (hCPA1), A2 (hCPA2), and A4 (hCPA4). In addition, our approach allowed us to delineate the substrate specificity profile of mouse mast cell carboxypeptidase (MC-CPA or mCPA3), a carboxypeptidase suggested to function in innate immune responses regulation and mast cell granule homeostasis, but which thus far lacked a detailed analysis of its substrate preferences. mCPA3 was here shown to preferentially remove bulky aromatic amino acids, similar to hCPA2. This was also shown by a hierarchical cluster analysis, grouping hCPA1 close to hCPA4 in terms of its P1 primed substrate specificity, whereas hCPA2 and mCPA3 cluster separately. The specificity profile of mCPA3 may further aid to elucidate the function of this mast cell carboxypeptidase and its biological substrate repertoire. Finally, we used this approach to evaluate the substrate preferences of prolylcarboxypeptidase, a serine carboxypeptidase shown to cleave C-terminal amino acids linked to proline and alanine. PMID:23620545

  19. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain. PMID:24161824

  20. Molecular Analysis of the Aedes aegypti Carboxypeptidase Gene Family

    PubMed Central

    Isoe, Jun; Zamora, Jorge; Miesfeld, Roger L.

    2009-01-01

    To gain a better understanding of coordinate regulation of protease gene expression in the mosquito midgut, we undertook a comprehensive molecular study of digestive carboxypeptidases in Aedes aegypti. Through a combination of cDNA cloning using degenerate PCR primers, and database mining of the recently completed Ae. aegypti genome, we cloned and characterized 18 Ae. aegypti carboxypeptidase genes. Bioinformatic analysis revealed that 11 of these genes belong to the carboxypeptidase A family (AaCPA-I through AaCPA-XI), and seven to the carboxypeptidase B gene family (AaCPB-I through AaCPB-VII). Phylogenetic analysis of 32 mosquito carboxypeptidases from five different species indicated that most of the sequence divergence in the carboxypeptidase gene family occurred prior to the separation of Aedes and Anopheles mosquito lineages. Unlike the CPA genes that are scattered throughout the Ae. aegypti genome, six of seven CPB genes were found to be located within a single 120 kb genome contig, suggesting that they most likely arose from multiple gene duplication events. Quantitative expression analysis revealed that 11 of the Ae. aegypti carboxypeptidase genes were induced up to 40-fold in the midgut in response to blood meal feeding, with peak expression times ranging from 3-36 hours post-feeding depending on the gene. PMID:18977440

  1. Lung peptidases, including carboxypeptidase, modulate airway reactivity to intravenous bradykinin.

    PubMed

    Chodimella, V; Skidgel, R A; Krowiak, E J; Murlas, C G

    1991-10-01

    We investigated the effect of inhibition of carboxypeptidase, neutral endopeptidase, or angiotensin converting enzyme on airway reactivity to intravenous bradykinin in guinea pigs. Bradykinin reactivity in intact, unanesthetized, spontaneously breathing animals was determined by measuring specific airway resistance in response to increasing doses of intravenous bradykinin or acetylcholine. We found that phosphoramidon and/or captopril (specific antagonists of neutral endopeptidase and angiotensin converting enzyme, respectively) increased airway reactivity to bradykinin, but the combination had no effect on muscarinic reactivity. Although 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid (MGTA, a carboxypeptidase inhibitor) alone did not alter bradykinin reactivity, MGTA in the presence of both phosphoramidon and captopril significantly potentiated bradykinin-induced airway reactivity. In comparison, this did not affect reactivity to acetylcholine. Having found that carboxypeptidase inhibition could augment kinin-induced airway reactivity, we subsequently assayed for and identified carboxypeptidase M activity in guinea pig lung. We found considerable carboxypeptidase M activity in guinea pig lung subcellular fractions, the 100,000 x g membrane pellet having the highest specific activity. Our data indicate that airway reactivity to intravenous bradykinin is modulated by the activity of endogenous neutral endopeptidase, angiotensin converting enzyme, and carboxypeptidase, all of which are present in lung cell membranes. This study also suggests that the influence of carboxypeptidase per se may be substantially enhanced if endogenous pulmonary neutral endopeptidase and angiotensin converting enzyme activities are reduced. PMID:1928964

  2. New Roles of Carboxypeptidase E in Endocrine and Neural Function and Cancer

    PubMed Central

    Cawley, Niamh X.; Wetsel, William C.; Murthy, Saravana R. K.; Park, Joshua J.; Pacak, Karel

    2012-01-01

    Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors. PMID:22402194

  3. Expression and distribution of carboxypeptidase B in the hippocampal subregions of normal and Alzheimer's disease brain.

    PubMed

    Papp, Henrietta; Török, I; Matsumoto, A; Enomoto, T; Matsuyama, S; Kása, P

    2003-01-01

    Earlier neurochemical studies suggested that human brain carboxypeptidase B may play a significant role in the degradation of amyloid-beta1-42 in the brain. Using an immimohistochemical technique we report here on the neuronal expression and distribution of this enzyme in the segments (CA1a, CA1b and CA1c) of the CA1 subfield and in area CA4 of the hippocampus in normal and Alzheimer's disease brain samples. Its distribution was compared with the appearance of neurofibrillary tangles in the same brain sample. For immunohistochemical localization of carboxypeptidase B, a specific C14-module antibody was applied, together with the Gallyas silver impregnation technique for the demonstration of neurofibrillary tangles. The results revealed that, in the control samples, most of the immunoreactivity appeared in segment CA1a in the pyramidal cells, less in segment CA1b and least in segment CA1c. In the Alzheimer's disease samples, there was no particular immunostaining in the neurons, but, a large number of silver-impregnated degenerated neurons appeared. The results support the suggestion that carboxypeptidase B may play a significant role in elimination of the intracellular accumulation and toxicity of amyloid-beta in the human brain and thereby protect the neurons from degeneration. PMID:12705322

  4. Enhancement of human plasma glucosylceramide assay sensitivity using delipidized plasma.

    PubMed

    Zheng, Kefei; Ji, Allena; Chung, Lee Lee; Culm-Merdek, Kerry; Liu, Hanlan; Richards, Susan; Sung, Crystal

    2016-09-01

    Glucosylceramide (GL-1) level in human has been considered as a surrogate biomarker for enzyme replacement and substrate reduction therapies (ERT and SRT) for Gaucher and Fabry patients. Due to the high endogenous level of GL-1 in human plasma, it is difficult to achieve the analytical sensitivity of plasma GL-1 below the normal endogenous level (1.7 μg/mL to 6.6 μg/mL) when using the standard addition method and regular plasma matrix for standard curve. A high sensitivity plasma GL-1 assay with LLOQ at 0.1 μg/mL was developed and validated using delipidized plasma so that patient plasma concentrations that are below normal reference range can be measured accurately. The normal reference range was established from 120 healthy donors using this developed new method. Twenty-three Fabry patient plasma samples including baseline and post-investigation drug treatment samples were measured. All post-treatment samples showed GL-1 concentration below 2.0 μg/mL, indicating the utility of the reported high sensitivity assay using delipidized plasma for monitoring the plasma GL-1 biomarker level in patients. PMID:27547732

  5. Biochemical characterization of a novel carboxypeptidase inhibitor from a variety of Andean potatoes.

    PubMed

    Lufrano, Daniela; Cotabarren, Juliana; Garcia-Pardo, Javier; Fernandez-Alvarez, Roberto; Tort, Olivia; Tanco, Sebastián; Avilés, Francesc Xavier; Lorenzo, Julia; Obregón, Walter D

    2015-12-01

    Natural protease inhibitors of metallocarboxypeptidases are rarely reported. In this work, the cloning, expression and characterization of a proteinaceous inhibitor of the A/B-type metallocarboxypeptidases, naturally occurring in tubers of Solanum tuberosum, subsp. andigenum cv. Imilla morada, are described. The obtained cDNA encoded a polypeptide of 80 residues, which displayed the features of metallocarboxypeptidase inhibitor precursors from the Potato Carboxypeptidase Inhibitor (PCI) family. The mature polypeptide (39 residues) was named imaPCI and in comparison with the prototype molecule of the family (PCI from S. tuberosum subsp. tuberosum), its sequence showed one difference at its N-terminus and another three located at the secondary binding site, a region described to contribute to the stabilization of the complex inhibitor-target enzyme. In order to gain insights into the relevance of the secondary binding site in nature, a recombinant form of imaPCI (rimaPCI) having only differences at the secondary binding site with respect to recombinant PCI (rPCI) was cloned and expressed in Escherichia coli. The rimaPCI exhibited a molecular mass of 4234.8Da by MALDI-TOF/MS. It displayed potent inhibitory activity towards A/B-type carboxypeptidases (with a Ki in the nanomolar range), albeit 2-4-fold lower inhibitory capacity compared to its counterpart rPCI. This result is in agreement with our bioinformatic analysis, which showed that the main interaction established between the secondary binding site of rPCI and the bovine carboxypeptidase A is likely lost in the case of rimaPCI. These observations reinforce the importance of the secondary binding site of PCI-family members on inhibitory effects towards A/B-type metallocarboxypeptidases. Furthermore, as a simple proof of concept of its applicability in biotechnology and biomedicine, the ability of rimaPCI to protect human epidermal growth factor from C-terminal cleavage and inactivation by carboxypeptidases A and B

  6. Localization of Carboxypeptidase I in Germinating Barley Grain 1

    PubMed Central

    Ranki, Harri; Sopanen, Tuomas; Voutilainen, Raimo

    1990-01-01

    Activity measurements and Northern blot hybridizations were used to study the temporal and spatial expression of carboxypeptidase I in germinating grains of barley (Hordeum vulgare L. cv Himalaya). In the resting grain no carboxypeptidase I activity was found in the aleurone layer, scutellum, or starchy endosperm. During germination high levels of enzyme activity appeared in the scutellum and in the starchy endosperm but only low activity was found in the aleurone layer. No mRNA for carboxypeptidase I was observed in the resting grain. By day 1 of germination the mRNA appeared in the scutellum where its level remained high for several days. In contrast, little mRNA was observed in the aleurone layer. These results indicate that the scutellum plays an important role in the production of carboxypeptidase I in germinating barley grain. Images Figure 3 PMID:16667638

  7. Structure and Function of REP34 Implicates Carboxypeptidase Activity in Francisella tularensis Host Cell Invasion*

    PubMed Central

    Feld, Geoffrey K.; El-Etr, Sahar; Corzett, Michele H.; Hunter, Mark S.; Belhocine, Kamila; Monack, Denise M.; Frank, Matthias; Segelke, Brent W.; Rasley, Amy

    2014-01-01

    Francisella tularensis is the etiological agent of tularemia, or rabbit fever. Although F. tularensis is a recognized biothreat agent with broad and expanding geographical range, its mechanism of infection and environmental persistence remain poorly understood. Previously, we identified seven F. tularensis proteins that induce a rapid encystment phenotype (REP) in the free-living amoeba, Acanthamoeba castellanii. Encystment is essential to the pathogen's long term intracellular survival in the amoeba. Here, we characterize the cellular and molecular function of REP34, a REP protein with a mass of 34 kDa. A REP34 knock-out strain of F. tularensis has a reduced ability to both induce encystment in A. castellanii and invade human macrophages. We determined the crystal structure of REP34 to 2.05-Å resolution and demonstrate robust carboxypeptidase B-like activity for the enzyme. REP34 is a zinc-containing monomeric protein with close structural homology to the metallocarboxypeptidase family of peptidases. REP34 possesses a novel topology and substrate binding pocket that deviates from the canonical funnelin structure of carboxypeptidases, putatively resulting in a catalytic role for a conserved tyrosine and distinct S1′ recognition site. Taken together, these results identify REP34 as an active carboxypeptidase, implicate the enzyme as a potential key F. tularensis effector protein, and may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells. PMID:25231992

  8. Nanosecond electric pulses deprive zinc ions of carboxypeptidase G2.

    PubMed

    Yu, Tinghe; Fu, Xiao

    2015-02-01

    Nanosecond electric pulses (nsEP, 10kV/cm with a pulse duration of 8, 16 or 24ns) inhibited the activity of carboxypeptidase G2 (CPG2), a zinc-dependent homodimer; the relative activity was <20% when the total exposure time was >120s. No alterations were detected in electrophoresis, chromatography, mass spectroscopy and circular dichroism, thus demonstrating intactness of the apoenzyme. Inductively coupled plasma-mass spectrometry indicated that zinc levels were 3.30μg/mg protein in control CPG2, and decreased to 0.40, 0.12 or 0.38μg/mg protein after 240s of 8-, 16- or 24-ns pulses, respectively. In CPG2 exposed to 240s of 8-, 16- and 24-ns pulses, the reloading of zinc with redialysis recovered the activity to 94.7±3.4%, 84.0±5.2% and 81.7±7.0%, respectively (p=0.0853, 0.0741, 0.0668). These data demonstrated that nsEP inhibited CPG2 via removal of zinc, and that nsEP can be used to modulate CPG2. PMID:25049063

  9. Genome-Wide Identification and Characterization of Carboxypeptidase Genes in Silkworm (Bombyx mori)

    PubMed Central

    Ye, Junhong; Li, Yi; Liu, Hua-Wei; Li, Jifu; Dong, Zhaoming; Xia, Qingyou; Zhao, Ping

    2016-01-01

    The silkworm (Bombyx mori) is an economically-important insect that can secrete silk. Carboxypeptidases have been found in various metazoan species and play important roles in physiological and biochemical reactions. Here, we analyzed the silkworm genome database and characterized 48 carboxypeptidases, including 34 metal carboxypeptidases (BmMCP1–BmMCP34) and 14 serine carboxypeptidases (BmSCP1–BmSCP14), to better understand their diverse functions. Compared to other insects, our results indicated that carboxypeptidases from silkworm have more family members. These silkworm carboxypeptidases could be divided into four families: Peptidase_M2 carboxypeptidases, Peptidase_M14 carboxypeptidases, Peptidase_S10 carboxypeptidases and Peptidase_S28 carboxypeptidases. Microarray analysis showed that the carboxypeptidases had distinct expression patterns, whereas quantitative real-time PCR demonstrated that the expression level of 13 carboxypeptidases significantly decreased after starvation and restored after re-feeding. Overall, our study provides new insights into the functional and evolutionary features of silkworm carboxypeptidases. PMID:27483237

  10. Genome-Wide Identification and Characterization of Carboxypeptidase Genes in Silkworm (Bombyx mori).

    PubMed

    Ye, Junhong; Li, Yi; Liu, Hua-Wei; Li, Jifu; Dong, Zhaoming; Xia, Qingyou; Zhao, Ping

    2016-01-01

    The silkworm (Bombyx mori) is an economically-important insect that can secrete silk. Carboxypeptidases have been found in various metazoan species and play important roles in physiological and biochemical reactions. Here, we analyzed the silkworm genome database and characterized 48 carboxypeptidases, including 34 metal carboxypeptidases (BmMCP1-BmMCP34) and 14 serine carboxypeptidases (BmSCP1-BmSCP14), to better understand their diverse functions. Compared to other insects, our results indicated that carboxypeptidases from silkworm have more family members. These silkworm carboxypeptidases could be divided into four families: Peptidase_M2 carboxypeptidases, Peptidase_M14 carboxypeptidases, Peptidase_S10 carboxypeptidases and Peptidase_S28 carboxypeptidases. Microarray analysis showed that the carboxypeptidases had distinct expression patterns, whereas quantitative real-time PCR demonstrated that the expression level of 13 carboxypeptidases significantly decreased after starvation and restored after re-feeding. Overall, our study provides new insights into the functional and evolutionary features of silkworm carboxypeptidases. PMID:27483237

  11. Isolation and characterization of a microbial Arg/Lys carboxypeptidase, carboxypeptidase F.

    PubMed

    Matsumura, E; Sato, T; Toyoda, N

    1995-03-01

    Carboxypeptidase F was isolated from a fungal strain F-33 and characterized. The enzyme has the ability to release arginine and lysine from the carboxy terminus of peptides, and showed high specific activity against arginine (140 units mg-1 protein). Optimal temperature and pH for the enzyme reaction were 55 degrees C and pH 8.5, respectively. The enzyme possessed a high thermal stability. Native molecular weight was estimated to be approximately 450,000. Enzymatic activity was inhibited by Co2+, Cd2+, chelating agents and thiol inhibitors. PMID:7766072

  12. Serine carboxypeptidase-like acyltransferases from plants.

    PubMed

    Mugford, Sam T; Milkowski, Carsten

    2012-01-01

    Serine carboxypeptidase-like (SCPL) acyltransferases facilitate transacylation reactions using energy-rich 1-O-β-glucose esters in the synthesis of an array of bioactive compounds and are associated with the diversification of plant natural products. SCPL acyltransferases have evolved from a hydrolytic ancestor by adapting functional elements of the proteases such as the catalytic triad, oxyanion hole, and substrate recognition H-bond network to their new function. As vacuolar proteins, SCPL acyltransferases define an alternative cellular route of transacylation spatially separated from the cytoplasmic enzymes of the BAHD acyltransferase family named according to the first characterized members (BEAT, AHCT, HCBT, and DAT). Recent efforts in cloning and characterization led to the identification of diagnostic peptides for SCPL acyltransferases, enabling the detection of candidate genes in several plant genomes. Detailed biochemical analysis of SCPL acyltransferases is strongly dependent on comprehensive heterologous expression systems, efficient protein purification protocols, and the supply of appropriate substrates. This chapter describes some useful techniques and strategies for identification and characterization of SCPL acyltransferases. PMID:23034234

  13. Quantitation of phosphorothioate oligonucleotides in human plasma.

    PubMed

    Leeds, J M; Graham, M J; Truong, L; Cummins, L L

    1996-03-01

    Methods are presented for the extraction of phosphorothioate oligonucleotides from human plasma to permit quantitation by capillary gel electrophoresis. Extraction of the phosphorothioate oligonucleotides from plasma was accomplished using two solid-phase extraction columns, a strong anion-exchange column to remove plasma proteins and lipids, followed by a reverse-phase column to remove salts. A second desalting step, achieved by dialysis utilizing a membrane with a molecular weight cutoff of 2500 Da floating on distilled water, was required to remove residual ionic material from the extracted sample. This method should be generally applicable to the analysis and quantitation of phosphorothioate oligonucleotides. PMID:8850544

  14. Measurement of Human Blood and Plasma Volumes

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Szalkay, H. G. H.

    1987-01-01

    Report reviews techniques for measuring blood-plasma volume in humans. Common technique of using radioactive iodine isotope to label plasma albumin involves unwarranted risks from low-level radiation. Report emphasizes techniques using Evans-blue-dye (T-1824) labeling of albumin, hematocrit or hemoglobin/hematocrit measurements, or blood densitometry. In Evans-blue-dye technique, plasma volume determined from decrease in dye concentration occurring after small amount of dye solution injected into circulatory system. Subjection of Evans blue dye to test for carcinogenicity gave negative results.

  15. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  16. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Plasma Protein Fraction (Human). 640.90 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  17. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  18. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  19. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  20. Production, purification, and properties of serine carboxypeptidase from Paecilomyces carneus.

    PubMed

    Umetsu, H; Hishinuma, K; Wake, H; Ichishima, E

    1996-07-01

    Seventeen strains of the genus Paecilomyces were examined for their ability to produce serine carboxypeptidase. Paecilomyces carneus IFO 7012 exhibited the highest potency for serine carboxypeptidase production. A maximum yield of serine carboxypeptidase was obtained by koji culture of the strain at 22 degrees C for 7 days. The serine carboxypeptidase was purified to homogeneity from an extract of the koji culture. The molecular weight of the enzyme was estimated to be 47,000 by HPLC. The isoelectric point of the enzyme was determined to be 4.0, and the optimum pH was 4.0 toward benzyloxycarbonyl-L-glutamyl-L-tyrosine (Z-Glu-Tyr) and benzyloxycarbonyl-L-phenylalanyl-L-alanine (Z-Phe-Ala), respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and p-chloromercurybenzoate. Relative hydrolysis rates of N-acylpeptides and kinetic studies indicated that the enzyme preferred substrates having bulky amino acids in the penultimate position from their carboxy-termini. PMID:8661688

  1. Thermal diffusivity of human serum and plasma

    NASA Astrophysics Data System (ADS)

    Mayén-Mondragón, R.; Yánez-Limón, J. M.; Palomares, P.; Sosa, M.; Bernal-Alvarado, J.

    2005-06-01

    Using a thermal lens experimental set up, the thermal diffusivity of human serum and plasma were measured. Several samples were studied and the results are reported as the average, including the standard deviation. The samples of serum and plasma were obtained in healthy adult donors from the Guanajuato State Blood Transfusion Center, Mexico; the donors were clinically tested and they were free of hepatitis, AIDS and other infectious diseases. The parameters reported were obtained using the thermal lens aberrant model with the lasers arranged in the mismatched mode.

  2. Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline.

    PubMed Central

    Rieger, K J; Saez-Servent, N; Papet, M P; Wdzieczak-Bakala, J; Morgat, J L; Thierry, J; Voelter, W; Lenfant, M

    1993-01-01

    The degradation of N-Ac-Ser-Asp-Lys-Pro (AcSDKP), a negative regulator controlling the proliferation of the haematopoietic stem cell, by enzymes present in human plasma, has been investigated. Radiolabelled AcSD[4-3H]KP ([3H]AcSDKP, 1 mM) was completely metabolized in human plasma with a half-life of 80 min, leading exclusively to the formation of radiolabelled lysine. The cleavage of AcSDKP was insensitive to classical proteinase inhibitors including leupeptin, but sensitive to metalloprotease inhibitors. The degradation was completely blocked by specific inhibitors of angiotensin I-converting enzyme (ACE; kininase II; peptidyldipeptide hydrolase, EC 3.4.15.1), showing that the first step of the hydrolysis was indeed due to ACE. In dialysed plasma, the hydrolysis proceeded at only 17% of the maximal rate, whereas addition of 20 mM NaCl led to the recovery of the initial rate observed with normal plasma. Hydrolysis of AcSDKP by commercial rabbit lung ACE generated the C-terminal dipeptide Lys-Pro. Thus, ACE cleaves AcSDKP by a dipeptidyl carboxypeptidase activity. In fact the formation of Lys-Pro was observed when AcSDKP was incubated in human plasma in the presence of HgCl2. These results suggest that ACE is involved in the first limiting step of AcSDKP degradation in human plasma. The second step seems to be under the control of a leupeptin- and E-64-insensitive, HgCl2-sensitive plasmatic enzyme. PMID:8257427

  3. Surface rheological observations on human plasma.

    PubMed

    Matrai, A; Warburton, B; Dormandy, J A

    1984-01-01

    The weak interactions between plasma proteins are of possible importance both in haemorheology and in the pathology of several diseases. The use of surface rheology is a convenient way to study the forces arising between surface adsorbed protein molecules. A surface rheological measuring head has been designed for the Contraves LS-30 viscometer. Plasma samples of healthy human subjects showed a rapidly developing viscous surface layer with a mean peak value of 2.10(-3) Ns/m surface viscosity at 30- 60 seconds. After that the viscosity of the surface layer gradually decreased to zero between 8-20 minutes. The rate of the observed decrease was not related to shearing. There was no difference between samples anticoagulated with heparin or EDTA. The time course of the described phenomenon coincides with that of thrombocyte and white cell adherence to solid surfaces exposed to plasma. PMID:6591960

  4. Inhibitors of Kallikrein in Human Plasma

    PubMed Central

    McConnell, David J.

    1972-01-01

    Human plasma was fractionated by ammonium sulfate precipitation, DEAE-cellulose chromatography, and Sephadex G-200 gel filtration to determine which method would give the greatest number of clearly separable kallikrein inhibitory peaks. With G-200 gel filtration three peaks could be separated which were demonstrated to contain α2-macroglobulin, C1̄ inactivator, and α1-antitrypsin. No other kallikrein inhibitors could be identified. The fractions containing C1̄ inactivator and α2-macroglobulin appeared to be more effective against kallikrein than that containing α1-antitrypsin. A patient with hereditary angioneurotic edema was shown to have an abnormal C1̄ inactivator protein capable of interfering with kallikrein's biologic, but not its esterolytic activity. Heat-treated human plasma, a commonly used source of kininogen for experiments with kallikrein, was shown to have kallikrein inhibitory activity. PMID:4113391

  5. Peptidoglycan ld-Carboxypeptidase Pgp2 Influences Campylobacter jejuni Helical Cell Shape and Pathogenic Properties and Provides the Substrate for the dl-Carboxypeptidase Pgp1*

    PubMed Central

    Frirdich, Emilisa; Vermeulen, Jenny; Biboy, Jacob; Soares, Fraser; Taveirne, Michael E.; Johnson, Jeremiah G.; DiRita, Victor J.; Girardin, Stephen E.; Vollmer, Waldemar; Gaynor, Erin C.

    2014-01-01

    Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes. PMID:24394413

  6. Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity.

    PubMed

    Barinka, Cyril; Sácha, Pavel; Sklenár, Jan; Man, Petr; Bezouska, Karel; Slusher, Barbara S; Konvalinka, Jan

    2004-06-01

    Glutamate carboxypeptidase II (GCPII) is a membrane peptidase expressed in the prostate, central and peripheral nervous system, kidney, small intestine, and tumor-associated neovasculature. The GCPII form expressed in the central nervous system, termed NAALADase, is responsible for the cleavage of N-acetyl-L-aspartyl-L-glutamate (NAAG) yielding free glutamate in the synaptic cleft, and is implicated in various pathologic conditions associated with glutamate excitotoxicity. The prostate form of GCPII, termed prostate-specific membrane antigen (PSMA), is up-regulated in cancer and used as an effective prostate cancer marker. Little is known about the structure of this important pharmaceutical target. As a type II membrane protein, GCPII is heavily glycosylated. In this paper we show that N-glycosylation is vital for proper folding and subsequent secretion of human GCPII. Analysis of the predicted N-glycosylation sites also provides evidence that these sites are critical for GCPII carboxypeptidase activity. We confirm that all predicted N-glycosylation sites are occupied by an oligosaccharide moiety and show that glycosylation at sites distant from the putative catalytic domain is critical for the NAAG-hydrolyzing activity of GCPII calling the validity of previously described structural models of GCPII into question. PMID:15152093

  7. The Physical State Dependence of Carboxypeptidase Aα and Aγ Kinetics

    PubMed Central

    Spilburg, Curtis A.; Bethune, J. Lemuel; Vallee, Bert L.

    1974-01-01

    Spectrochemical probes have demonstrated that the conformations of carboxypeptidase A (EC 3.4.12.2) differ in solution and in the crystalline state. Detailed kinetic studies of carboxypeptidase Aα and Aγ crystals and solutions now show that the physical state of the enzyme is also a critical parameter that affects the function of the Aα and Aγ enzymes in the same manner. The kinetic profiles and the corresponding kinetic constants of substrate hydrolysis are, therefore, important functional indices of the known conformational differences of the enzyme in these two physical states. The complex kinetic behavior of this enzyme, however, precludes meaningful comparisons of activity measurements for crystals and solutions obtained at only one substrate concentration. Underlying differences in varying substrate-inhibiting or -activating binding modes can result in either high or low activity ratios, concealing the true, functional consequences of the change in physical state. Thus, for all substrates examined, crystallization of the enzyme markedly reduces catalytic efficiency, kcat, from 20- to 1000-fold. Equally as important, the substrate inhibition, apparent in solution for some di- and depsipeptides, is abolished with crystals, while for longer substrates the normal solution kinetics may acquire activation with the crystals. Hypothetical modes of substrate-enzyme interaction, generated by superimposing substrate models on the crystal structure of carboxypeptidase to simulate kinetics in solution, have failed to detect both of these changes, which affect inhibitory or activating binding modes. The only structure of carboxypeptidase yet published and that of its functionally inert complex with the pseudosubstrate, glycyl-L-tyrosine, derive from a unique form of carboxypeptidase Aα crystals. These crystals differ from all others with regard both to their spectral properties and activity toward carbobenzoxy-glycyl-L-phenylalanine, which is 30% of that in solution

  8. Evolution of serine carboxypeptidase-like acyltransferases in the monocots

    PubMed Central

    Mugford, Sam T

    2010-01-01

    The serine carboxypeptidases are a large family of proteases. in higher plants some members of this family have diversified and adopted new functions as acyltransferases required for the synthesis of natural products. we recently reported the first serine carboxypeptidase-like (scpl) acyltransferase enzyme to be characterized from monocotyledonous plants.1 This enzyme, AsSCPL1, is required for acylation of antimicrobial terpenes (avenacins) that are produced in the roots of oat (Avena spp.) and that provide protection against soil-borne pathogens. The SCPL acyltransferase enzyme family has undergone substantial expansion following the divergence of monocots and dicots. Here we discuss the evolution of this SCPL enzyme family in monocots, their contribution to metabolic diversity, and the roles of these enzymes in biotic and abiotic stress tolerance. PMID:20173416

  9. Revision of the oligosaccharide structures of yeast carboxypeptidase Y

    SciTech Connect

    Ballou, L.; Hernandez, L.M.; Alvarado, E.; Ballou, C.E. )

    1990-05-01

    The N-linked oligosaccharides from baker's yeast carboxypeptidase Y were analyzed by {sup 1}H NMR and specific mannosidase digestion and found to be identical to those from the Saccharomyces cerevisiae mnn9 mutant bulk mannoprotein. The results support the view that the mnn mutants make oligosaccharides that are a true reflection of the normal biosynthetic pathway and confirm that a recently revised yeast oligosaccharide structure is applicable to wild-type mannoproteins.

  10. Human seminal plasma allergy in India.

    PubMed

    Shah, A; Sethi, S; Agarwal, M K

    1988-01-01

    Human seminal plasma allergy (HSPA) in women has been documented in the West. We describe here the first case of HSPA reported in India. An 18-year-old married woman presented with a 2-year history of episodic wheezing dyspnea. She had always had local postcoital symptoms since her first intercourse. Systemic symptoms developed subsequently. Despite more than 2 years of unprotected coitus, the patient had not conceived. The intradermal tests with seminal plasma antigen prepared from her husband's semen and from a healthy volunteer were markedly positive in the patient. Similar tests on her husband were negative. HSPA, especially the local forms, may be difficult to identify in our social conditions. PMID:3182586

  11. Human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Jauhiainen, M.; Stevenson, K.J.; Dolphin, P.J.

    1988-05-15

    Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the fatty acid at the sn-2 position of lecithin to cholesterol forming lysolecithin and cholesteryl ester. The substrates for and products of this reaction are present within the plasma lipoproteins upon which the enzyme acts to form the majority of cholesteryl ester in human plasma. The authors proposed a covalent catalytic mechanism of action for LCAT in which serine and histidine residues mediate lecithin cleavage and two cysteine residues cholesterol esterification. With the aid of sulfhydryl reactive trivalent organoarsenical compounds which are specific for vicinal thiols they have probed the geometry of the catalytic site. They conclude that the two catalytic cysteine residues of LCAT (Cys/sup 31/ and Cys /sup 184/) are vicinal with a calculated distance between their sulfur atoms of 3.50-3.62 A. The additional residue alkylated by teh bifunctional reagent is within the catalytic site and may represent a previously identified catalytic serine or histidine residue.

  12. Characterization of the human blood plasma proteome

    SciTech Connect

    Shen, Yufeng; Kim, Jeongkwon; Strittmatter, Eric F.; Jacobs, Jon M.; Camp, David G.; Fang, Ruihua; Tolic, Nikola; Moore, Ronald J.; Smith, Richard D.

    2005-10-15

    We describe methods for broad characterization of the human plasma proteome. The combination of stepwise IgG and albumin protein depletion by affinity chromatography and ultrahigh-efficiency capillary liquid chromatography separations coupled to ion trap-tandem mass spectrometry enabled identification of 2392 proteins from a single plasma sample with an estimated confidence level of >94%, and an additional 2198 proteins with an estimated confidence level of 80%. The relative abundances of the identified proteins span a range of over eight orders of magnitude in concentration (<30 pg/mL to {approx}30 mg/mL), facilitated by the attomole-level sensitivity of the analysis methods. More than 80% of the observed proteins demonstrate interactions with IgG and/or albumin. The results from this study provide a basis for a wide range of plasma proteomics studies, including broad quantitation of relative abundances in comparative studies for the identification of novel protein disease markers, as well as further studies of protein-protein interactions.

  13. Bioanalysis of N-acetyl-aspartyl-glutamate as a marker of glutamate carboxypeptidase II inhibition.

    PubMed

    Thomas, Ajit G; Rojas, Camilo J; Hill, Jeanette R; Shaw, Michael; Slusher, Barbara S

    2010-09-01

    We report the characterization of two methods for the analysis of N-acetyl-aspartyl-glutamate (NAAG) in biological fluids. In the first method, NAAG concentrations were calculated based on differences between glutamate concentrations before and after NAAG hydrolysis with exogenous glutamate carboxypeptidase II (GCP II) using high-performance liquid chromatography (HPLC) followed by fluorescence detection. In the second method, NAAG levels were quantified directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analyses of NAAG levels in human cerebrospinal fluid samples using either method gave similar results within experimental error, confirming the validity of the two independent measurements. These methods will be useful in future clinical trials to assess drug-induced GCP II inhibition in biological matrices. PMID:20434427

  14. Structural characterization of P1′-diversified urea-based inhibitors of glutamate carboxypeptidase II

    PubMed Central

    Pavlicek, Jiri; Ptacek, Jakub; Cerny, Jiri; Byun, Youngjoo; Skultetyova, Lubica; Pomper, Martin G.; Lubkowski, Jacek; Barinka, Cyril

    2014-01-01

    Urea-based inhibitors of human glutamate carboxypeptidase II (GCPII) have advanced into clinical trials for imaging metastatic prostate cancer. In parallel efforts, agents with increased lipophilicity have been designed and evaluated for targeting GCPII residing within the neuraxis. Here we report the structural and computational characterization of six complexes between GCPII and P1′-diversified urea-based inhibitors that have the C-terminal glutamate replaced by more hydrophobic moieties. The X-ray structures are complemented by quantum mechanics calculations that provide a quantitative insight into the GCPII/inhibitor interactions. These data can be used for the rational design of novel glutamate-free GCPII inhibitors with tailored physicochemical properties. PMID:24731280

  15. Oxidative stress induced carbonylation in human plasma.

    PubMed

    Madian, Ashraf G; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E

    2011-10-19

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  16. Oxidative stress induced carbonylation in human plasma

    PubMed Central

    Madian, Ashraf G.; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E.

    2011-01-01

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  17. Purification of glycocalicin from human plasma.

    PubMed

    HadjKacem, Basma; Mkaouar, Héla; Ben Amor, Ikram; Gargouri, Jalel; Gargouri, Ali

    2016-01-01

    Glycocalicin (GC) is a large extracellular proteolytic fragment of glycoprotein Ib, a membrane platelet component playing an essential role in the physiological processes of platelet adhesion and aggregation. GC contains the binding sites for thrombin and von Willebrand factor. GC circulates normally in vivo in significant concentrations and the plasma level of this protein reflects a complex function of factors including platelet count or platelet turnover. It can therefore serve as a good indicator for many diseases like hypoplastic thrombocytopenia and idiopathic thrombocytopenic purpura. For this reason, several purification assays have been previously described. In this work, we describe a novel analytical method for GC purification from human platelets based on preparative HPLC gel filtration followed by immuno-affinity chromatography on NHS activated column conjugated with specific antibody. Pure GC was obtained from tiny amount of starting material. Our protocol of GC purification is simple, fast and provides a pure end product. PMID:26606109

  18. Diverse human extracellular RNAs are widely detected in human plasma

    PubMed Central

    Freedman, Jane E.; Gerstein, Mark; Mick, Eric; Rozowsky, Joel; Levy, Daniel; Kitchen, Robert; Das, Saumya; Shah, Ravi; Danielson, Kirsty; Beaulieu, Lea; Navarro, Fabio C. P.; Wang, Yaoyu; Galeev, Timur R.; Holman, Alex; Kwong, Raymond Y.; Murthy, Venkatesh; Tanriverdi, Selim E.; Koupenova, Milka; Mikhalev, Ekaterina; Tanriverdi, Kahraman

    2016-01-01

    There is growing appreciation for the importance of non-protein-coding genes in development and disease. Although much is known about microRNAs, limitations in bioinformatic analyses of RNA sequencing have precluded broad assessment of other forms of small-RNAs in humans. By analysing sequencing data from plasma-derived RNA from 40 individuals, here we identified over a thousand human extracellular RNAs including microRNAs, piwi-interacting RNA (piRNA), and small nucleolar RNAs. Using a targeted quantitative PCR with reverse transcription approach in an additional 2,763 individuals, we characterized almost 500 of the most abundant extracellular transcripts including microRNAs, piRNAs and small nucleolar RNAs. The presence in plasma of many non-microRNA small-RNAs was confirmed in an independent cohort. We present comprehensive data to demonstrate the broad and consistent detection of diverse classes of circulating non-cellular small-RNAs from a large population. PMID:27112789

  19. Carboxypeptidase X-1 (CPX-1) is a secreted collagen-binding glycoprotein.

    PubMed

    Kim, Yu-Hee; O'Neill, Hayley M; Whitehead, Jonathan P

    2015-12-25

    Carboxypeptidase X-1 (CPX-1) is an atypical member of the carboxypeptidase (CP) family of proteins involved in a variety of physiological and pathological processes. However, unlike most other family members CPX-1 lacks catalytic activity making its biological function unclear. CPX-1 contains a 160 amino acid discoidin domain (DSD) that serves as a binding domain in other proteins prompting us to investigate a putative functional role for this domain in CPX-1. Sequence alignment confirmed the overarching homology between the DSD of CPX-1 and other DSDs whilst more detailed analysis revealed conservation of the residues known to form the collagen-binding trench within the DSD of the discoidin domain receptors (DDRs) 1 and 2. Biochemical characterisation of transiently expressed human CPX-1 revealed that CPX-1 was secreted in an N-glycosylation-dependent manner as treatment with the N-glycosylation inhibitor tunicamycin inhibited secretion concomitant with a reduction in CPX-1 mobility on Western blot. Using a collagen pull-down assay we found that secreted CPX-1 bound collagen and this appeared independent of N-glycosylation as treatment with PNGaseF did not affect binding. Further analysis under non-reducing and reducing (+DTT) conditions revealed that CPX-1 was secreted in both monomeric and dimeric forms and only the former bound collagen. Finally, mutation of a key residue situated within the putative collagen-binding trench within the DSD of CPX-1 (R192A) significantly reduced secretion and collagen-binding by 40% and 60%, respectively. Collectively these results demonstrate that CPX-1 is a secreted collagen-binding glycoprotein and provide a foundation for future studies investigating the function of CPX-1. PMID:26603934

  20. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III

    SciTech Connect

    Hlouchova, Klara; Barinka, Cyril; Konvalinka, Jan; Lubkowski, Jacek

    2009-10-23

    Glutamate carboxypeptidase III (GCPIII) is a metalloenzyme that belongs to the transferrin receptor/glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) superfamily. GCPIII has been studied mainly because of its evolutionary relationship to GCPII, an enzyme involved in a variety of neuropathologies and malignancies, such as glutamatergic neurotoxicity and prostate cancer. Given the potential functional and pharmacological overlap between GCPIII and GCPII, studies addressing the structural and physiological properties of GCPIII are crucial for obtaining a deeper understanding of the GCPII/GCPIII system. In the present study, we report high-resolution crystal structures of the human GCPIII ectodomain in a 'pseudo-unliganded' state and in a complex with: (a) L-glutamate (a product of hydrolysis); (b) a phosphapeptide transition state mimetic, namely (2S,3'S)-{l_brace}[(3'-amino-3'-carboxy-propyl)-hydroxyphosphinoyl]methyl{r_brace}-pentanedioic acid; and (c) quisqualic acid, a glutamate biostere. Our data reveal the overall fold and quaternary arrangement of the GCPIII molecule, define the architecture of the GCPIII substrate-binding cavity, and offer an experimental evidence for the presence of Zn{sup 2+} ions in the bimetallic active site. Furthermore, the structures allow us to detail interactions between the enzyme and its ligands and to characterize the functional flexibility of GCPIII, which is essential for substrate recognition. A comparison of these GCPIII structures with the equivalent GCPII complexes reveals differences in the organization of specificity pockets, in surface charge distribution, and in the occupancy of the co-catalytic zinc sites. The data presented here provide information that should prove to be essential for the structurally-aided design of GCPIII-specific inhibitors and might comprise guidelines for future comparative GCPII/GCPIII studies.

  1. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis.

    PubMed

    Kumar, Pradeep; Arora, Kriti; Lloyd, John R; Lee, Ill Y; Nair, Vinod; Fischer, Elizabeth; Boshoff, Helena I M; Barry, Clifton E

    2012-10-01

    Carbapenems such as meropenem are being investigated for their potential therapeutic utility against highly drug-resistant tuberculosis. These β-lactams target the transpeptidases that introduce interpeptide cross-links into bacterial peptidoglycan thereby controlling rigidity of the bacterial envelope. Treatment of Mycobacterium tuberculosis (Mtb) with the β-lactamase inhibitor clavulanate together with meropenem resulted in rapid, polar, cell lysis releasing cytoplasmic contents. In Mtb it has been previously demonstrated that 3-3 cross-linkages [involving two diaminopimelate (DAP) molecules] predominate over 4-3 cross-linkages (involving one DAP and one D-alanine) in stationary-phase cells. We purified and analysed peptidoglycan from Mtb and found that 3-3 cross-linkages predominate throughout all growth phases and the ratio of 4-3/3-3 linkages does not vary significantly under any growth condition. Meropenem treatment was accompanied by a dramatic accumulation of unlinked pentapeptide stems with no change in the tetrapeptide pools, suggesting that meropenem inhibits both a D,D-carboxypeptidase and an L,D-transpeptidase. We purified a candidate D,D-carboxypeptidase DacB2 and showed that meropenem indeed directly inhibits this enzyme by forming a stable adduct at the enzyme active site. These results suggest that the rapid lysis of meropenem-treated cells is the result of synergistically inhibiting the transpeptidases that introduce 3,3-cross-links while simultaneously limiting the pool of available substrates available for cross-linking. PMID:22906310

  2. MEROPENEM INHIBITS D,D-CARBOXYPEPTIDASE ACTIVITY IN MYCOBACTERIUM TUBERCULOSIS

    PubMed Central

    Kumar, Pradeep; Arora, Kriti; Lloyd, John R.; Lee, Ill Young; Nair, Vinod; Fischer, Elizabeth; Boshoff, Helena I.M.; Barry, Clifton E.

    2012-01-01

    Summary Carbapenems such as meropenem are being investigated for their potential therapeutic utility against highly drug-resistant tuberculosis. These β-lactams target the transpeptidases that introduce interpeptide cross-links into bacterial peptidoglycan thereby controlling rigidity of the bacterial envelope. Treatment of M. tuberculosis (Mtb) with the β-lactamase inhibitor clavulanate together with meropenem resulted in rapid, polar, cell lysis releasing cytoplasmic contents. In Mtb it has been previously demonstrated that 3-3 cross-linkages (involving two diaminopimelate (DAP) molecules) predominate over 4-3 cross-linkages (involving one DAP and one D-alanine) in stationary-phase cells. We purified and analyzed peptidoglycan from Mtb and found that 3-3 cross-linkages predominate throughout all growth phases and the ratio of 4-3/3-3 linkages does not vary significantly under any growth condition. Meropenem treatment was accompanied by a dramatic accumulation of unlinked pentapeptide stems with no change in the tetrapeptide pools, suggesting that meropenem inhibits both a D,D-carboxypeptidase and an L,D-transpeptidase. We purified a candidate D,D-carboxypeptidase DacB2 and showed that meropenem indeed directly inhibits this enzyme by forming a stable adduct at the enzyme active site. These results suggest that the rapid lysis of meropenem-treated cells is the result of synergistically inhibiting the transpeptidases that introduce 3,3-cross-links while simultaneously limiting the pool of available substrates available for cross-linking. PMID:22906310

  3. The Expression of Hepatic Carboxypeptidase E is Decreased in Patients with Cholesterol Gallstone

    PubMed Central

    Dai, Shu-Long; Zhou, Jin; Yang, Kun-Xing; Yang, Shi-Yong

    2015-01-01

    Background/Aims: Decreased carboxypeptidase E (CPE) expression is associated with numerous pathophysiological conditions. This study aimed to investigate the potential function of hepatic CPE in cholesterol gallstone formation. Patients and Methods: Patients with cholesterol gallstone (CGS group) and patients without cholesterol gallstones (non-CGS group) were enrolled. The serum total cholesterol, triglyceride, and biliary composition were analyzed. Eight liver samples from two patients without CGS and six patients with CGS were subjected to cDNA microarray analysis. Hepatic CPE expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analysis. Plasma CCK level was measured by ELISA. Results: cDNA microarray identified CPE as a gene downregulated in the CGS group. RT-PCR showed that CPE mRNA level was lower in CGS group than in control (P < 0.05, t-test). Moreover, Western blot and immunohistochemistry analysis showed that CPE protein level was significantly lower in CGS group than in the control group. In addition, plasma CCK level was lower in CGS group than in the control group. A positive correlation was found between serum CCK level and hepatic CPE mRNA level (r2 = 0.713, P = 0.003). Conclusions: Down-expression of liver CPE may reduce the secretion of serum CCK and contribute to the formation of cholesterol gallstone. PMID:26228366

  4. Helical Shape of Helicobacter pylori Requires an Atypical Glutamine as a Zinc Ligand in the Carboxypeptidase Csd4*

    PubMed Central

    Chan, Anson C. K.; Blair, Kris M.; Liu, Yanjie; Frirdich, Emilisa; Gaynor, Erin C.; Tanner, Martin E.; Salama, Nina R.; Murphy, Michael E. P.

    2015-01-01

    Peptidoglycan modifying carboxypeptidases (CPs) are important determinants of bacterial cell shape. Here, we report crystal structures of Csd4, a three-domain protein from the human gastric pathogen Helicobacter pylori. The catalytic zinc in Csd4 is coordinated by a rare His-Glu-Gln configuration that is conserved among most Csd4 homologs, which form a distinct subfamily of CPs. Substitution of the glutamine to histidine, the residue found in prototypical zinc carboxypeptidases, resulted in decreased enzyme activity and inhibition by phosphate. Expression of the histidine variant at the native locus in a H. pylori csd4 deletion strain did not restore the wild-type helical morphology. Biochemical assays show that Csd4 can cleave a tripeptide peptidoglycan substrate analog to release m-DAP. Structures of Csd4 with this substrate analog or product bound at the active site reveal determinants of peptidoglycan specificity and the mechanism to cleave an isopeptide bond to release m-DAP. Our data suggest that Csd4 is the archetype of a new CP subfamily with a domain scheme that differs from this large family of peptide-cleaving enzymes. PMID:25505267

  5. Preparation, crystallization, and preliminary X-ray diffraction study of mutant carboxypeptidase T containing the primary specificity pocket of carboxypeptidase B

    NASA Astrophysics Data System (ADS)

    Akparov, V. Kh.; Grishin, A. M.; Timofeev, V. I.; Kuranova, I. P.

    2010-09-01

    Recombinant G215S, A251G, T257A, D260G, T262D mutant carboxypeptidase T from Thermoactinomyces vulgaris containing mutations in the primary specificity pocket was prepared and crystallized. Single crystals with a size of up to 0.3 mm were grown and investigated by X-ray diffraction. Recombinant mutant carboxypeptidase T containing the primary specificity subsite compositionally identical to that of pancreatic carboxypeptidase B crystallizes in the same space group as the natural enzyme. The crystals belong to sp. gr. P6322; the unit-cell parameters are a = b = 157.867 Å, c = 104.304 Å, α = β = 90°, γ = 120°. X-ray diffraction data suitable for determining the three-dimensional structure at atomic resolution were collected from one crystal.

  6. Preparation, crystallization, and preliminary X-ray diffraction study of mutant carboxypeptidase T containing the primary specificity pocket of carboxypeptidase B

    SciTech Connect

    Akparov, V. Kh. Grishin, A. M.; Timofeev, V. I. Kuranova, I. P.

    2010-09-15

    Recombinant G215S, A251G, T257A, D260G, T262D mutant carboxypeptidase T from Thermoactinomyces vulgaris containing mutations in the primary specificity pocket was prepared and crystallized. Single crystals with a size of up to 0.3 mm were grown and investigated by X-ray diffraction. Recombinant mutant carboxypeptidase T containing the primary specificity subsite compositionally identical to that of pancreatic carboxypeptidase B crystallizes in the same space group as the natural enzyme. The crystals belong to sp. gr. P6{sub 3}22; the unit-cell parameters are a = b = 157.867 A, c = 104.304 A, {alpha} = {beta} = 90 deg., {gamma} = 120 deg. X-ray diffraction data suitable for determining the three-dimensional structure at atomic resolution were collected from one crystal.

  7. Structures of Potent Selective Peptide Mimetics Bound to Carboxypeptidase B

    SciTech Connect

    Adler, M.; Buckman, B.; Bryant, J.; Chang, Z.; Chu, K.; Emayan, K.; Hrvatin, P.; Islam, I.; Morser, J.; Sukovich, D.; West, C.; Yuan, S.; Whitlow, M.

    2009-05-11

    This article reports the crystal structures of inhibitors of the functional form of thrombin-activatable fibrinolysis inhibitor (TAFIa). In vivo experiments indicate that selective inhibitors of TAFIa would be useful in the treatment of heart attacks. Since TAFIa rapidly degrades in solution, the homologous protein porcine pancreatic carboxypeptidase B (pp-CpB) was used in these crystallography studies. Both TAFIa and pp-CpB are zinc-based exopeptidases that are specific for basic residues. The final development candidate, BX 528, is a potent inhibitor of TAFIa (2 nM) and has almost no measurable effect on the major selectivity target, carboxypeptidase N. BX 528 was designed to mimic the tripeptide Phe-Val-Lys. A sulfonamide replaces the Phe-Val amide bond and a phosphinate connects the Val and Lys groups. The phosphinate also chelates the active-site zinc. The electrostatic interactions with the protein mimic those of the natural substrate. The primary amine in BX 528 forms a salt bridge to Asp255 at the base of the S1 pocket. The carboxylic acid interacts with Arg145 and the sulfonamide is hydrogen bonded to Arg71. Isopropyl and phenyl groups replace the side chains of Val and Phe, respectively. A series of structures are presented here that illustrate the evolution of BX 528 from thiol-based inhibitors that mimic a free C-terminal arginine. The first step in development was the replacement of the thiol with a phosphinate. This caused a precipitous drop in binding affinity. Potency was reclaimed by extending the inhibitors into the downstream binding sites for the natural substrate.

  8. 2.8-A structure of yeast serine carboxypeptidase.

    PubMed

    Endrizzi, J A; Breddam, K; Remington, S J

    1994-09-20

    The structure of monomeric serine carboxypeptidase from Saccharomyces cerevisiae (CPD-Y), deglycosylated by an efficient new procedure, has been determined by multiple isomorphous replacement and crystallographic refinement. The model contains 3333 non-hydrogen atoms, all 421 amino acids, 3 of 4 carbohydrate residues, 5 disulfide bridges, and 38 water molecules. The standard crystallographic R-factor is 0.162 for 10,909 reflections observed between 20.0- and 2.8-A resolution. The model has rms deviations from ideality of 0.016 A for bond lengths and 2.7 degrees for bond angles and from restrained thermal parameters of 7.9 A2. CPD-Y, which exhibits a preference for hydrophobic peptides, is distantly related to dimeric wheat serine carboxypeptidase II (CPD-WII), which has a preference for basic peptides. Comparison of the two structures suggests that substitution of hydrophobic residues in CPD-Y for negatively charged residues in CPD-WII in the binding site is largely responsible for this difference. Catalytic residues are in essentially identical configurations in the two molecules, including strained main-chain conformational angles for three active site residues (Ser 146, Gly 52, and Gly 53) and an unusual hydrogen bond between the carboxyl groups of Glu 145 and Glu 65. The binding of an inhibitor, benzylsuccinic acid, suggests that the C-terminal carboxylate binding site for peptide substrates is Asn 51, Gly 52, Glu 145, and His 397 and that the "oxyanion hole" consists of the amides of Gly 53 and Tyr 147. A surprising result of the study is that the domains consisting of residues 180-317, which form a largely alpha-helical insertion into the highly conserved cores surrounding the active site, are quite different structurally in the two molecules. It is suggested that these domains have evolved much more rapidly than other parts of the molecule and are involved in substrate recognition. PMID:7727362

  9. Pathogen reduction in human plasma using an ultrashort pulsed laser.

    PubMed

    Tsen, Shaw-Wei D; Kingsley, David H; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  10. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  11. Metagenomic analyses reveal phylogenetic diversity of carboxypeptidase gene sequences in activated sludge of a wastewater treatment plant in Shanghai, China.

    PubMed

    Jin, Hao; Li, Bailin; Peng, Xu; Chen, Lanming

    2014-01-01

    Activated sludge of wastewater treatment plants carries a diverse microflora. However, up to 80-90 % of microorganisms in activated sludge cannot be cultured by current laboratory techniques, leaving an enzyme reservoir largely unexplored. In this study, we investigated carboxypeptidase diversity in activated sludge of a wastewater treatment plant in Shanghai, China, by a culture-independent metagenomic approach. Three sets of consensus degenerate hybrid oligonucleotide primers (CODEHOPs) targeting conserved domains of public carboxypeptidases have been designed to amplify carboxypeptidase gene sequences in the metagenomic DNA of activated sludge by PCR. The desired amplicons were evaluated by carboxypeptidase sequence clone libraries and phylogenetic analyses. We uncovered a significant diversity of carboxypeptidases present in the activated sludge. Deduced carboxypeptidase amino acid sequences (127-208 amino acids) were classified into three distinct clusters, α, β, and γ. Sequences belonging to clusters α and β shared 58-97 % identity to known carboxypeptidase sequences from diverse species, whereas sequences in the cluster γ were remarkably less related to public carboxypeptidase homologous in the GenBank database, strongly suggesting that novel carboxypeptidase families or microbial niches exist in the activated sludge. We also observed numerous carboxypeptidase sequences that were much closer to those from representative strains present in industrial and sewage treatment and bioremediation. Thermostable and halotolerant carboxypeptidase sequences were also detected in clusters α and β. Coexistence of various carboxypeptidases is evidence of a diverse microflora in the activated sludge, a feature suggesting a valuable gene resource to be further explored for biotechnology application. PMID:24860282

  12. Photothermal Measurements on Human Serum and Plasma

    NASA Astrophysics Data System (ADS)

    Bernal-Alvarado, J.; Sosa, M.; Hernández, L. C.; Hernández-Cabrera, F.; Mayén-Mondragón, R.; Yánez-Limón, J. M.; Flores-Farías, R.; Palomares, P.; Juárez, P.; Ramírez, R.

    2003-09-01

    Using a thermal lens experimental set up, the thermal diffusivity of serum and plasma was measured. Several samples were studied and the results are reported as the average with the standard deviation. The serum and plasma were obtained by aleatory sampling of healthy adult donors at the Guanajuato State Transfusion Center, Mexico; the donors were free of hepatitis and other diseases, clinically tested. The parameters reported were obtained using the thermal lens aberrant model with the lasers operating in the mismatched mode.

  13. Purification of selenoprotein P from human plasma using immunoaffinity chromatography

    SciTech Connect

    Aakesson, B.; Bellew, T.; Burk, R.F. )

    1991-03-11

    Selenoprotein P was purified from rat plasma using immunoaffinity chromatography. The same approach was used with human plasma. HepG2 cells were labeled with {sup 75}Se. The labeled medium, containing proteins secreted by the cells, was added to human plasma and the {sup 75}Se was used as a marker for {gt}1,000-fold purification of the major {sup 75}Se-containing protein. This material was used to produce 2 monoclonal antibodies. In a competitive assay, human plasma, but not plasma from 5 other species, inhibited binding of {sup 75}Se by these 2 antibodies. The antibodies were coupled to agarose and columns were made. Human plasma was processed in 2 steps. Step 1 was an antibody column and step 2 was a heparin-agarose column. SDS-PAGE demonstrated bands at 61 and 55 kDa. Both bands stained with PAS. Amino acid analysis of carboxymethylated material indicated that selenocysteine was {gt}1% of the total amino acids. N-terminal sequencing revealed a strong similarity to rat selenoprotein P. Immunodepleted human plasma and control plasma were chromatographed on Sephacryl S200 and selenium was measured in the eluted fractions. Immunodepletion removed one-third of the selenium. The elution pattern of control plasma revealed a broad peak of selenium just ahead of and including the albumin peak. Most of this peak was absent from the immunodepleted serum and a graph of the difference between the 2 chromatograms was a single peak of selenium well separated from the albumin peak.

  14. The determination of homocysteine-thiolactone in human plasma.

    PubMed

    Chwatko, Grazyna; Jakubowski, Hieronim

    2005-02-15

    The thioester homocysteine-thiolactone, a reactive metabolite of homocysteine, has been implicated in human cardiovascular disease. However, data on the levels of homocysteine-thiolactone in humans are limited, mostly due to a lack of facile and reliable assays. Here we describe a sensitive assay for the determination of plasma homocysteine-thiolactone and demonstrate its utility with a cohort of 60 healthy human subjects. Plasma homocysteine-thiolactone is first separated from macromolecules by ultrafiltration and then selectively extracted with chloroform/methanol. Further purification of plasma homocysteine-thiolactone is achieved by high-performance liquid chromatography on a cation exchange microbore column. The detection and quantification is by monitoring fluorescence after postcolumn derivatization with o-phthaldialdehyde. The limit of detection is 0.36 nM. Using this assay, homocysteine-thiolactone concentrations in plasma from normal healthy human subjects (n=60) were found to vary from zero to 34.8 nM, with an average of 2.82+/-6.13 nM. In 29 of the 60 human plasma samples analyzed, homocysteine-thiolactone levels were below the detection limit. Homocysteine-thiolactone represented from 0 to 0.28%, on average 0.023+/-0.05%, of plasma total homocysteine. PMID:15691507

  15. Oxidative damage to human plasma proteins by ozone.

    PubMed

    Cross, C E; Reznick, A Z; Packer, L; Davis, P A; Suzuki, Y J; Halliwell, B

    1992-01-01

    Exposure of human plasma to ozone produces oxidative protein damage, measured as protein carbonyl formation. Isolated human albumin or creatine phosphokinase are oxidized much faster than are total proteins. Consideration must be given to proteins as targets of oxidative injury by ozone in vivo. PMID:1568641

  16. Utilizing human blood plasma for proteomic biomarker discovery

    SciTech Connect

    Jacobs, Jon M.; Adkins, Joshua N.; Qian, Weijun; Liu, Tao; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2005-08-01

    Application of proteomic biomarker discovery efforts towards human plasma entails both incredible clinical potential as well as significant challenges to overcome the intrinsic characteristics of plasma. The dynamic range of proteins within plasma, coupled with the likely presence of potential biomarkers in the more difficult to detect lower abundance range has driven the development of various methodologies and strategies to maximize the possible detective dynamic range within this biofluid. Discussed is the array of the available approaches currently used by our laboratory and others to utilized human plasma as a viable medium for biomarker discovery efforts. Various separation, depletion, enrichment, and quantitative efforts have resulted in a measurable improvement in the detectability of the low abundance fraction of proteins but more advances are needed to bridge the gap between the current range of detection and what remains unobservable to fully maximize the potential of this sample.

  17. Plasma expansion does not precipitate the fall in plasma vasopressin in humans drinking isotonic fluids.

    PubMed Central

    Cotter, T P; Gebruers, E M; Hall, W J; O'Sullivan, M F

    1986-01-01

    In a group of healthy humans, plasma vasopressin (AVP) levels fell on drinking either Tyrode or mannitol solutions isosmotic with plasma. Both the timing and magnitude of the fall were appropriate to account for the transient diuresis which followed the drinking. Although plasma expansion follows drinking Tyrode solution it occurred too late to account for the fall in plasma AVP. It was also too small to inhibit AVP secretion. Even though plasma volume tended to contract on drinking isosmotic mannitol solution a fall in plasma AVP and a diuresis occurred, similar to those found after drinking Tyrode solution. These findings appear to eliminate plasma volume expansion as the stimulus for the fall in plasma AVP and the associated diuresis on drinking isotonic fluids. In a further group of human subjects, bypassing the oropharynx by intragastric infusion resulted in a slower onset of diuresis after a water load. We suggest that receptors, as yet undefined, in the upper gastrointestinal tract contribute to the early stages of a water diuresis and account for the apparently inappropriate transient diuresis which follows the drinking of isotonic fluids. PMID:3098967

  18. Radioimmunoassay and characterization of atrial natriuretic peptide in human plasma

    SciTech Connect

    Yandle, T.G.; Espiner, E.A.; Nicholls, M.G.; Duff, H.

    1986-07-01

    A RIA for alpha-human atrial natriuretic peptide (alpha hANP) in plasma was developed and used to study the immunoreactive components secreted by the heart and circulating in peripheral venous plasma. The assay used (125I)diiodotyrosyl-alpha hANP, purified by high pressure liquid chromatography (HPLC), and a C-terminal-specific antiserum purchased from Peninsula Laboratories. Serial dilution curves of coronary sinus plasma samples were parallel with the standard curve, but significant nonparallelism was found in peripheral plasma samples of low immunoreactivity. When plasma was extracted using C-18 Sep-Pak cartridges, serial dilution curves from both coronary sinus and peripheral plasma samples were parallel to the standard curve. Although values for plasma samples assayed before and after extraction agreed closely (r = 0.99; n = 76), immunoreactive ANP in unextracted plasma was consistently greater (70-79 pmol/liter) than in extracts of plasma, suggesting non-specific interference by a component in plasma when assayed without extraction. Mean plasma immunoreactive ANP in 19 normal subjects consuming a normal salt intake was 14 +/- 1 (+/- SE) pmol/liter. In 5 normal men, increasing dietary sodium intake from 10 to 200 mmol sodium/day was associated with a 2-fold increment in ANP levels, and similar changes accompanied acute sodium loading using iv saline. Elevated values were found in patients with congestive heart failure (mean, 58 pmol/liter; range, 0-200; n = 9), chronic renal failure (mean, 118 pmol/liter; range, 30-290; n = 8), and primary aldosteronism (range, 32-90 pmol/liter; n = 3). HPLC and gel chromatographic analysis of the immunoreactive material found in coronary sinus plasma extracts showed that a large amount of the material eluted in the position of alpha hANP.

  19. Glutamate carboxypeptidase II is not an amyloid peptide-degrading enzyme.

    PubMed

    Alt, Jesse; Stathis, Marigo; Rojas, Camilo; Slusher, Barbara

    2013-07-01

    Glutamate carboxypeptidase II (GCPII) is an exopeptidase that catalyzes the hydrolysis of N-acetylated aspartate-glutamate (NAAG) to N-acetyl aspartate (NAA) and glutamate. Consequently, GCPII inhibition has been of interest for the treatment of central and peripheral nervous system diseases associated with excess glutamate. Recently, it was reported that GCPII can also serve as an endopeptidase cleaving amyloid β (Aβ) peptides and that its inhibition could increase the risk of Alzheimer's disease by increasing brain Aβ levels. This study aimed to corroborate and extend these new findings. We incubated Aβ peptides (20 μM) with human recombinant GCPII (300 ng/ml) and monitored the appearance of degradation products by mass spectrometry. Aβ peptides remained intact after 18 h incubation with GCPII. Under the same experimental conditions, Aβ1-40 (20 μM) was incubated with neprilysin (300 ng/ml), an endopeptidase known to hydrolyze Aβ1-40 and the expected cleavage products were observed. GCPII was confirmed active by catalyzing the complete hydrolysis of NAAG (100 μM). We also studied the hydrolysis of [(3)H]-NAAG (30 nM) catalyzed by GCPII (40 pM) in the presence of Aβ peptides (picomolar to micromolar range). The addition of Aβ peptides did not alter [(3)H]-NAAG hydrolysis. We conclude that GCPII is not an amyloid peptide-degrading enzyme. PMID:23525278

  20. Cytosolic Carboxypeptidase 1 Is Involved in Processing α- and β-Tubulin*

    PubMed Central

    Berezniuk, Iryna; Vu, Hang T.; Lyons, Peter J.; Sironi, Juan J.; Xiao, Hui; Burd, Berta; Setou, Mitsutoshi; Angeletti, Ruth H.; Ikegami, Koji; Fricker, Lloyd D.

    2012-01-01

    The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2–3-fold) or knockdown (80–90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and β-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and β-tubulin. The hyperglutamylation of α- and β-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and β-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from β- as well as α-tubulin in vitro and in vivo. PMID:22170066

  1. Glutamate carboxypeptidase inhibition reduces the severity of chemotherapy-induced peripheral neurotoxicity in rat.

    PubMed

    Carozzi, Valentina A; Chiorazzi, Alessia; Canta, Annalisa; Lapidus, Rena G; Slusher, Barbara S; Wozniak, Krystyna M; Cavaletti, Guido

    2010-05-01

    Chemotherapy is the most common method to treat cancer. The use of certain antineoplastic drugs, however, is associated with the development of peripheral neuropathy that can be dose-limiting. Excitotoxic glutamate release, leading to excessive glutamatergic neurotransmission and activation of N-methyl-D-aspartate (NMDA) receptors, is associated with neuronal damage and death in several nervous system disorders. N-Acetyl-aspartyl-glutamate (NAAG) is an abundant neuropeptide widely distributed in the central and peripheral nervous system which is physiologically hydrolyzed by the enzyme glutamate carboxypeptidase into N-Acetyl-aspartyl (NAA) and glutamate. Pharmacological inhibition of glutamate carboxypeptidase results in decreased glutamate and increased endogenous NAAG and has been shown to provide neuroprotection in several preclinical models. Here, we report the neuroprotective effect of an orally available glutamate carboxypeptidase inhibitor on three well-established animal models of chemotherapy (cisplatin, paclitaxel, bortezomib)-induced peripheral neuropathy. In all cases, glutamate carboxypeptidase inhibition significantly improved the chemotherapy-induced nerve conduction velocity deficits. In addition, morphological and morphometrical alterations induced by cisplatin and bortezomib in dorsal root ganglia (DRG) were improved by glutamate carboxypeptidase inhibition. Our data support a novel approach for the treatment of chemotherapy-induced peripheral neuropathy. PMID:19763734

  2. Determination of Carboxypeptidase Activity in Clinical Pathogens by Gas Chromatography–Mass Spectrometry

    PubMed Central

    Lough, Fraser; Perry, John D.; Stanforth, Stephen P.; Dean, John R.

    2016-01-01

    ABSTRACT A novel method for the determination of benzoic acid has been employed to identify carboxypeptidase activities in clinically relevant pathogens. Benzoic acid was determined after chemical derivatization by gas chromatography–mass spectrometry (GC–MS). N-Benzoyl amino acid substrates were evaluated for the detection of carboxypeptidase activities in a number of clinical pathogens. Upon enzymatic hydrolysis of these substrates, benzoic acid was produced which was detected by extraction from the liquid culture supernatant, derivatization as the trimethylsilyl ester, with subsequent analysis by GC–MS. Enzymatic hydrolysis of N-benzoyl glycine was observed for S. agalactiae, M. morganii, and A. baumannii. In addition, P. fluorescens was found to hydrolyze N-benzoyl-L-glutamic acid. Although the method provides an alternative approach for determining carboxypeptidase activity, ultimately it would not be a suitable method in a clinical setting. However, the method is well-suited for identifying carboxypeptidase activities that have not been previously described or to corroborate a carboxypeptidase assay with the ninhydrin reagent. PMID:27226648

  3. Characterization of mercury-containing protein in human plasma.

    PubMed

    Yun, Zhaojun; Li, Lu; Liu, Lihong; He, Bin; Zhao, Xingchen; Jiang, Guibin

    2013-06-01

    Characterization of mercury binding protein in the human body is very important for understanding the metabolism and the mechanism of toxication of ingested mercuric compounds. In this study, mercury-containing protein in human plasma was separated by on-line heart-cutting two-dimensional high performance liquid chromatography (2D-HPLC). This 2D separation system used size exclusion liquid chromatography (SEC) followed by weak anion exchange liquid chromatography (WAX) and the two LC parts were coupled by a six-port valve equipped with a storage loop and controled by the computer. The WAX effluent was determined by both UV detection and inductively coupled plasma-mass spectrometry (ICP-MS) to locate the mercury-containing protein. A unique mercury-containing protein fraction was obtained by 2D-HPLC separation and subsequently identified by HPLC coupled with linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry (HPLC-LTQ-FT). The database search confirmed that the mercury-containing protein in the human plasma is human serum albumin (HSA). The stoichiometry and thermodyamics interaction of inorganic mercury (Hg(2+)) with HSA was studied by isothermal titration calorimetry (ITC) and two binding types were observed. Mercury-containing protein in human plasma was separated and identified in the present study and it is important for understanding the metabolism of mercury in the human body. PMID:23748885

  4. Staphylococcus aureus Induces Release of Bradykinin in Human Plasma

    PubMed Central

    Mattsson, Eva; Herwald, Heiko; Cramer, Henning; Persson, Kristin; Sjöbring, Ulf; Björck, Lars

    2001-01-01

    Staphylococcus aureus is a prominent human pathogen. Here we report that intact S. aureus bacteria activate the contact system in human plasma in vitro, resulting in a massive release of the potent proinflammatory and vasoactive peptide bradykinin. In contrast, no such effect was recorded with Streptococcus pneumoniae. In the activation of the contact system, blood coagulation factor XII and plasma kallikrein play central roles, and a specific inhibitor of these serine proteinases inhibited the release of bradykinin by S. aureus in human plasma. Furthermore, fragments of the cofactor H-kininogen of the contact system efficiently blocked bradykinin release. The results suggest that activation of the contact system at the surface of S. aureus and the subsequent release of bradykinin could contribute to the hypovolemic hypotension seen in patients with severe S. aureus sepsis. The data also suggest that the contact system could be used as a target in the treatment of S. aureus infections. PMID:11349054

  5. Structure-activity relationships of glutamate carboxypeptidase II (GCPII) inhibitors.

    PubMed

    Ferraris, D V; Shukla, K; Tsukamoto, T

    2012-01-01

    Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc metallopeptidase that hydrolyzes N-acetylaspartylglutamate (NAAG) into N-acetylaspartate (NAA) and glutamate in the nervous system. Inhibition of GCPII has the potential to reduce extracellular glutamate and represents an opportune target for treating neurological disorders in which excess glutamate is considered pathogenic. Furthermore, GCPII was found to be identical to a tumor marker, prostate-specific membrane antigen (PSMA), and has drawn significant interest as a diagnostic and/or therapeutic target in oncology. Over the past 15 years, tremendous efforts have been made in the discovery of potent GCPII inhibitors, particularly those with phosphorus-, urea- and thiol-based zinc binding groups. In addition, significant progress has been made in understanding the three-dimensional structural characteristics of GCPII in complex with various ligands. The purpose of this review article is to analyze the structure-activity relationships (SAR) of GCPII inhibitors reported to date, which are classified on the basis of their zinc-binding group. SAR and crystallographic data are evaluated in detail for each of these series to highlight the future challenges and opportunities to identify clinically viable GCPII inhibitors. PMID:22304717

  6. Catalysis of Carboxypeptidase A: Promoted-water vs Nucleophilic Pathways

    PubMed Central

    Wu, Shanshan; Zhang, Chunchun; Xu, Dingguo; Guo, Hua

    2010-01-01

    The catalytic mechanism of carboxypeptidase A (CPA) for the hydrolysis of ester substrates is investigated using hybrid quantum mechanical/molecular mechanical (QM/MM) methods and high-level density functional theory. The prevailing mechanism was found to utilize an active-site water molecule assisted by Glu270 and this so-called promoted-water pathway is similar to that in the CPA catalyzed proteolytic reaction (D. Xu and H. Guo, J. Am. Chem. Soc. 131, 9780 (2009)). On the other hand, our simulations indicated the existence of an alternative pathway due to direct nucleophilic attack of Glu270 on the scissile carbonyl carbon. This so-called nucleophilic pathway, which is not viable in proteolytic reactions, leads to a stable acyl-enzyme complex. However, the nucleophilic pathway is non-productive as it is blocked by a high barrier in the deacylation step. Based on results reported here and in our earlier publication, a unified model is proposed to account for nearly all experimental observations concerning the catalysis of CPA. PMID:20583802

  7. Statistical Analysis of Variation in the Human Plasma Proteome

    DOE PAGESBeta

    Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; Walsworth, Vicki L.; Turteltaub, Kenneth W.; McCutchen-Maloney, Sandra L.; Chromy, Brett A.

    2010-01-01

    Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less

  8. Statistical analysis of variation in the human plasma proteome.

    PubMed

    Corzett, Todd H; Fodor, Imola K; Choi, Megan W; Walsworth, Vicki L; Turteltaub, Kenneth W; McCutchen-Maloney, Sandra L; Chromy, Brett A

    2010-01-01

    Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery. PMID:20130815

  9. Characterization of human plasma proteome dynamics using deuterium oxide

    PubMed Central

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic CM; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie PY; Ping, Peipei

    2016-01-01

    Purpose High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide (2H2O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of 2H2O to human subjects. Experimental design We recruited 10 healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of 2H2O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% 2H2O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. Results This protocol was successfully applied in 10 human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from 2H2O consumption. Conclusions and clinical relevance Our investigation supports the utility of a 2H2O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. PMID:24946186

  10. Human plasma protein N-glycosylation.

    PubMed

    Clerc, Florent; Reiding, Karli R; Jansen, Bas C; Kammeijer, Guinevere S M; Bondt, Albert; Wuhrer, Manfred

    2016-06-01

    Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level. PMID:26555091

  11. Coagulation Factor XIIIa Substrates in Human Plasma

    PubMed Central

    Nikolajsen, Camilla Lund; Dyrlund, Thomas F.; Poulsen, Ebbe Toftgaard; Enghild, Jan J.; Scavenius, Carsten

    2014-01-01

    Coagulation factor XIII (FXIII) is a transglutaminase with a well defined role in the final stages of blood coagulation. Active FXIII (FXIIIa) catalyzes the formation of ϵ-(γ-glutamyl)lysine isopeptide bonds between specific Gln and Lys residues. The primary physiological outcome of this catalytic activity is stabilization of the fibrin clot during coagulation. The stabilization is achieved through the introduction of cross-links between fibrin monomers and through cross-linking of proteins with anti-fibrinolytic activity to fibrin. FXIIIa additionally cross-links several proteins with other functionalities to the clot. Cross-linking of proteins to the clot is generally believed to modify clot characteristics such as proteolytic susceptibility and hereby affect the outcome of tissue damage. In the present study, we use a proteomic approach in combination with transglutaminase-specific labeling to identify FXIIIa plasma protein substrates and their reactive residues. The results revealed a total of 147 FXIIIa substrates, of which 132 have not previously been described. We confirm that 48 of the FXIIIa substrates were indeed incorporated into the insoluble fibrin clot during the coagulation of plasma. The identified substrates are involved in, among other activities, complement activation, coagulation, inflammatory and immune responses, and extracellular matrix organization. PMID:24443567

  12. Human plasma kallikrein releases neutrophil elastase during blood coagulation.

    PubMed Central

    Wachtfogel, Y T; Kucich, U; James, H L; Scott, C F; Schapira, M; Zimmerman, M; Cohen, A B; Colman, R W

    1983-01-01

    Elastase is released from human neutrophils during the early events of blood coagulation. Human plasma kallikrein has been shown to stimulate neutrophil chemotaxis, aggregation, and oxygen consumption. Therefore, the ability of kallikrein to release neutrophil elastase was investigated. Neutrophils were isolated by dextran sedimentation, and elastase release was measured by both an enzyme-linked immunosorbent assay, and an enzymatic assay using t-butoxy-carbonyl-Ala-Ala-Pro-Val-amino methyl coumarin as the substrate. Kallikrein, 0.1-1.0 U/ml, (0.045-0.45 microM), was incubated with neutrophils that were preincubated with cytochalasin B (5 micrograms/ml). The release of elastase was found to be proportional to the kallikrein concentration. Kallikrein released a maximum of 34% of the total elastase content, as measured by solubilizing the neutrophils in the nonionic detergent Triton X-100. A series of experiments was carried out to determine if kallikrein was a major enzyme involved in neutrophil elastase release during blood coagulation. When 10 million neutrophils were incubated in 1 ml of normal plasma in the presence of 30 mM CaCl2 for 90 min, 2.75 micrograms of elastase was released. In contrast, neutrophils incubated in prekallikrein-deficient or Factor XII-deficient plasma released less than half of the elastase, as compared with normal plasma. The addition of purified prekallikrein to prekallikrein-deficient plasma restored neutrophil elastase release to normal levels. Moreover, release of elastase was enhanced in plasma deficient in C1-inhibitor, the major plasma inhibitor of kallikrein. This release was not dependent upon further steps in the coagulation pathway, or on C5a, since levels of elastase, released in Factor XI- or C5-deficient plasma, were similar to that in normal plasma, and an antibody to C5 failed to inhibit elastase release. These data suggest that kallikrein may be a major enzyme responsible for the release of elastase during blood

  13. An extraovarian protein accumulated in mosquito oocytes is a carboxypeptidase activated in embryos

    SciTech Connect

    Wenlong Cho; Deitsch, K.W.; Raikhel, A.S. )

    1991-12-01

    The authors report a phenomenon previously unknown for oviparous animals; in Aedes aegypti mosquitoes a serine carboxypeptidase is synthesized extraovarially and then internalized by oocytes. The cDNA encoding mosquito vitellogenic carboxypeptidase (VCP) was cloned and sequenced. The VCP cDNA hybridizes to a 1.5-kilobase mRNA present only in the fat body of vitellogenic females. The deduced amino acid sequence of VCP shares significant homology with members of the serine carboxypeptidase family. Binding assays using a serine protease inhibitor, ({sup 3}H)diisopropyl fluorophosphate, showed that VCP is activated in eggs at the onset of embryonic development. Activation of VCP is associated with the reduction in its size from 53 kDa (inactive proenzyme) to 48 kDa (active enzyme). The active, 48-kDa, form of VCP is maximally present at the middle of embryonic development and disappears by the end.

  14. Cryospectrokinetic characterization of intermediates in biochemical reactions: carboxypeptidase A.

    PubMed Central

    Auld, D S; Galdes, A; Geoghegan, K F; Holmquist, B; Martinelli, R A; Vallee, B L

    1984-01-01

    Cryospectrokinetic studies provide concurrent structural, kinetic, and chemical data on short-lived intermediates in the course of the interactions of enzymes with their substrates and of other, similar pairs of biomolecules. Subzero temperatures extend the lifetimes of these intermediates and, combined with rapid-mixing and rapid-scanning instrumentation, allow simultaneous measurement of both their physical-chemical and kinetic characteristics. For carboxypeptidase A, the spectra of a chromophoric, enzymatically functional cobalt atom at the active site signal the structure of the coordination complex during catalysis, while radiationless energy transfer between enzyme tryptophans and the fluorescent dansyl blocking group of rapidly hydrolyzed peptide and ester substrates provides the basis for measurement of the rates of formation and breakdown of intermediates. Subzero radiationless energy transfer kinetic studies of the zinc and cobalt enzymes disclose two intermediates in the hydrolysis of both peptides and esters and furnish all the rate and equilibrium constants for the reaction scheme E + S in equilibrium ES1 in equilibrium ES2----E + P. The chemical and kinetic data indicate that neither of these is an acylenzyme intermediate. Both absorption and EPR spectra of the ES2 reaction intermediates consistently demonstrate the formation of transient metal complexes, differences between the effects induced by peptides and esters, and strong similarities between those induced by all peptides on the one hand and all esters on the other. The marked alterations of the cobalt spectra likely reflect the coordination of a substrate carboxyl and/or carbonyl group to the metal at a critical step in the course of catalysis. The cryospectrokinetic approach developed here in the mechanistic study of this metalloenzyme is applicable to the examination of transients of biochemical reactions in general. It will allow molecular characterization of previously elusive

  15. Dysregulation of glutamate carboxypeptidase II in psychiatric disease.

    PubMed

    Guilarte, Tomás R; Hammoud, Dima A; McGlothan, Jennifer L; Caffo, Brian S; Foss, Catherine A; Kozikowski, Alan P; Pomper, Martin G

    2008-02-01

    Experimental evidence is beginning to converge on an important role for dysregulation of glutamate carboxypeptidase II (GCPII) in schizophrenia. The goal of this study was to determine GCPII levels in postmortem brain specimens of patients with schizophrenia, bipolar disorder or unipolar depression and age-matched control subjects. We used N-[N-(S)-1,3-dicarboxypropyl]carbamoyl]-S-3-[(125)I]iodo-l-tyrosine ([(125)I]DCIT), a high-affinity radioligand for GCPII, to probe for GCPII expression in prefrontal cortex (PFC) and mesial temporal lobe, two brain regions implicated in the pathophysiology of schizophrenia. We found that GCPII levels measured by [(125)I]DCIT quantitative autoradiography were significantly lower in the PFC and entorhinal cortex in patients with schizophrenia compared to age-matched controls. Patients with bipolar disorder also expressed significantly lower GCPII levels in PFC than controls. The decrease in [(125)I]DCIT binding in schizophrenia and bipolar disorder remained significant after adjusting for drug abuse. A significant difference in GCPII levels was also observed between schizophrenia relative to bipolar disorder and depressed subjects in the hippocampus-stratum lucidum and between schizophrenia and bipolar in the CA2 region of the hippocampus, with bipolar and depressed subjects expressing higher levels of GCPII than subjects with schizophrenia. These differences in hippocampal GCPII levels may implicate differences in the etiologies of these mental disorders. In summary, this study demonstrates a regional dysregulation of GCPII expression in the brain of patients with schizophrenia and other psychiatric disorders and supports a hypoglutamatergic state of the former illness. GCPII may represent a viable therapeutic target for intervention in psychiatric disease. PMID:18191545

  16. Study of the human plasma proteome of rheumatoid arthritis.

    PubMed

    Zheng, Xiaoyang; Wu, Shiaw-Lin; Hincapie, Marina; Hancock, William S

    2009-04-17

    In this study, we report a combined proteomic and peptidomic analysis of human plasma from patients with rheumatoid arthritis (RA) and controls. We used molecular weight cut-off filters (MWCO: 10kDa) to enrich low-molecular-weight (LMW) peptides from human plasma. The peptide fraction was analyzed without trypsin digestion by capillary reversed-phase high-performance liquid chromatography (HPLC) coupled to a linear ion trap-FT-MS system, which identified 771 unique peptides in the peptidome study (from 145 protein progenitors). An anti-albumin/anti-IgG column was used to remove albumin and immunoglobulin G (IgG) from the human plasma. After that, the albumin/IgG-depleted sample was fractionated into a bound fraction and an unbound fraction on a multi-lectin affinity column (M-LAC). LC-MS analysis of the corresponding tryptic digests identified 308 proteins using the M-LAC approach. Relative differences in the following protein classifications were observed in the RA human plasma samples compared with controls: structural proteins, immuno-related proteins, protease inhibitors, coagulation proteins, transport proteins and apolipoproteins. While some of these proteins/peptides have been previously reported to be associated with RA disease such as calgranulin A, B, C and C-reactive protein, several others were newly identified (such as thymosin beta4, actin, tubulin, and vimentin), which may further the understanding of the disease pathogenesis. Moreover, we have found that the peptidomic and glycoproteomic approaches were complementary and allow a more complete picture of the human plasma proteome which can be valuable in studies of disease etiology. PMID:19215933

  17. The Cell Shape-determining Csd6 Protein from Helicobacter pylori Constitutes a New Family of l,d-Carboxypeptidase*

    PubMed Central

    Kim, Hyoun Sook; Im, Ha Na; An, Doo Ri; Yoon, Ji Young; Jang, Jun Young; Mobashery, Shahriar; Hesek, Dusan; Lee, Mijoon; Yoo, Jakyung; Cui, Minghua; Choi, Sun; Kim, Cheolhee; Lee, Nam Ki; Kim, Soon-Jong; Kim, Jin Young; Bang, Geul; Han, Byung Woo; Lee, Byung Il; Yoon, Hye Jin; Suh, Se Won

    2015-01-01

    Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori. PMID:26306031

  18. The Cell Shape-determining Csd6 Protein from Helicobacter pylori Constitutes a New Family of L,D-Carboxypeptidase.

    PubMed

    Kim, Hyoun Sook; Im, Ha Na; An, Doo Ri; Yoon, Ji Young; Jang, Jun Young; Mobashery, Shahriar; Hesek, Dusan; Lee, Mijoon; Yoo, Jakyung; Cui, Minghua; Choi, Sun; Kim, Cheolhee; Lee, Nam Ki; Kim, Soon-Jong; Kim, Jin Young; Bang, Geul; Han, Byung Woo; Lee, Byung Il; Yoon, Hye Jin; Suh, Se Won

    2015-10-01

    Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori. PMID:26306031

  19. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  20. Medicinal chemistry meets proteomics: fractionation of the human plasma proteome.

    PubMed

    Kovàcs, A; Guttman, A

    2013-01-01

    Human plasma and its fractions/derivatives are frequently used materials in biomedicine as it contains thousands and thousands of proteins representing the majority of human proteome. Several important methods were developed in the past for the fractionation of this important biological fluid and its use for medicinal purposes. One of the greatest challenges is the very large dynamic range of plasma proteins ranging up to 10-12 orders of magnitude. Early attempts were mainly based on methods such as salting out or cold ethanol precipitation, as well as chromatography utilizing affinity, size exclusion, ion exchange and hydrophobic interaction techniques. More recently, fractionation applications started with the depletion of the high abundant plasma components, such as serum albumin and immunoglobulins, before isolating lower abundant proteins of interest. Plasma volumes were utilized from the milliliter scale for diagnostic applications to hundreds of liters for industrial scale plasma fractionation (e.g., medicinal product manufacturing). In this paper we review this important part of medicinal chemistry, highlighting the traditional methods along with some of their variations as well as the most significant recent achievements of the field. PMID:23244521

  1. Instability of the biotin-protein bond in human plasma.

    PubMed

    Bogusiewicz, Anna; Mock, Nell I; Mock, Donald M

    2004-04-15

    Labeling proteins with biotin offers an alternative to labeling with radioisotopes for pharmacokinetic studies in humans. However, stability of the biotin-protein bond is a critical tacit assumption. Using release of biotin from immunoglobulin G as the outcome, we individually evaluated stability of the biotin label produced by six biotinylation agents: biotin PEO-amine, 5-(biotinamido)-pentylamine, iodoacetyl-LC-biotin, NHS-LC-biotin, sulfo-NHS-LC-biotin, and biotin-LC-hydrazide. Each of the six biotinylated proteins was incubated at room temperature for 4h in human plasma or in phosphate-buffered saline (control). Free biotin was separated from the biotinylated protein by ultrafiltration and quantitated by avidin-binding assay. For each biotinylation reagent, biotin release was significantly increased by plasma (p < 0.0001 vs control by unpaired t test). Moreover, the hydrazide bond was also unstable in buffer. Biotin remaining on the protein was quantitated directly using capture of europium-streptavidin by the immobilized biotinylated immunoglobulin G. Consistent with biotin release data, streptavidin capture was reduced by plasma to 8% of control. We conclude that all of the biotinylating agents produce biotin-protein bonds that are susceptible to hydrolysis by factors present in human plasma; five of six are stable in buffer. PMID:15051531

  2. Structural basis for the recognition of muramyltripeptide by Helicobacter pylori Csd4, a d,l-carboxypeptidase controlling the helical cell shape

    PubMed Central

    Kim, Hyoun Sook; Kim, Jieun; Im, Ha Na; An, Doo Ri; Lee, Mijoon; Hesek, Dusan; Mobashery, Shahriar; Kim, Jin Young; Cho, Kun; Yoon, Hye Jin; Han, Byung Woo; Lee, Byung Il; Suh, Se Won

    2014-01-01

    Helicobacter pylori infection causes a variety of gastrointestinal diseases, including peptic ulcers and gastric cancer. Its colonization of the gastric mucosa of the human stomach is a prerequisite for survival in the stomach. Colonization depends on its motility, which is facilitated by the helical shape of the bacterium. In H. pylori, cross-linking relaxation or trimming of peptidoglycan muropeptides affects the helical cell shape. Csd4 has been identified as one of the cell shape-determining peptidoglycan hydrolases in H. pylori. It is a Zn2+-dependent d,l-carboxypeptidase that cleaves the bond between the γ-d-Glu and the mDAP of the non-cross-linked muramyl­tripeptide (muramyl-l-Ala-γ-d-Glu-mDAP) of the peptidoglycan to produce the muramyldipeptide (muramyl-l-Ala-γ-d-Glu) and mDAP. Here, the crystal structure of H. pylori Csd4 (HP1075 in strain 26695) is reported in three different states: the ligand-unbound form, the substrate-bound form and the product-bound form. H. pylori Csd4 consists of three domains: an N-terminal d,l-carboxypeptidase domain with a typical carboxy­peptidase fold, a central β-barrel domain with a novel fold and a C-terminal immunoglobulin-like domain. The d,l-carboxypeptidase domain recognizes the substrate by interacting primarily with the terminal mDAP moiety of the muramyltripeptide. It undergoes a significant structural change upon binding either mDAP or the mDAP-containing muramyl­tripeptide. It it also shown that Csd5, another cell-shape determinant in H. pylori, is capable of interacting not only with H. pylori Csd4 but also with the dipeptide product of the reaction catalyzed by Csd4. PMID:25372672

  3. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase.

    PubMed

    Berhane, Beniam T; Zong, Chenggong; Liem, David A; Huang, Aaron; Le, Steven; Edmondson, Ricky D; Jones, Richard C; Qiao, Xin; Whitelegge, Julian P; Ping, Peipei; Vondriska, Thomas M

    2005-08-01

    Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis. PMID:16052623

  4. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells.

    PubMed

    Hu, Zhilan; Zhang, Henry; Haley, Benjamin; Macchi, Frank; Yang, Feng; Misaghi, Shahram; Elich, Joseph; Yang, Renee; Tang, Yun; Joly, John C; Snedecor, Bradley R; Shen, Amy

    2016-10-01

    Heterogeneity of C-terminal lysine levels often observed in therapeutic monoclonal antibodies is believed to result from the proteolysis by endogenous carboxypeptidase(s) during cell culture production. Identifying the responsible carboxypeptidase(s) for C-terminal lysine cleavage in CHO cells would provide valuable insights for antibody production cell culture processes development and optimization. In this study, five carboxypeptidases, CpD, CpM, CpN, CpB, and CpE, were studied for message RNA (mRNA) expression by qRT-PCR analysis in two most commonly used blank hosts (DUXB-11 derived DHFR-deficient DP12 host and DHFR-positive CHOK1 host), used for therapeutic antibody production, as well an antibody-expressing cell line derived from each host. Our results showed that CpD had the highest mRNA expression. When CpD mRNA levels were reduced by RNAi (RNA interference) technology, C-terminal lysine levels increased, whereas there was no obvious change in C-terminal lysine levels when a different carboxypeptidase mRNA level was knocked down suggesting that carboxypeptidase D is the main contributor for C-terminal lysine processing. Most importantly, when CpD expression was knocked out by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, C-terminal lysine cleavage was completely abolished in CpD knockout cells based on mass spectrometry analysis, demonstrating that CpD is the only endogenous carboxypeptidase that cleaves antibody heavy chain C-terminal lysine in CHO cells. Hence, our work showed for the first time that the cleavage of antibody heavy chain C-terminal lysine is solely mediated by the carboxypeptidase D in CHO cells and our finding provides one solution to eliminating C-terminal lysine heterogeneity for therapeutic antibody production by knocking out CpD gene expression. Biotechnol. Bioeng. 2016;113: 2100-2106. © 2016 Wiley Periodicals, Inc. PMID:26989081

  5. Sub-zero temperature inactivation of carboxypeptidase Y under high hydrostatic pressure.

    PubMed

    Kinsho, Toshihiko; Ueno, Hiroshi; Hayashi, Rikimaru; Hashizume, Chieko; Kimura, Kunio

    2002-09-01

    High hydrostatic pressure induced cold inactivation of carboxypeptidase Y. Carboxypeptidase Y was fully active when exposed to subzero temperature at 0.1 MPa; however, the enzyme became inactive when high hydrostatic pressure and subzero temperature were both applied. When the enzyme was treated at pressures higher than 300 MPa and temperatures lower than -5 degrees C, it underwent an irreversible inactivation in which nearly 50% of the alpha-helical structure was lost as judged by circular dichroism spectral analysis. When the applied pressure was limited to below 200 MPa, the cold inactivation process appeared to be reversible. In the presence of reducing agent, this reversible phenomenon, observed at below 200 MPa, diminished to give an inactive enzyme; the agent reduces some of disulfide bridge(s) in an area of the structure that is newly exposed area because of the cold inactivation. Such an area is unavailable if carboxypeptidase Y is in its native conformation. Because all the disulfide bridges in carboxypeptidase Y locate near the active site cleft, it is suggested that the structural destruction, if any, occurs preferentially in this disulfide rich area. A possible mechanism of pressure-dependent cold inactivation of CPY is to destroy the alpha-helix rich region, which creates an hydrophobic environment. This destruction is probably a result of the reallocation of water molecules. Experiments carried out in the presence of denaturing agents (SDS, urea, GdnHCl), salts, glycerol, and sucrose led to a conclusion consistent with the idea of water reallocation. PMID:12230580

  6. Murein structure and lack of DD- and LD-carboxypeptidase activities in Caulobacter crescentus.

    PubMed Central

    Markiewicz, Z; Glauner, B; Schwarz, U

    1983-01-01

    High-pressure liquid chromatography of a muramidase digest of murein sacculi from Caulobacter crescentus showed that the absence of D-alanine carboxypeptidase activity in the cells was reflected by a very high content of pentapeptide in the murein. Approximately half of the pentapeptide side chains were shown to contain glycine, which replaced D-alanine as the terminal amino acid. PMID:6630150

  7. Cloning and nucleotide sequence of the Salmonella typhimurium dcp gene encoding dipeptidyl carboxypeptidase.

    PubMed Central

    Hamilton, S; Miller, C G

    1992-01-01

    Plasmids carrying the Salmonella typhimurium dcp gene were isolated from a pBR328 library of Salmonella chromosomal DNA by screening for complementation of a peptide utilization defect conferred by a dcp mutation. Strains carrying these plasmids overproduced dipeptidyl carboxypeptidase approximately 50-fold. The nucleotide sequence of a 2.8-kb region of one of these plasmids contained an open reading frame coding for a protein of 77,269 Da, in agreement with the 80-kDa size for dipeptidyl carboxypeptidase (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration). The N-terminal amino acid sequence of dipeptidyl carboxypeptidase purified from an overproducer strain agreed with that predicted by the nucleotide sequence. Northern (RNA) blot data indicated that dcp is not cotranscribed with other genes, and primer extension analysis showed the start of transcription to be 22 bases upstream of the translational start. The amino acid sequence of dcp was not similar to that of a mammalian dipeptidyl carboxypeptidase, angiotensin I-converting enzyme, but showed striking similarities to the amino acid sequence of another S. typhimurium peptidase encoded by the opdA (formerly optA) gene. Images PMID:1537804

  8. PIXE analysis of human spermatozoa isolated from seminal plasma

    NASA Astrophysics Data System (ADS)

    Maeda, K.; Sasa, Y.; Kusuyama, H.; Yoshida, K.; Uda, M.

    1990-04-01

    PIXE has been applied to the multielemental and microanalysis of human spermatozoa. This is the first attempt to determine the chemical compositions of the motile spermatozoa free from contaminations of seminal plasma without loss of component elements during washing. The spermatozoa were isolated from semen by letting them swim into a kind of physiological saline, Tyrode's solution. Relative concentrations of P, K, Ca, Ti, Fe, Zn and Br in motile spermatozoa were determined by the use of the chlorine K X-ray peak intensity for evaluating the amount of Tyrode's solution contained in the sample targets. The concentrations of calcium and iron in spermatozoa were considerably higher than in seminal plasma. The concentrations of P, K, Zn and Br in spermatozoa were not so different from those in seminal plasma.

  9. Advanced Plasma Propulsion for Human Missions to Jupiter

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Pearson, J. Boise

    1999-01-01

    This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.

  10. The primary inhibitor of plasmin in human plasma.

    PubMed Central

    Müllertz, S; Clemmensen, I

    1976-01-01

    A complex between plasmin and an inhibitor was isolated by affinity chromatography from urokinase-activated human plasma. The complex did not react with antibodies against any of the known proteinase inhibitors in plasma. A rabbit antiserum against the complex was produced. It contained antibodies agianst plasminogen+plasmin and an alpha2 protein. By crossed immunoelectrophoresis the alpha2 protein was shown to form a complex with plasmin, when generated by urokinase in plasma, and with purified plasmin. The alpha2 protein was eluted by Sephadex G-200 gel filtration with KD approx. 0.35, different from the other inhibitors of plasmin in plasma, and corresponding to an apparent relative molecular mass (Mr) of about 75000. By sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Mr of the complex was found to be approx. 130000. After reduction of the complex two main bands of protein were observed, with Mr, about 72000 and 66000, probably representing an acyl-enzyme complex of plasmin-light chain and inhibitor-heavy chain, and a plasmin-heavy chain. A weak band with Mr 9000 was possibly an inhibitor-light chain. The inhibitor was partially purified and used to titrate purified plasmin of known active-site concentration. The inhibitor bound plasmin rapidly and strongly. Assuming an equimolar combining ratio, the concentration of active inhibitor in normal human plasma was estimated to be 1.1 mumol/1. A fraction about 0.3 of the antigenic inhibitor protein appeared to be functionally inactive. In plasma, plasmin is primarily bound to the inhibitor. Only after its saturation does lysis of fibrinogen and fibrin occur and a complex between plasmin and alpha2 macroglobulin appear. Images PLATE 1 PLATE 2 PLATE 3 PLATE 4 PMID:137718

  11. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure...

  12. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure...

  13. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure...

  14. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure...

  15. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure...

  16. Analysis of plasma and urinary tea polyphenols in human subjects.

    PubMed

    Lee, M J; Wang, Z Y; Li, H; Chen, L; Sun, Y; Gobbo, S; Balentine, D A; Yang, C S

    1995-06-01

    Tea has been shown to inhibit chemically induced tumorigenesis in many animal models, but the effects of tea consumption on human carcinogenesis are not conclusive. In order to develop biomarkers for tea consumption, we developed methods for the analysis of tea polyphenols in human plasma and urine samples using HPLC with the coulochem electrode array detection system. (-)-Epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), and (-)-epicatechin (EC) are the major polyphenols in green tea. Most of the tea polyphenols were in their conjugated forms in the plasma and urine. The samples were incubated with a mixture of beta-glucuronidase and sulfatase to generate the free form of tea polyphenols. After extraction into ethyl acetate and separation by reversed-phase chromatography, EGCG, EGC, and EC were identified on the basis of their retention times and electrochemical characteristics. Due to the high selectivity of the detection mode, interference was minimized. Good quantitative relationships were established for a large concentration range of tea polyphenols. The limits of detection for EGCG, EGC, ECG, and EC were from 0.5 to 1.5 ng/ml of plasma or urine sample. After ingestion of 1.2 g of decaffeinated green tea in warm water, the plasma samples collected at 1 h from 4 human volunteers contained 46-268 ng/ml of EGCG, 82-206 ng/ml of EGC, and 48-80 ng/ml of EC. ECG was not detected in plasma samples. The maximum urinary excretion of EGC and EC occurred at 3-6 h.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7655336

  17. Reaction Mechanism of Glutamate Carboxypeptidase II Revealed by Mutagenesis, X-ray Crystallography, and Computational Methods

    SciTech Connect

    Klusak, Vojtech; Barinka, Cyril; Plechanovova, Anna; Mlcochova, Petra; Konvalinka, Jan; Rulisek, Lubomir; Lubkowski, Jacek

    2009-05-29

    Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc-dependent exopeptidase and an important therapeutic target for neurodegeneration and prostate cancer. The hydrolysis of N-acetyl-l-aspartyl-l-glutamate (N-Ac-Asp-Glu), the natural dipeptidic substrate of the GCPII, is intimately involved in cellular signaling within the mammalian nervous system, but the exact mechanism of this reaction has not yet been determined. To investigate peptide hydrolysis by GCPII in detail, we constructed a mutant of human GCPII [GCPII(E424A)], in which Glu424, a putative proton shuttle residue, is substituted with alanine. Kinetic analysis of GCPII(E424A) using N-Ac-Asp-Glu as substrate revealed a complete loss of catalytic activity, suggesting the direct involvement of Glu424 in peptide hydrolysis. Additionally, we determined the crystal structure of GCPII(E424A) in complex with N-Ac-Asp-Glu at 1.70 {angstrom} resolution. The presence of the intact substrate in the GCPII(E424A) binding cavity substantiates our kinetic data and allows a detailed analysis of GCPII/N-Ac-Asp-Glu interactions. The experimental data are complemented by the combined quantum mechanics/molecular mechanics calculations (QM/MM) which enabled us to characterize the transition states, including the associated reaction barriers, and provided detailed information concerning the GCPII reaction mechanism. The best estimate of the reaction barrier was calculated to be {Delta}G {approx} 22({+-}5) kcal{center_dot}mol{sup -1}, which is in a good agreement with the experimentally observed reaction rate constant (k{sub cat} {approx} 1 s{sup -1}). Combined together, our results provide a detailed and consistent picture of the reaction mechanism of this highly interesting enzyme at the atomic level.

  18. N-Glycoproteomics of Human Seminal Plasma Glycoproteins.

    PubMed

    Saraswat, Mayank; Joenväärä, Sakari; Tomar, Anil Kumar; Singh, Sarman; Yadav, Savita; Renkonen, Risto

    2016-03-01

    Seminal plasma aids sperm by inhibiting premature capacitation, helping in the intracervical transport and formation of an oviductal sperm reservoir, all of which appear to be important in the fertilization process. Epitopes such as Lewis x and y are known to be present on seminal plasma glycoproteins, which can modulate the maternal immune response. It is suggested by multiple studies that seminal plasma glycoproteins play, largely undiscovered, important roles in the process of fertilization. We have devised a strategy to analyze glycopeptides from a complex, unknown mixture of protease-digested proteins. This analysis provides identification of the glycoproteins, glycosylation sites, glycan compositions, and proposed structures from the original sample. This strategy has been applied to human seminal plasma total glycoproteins. We have elucidated glycan compositions and proposed structures for 243 glycopeptides belonging to 73 N-glycosylation sites on 50 glycoproteins. The majority of the proposed glycan structures were complex type (83%) followed by high-mannose (10%) and then hybrid (7%). Most of the glycoproteins were either sialylated, fucosylated, or both. Many Lewis x/a and y/b epitopes bearing glycans were found, suggesting immune-modulating epitopes on multiple seminal plasma glycoproteins. The study also shows that large scale N-glycosylation mapping is achievable with current techniques and the depth of the analysis is roughly proportional to the prefractionation and complexity of the sample. PMID:26791533

  19. The Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut Biota?

    PubMed Central

    Wang, Kai; Li, Hong; Yuan, Yue; Etheridge, Alton; Zhou, Yong; Huang, David; Wilmes, Paul; Galas, David

    2012-01-01

    Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA appear to originate from exogenous species. With careful analysis of sequence error statistics and other controls, we demonstrated that there is a wide range of RNA from many different organisms, including bacteria and fungi as well as from other species. These RNAs may be associated with protein, lipid or other molecules protecting them from RNase activity in plasma. Some of these RNAs are detected in intracellular complexes and may be able to influence cellular activities under in vitro conditions. These findings raise the possibility that plasma RNAs of exogenous origin may serve as signaling molecules mediating for example the human-microbiome interaction and may affect and/or indicate the state of human health. PMID:23251414

  20. Radioimmunoassay of factor V in human plasma and platelets

    SciTech Connect

    Tracy, P.B.; Eide, L.L.; Bowie, E.J.W.; Mann, K.G.

    1982-07-01

    Homogeneous, single-chain human factor V was used to develop a double antibody competition radioimmunoassay to measure factor V concentrations in plasma and platelets. Standard curves were constructed that allow for the detection of as little as 20 ng factor V/ml of plasma. Normal factor V concentrations range from 4 to 14 ..mu..g/ml of plasma with an average value of 7.0 +/- 2.0 ..mu..g/ml (n = 64). No correlation was observed between antigen levels and age or sex. The radioimmunoassay data are consistent with factor V clotting assays, providing freshly drawn plasma is used in the bioassay. Radioimmunoassay of washed platelets indicate that 0.63-1.93 ..mu..g of factor V is present per 2.5 X 10/sup 8/ platelets (6412-14128 molecules of factor V per platelet). When normalized to individual hematocrits and platelet count, the data indicated that platelets contribute approximately 18%-25% of the factor V found in whole blood. In addition, two individuals with functionally deficient factor V were examined and found to be deficient in both antigen and activity.

  1. Inhibition of plasma vasopressin after drinking in dehydrated humans

    NASA Technical Reports Server (NTRS)

    Geelen, G.; Keil, L. C.; Kravik, S. E.; Wade, C. E.; Thrasher, T. N.; Barnes, P. R.; Pyka, G.; Nesvig, C.; Greenleaf, J. E.

    1984-01-01

    The effects of nonosmotic and nonvolumetric factors on vasopressin secretion in dehydrated humans has been investigated experimentally, before and after drinking. The subjects of the experiment were five adult men and three adult women weighing 69-77 kg. In order to determine the influence of nonosmotic and nonvolumetric factors on vasopressin secretion, measurements were obtained of the following blood hematological indices: serum Na(+) content; serum K(+) content; osmolality; and hemoglobin. Measurements of hematocrit, plasma arginine vasopressin (AVP), aldosterone, and renin activity were also obtained. It is found that dehydration increased mean serum Na(+) content, osmolality,and AVP. No significant changes were observed in renin activity, hemoglobin, hematocrit, or plasma volume, while plasma aldosterone increased from 11.1 ng/dl after dehydration to 15.6 ng/dl between 30 and 60 min after drinking. A rapid fall of AVP content following rehydration occurred in the absence of changes in the primary regulators of AVP osmolality and plasma volume, with no change in blood pressure. On the basis of the experimental results, it is suggested that oropharyngeal factors may be the mechanism, for the observed decrease in AVP following rehydration.

  2. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-05-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity. PMID:26866566

  3. An express immunological method for detection of human seminal plasma.

    PubMed

    Lolov, S R; Yomtova, V M; Tsankov, Y; Kehayov, I R; Kyurkchiev, S D

    1992-04-01

    Monoclonal antibodies (Mabs) against human seminal plasma (HSP) were produced and during screening procedures dissociation constants of the antigen/antibody complexes were determined. Mab 1E5 was selected for further studies because of its high reactivity in an enzyme-linked immunoassay (ELISA) and high affinity for its corresponding antigen. The specificity of Mab 1E5 was checked in absorption ELISA with human organ extracts and some biological secretions. It was established that the 1E5-corresponding epitope was a thermostable peptide moiety which could be detected in HSP, only. This monoclonal antibody was used for the development of an express method for detection of human semen. The assay was applied for screening of 57 cases of suspected rape. A complete correlation was found between the results obtained by the proposed test and by routine microscopic methods. The newly designed immunoassay is reliable, it is easily performed and it is less time-consuming. PMID:1618453

  4. Effects of water immersion on plasma catecholamines in normal humans

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Johnson, G.; Denunzio, A. G.

    1983-01-01

    An investigation was conducted in order to determine whether water immersion to the neck (NI) alters plasma catecholamines in normal humans. Eight normal subjects were studied during a seated control study (C) and during 4 hr of NI, and the levels of norepinephrine (NE) and epinephrine (E) as determined by radioenzymatic assay were measured hourly. Results show that despite the induction of a marked natriuresis and diuresis indicating significant central hypervolemia, NI failed to alter plasma NE or E levels compared with those of either C or the corresponding prestudy 1.5 hr. In addition, the diuresis and natriuresis was found to vary independently of NE. These results indicate that the response of the sympathetic nervous system to acute volume alteration may differ from the reported response to chronic volume expansion.

  5. Novel Carboxypeptidase A6 (CPA6) Mutations Identified in Patients with Juvenile Myoclonic and Generalized Epilepsy

    PubMed Central

    Sapio, Matthew R.; Vessaz, Monique; Thomas, Pierre; Genton, Pierre; Fricker, Lloyd D.; Salzmann, Annick

    2015-01-01

    Carboxypeptidase A6 (CPA6) is a peptidase that removes C-terminal hydrophobic amino acids from peptides and proteins. The CPA6 gene is expressed in the brains of humans and animals, with high levels of expression during development. It is translated with a prodomain (as proCPA6), which is removed before secretion. The active form of CPA6 binds tightly to the extracellular matrix (ECM) where it is thought to function in the processing of peptides and proteins. Mutations in the CPA6 gene have been identified in patients with temporal lobe epilepsy and febrile seizures. In the present study, we screened for CPA6 mutations in patients with juvenile myoclonic epilepsy and identified two novel missense mutations: Arg36His and Asn271Ser. Patients harboring these mutations also presented with generalized epilepsy. Neither of the novel mutations was found in a control population. Asn271 is highly conserved in CPA6 and other related metallocarboxypeptidases. Arg36 is present in the prodomain and is not highly conserved. To assess structural consequences of the amino acid substitutions, both mutants were modeled within the predicted structure of the enzyme. To examine the effects of these mutations on enzyme expression and activity, we expressed the mutated enzymes in human embryonic kidney 293T cells. These analyses revealed that Asn271Ser abolished enzymatic activity, while Arg36His led to a ~50% reduction in CPA6 levels in the ECM. Pulse-chase using radio-labeled amino acids was performed to follow secretion. Newly-synthesized CPA6 appeared in the ECM with peak levels between 2-8 hours. There was no major difference in time course between wild-type and mutant forms, although the amount of radiolabeled CPA6 in the ECM was lower for the mutants. Our experiments demonstrate that these mutations in CPA6 are deleterious and provide further evidence for the involvement of CPA6 mutations in the predisposition for several types of epilepsy. PMID:25875328

  6. Isolation and characteristics of carboxypeptidase B from the pyloric ceca of the starfish Asterias amurensis.

    PubMed

    Kishimura, Hideki; Hayashi, Kenji

    2002-10-01

    Carboxypeptidase B was purified from the pyloric ceca of the starfish Asterias amurensis. The final enzyme preparation was nearly homogeneous in polyacrylamide gel electrophoresis and its molecular weight was estimated as approximately 34,000. The optimum pH and temperature of the enzyme for hydrolysis of benzoyl-glycyl-L-arginine were at approximately pH 7.5 and 55 degrees C, respectively. The enzyme was unstable at above 50 degrees C and at below pH 5.0. The enzyme was activated by Co(2+), but was inhibited by EDTA and Hg(2+). The N-terminal amino acid sequence of A. amurensis carboxypeptidase B was ASFDYNVYHSYQEIMNWITN. PMID:12381380

  7. Decreased plasma isoleucine concentrations after upper gastrointestinal haemorrhage in humans.

    PubMed Central

    Dejong, C H; Meijerink, W J; van Berlo, C L; Deutz, N E; Soeters, P B

    1996-01-01

    BACKGROUND: A decrease in arterial isoleucine values after intragastric blood administration in pigs has been observed. This contrasted with increased values of most other amino acids, ammonia, and urea. After an isonitrogenous control meal in these pigs all amino acids including isoleucine increased, and urea increased to a lesser extent, suggesting a relation between the arterial isoleucine decrease and uraemia after gastrointestinal haemorrhage. METHODS: To extend these findings to humans, plasma amino acids were determined after gastrointestinal haemorrhage in patients with peptic ulcers (n = 9) or oesophageal varices induced by liver cirrhosis (n = 4) and compared with preoperative patients (n = 106). RESULTS: After gastrointestinal haemorrhage, isoleucine decreased in all patients by more than 60% and normalised within 48 hours. Most other amino acids increased and also normalised within 48 hours. Uraemia occurred in both groups, hyperammonaemia was seen in patients with liver cirrhosis. CONCLUSIONS: These results confirm previous findings in animals and healthy volunteers that plasma isoleucine decreases after simulated upper gastrointestinal haemorrhage. This supports the hypothesis that the absence of isoleucine in blood protein causes decreased plasma isoleucine values after gastrointestinal haemorrhage, and may be a contributory factor to uraemia and hyperammonaemia in patients with normal and impaired liver function, respectively. Intravenous isoleucine administration after gastrointestinal haemorrhage could be beneficial and will be the subject of further research. PMID:8881800

  8. An Expression and Bioinformatics Analysis of the Arabidopsis Serine Carboxypeptidase-Like Gene Family1[w

    PubMed Central

    Fraser, Christopher M.; Rider, Lance W.; Chapple, Clint

    2005-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encodes a family of 51 proteins that are homologous to known serine carboxypeptidases. Based on their sequences, these serine carboxypeptidase-like (SCPL) proteins can be divided into several major clades. The first group consists of 21 proteins which, despite the function implied by their annotation, includes two that have been shown to function as acyltransferases in plant secondary metabolism: sinapoylglucose:malate sinapoyltransferase and sinapoylglucose:choline sinapoyltransferase. A second group comprises 25 SCPL proteins whose biochemical functions have not been clearly defined. Genes encoding representatives from both of these clades can be found in many plants, but have not yet been identified in other phyla. In contrast, the remaining SCPL proteins include five members that are similar to serine carboxypeptidases from a variety of organisms, including fungi and animals. Reverse transcription PCR results suggest that some SCPL genes are expressed in a highly tissue-specific fashion, whereas others are transcribed in a wide range of tissue types. Taken together, these data suggest that the Arabidopsis SCPL gene family encodes a diverse group of enzymes whose functions are likely to extend beyond protein degradation and processing to include activities such as the production of secondary metabolites. PMID:15908604

  9. [Effect of reboxetine on activity of carboxypeptidase E in the nerve tissue of rats].

    PubMed

    Kruchinina, A D; Gengin, M T

    2015-01-01

    Depression is one of the most common mental disorders, but its etiology is not completely understood. It is assumed that peptidergic system components are involved in the formation of this pathology. Neuropeptides play an important role in the regulation of mental and emotional states. Сarboxypeptidase E is a key enzyme of peptide processing; it regulates neuropeptide levels in the various structures of the nervous system. We have studied effects of a single dose of reboxetine on the activity of carboxypeptidase E in various brain regions and the adrenal glands of rats. The reboxetine injection decreased carboxypeptidase E activity in the pituitary gland (12 h after injection), in the pituitary gland, the quadrigeminal bodies, the medulla oblongata, the hypothalamus, the hippocampus and the amygdala (24 h after injection), in the pituitary gland and striatum (72 h after injection). The enzyme activity in adrenal glands remained basically unchanged. Apparently, the decrease of carboxypeptidase E activity may influence the level of regulatory peptides involved in the pathogenesis of depression. PMID:26539877

  10. Purification of human plasma platelet-activating factor acetylhydrolase

    SciTech Connect

    Stafforini, D.M.; Prescott, S.M.; McIntyre, T.M.

    1986-05-01

    Platelet-activating factor (PAF;1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine is synthesized by a variety of cells. It induces hypotension, and activates platelets, neutrophils, and macrophages at nanomolar concentrations. Removal of the acetate abolishes biological activity, and is catalyzed by a specific PAF acetylhydrolase present in plasma and tissues. The authors developed a rapid assay, based on separation of (/sup 3/H)acetate from (/sup 3/H-acetyl)PAF by reversed-phase chromatography. In human plasma the enzyme exhibits an apparent Km of 5.7..mu..M, with a Vmax of 0.027..mu..mol/h/mg. Ultracentrifugation in density gradients showed that 30% of the activity is associated with high density lipoproteins (HDL) and 70% with low density lipoproteins (LDL). The enzyme was purified from LDL by precipitation with Na phosphotungstate and MgCl/sub 2/, solubilization with Tween 20, column chromatography and electrophoresis. This procedure resulted in a preparation that was 21,000-fold purified from plasma (spec. act. 575..mu..mol/h/mg) with a recovery of 10%. The purified enzyme has a molecular weight of about 43,000, a broad pH optimum (peak 7.5-8.0), and a pl of 4.6. It has greater activity when PAF is in a micellar, as compared to monomeric, and exhibits surface dilution kinetics, which may be important in vivo. The purification and characterization of this enzyme will allow detailed studies of its role in PAF metabolism.

  11. Production and utilization of detyrosinated tubulin in developing Artemia larvae: evidence for a tubulin-reactive carboxypeptidase.

    PubMed

    Xiang, H; MacRae, T H

    1995-01-01

    The reversible, enzymatically driven removal and readdition of its carboxy-terminal tyrosine are major posttranslational modifications of alpha-tubulin. To study these processes isoform-specific antibodies were produced and subsequently used to characterize tyrosinated and detyrosinated tubulin in the brine shrimp, Artemia. Tyrosinated tubulin existed in relatively constant amounts on western blots of cell-free protein extracts from Artemia at all developmental stages examined, whereas detyrosinated tubulin was present after 20-24 h of postgastrula growth. In agreement with the blots, the detyrosinated isoform was observed in immunofluorescently stained larvae after 24 h of incubation, appearing first in structures of a transient nature, namely spindles and midbodies. The elongated muscle cells encircling the gut and the epithelium bordering the gut lumen were stained extensively with antibody to detyrosinated tubulin. Detyrosination was accompanied by the appearance of a tubulin-reactive carboxypeptidase, which used both nonpolymerized and polymerized tubulin as substrate. The enzyme bound to microtubules very poorly, if at all, under conditions used in this work. Several inhibitors of carboxypeptidase A had no effect on the carboxypeptidase from Artemia and revealed similarities between this enzyme and others thought to be tubulin specific. The use of inhibitors also indicated that the carboxypeptidase from Artemia recognized aspects of tubulin structure in addition to the carboxy-terminal tyrosine. Our results support the idea that detyrosinated tubulin appears in microtubules of varying stability, and they demonstrate that Artemia possess a carboxypeptidase with the potential to detyrosinate tubulin during growth of larvae. PMID:8714688

  12. A sensitive radioimmunoassay for fludrocortisone in human plasma

    NASA Technical Reports Server (NTRS)

    Mitsky, V. P.; Workman, R. J.; Nicholson, W. E.; Vernikos, J.; Robertson, R. M.; Robertson, D.

    1994-01-01

    Fludrocortisone has been a mainstay of therapy for orthostatic hypotension for many years. Clinical experience suggests that there exists a substantial interindividual variation in responsiveness to the drug. To assess this, we have developed an assay that permits measurement of the low concentrations of fludrocortisone found in human plasma. Fludrocortisone was detected by radioimmunoassay. A polyclonal rabbit antibody, raised against dexamethasone which cross-reacts strongly with fludrocortisone, was reacted with either standard or unknown samples in the presence of [125I]fludrocortisone-3-TyrNH2 (synthesized by coupling tyrosine amide to fludrocortisone-3-oxime and iodinating with chloramine T oxidation). The ED10, ED50, and ED80 were 0.34, 5.0, and 30 ng/mL of plasma, respectively. The cross reactivity with other 9-fluorinated steroids was found as follows: dexamethasone, 340%; betamethasone, 230%; and triamicinolone, 8%. To preclude an erroneous result, subjects who were pregnant or receiving any steroid medication were excluded from the study. The percent cross-reactivity with the main naturally occurring steroids was as follows: 11-desoxycortisol 3.2%, cortisol 1.1%, DOC 0.3%, pregnenolone 0.1%, corticosterone 0.06%, progesterone 0.05%, and aldosterone < 0.05%. The only compound with potential for interference, because of its high level in the circulation in the early morning, was cortisol.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Pharmacokinetic Comparison of Soy Isoflavone Extracts in Human Plasma.

    PubMed

    Rodríguez-Morató, Jose; Farré, Magí; Pérez-Mañá, Clara; Papaseit, Esther; Martínez-Riera, Roser; de la Torre, Rafael; Pizarro, Nieves

    2015-08-12

    The soy isoflavones daidzein and genistein produce several biological activities related to health benefits. A number of isoflavone extracts are commercially available, but there is little information concerning the specific isoflavone content of these products or differences in their bioavailability and pharmacokinetics. This study describes the development and validation of an analytical method to detect and quantify daidzein, genistein, and equol in human plasma using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was applied in a crossover, randomized, bioavailability study. Twelve healthy volunteers were administered the same total isoflavones dose from two isoflavone supplement preparations (Super-Absorbable Soy Isoflavones (Life Extension, USA) and Fitoladius (Merck, Spain)). The pharmacokinetic parameters (AUC0-24/dose and Cmax/dose) of the isoflavones from the two preparations differed significantly. Such differences in bioavailability and kinetics may have relevant effects on the health benefits derived from their intake. PMID:26186408

  14. Cloning and characterization of cDNAS encoding carboxypeptidase-like proteins from the gut of Hessian fly larvae [Mayetiola destructor (Say)].

    PubMed

    Liu, Xiang; Fellers, John P; Zhu, Yu Cheng; Mutti, Navdeep S; El-Bouhssini, Mustapha; Chen, Ming-Shun

    2006-08-01

    Transcriptomic analysis of the gut from Hessian fly larvae [Mayetiola destructor (Say)] identified nine cDNA clones that encode different carboxypeptidase-like proteins. Sequence comparison revealed that five of the nine cDNAs encoded very similar proteins with amino acid sequence identity over 96%. The other four cDNAs encoded diversified proteins with amino acid sequence identity less than 60%. Further sequence comparison with well characterized carboxypeptidases from other organisms revealed that these cDNAs encoded MDCP (M. destructor carboxypeptidase)-A1, MDCP-A2, MDCP-B, MDCP-BL, and MDCP-D. All residues characteristic of metallocarboxypeptidases including the HXXE motif were conserved among members. Northern blot analysis revealed various expression patterns for different gene groups in different developmental stages of M. destructor, suggesting that individual carboxypeptidases perform specific functions or have different specificities. Enzymatic activity assays demonstrated that both carboxypeptidases A and B are predominant in the larval stage, the only feeding stage of M. destructor, indicating a role in food digestion. The digestive role is further supported by the fact that 80% of the enzymatic activity in larvae occurred in the gut. Among these two types of enzymes, the activity of carboxypeptidase A was at least four times higher than that of carboxypeptidase B under the same conditions, suggesting that carboxypeptidase A is the major digestive enzyme in the gut of M. destructor larvae. PMID:16876709

  15. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism

    PubMed Central

    Buxton, Jessica L.; Zekavati, Anna; Sosinsky, Alona; Yiorkas, Andrianos M.; Holder, Susan; Klaber, Robert E.; Bridges, Nicola; van Haelst, Mieke M.; le Roux, Carel W.; Walley, Andrew J.; Walters, Robin G.; Mueller, Michael; Blakemore, Alexandra I. F.

    2015-01-01

    Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans. PMID:26120850

  16. Plasma levels of human neurotensin: methodological and physiological considerations.

    PubMed

    Ferris, C F; George, J K; Eastwood, G; Potegal, M; Carraway, R E

    1991-01-01

    The ingestion of a meal high in fat content is known to increase circulating levels of neurotensin (NT) in humans. However, the magnitude of the postprandial rise of NT in the general circulation and its physiological significance have been subject of much debate. The present study examines circulating levels of NT in male volunteers prior to and following each of their three daily meals (ca. 31 g fat/meal). The response observed are also compared to that elicited by the direct instillation of intralipid (ca. 44 g fat) into the duodenum. NT levels were determined by radioimmunoassay of acid/acetone extracted plasma fractionated by high pressure liquid chromatography. Meals caused a significant but modest increase in NT levels, with the largest increment (ca. 4 fmol/ml) occurring after breakfast. In contrast, NT levels increased ca. 20 fmol/ml with intraduodenal instillation of lipid. The meal-stimulated increases in circulating NT measured here are 4- to 5-fold less than those reported by others, the difference most likely reflecting the lesser amount of lipid ingested. Previous studies provided subjects with single meals containing in excess of 120 g of fat; the 30 g of fat ingested by our subjects, ca. 33% of total caloric intake, is near that recommended by the U.S. Senate, Select Committee on Nutritional and Human Needs. These data show that diets with a reasonable fat content have only a modest effect on circulating levels of NT. PMID:2067972

  17. Human plasma kallikrein-kinin system: Physiological and biochemical parameters

    PubMed Central

    Bryant, J.W.; Shariat-Madar, z

    2016-01-01

    The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity. PMID:19689262

  18. Crystal Structure of Human Plasma Platelet-Activating Factor Acetylhydrolase

    SciTech Connect

    Samanta, U.; Bahnson, B

    2008-01-01

    Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and high density lipoprotein particles and is also referred to as lipoprotein-associated phospholipase A{sub 2}. The crystal structure of this enzyme has been solved from x-ray diffraction data collected to a resolution of 1.5{angstrom}. It has a classic lipase {alpha}/{beta}-hydrolase fold, and it contains a catalytic triad of Ser{sup 273}, His{sup 351}, and Asp{sup 296}. Two clusters of hydrophobic residues define the probable interface-binding region, and a prediction is given of how the enzyme is bound to lipoproteins. Additionally, an acidic patch of 10 carboxylate residues and a neighboring basic patch of three residues are suggested to play a role in high density lipoprotein/low density lipoprotein partitioning. A crystal structure is also presented of PAF acetylhydrolase reacted with the organophosphate compound paraoxon via its active site Ser{sup 273}. The resulting diethyl phosphoryl complex was used to model the tetrahedral intermediate of the substrate PAF to the active site. The model of interface binding begins to explain the known specificity of lipoprotein-bound substrates and how the active site can be both close to the hydrophobic-hydrophilic interface and at the same time be accessible to the aqueous phase.

  19. Purification and Properties of Two Proteolytic Enzymes with Carboxypeptidase Activity in Germinated Wheat 1

    PubMed Central

    Preston, Ken R.; Kruger, James E.

    1976-01-01

    Two proteolytic enzymes with carboxypeptidase activity have been isolated from a germinated wheat extract and partially characterized. Both enzymes rapidly released amino acids from hemoglobin and gluten and hydrolyzed carbobenzoxy-phenylalanylalanine. The enzymes were inhibited by diisopropylphosphofluoridate, but unaffected by salts, ethylenediaminetetraacetate, and sulfhydryl reagents at lower concentrations, and had molecular weights of approximately 55,000 and 61,000. Analysis of the hydrolysis products of hemoglobin and gluten indicated that both enzymes had broad specificities, including the ability to release proline. Images PMID:16659708

  20. Crystallization and preliminary X-ray diffraction study of porcine carboxypeptidase B

    SciTech Connect

    Akparov, V. Kh.; Timofeev, V. I. Kuranova, I. P.

    2015-05-15

    Crystals of porcine pancreatic carboxypeptidase B have been grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction study showed that the crystals belong to sp. gr. P4{sub 1}2{sub 1}2 and have the following unit-cell parameters: a = b = 79.58 Å, c = 100.51 Å; α = β = γ = 90.00°. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one of the grown crystals at the SPring 8 synchrotron facility to 0.98 Å resolution.

  1. The Nature of the Ground States of Cobalt(II) and Nickel(II) Carboxypeptidase A

    PubMed Central

    Rosenberg, Robert C.; Root, Charles A.; Wang, Run-Han; Cerdonio, Massimo; Gray, Harry B.

    1973-01-01

    The magnetic susceptibilities of cobalt(II) and nickel(II) derivaties of carboxypeptidase A (CPA) follow the Curie law over a wide temperature range. The observed magnetic moments of Co(II)CPA and Ni(II)CPA are 4.77 ± 0.15 and 2.53 ± 0.10 Bohr Magnetons, respectively. The magnetic and spectral properties of Ni(II)CPA are consistent only with an octahedral ground-state geometry, whereas Co(II)CPA has a probable five-coordinate structure. The results establish ordinary metal-ion ground states for two metallocarboxypeptidase A derivatives which exhibit full peptidase activity. PMID:4509646

  2. Effect of human plasma on the reactivation of sarin-inhibited human erythrocyte acetylcholinesterase.

    PubMed

    Worek, F; Eyer, P; Kiderlen, D; Thiermann, H; Szinicz, L

    2000-03-01

    The reactivation of organophosphate-inhibited acetylcholinesterase (AChE) by oximes inevitably results in the formation of highly reactive phosphoryloximes (POX), which are able to re-inhibit the enzyme. In this study, the dependence of POX formation on AChE concentration was investigated with sarin-inhibited human erythrocyte AChE (EryAChE). A marked dependence was found with obidoxime but not with the experimental oxime HI 6, suggesting great differences in the decomposition rates of the respective POXs. At a physiological erythrocyte content the reactivation of EryAChE was markedly affected by POX with obidoxime and pralidoxime (2-PAM) but not with the newer oximes HI 6 and HLö 7. Addition of extensively dialysed, sarin-treated human plasma reduced the reactivation by obidoxime and 2-PAM even more. Obidoxime and 2-PAM were superior to HI 6 and HLö 7 in reactivating butyrylcholinesterase (BChE). This effect was pronounced in diluted plasma, but was obscured in concentrated plasma, probably because of re-inhibition by the generated POX. Addition of native erythrocytes to sarin-treated plasma resulted in marked inhibition of EryAChE in the presence of obidoxime, suggesting a higher affinity of the POX for EryAChE. The results indicate that obidoxime and 2-PAM may reactivate sarin-inhibited AChE insufficiently due to re-inhibition by the POX formed. In addition, the re-inhibition of Ery-AChE may be aggravated by the POX that is produced during BChE reactivation. These reactions must be regarded as therapeutically detrimental and disqualify those oximes which are capable of forming stable POX by reactivation of BChE. PMID:10817663

  3. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum.

    PubMed

    Mirshafiee, Vahid; Kim, Raehyun; Mahmoudi, Morteza; Kraft, Mary L

    2016-06-01

    Nanoparticle (NP) exposure to biological fluids in the body results in protein binding to the NP surface, which forms a protein coating that is called the "protein corona". To simplify studies of protein-NP interactions and protein corona formation, NPs are incubated with biological solutions, such as human serum or human plasma, and the effects of this exposure are characterized in vitro. Yet, how NP exposure to these two different biological milieus affects protein corona composition and cell response has not been investigated. Here, we explore the differences between the protein coronas that form when NPs are incubated in human serum versus human plasma. NP characterization indicated that NPs that were exposed to human plasma had higher amounts of proteins bound to their surfaces, and were slightly larger in size than those exposed to human serum. In addition, significant differences in corona composition were also detected with gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry, where a higher fraction of coagulation proteins and complement factors were found on the plasma-exposed NPs. Flow cytometry and confocal microscopy showed that the uptake of plasma-exposed NPs was higher than that of serum-exposed NPs by RAW 264.7 macrophage immune cells, but not by NIH 3T3 fibroblast cells. This difference is likely due to the elevated amounts of opsonins, such as fibrinogen, on the surfaces of the NPs exposed to plasma, but not serum, because these components trigger NP internalization by immune cells. As the human plasma better mimics the composition of the in vivo environment, namely blood, in vitro protein corona studies should employ human plasma, and not human serum, so the biological phenomena that is observed is more similar to that occurring in vivo. PMID:26643610

  4. Fitzgerald factor (high molecular weight kininogen) clotting activity in human plasma in health and disease in various animal plasmas.

    PubMed

    Saito, H; Goldsmith, G; Waldmann, R

    1976-12-01

    Fitzgerald factor (high molecular weight kininogen) is an agent in normal human plasma that corrects the impaired in vitro surface-mediated plasma reactions of blood coagulation, fibrinolysis, and kinin generation observed in Fitzgerald trait plasma. To assess the possible pathophysiologic role of Fitzgerald factor, its titer was measured by a functional clot-promoting assay. Mean +/- SD in 42 normal adults was 0.99+/-0.25 units/ml, one unit being the activity in 1 ml of normal pooled plasma. No difference in titer was noted between normal men and women, during pregnancy, or after physical exercise. Fitzgerald factor activity was significantly reduced in the plasmas of eight patients with advanced hepatic cirrhosis (0.40+/-0.09 units/ml) and of ten patients with disseminated intravascular coagulation (0.60+/-0.30 units/ml), but was normal in plasmas of patients with other congenital clotting factor deficiencies, nephrotic syndrome, rheumatoid arthritis, systemic lupus erythematosus, or sarcoidosis, or under treatment with warfarin. The plasmas of 21 mammalian species tested appeared to contain Fitzgerald factor activity, but those of two avian, two repitilian, and one amphibian species did not correct the coagulant defect in Fitzgerald trait plasmas. PMID:1000085

  5. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose.

    PubMed

    DiScipio, Richard G; Liddington, Robert C; Schraufstatter, Ingrid U

    2016-05-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  6. Effect of non-thermal atmospheric pressure plasma jet on human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Nikkhah, Maryam; Pirouzmand, Somaye; Ghomi, Hamid Reza

    2012-10-01

    Nowadays, Non-thermal plasma enjoy a wide range of applications in biomedical fields such as Sterilization, Wound healing, Cancer treatment and etc. The aim of this paper is to study the effect of non-thermal atmospheric pressure plasma jet on breast cancer (MCF-7) cells. In this regard the effect of plasma on death of the cancer cells are explored experimentally. The plasma in this discharge is created by pulsed dc high voltage power supply with repetition rate of several tens of kilohertz which led to the inductively coupled plasma. The pure helium gas were used for formation of the plasma jet. MTT assay were used for quantification of death cells. The results showed that the cells death rate increase with plasma exposure time. This study confirm that plasma jet have significant effect on treatment of human breast cancer cells.

  7. Inactivation of human pathogenic dermatophytes by non-thermal plasma.

    PubMed

    Scholtz, Vladimír; Soušková, Hana; Hubka, Vit; Švarcová, Michaela; Julák, Jaroslav

    2015-12-01

    Non-thermal plasma (NTP) was tested as an in vitro deactivation method on four human pathogenic dermatophytes belonging to all ecological groups including anthropophilic Trichophyton rubrum and Trichophyton interdigitale, zoophilic Arthroderma benhamiae, and geophilic Microsporum gypseum. The identification of all strains was confirmed by sequencing of ITS rDNA region (internal transcribed spacer region of ribosomal DNA). Dermatophyte spores were suspended in water or inoculated on agar plates and exposed to NTP generated by a positive or negative corona discharge, or cometary discharge. After 15 min of exposure to NTP a significant decrease in the number of surviving spores in water suspensions was observed in all species. Complete spore inactivation and thus decontamination was observed in anthropophilic species after 25 min of exposure. Similarly, a significant decrease in the number of surviving spores was observed after 10-15 min of exposure to NTP on the surface of agar plates with full inhibition after 25 min in all tested species except of M. gypseum. Although the sensitivity of dermatophytes to the action of NTP appears to be lower than that of bacteria and yeast, our results suggest that NTP has the potential to be used as an alternative treatment strategy for dermatophytosis and could be useful for surface decontamination in clinical practice. PMID:26427826

  8. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids

    PubMed Central

    Tort, Olivia; Tanco, Sebastián; Rocha, Cecilia; Bièche, Ivan; Seixas, Cecilia; Bosc, Christophe; Andrieux, Annie; Moutin, Marie-Jo; Avilés, Francesc Xavier; Lorenzo, Julia; Janke, Carsten

    2014-01-01

    The posttranslational modification of carboxy-terminal tails of tubulin plays an important role in the regulation of the microtubule cytoskeleton. Enzymes responsible for deglutamylating tubulin have been discovered within a novel family of mammalian cytosolic carboxypeptidases. The discovery of these enzymes also revealed the existence of a range of other substrates that are enzymatically deglutamylated. Only four of six mammalian cytosolic carboxypeptidases had been enzymatically characterized. Here we complete the functional characterization of this protein family by demonstrating that CCP2 and CCP3 are deglutamylases, with CCP3 being able to hydrolyze aspartic acids with similar efficiency. Deaspartylation is a novel posttranslational modification that could, in conjunction with deglutamylation, broaden the range of potential substrates that undergo carboxy-terminal processing. In addition, we show that CCP2 and CCP3 are highly regulated proteins confined to ciliated tissues. The characterization of two novel enzymes for carboxy-terminal protein modification provides novel insights into the broadness of this barely studied process. PMID:25103237

  9. Carboxypeptidase N-deficient mice present with polymorphic disease phenotypes on induction of experimental autoimmune encephalomyelitis.

    PubMed

    Hu, Xianzhen; Wetsel, Rick A; Ramos, Theresa N; Mueller-Ortiz, Stacey L; Schoeb, Trenton R; Barnum, Scott R

    2014-02-01

    Carboxypeptidase N (CPN) is a member of the carboxypeptidase family of enzymes that cleave carboxy-terminal lysine and arginine residues from a large number of biologically active peptides and proteins. These enzymes are best known for their roles in modulating the activity of kinins, complement anaphylatoxins and coagulation proteins. Although CPN makes important contributions to acute inflammatory events, little is known about its role in autoimmune disease. In this study we used CPN(-/-) mice in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Unexpectedly, we observed several EAE disease phenotypes in CPN(-/-) mice compared to wild type mice. The majority of CPN(-/-) mice died within five to seven days after disease induction, before displaying clinical signs of disease. The remaining mice presented with either mild EAE or did not develop EAE. In addition, CPN(-/-) mice injected with complete or incomplete Freund's adjuvant died within the same time frame and in similar numbers as those induced for EAE. Overall, the course of EAE in CPN(-/-) mice was significantly delayed and attenuated compared to wild type mice. Spinal cord histopathology in CPN(-/-) mice revealed meningeal, but not parenchymal leukocyte infiltration, and minimal demyelination. Our results indicate that CPN plays an important role in EAE development and progression and suggests that multiple CPN ligands contribute to the disease phenotypes we observed. PMID:24028840

  10. THE GLUTAMATE CARBOXYPEPTIDASE GENE II (C>T) POLYMORPHISM DOES NOT AFFECT FOLATE STATUS IN THE FRAMINGHAM OFFSPRING COHORT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally occurring folates are comprised mostly of reduced polyglutamyl derivatives and require hydrolysis to monoglutamyl derivatives before they are absorbed by the small intestine. This hydrolysis is catalyzed by glutamate carboxypeptidase II (GCPII). Recently, a 1561 C>T polymorphism in the GCP...

  11. Catalytic properties of recombinant dipeptidyl carboxypeptidase from Escherichia coli: a comparative study with angiotensin I-converting enzyme.

    PubMed

    Cunha, Carlos Eduardo L; Magliarelli, Helena de Fátima; Paschoalin, Thaysa; Nchinda, Aloysius T; Lima, Jackson C; Juliano, Maria A; Paiva, Paulo B; Sturrock, Edward D; Travassos, Luiz R; Carmona, Adriana K

    2009-09-01

    Dipeptidyl carboxypeptidase from Escherichia coli (EcDcp) is a zinc metallopeptidase with catalytic properties closely resembling those of angiotensin I-converting enzyme (ACE). However, EcDcp and ACE are classified in different enzyme families (M3 and M2, respectively) due to differences in their primary sequences. We cloned and expressed EcDcp and studied in detail the enzyme's S(3) to S(1)' substrate specificity using positional-scanning synthetic combinatorial (PS-SC) libraries of fluorescence resonance energy transfer (FRET) peptides. These peptides contain ortho-aminobenzoic acid (Abz) and 2,4-dinitrophenyl (Dnp) as donor/acceptor pair. In addition, using FRET substrates developed for ACE [Abz-FRK(Dnp)P-OH, Abz-SDK(Dnp)P-OH and Abz-LFK(Dnp)-OH] as well as natural ACE substrates (angiotensin I, bradykinin, and Ac-SDKP-OH), we show that EcDcp has catalytic properties very similar to human testis ACE. EcDcp inhibition studies were performed with the ACE inhibitors captopril (K(i)=3 nM) and lisinopril (K(i)=4.4 microM) and with two C-domain-selective ACE inhibitors, 5-S-5-benzamido-4-oxo-6-phenylhexanoyl-L-tryptophan (kAW; K(i)=22.0 microM) and lisinopril-Trp (K(i)=0.8 nM). Molecular modeling was used to provide the basis for the differences found in the inhibitors potency. The phylogenetic relationship of EcDcp and related enzymes belonging to the M3 and M2 families was also investigated and the results corroborate the distinct origins of EcDcp and ACE. PMID:19558329

  12. Characterization of fimasartan metabolites in human liver microsomes and human plasma.

    PubMed

    Lee, Ji-Yoon; Choi, Young Jae; Oh, Soo Jin; Chi, Yong Ha; Paik, Soo Heui; Lee, Ki Ho; Jung, Jae-Kyung; Ryu, Chang Seon; Kim, Kwon-Bok; Kim, Dong-Hyun; Yoon, Young-Ran; Kim, Sang Kyum

    2016-01-01

    1. The metabolites of fimasartan (FMS), a new angiotensin II receptor antagonist, were characterized in human liver microsomes (HLM) and human subjects. 2. We developed a method for a simultaneous quantitative and qualitative analysis using predictive multiple reaction monitoring information-dependent acquisition-enhanced product ion scanning. To characterize metabolic reactions, FMS metabolites were analyzed using quadrupole-time of flight mass spectrometer in full-scan mode. 3. The structures of metabolites were confirmed by comparison of chromatographic retention times and mass spectra with those of authentic metabolite standards. 4. In the cofactor-dependent microsomal metabolism study, the half-lives of FMS were 56.7, 247.9 and 53.3 min in the presence of NADPH, UDPGA and NADPH + UDPGA, respectively. 5. The main metabolic routes in HLM were S-oxidation, oxidative desulfuration, n-butyl hydroxylation and N-glucuronidation. 6. In humans orally administered with 120 mg FMS daily for 7 days, the prominent metabolites were FMS S-oxide and FMS N-glucuronide in the 0-8-h pooled plasma sample of each subject. 7. This study characterizes, for the first time, the metabolites of FMS in humans to provide information for its safe use in clinical medicine. PMID:26068523

  13. Utilization of a depsipeptide substrate for trapping acyl—enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases

    PubMed Central

    Rasmussen, James R.; Strominger, Jack L.

    1978-01-01

    The penicillin-sensitive D-alanine carboxypeptidases of Bacillus subtilis, Escherichia coli, and Staphylococcus aureus catalyzed the hydrolysis of the D-lactic acid residue from the depsipeptide diacetyl-L-lysyl-D-alanyl-D-lactic acid. The ester substrate was hydrolyzed faster than the peptide analogue, diacetyl-L-lysyl-D-alanyl-D-alanine, by the B. subtilis (15-fold) and E. coli (4-fold) carboxypeptidases, presumably because acylation (k2), which is the rate-limiting step of the peptidase reaction, occurred more rapidly during cleavage of the ester bond than during cleavage of the amide bond. No rate acceleration was observed with the S. aureus carboxypeptidase for which deacylation (k3) is already the rate-determining step with the peptide substrate. The efficiency of utilization of the depsipeptide (Vmax/Km) was greatly enhanced (19- to 147-fold) for all three enzymes. After incubation of the B. subtilis carboxypeptidase and [14C]diacetyl-L-lysyl-D-alanyl-D-lactic acid at pH 5.0 and lowering of the pH to 3.0, a radioactive acyl-enzyme intermediate containing 0.43 mol of substrate per mol of enzyme was isolated by Sephadex G-50 chromatography. After acetone precipitation, the acyl group of the denatured acyl-enzyme complex appeared to be bound to the protein by an ester bond. Acyl enzymes were also detected for the S. aureus and E. coli carboxypeptidases after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and fluorography of enzyme incubated with [14C]depsipeptide and precipitated with acetone. Images PMID:415311

  14. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    SciTech Connect

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.; Hunter, William N.

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate.

  15. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  16. Role of Seminal Plasma in Human Female Reproductive Failure: Immunomodulation, Inflammation, and Infections.

    PubMed

    Anderson, Deborah J; Politch, Joseph A

    2015-01-01

    Human seminal plasma contains factors that can regulate the female immune system and potentially promote reproductive fitness. Adverse effects on fertility and pregnancy may occur when seminal plasma provides insufficient, excessive, or altered signals or when the female partner is incapable of receiving these signals. PMID:26178849

  17. Immunoelectrophoretic analysis and radial immunodiffusion assay using plasminogen purified from fresh human plasma

    PubMed Central

    Magoon, E. H.; Austen, K. F.; Spragg, Jocelyn

    1974-01-01

    Plasminogen was purified from fresh human plasma by affinity chromatography and gel filtration and was characterized functionally, electrophoretically and on a weight basis. After antibody raised against this material was demonstrated to be monospecific for plasminogen/plasmin, it was employed in an immunoelectrophoretic analysis of plasminogen activated in several ways and in a radial immunodiffusion assay of human plasma plasminogen, where the mean level found was 476 μg/ml. ImagesFIG. 5FIG. 8 PMID:4143118

  18. Mast cell tryptase and carboxypeptidase A expression in body fluid and gastrointestinal tract associated with drug-related fatal anaphylaxis

    PubMed Central

    Guo, Xiang-Jie; Wang, Ying-Yuan; Zhang, Hao-Yue; Jin, Qian-Qian; Gao, Cai-Rong

    2015-01-01

    AIM: To investigate the expression of mast cell tryptase and carboxypeptidase A in drug-related fatal anaphylaxis. METHODS: The expression of mast cell tryptase and carboxypeptidase A in 15 autopsy cases of drug-related fatal anaphylaxis and 20 normal autopsy cases were detected. First, the expression of mast cell tryptase was determined in stomach, jejunum, lung, heart, and larynx by immunofluorescence. Different tissues were removed and fixed in paraformaldehyde solution, then paraffin sections were prepared for immunofluorescence. Using specific mast cell tryptase and carboxypeptidase A antibodies, the expression of tryptase and carboxypeptidase A in gastroenterology tract and other tissues were observed using fluorescent microscopy. The postmortem serum and pericardial fluid were collected from drug-related fatal anaphylaxis and normal autopsy cases. The level of mast cell tryptase and carboxypeptidase A in postmortem serum and pericardial fluid were measured using fluor enzyme linked immunosorbent assay (FEIA) and enzyme linked immunosorbent assay (ELISA) assay. The expression of mast cell tryptase and carboxypeptidase A was analyzed in drug-related fatal anaphylaxis cases and compared to normal autopsy cases. RESULTS: The expression of carboxypeptidase A was less in the gastroenterology tract and other tissues from anaphylaxis-related death cadavers than normal controls. Immunofluorescence revealed that tryptase expression was significantly increased in multiple organs, especially the gastrointestinal tract, from anaphylaxis-related death cadavers compared to normal autopsy cases (46.67 ± 11.11 vs 4.88 ± 1.56 in stomach, 48.89 ± 11.02 vs 5.21 ± 1.34 in jejunum, 33.72 ± 5.76 vs 1.30 ± 1.02 in lung, 40.08 ± 7.56 vs 1.67 ± 1.03 in larynx, 7.11 ± 5.67 vs 1.10 ± 0.77 in heart, P < 0.05). Tryptase levels, as measured with FEIA, were significantly increased in both sera (43.50 ± 0.48 μg/L vs 5.40 ± 0.36 μg/L, P < 0.05) and pericardial fluid (28.64 ± 0

  19. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  20. In vitro protein binding of liraglutide in human plasma determined by reiterated stepwise equilibrium dialysis

    PubMed Central

    Plum, Anne; Jensen, Lisbeth Bjerring; Kristensen, Jesper Bøggild

    2013-01-01

    Liraglutide is a human glucagon-like peptide-1 (GLP-1) analogue approved for the treatment of type 2 diabetes. It is based on human GLP-1 with the addition of a 16-carbon fatty acid, which facilitates binding to plasma proteins, thus prolonging the elimination half-life and allowing once-daily administration. It has not been possible to quantify liraglutide protein binding by ultrafiltration (the usual method of choice), as the lipophilic molecule becomes trapped in the filter membrane. Therefore, the aim of this study was to develop a methodology that could determine the extent of liraglutide binding to plasma proteins in vitro. We report here the details of a novel reiterated stepwise equilibrium dialysis assay that has successfully been used to quantify liraglutide plasma protein binding. The assay allowed quantification of liraglutide binding to proteins in purified plasma protein solutions and human plasma samples and was effective at plasma dilutions as low as 5%. At a clinically relevant liraglutide concentration (104 pM), greater than 98.9% of liraglutide was bound to protein. Specific binding to human serum albumin and α1-acid glycoprotein was 99.4% and 99.3%, respectively. The novel methodology described herein could have an application in the quantification of plasma protein binding of other highly lipophilic drug molecules. PMID:23853127

  1. Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis.

    PubMed

    Rahn, Kristen A; Watkins, Crystal C; Alt, Jesse; Rais, Rana; Stathis, Marigo; Grishkan, Inna; Crainiceau, Ciprian M; Pomper, Martin G; Rojas, Camilo; Pletnikov, Mikhail V; Calabresi, Peter A; Brandt, Jason; Barker, Peter B; Slusher, Barbara S; Kaplin, Adam I

    2012-12-01

    Half of all patients with multiple sclerosis (MS) experience cognitive impairment, for which there is no pharmacological treatment. Using magnetic resonance spectroscopy (MRS), we examined metabolic changes in the hippocampi of MS patients, compared the findings to performance on a neurocognitive test battery, and found that N-acetylaspartylglutamate (NAAG) concentration correlated with cognitive functioning. Specifically, MS patients with cognitive impairment had low hippocampal NAAG levels, whereas those with normal cognition demonstrated higher levels. We then evaluated glutamate carboxypeptidase II (GCPII) inhibitors, known to increase brain NAAG levels, on cognition in the experimental autoimmune encephalomyelitis (EAE) model of MS. Whereas GCPII inhibitor administration did not affect physical disabilities, it increased brain NAAG levels and dramatically improved learning and memory test performance compared with vehicle-treated EAE mice. These data suggest that NAAG is a unique biomarker for cognitive function in MS and that inhibition of GCPII might be a unique therapeutic strategy for recovery of cognitive function. PMID:23169655

  2. Three-dimensional structure of recombinant carboxypeptidase T from Thermoactinomyces vulgaris without calcium ions

    SciTech Connect

    Akparov, V. Kh.; Timofeev, V. I. Kuranova, I. P.

    2011-07-15

    Crystals of recombinant carboxypeptidase T (CPT) from Thermoactinomyces vulgaris were grown in a capillary by the counterdiffusion method in the absence of calcium ions. The three-dimensional structure of CPT was solved at 1.69- Angstrom-Sign resolution using the X-ray diffraction data collected from the crystals of the enzyme on the SPring-8 synchrotron radiation facility and was then refined to Rfact = 16.903% and Rfree = 18.165%. The coordinates of the refined model were deposited in the Protein Data Bank (PDB ID: 3QNV). A comparison of this structure with the structure of wild-type CPT containing bound calcium ions, which was determined earlier, revealed a number of conformational changes both in the calcium-binding sites and the enzyme active site. Based on the results of this comparison, the possible factors responsible for the difference in the catalytic activity of the two forms of the enzyme are considered.

  3. Mechanism of carboxypeptidase-Y-catalyzed reaction deduced from a pressure-dependence study.

    PubMed

    Fukuda, M; Kunugi, S

    1985-06-18

    The activation volumes for kcat of the carboxypeptidase-Y-catalyzed hydrolysis of ester substrates were slightly negative (-1 to -4 ml/mol), while those for peptide and depsi-peptide analog were highly positive (+10 to +27 ml/mol). These values and the contrasting pH dependences of these two groups of the substrates are explained by a mechanism involving three ionic states of the enzyme and the second stable intermediate (acyl-enzyme). Esters are mostly rate-controlled by the deacylation step and peptides are controlled by both the acylation and the deacylation steps. Pressure increase induced a partial shift of the rate-determining step. Reaction volumes for Km-1 of peptide and depsi-peptide analog showed large and positive values (+16 to +29 ml/mol) which reflects the electrostatic interaction in the substrate recognition by this enzyme. PMID:4006944

  4. Miniaturizable homogenous time-resolved fluorescence assay for carboxypeptidase B activity.

    PubMed

    Ferrer, Marc; Zuck, Paul; Kolodin, Garrett; Mao, Shi Shan; Peltier, Richard R; Bailey, Carolyn; Gardell, Stephen J; Strulovici, Berta; Inglese, James

    2003-06-01

    An epitope-unmasking, homogeneous time-resolved fluorescence (HTRF) assay has been developed for measuring carboxypeptidase B (CPB) activity in a miniaturized high-throughput screening format. The enzyme substrate (biotin-RYRGLMVGGVVR-OH) is cleaved by CPB at the C terminus, causing release of the C-terminal Arg residue. The product (biotin-RYRGLMVGGVV-OH) is recognized specifically by a monoclonal antibody (G2-10) which is labeled with Eu(3+)-cryptate ([Eu(3+)]G2-10 mAb), and the complex is detected by fluorescence resonance energy transfer using streptavidin labeled with allophycocyanin ([XL665]SA). The CPB HTRF assay is readily adapted from 96- to 1536-well format as a robust (Z(')>0.5) assay for high-throughput screening. PMID:12729605

  5. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells

    PubMed Central

    Fan, Shuli; Li, Xu; Li, Leiming; Wang, Liguo; Du, Zhangzhen; Yang, Yan; Zhao, Jiansong; Li, Yan

    2016-01-01

    Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy. PMID:27274275

  6. Carborane-containing urea-based inhibitors of glutamate carboxypeptidase II: Synthesis and structural characterization.

    PubMed

    Youn, Sihyun; Kim, Kyung Im; Ptacek, Jakub; Ok, Kiwon; Novakova, Zora; Kim, YunHye; Koo, JaeHyung; Barinka, Cyril; Byun, Youngjoo

    2015-11-15

    Glutamate carboxypeptidase II (GCPII) is a zinc metalloprotease on the surface of astrocytes which cleaves N-acetylaspartylglutamate to release N-acetylaspartate and glutamate. GCPII inhibitors can decrease glutamate concentration and play a protective role against apoptosis or degradation of brain neurons. Herein, we report the synthesis and structural analysis of novel carborane-based GCPII inhibitors. We determined the X-ray crystal structure of GCPII in complex with a carborane-containing inhibitor at 1.79Å resolution. The X-ray analysis revealed that the bulky closo-carborane cluster is located in the spacious entrance funnel region of GCPII, indicating that the carborane cluster can be further structurally modified to identify promising lead structures of novel GCPII inhibitors. PMID:26459214

  7. Determination of human plasma xanthine oxidase activity by high-performance liquid chromatography.

    PubMed

    Yamamoto, T; Moriwaki, Y; Takahashi, S; Tsutsumi, Z; Yamakita, J; Nasako, Y; Hiroishi, K; Higashino, K

    1996-06-01

    An assay for human plasma xanthine oxidase activity was developed with pterin as the substrate and the separation of product (isoxanthopterin) by high-performance liquid chromatography with a fluorescence detector. The reaction mixture consists of 60 microliters of plasma and 240 microliters of 0.2 M Tris-HCl buffer (pH 9.0) containing 113 microM pterin. With this assay, the activity of plasma xanthine oxidase could be easily determined despite its low activity. As a result, it could be demonstrated that the intravenous administration of heparin or the oral administration of ethanol did not increase plasma xanthine oxidase activity in normal subjects, and also that plasma xanthine oxidase activity was higher in patients with hepatitis C virus infection than in healthy subjects or patients with gout. In addition, a single patient with von Gierke's disease showed a marked increase in the plasma activity of this enzyme, relative to that apparent in normal subjects. PMID:8811453

  8. Molecular identification of β-citrylglutamate hydrolase as glutamate carboxypeptidase 3.

    PubMed

    Collard, François; Vertommen, Didier; Constantinescu, Stefan; Buts, Lieven; Van Schaftingen, Emile

    2011-11-01

    β-Citrylglutamate (BCG), a compound present in adult testis and in the CNS during the pre- and perinatal periods is synthesized by an intracellular enzyme encoded by the RIMKLB gene and hydrolyzed by an as yet unidentified ectoenzyme. To identify β-citrylglutamate hydrolase, this enzyme was partially purified from mouse testis and characterized. Interestingly, in the presence of Ca(2+), the purified enzyme specifically hydrolyzed β-citrylglutamate and did not act on N-acetyl-aspartylglutamate (NAAG). However, both compounds were hydrolyzed in the presence of Mn(2+). This behavior and the fact that the enzyme was glycosylated and membrane-bound suggested that β-citrylglutamate hydrolase belonged to the same family of protein as glutamate carboxypeptidase 2 (GCP2), the enzyme that catalyzes the hydrolysis of N-acetyl-aspartylglutamate. The mouse tissue distribution of β-citrylglutamate hydrolase was strikingly similar to that of the glutamate carboxypeptidase 3 (GCP3) mRNA, but not that of the GCP2 mRNA. Furthermore, similarly to β-citrylglutamate hydrolase purified from testis, recombinant GCP3 specifically hydrolyzed β-citrylglutamate in the presence of Ca(2+), and acted on both N-acetyl-aspartylglutamate and β-citrylglutamate in the presence of Mn(2+), whereas recombinant GCP2 only hydrolyzed N-acetyl-aspartylglutamate and this, in a metal-independent manner. A comparison of the structures of the catalytic sites of GCP2 and GCP3, as well as mutagenesis experiments revealed that a single amino acid substitution (Asn-519 in GCP2, Ser-509 in GCP3) is largely responsible for GCP3 being able to hydrolyze β-citrylglutamate. Based on the crystal structure of GCP3 and kinetic analysis, we propose that GCP3 forms a labile catalytic Zn-Ca cluster that is critical for its β-citrylglutamate hydrolase activity. PMID:21908619

  9. Molecular Identification of β-Citrylglutamate Hydrolase as Glutamate Carboxypeptidase 3*

    PubMed Central

    Collard, François; Vertommen, Didier; Constantinescu, Stefan; Buts, Lieven; Van Schaftingen, Emile

    2011-01-01

    β-Citrylglutamate (BCG), a compound present in adult testis and in the CNS during the pre- and perinatal periods is synthesized by an intracellular enzyme encoded by the RIMKLB gene and hydrolyzed by an as yet unidentified ectoenzyme. To identify β-citrylglutamate hydrolase, this enzyme was partially purified from mouse testis and characterized. Interestingly, in the presence of Ca2+, the purified enzyme specifically hydrolyzed β-citrylglutamate and did not act on N-acetyl-aspartylglutamate (NAAG). However, both compounds were hydrolyzed in the presence of Mn2+. This behavior and the fact that the enzyme was glycosylated and membrane-bound suggested that β-citrylglutamate hydrolase belonged to the same family of protein as glutamate carboxypeptidase 2 (GCP2), the enzyme that catalyzes the hydrolysis of N-acetyl-aspartylglutamate. The mouse tissue distribution of β-citrylglutamate hydrolase was strikingly similar to that of the glutamate carboxypeptidase 3 (GCP3) mRNA, but not that of the GCP2 mRNA. Furthermore, similarly to β-citrylglutamate hydrolase purified from testis, recombinant GCP3 specifically hydrolyzed β-citrylglutamate in the presence of Ca2+, and acted on both N-acetyl-aspartylglutamate and β-citrylglutamate in the presence of Mn2+, whereas recombinant GCP2 only hydrolyzed N-acetyl-aspartylglutamate and this, in a metal-independent manner. A comparison of the structures of the catalytic sites of GCP2 and GCP3, as well as mutagenesis experiments revealed that a single amino acid substitution (Asn-519 in GCP2, Ser-509 in GCP3) is largely responsible for GCP3 being able to hydrolyze β-citrylglutamate. Based on the crystal structure of GCP3 and kinetic analysis, we propose that GCP3 forms a labile catalytic Zn-Ca cluster that is critical for its β-citrylglutamate hydrolase activity. PMID:21908619

  10. Plasma Proteome Profiling to Assess Human Health and Disease.

    PubMed

    Geyer, Philipp E; Kulak, Nils A; Pichler, Garwin; Holdt, Lesca M; Teupser, Daniel; Mann, Matthias

    2016-03-23

    Proteins in the circulatory system mirror an individual's physiology. In daily clinical practice, protein levels are generally determined using single-protein immunoassays. High-throughput, quantitative analysis using mass-spectrometry-based proteomics of blood, plasma, and serum would be advantageous but is challenging because of the high dynamic range of protein abundances. Here, we introduce a rapid and robust "plasma proteome profiling" pipeline. This single-run shotgun proteomic workflow does not require protein depletion and enables quantitative analysis of hundreds of plasma proteomes from 1 μl single finger pricks with 20 min gradients. The apolipoprotein family, inflammatory markers such as C-reactive protein, gender-related proteins, and >40 FDA-approved biomarkers are reproducibly quantified (CV <20% with label-free quantification). Furthermore, we functionally interpret a 1,000-protein, quantitative plasma proteome obtained by simple peptide pre-fractionation. Plasma proteome profiling delivers an informative portrait of a person's health state, and we envision its large-scale use in biomedicine. PMID:27135364

  11. Protein polymorphism of a human plasma apolipoprotein D antigenic epitope.

    PubMed

    Camato, R; Marcel, Y L; Milne, R W; Lussier-Cacan, S; Weech, P K

    1989-06-01

    Based on our previous observation that monoclonal antibody anti-apoD-4E11 reacted with several HDL proteins we studied them further with three questions in mind: i) is there common protein polymorphism in healthy individuals? ii) how many proteins are present and what are their characteristics? iii) are they all apolipoproteins and do they have the same lipoprotein distribution as apoD? Isolated, delipidated apoD was used as a standard for radioimmunometric assay of plasma with antibody 4E11. The antigen varied from 3 to 11 mumol-equivalents of apoD per liter of plasma (equivalent to 5-20 mg apoD/dl plasma) with means of 6.1 and 6.8 mumol/l in men and women, respectively. Two-dimensional electrophoresis of plasma found up to eight 4E11-antigenic-proteins of different Mr, each heterogeneous in pI. All plasmas tested contained apoD and an Mr 38,000 antigen, the latter being the most immunoreactive. Six proteins of Mr 70,000-94,000 were found, but the number varied between subjects. Eighty nine percent of the plasma antigen was associated with lipoproteins: 83% with HDL and VHDL, 5% with LDL and VLDL. Lipoproteins of all sizes, separated by polyacrylamide gradient gel electrophoresis, contained the antigen. ApoD was almost the only 4E11-antigen in LDL, and was in two states: the one free, the other an apoD-apoB mixed disulfide complex. The apparent proportions of higher Mr antigens increased with increasing lipoprotein density, and the proportion of apoD decreased reciprocally. None of these 4E11-antigenic-proteins cross-reacted with antiserum to retinol-binding protein. PMID:2477480

  12. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia.

    PubMed

    Yin, Wu; Carballo-Jane, Ester; McLaren, David G; Mendoza, Vivienne H; Gagen, Karen; Geoghagen, Neil S; McNamara, Lesley Ann; Gorski, Judith N; Eiermann, George J; Petrov, Aleksandr; Wolff, Michael; Tong, Xinchun; Wilsie, Larissa C; Akiyama, Taro E; Chen, Jing; Thankappan, Anil; Xue, Jiyan; Ping, Xiaoli; Andrews, Genevieve; Wickham, L Alexandra; Gai, Cesaire L; Trinh, Tu; Kulick, Alison A; Donnelly, Marcie J; Voronin, Gregory O; Rosa, Ray; Cumiskey, Anne-Marie; Bekkari, Kavitha; Mitnaul, Lyndon J; Puig, Oscar; Chen, Fabian; Raubertas, Richard; Wong, Peggy H; Hansen, Barbara C; Koblan, Ken S; Roddy, Thomas P; Hubbard, Brian K; Strack, Alison M

    2012-01-01

    In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study. PMID:22021650

  13. Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma.

    PubMed

    Peng, Hong; Brimijoin, Stephen; Hrabovska, Anna; Krejci, Eric; Blake, Thomas A; Johnson, Rudolph C; Masson, Patrick; Lockridge, Oksana

    2016-01-01

    Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immuno extract BChE from the plasma of humans, monkey and other animals. PMID:26585590

  14. Alternative pathways of thromboplastin-dependent activation of human factor X in plasma

    SciTech Connect

    Marlar, R.A.; Griffin, J.H.

    1981-01-01

    To determine the interrelationships of the major coagulation pathways, the activation of 3H-labeled factor X in normal and various deficient human plasmas was evaluated when clotting was triggered by dilute rabbit or human thromboplastin. Various dilutions of thromboplastin and calcium were added to plasma samples containing 3H-factor X, and the time course of factor X activation was determined. At a 1/250 dilution of rabbit brain thromboplastin, the rate of factor X activation in plasmas deficient in factor VIII or factor IX was 10% of the activation rate of normal plasma or of factor XI deficient plasma. Reconstitution of the deficient plasmas with factors VIII or IX, respectively, reconstituted normal factor X activation. Similar results were obtained when various dilutions of human thromboplastin replaced the rabbit thromboplastin. From these plasma experiments, it is inferred that the dilute thromboplastin-dependent activation of factor X requires factors VII, IX, and VIII. An alternative extrinsic pathway that involves factors IX and VIII may be the physiologic extrinsic pathway and hence help to explain the consistent clinical observations of bleeding diatheses in patients deficient in factors IX or VIII.

  15. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  16. Analytical Methods for Assessing Chondroitin Sulfate in Human Plasma.

    PubMed

    Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola

    2016-03-01

    Chondroitin sulfate (CS) is a linear heteropolysaccharide of repeating disaccharide units bearing sulfate groups in various positions, commonly at C4 and/or C6 of galactosamine. CS plays important roles in various (patho)physiological processes also performing intriguing biological and therapeutical activities. Plasmatic CS is mainly composed of nonsulfated and 4-sulfated disaccharides. To obtain samples for the determination of CS amount and composition in blood/plasma, dried blood spot (DBS) could be used. DBSs have many advantages over other laboratory methods, allowing for large-scale population screening. Many analytical techniques may be used for the determination of CS. In particular, CE has proved to be a very attractive alternative separation technique for complex polysaccharide characterization. In this work, we compared CS levels between plasma and DBS samples, using CE equipped with the highly sensitive laser-induced fluorescence detector. CS from DBS differs from plasma CS owing to the high content of disaccharides sulfated in C4 and C6. This is due to the presence of the more sulfated CS derived from blood cellular fraction, in particular leukocytes. The identification and quantification of CS in blood plasma could be a useful prognostic and diagnostic tool in pathological conditions and for pharmacological applications. PMID:26961813

  17. (/sup 3/H)cholesteryl ester labeling and transfer among human and honhuman primate plasma lipoproteins

    SciTech Connect

    Thomas, M.S.; Rudel, L.L.

    1983-04-01

    Aliquots of human and nonhuman primate plasma containing 5,5'-dithiobis (2-nitrobenzoic acid) were incubated at 37/sup 0/C in tubes previously coated with trace amounts of tritium-labeled cholesteryl oleate ((/sup 3/H)CO). Initially, cholesteryl esters were transferred at a rapid rate into plasma after which the rate slowed. During 24 h of incubation, an average of 55% of the (/sup 3/H)CO transferred from the side of the tube into African green monkey plasma, 44% into human plasma and 21% into rat plasma. Greater than 98% of the radioactive ester transferred into plasma was found to be associated with plasma lipoproteins that were then rapidly separated using vertical rotor density gradient ultracentrifugation. In very low density lipoprotein (VLDL)-poor plasma after 30 min incubations, high density lipoproteins (HDL) contained most of the (/sup 3/H)CO while 5- to 24-h incubations resulted in increased labeling of low density proteins (LDL). In VLDL-rich plasma, it was found that in addition to the labeling of HDL, VLDL contained about 25% of the labeled cholesteryl esters after 30-min incubations and, as above, the proportion in LDL subsequently increased. Compositional analyses showed that intermediate-sized LDL (ILDL) were accumulating cholesteryl ester mass while transfer occurred. LDL labeled using this method were injected intravenously into monkeys and their removal from plasma was found to be similar to that found for LDL labeled in vivo. It was concluded that this method of plasma lipoprotein cholesteryl ester labeling, presumably a result of cholesteryl ester transfer protein activity, was efficient, resulted in lipoproteins labeled only in the cholesteryl ester moiety, and induced minimal modification of lipoprotein particles that did not alter their biological activity.

  18. Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans

    PubMed Central

    Kirkpatrick, Matthew G.; Francis, Sunday M.; Lee, Royce; de Wit, Harriet; Jacob, Suma

    2014-01-01

    MDMA (±3,4-methylenedioxymethamphetamine, ‘ecstasy’) is reportedly used recreationally because it increases feelings of sociability and interpersonal closeness. Prior work suggests that the pro-social effects of MDMA may be mediated by release of oxytocin. A direct examination of plasma levels of oxytocin after acute doses of oxytocin and MDMA, in the same individuals, would provide further evidence for the idea that MDMA produces its prosocial effects by increasing oxytocin. Fourteen healthy MDMA users participated in a 4-session, double-blind study in which they received oral MDMA (0.75 and 1.5 mg/kg), intranasal oxytocin (20 IU or 40 IU), and placebo. Plasma oxytocin concentrations, as well as cardiovascular and subjective effects were assessed before and at several time points after drug administration. MDMA (1.5 mg/kg only) increased plasma oxytocin levels to a mean peak of 83.7 pg/ml at approximately 90–120 minutes, compared to 18.6 pg/ml after placebo. Intranasal oxytocin (40 IU, but not 20 IU) increased plasma oxytocin levels to 48.0 pg/ml, 30–60 min after nasal spray administration. MDMA dose-dependently increased heart rate, blood pressure, feelings of euphoria (e.g., ‘High’ and ‘Like Drug’), and feelings of sociability, whereas oxytocin had no cardiovascular or subjective effects. The subjective and cardiovascular responses to MDMA were not related to plasma oxytocin levels, although the N was small for this analysis. Future studies examining the effects of oxytocin antagonists on responses to MDMA will help to determine the mechanism by which MDMA produces pro-social effects. PMID:24882155

  19. Plasma atriopeptin response to prolonged cycling in humans.

    PubMed

    Perrault, H; Cantin, M; Thibault, G; Brisson, G R; Brisson, G; Beland, M

    1991-03-01

    The exercise-induced increase in plasma atriopeptin (ANP) has been related to exercise intensity. The independent effect of duration on the ANP response to dynamic exercise remains incompletely documented. The purpose of this study was to describe the time course of plasma ANP concentration during a 90-min cycling exercise protocol and to examine this in light of concurrent variations in plasma arginine vasopressin (AVP), aldosterone (ALD), and catecholamine (norepinephrine and epinephrine) concentrations as well as plasma renin activity (PRA). Seven male and four female healthy college students (23 +/- 2 yr) completed a prolonged exercise protocol on a cycle ergometer at an intensity of 67% of maximal O2 uptake. Venous blood was sampled through an indwelling catheter at rest, after 15, 30, 45, 60, and 90 min of exercise, and after 30 min of passive upright recovery. Results (means +/- SE) indicate an increase in ANP from rest (22 +/- 2.6 pg/ml) at 15 min of exercise (45.3 +/- 7.4 pg/ml) with a further increase at 30 min (59.4 +/- 9.8 pg/ml) and a leveling-off thereafter until completion of the exercise protocol (51.7 +/- 10.7 pg/ml). In plasma ALD and PRA, a significant increase was found from rest (ALD, 21.4 +/- 6.4 ng/dl), PRA, 2.5 +/- 0.5 ng.ml-1.h-1 after 30 min of cycling, which continued to increase until completion of the exercise (ALD 46.6 +/- 8.7 ng/dl, PRA 9.5 +/- 0.9 ng.ml-1.h-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1827790

  20. Association between Human Plasma Chondroitin Sulfate Isomers and Carotid Atherosclerotic Plaques.

    PubMed

    Zinellu, Elisabetta; Lepedda, Antonio Junior; Cigliano, Antonio; Pisanu, Salvatore; Zinellu, Angelo; Carru, Ciriaco; Bacciu, Pietro Paolo; Piredda, Franco; Guarino, Anna; Spirito, Rita; Formato, Marilena

    2012-01-01

    Several studies have evidenced variations in plasma glycosaminoglycans content in physiological and pathological conditions. In normal human plasma GAGs are present mainly as undersulfated chondroitin sulfate (CS). The aim of the present study was to evaluate possible correlations between plasma CS level/structure and the presence/typology of carotid atherosclerotic lesion. Plasma CS was purified from 46 control subjects and 47 patients undergoing carotid endarterectomy showing either a soft or a hard plaque. The concentration and structural characteristics of plasma CS were assessed by capillary electrophoresis of constituent unsaturated fluorophore-labeled disaccharides. Results showed that the concentration of total CS isomers was increased by 21.4% (P < 0.01) in plasma of patients, due to a significant increase of undersulfated CS. Consequently, in patients the plasma CS charge density was significantly reduced with respect to that of controls. After sorting for plaque typology, we found that patients with soft plaques and those with hard ones differently contribute to the observed changes. In plasma from patients with soft plaques, the increase in CS content was not associated with modifications of its sulfation pattern. On the contrary, the presence of hard plaques was associated with CS sulfation pattern modifications in presence of quite normal total CS isomers levels. These results suggest that the plasma CS content and structure could be related to the presence and the typology of atherosclerotic plaque and could provide a useful diagnostic tool, as well as information on the molecular mechanisms responsible for plaque instability. PMID:22216412

  1. Vampire bat salivary plasminogen activator is quiescent in human plasma in the absence of fibrin unlike human tissue plasminogen activator.

    PubMed

    Gardell, S J; Hare, T R; Bergum, P W; Cuca, G C; O'Neill-Palladino, L; Zavodny, S M

    1990-12-15

    The vampire bat salivary plasminogen activator (Bat-PA) is a potent PA that exhibits remarkable selectivity toward fibrin-bound plasminogen (Gardell et al, J Biol Chem 256: 3568, 1989). Herein, we describe the activity of recombinant DNA-derived Bat-PA (rBat-PA) in a human plasma milieu. rBat-PA and recombinant human single-chain tissue plasminogen activator (rt-PA) are similarly efficacious at lysing plasma clots. In stark contrast to rt-PA, the addition of 250 nmol/L rBat-PA to plasma in the absence of a clot failed to deplete plasminogen, alpha 2-antiplasmin and fibrinogen. The lytic activities exhibited by finger-domain minus Bat-PA (F- rBat-PA) and finger and epidermal growth factor-like domains minus Bat-PA (FG- rBat-PA) were less than rBat-PA, especially at low concentrations of PA; nevertheless, these truncated forms also possessed a strict requirement for a fibrin cofactor. The loss of PA activity following the addition of rBat-PA to plasma was slower than that observed when either rt-PA or two-chain rt-PA was added. The efficacy, fibrin selectivity, and decreased susceptibility to inactivation exhibited by rBat-PA in vitro in a human plasma milieu suggests that rBat-PA may be superior to rt-PA for the treatment of thrombotic complications. PMID:2124935

  2. Microwave digestion preparation and ICP determination of boron in human plasma

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Green, N. R.; Barnes, K. W.; Woodward, B.

    1993-01-01

    A microwave digestion procedure, followed by Inductively Coupled Argon Plasma Spectroscopy, is described for the determination of boron (B) in human plasma. The National Institute of Standards and Technology (NIST) currently does not certify the concentration of B in any substance. The NIST citrus leaves 1572 (CL) Standard Reference Material (SRM) and wheat flour 1567a (WF) were chosen to determine the efficacy of digestion. CL and WF values compare favorably to those obtained from an open-vessel, wet digestion followed by ICP, and by neutron activation and mass spectrometric measurements. Plasma samples were oxidized by doubled-distilled ultrapure HNO3 in 120 mL PFA Teflon vessels. An MDS-81D microwave digestion procedure allows for rapid and relatively precise determination of B in human plasma, while limiting handling hazards and sources of contamination.

  3. Spectrofluorimetric Determination of α-Tocopherol in Capsules and Human Plasma

    PubMed Central

    Demirkaya-Miloglu, Fatma; Kadioglu, Y.; Senol, O.; Yaman, M. E.

    2013-01-01

    A simple, sensitive and rapid spectrofluorimetric method for determination of α-tocopherol in pharmaceutical capsule and human plasma was developed and validated. The native fluorescence of α-tocopherol was measured at 334 nm with excitation at 291 nm, after extraction of α-tocopherol from human plasma hexane:dichloromethane mixture. The calibration curves were linear (R≥0.9993) in the concentration range of 0.25-2.5 μg/ml of α-tocopherol in both standard solutions and plasma samples. The developed method was directly and easily applied for determination of α-tocopherol in the plasma of healthy volunteers and different type of bladder cancer and stomach cancer patients and also pharmaceutical capsule. PMID:24403657

  4. Aortic Carboxypeptidase-like Protein (ACLP) Enhances Lung Myofibroblast Differentiation through Transforming Growth Factor β Receptor-dependent and -independent Pathways*

    PubMed Central

    Tumelty, Kathleen E.; Smith, Barbara D.; Nugent, Matthew A.; Layne, Matthew D.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway. PMID:24344132

  5. Characterization of the human plasma phosphoproteome using linear ion trap mass spectrometry and multiple search engines.

    PubMed

    Carrascal, Montserrat; Gay, Marina; Ovelleiro, David; Casas, Vanessa; Gelpí, Emilio; Abian, Joaquin

    2010-02-01

    Major plasma protein families play different roles in blood physiology and hemostasis and in immunodefense. Other proteins in plasma can be involved in signaling as chemical messengers or constitute biological markers of the status of distant tissues. In this respect, the plasma phosphoproteome holds potentially relevant information on the mechanisms modulating these processes through the regulation of protein activity. In this work we describe for the first time a collection of phosphopeptides identified in human plasma using immunoaffinity separation of the seven major serum protein families from other plasma proteins, SCX fractionation, and TiO(2) purification prior to LC-MS/MS analysis. One-hundred and twenty-seven phosphosites in 138 phosphopeptides mapping 70 phosphoproteins were identified with FDR < 1%. A high-confidence collection of phosphosites was obtained using a combined search with the OMSSA, SEQUEST, and Phenyx search engines. PMID:19941383

  6. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

    PubMed Central

    Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  7. Remote Ischemic Preconditioning (RIPC) Modifies Plasma Proteome in Humans

    PubMed Central

    Hepponstall, Michele; Ignjatovic, Vera; Binos, Steve; Monagle, Paul; Jones, Bryn; Cheung, Michael H. H.; d’Udekem, Yves; Konstantinov, Igor E.

    2012-01-01

    Remote Ischemic Preconditioning (RIPC) induced by brief episodes of ischemia of the limb protects against multi-organ damage by ischemia-reperfusion (IR). Although it has been demonstrated that RIPC affects gene expression, the proteomic response to RIPC has not been determined. This study aimed to examine RIPC induced changes in the plasma proteome. Five healthy adult volunteers had 4 cycles of 5 min ischemia alternating with 5 min reperfusion of the forearm. Blood samples were taken from the ipsilateral arm prior to first ischaemia, immediately after each episode of ischemia as well as, at 15 min and 24 h after the last episode of ischemia. Plasma samples from five individuals were analysed using two complementary techniques. Individual samples were analysed using 2Dimensional Difference in gel electrophoresis (2D DIGE) and mass spectrometry (MS). Pooled samples for each of the time-points underwent trypsin digestion and peptides generated were analysed in triplicate using Liquid Chromatography and MS (LC-MS). Six proteins changed in response to RIPC using 2D DIGE analysis, while 48 proteins were found to be differentially regulated using LC-MS. The proteins of interest were involved in acute phase response signalling, and physiological molecular and cellular functions. The RIPC stimulus modifies the plasma protein content in blood taken from the ischemic arm in a cumulative fashion and evokes a proteomic response in peripheral blood. PMID:23139772

  8. The effects of plasma-processing conditions on the morphology of adherent human blood platelets

    SciTech Connect

    Murugesan, R.; Hanley, E.; Lauer, J. L.; Shohet, J. L.; Albrecht, R. M.; Heintz, J. A.; Oliver, J. A.

    2008-05-01

    Hematocompatibility and nonfouling properties of materials are crucial for the development of small-scale biomedical devices. This study examines the adhesion and morphology of purified human platelets on plasma-polymerized tetraglyme-coated glass substrates. The effect of varying the plasma-processing parameters on platelet responses was determined using scanning electron microscopy. Images of platelets on the coated surfaces show that a significant reduction in platelet adhesion and spreading can be achieved as the processing parameters are varied.

  9. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    SciTech Connect

    Sakai, T.; Kisiel, W. )

    1990-11-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which {sup 125}I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity.

  10. Enhanced Chromatographic Determination of Nicotine in Human Plasma: Applied to Human Volunteers.

    PubMed

    Ayoub, Bassam M; Mohamady, Samy; Hendy, Moataz S; Elmazar, Mohamed M

    2015-12-01

    Development of enhanced UPLC-UV method for determination of nicotine in human plasma was achieved on a Symmetry(®) C18 column (100 mm × 2.1 mm, 2.2 μm) applying isocratic elution based on Methanol: Acetonitrile: Phosphate Buffer (pH: 2.7) with the ratio (20:30:50, v/v/v) as a mobile phase. The ultraviolet detector was operated at 260 nm. The mobile phase was pumped through the column at a flow rate of 0.2 mL min(-1). The column temperature was adjusted to 50ºC and the injection volume was 2 μL. Quinine was selected as an internal standard (IS) due to its structure similarity to nicotine having basic pyridine ring to optimize the liquid liquid extraction procedure using diethyl ether coupled with vacuum evaporation at 40°C. Validation parameters for nicotine were found to be acceptable over the concentration range of 2.5-50 ng ml(-1). The application of the proposed method on four healthy human volunteers was approved by the ethical committee. The study was carried out under fasting conditions and the concerned subjects were informed about the objectives and possible risks involved in the study. The proposed method proved to be simple and fast which is a major advantage to analyze large number of samples per day using the accelerated vacuum evaporation technique. The method showed satisfactory data for all the parameters tested within the limits for bioanalytical assays. The lower limit of quantification (LLOQ) permits the application of the method for further pharmacological and clinical studies. PMID:26759535

  11. Validation of a HPLC/FLD Method for Quantification of Tocotrienols in Human Plasma.

    PubMed

    Che, Hui-Ling; Tan, Doryn Meam-Yee; Meganathan, Puvaneswari; Gan, Yee-Lin; Abdul Razak, Ghazali; Fu, Ju-Yen

    2015-01-01

    Quantification of tocotrienols in human plasma is critical when the attention towards tocotrienols on its distinctive properties is arising. We aim to develop a simple and practical normal-phase high performance liquid chromatography method to quantify the amount of four tocotrienol homologues in human plasma. Using both the external and internal standards, tocotrienol homologues were quantified via a normal-phase high performance liquid chromatography with fluorescence detector maintained at the excitation wavelength of 295 nm and the emission wavelength of 325 nm. The four tocotrienol homologues were well separated within 30 minutes. A large interindividual variation between subjects was observed as the absorption of tocotrienols is dependent on food matrix and gut lipolysis. The accuracies of lower and upper limit of quantification ranged between 92% and 109% for intraday assays and 90% and 112% for interday assays. This method was successfully applied to quantify the total amount of four tocotrienol homologues in human plasma. PMID:26604927

  12. In vitro study of thimerosal reactions in human whole blood and plasma surrogate samples.

    PubMed

    Trümpler, Stefan; Meermann, Björn; Nowak, Sascha; Buscher, Wolfgang; Karst, Uwe; Sperling, Michael

    2014-04-01

    Because of its bactericidal and fungicidal properties, thimerosal is used as a preservative in drugs and vaccines and is thus deliberately injected into the human body. In aqueous environment, it decomposes into thiosalicylic acid and the ethylmercury cation. This organomercury fragment is a potent neurotoxin and is suspected to have similar toxicity and bioavailability like the methylmercury cation. In this work, human whole blood and physiological simulation solutions were incubated with thimerosal to investigate its behaviour and binding partners in the blood stream. Inductively coupled plasma with optical emission spectrometry (ICP-OES) was used for total mercury determination in different blood fractions, while liquid chromatography (LC) coupled to electrospray ionisation time-of-flight (ESI-TOF) and inductively coupled plasma-mass spectrometry (ICP-MS) provided information on the individual mercury species in plasma surrogate samples. Analogous behaviour of methylmercury and ethylmercury species in human blood was shown and an ethylmercury-glutathione adduct was identified. PMID:24613139

  13. Validation of a HPLC/FLD Method for Quantification of Tocotrienols in Human Plasma

    PubMed Central

    Che, Hui-Ling; Tan, Doryn Meam-Yee; Meganathan, Puvaneswari; Gan, Yee-Lin; Abdul Razak, Ghazali; Fu, Ju-Yen

    2015-01-01

    Quantification of tocotrienols in human plasma is critical when the attention towards tocotrienols on its distinctive properties is arising. We aim to develop a simple and practical normal-phase high performance liquid chromatography method to quantify the amount of four tocotrienol homologues in human plasma. Using both the external and internal standards, tocotrienol homologues were quantified via a normal-phase high performance liquid chromatography with fluorescence detector maintained at the excitation wavelength of 295 nm and the emission wavelength of 325 nm. The four tocotrienol homologues were well separated within 30 minutes. A large interindividual variation between subjects was observed as the absorption of tocotrienols is dependent on food matrix and gut lipolysis. The accuracies of lower and upper limit of quantification ranged between 92% and 109% for intraday assays and 90% and 112% for interday assays. This method was successfully applied to quantify the total amount of four tocotrienol homologues in human plasma. PMID:26604927

  14. Biochemical quantification of sympathetic nervous activity in humans using radiotracer methodology: fallibility of plasma noradrenaline measurements

    SciTech Connect

    Esler, M.; Leonard, P.; O'Dea, K.; Jackman, G.; Jennings, G.; Korner, P.

    1982-01-01

    We have developed radiotracer techniques for studying noradrenaline kinetics, to assess better sympathetic nervous system function in humans. Tritiated l-noradrenaline was infused intravenously (0.35 microCi/m2/min) to plateau plasma concentration. Noradrenaline plasma clearance was calculated from plasma tritiated noradrenaline concentration at steady state, and the rate of spillover of noradrenaline to plasma derived from plasma noradrenaline specific radioactivity. Mean noradrenaline spillover at rest in 34 normal subjects was 0.33 micrograms/m2/min (range 0.17-0.61 micrograms/m2/min). Predictably, noradrenaline spillover was reduced in patients with subnormal sympathetic nervous system activity, 0.16 +/- 0.09 micrograms/m2/min in eight patients with idiopathic peripheral autonomic insufficiency, and 0.11 +/- 0.07 micrograms/m2/min (mean +/- SD) in six patients with essential hypertension treated with clonidine (0.45 mg daily). Noradrenaline line plasma clearance in normal subjects was 1.32 +/- 0.28 L/m2/min. Clearance fell with age, causing the previously described rise in plasma noradrenaline concentration with aging. Unexpected effects of drugs were encountered, for example chronic beta-adrenergic blockade in patients with essential hypertension reduced noradrenaline clearance. Plasma noradrenaline concentration measurements were not in agreement with noradrenaline release rate values, and do not reliably indicate sympathetic nervous system activity, in instances such as these where noradrenaline clearance is abnormal.

  15. Plasma matrix metalloproteinase-9 response to downhill running in humans.

    PubMed

    Welsh, M C; Allen, D L; Byrnes, W C

    2014-05-01

    Matrix metalloproteinase-9 is a proteolytic enzyme capable of degrading proteins of the muscle extracellular matrix. Systemic levels of MMP-9 or its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), have the potential to serve as blood markers of exercise-induced muscle damage. The purpose of this study was to determine if an eccentrically-dominated task, downhill running (DHR), produces changes in plasma MMP-9 or TIMP-1 and examine the relationship between MMP-9/TIMP-1 levels and indirect indicators of muscle damage. Subjects were sedentary (SED, n=12) or had a history of concentrically-biased training (CON, n=9). MMP-9 and TIMP-1 were measured before (Pre-Ex), immediately after (Post-Ex), and 1-, 2-, 4-, and 7-days post-DHR (-10°), and compared to discomfort ratings, creatine kinase activity and strength loss. At 1-day Post-Ex, discomfort increased (5.6 ± 7.8 to 45.5 ± 19.9 mm; 0-100 mm scale), strength decreased (-6.9 ± 1.6%) and CK increased (162.9 ± 177.2%). MMP-9 was modestly but significantly increased at Post-Ex in both CONC and SED (32.7 ± 33.6%) and at 4-days in SED (66.9 ± 88.1%), Individual responses were variable, however. There were no correlations between MMPs and discomfort ratings, plasma CK or strength. While plasma MMP-9 changes may be detectable in the systemic circulation after DHR, they are small and do not correspond to other markers of damage. PMID:24048912

  16. Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents.

    PubMed

    Kozikowski, Alan P; Zhang, Jiazhong; Nan, Fajun; Petukhov, Pavel A; Grajkowska, Ewa; Wroblewski, Jarda T; Yamamoto, Tatsuo; Bzdega, Tomasz; Wroblewska, Barbara; Neale, Joseph H

    2004-03-25

    The neuropeptidase glutamate carboxypeptidase II (GCPII) hydrolyzes N-acetyl-L-aspartyl-L-glutamate (NAAG) to liberate N-acetylaspartate and glutamate. GCPII was originally cloned as PSMA, an M(r) 100,000 type II transmembrane glycoprotein highly expressed in prostate tissues. PSMA/GCPII is located on the short arm of chromosome 11 and functions as both a folate hydrolase and a neuropeptidase. Inhibition of brain GCPII may have therapeutic potential in the treatment of certain disease states arising from pathologically overactivated glutamate receptors. Recently, we reported that certain urea-based structures act as potent inhibitors of GCPII (J. Med. Chem. 2001, 44, 298). However, many of the potent GCPII inhibitors prepared to date are highly polar compounds and therefore do not readily penetrate the blood-brain barrier. Herein, we elaborate on the synthesis of a series of potent, urea-based GCPII inhibitors from the lead compound 3 and provide assay data for these ligands against human GCPII. Moreover, we provide data revealing the ability of one of these compounds, namely, 8d, to reduce the perception of inflammatory pain. Within the present series, the gamma-tetrazole bearing glutamate isostere 7d is the most potent inhibitor with a K(i) of 0.9 nM. The biological evaluation of these compounds revealed that the active site of GCPII likely comprises two regions, namely, the pharmacophore subpocket and the nonpharmacophore subpocket. The pharmacophore subpocket is very sensitive to structural changes, and thus, it appears important to keep one of the glutamic acid moieties intact to maintain the potency of the GCPII inhibitors. The site encompassing the nonpharmacophore subpocket that binds to glutamate's alpha-carboxyl group is sensitive to structural change, as shown by compounds 6b and 7b. However, the other region of the nonpharmacophore subpocket can accommodate both hydrophobic and hydrophilic groups. Thus, an aromatic ring can be introduced to the

  17. Peanut consumption increases levels of plasma very long chain fatty acids in humans.

    PubMed

    Lam, Christina; Wong, Derek; Cederbaum, Stephen; Lim, Bennie; Qu, Yong

    2012-11-01

    Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs. PMID:22864056

  18. A rapid solid-phase radioimmunoassay for human plasma follicle-stimulating hormone.

    PubMed

    Lovesey, A C

    1980-01-01

    The measurement of plasma levels of human follicle-stimulating hormone (FSH) has proved to be of value for the study of the hypothalamic-hypophyseal-gonadal axis, greatly facilitating the diagnosis and mangement of problems relating to the menopause and infertility. In the present work a solid-phase radioimmunoassay for human FSH has been developed. This system is characterised by high precision, is economical, and is considerably faster to operate than conventional double antibody systems used in the hospital assay service. Reference values for plasma FSH in various endocrine states are recorded and discussed. PMID:6769381

  19. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors.

    PubMed

    Hanson, J E; Kaplan, A P; Bartlett, P A

    1989-07-25

    Analogues of tri- and tetrapeptide substrates of carboxypeptidase A in which the scissile peptide linkage is replaced with a phosphonate moiety (-PO2--O-) were synthesized and evaluated as inhibitors of the enzyme. The inhibitors terminated with either L-lactate or L-phenyllactate [designated (O) Ala and (O) Phe, respectively] in the P1' position. Transition-state analogy was shown for a series of 14 tri- and tetrapeptide derivatives containing the structure RCO-AlaP-(O)Ala [RCO-AP(O)A, AP indicates the phosphonic acid analogue of alanine] by the correlation of the Ki values for the inhibitors and the Km/kcat values for the corresponding amide substrates. This correlation supports a transition state for the enzymatic reaction that resembles the tetrahedral intermediate formed upon addition of water to the scissile carbonyl group. The inhibitors containing (O) Phe at the P1' position proved to be the most potent reversible inhibitors of carboxypeptidase A reported to date: the dissociation constants of ZAFP(O)F, ZAAP(O)F, and ZFAP(O)F are 4, 3, and 1 pM, respectively. Because of the high affinity of these inhibitors, their dissociation constants could not be determined by steady-state methods. Instead, the course of the association and dissociation processes was monitored for each inhibitor as its equilibrium with the enzyme was established in both the forward and reverse directions. A phosphonamidate analogue, ZAAPF, in which the peptide linkage is replaced with a -PO2-NH- moiety, was prepared and shown to hydrolyze rapidly at neutral pH (t1/2 = 20 min at pH 7.5). This inhibitor is bound an order of magnitude less tightly than the corresponding phosphonate, ZAAP(O)F, a result that contrasts with the 840-fold higher affinity of phosphonamidates for thermolysin [Bartlett, P. A., & Marlowe, C. K. (1987) Science 235, 569-571], a zinc peptidase with a similar arrangement of active-site catalytic residues. PMID:2790000

  20. Methodological aspects of ELISA analysis of thioredoxin 1 in human plasma and cerebrospinal fluid.

    PubMed

    Lundberg, Mathias; Curbo, Sophie; Reiser, Kathrin; Masterman, Thomas; Braesch-Andersen, Sten; Areström, Irene; Ahlborg, Niklas

    2014-01-01

    Thioredoxin-1 (Trx1) is a protein antioxidant involved in major cellular processes. Increased plasma levels of Trx1 have been associated with human diseases suggesting that Trx1 is a marker for oxidative stress with putative clinical use. However, the reported mean levels of Trx1 in the control cohorts vary a hundred-fold between studies (0.8-87 ng/ml), possibly due to methodological differences between the capture ELISA used in the different studies. The aim of this study was to investigate methodological aspects related to the ELISA measurement of Trx1. ELISAs utilizing different capture and detection combinations of antibodies to Trx1 and as well as recombinant human (rh) Trx1 standards from two sources were characterized. The different ELISAs were subsequently used to measure Trx1 in human plasma and cerebrospinal fluid samples (CSF) from healthy donors and from patients with various neurological diagnoses. The Trx1 standards differed in their content of monomeric and oligomeric Trx1, which affected the ELISAs composed of different antibody combinations. Thus, the levels of Trx1 determined in human plasma and CSF samples varied depending on the antibody used in the ELISAs and on the rhTrx1 standard. Furthermore, the relevance of preventing interference by heterophilic antibodies (HA) in human plasma and CSF was investigated. The addition of a HA blocking buffer to human samples drastically reduced the ELISA signals in many samples showing that HA are likely to cause false positive results unless they are blocked. In conclusion, the study shows that the design of a Trx1 ELISA in regards to antibodies and standards used has an impact on the measured Trx1 levels. Importantly, analyses of human plasma and CSF without preventing HA interference may obscure the obtained data. Overall, the results of this study are crucial for the improvement of future studies on the association of Trx1 levels with various diseases. PMID:25075746

  1. Characterization of circulating microparticle-associated CD39 family ecto-nucleotidases in human plasma.

    PubMed

    Jiang, Z Gordon; Wu, Yan; Csizmadia, Eva; Feldbrügge, Linda; Enjyoji, Keiichi; Tigges, John; Toxavidis, Vasilis; Stephan, Holger; Müller, Christa E; Müller, Christina E; McKnight, C James; Moss, Alan; Robson, Simon C

    2014-12-01

    Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that regulates key pathophysiological processes, such as those linked to inflammation. Classically, this reaction has been known to occur in the pericellular milieu catalyzed by membrane bound cellular ecto-nucleotidases, which can be released in the form of both soluble ecto-enzymes as well as being associated with exosomes. Circulating ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1/CD39) and adenylate kinase 1 (AK1) activities have been shown to be present in plasma. However, other ecto-nucleotidases have not been characterized in depth. An in vitro ADPase assay was developed to probe the ecto-enzymes responsible for the ecto-nucleotidase activity in human platelet-free plasma, in combination with various specific biochemical inhibitors. Identities of ecto-nucleotidases were further characterized by chromatography, immunoblotting, and flow cytometry of circulating exosomes. We noted that microparticle-bound E-NTPDases and soluble AK1 constitute the highest levels of ecto-nucleotidase activity in human plasma. All four cell membrane expressed E-NTPDases are also found in circulating microparticles in human plasma, inclusive of: CD39, NTPDase 2 (CD39L1), NTPDase 3 (CD39L3), and NTPDase 8. CD39 family members and other ecto-nucleotidases are found on distinct microparticle populations. A significant proportion of the microparticle-associated ecto-nucleotidase activity is sensitive to POM6, inferring the presence of NTPDases, either -2 or/and -3. We have refined ADPase assays of human plasma from healthy volunteers and have found that CD39, NTPDases 2, 3, and 8 to be associated with circulating microparticles, whereas soluble AK1 is present in human plasma. These ecto-enzymes constitute the bulk circulating ADPase activity, suggesting a broader implication of CD39 family and other ecto-enzymes in the regulation of extracellular nucleotide metabolism. PMID

  2. Virucidal Effect of Cold Atmospheric Gaseous Plasma on Feline Calicivirus, a Surrogate for Human Norovirus

    PubMed Central

    Aboubakr, Hamada A.; Williams, Paul; Gangal, Urvashi; Youssef, Mohammed M.; El-Sohaimy, Sobhy A. A.; Bruggeman, Peter J.

    2015-01-01

    Minimal food-processing methods are not effective against foodborne viruses, such as human norovirus (NV). It is important, therefore, to explore novel nonthermal technologies for decontamination of foods eaten fresh, minimally processed and ready-to-eat foods, and food contact surfaces. We studied the in vitro virucidal activity of cold atmospheric gaseous plasma (CGP) against feline calicivirus (FCV), a surrogate of NV. Factors affecting the virucidal activity of CGP (a so-called radio frequency atmospheric pressure plasma jet) were the plasma generation power, the exposure time and distance, the plasma feed gas mixture, and the virus suspension medium. Exposure to 2.5-W argon (Ar) plasma caused a 5.55 log10 unit reduction in the FCV titer within 120 s. The reduction in the virus titer increased with increasing exposure time and decreasing exposure distance. Of the four plasma gas mixtures studied (Ar, Ar plus 1% O2, Ar plus 1% dry air, and Ar plus 0.27% water), Ar plus 1% O2 plasma treatment had the highest virucidal effect: more than 6.0 log10 units of the virus after 15 s of exposure. The lowest virus reduction was observed with Ar plus 0.27% water plasma treatment (5 log10 unit reduction after 120 s). The highest reduction in titer was observed when the virus was suspended in distilled water. Changes in temperature and pH and formation of H2O2 were not responsible for the virucidal effect of plasma. The oxidation of viral capsid proteins by plasma-produced reactive oxygen and nitrogen species in the solution was thought to be responsible for the virucidal effect. In conclusion, CGP exhibits virucidal activity in vitro and has the potential to combat viral contamination in foods and on food preparation surfaces. PMID:25795667

  3. Virucidal effect of cold atmospheric gaseous plasma on feline calicivirus, a surrogate for human norovirus.

    PubMed

    Aboubakr, Hamada A; Williams, Paul; Gangal, Urvashi; Youssef, Mohammed M; El-Sohaimy, Sobhy A A; Bruggeman, Peter J; Goyal, Sagar M

    2015-06-01

    Minimal food-processing methods are not effective against foodborne viruses, such as human norovirus (NV). It is important, therefore, to explore novel nonthermal technologies for decontamination of foods eaten fresh, minimally processed and ready-to-eat foods, and food contact surfaces. We studied the in vitro virucidal activity of cold atmospheric gaseous plasma (CGP) against feline calicivirus (FCV), a surrogate of NV. Factors affecting the virucidal activity of CGP (a so-called radio frequency atmospheric pressure plasma jet) were the plasma generation power, the exposure time and distance, the plasma feed gas mixture, and the virus suspension medium. Exposure to 2.5-W argon (Ar) plasma caused a 5.55 log10 unit reduction in the FCV titer within 120 s. The reduction in the virus titer increased with increasing exposure time and decreasing exposure distance. Of the four plasma gas mixtures studied (Ar, Ar plus 1% O2, Ar plus 1% dry air, and Ar plus 0.27% water), Ar plus 1% O2 plasma treatment had the highest virucidal effect: more than 6.0 log10 units of the virus after 15 s of exposure. The lowest virus reduction was observed with Ar plus 0.27% water plasma treatment (5 log10 unit reduction after 120 s). The highest reduction in titer was observed when the virus was suspended in distilled water. Changes in temperature and pH and formation of H2O2 were not responsible for the virucidal effect of plasma. The oxidation of viral capsid proteins by plasma-produced reactive oxygen and nitrogen species in the solution was thought to be responsible for the virucidal effect. In conclusion, CGP exhibits virucidal activity in vitro and has the potential to combat viral contamination in foods and on food preparation surfaces. PMID:25795667

  4. Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study.

    PubMed

    Frediani, Jennifer K; Jones, Dean P; Tukvadze, Nestan; Uppal, Karan; Sanikidze, Eka; Kipiani, Maia; Tran, ViLinh T; Hebbar, Gautam; Walker, Douglas I; Kempker, Russell R; Kurani, Shaheen S; Colas, Romain A; Dalli, Jesmond; Tangpricha, Vin; Serhan, Charles N; Blumberg, Henry M; Ziegler, Thomas R

    2014-01-01

    We aimed to characterize metabolites during tuberculosis (TB) disease and identify new pathophysiologic pathways involved in infection as well as biomarkers of TB onset, progression and resolution. Such data may inform development of new anti-tuberculosis drugs. Plasma samples from adults with newly diagnosed pulmonary TB disease and their matched, asymptomatic, sputum culture-negative household contacts were analyzed using liquid chromatography high-resolution mass spectrometry (LC-MS) to identify metabolites. Statistical and bioinformatics methods were used to select accurate mass/charge (m/z) ions that were significantly different between the two groups at a false discovery rate (FDR) of q<0.05. Two-way hierarchical cluster analysis (HCA) was used to identify clusters of ions contributing to separation of cases and controls, and metabolomics databases were used to match these ions to known metabolites. Identity of specific D-series resolvins, glutamate and Mycobacterium tuberculosis (Mtb)-derived trehalose-6-mycolate was confirmed using LC-MS/MS analysis. Over 23,000 metabolites were detected in untargeted metabolomic analysis and 61 metabolites were significantly different between the two groups. HCA revealed 8 metabolite clusters containing metabolites largely upregulated in patients with TB disease, including anti-TB drugs, glutamate, choline derivatives, Mycobacterium tuberculosis-derived cell wall glycolipids (trehalose-6-mycolate and phosphatidylinositol) and pro-resolving lipid mediators of inflammation, known to stimulate resolution, efferocytosis and microbial killing. The resolvins were confirmed to be RvD1, aspirin-triggered RvD1, and RvD2. This study shows that high-resolution metabolomic analysis can differentiate patients with active TB disease from their asymptomatic household contacts. Specific metabolites upregulated in the plasma of patients with active TB disease, including Mtb-derived glycolipids and resolvins, have potential as biomarkers

  5. [Binding of cortisol, fluocortolone and difluocortolone to human plasma proteins (author's transl)].

    PubMed

    Fellier, H; Gleispach, H; Esterbauer, H

    1977-10-01

    The binding properties of [3H]cortisol, [3H]fluocortolone and [3H]difluocortolone by human plasma, human albumin, human- beta- and gamma-globulins have been studied by equilibrium dialysis. Cortisol, in physiological concentrations (0,4 micromol/l), is 98% bound in human plasma at 25 degrees C, fluocortolone 96% and diflucortolone 85%. Uncer physiological conditions cortisol is mainly bound to the corticosteroid binding globulin (transcortin). 2/3 of fluocortolone is bound to transcortin and 1/3 to albumin and globulins, whereas difluocortolone is mainly bound to albumin and to globulins but not to transcortin. The binding affinities of beta- and gamma-globulins are -ery low for the corticoids investigated, but they are higher for fluocortolone and difluocortolone than for cortisol. PMID:925615

  6. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.

    PubMed

    Douglas, Lois M; Konopka, James B

    2016-03-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  7. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  8. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  9. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys.

    PubMed

    Gusarova, Viktoria; Alexa, Corey A; Wang, Yan; Rafique, Ashique; Kim, Jee Hae; Buckler, David; Mintah, Ivory J; Shihanian, Lisa M; Cohen, Jonathan C; Hobbs, Helen H; Xin, Yurong; Valenzuela, David M; Murphy, Andrew J; Yancopoulos, George D; Gromada, Jesper

    2015-07-01

    Angiopoietin-like protein 3 (ANGPTL3) is a circulating protein synthesized exclusively in the liver that inhibits LPL and endothelial lipase (EL), enzymes that hydrolyze TGs and phospholipids in plasma lipoproteins. Here we describe the development and testing of a fully human monoclonal antibody (REGN1500) that binds ANGPTL3 with high affinity. REGN1500 reversed ANGPTL3-induced inhibition of LPL activity in vitro. Intravenous administration of REGN1500 to normolipidemic C57Bl/6 mice increased LPL activity and decreased plasma TG levels by ≥50%. Chronic administration of REGN1500 to dyslipidemic C57Bl/6 mice for 8 weeks reduced circulating plasma levels of TG, LDL-cholesterol (LDL-C), and HDL-cholesterol (HDL-C) without any changes in liver, adipose, or heart TG contents. Studies in EL knockout mice revealed that REGN1500 reduced serum HDL-C through an EL-dependent mechanism. Finally, administration of a single dose of REGN1500 to dyslipidemic cynomolgus monkeys caused a rapid and pronounced decrease in plasma TG, nonHDL-C, and HDL-C. REGN1500 normalized plasma TG levels even in monkeys with a baseline plasma TG greater than 400 mg/dl. Collectively, these data demonstrate that neutralization of ANGPTL3 using REGN1500 reduces plasma lipids in dyslipidemic mice and monkeys, and thus provides a potential therapeutic agent for treatment of patients with hyperlipidemia. PMID:25964512

  10. Effect of zinc concentration on the activity of angiotensin converting enzyme in human plasma and serum

    SciTech Connect

    Reeves, P.G.; Carl, G.F.; Smith, D.K.; O'Dell, B.L.

    1986-03-05

    The activity of angiotensin converting enzyme is measured clinically to assist in the diagnosis of sarcoidosis and to monitor therapy with steroids, and with antihypertensive drugs that inhibit the enzyme. Even though it has been known for some time that ACE is a zinc dependent enzyme, it was discovered only recently that zinc, in addition to endogenous levels in the assay mixture, is required for maximal activity of rat serum ACE. The present experiment was designed to determine if additional zinc is required for maximal activation of ACE in plasma and serum of human subjects. Plasma or serum samples were incubated at 37/sup 0/ in a zinc-free medium, pH 7.4, containing hippurylglyclglycine as the substrate. The addition of 20 ..mu..M zinc significantly increased ACE activity in plasma (95.4 +/- 11.9 vs 192.8 +/- 24.3 U/L) and in serum (89.9 +/- 5.6 vs 195.7 +/- 9.3 U/L) compared to samples without added zinc. Enzyme activity was increased 2.4-fold when zinc was added to plasma from a patient with low plasma zinc. These data suggest that the endogenous level of zinc in the assay mixture resulting from the addition of an aliquot of plasma or serum is insufficient to obtain maximal activity of ACE. The addition of zinc to zinc deficient plasma increased ACE activity even more.

  11. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Miletić, M.; Mojsilović, S.; Okić Đorđević, I.; Maletić, D.; Puač, N.; Lazović, S.; Malović, G.; Milenković, P.; Petrović, Z. Lj; Bugarski, D.

    2013-08-01

    Here we investigate the influences of non-thermal atmospheric plasma on human mesenchymal stem cells isolated from periodontal ligament (hPDL-MSCs). A specially redesigned plasma needle was used as the source of low-temperature plasma and its effects on different hPDL-MSC functions were investigated. Cell cultures were obtained from extracted normal impacted third molars and characterized for their phenotype and multi-potential differentiation. The hPDL-MSCs possessed all the typical MSC properties, including clonogenic ability, high proliferation rate, specific phenotype and multilineage differentiation. The data regarding the interaction of plasma with hPDL-MSCs demonstrated that plasma treatment inhibited the migration of hPDL-MSCs and induced some detachment, while not affecting their viability. Additionally, plasma significantly attenuated hPDL-MSCs' proliferation, but promoted their osteogenic differentiation. The results of this study indicated that a non-thermal plasma offers specific activity with non-destructive properties that can be advantageous for future dental applications.

  12. Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yates, Nathan A.; Deyanova, Ekaterina G.; Geissler, Wayne; Wiener, Matthew C.; Sachs, Jeffrey R.; Wong, Kenny K.; Thornberry, Nancy A.; Sinha Roy, Ranabir; Settlage, Robert E.; Hendrickson, Ronald C.

    2007-01-01

    Approximately 2% of the human genome encodes for proteases. Unfortunately, however, the biological roles of most of these enzymes remain poorly defined, since the physiological substrates are typically unknown and are difficult to identify using traditional methods. We have developed a proteomics experiment based on FTMS profiling and differential mass spectrometry (dMS) to identify candidate endogenous substrates of proteases using fractionated human plasma as the candidate substrate pool. Here we report proof-of-concept experiments for identifying in vitro substrates of aminopeptidase P2, (APP2) and dipeptidyl peptidase 4 (DPP-4), a peptidase of therapeutic interest for the treatment of type 2 diabetes. For both proteases, previously validated peptide substrates spiked into the human plasma pool were identified. Of note, the differential mass spectrometry experiments also identified novel substrates for each peptidase in the subfraction of human plasma. Targeted MS/MS analysis of these peptides in the complex human plasma pool and manual confirmation of the amino acid sequences led to the identification of these substrates. The novel DPP-4 substrate EPLGRQLTSGP was chemically synthesized and cleavage kinetics were determined in an in vitro DPP-4 enzyme assay. The apparent second order rate constant (kcat/KM) for DPP-4-mediated cleavage was determined to be 2.3 x 105 M-1 s-1 confirming that this peptide is efficiently processed by the peptidase in vitro. Collectively, these results demonstrate that differential mass spectrometry has the potential to identify candidate endogenous substrates of target proteases from a human plasma pool. Importantly, knowledge of the endogenous substrates can provide useful insight into the biology of these enzymes and provides useful biomarkers for monitoring their activity in vivo.

  13. Determination of phenazopyridine in human plasma by GC-MS and its pharmacokinetics.

    PubMed

    Li, Kai-jun; Chen, Qin-hua; Zhang, Zhuo; Zhou, Peng; Li, Peng; Liu, Jia; Zhu, Jun

    2008-09-01

    A sensitive, selective, and simple gas chromatography-mass spectrometry method is developed for quantitation of phenazopyridine (PAP) in human plasma using internal standard (diazepam). PAP and IS are extracted from plasma by liquid-liquid extraction and analyzed on a DB-5MS column with mass selective detector. Excellent linearity is found between 5-500 ng/mL (r = 0.9992, n = 7) for PAP in human plasma. The limit of detection is 0.3 ng/mL. Intra- and Inter-day precisions expressed as the relative standard deviation for the method are 1.37-6.69% and 1.24-6.01%, respectively. Extraction efficiency is more than 90%, and recoveries are in the range of 92.65-96.21%. This method is successfully applied for the pharmacokinetics and bioequivalence of 2 formulations of PAP in 18 healthy male volunteers who received a single 200 mg dose of each formulation. PMID:18796223

  14. Immunoreactive luteinizing hormone-releasing hormone in the seminal plasma and human semen parameters

    SciTech Connect

    Izumi, S.; Makino, T.; Iizuka, R.

    1985-04-01

    A luteinizing hormone-releasing hormone (LH-RH)-like substance has been detected in human seminal plasma by a radioimmunoassay (RIA) with a highly specific anti-LH-RH antiserum. The seminal samples - not only the plasma itself but also the sample extracted by an acid/alcohol method - showed satisfactory displacement curves in our RIA system. The relationship between fertility and the LH-RH values in the seminal plasma was studied by comparing the peptide levels with sperm concentration and motility. By these two parameters, 103 samples were divided into four groups. In the low-concentration groups (oligozoospermic patients), the hormonal concentrations differed significantly between those specimens demonstrating good and poor motility. These data suggest that this immunoreactive LH-RH may play a role in human spermatogenesis.

  15. Determination of albendazole sulfoxide in human plasma by using liquid chromatography-tandem mass spectrometry.

    PubMed

    Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt

    2016-06-01

    A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. PMID:27060508

  16. Determination of vincamine in human plasma by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Dal Bo, L; Ceriani, G; Broccali, G

    1992-01-01

    A simple and rapid high-performance liquid chromatographic method was developed for the determination of vincamine in human plasma. Plasma samples were buffered at pH 9 and after extraction with tert.-butyl methyl ether back-extracted into 0.017 M orthophosphoric acid. Propranolol was used as the internal standard. An aliquot was injected on to a high-performance liquid chromatographic system using a C18 reversed-phase column and an acetonitrile-phosphate buffer containing triethylamine (30:70) as mobile phase. Detection was performed with an ultraviolet detector at 273 nm. The method had good accuracy and precision and the detection limit (0.3 ng/ml with a signal-to-noise ratio of 3:1) allowed the assessment of vincamine concentrations in plasma in pharmacokinetic studies on healthy human volunteers. PMID:1564097

  17. Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin.

    PubMed Central

    Ben Nasr, A; Herwald, H; Sjöbring, U; Renné, T; Müller-Esterl, W; Björck, L

    1997-01-01

    H-kininogen (high-molecular-mass kininogen, HK) is the precursor of the vasoactive peptide hormone bradykinin (BK). Previous work has demonstrated that HK binds to Streptococcus pyogenes through M-proteins, fibrous surface proteins and important virulence factors of these bacteria. Here we find that M-protein-expressing bacteria absorb HK from human plasma. The HK bound to the bacteria was found to be cleaved, and analysis of the degradation pattern suggested that the cleavage of HK at the bacterial surface is associated with the release of BK. Moreover, addition of activated plasma prekallikrein to bacteria preincubated with human plasma, resulted in BK release. This mechanism, by which a potent vasoactive and proinflammatory peptide is generated at the site of infection, should influence the host-parasite relationship during S. pyogenes infections. PMID:9307013

  18. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer.

    PubMed

    Bařinka, C; Rojas, C; Slusher, B; Pomper, M

    2012-01-01

    Glutamate carboxypeptidase II (GCPII) is a membrane-bound binuclear zinc metallopeptidase with the highest expression levels found in the nervous and prostatic tissue. Throughout the nervous system, glia-bound GCPII is intimately involved in the neuron-neuron and neuron-glia signaling via the hydrolysis of N-acetylaspartylglutamate (NAAG), the most abundant mammalian peptidic neurotransmitter. The inhibition of the GCPII-controlled NAAG catabolism has been shown to attenuate neurotoxicity associated with enhanced glutamate transmission and GCPII-specific inhibitors demonstrate efficacy in multiple preclinical models including traumatic brain injury, stroke, neuropathic and inflammatory pain, amyotrophic lateral sclerosis, and schizophrenia. The second major area of pharmacological interventions targeting GCPII focuses on prostate carcinoma; GCPII expression levels are highly increased in androgen-independent and metastatic disease. Consequently, the enzyme serves as a potential target for imaging and therapy. This review offers a summary of GCPII structure, physiological functions in healthy tissues, and its association with various pathologies. The review also outlines the development of GCPII-specific small-molecule compounds and their use in preclinical and clinical settings. PMID:22214450

  19. Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II.

    PubMed

    Han, Liqun; Picker, Jonathan D; Schaevitz, Laura R; Tsai, Guochuan; Feng, Jiamin; Jiang, Zhichun; Chu, Hillary C; Basu, Alo C; Berger-Sweeney, Joanne; Coyle, Joseph T

    2009-08-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of N-methyl-D-aspartate receptors (NMDAR) has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate. NAAG is a neuropeptide that is an NMDAR antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDAR activation. To manipulate the expression of GCP II, LoxP sites were inserted flanking exons 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N > 200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory. PMID:19347959

  20. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    PubMed

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. PMID:25872793

  1. Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury.

    PubMed

    Bacich, Dean J; Wozniak, Krystyna M; Lu, X-C May; O'Keefe, Denize S; Callizot, Noelle; Heston, Warren D W; Slusher, Barbara S

    2005-10-01

    Excessive glutamate release is associated with neuronal damage. A new strategy for the treatment of neuronal injury involves inhibition of the neuropeptidase glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked acidic dipeptidase. GCP II is believed to mediate the hydrolysis of N-acetyl-aspartyl-glutamate (NAAG) to glutamate and N-acetyl-aspartate, and inhibition of NAAG peptidase activity (by GCP II and other peptidases) is neuroprotective. Mice were generated in which the Folh1 gene encoding GCP II was disrupted (Folh1-/- mice). No overt behavioral differences were apparent between Folh1-/- mice and wild-type littermates, with respect to their overall performance in locomotion, coordination, pain threshold, cognition and psychiatric behavioral paradigms. Morphological analysis of peripheral nerves, however, showed significantly smaller axons (reduced myelin sheaths and axon diameters) in sciatic nerves from Folh1-/- mice. Following sciatic nerve crush, Folh1-/- mice suffered less injury and recovered faster than wild-type littermates. In a model of ischemic injury, the Folh1-/- mice exhibited a significant reduction (p < 0.05) in infarct volume compared with their wild-type littermates when subjected to middle cerebral artery occlusion, a model of stroke. These findings support the hypothesis that GCP II inhibitors may represent a novel treatment for peripheral neuropathies as well as stroke. PMID:16190866

  2. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer.

    PubMed

    Mesters, Jeroen R; Barinka, Cyril; Li, Weixing; Tsukamoto, Takashi; Majer, Pavel; Slusher, Barbara S; Konvalinka, Jan; Hilgenfeld, Rolf

    2006-03-22

    Membrane-bound glutamate carboxypeptidase II (GCPII) is a zinc metalloenzyme that catalyzes the hydrolysis of the neurotransmitter N-acetyl-L-aspartyl-L-glutamate (NAAG) to N-acetyl-L-aspartate and L-glutamate (which is itself a neurotransmitter). Potent and selective GCPII inhibitors have been shown to decrease brain glutamate and provide neuroprotection in preclinical models of stroke, amyotrophic lateral sclerosis, and neuropathic pain. Here, we report crystal structures of the extracellular part of GCPII in complex with both potent and weak inhibitors and with glutamate, the product of the enzyme's hydrolysis reaction, at 2.0, 2.4, and 2.2 A resolution, respectively. GCPII folds into three domains: protease-like, apical, and C-terminal. All three participate in substrate binding, with two of them directly involved in C-terminal glutamate recognition. One of the carbohydrate moieties of the enzyme is essential for homodimer formation of GCPII. The three-dimensional structures presented here reveal an induced-fit substrate-binding mode of this key enzyme and provide essential information for the design of GCPII inhibitors useful in the treatment of neuronal diseases and prostate cancer. PMID:16467855

  3. S1 pocket of glutamate carboxypeptidase II: a new binding site for amyloid-β degradation.

    PubMed

    Lee, Suk Kyung; Kim, Hyunyoung; Cheong, You-Hoon; Kim, Min-Ju; Jo, Sangmee Ahn; Youn, Hyung-Seop; Park, Sang Ick

    2013-09-01

    We recently reported that glutamate carboxypeptidase II (GCPII) has a new physiological function degrading amyloid-β (Aβ), distinct from its own hydrolysis activity in N-acetyl-L-aspartyl-L-glutamate (NAAG); however, its underlying mechanism remains undiscovered. Using site-directed mutagenesis and S1 pocket-specific chemical inhibitor (compound 2), which was developed for the present study based on in sillico computational modeling, we discovered that the Aβ degradation occurs through S1 pocket but not through S1' pocket responsible for NAAG hydrolysis. Treatment with compound 2 prevented GCPII from Aβ degradation without any impairment in NAAG hydrolysis. Likewise, 2-PMPA (specific GCPII inhibitor developed targeting S1' pocket) completely blocked the NAAG hydrolysis without any effect on Aβ degradation. Pre-incubation with NAAG and Aβ did not affect Aβ degradation and NAAG hydrolysis, respectively. These data suggest that GCPII has two distinctive binding sites for two different substrates and that Aβ degradation occurs through binding to S1 pocket of GCPII. PMID:23891752

  4. Structure and Function of a Novel ld-Carboxypeptidase A Involved in Peptidoglycan Recycling

    PubMed Central

    Das, Debanu; Hervé, Mireille; Elsliger, Marc-André; Kadam, Rameshwar U.; Grant, Joanna C.; Chiu, Hsiu-Ju; Knuth, Mark W.; Klock, Heath E.; Miller, Mitchell D.; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.

    2013-01-01

    Approximately 50% of cell wall peptidoglycan in Gram-negative bacteria is recycled with each generation. The primary substrates used for peptidoglycan biosynthesis and recycling in the cytoplasm are GlcNAc-MurNAc(anhydro)-tetrapeptide and its degradation product, the free tetrapeptide. This complex process involves ∼15 proteins, among which the cytoplasmic enzyme ld-carboxypeptidase A (LdcA) catabolizes the bond between the last two l- and d-amino acid residues in the tetrapeptide to form the tripeptide, which is then utilized as a substrate by murein peptide ligase (Mpl). LdcA has been proposed as an antibacterial target. The crystal structure of Novosphingobium aromaticivorans DSM 12444 LdcA (NaLdcA) was determined at 1.89-Å resolution. The enzyme was biochemically characterized and its interactions with the substrate modeled, identifying residues potentially involved in substrate binding. Unaccounted electron density at the dimer interface in the crystal suggested a potential site for disrupting protein-protein interactions should a dimer be required to perform its function in bacteria. Our analysis extends the identification of functional residues to several other homologs, which include enzymes from bacteria that are involved in hydrocarbon degradation and destruction of coral reefs. The NaLdcA crystal structure provides an alternate system for investigating the structure-function relationships of LdcA and increases the structural coverage of the protagonists in bacterial cell wall recycling. PMID:24123814

  5. A D, D-carboxypeptidase is required for Vibrio cholerae halotolerance.

    PubMed

    Möll, Andrea; Dörr, Tobias; Alvarez, Laura; Davis, Brigid M; Cava, Felipe; Waldor, Matthew K

    2015-02-01

    The biological roles of low molecular weight penicillin-binding proteins (LMW PBP) have been difficult to discern in Gram-negative organisms. In Escherichia coli, mutants lacking these proteins often have no phenotype, and cells lacking all seven LMW PBPs remain viable. In contrast, we report here that Vibrio cholerae lacking DacA-1, a PBP5 homologue, displays slow growth, aberrant morphology and altered peptidoglycan (PG) homeostasis in Luria-Bertani (LB) medium, as well as a profound plating defect. DacA-1 alone among V. cholerae's LMW PBPs is critical for bacterial growth; mutants lacking the related protein DacA-2 and/or homologues of PBP4 or PBP7 displayed normal growth and morphology. Remarkably, the growth and morphology of the dacA-1 mutant were unimpaired in LB media containing reduced concentrations of NaCl (100 mM or less), and also within suckling mice, a model host for the study of cholera pathogenesis. Peptidoglycan from the dacA-1 mutant contained elevated pentapeptide levels in standard and low salt media, and comparative analyses suggest that DacA-1 is V. cholerae's principal DD-carboxypeptidase. The basis for the dacA-1 mutant's halosensitivity is unknown; nonetheless, the mutant's survival in biochemically uncharacterized environments (such as the suckling mouse intestine) can be used as a reporter of low Na(+) content. PMID:25631756

  6. Phenotypic Characterization of Mice Heterozygous for a Null Mutation of Glutamate Carboxypeptidase II

    PubMed Central

    Han, Liqun; Picker, Jonathan D.; Schaevitz, Laura R.; Tsai, Guochuan; Feng, Jiamin; Jiang, Zhichun; Chu, Hillary C.; Basu, Alo C.; Berger-Sweeney, Joanne; Coyle, Joseph T.

    2009-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of NMDA receptors has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate (NAA). NAAG is a neuropeptide that is an NMDA receptor antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDA receptor activation. To manipulate the expression of GCP II, loxP sites were inserted flanking exon 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N >200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory. PMID:19347959

  7. In silico approaches to identify the potential inhibitors of glutamate carboxypeptidase II (GCPII) for neuroprotection.

    PubMed

    Naushad, Shaik Mohammad; Janaki Ramaiah, M; Stanley, Balraj Alex; Prasanna Lakshmi, S; Vishnu Priya, J; Hussain, Tajamul; Alrokayan, Salman A; Kutala, Vijay Kumar

    2016-10-01

    To develop a potential inhibitor for glutamate carboxypeptidase II (GCPII) effective against all the eight common genetic variants reported, PyMOL molecular visualization system was used to generate models of variants using the crystal structure of GCPII i.e. 2OOT as a template. High-throughput virtual screening of 29 compounds revealed differential efficacy across the eight genetic variants (pIC50: 4.70 to 10.22). Pharmacophore analysis and quantitative structure-activity relationship (QSAR) studies revealed a urea-based N-acetyl aspartyl glutamate (NAAG) analogue as more potent inhibitor, which was effective across all the genetic variants of GCPII as evidenced by glide scores (-4.32 to -7.08) and protein-ligand interaction plots (13 interactions in wild GCPII). This molecule satisfied Lipinski rule of five and rule of three for drug-likeliness. Being a NAAG-analogue, this molecule might confer neuroprotection by inhibiting glutamatergic neurotransmission mediated by N-acetylated alpha-linked acidic dipeptidase (NAALADase), a splice variant of GCPII. PMID:27430729

  8. Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy.

    PubMed

    Mongkol, Watcharakorn; Arunyawat, Uraiwan; Surat, Wunrada; Kubera, Anchanee

    2015-11-01

    Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity. PMID:26352934

  9. Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function

    PubMed Central

    Pathak, Narendra; Austin-Tse, Christina A.; Liu, Yan; Vasilyev, Aleksandr; Drummond, Iain A.

    2014-01-01

    Glutamylation is a functionally important tubulin posttranslational modification enriched on stable microtubules of neuronal axons, mitotic spindles, centrioles, and cilia. In vertebrates, balanced activities of tubulin glutamyl ligase and cytoplasmic carboxypeptidase deglutamylase enzymes maintain organelle- and cell type–specific tubulin glutamylation patterns. Tubulin glutamylation in cilia is regulated via restricted subcellular localization or expression of tubulin glutamyl ligases (ttlls) and nonenzymatic proteins, including the zebrafish TPR repeat protein Fleer/Ift70. Here we analyze the expression patterns of ccp deglutamylase genes during zebrafish development and the effects of ccp gene knockdown on cilia formation, morphology, and tubulin glutamylation. The deglutamylases ccp2, ccp5, and ccp6 are expressed in ciliated cells, whereas ccp1 expression is restricted to the nervous system. Only ccp5 knockdown increases cilia tubulin glutamylation, induces ciliopathy phenotypes, including axis curvature, hydrocephalus, and pronephric cysts, and disrupts multicilia motility, suggesting that Ccp5 is the principal tubulin deglutamylase that maintains functional levels of cilia tubulin glutamylation. The ability of ccp5 knockdown to restore cilia tubulin glutamylation in fleer/ift70 mutants and rescue pronephric multicilia formation in both fleer- and ift88-deficient zebrafish indicates that tubulin glutamylation is a key driver of ciliogenesis. PMID:24743595

  10. Serine carboxypeptidase 46 Regulates Grain Filling and Seed Germination in Rice (Oryza sativa L.)

    PubMed Central

    Li, Zhiyong; Tang, Liqun; Qiu, Jiehua; Zhang, Wen; Wang, Yifeng; Tong, Xiaohong; Wei, Xiangjin; Hou, Yuxuan

    2016-01-01

    Serine carboxypeptidase (SCP) is one of the largest groups of enzymes catalyzing proteolysis for functional protein maturation. To date, little is known about the function of SCPs in rice. In this study, we present a comprehensive analysis of the gene structure and expression profile of 59 rice SCPs. SCP46 is dominantly expressed in developing seeds, particularly in embryo, endosperm and aleurone layers, and could be induced by ABA. Functional characterization revealed that knock-down of SCP46 resulted in smaller grain size and enhanced seed germination. Furthermore, scp46 seed germination became less sensitive to the ABA inhibition than the Wild-type did; suggesting SCP46 is involved in ABA signaling. As indicated by RNA-seq and qRT-PCR analysis, numerous grain filling and seed dormancy related genes, such as SP, VP1 and AGPs were down-regulated in scp46. Yeast-two-hybrid assay also showed that SCP46 interacts with another ABA-inducible protein DI19-1. Taken together, we suggested that SCP46 is a master regulator of grain filling and seed germination, possibly via participating in the ABA signaling. The results of this study shed novel light into the roles of SCPs in rice. PMID:27448032

  11. Cytosolic carboxypeptidase CCP6 is required for megakaryopoiesis by modulating Mad2 polyglutamylation

    PubMed Central

    Ye, Buqing; Li, Chong; Yang, Zhao; Wang, Yanying; Hao, Junfeng; Wang, Li; Li, Yi; Du, Ying; Hao, Lu; Liu, Benyu; Wang, Shuo; Xia, Pengyan; Huang, Guanling; Sun, Lei

    2014-01-01

    Bone marrow progenitor cells develop into mature megakaryocytes (MKs) to produce platelets for hemostasis and other physiological functions. However, the molecular mechanisms underlying megakaryopoiesis are not completely defined. We show that cytosolic carboxypeptidase (CCP) 6 deficiency in mice causes enlarged spleens and increased platelet counts with underdeveloped MKs and dysfunctional platelets. The prominent phenotypes of CCP6 deficiency are different from those of CCP1-deficient mice. We found that CCP6 and tubulin tyrosine ligase-like family (TTLL) members TTLL4 and TTLL6 are highly expressed in MKs. We identify Mad2 (mitotic arrest deficient 2) as a novel substrate for CCP6 and not CCP1. Mad2 can be polyglutamylated by TTLL4 and TTLL6 to modulate the maturation of MKs. CCP6 deficiency causes hyperglutamylation of Mad2 to promote activation of Aurora B, leading to suppression of MK maturation. We reveal that Mad2 polyglutamylation plays a critical role in the regulation of megakaryopoiesis. PMID:25332286

  12. Fluxionate Lewis acidity of the Zn2+ ion in carboxypeptidase A.

    PubMed Central

    Mock, W L; Freeman, D J; Aksamawati, M

    1993-01-01

    Competitive inhibition constants Ki for a series of phenol-ring-substituted derivatives of alpha-(2-hydroxyphenyl)benzenepropanoic acid have been ascertained by observing their influence on the catalytic hydrolysis of a peptide substrate by the zinc enzyme carboxypeptidase A. The pH-dependence of Ki shows that binding is maximal between two pKa values: one is that of the phenol group of the inhibitor, and the other uniformly has a value of 6, the pKa of a Zn(2+)-bound water molecule on the enzyme in the absence of substrate or inhibitor. This is the dependence expected if phenolate binds to the Zn2+ displacing its bound H2O/HO-. A log-log plot of the dissociation constants for the productive forms of inhibitor plus enzyme versus the acid dissociation constants of the phenolic residues in the inhibitors yields a straight line with a slope of +0.76. This number indicates that the active-site metal ion has special capacity for dispersing negative charge, such as builds up on the oxygen atom of a carboxamide group undergoing nucleophilic addition. PMID:8424757

  13. Electrochemical detection of protein kinase activity based on carboxypeptidase Y digestion triggered signal amplification.

    PubMed

    Yin, Huanshun; Wang, Xinxu; Guo, Yunlong; Zhou, Yunlei; Ai, Shiyun

    2015-04-15

    An effective assay method for monitoring protein kinase activity and screening inhibitors is greatly beneficial to kinase-related drug discovery, early diagnosis of diseases, and therapeutic effect evaluation. Herein, we develop a simple electrochemical method for detecting the activity of casein kinase II (CK2) based on phosphorylation against carboxypeptidase Y (CPY) digestion triggered signal amplification, where CK2 catalyzed phosphorylation event protects the substrate peptide from the digestion of CPY, maintains the repulsive force of the substrate peptide towards the redox probe, and results in a weak electrochemical signal. Whereas, without phosphorylation, the substrate peptide is digested by CPY and a strong electrochemical signal is obtained. The detection feasibility is demonstrated for the assay of CK2 activity with low detection limit of 0.047unit/mL. Moreover, the biosensor was used for the analysis of kinase inhibition. Based on the electrochemical signal dependent inhibitor concentration, the IC50 value of ellagic acid was estimated to be 39.77nM. The proposed method is also successfully applied to analyze CK2 activity in cell lysates, proving the applicability in complex biological samples. PMID:25460885

  14. Glutamate Carboxypeptidase II in Diagnosis and Treatment of Neurologic Disorders and Prostate Cancer

    PubMed Central

    Bařinka, C.; Rojas, C.; Slusher, B.; Pomper, M.

    2012-01-01

    Glutamate carboxypeptidase II (GCPII) is a membrane-bound binuclear zinc metallopeptidase with the highest expression levels found in the nervous and prostatic tissue. Throughout the nervous system, glia-bound GCPII is intimately involved in the neuron-neuron and neuron-glia signaling via the hydrolysis of N-acetylaspartylglutamate (NAAG), the most abundant mammalian peptidic neurotransmitter. The inhibition of the GCPII-controlled NAAG catabolism has been shown to attenuate neurotoxicity associated with enhanced glutamate transmission and GCPII-specific inhibitors demonstrate efficacy in multiple preclinical models including traumatic brain injury, stroke, neuropathic and inflammatory pain, amyotrophic lateral sclerosis, and schizophrenia. The second major area of pharmacological interventions targeting GCPII focuses on prostate carcinoma; GCPII expression levels are highly increased in androgen-independent and metastatic disease. Consequently, the enzyme serves as a potential target for imaging and therapy. This review offers a summary of GCPII structure, physiological functions in healthy tissues, and its association with various pathologies. The review also outlines the development of GCPII-specific small-molecule compounds and their use in preclinical and clinical settings. PMID:22214450

  15. PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice.

    PubMed

    Kawakatsu, Taiji; Taramino, Graziana; Itoh, Jun-Ichi; Allen, Justin; Sato, Yutaka; Hong, Soon-Kwan; Yule, Ryan; Nagasawa, Nobuhiro; Kojima, Mikiko; Kusaba, Makoto; Sakakibara, Hitoshi; Sakai, Hajime; Nagato, Yasuo

    2009-06-01

    Most aerial parts of the plant body are products of the continuous activity of the shoot apical meristem (SAM). Leaves are the major component of the aerial plant body, and their temporal and spatial distribution mainly determines shoot architecture. Here we report the identification of the rice gene PLASTOCHRON3 (PLA3)/GOLIATH (GO) that regulates various developmental processes including the rate of leaf initiation (the plastochron). PLA3/GO encodes a glutamate carboxypeptidase, which is thought to catabolize small acidic peptides and produce small signaling molecules. pla3 exhibits similar phenotypes to pla1 and pla2- a shortened plastochron, precocious leaf maturation and rachis branch-to-shoot conversion in the reproductive phase. However, in contrast to pla1 and pla2, pla3 showed pleiotropic phenotypes including enlarged embryo, seed vivipary, defects in SAM maintenance and aberrant leaf morphology. Consistent with these pleiotropic phenotypes, PLA3 is expressed in the whole plant body, and is involved in plant hormone homeostasis. Double mutant analysis revealed that PLA1, PLA2 and PLA3 are regulated independently but function redundantly. Our results suggest that PLA3 modulates various signaling pathways associated with a number of developmental processes. PMID:19228340

  16. High enrichment of MMP-9 and carboxypeptidase A by tweezing adsorptive bubble separation (TABS).

    PubMed

    Haller, Dirk; Ekici, Perihan; Friess, Albrecht; Parlar, Harun

    2010-11-01

    Tweezing adsorptive bubble separation (TABS) was used as a method for the enrichment of matrix metalloproteinases (92-kDa type IV, gelatinase B (MMP-9)) and carboxypeptidase A (CPA) from dilute aqueous solutions. The method is based on the chelation of metalloenzymes applying 2-(carbamoylmethyl-(carboxymethyl)amino)acetic acid (ADA) coupled with an octyl part to form a surface active unit. MMP-9 could be enriched with an enrichment ratio of 12.0 and a recovery of 87.3%, and CPA could be enriched 18.8-fold and with 95.3% recovery. Both enzymes were enriched without significant losses of enzymatic activity. To verify that the enzymes were tweezed by ADA-C8 without abstraction of the zinc ions from the active center, TABS trials were additionally conducted with zinc ions in complex with ADA-C8, which revealed only negligible enrichment ratios of the enzymes (2.2 for MMP-9 and 0.2 for CPA). The results obtained impressively demonstrate that zinc-containing proteases can be enriched selectively and efficiently by TABS. PMID:20229282

  17. Effect of organo and inorganic lithium salt on human blood plasma glutathione- A comparative study.

    PubMed

    Ullah, Hashmat; Khan, Muhammad Farid; Jan, Syed Umer; Hashmat, Farwa

    2016-03-01

    Investigation of toxicological effect of various metals is the field of interest for toxicological scientists since four to five decades and especially the toxicological effect of those drugs containing metals and there use is common because there is no other choice except to use these metal containing drugs. Inorganic as well as organic salts of lithium are commonly used in prophylaxis and treatments of many psychiatric disorders. The aim of the present study was to see the difference between the effect of organic and inorganic salt of lithium commonly used in psychiatric disorders on the GSH of human blood plasma. It is the scientific fact that ionic dissociation of organic and inorganic salts of any metal is always quite different hence to prove this fact, the effect of lithium citrate (organic salt of lithium) and lithium carbonate (inorganic salt of lithium) was investigated on human blood plasma GSH to find the difference between the effect of two. Ellman's method was used for the quantification of glutathione contents in plasma. It was found that lithium citrate decrease plasma GSH contents less than lithium carbonate indicating that organic salts of lithium are safe than inorganic salts of lithium when are used in psychiatric disorders. Further to analyze the effect of organic and inorganic salt of lithium on blood plasma GSH with the increase in incubation time was also evaluated and was found that both concentration and time dependent effect of organic salt of lithium shows that this salt has decreased plasma GSH contents of human blood less than inorganic salt of lithium either by promoting oxidation of GSH into GSSG or by lithium glutathione complex formation. These results suggest the physicians that the use of organic lithium salts is much safer than inorganic salts of lithium in terms of depletion of blood plasma GSH contents. PMID:27087067

  18. Fibrin glue from stored human plasma. An inexpensive and efficient method for local blood bank preparation.

    PubMed

    Spotnitz, W D; Mintz, P D; Avery, N; Bithell, T C; Kaul, S; Nolan, S P

    1987-08-01

    European surgeons have used fibrin glue extensively during thoracic, cardiovascular, and general surgical operations. Until now, however, it has been available only as a commercial preparation made from pooled human plasma, and it has not been approved by the U.S. Food and Drug Administration for use in the United States because of a high associated risk of hepatitis and acquired immune deficiency syndrome. Methods of obtaining fibrinogen, an essential component of fibrin glue, from cryoprecipitate or fresh frozen plasma have been published recently. However, the cryoprecipitate method results in relatively low concentrations of fibrinogen, which can reduce glue effectiveness. The fresh frozen plasma method is more expensive and does not meet the standards of the American Association of Blood Banks for the "closed" system required for safe handling and management of blood component products. Both the cryoprecipitate and the fresh frozen plasma methods result in waste of unstable clotting factors. These factors are necessary to replace human plasma clotting deficiencies but are not necessary for the production of fibrin glue. The authors have developed an efficient, high-concentration blood bank method for producing and maintaining a local supply of a safer and less expensive but equally effective material derived from stored human plasma. This material is produced using approved blood bank techniques for a "closed" system in blood component production, thus reducing the risks of contamination and infection, and its fibrinogen concentration is higher than that of standard cryoprecipitate. The cost of 1 unit of this fibrin glue is comparable to that for 1 unit of cryoprecipitate and less than that for 1 unit of fresh frozen plasma.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2440358

  19. Analysis of free hydroxytyrosol in human plasma following the administration of olive oil.

    PubMed

    Pastor, Antoni; Rodríguez-Morató, Jose; Olesti, Eulàlia; Pujadas, Mitona; Pérez-Mañá, Clara; Khymenets, Olha; Fitó, Montserrat; Covas, María-Isabel; Solá, Rosa; Motilva, María-José; Farré, Magí; de la Torre, Rafael

    2016-03-11

    Hydroxytyrosol (HT) from olive oil, a potent bioactive molecule with health benefits, has a poor bioavailability, its free form (free HT) being undetectable so far. This fact leads to the controversy whether attained HT concentrations after olive oil polyphenol ingestion are too low to explain the observed biological activities. Due to this, an analytical methodology to determine free HT in plasma is crucial for understanding HT biological activity. Plasma HT instability and low concentrations have been major limitations for its quantification in clinical studies. Here, we describe a method to detect and quantify free HT in human plasma by using liquid chromatography coupled to tandem mass spectrometry. The method encompasses different steps of sample preparation including plasma stabilization, protein precipitation, selective derivatization with benzylamine, and purification by solid-phase extraction. A high sensitivity (LOD, 0.3ng/mL), specificity and stability of HT is achieved following these procedures. The method was validated and its applicability was demonstrated by analyzing human plasma samples after olive oil intake. A pharmacokinetic comparison was performed measuring free HT plasma concentrations following the intake of 25mL of ordinary olive oil (nearly undetectable concentrations) versus an extra-virgin olive oil (Cmax=4.40ng/mL). To our knowledge, this is the first time that an analytical procedure for quantifying free HT in plasma after olive oil dietary doses has been reported. The present methodology opens the door to a better understanding of the relationship between HT plasma concentrations and its beneficial health effects. PMID:26877176

  20. Detection of a lysosomal carboxypeptidase and a lysosomal dipeptidase in highly-purified dipeptidyl aminopeptidase I /cathepsin C/ and the elimination of their activities from preparations used to sequence peptides.

    NASA Technical Reports Server (NTRS)

    Mcdonald, J. K.; Zeitman, B. B.; Ellis, S.

    1972-01-01

    Description of the properties of a carboxypeptidase, termed 'catheptic carboxypeptidase C,' and a dipeptidase, termed 'Ser-Met dipeptidase.' Both were found in highly purified DAP I from either beef spleen or rat liver. Methods are described for the removal or selective inactivation of these contaminating enzymes.

  1. TRIS(DICHLOROPROPYL)PHOSHATE, A MUTAGENIC FLAME RETARDANT: FREQUENT OCCURRENCE IN HUMAN SEMINAL PLASMA

    EPA Science Inventory

    Negative-chemical-ionization mass spectral screening of extracts of human seminal plasma has revealed a presence of a Cl7 ion cluster at a mass-to-charge ratio (m/z) of 463 in a significant number of the samples examined (34 out of 123). Experiments with different gases used to g...

  2. Cold plasma - a non-thermal processing technology to inactivate human pathogens on foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel non-thermal food processing technology, suitable for application to fresh and fresh-cut fruits and vegetables. Reductions of 3-5 logs have been achieved against human pathogens such as Salmonella and E. coli O157:H7 on fresh produce and against phytopathogens and spoilage orga...

  3. Determination of Febuxostat in Human Plasma Using RP-LC-UV Method.

    PubMed

    Younes, Kareem M; El-Kady, Ehab F; Elzanfaly, Eman S

    2016-07-01

    A simple and sensitive bioanalytical high-performance liquid chromatographic method with ultraviolet detection was developed and validated for the quantification of febuxostat (FEB) in human plasma. Ketoprofen was used as an internal standard. The analytes were extracted from human plasma samples by precipitation with acetonitrile. The reconstituted samples were chromatographed on C18 Bondapack 10 µm, 250 × 4.6 mm, Waters Column (Ireland) by using a mixture of acetonitrile and 0.5% aqueous phosphoric acid (pH 3) (52 : 48, v/v) as the mobile phase. The chromatographic separation was isocratically performed at room temperature at a flow rate of 1.0 mL/min with UV detection at 315 nm. The method exhibited a linear dynamic range over 0.05-5.00 µg/mL FEB in human plasma. The lower limit of quantification was 0.05 µg/mL. The results of the intra- and interday precision and accuracy studies were within the acceptable limits. The validated method was successfully applied for the determination of FEB in human plasma samples for application in bioequivalence studies. PMID:27068934

  4. Identification of human plasma cells with a lamprey monoclonal antibody

    PubMed Central

    Yu, Cuiling; Liu, Yanling; Chan, Justin Tze Ho; Tong, Jiefei; Li, Zhihua; Shi, Mengyao; Davani, Dariush; Parsons, Marion; Khan, Srijit; Zhan, Wei; Kyu, Shuya; Grunebaum, Eyal; Campisi, Paolo; Propst, Evan J.; Jaye, David L.; Trudel, Suzanne; Moran, Michael F.; Ostrowski, Mario; Herrin, Brantley R.; Lee, F. Eun-Hyung; Sanz, Ignacio; Cooper, Max D.; Ehrhardt, Götz R.A.

    2016-01-01

    Ab-producing plasma cells (PCs) serve as key participants in countering pathogenic challenges as well as being contributors to autoimmune and malignant disorders. Thus far, only a limited number of PC–specific markers have been identified. The characterization of the unique variable lymphocyte receptor (VLR) Abs that are made by evolutionarily distant jawless vertebrates prompted us to investigate whether VLR Abs could detect novel PC antigens that have not been recognized by conventional Abs. Here, we describe a monoclonal lamprey Ab, VLRB MM3, that was raised against primary multiple myeloma cells. VLRB MM3 recognizes a unique epitope of the CD38 ectoenzyme that is present on plasmablasts and PCs from healthy individuals and on most, but not all, multiple myelomas. Binding by the VLRB MM3 Ab coincides with CD38 dimerization and NAD glycohydrolase activity. Our data demonstrate that the lamprey VLRB MM3 Ab is a unique reagent for the identification of plasmablasts and PCs, with potential applications in the diagnosis and therapeutic intervention of PC or autoimmune disorders. PMID:27152361

  5. LC-MS/MS analysis of carboxymethylated and carboxyethylated phosphatidylethanolamines in human erythrocytes and blood plasma[S

    PubMed Central

    Shoji, Naoki; Nakagawa, Kiyotaka; Asai, Akira; Fujita, Ikuko; Hashiura, Aya; Nakajima, Yasushi; Oikawa, Shinichi; Miyazawa, Teruo

    2010-01-01

    An amino group of phosphatidylethanolamine (PE) is considered as a target for nonenzymatic glycation, and the potential involvement of lipid glycation in the pathogenesis of diabetic complications has generated interest. However, unlike an early glycation product of PE (Amadori-PE), the occurrence and roles of advanced glycation end products of PE (AGE-PE) in vivo have been unclear. Here, we developed an LC-MS/MS method for the analysis of AGE-PE [carboxymethyl-PE (CM-PE) and carboxyethyl-PE (CE-PE)]. Collision-induced dissociation of CM-PE and CE-PE produced characteristic ions, permitting neutral loss scanning (NLS) and multiple reaction monitoring (MRM) of AGE-PE. By NLS analysis, a series of AGE-PE molecular species was detected in human erythrocytes and blood plasma. In LC-MS/MS analysis, MRM enabled the separation and determination of the predominant AGE-PE species. Between healthy subjects and diabetic patients, no significant differences were observed in AGE-PE concentrations in erythrocytes and plasma, whereas Amadori-PE concentrations were higher in diabetic patients. These results provide direct evidence for the presence of AGE-PE in human blood, and indicated that, compared with Amadori-PE, AGE-PE is less likely to be accumulated in diabetic blood. The presently developed LC-MS/MS method appears to be a powerful tool for understanding in vivo lipid glycation and its pathophysiological consequence. PMID:20386060

  6. Quantitation of Human Papillomavirus DNA in Plasma of Oropharyngeal Carcinoma Patients

    SciTech Connect

    Cao Hongbin; Banh, Alice; Kwok, Shirley; Shi Xiaoli; Wu, Simon; Krakow, Trevor; Khong, Brian; Bavan, Brindha; Bala, Rajeev; Pinsky, Benjamin A.; Colevas, Dimitrios; Pourmand, Nader; Koong, Albert C.; Kong, Christina S.; Le, Quynh-Thu

    2012-03-01

    Purpose: To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. Methods and Materials: We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed by p16{sup INK4a} staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. Results: HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using {sup 18}F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. Conclusions: Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.

  7. Enhanced plasma persistence of therapeutic enzymes by coupling to soluble dextran.

    PubMed Central

    Sherwood, R F; Baird, J K; Atkinson, T; Wiblin, C N; Rutter, D A; Ellwood, D C

    1977-01-01

    Conjugation of carboxypeptidase G and arginase, two enzymes of therapeutic interest, to a soluble dextran significantly enhanced plasma persistence in normal and tumour-bearing mice. A prolonged decrease in arginine concentrations in plasma of tumour-bearing mice was demonstrated by using the dextran-linked arginase. Gel filtration of dextran-enzyme conjugate showed that enzyme activity co-chromatographed as a single peak with carbohydrate, and enzyme was shown to be covalently linked to the dextran. PMID:880251

  8. Stimulus-dependent secretion of plasma proteins from human neutrophils.

    PubMed Central

    Borregaard, N; Kjeldsen, L; Rygaard, K; Bastholm, L; Nielsen, M H; Sengeløv, H; Bjerrum, O W; Johnsen, A H

    1992-01-01

    In search for matrix proteins released from secretory vesicles of human neutrophils, a prominent 67-kD protein was identified in the extracellular medium of neutrophils stimulated by the chemotactic peptide, FMLP. The protein was purified to apparent homogeneity and partially sequenced. The sequence of the first 32 NH2-terminal amino acids was identical to the sequence of albumin. mRNA for human albumin could not be detected in bone marrow cells, nor could biosynthetic labeling of albumin be demonstrated in bone marrow cells during incubation with [14C]leucine. Immunofluorescence studies on single cells demonstrated the presence of intracellular albumin in fixed permeabilized neutrophils. Light microscopy of immunogold-silver-stained cryosections visualized albumin in cytoplasmic "granules." The morphology of these was determined by immunoelectron microscopy as vesicles of varying form and size. Subcellular fractionation studies on unstimulated neutrophils demonstrated the presence of albumin in the low density pre-gamma and gamma-regions that contain secretory vesicles, but are devoid of specific granules and azurophil granules. Albumin was readily released from these structures during activation of neutrophils with inflammatory mediators. Immunoblotting demonstrated the presence of immunoglobulin and transferrin along with albumin in exocytosed material from stimulated neutrophils. This indicates that secretory vesicles are unique endocytic vesicles that can be triggered to exocytose by inflammatory stimuli. Images PMID:1378856

  9. HPTLC method for direct determination of gemifloxacin mesylate in human plasma.

    PubMed

    El-Koussi, W M; Atia, N N; Mahmoud, A M; El-Shabouri, S R

    2014-09-15

    Novel, simple and sensitive high performance thin-layer chromatography (HPTLC) with fluorescence detection has been successfully developed and validated for determination of gemifloxacin mesylate (GFX) in plasma samples without prior pretreatment. Montelukast (MK) was used as internal standard. GFX and MK in plasma samples were separated using a mobile phase consisting of a mixture of ethyl acetate:methanol:25% ammonia, (8:4.5:3, v/v/v). The emission intensity was measured using optical filter K400 after excitation at 342 nm. The Rf values for GFX and MK were 0.45±0.03 and 0.79±0.02, respectively. Under the optimum conditions, a linear relationship with good correlation coefficient (r=0.9965, n=6) was obtained in concentration range of 3-180 ng/band. The LOD and LOQ of the proposed method were 0.45 and 1.5 ng/band, respectively. The accuracy of the method was proved as the recovery % of GFX from spiked human plasma was 94.21-101.85%. The efficiency of the proposed method was confirmed by in-vivo application on human plasma in real patient samples. Moreover, the stability of GFX in plasma was carefully tested at different conditions and compared to others in aqueous solution. PMID:25086419

  10. Generation in Human Plasma of Misfolded, Aggregation-Prone Electronegative Low Density Lipoprotein

    PubMed Central

    Greco, Giulia; Balogh, Gabor; Brunelli, Roberto; Costa, Graziella; De Spirito, Marco; Lenzi, Laura; Mei, Giampiero; Ursini, Fulvio; Parasassi, Tiziana

    2009-01-01

    Abstract Human plasma contains small amounts of a low density lipoprotein in which apoprotein is misfolded. Originally identified and isolated by means of anion-exchange chromatography, this component was subsequently described as electronegative low density lipoprotein (LDL)(−), with increased concentrations associated with elevated cardiovascular disease risk. It has been recognized recently as the trigger of LDL amyloidogenesis, which produces aggregates similar to subendothelial droplets observed in vivo in early atherogenesis. Although LDL(−) has been produced in vitro through various manipulations, the mechanisms involved in its generation in vivo remain obscure. By using a more physiological model, we demonstrate spontaneous, sustained and noticeable production of LDL(−) during incubation of unprocessed human plasma at 37°C. In addition to a higher fraction of amyloidogenic LDL(−), LDL purified from incubated plasma contains an increased level of lysophospholipids and free fatty acids; analysis of LDL lipids packing shows their loosening. As a result, during plasma incubation, lipid destabilization and protein misfolding take place, and aggregation-prone particles are generated. All these phenomena can be prevented by inhibiting calcium-dependent secretory phospholipases A2. Our plasma incubation model, without removal of reaction products, effectively shows a lipid-protein interplay in LDL, where lipid destabilization after lipolysis threatens the apoprotein's structure, which misfolds and becomes aggregation-prone. PMID:19619478