Sample records for human single chain

  1. Highly efficient recovery of functional single-chain Fv fragments from inclusion bodies overexpressed in Escherichia coli by controlled introduction of oxidizing reagent--application to a human single-chain Fv fragment.

    PubMed

    Tsumoto, K; Shinoki, K; Kondo, H; Uchikawa, M; Juji, T; Kumagai, I

    1998-10-01

    An improved and efficient refolding system for a single-chain antibody fragment (scFv) from inclusion bodies expressed in Escherichia coli was developed. Stepwise removal of denaturing reagent and controlled addition of oxidizing reagent were found to be the most effective conditions to achieve for almost complete recovery of functional monomeric scFv from inclusion bodies. Adding L-arginine to the refolding solution also increased the yield of refolded functional scFv. The single-chain Fv fragments of both a mouse anti-lysozyme monoclonal antibody, HyHEL10, and a human monoclonal antibody against the D antigen of the Rh blood group, D10, in solubilized inclusion bodies could be refolded under these conditions with yields of up to 95%. The refolding procedures developed in this study will contribute to providing a stable supply of large amounts of human single-chain Fv fragments.

  2. Potent Inhibition of Human Immunodeficiency Virus Type 1 Replication by an Intracellular Anti-Rev Single-Chain Antibody

    NASA Astrophysics Data System (ADS)

    Duan, Lingxun; Bagasra, Omar; Laughlin, Mark A.; Oakes, Joseph W.; Pomerantz, Roger J.

    1994-05-01

    Human immunodeficiency virus type 1 (HIV-1) has a complex life cycle, which has made it a difficult target for conventional therapeutic modalities. A single-chain antibody moiety, directed against the HIV-1 regulatory protein Rev, which rescues unspliced viral RNA from the nucleus of infected cells, has now been developed. This anti-Rev single-chain construct (SFv) consists of both light and heavy chain variable regions of an anti-Rev monoclonal antibody, which, when expressed intracellularly within human cells, potently inhibits HIV-1 replication. This intracellular SFv molecule is demonstrated to specifically antagonize Rev function. Thus, intracellular SFv expression, against a retroviral regulatory protein, may be useful as a gene therapeutic approach to combat HIV-1 infections.

  3. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets.

    PubMed

    Sun, Xiaoming; Saito, Masumichi; Sato, Yoshinori; Chikata, Takayuki; Naruto, Takuya; Ozawa, Tatsuhiko; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Takiguchi, Masafumi

    2012-01-01

    T-cell receptor (TCR) α/β chains are expressed on the surface of CD8(+) T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5'-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8(+) subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1) chimeric rearrangements of TCRδ-α, (2) control of TCRα/β transcription with multiple transcriptional initiation sites, (3) altered utilization of TCRα/β chains in CD8(+) subsets, and (4) strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8(+) T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains.

  4. Unbiased Analysis of TCRα/β Chains at the Single-Cell Level in Human CD8+ T-Cell Subsets

    PubMed Central

    Sun, Xiaoming; Saito, Masumichi; Sato, Yoshinori; Chikata, Takayuki; Naruto, Takuya; Ozawa, Tatsuhiko; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Takiguchi, Masafumi

    2012-01-01

    T-cell receptor (TCR) α/β chains are expressed on the surface of CD8+ T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5′-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8+ subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1) chimeric rearrangements of TCRδ-α, (2) control of TCRα/β transcription with multiple transcriptional initiation sites, (3) altered utilization of TCRα/β chains in CD8+ subsets, and (4) strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8+ T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains. PMID:22792299

  5. Controlled chain polymerisation and chemical soldering for single-molecule electronics.

    PubMed

    Okawa, Yuji; Akai-Kasaya, Megumi; Kuwahara, Yuji; Mandal, Swapan K; Aono, Masakazu

    2012-05-21

    Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules. In this feature article, developments in the controlled chain polymerisation of diacetylene compounds and the properties of polydiacetylene chains are summarised. Recent studies of "chemical soldering", a technique enabling the covalent connection of single polydiacetylene chains to single functional molecules, are also introduced. This represents a key step in advancing the development of single-molecule electronics.

  6. Single-Chain Folding of Synthetic Polymers: A Critical Update.

    PubMed

    Altintas, Ozcan; Barner-Kowollik, Christopher

    2015-11-23

    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Single-chain antibody-delivered Livin siRNA inhibits human malignant melanoma growth in vitro and in vivo.

    PubMed

    Wang, Hao; Yang, Yifei; Wang, Wei; Guan, Bing; Xun, Meng; Zhang, Hai; Wang, Ziling; Zhao, Yong

    2017-05-01

    Although gene therapy has brought new insights into the treatment of malignant melanoma, targeting delivery of nucleic acid which targets critical oncogene/anti-oncogene in vivo is still a bottleneck in the therapeutic application. Our previous in vitro studies have found that the oncogene Livin could serve as a potential molecular target by small interfering RNA for gene therapy of malignant melanoma. However, how to transport Livin small interfering RNA into malignant melanoma cells specifically and efficiently in vivo needs further investigation. Cumulative evidence has suggested that single-chain antibody-mediated small interfering RNA targeted delivery is an effective way to silence specific genes in human cancer cells. Indeed, this study designed a protamine-single-chain antibody fusion protein, anti-MM scFv-tP, to deliver Livin small interfering RNA into LiBr cells. Further experiments confirmed the induction of cell apoptosis and suppression of cell proliferation by anti-MM scFv-tP in LiBr cells, along with efficient silence of Livin gene both in vitro and in vivo. Altogether, our findings provide a feasible approach to transport Livin small interfering RNA to malignant melanoma cells which would be a new therapeutic strategy for combating malignant melanoma.

  8. Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery.

    PubMed

    Zhou, Li; Wang, Hsuan-Yao; Tong, Shanshan; Okamoto, Curtis T; Shen, Wei-Chiang; Zaro, Jennica L

    2017-02-01

    Fc fusion protein technology has been successfully used to generate long-acting forms of several protein therapeutics. In this study, a novel Fc-based drug carrier, single chain Fc-dimer (sc(Fc) 2 ), was designed to contain two Fc domains recombinantly linked via a flexible linker. Since the Fc dimeric structure is maintained through the flexible linker, the hinge region was omitted to further stabilize it against proteolysis and reduce FcγR-related effector functions. The resultant sc(Fc) 2 candidate preserved the neonatal Fc receptor (FcRn) binding. sc(Fc) 2 -mediated delivery was then evaluated using a therapeutic protein with a short plasma half-life, human growth hormone (hGH), as the protein drug cargo. This novel carrier protein showed a prolonged in vivo half-life and increased hGH-mediated bioactivity compared to the traditional Fc-based drug carrier. sc(Fc) 2 technology has the potential to greatly advance and expand the use of Fc-technology for improving the pharmacokinetics and bioactivity of protein therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    PubMed

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  10. Screening and identification of human ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes phage display library.

    PubMed

    Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei

    2016-07-01

    Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.

  11. Domain walls in single-chain magnets

    NASA Astrophysics Data System (ADS)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  12. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit

  13. Single-chain behavior of poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Ivanov, Momchil; Gross, Jonathan; Janke, Wolfhard

    2017-03-01

    Poly(3-hexylthiophene) (P3HT) has been in the focus of recent studies due to its promising future use in organic photovoltaics, electronics and photonics. Recent publications investigate the melt behavior of P3HT, its interaction with other molecules, mainly various fullerene derivates, and isolated chains interacting with substrates. In this work we lay the focus on the single-chain properties of P3HT in vacuum. We compare structural properties obtained from simulations using two coarse-grained models and an atomistic model of the polymer for various chain lengths and temperatures.

  14. Single chain variable fragment displaying M13 phage library functionalized magnetic microsphere-based protein equalizer for human serum protein analysis.

    PubMed

    Zhu, Guijie; Zhao, Peng; Deng, Nan; Tao, Dingyin; Sun, Liangliang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-09-18

    Single chain variable fragment (scFv) displaying the M13 phage library was covalently immobilized on magnetic microspheres and used as a protein equalizer for the treatment of human serum. First, scFv displaying M13 phage library functionalized magnetic microspheres (scFv@M13@MM) was incubated with a human serum sample. Second, captured proteins on scFv@M13@MM were eluted with 2 M NaCl, 50 mM glycine-hydrochloric acid (Gly-HCl), and 20% (v/v) acetonitrile with 0.5% (v/v) trifluoroacetic acid in sequence. Finally, the tightly bonded proteins were released by the treatment with thrombin. The eluates were first analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. Results indicated that the difference of protein concentration was reduced obviously in NaCl and Gly-HCl fractions compared with untreated human serum sample. The eluates were also digested with trypsin, followed by online 2D-strong cation exchange (SCX)-RPLC-ESI-MS/MS analysis. Results demonstrated that the number of proteins identified from an scFv@M13@MM treated human serum sample was improved 100% compared with that from the untreated sample. In addition, the spectral count of 10 high abundance proteins (serum albumin, serotransferrin, α-2-macroglobulin, α-1-antitrypsin, apolipoprotein B-100, Ig γ-2 chain C region, haptoglobin, hemopexin, α-1-acid glycoprotein 1, and α-2-HS-glycoprotein) decreased evidently after scFv@M13@MM treatment. All these results demonstrate that scFv@M13@MM could efficiently remove high-abundance proteins, reduce the protein concentration difference of human serum, and result in more protein identification.

  15. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice

    PubMed Central

    Dash, Pradyot; McClaren, Jennifer L.; Oguin, Thomas H.; Rothwell, William; Todd, Brandon; Morris, Melissa Y.; Becksfort, Jared; Reynolds, Cory; Brown, Scott A.; Doherty, Peter C.; Thomas, Paul G.

    2010-01-01

    Characterizing the TCRα and TCRβ chains expressed by T cells responding to a given pathogen or underlying autoimmunity helps in the development of vaccines and immunotherapies, respectively. However, our understanding of complementary TCRα and TCRβ chain utilization is very limited for pathogen- and autoantigen-induced immunity. To address this problem, we have developed a multiplex nested RT-PCR method for the simultaneous amplification of transcripts encoding the TCRα and TCRβ chains from single cells. This multiplex method circumvented the lack of antibodies specific for variable regions of mouse TCRα chains and the need for prior knowledge of variable region usage in the TCRβ chain, resulting in a comprehensive, unbiased TCR repertoire analysis with paired coexpression of TCRα and TCRβ chains with single-cell resolution. Using CD8+ CTLs specific for an influenza epitope recovered directly from the pneumonic lungs of mice, this technique determined that 25% of such effectors expressed a dominant, nonproductively rearranged Tcra transcript. T cells with these out-of-frame Tcra mRNAs also expressed an alternate, in-frame Tcra, whereas approximately 10% of T cells had 2 productive Tcra transcripts. The proportion of cells with biallelic transcription increased over the course of a response, a finding that has implications for immune memory and autoimmunity. This technique may have broad applications in mouse models of human disease. PMID:21135507

  16. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  17. A single-chain TALEN architecture for genome engineering.

    PubMed

    Sun, Ning; Zhao, Huimin

    2014-03-04

    Transcription-activator like effector nucleases (TALENs) are tailor-made DNA endonucleases and serve as a powerful tool for genome engineering. Site-specific DNA cleavage can be made by the dimerization of FokI nuclease domains at custom-targeted genomic loci, where a pair of TALENs must be positioned in close proximity with an appropriate orientation. However, the simultaneous delivery and coordinated expression of two bulky TALEN monomers (>100 kDa) in cells may be problematic to implement for certain applications. Here, we report the development of a single-chain TALEN (scTALEN) architecture, in which two FokI nuclease domains are fused on a single polypeptide. The scTALEN was created by connecting two FokI nuclease domains with a 95 amino acid polypeptide linker, which was isolated from a linker library by high-throughput screening. We demonstrated that scTALENs were catalytically active as monomers in yeast and human cells. The use of this novel scTALEN architecture should reduce protein payload, simplify design and decrease production cost.

  18. Development of a Novel Human Single Chain Antibody Against EGFRVIII Antigen by Phage Display Technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Akbari, Bahman; Ahdi Khosroshahi, Shiva

    2016-12-01

    Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.

  19. Equivalence of chain conformations in the surface region of a polymer melt and a single Gaussian chain under critical conditions.

    PubMed

    Skvortsov, A M; Leermakers, F A M; Fleer, G J

    2013-08-07

    In the melt polymer conformations are nearly ideal according to Flory's ideality hypothesis. Silberberg generalized this statement for chains in the interfacial region. We check the Silberberg argument by analyzing the conformations of a probe chain end-grafted at a solid surface in a sea of floating free chains of concentration φ by the self-consistent field (SCF) method. Apart from the grafting, probe chain and floating chains are identical. Most of the results were obtained for a standard SCF model with freely jointed chains on a six-choice lattice, where immediate step reversals are allowed. A few data were generated for a five-choice lattice, where such step reversals are forbidden. These coarse-grained models describe the equilibrium properties of flexible atactic polymer chains at the scale of the segment length. The concentration was varied over the whole range from φ = 0 (single grafted chain) to φ = 1 (probe chain in the melt). The number of contacts with the surface, average height of the free end and its dispersion, average loop and train length, tail size distribution, end-point and overall segment distributions were calculated for a grafted probe chain as a function of φ, for several chain lengths and substrate∕polymer interactions, which were varied from strong repulsion to strong adsorption. The computations show that the conformations of the probe chain in the melt do not depend on substrate∕polymer interactions and are very similar to the conformations of a single end-grafted chain under critical conditions, and can thus be described analytically. When the substrate∕polymer interaction is fixed at the value corresponding to critical conditions, all equilibrium properties of a probe chain are independent of φ, over the whole range from a dilute solution to the melt. We believe that the conformations of all flexible chains in the surface region of the melt are close to those of an appropriate single chain in critical conditions, provided

  20. Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    PubMed

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human scFv (single chain antibody fragment) libraries using a short linker (GGSSRSS) or a long linker (GGSSRSSSSGGGGSGGGG). In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final scFv products that are used for cloning.

  1. Development of sugar chain-binding single-chain variable fragment antibody to adult T-cell leukemia cells using glyco-nanotechnology and phage display method.

    PubMed

    Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo

    2018-04-01

    Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.

  2. Method for preparation of single chain antibodies

    DOEpatents

    Cheung, Nai-Kong V [New York, NY; Guo, Hong-fen [New York, NY

    2012-04-03

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  3. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.

    2018-01-01

    Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.

  4. Forced unfolding of single-chain polymeric nanoparticles.

    PubMed

    Hosono, Nobuhiko; Kushner, Aaron M; Chung, Jaeyoon; Palmans, Anja R A; Guan, Zhibin; Meijer, E W

    2015-06-03

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is applied to single-chain polymeric nanoparticles (SCPNs) to acquire information about the internal folding structure of SCPNs and inherent kinetic parameters of supramolecular self-assembling motifs embedded into the SCPNs. The SCPNs used here are polyacrylate-based polymers carrying 2-ureido-4-[1H]-pyrimidinone (UPy) or benzene-1,3,5-tricarboxamide (BTA) pendants that induce an intramolecular chain collapse into nanoparticles consisting of one polymer chain only via internal supramolecular cross-linking. The SCPN is stretched by an AFM cantilever to unfold mechanically, which allows measuring of force-extension profiles of the SCPNs. Consecutive peaks observed in the force profiles are attributed to rupture events of self-assembled UPy/BTA units in the SCPNs. The force profiles have been analyzed statistically for a series of polymers with different UPy/BTA incorporation densities. The results provide insights into the internal conformation of SCPNs, where the folding structure can be changed with the incorporation density of UPy/BTA. In addition, dynamic loading rate analysis allows the determination of kinetic parameters of BTA self-assembly, which has not been accessible by any other method. This study offers a rational tool for understanding the folding structure, kinetics, and pathway of two series of SCPNs.

  5. Comparison of chain sampling plans with single and double sampling plans

    NASA Technical Reports Server (NTRS)

    Stephens, K. S.; Dodge, H. F.

    1976-01-01

    The efficiency of chain sampling is examined through matching of operating characteristics (OC) curves of chain sampling plans (ChSP) with single and double sampling plans. In particular, the operating characteristics of some ChSP-0, 3 and 1, 3 as well as ChSP-0, 4 and 1, 4 are presented, where the number pairs represent the first and the second cumulative acceptance numbers. The fact that the ChSP procedure uses cumulative results from two or more samples and that the parameters can be varied to produce a wide variety of operating characteristics raises the question whether it may be possible for such plans to provide a given protection with less inspection than with single or double sampling plans. The operating ratio values reported illustrate the possibilities of matching single and double sampling plans with ChSP. It is shown that chain sampling plans provide improved efficiency over single and double sampling plans having substantially the same operating characteristics.

  6. Expression of single-chain Fv gene specific for gamma-seminoprotein by RTS and its biological activity identification.

    PubMed

    Han, Yuedong; Haun, Yi; Deng, Jinlan; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2006-01-01

    Fabricating a single-chain variable fragment specific for human seminoprotein is very important in antibody-directed enzyme prodrug therapy and NMR imaging for prostate cancer. Here a single-chain Fv specific for gamma-seminoprotein was expressed by RTS. Its activity and the efficiency of entry into prostate cancer cells are investigated by immunoprecipitation and Western blotting and immunofluorescent staining, as well as entry of conjugated magnetic beads into cells. Results showed that ScFv peptides specific for gamma-seminoprotein were successfully prepared, which can bind with the prostate cells specifically and can bring magnetic beads into prostate cancer cells within 15 min, the amount of magnetic beads inside prostate cancer cells increased as the culture time prolonged. ScFv-conjugated magnetic beads did not enter into control cells. In conclusion, the ScFv peptide against human gamma-seminoprotein with biological activity was successfully fabricated, which can take magnetic beads to prostate cancer cells specifically and not to the control cells. This ScFv peptide against human gamma-seminoprotein should be useful in improving the detection and therapy of prostate cancer at early stages and NMR imaging.

  7. Production of Recombinant Human scFv Against Tetanus Toxin Heavy Chain by Phage Display Technology.

    PubMed

    Khalili, Ehsan; Lakzaei, Mostafa; Rasaee, Mohhamad Javad; Aminian, Mahdi

    2015-10-01

    Tetanus, as a major cause of death in developing countries, is caused by tetanus neurotoxin. Recombinant antibodies against tetanus neurotoxin can be useful in tetanus management. Phage display of antibody fragments from immune human antibody libraries with single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. The aim of this study was the generation of a single chain fragment of variable region (scFv) library and selection of specific antibodies with high affinity against tetanus toxin. Immune human single chain fragment variable (HuscFv) antibody phagemid library was displayed on pIII of filamentous bacteriophage. Selection of scFv clones was performed against tetanus toxin antigens after three rounds of panning. The selected scFv clones were analyzed for inhibition of tetanus toxin binding to ganglioside GT1b. After the third round of panning, over 35 HuscFv phages specific for tetanus toxin were isolated from this library of which 15 clones were found to bind specifically to tetanus toxin. The selected HuscFv phages expressed as a soluble HuscFv peptide and some clones showed positive signals against tetanus toxin. We found that six HuscFv clones inhibit toxin binding to ganglioside GT1b. These selected antibodies can be used in the management of tetanus.

  8. Covalent bond force profile and cleavage in a single polymer chain

    NASA Astrophysics Data System (ADS)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  9. Molecular dynamics simulation of the folding of single alkane chains with different lengths on single-walled carbon nanotubes and graphene.

    PubMed

    Liu, Yan Fang; Yang, Hua; Zhang, Hui

    2018-05-31

    Chain folding is an important step during polymer crystallization. In order to study the effects of the surface on chain folding, molecular dynamics simulations of the folding of different alkane chains on three kinds of single-walled carbon nanotubes (SWCNTs) and graphene were performed. The folding behaviors of the single alkane chains on these surfaces were found to be different from their folding behaviors in vacuum. The end-to-end distances of the chains were calculated to explore the chain folding. An increasing tendency to fold into two or more stems with increasing alkane chain length was observed. This result indicates that the occurrence and the stability of chain folding are related to the surface curvature, the diameter of the SWCNT, and surface texture. In addition, the angle between the direction of the alkane chain segment and the direction of the surface texture was measured on different surfaces.

  10. Development and Evaluation of an Optimal Human Single-Chain Variable Fragment-Derived BCMA-Targeted CAR T Cell Vector.

    PubMed

    Smith, Eric L; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J; Purdon, Terence J; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C; Almo, Steven C; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J

    2018-06-06

    B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  11. Toward Single Atom Chains with Exfoliated Tellurium.

    PubMed

    Churchill, Hugh O H; Salamo, Gregory J; Yu, Shui-Qing; Hironaka, Takayuki; Hu, Xian; Stacy, Jeb; Shih, Ishiang

    2017-08-10

    We demonstrate that the atom chain structure of Te allows it to be exfoliated as ultra-thin flakes and nanowires. Atomic force microscopy of exfoliated Te shows that thicknesses of 1-2 nm and widths below 100 nm can be exfoliated with this method. The Raman modes of exfoliated Te match those of bulk Te, with a slight shift (4 cm -1 ) due to a hardening of the A 1 and E modes. Polarized Raman spectroscopy is used to determine the crystal orientation of exfoliated Te flakes. These experiments establish exfoliation as a route to achieve nanoscale trigonal Te while also demonstrating the potential for fabrication of single atom chains of Te.

  12. Cloning and characterization of an adenoviral vector for highly efficient and doxycycline – suppressible expression of bioactive human singlechain interleukin 12 in colon cancer

    PubMed Central

    Wulff, Holger; Krieger, Thorsten; Krüger, Karen; Stahmer, Ingrid; Thaiss, Friedrich; Schäfer, Hansjörg; Block, Andreas

    2007-01-01

    Background Interleukin-12 (IL-12) is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12. Results High gene expression was obtained utilizing the VP16 herpes simplex transactivator. Strong regulation of gene expression was realized by fusion of the VP16 to a tetracycline repressor with binding of the fusion protein to a flanking tetracycline operator and further enhanced by auto-regulated expression of its fusion gene within a bicistronic promoter construct. Infection of human colon cancer cells (HT29) at a multiplicity of infection (m.o.i.) of 10 resulted in the production of up to 8000 ng/106 cells in 48 h, thus exceeding any published vector system so far. Doxycycline concentrations as low as 30 ng/ml resulted in up to 5000-fold suppression, enabling significant reduction of gene expression in a possible clinical setting. Bioactivity of the human single-chain IL-12 was similar to purified human heterodimeric IL-12. Frozen sections of human colon cancer showed high expression of the coxsackie adenovirus receptor with significant production of human single chain IL-12 in colon cancer biopsies after infection with 3*107 p.f.u. Ad.3r-scIL12. Doxycycline mediated suppression of gene expression was up to 9000-fold in the infected colon cancer tissue. Conclusion VP16 transactivator-mediated and

  13. Single-copy entanglement in critical quantum spin chains

    NASA Astrophysics Data System (ADS)

    Eisert, J.; Cramer, M.

    2005-10-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results—which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains—are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ˜(1/6)log2(L) , and contrast it with the block entropy.

  14. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations.

    PubMed

    Song, Yu; Feng, Wei; Liu, Kai; Yang, Peng; Zhang, Wenke; Zhang, Xi

    2013-03-26

    Understanding the folding pattern of a single polymer chain within its single crystal will shed light on the mechanism of crystallization. Here, we use the combined techniques of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations to study the folding pattern of a polyethylene oxide (PEO) chain in its single crystal. Our results show that the folding pattern of a PEO chain in the crystal formed in dilute solution follows the adjacent re-entry folding model. While in the crystal obtained from the melt, the nonadjacent folding with large and irregular loops contributes to big force fluctuations in the force-extension curves. The method established here can offer a novel strategy to directly unravel the chain-folding pattern of polymer single crystals at single-molecule level.

  15. Expression, production, and renaturation of a functional single-chain variable antibody fragment (scFv) against human ICAM-1

    PubMed Central

    Sun, H.; Wu, G.M.; Chen, Y.Y.; Tian, Y.; Yue, Y.H.; Zhang, G.L.

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is an important factor in the progression of inflammatory responses in vivo. To develop a new anti-inflammatory drug to block the biological activity of ICAM-1, we produced a monoclonal antibody (Ka=4.19×10−8 M) against human ICAM-1. The anti-ICAM-1 single-chain variable antibody fragment (scFv) was expressed at a high level as inclusion bodies in Escherichia coli. We refolded the scFv (Ka=2.35×10−7 M) by ion-exchange chromatography, dialysis, and dilution. The results showed that column chromatography refolding by high-performance Q Sepharose had remarkable advantages over conventional dilution and dialysis methods. Furthermore, the anti-ICAM-1 scFv yield of about 60 mg/L was higher with this method. The purity of the final product was greater than 90%, as shown by denaturing gel electrophoresis. Enzyme-linked immunosorbent assay, cell culture, and animal experiments were used to assess the immunological properties and biological activities of the renatured scFv. PMID:24919171

  16. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel.

    PubMed

    Ji, Xiaonan; Shen, Yanli; Sun, Hao; Gao, Xiangdong

    2016-08-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.

  17. Single chain technology: Toward the controlled synthesis of polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Lyon, Christopher

    A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross

  18. Earlinet single calculus chain: new products overview

    NASA Astrophysics Data System (ADS)

    D'Amico, Giuseppe; Mattis, Ina; Binietoglou, Ioannis; Baars, Holger; Mona, Lucia; Amato, Francesco; Kokkalis, Panos; Rodríguez-Gómez, Alejandro; Soupiona, Ourania; Kalliopi-Artemis, Voudouri

    2018-04-01

    The Single Calculus Chain (SCC) is an automatic and flexible tool to analyze raw lidar data using EARLINET quality assured retrieval algorithms. It has been already demonstrated the SCC can retrieve reliable aerosol backscatter and extinction coefficient profiles for different lidar systems. In this paper we provide an overview of new SCC products like particle linear depolarization ratio, cloud masking, aerosol layering allowing relevant improvements in the atmospheric aerosol characterization.

  19. Single cell digital polymerase chain reaction on self-priming compartmentalization chip.

    PubMed

    Zhu, Qiangyuan; Qiu, Lin; Xu, Yanan; Li, Guang; Mu, Ying

    2017-01-01

    Single cell analysis provides a new framework for understanding biology and disease, however, an absolute quantification of single cell gene expression still faces many challenges. Microfluidic digital polymerase chain reaction (PCR) provides a unique method to absolutely quantify the single cell gene expression, but only limited devices are developed to analyze a single cell with detection variation. This paper describes a self-priming compartmentalization (SPC) microfluidic digital polymerase chain reaction chip being capable of performing single molecule amplification from single cell. The chip can be used to detect four single cells simultaneously with 85% of sample digitization. With the optimized protocol for the SPC chip, we first tested the ability, precision, and sensitivity of our SPC digital PCR chip by assessing β-actin DNA gene expression in 1, 10, 100, and 1000 cells. And the reproducibility of the SPC chip is evaluated by testing 18S rRNA of single cells with 1.6%-4.6% of coefficient of variation. At last, by detecting the lung cancer related genes, PLAU gene expression of A549 cells at the single cell level, the single cell heterogeneity was demonstrated. So, with the power-free, valve-free SPC chip, the gene copy number of single cells can be quantified absolutely with higher sensitivity, reduced labor time, and reagent. We expect that this chip will enable new studies for biology and disease.

  20. Single cell digital polymerase chain reaction on self-priming compartmentalization chip

    PubMed Central

    Zhu, Qiangyuan; Qiu, Lin; Xu, Yanan; Li, Guang; Mu, Ying

    2017-01-01

    Single cell analysis provides a new framework for understanding biology and disease, however, an absolute quantification of single cell gene expression still faces many challenges. Microfluidic digital polymerase chain reaction (PCR) provides a unique method to absolutely quantify the single cell gene expression, but only limited devices are developed to analyze a single cell with detection variation. This paper describes a self-priming compartmentalization (SPC) microfluidic digital polymerase chain reaction chip being capable of performing single molecule amplification from single cell. The chip can be used to detect four single cells simultaneously with 85% of sample digitization. With the optimized protocol for the SPC chip, we first tested the ability, precision, and sensitivity of our SPC digital PCR chip by assessing β-actin DNA gene expression in 1, 10, 100, and 1000 cells. And the reproducibility of the SPC chip is evaluated by testing 18S rRNA of single cells with 1.6%–4.6% of coefficient of variation. At last, by detecting the lung cancer related genes, PLAU gene expression of A549 cells at the single cell level, the single cell heterogeneity was demonstrated. So, with the power-free, valve-free SPC chip, the gene copy number of single cells can be quantified absolutely with higher sensitivity, reduced labor time, and reagent. We expect that this chip will enable new studies for biology and disease. PMID:28191267

  1. Internal friction of single polypeptide chains at high stretch.

    PubMed

    Khatri, Bhavin S; Byrne, Katherine; Kawakami, Masaru; Brockwell, David J; Smith, D Alastair; Radford, Sheena E; McLeish, Tom C B

    2008-01-01

    Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.

  2. Design of an Active Ultrastable Single-chain Insulin Analog

    PubMed Central

    Hua, Qing-xin; Nakagawa, Satoe H.; Jia, Wenhua; Huang, Kun; Phillips, Nelson B.; Hu, Shi-quan; Weiss, Michael A.

    2008-01-01

    Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (<3 residues) prevent induced fit upon receptor binding and so are essentially without biological activity. Substantial but incomplete activity can be regained with increasing linker length. Here, we describe the design, structure, and function of a single-chain insulin analog (SCI-57) containing a 6-residue linker (GGGPRR). Native receptor-binding affinity (130 ± 8% relative to the wild type) is achieved as hindrance by the linker is offset by favorable substitutions in the insulin moiety. The thermodynamic stability of SCI-57 is markedly increased (ΔΔGu = 0.7 ± 0.1 kcal/mol relative to the corresponding two-chain analog and 1.9 ± 0.1 kcal/mol relative to wild-type insulin). Analysis of inter-residue nuclear Overhauser effects demonstrates that a native-like fold is maintained in solution. Surprisingly, the glycine-rich connecting segment folds against the insulin moiety: its central Pro contacts ValA3 at the edge of the hydrophobic core, whereas the final Arg extends the A1-A8 α-helix. Comparison between SCI-57 and its parent two-chain analog reveals striking enhancement of multiple native-like nuclear Overhauser effects within the tethered protein. These contacts are consistent with wild-type crystal structures but are ordinarily attenuated in NMR spectra of two-chain analogs, presumably due to conformational fluctuations. Linker-specific damping of fluctuations provides evidence for the intrinsic flexibility of an insulin monomer. In addition to their biophysical interest, ultrastable SCIs may enhance the safety and efficacy of insulin replacement therapy in the developing world. PMID:18332129

  3. Crosslinked polymer nanoparticles containing single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; Palacios, Rodrigo E.

    2017-06-01

    Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.

  4. Effects of Water on the Single-Chain Elasticity of Poly(U) RNA.

    PubMed

    Luo, Zhonglong; Cheng, Bo; Cui, Shuxun

    2015-06-09

    Water, the dominant component under the physiological condition, is a complicated solvent which greatly affects the properties of solute molecules. Here, we utilize atomic force microscope-based single-molecule force spectroscopy to study the influence of water on the single-molecule elasticity of an unstructured single-stranded RNA (poly(U)). In nonpolar solvents, RNA presents its inherent elasticity, which is consistent with the theoretical single-chain elasticity calculated by quantum mechanics calculations. In aqueous buffers, however, an additional energy of 1.88 kJ/mol·base is needed for the stretching of the ssRNA chain. This energy is consumed by the bound water rearrangement (Ew) during chain elongation. Further experimental results indicate that the Ew value is uncorrelated to the salt concentrations and stretching velocity. The results obtained in an 8 M guanidine·HCl solution provide more evidence that the bound water molecules around RNA give rise to the observed deviation between aqueous and nonaqueous environments. Compared to synthetic water-soluble polymers, the value of Ew of RNA is much lower. The weak interference of water is supposed to be the precondition for the RNA secondary structure to exist in aqueous solution.

  5. Population pharmacokinetics of recombinant coagulation factor VIII-SingleChain in patients with severe hemophilia A.

    PubMed

    Zhang, Y; Roberts, J; Tortorici, M; Veldman, A; St Ledger, K; Feussner, A; Sidhu, J

    2017-06-01

    Essentials rVIII-SingleChain is a unique recombinant factor VIII (FVIII) molecule. A population pharmacokinetic model was based on FVIII activity of severe hemophilia A patients. The model was used to simulate factor VIII activity-time profiles for various dosing scenarios. The model supports prolonged dosing of rVIII-SingleChain with intervals of up to twice per week. Background Single-chain recombinant coagulation factor VIII (rVIII-SingleChain) is a unique recombinant coagulation factor VIII molecule. Objectives To: (i) characterize the population pharmacokinetics (PK) of rVIII-SingleChain in patients with severe hemophilia A; (ii) identify correlates of variability in rVIII-SingleChain PK; and (iii) simulate various dosing scenarios of rVIII-SingleChain. Patients/Methods A population PK model was developed, based on FVIII activity levels of 130 patients with severe hemophilia A (n = 91 for ≥ 12-65 years; n = 39 for < 12 years) who had participated in a single-dose PK investigation with rVIII-SingleChain 50 IU kg -1 . PK sampling was performed for up to 96 h. Results A two-compartment population PK model with first-order elimination adequately described FVIII activity. Body weight and predose level of von Willebrand factor were significant covariates on clearance, and body weight was a significant covariate on the central distribution volume. Simulations using the model with various dosing scenarios estimated that > 85% and > 93% of patients were predicted to maintain FVIII activity level above 1 IU dL -1 , at all times with three-times-weekly dosing (given on days 0, 2, and 4.5) at the lowest (20 IU kg -1 ) and highest (50 IU kg -1 ) doses, respectively. For twice weekly dosing (days 0 and 3.5) of 50 IU kg -1 rVIII-SingleChain, 62-80% of patients across all ages were predicted to maintain a FVIII activity level above 1 IU dL -1 at day 7. Conclusions The population PK model adequately characterized rVIII-SingleChain PK, and the model

  6. Methods of preparing and using single chain anti-tumor antibodies

    DOEpatents

    Cheung, Nai-Kong; Guo, Hong-Fen

    2010-02-23

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  7. High Electrical Conductivity of Single Metal-Organic Chains.

    PubMed

    Ares, Pablo; Amo-Ochoa, Pilar; Soler, José M; Palacios, Juan José; Gómez-Herrero, Julio; Zamora, Félix

    2018-05-01

    Molecular wires are essential components for future nanoscale electronics. However, the preparation of individual long conductive molecules is still a challenge. MMX metal-organic polymers are quasi-1D sequences of single halide atoms (X) bridging subunits with two metal ions (MM) connected by organic ligands. They are excellent electrical conductors as bulk macroscopic crystals and as nanoribbons. However, according to theoretical calculations, the electrical conductance found in the experiments should be even higher. Here, a novel and simple drop-casting procedure to isolate bundles of few to single MMX chains is demonstrated. Furthermore, an exponential dependence of the electrical resistance of one or two MMX chains as a function of their length that does not agree with predictions based on their theoretical band structure is reported. This dependence is attributed to strong Anderson localization originated by structural defects. Theoretical modeling confirms that the current is limited by structural defects, mainly vacancies of iodine atoms, through which the current is constrained to flow. Nevertheless, measurable electrical transport along distances beyond 250 nm surpasses that of all other molecular wires reported so far. This work places in perspective the role of defects in 1D wires and their importance for molecular electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biodiversity on island chains: Neutral model simulations

    NASA Astrophysics Data System (ADS)

    Warren, Patrick B.

    2010-11-01

    A neutral ecology model is simulated on an island chain, in which neighboring islands can exchange individuals but only the first island is able to receive immigrants from a metacommunity. It is found by several measures that α -diversity decreases along the chain. Subtle changes in taxon abundance distributions can be detected when islands in the chain are compared to diversity-matched single islands. The island chain is found to have unexpectedly rich dynamics. Significant β -diversity correlations are found between islands in the chain, which are absent between diversity-matched single islands. The results potentially apply to human microbial biodiversity and biogeography and suggest that measurements of interindividual and intraindividual β -diversity may give insights into microbial community assembly mechanisms.

  9. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    NASA Astrophysics Data System (ADS)

    Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.

  10. The story of a unique molecule in hemophilia A: recombinant single-chain factor VIII.

    PubMed

    Pabinger-Fasching, Ingrid

    2016-05-01

    For patients with hemophilia A, replacement of deficient factor VIII (FVIII) using plasma-derived or recombinant FVIII (rFVIII) products to restore hemostatic control can reduce bleeding complications and preserve musculoskeletal function. Despite the clinical availability of several of these products, challenges remain in the treatment of hemophilia A, the most notable of which are the risk of inhibitor development and the limited half-life of existing FVIII concentrates, which can make prophylaxis burdensome for patients. The use of recombinant protein technology may lead to novel FVIII products with improved properties. This article describes the story of a unique recombinant FVIII protein, rVIII-SingleChain, which is currently in development. In contrast to native FVIII and other commercially available rFVIII preparations, rVIII-SingleChain uses a strong, covalent bond to connect the light and heavy chains, thereby creating a stable, single-chain rFVIII. It has enhanced intrinsic stability, better integrity after reconstitution, and a higher binding affinity to von Willebrand factor. The physicochemical profile of rVIII-SingleChain and preclinical data on its activity and phamacokinetics strengthened the rationale for its clinical investigation. Available data from the AFFINITY clinical trial program are promising; indicating that it has good hemostatic efficacy when used on demand, for prophylaxis, and in the surgical setting, and is also very well tolerated. A pediatric study and an extension study are ongoing as part of the AFFINITY program. © 2016 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  11. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin-Xu; School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE 68583; Mellon, Michael

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene frommore » Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.« less

  12. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  13. Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies.

    PubMed

    Harris, Katherine E; Aldred, Shelley Force; Davison, Laura M; Ogana, Heather Anne N; Boudreau, Andrew; Brüggemann, Marianne; Osborn, Michael; Ma, Biao; Buelow, Benjamin; Clarke, Starlynn C; Dang, Kevin H; Iyer, Suhasini; Jorgensen, Brett; Pham, Duy T; Pratap, Payal P; Rangaswamy, Udaya S; Schellenberger, Ute; van Schooten, Wim C; Ugamraj, Harshad S; Vafa, Omid; Buelow, Roland; Trinklein, Nathan D

    2018-01-01

    We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.

  14. Choice between Single and Multiple Reinforcers in Concurrent-Chains Schedules

    ERIC Educational Resources Information Center

    Mazur, James E.

    2006-01-01

    Pigeons responded on concurrent-chains schedules with equal variable-interval schedules as initial links. One terminal link delivered a single reinforcer after a fixed delay, and the other terminal link delivered either three or five reinforcers, each preceded by a fixed delay. Some conditions included a postreinforcer delay after the single…

  15. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  16. Chain-Length-Dependent Exciton Dynamics in Linear Oligothiophenes Probed Using Ensemble and Single-Molecule Spectroscopy.

    PubMed

    Kim, Tae-Woo; Kim, Woojae; Park, Kyu Hyung; Kim, Pyosang; Cho, Jae-Won; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho

    2016-02-04

    Exciton dynamics in π-conjugated molecular systems is highly susceptible to conformational disorder. Using time-resolved and single-molecule spectroscopic techniques, the effect of chain length on the exciton dynamics in a series of linear oligothiophenes, for which the conformational disorder increased with increasing chain length, was investigated. As a result, extraordinary features of the exciton dynamics in longer-chain oligothiophene were revealed. Ultrafast fluorescence depolarization processes were observed due to exciton self-trapping in longer and bent chains. Increase in exciton delocalization during dynamic planarization processes was also observed in the linear oligothiophenes via time-resolved fluorescence spectra but was restricted in L-10T because of its considerable conformational disorder. Exciton delocalization was also unexpectedly observed in a bent chain using single-molecule fluorescence spectroscopy. Such delocalization modulates the fluorescence spectral shape by attenuating the 0-0 peak intensity. Collectively, these results provide significant insights into the exciton dynamics in conjugated polymers.

  17. Differentiation between Shallow and Deep Charge Trap States on Single Poly(3-hexylthiophene) Chains through Fluorescence Photon Statistics.

    PubMed

    Grußmayer, Kristin S; Steiner, Florian; Lupton, John M; Herten, Dirk-Peter; Vogelsang, Jan

    2015-12-01

    Blinking of the photoluminescence (PL) emitted from individual conjugated polymer chains is one of the central observations made by single-molecule spectroscopy (SMS). Important information, for example regarding excitation energy transfer, can be extracted by evaluating dynamic quenching. However, the nature of trap states, which are responsible for PL quenching, often remains obscured. We present a detailed investigation of the photon statistics of single poly(3-hexylthiophene) (P3HT) chains obtained by SMS. The photon statistics provide a measure of the number and brightness of independently emitting areas on a single chain. These observables can be followed during blinking. A decrease in PL intensity is shown to be correlated with either 1) a decrease in the average brightness of the emitting sites; or 2) a decrease in the number of emitting regions. We attribute these phenomena to the formation of 1) shallow charge traps, which can weakly affect all emitting areas of a single chain at once; and 2) deep traps, which have a strong effect on small regions within the single chains. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamical behavior of a single polymer chain under nanometric confinement

    NASA Astrophysics Data System (ADS)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  19. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.

    PubMed

    Li, Isaac T S; Walker, Gilbert C

    2010-05-12

    The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.

  20. Pricing and ordering policies for price-dependent demand in a supply chain of a single retailer and a single manufacturer

    NASA Astrophysics Data System (ADS)

    Kim, Jungkyu; Hong, Yushin; Kim, Taebok

    2011-01-01

    This article discusses joint pricing and ordering policies for price-dependent demand in a supply chain consisting of a single retailer and a single manufacturer. The retailer places orders for products according to an EOQ policy and the manufacturer produces them on a lot-for-lot basis. Four mechanisms with differing levels of coordination are presented. Mathematical models are formulated and solution procedures are developed to determine the optimal retail prices and order quantities. Through extensive numerical experiments, we analyse and compare the behaviours and characteristics of the proposed mechanisms, and find that enhancing the level of coordination has important benefits for the supply chain.

  1. High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris.

    PubMed

    Zarei, Najmeh; Vaziri, Behrouz; Shokrgozar, Mohammad Ali; Mahdian, Reza; Fazel, Ramin; Khalaj, Vahid

    2014-12-01

    Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies.

  2. The NASA Human Space Flight Supply Chain, Current and Future

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  3. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    PubMed

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  4. Primary alcohols activate human TRPA1 channel in a carbon chain length-dependent manner.

    PubMed

    Komatsu, Tomoko; Uchida, Kunitoshi; Fujita, Fumitaka; Zhou, Yiming; Tominaga, Makoto

    2012-04-01

    Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel that is mainly expressed in primary nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent compounds such as mustard oil and cinnamaldehyde, and intracellular alkalization. Here, we show that primary alcohols, which have been reported to cause skin, eye or nasal irritation, activate human TRPA1 (hTRPA1). We measured intracellular Ca(2+) changes in HEK293 cells expressing hTRPA1 induced by 1 mM primary alcohols. Higher alcohols (1-butanol to 1-octanol) showed Ca(2+) increases proportional to the carbon chain length. In whole-cell patch-clamp recordings, higher alcohols (1-hexanol to 1-octanol) activated hTRPA1 and the potency increased with the carbon chain length. Higher alcohols evoked single-channel opening of hTRPA1 in an inside-out configuration. In addition, cysteine at 665 in the N terminus and histidine at 983 in the C terminus were important for hTRPA1 activation by primary alcohols. Furthermore, straight-chain secondary alcohols increased intracellular Ca(2+) concentrations in HEK293 cells expressing hTRPA1, and both primary and secondary alcohols showed hTRPA1 activation activities that correlated highly with their octanol/water partition coefficients. On the other hand, mouse TRPA1 did not show a strong response to 1-hexanol or 1-octanol, nor did these alcohols evoke significant pain in mice. We conclude that primary and secondary alcohols activate hTRPA1 in a carbon chain length-dependent manner. TRPA1 could be a sensor of alcohols inducing skin, eye and nasal irritation in human.

  5. The Complete Nucleotide Sequence of the Human Immunoglobulin Heavy Chain Variable Region Locus

    PubMed Central

    Matsuda, Fumihiko; Ishii, Kazuo; Bourvagnet, Patrice; Kuma, Kei-ichi; Hayashida, Hidenori; Miyata, Takashi; Honjo, Tasuku

    1998-01-01

    The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region. PMID:9841928

  6. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    PubMed Central

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents. PMID:27713563

  7. From single magnetic adatoms on superconductors to coupled spin chains

    NASA Astrophysics Data System (ADS)

    Franke, Katharina J.

    Magnetic adsorbates on conventional s-wave superconductors lead to exchange interactions that induce Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Here, we employ tunneling spectroscopy at 1.1 K to investigate magnetic atoms and chains on superconducting Pb surfaces. We show that individual Manganese (Mn) atoms give rise to a distinct number of YSR-states. The single-atom junctions are stable over several orders of magnitude in conductance. We identify single-electron tunneling as well as Andreev processes. When the atoms are brought into sufficiently close distance, the Shiba states hybridize, thus giving rise to states with bonding and anti-bonding character. It has been shown that the Pb(110) surface supports the self-assembly of Fe chains, which exhibit fingerprints of Majorana bound states. Using superconducting tips, we resolve a rich subgap structure including peaks at zero energy and low-energy resonances, which overlap with the putative Majorana states. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through collaborative research Grant Sfb 658, and through Grant FR2726/4, as well by the European Research Council through Consolidator Grant NanoSpin.

  8. High-throughput microfluidic single-cell digital polymerase chain reaction.

    PubMed

    White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L

    2013-08-06

    Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.

  9. Human genetic mapping studies using single sperm typing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubert, R.S.

    1993-01-01

    Sperm typing is a powerful technique that uses the polymerase chain reaction (PCR) to analyze DNA sequences within single sperm cells in order to construct genetic maps. This methodology was used to estimate the recombination fraction between D3S2 and D3S2 which was found to be 0.28 (95% CI = 0.20-0.36). Pedigree analysis was unable to determine genetic distance between these two markers due to their low informativeness. We also showed that dinucleotide and tetranucleotide repeat polymorphisms can be analyzed in single cells without using radioactivity or denaturing gels. This provides a rich new source of DANA polymorphisms for genetic mappingmore » by sperm typing. In addition, an approach that uses the sperm typing methodology is described that can define the physical boundaries of meiotic recombination hotspots. The hotspot at 4p16.3 near the Huntington disease gene was localized to an interval between D4S10 and D4S126. These studies demonstrated the usefulness of sperm typing as a tool for the study of human genetic.« less

  10. Genetic modification of mesenchymal stem cells to express a single-chain antibody against EGFRvIII on the cell surface.

    PubMed

    Balyasnikova, Irina V; Franco-Gou, Rosa; Mathis, J Michael; Lesniak, Maciej S

    2010-06-01

    Human adult mesenchymal stem cells (hMSCs) are under active investigation as cellular carriers for gene therapy. hMSCs possess natural tropism toward tumours; however, the targeting of hMSCs to specific cell populations within tumours is unexplored. In the case of glioblastoma multiforme (GBM), at least half of the tumours express EGFRvIII on the cell surface, an ideal target for antibody-mediated gene/drug delivery. In this study, we investigated the feasibility of genetically modifying hMSCs to express a single-chain antibody (scFv) to EGFRvIII on their surfaces. Nucleofection was used to transfect hMSCs with cDNA encoding scFv EGFRvIII fused with PDGFR or human B7-1 transmembrane domains. The expression of scFv EGFRvIII on the cell surface was assessed by FACS. A stable population of scFv EGFRvIII-expressing hMSCs was selected, based on antibiotic resistance, and enriched using FACS. We found that nucleofection allows the efficient expression of scFv EGFRvIII on the cell surface of hMSCs. hMSCs transfected with the construct encoding scFv EGFRvIII as a fusion with PDGFRtm showed scFv EGFRvIII expression in up to 86% of cells. Most importantly, human MSCs expressing scFv against EGFRvIII demonstrated enhanced binding to U87-EGFRvIII cells in vitro and significantly increased retention in human U87-EGFRvIII-expressing tumours in vivo. In summary, we provide the first conclusive evidence of genetic modification of hMSCs with a single-chain antibody against an antigen expressed on the surface of tumour cells, thereby opening up a new venue for enhanced delivery of gene therapy applications in the context of malignant brain cancer. Copyright 2009 John Wiley & Sons, Ltd.

  11. Optical Properties of a Single Carbon Chain-Doped Silicene Nanoribbon

    NASA Astrophysics Data System (ADS)

    Lu, Dao-Bang; Song, Yu-Ling; Huang, Xiao-yu; Wang, Chong

    2018-05-01

    Using first-principles spin polarization density function theory calculations, we have studied the electronic and optical properties of zigzag-edge silicene nanoribbons (ZSiNRs) doped with a single carbon chain. Because of the doped carbon chain, there are several defect states in the band structures of ZSiNRs across the Fermi level, and the ferromagnetic ground state is metallic. The dielectric functions in all three dimensions are completely different from each other, and thus the system exhibits strong optical anisotropism. The carbon chain influenced the dielectric functions most at low energy. The first peak in the E//x direction of the dielectric spectrum exhibits a significant blueshift, and its value has changed as well. The main absorption wavelength depends on the polarization direction of the incident light, but occurs within the UV region for all polarization directions. The peaks of the energy loss spectra correspond to the trailing edges in the reflectivity spectrum, and the highest peak corresponds to a plasmon frequency. Our results could be useful for investigating nanodevices based on silicene nanoribbons.

  12. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells

    PubMed Central

    Knies, Diana; Klobuch, Sebastian; Xue, Shao-An; Birtel, Matthias; Echchannaoui, Hakim; Yildiz, Oezlem; Omokoko, Tana; Guillaume, Philippe; Romero, Pedro; Stauss, Hans; Sahin, Ugur; Herr, Wolfgang; Theobald, Matthias; Thomas, Simone; Voss, Ralf-Holger

    2016-01-01

    Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells. PMID:27028870

  13. A unique substituted Co(II)-formate coordination framework exhibits weak ferromagnetic single-chain-magnet like behavior.

    PubMed

    Zhao, Jiong-Peng; Yang, Qian; Liu, Zhong-Yi; Zhao, Ran; Hu, Bo-Wen; Du, Miao; Chang, Ze; Bu, Xian-He

    2012-07-04

    A magnetic isolated chain-based substituted cobalt-formate framework was obtained with isonicotine as a spacer. In the chain, canted antiferromagnetic interactions exist in between the Co(II) ions, and slow magnetic relaxation is detected at low temperature. For the block effects of the isonicotine ligands, the complex could be considered as a peculiar example of a weak ferromagnetic single-chain-magnet.

  14. Analysis of p53 gene mutations in human gliomas by polymerase chain reaction-based single-strand conformation polymorphism and DNA sequencing.

    PubMed

    Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P

    1994-03-01

    Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Dispersion relations for circular single and double dusty plasma chains

    NASA Astrophysics Data System (ADS)

    Tkachenko, D. V.; Sheridan, T. E.; Misko, V. R.

    2011-10-01

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.

  16. Spin canting in a Dy-based single-chain magnet with dominant next-nearest-neighbor antiferromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Bernot, K.; Luzon, J.; Caneschi, A.; Gatteschi, D.; Sessoli, R.; Bogani, L.; Vindigni, A.; Rettori, A.; Pini, M. G.

    2009-04-01

    We investigate theoretically and experimentally the static magnetic properties of single crystals of the molecular-based single-chain magnet of formula [Dy(hfac)3NIT(C6H4OPh)]∞ comprising alternating Dy3+ and organic radicals. The magnetic molar susceptibility χM displays a strong angular variation for sample rotations around two directions perpendicular to the chain axis. A peculiar inversion between maxima and minima in the angular dependence of χM occurs on increasing temperature. Using information regarding the monomeric building block as well as an ab initio estimation of the magnetic anisotropy of the Dy3+ ion, this “anisotropy-inversion” phenomenon can be assigned to weak one-dimensional ferromagnetism along the chain axis. This indicates that antiferromagnetic next-nearest-neighbor interactions between Dy3+ ions dominate, despite the large Dy-Dy separation, over the nearest-neighbor interactions between the radicals and the Dy3+ ions. Measurements of the field dependence of the magnetization, both along and perpendicularly to the chain, and of the angular dependence of χM in a strong magnetic field confirm such an interpretation. Transfer-matrix simulations of the experimental measurements are performed using a classical one-dimensional spin model with antiferromagnetic Heisenberg exchange interaction and noncollinear uniaxial single-ion anisotropies favoring a canted antiferromagnetic spin arrangement, with a net magnetic moment along the chain axis. The fine agreement obtained with experimental data provides estimates of the Hamiltonian parameters, essential for further study of the dynamics of rare-earth-based molecular chains.

  17. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  18. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    PubMed Central

    Balogh, Zoltán; Makk, Péter

    2015-01-01

    Summary We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference. PMID:26199840

  19. Alternative types of molecule-decorated atomic chains in Au-CO-Au single-molecule junctions.

    PubMed

    Balogh, Zoltán; Makk, Péter; Halbritter, András

    2015-01-01

    We investigate the formation and evolution of Au-CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.

  20. Force Induced Globule-to-Coil Transition of Single Polymer Chains.

    NASA Astrophysics Data System (ADS)

    Gunari, Nikhil; Walker, Gilbert

    2008-03-01

    Force induced structural transitions of individual homopolymer chains have been studied in different solvent conditions using single molecule force spectroscopy. Single molecule mechanics in the ``fly-fishing'' mode showed a first-order like transition for polystyrene (PS) in water exhibiting a characteristic three regime force extension curve. In contrast, poly methylmethacrylate (PMMA) showed a characteristic saw-tooth pattern reminiscent of multidomain disassembly behavior similar to that seen in modular protein mechanics. The plateau force for PS and the saw-tooth pattern for PMMA disappear when measured in aqueous guanidine hydrochloride solution and in other non-solvents showing that the characteristic deformational behavior observed for the two polymers in water may be due to hydrophobic interactions .

  1. Finite-size effects on the static properties of a single-chain magnet

    NASA Astrophysics Data System (ADS)

    Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.

    2005-08-01

    We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.

  2. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  3. Dispersion relations for circular single and double dusty plasma chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkachenko, D. V.; Misko, V. R.; Sheridan, T. E.

    2011-10-15

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branchesmore » of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.« less

  4. [Construction, expression and characterization of the fusion gene of super-antigen SEA and single chain Fv of the ND-1 monoclonal antibody against human colorectal cancer].

    PubMed

    Chen, Hang; Li, Li; Fang, Jin

    2012-04-01

    To construct and express the recombinant ND-1-scFv/SEA, a fusion protein of superantigen (staphylococcal enterotoxinA, SEA) and single-chain variable fragment of monoclonal antibody ND-1 against human clolorectal carcinoma, and to enhance the targeted killing effect of SEA. The expression of the fusion protein was induced in E.coli M15 by IPTG. Ni-NTA resin affinity chromatography was used to separate and purify the expressed product. The specific binding activity of the purified ND-1-scFv/SEA protein was examined by indirect immunofluorescence assay and the targeted-cytotoxicity was determined using MTT assay. The expressing vector of fusion gene ND-1scFv/SEA was constructed successfully. ND-1-scFv/SEA protein retained a high binding affinity to antigen-positive human colorectal cancer cell CCL-187 and had a stronger capability to activate PBMC and kill the target cells compared to SEA alone, with a killing rate of 91% at 4 μg/mL. ND-1-scFv/SEA fusion protein could specifically target colorectal cancer cell, enhance the activity of kill tumor cell and has potential applications in the targeted therapy of colorectal cancer.

  5. Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations

    PubMed Central

    West, Anthony P.; Galimidi, Rachel P.; Gnanapragasam, Priyanthi N. P.

    2012-01-01

    The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization. PMID:22013046

  6. Conductance of single microRNAs chains related to the autism spectrum disorder

    NASA Astrophysics Data System (ADS)

    Oliveira, J. I. N.; Albuquerque, E. L.; Fulco, U. L.; Mauriz, P. W.; Sarmento, R. G.; Caetano, E. W. S.; Freire, V. N.

    2014-09-01

    The charge transport properties of single-stranded microRNAs (miRNAs) chains associated to autism disorder were investigated. The computations were performed within a tight-binding model, together with a transfer matrix technique, with ionization energies and hopping parameters obtained by quantum chemistry method. Current-voltage (I× V) curves of twelve miRNA chains related to the autism spectrum disorders were calculated and analysed. We have obtained both semiconductor and insulator behavior, and a relationship between the current intensity and the autism-related miRNA bases sequencies, suggesting that a kind of electronic biosensor can be developed to distinguish different profiles of autism disorders.

  7. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  8. Cloning and sequence analysis of complementary DNA encoding an aberrantly rearranged human T-cell gamma chain.

    PubMed Central

    Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L

    1986-01-01

    Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221

  9. Modelling magnetic anisotropy of single-chain magnets in |d/J| ≥ 1 regime

    NASA Astrophysics Data System (ADS)

    Haldar, Sumit; Raghunathan, Rajamani; Sutter, Jean-Pascal; Ramasesha, S.

    2017-11-01

    Single-molecule magnets (SMMs) with single-ion anisotropies comparable to exchange interactions J between spins have recently been synthesised. Here, we provide theoretical insights into the magnetism of such systems. We study spin chains with site-spins, s = 1, 3/2 and 2 and strength of on-site anisotropy comparable to the exchange constants between the spins. We find that large on-site anisotropies lead to crossing of the states with different MS values in the same spin manifold to which they belong in the absence of anisotropy. When on-site anisotropy is increased further, we also find that the MS states of the higher energy spin states descend below the MS states of the ground spin manifold. Giant spin in this limit is no longer conserved and describing the axial and rhombic anisotropies of the molecule, DM and EM, respectively, is not possible. However, the giant spin of the low-lying large MS states is very nearly an integer and, using this spin value, it is possible to construct an effective spin-Hamiltonian and compute the molecular magnetic anisotropy constants DM and EM. We report effect of finite sizes, rotations of site anisotropies and chain dimerisation on the effective anisotropy of the spin chains.

  10. [Transient expression and characterization of intracellular single chain Fv against the nucleocapsid protein of Hantavirus].

    PubMed

    Bai, Wen-tao; Xu, Zhi-kai; Zhang, Fang-lin; Luo, Wen; Liu, Yong; Wu, Xing-an; Yan, Yan

    2004-11-01

    To transiently express an intracellular single chain Fv of monoclonal antibody 1A8 against nucleocapsid protein of Hantavirus and characterize the immunological activities of the expressed products. COS-7 cells were transfected with mammalian expression vector 1A8-scFv-Ckappa/pCI-neo via lipofectin. The expressed product was identified by indirect immunofluorescence and immunoprecipitation. A diffuse pattern fluorescence was observed in less than 1% cytoplasm of transfected COS-7 cells. The binding of intracellular antibody fragments to NP antigen was confirmed by immunoprecipitation analysis. Transiently expressed single chain intrabodies can effectively target NP antigen in the cytoplasm. The present study may provide a new approach for treatment of Hantavirus.

  11. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    PubMed

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  12. Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?

    PubMed

    Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W

    2016-03-01

    A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

  13. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the ..beta..-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonalmore » monospecific antibody. Single-stranded (/sup 32/P)labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting.« less

  14. Selection of single chain antibody fragments binding to the extracellular domain of 4-1BB receptor by phage display technology.

    PubMed

    Bagheri, Salman; Yousefi, Mehdi; Safaie Qamsari, Elmira; Riazi-Rad, Farhad; Abolhassani, Mohsen; Younesi, Vahid; Dorostkar, Ruhollah; Movassaghpour, Ali Akbar; Sharifzadeh, Zahra

    2017-03-01

    The 4-1BB is a surface glycoprotein that pertains to the tumor necrosis factor-receptor family. There is compelling evidence suggesting important roles for 4-1BB in the immune response, including cell activation and proliferation and also cytokine induction. Because of encouraging results of different agonistic monoclonal antibodies against 4-1BB in the treatment of cancer, infectious, and autoimmune diseases, 4-1BB has been suggested as an attractive target for immunotherapy. In this study, single chain variable fragment phage display libraries, Tomlinson I+J, were screened against specific synthetic oligopeptides (peptides I and II) designed from 4-1BB extracellular domain. Five rounds of panning led to selection of four 4-1BB specific single chain variable fragments (PI.12, PI.42, PII.16, and PII.29) which showed specific reaction to relevant peptides in phage enzyme-linked immunosorbent assay. The selected clones were successfully expressed in Escherichia coli Rosetta-gami 2, and their expression was confirmed by western blot analysis. Enzyme-linked immunosorbent assay experiments indicated that these antibodies were able to specifically recognize 4-1BB without any cross-reactivity with other antigens. Flow cytometry analysis demonstrated an acceptable specific binding of the single chain variable fragments to 4-1BB expressed on CCRF-CEM cells, while no binding was observed with an irrelevant antibody. Anti-4-1BB single chain variable fragments enhanced surface CD69 expression and interleukin-2 production in stimulated CCRF-CEM cells which confirmed the agonistic effect of the selected single chain variable fragments. The data from this study have provided a rationale for further experiments involving the biological functions of anti-4-1BB single chain variable fragments in future studies.

  15. Targeting foreign major histocompatibility complex molecules to tumors by tumor cell specific single chain antibody (scFv).

    PubMed

    Li, Jinhua; Franek, Karl J; Patterson, Andrea L; Holmes, Lillia M; Burgin, Kelly E; Ji, Jianfei; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang

    2003-11-01

    Down-regulation of the major histocompatibility complex (MHC) is one of the major mechanisms that tumor cells adopted to escape immunosurveillance. Therefore, specifically coating tumor cells with foreign MHC may make tumor cells a better target for immune recognition and surveillance. In this study, we designed and generated a fusion protein, H2Kd/scPSMA, consisting of a single chain antibody against human prostate specific membrane antigen (PSMA) and the extracellular domain of mouse H-2Kd. The expression of this fusion protein in B16F0 mouse melanoma cells was confirmed by RT-PCR and fluorescent activated cell sorting (FACS). Our animal study showed that the expression of H2Kd/scPSMA in B16F0/PSMA5, a B16F0 cell line expressing human PSMA, significantly inhibited tumor growth as demonstrated in the pulmonary metastasis assay and tumor growth study and improved overall survival.

  16. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  17. Engineered Recombinant Single-Chain Fragment Variable Antibody for Immunosensors

    PubMed Central

    Shen, Zhihong; Mernaugh, Raymond L.; Yan, Heping; Yu, Lei; Zhang, Ying; Zeng, Xiangqun

    2008-01-01

    A recombinant single-chain fragment variable (scFv) antibody (designated A10B) was engineered to contain two histidines within the linker peptide used to join the scFv heavy and light chains. A piezoimmunosensor using the scFv was successfully developed. A10B scFv bound to the gold piezoimmunosensor surface were correctly oriented, retained antigen-binding activity, and coupled at high surface concentration. These results, and results obtained from an earlier study using an scFv containing a linker cysteine, suggest that the location on the linker sequence in which the amino acids were incorporated was well tolerated by the scFv and did not interfere with scFv antigen-binding activity. The scFv-modified QCM sensor was thoroughly characterized and used to specifically detect antigen in crude serum sample and had a sensitivity of 2.3 ± 0.15 nM (n = 4) with a linear range over 2.3 × 10−9–3.3 × 10−8 M. The piezoimmunosensor was also used to study the kinetics and thermodynamics of antigen/scFv antibody binding. PMID:16255580

  18. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity

    PubMed Central

    Shen, Yang; Zeng, Lin; Zhu, Aiping; Blanc, Tim; Patel, Dipa; Pennello, Anthony; Bari, Amtul; Ng, Stanley; Persaud, Kris; Kang, Yun (Kenneth); Balderes, Paul; Surguladze, David; Hindi, Sagit; Zhou, Qinwei; Ludwig, Dale L.; Snavely, Marshall

    2013-01-01

    Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. PMID:23567210

  19. Developing and sustaining human resources in the health supply chain in Ethiopia: barriers and enablers.

    PubMed

    Kälvemark Sporrong, Sofia; Traulsen, Janine M; Damene Kabtimer, Woynabeba; Mekasha Habtegiorgis, Bitsatab; Teshome Gebregeorgise, Dawit; Essah, Nana Am; Khan, Sara A; Brown, Andrew N

    2016-01-01

    The health supply chain is often the weakest link in achieving the health-related Millennium Development Goals and universal health coverage, requiring trained professionals who are often unavailable. In Ethiopia there have been recent developments in the area of health supply chain management. The aim of this study was to explore the current status of the development of human resources in health supply chain management in Ethiopia and to identify important factors affecting this development. A series of face-to-face interviews with key stakeholders was carried out in 2014. The interviews were conducted using a semi-structured interview guide. The interview guide comprised 51 questions. A qualitative analysis of transcripts was made. A total of 25 interviews were conducted. Three themes were identified: General changes: recognition, commitment and resources, Education and training, and Barriers and enablers. Results confirm the development of human resources in health supply chain management in many areas. However, several problems were identified including lack of coordination, partly due to the large number of stakeholders; reported high staff mobility; and a lack of overall strategy regarding the job/career structures necessary for maintaining human resources. Rural areas have a particular set of problems, including in transportation of goods and personnel, attracting and keeping personnel, and in communication and access to information. Ethiopia is on the way to developing a nationwide viable system for health supply chain management. However, there are still challenges. Short-term challenges include the importance of highlighting strategies and programs for human resources in health supply chain management. In the long term, commitments to financial support must be obtained. A strategy is needed for the further development and sustainability of human resources in the health supply chain in Ethiopia.

  20. Novel Monoclonal Antibodies for Studies of Human and Rhesus Macaque Secretory Component and Human J-Chain

    PubMed Central

    Zhang, Ruijun; Alam, S. Munir; Yu, Jae-Sung; Scearce, Richard; Lockwood, Bradley; Hwang, Kwan-Ki; Parks, Robert; Permar, Sallie; Brandtzaeg, Per; Haynes, Barton F.

    2016-01-01

    Immunoglobulin A (IgA) antibodies exist in monomeric, dimeric, and secretory forms. Dimerization of IgA depends on a 15-kD polypeptide termed “joining (J) chain,” which is also part of the binding site for an epithelial glycoprotein called “secretory component (SC),” whether this after apical cleavage on secretory epithelia is ligand bound in secretory IgA (SIgA) or in a free form. Uncleaved membrane SC, also called the “polymeric Ig receptor,” is thus crucial for transcytotic export of SIgA to mucosal surfaces, where it interacts with and modulates commensal bacteria and mediates protective immune responses against exogenous pathogens. To evaluate different forms of IgA, we have produced mouse monoclonal antibodies (MAbs) against human J-chain and free SC. We found that J-chain MAb 9A8 and SC MAb 9H7 identified human dimeric IgA and SIgA in enzyme-linked immunoassay and western blot analysis, as well as functioning in immunohistochemistry to identify cytoplasmic IgA of intestinal lamina propria plasmablasts/plasma cells and crypt epithelium of distal human intestine. Finally, we demonstrated that SC MAb 9H7 cross-reacted with rhesus macaque SIgA. These novel reagents should be of use in the study of the biology of various forms of IgA in humans and SIgA in macaques, as well as in monitoring the production and/or isolation of these forms of IgA. PMID:27386924

  1. Combinatorial Libraries of Arrayable Single-Chain Antibodies

    NASA Astrophysics Data System (ADS)

    Benhar, Itai

    Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.

  2. Single step, pH induced gold nanoparticle chain formation in lecithin/water system.

    PubMed

    Sharma, Damyanti

    2013-07-01

    Gold nanoparticle (AuNP) chains have been formed by a single step method in a lecithin/water system where lecithin itself plays the role of a reductant and a template for AuNP chain formation. Two preparative strategies were explored: (1) evaporating lecithin solution with aqueous gold chloride (HAuCl4) at different pHs and (2) dispersing lecithin vesicles in aqueous HAuCl4 solutions of various pHs in the range of 2.5-11.3. In method 1, at initial pH 2.5, 20-50 nm AuNPs are found attached to lecithin vesicles. When pH is raised to 5.5 there are no vesicles present and 20 nm monodisperse particles are found aggregating. Chain formation of fine nanoparticles (3-5 nm) is observed from neutral to basic pH, between 6.5-10.3 The chains formed are hundreds of nanometers to micrometer long and are usually 2-3 nanoparticles wide. On further increasing pH to 11.3, particles form disk-like or raft-like structures. When method (ii) was used a little chain formation was observed. Most of the nanoparticles formed were found either sitting together as raft like structures or scattered on lecithin structures. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics.

    PubMed

    Zhang, Huifa; Jenkins, Gareth; Zou, Yuan; Zhu, Zhi; Yang, Chaoyong James

    2012-04-17

    A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5'-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis.

  4. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design

    NASA Astrophysics Data System (ADS)

    Leone, Serena; Pica, Andrea; Merlino, Antonello; Sannino, Filomena; Temussi, Piero Andrea; Picone, Delia

    2016-09-01

    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction.

  5. Control of Established Colon Cancer Xenografts Using a Novel Humanized Single Chain Antibody-Streptococcal Superantigen Fusion Protein Targeting the 5T4 Oncofetal Antigen

    PubMed Central

    Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661

  6. Numerical analysis of ossicular chain lesion of human ear

    NASA Astrophysics Data System (ADS)

    Liu, Yingxi; Li, Sheng; Sun, Xiuzhen

    2009-04-01

    Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.

  7. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    PubMed

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.

  8. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously.

    PubMed

    Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kontermann, Roland E; Rüger, Ronny

    2015-03-10

    Liposomes are well-established drug delivery systems with cancer chemotherapy as main focus. To increase the cellular drug delivery, liposomes can be endowed with ligands, e.g. recombinant antibody fragments, which ensure specific cell interaction. Multispecific immunoliposomes can be prepared to improve the liposome to cell interaction by targeting multiple different targets at the same time, for instance by coupling two or more different ligands to the liposomal surface, resulting in a synergistic or additive increase in binding. An alternative approach is the use of bispecific ligands to address at least two different targets. For this purpose we cloned a single-chain diabody fragment (scDb`), a bispecific molecule targeting two antigens, endoglin (CD105) and fibroblast activation protein (FAP), expressed on cells of the tumor microenvironment. As model cell system, a human fibrosarcoma cell line was used expressing endoglin and FAP simultaneously. Monospecific immunoliposomes directed either against endoglin or FAP were compared in vitro for cell binding and cytotoxic activity with bispecific dual-targeted scFv`-IL (bispecific scFv`FAP/CD105-IL) and bispecific single-chain diabody`-IL (scDb`CD105/FAP-IL) targeting endoglin and FAP simultaneously. In the underlying study, bispecific scFv`FAP/CD105-IL interacted stronger with cells expressing FAP and endoglin (both targets simultaneously) compared to the monospecific immunoliposomes. Furthermore, bispecific scDb`-immunoliposomes increased the cell interaction massively and showed enhanced cytotoxicity against target cells using doxorubicin-loaded immunoliposomes. The use of recombinant bispecific ligands as scDb`-molecules facilitates the generation of bispecific immunoliposomes by using the established post-insertion technique, enabling an extension of the ligand specificity spectrum via genetic modification. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Oyarzún, Bernardo; Mognetti, Bortolo Matteo

    2018-03-01

    We present a new simulation technique to study systems of polymers functionalized by reactive sites that bind/unbind forming reversible linkages. Functionalized polymers feature self-assembly and responsive properties that are unmatched by the systems lacking selective interactions. The scales at which the functional properties of these materials emerge are difficult to model, especially in the reversible regime where such properties result from many binding/unbinding events. This difficulty is related to large entropic barriers associated with the formation of intra-molecular loops. In this work, we present a simulation scheme that sidesteps configurational costs by dedicated Monte Carlo moves capable of binding/unbinding reactive sites in a single step. Cross-linking reactions are implemented by trial moves that reconstruct chain sections attempting, at the same time, a dimerization reaction between pairs of reactive sites. The model is parametrized by the reaction equilibrium constant of the reactive species free in solution. This quantity can be obtained by means of experiments or atomistic/quantum simulations. We use the proposed methodology to study the self-assembly of single-chain polymeric nanoparticles, starting from flexible precursors carrying regularly or randomly distributed reactive sites. We focus on understanding differences in the morphology of chain nanoparticles when linkages are reversible as compared to the well-studied case of irreversible reactions. Intriguingly, we find that the size of regularly functionalized chains, in good solvent conditions, is non-monotonous as a function of the degree of functionalization. We clarify how this result follows from excluded volume interactions and is peculiar of reversible linkages and regular functionalizations.

  10. Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism

    NASA Technical Reports Server (NTRS)

    di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.

    2000-01-01

    The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.

  11. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants

    PubMed Central

    Lai, Huafang; He, Junyun; Hurtado, Jonathan; Stahnke, Jake; Fuchs, Anja; Mehlhop, Erin; Gorlatov, Sergey; Loos, Andreas; Diamond, Michael S.; Chen, Qiang

    2014-01-01

    Previously, our group engineered a plant-derived monoclonal antibody (MAb pE16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed a pE16 variant consisting of a single-chain variable fragment (scFv) fused to the heavy chain constant domains (CH) of human IgG (pE16scFv-CH). pE16 and pE16scFv-CH were expressed and assembled efficiently in Nicotiana benthamiana ΔXF plants, a glycosylation mutant lacking plant specific N-glycan residues. Glycan analysis revealed that ΔXF plant-derived pE16scFv-CH (ΔXFpE16scFv-CH) and pE16 (ΔXFpE16) both displayed a mammalian glycosylation profile. ΔXFpE16 and ΔXFpE16scFv-CH demonstrated equivalent antigen binding affinity and kinetics, and slightly enhanced neutralization of WNV in vitro compared to the parent mammalian cell-produced E16 (mE16). A single dose of ΔXFpE16 or ΔXFpE16scFv-CH protected mice against WNV-induced mortality even 4 days after infection at equivalent rates as mE16. This study provides a detailed tandem comparison of the expression, structure and function of a therapeutic MAb and its single-chain variant produced in glycoengineered plants. Moreover, it demonstrates the development of anti-WNV MAb therapeutic variants that are equivalent in efficacy to pE16, simpler to produce, and likely safer to use as therapeutics due to their mammalian N-glycosylation. This platform may lead to a more robust and cost effective production of antibody-based therapeutics against WNV infection and other infectious, inflammatory, or neoplastic diseases. PMID:24975464

  12. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    PubMed

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers.

    PubMed

    Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek

    2018-01-01

    Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.

  14. Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms.

    PubMed

    Colbert, Jeff D; Matthews, Stephen P; Kos, Janko; Watts, Colin

    2011-12-09

    Cystatin F is an unusual member of the cystatin family of protease inhibitors, which is made as an inactive dimer and becomes activated by proteolysis in the endo/lysosome pathway of the immune cells that produce it. However a proportion is secreted and can be taken up and activated by other cells. We show here that cystatin F acquired in this way induces a dramatic accumulation of the single-chain form of cathepsin L (CatL). Cystatin F was observed in the same cellular compartments as CatL and was tightly complexed with CatL as determined by co-precipitation studies. The observed accumulation of single-chain CatL was partly due to cystatin F-mediated inhibition of the putative single-chain to two-chain CatL convertase AEP/legumain and partly to general suppression of cathepsin activity. Thus, cystatin F stabilizes CatL leading to the dramatic accumulation of an inactive complex composed either of the single-chain or two-chain form depending on the capacity of cystatin F to inhibit AEP. Cross-transfer of cystatin F from one cell to another may therefore attenuate potentially harmful effects of excessive CatL activity while paradoxically, inducing accumulation of CatL protein. Finally, we confirmed earlier data (Beers, C., Honey, K., Fink, S., Forbush, K., and Rudensky, A. (2003) J. Exp. Med. 197, 169-179) showing a loss of CatL activity, but not of CatL protein, in macrophages activated with IFNγ. However, we found equivalent loss of CatL activity in wild type and cystatin F-null macrophages suggesting that an inhibitory activity other than cystatin F quenches CatL activity in activated macrophages.

  15. Mechanical desorption of a single chain: unusual aspects of phase coexistence at a first-order transition.

    PubMed

    Skvortsov, Alexander M; Klushin, Leonid I; Polotsky, Alexey A; Binder, Kurt

    2012-03-01

    The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble, the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found. However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested. This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation of experiments performed in different ensembles are briefly mentioned.

  16. Dynamics of Cancer Cell near Collagen Fiber Chain

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  17. First-order reversal curves of single domain particles: diluted random assemblages and chains

    NASA Astrophysics Data System (ADS)

    Egli, R.

    2009-04-01

    Exact magnetic models can be used to calculate first-order reversal curves (FORC) of single domain (SD) particle assemblages, as shown by Newell [2005] for the case of isolated Stoner-Wohlfarth particles. After overcoming experimental difficulties, a FORC diagram sharing many similarities to Newell's model has been measured on a lake sediment sample (see A.P. Chen et al., "Quantification of magnetofossils using first-order reversal curves", EGU General Assembly 2009, Abstracts Vol. 11, EGU2009-10719). This sample contains abundant magnetofossils, as shown by coercivity analysis and electron microscopy, therefore suggesting that well dispersed, intact magnetosome chains are the main SD carriers. Subtle differences between the reversible and the irreversible contributions of the measured FORC distribution suggest that magnetosome chains might not be correctly described by the Stoner-Wohlfarth model. To better understand the hysteresis properties of such chains, a simple magnetic model has been implemented, taking dipole-dipole interactions between particles within the same chain into account. The model results depend on the magnetosome elongation, the number of magnetosomes in a chain, and the gap between them. If the chain axis is subparallel to the applied field, the magnetic moment reverses by a pseudo-fanning mode, which is replaced by a pseudo-coherent rotation mode at greater angles. These reversal modes are intrinsically different from coherent rotation assumed Stoner-Wohlfarth model, resulting in FORC diagrams with a smaller reversible component. On the other hand, isolated authigenic SD particles can precipitate in the sediment matrix, as it might occur for pedogenic magnetite. In this case, an assembly of randomly located particles provides a possible model for the resulting FORC diagram. If the concentration of the particles is small, each particle is affected by a random interaction field whose statistical distribution can be calculated from first

  18. Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reaction.

    PubMed

    Igarashi, T; Yamamoto, A; Goto, N

    1996-10-01

    Streptococcus mutans is an etiological agent in human dental caries. A method for the detection of S. mutans directly from human dental plaque by polymerase chain reaction has been developed. Oligonucleotide primers specific for a portion of the dextranase gene (dexA) of S. mutans Ingbritt (serotype c) were designed to amplify a 1272-bp DNA fragment by polymerase chain reaction. The present method specifically detected S. mutans (serotypes c, e and f), but none of the other mutans streptococci: S. cricetus (serotype a), S. rattus (serotype b), S. sobrinus (serotypes d and g), and S. downei (serotype h), other gram-positive bacteria (16 strains of 12 species of cocci and 18 strains of 12 species of bacilli) nor gram-negative bacteria (1 strain of 1 species of cocci and 20 strains of 18 species of bacilli). The method was capable of detecting 1 pg of the chromosomal DNA purified from S. mutans Ingbritt and as few as 12 colony-forming units of S. mutans cells. The S. mutans cells in human dental plaque were also directly detected. Seventy clinical isolates of S. mutans isolated from the dental plaque of 8 patients were all positive by the polymerase chain reaction. These results suggest that the dexA polymerase chain reaction is suitable for the specific detection and identification of S. mutans.

  19. Efficacy and safety of rVIII-SingleChain: results of a phase 1/3 multicenter clinical trial in severe hemophilia A

    PubMed Central

    Mahlangu, Johnny; Kuliczkowski, Kazimierz; Karim, Faraizah Abdul; Stasyshyn, Oleksandra; Kosinova, Marina V.; Lepatan, Lynda Mae; Skotnicki, Aleksander; Boggio, Lisa N.; Klamroth, Robert; Oldenburg, Johannes; Hellmann, Andrzej; Santagostino, Elena; Baker, Ross I.; Fischer, Kathelijn; Gill, Joan C.; P’Ng, Stephanie; Chowdary, Pratima; Escobar, Miguel A.; Khayat, Claudia Djambas; Rusen, Luminita; Bensen-Kennedy, Debra; Blackman, Nicole; Limsakun, Tharin; Veldman, Alex; St. Ledger, Katie

    2016-01-01

    Recombinant VIII (rVIII)-SingleChain is a novel B-domain–truncated recombinant factor VIII (rFVIII), comprised of covalently bonded factor VIII (FVIII) heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor (VWF). This phase 1/3 study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis, and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). The participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N = 146) or on-demand (N = 27). The total cumulative exposure was 14 306 exposure days (EDs), with 120 participants reaching ≥50 EDs and 52 participants having ≥100 EDs. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate (ABR) was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated as excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low ABR in patients on prophylaxis, and a favorable safety profile in this large clinical study. This trial was registered at www.clinicaltrials.gov as #NCT01486927. PMID:27330001

  20. Efficacy and safety of rVIII-SingleChain: results of a phase 1/3 multicenter clinical trial in severe hemophilia A.

    PubMed

    Mahlangu, Johnny; Kuliczkowski, Kazimierz; Karim, Faraizah Abdul; Stasyshyn, Oleksandra; Kosinova, Marina V; Lepatan, Lynda Mae; Skotnicki, Aleksander; Boggio, Lisa N; Klamroth, Robert; Oldenburg, Johannes; Hellmann, Andrzej; Santagostino, Elena; Baker, Ross I; Fischer, Kathelijn; Gill, Joan C; P'Ng, Stephanie; Chowdary, Pratima; Escobar, Miguel A; Khayat, Claudia Djambas; Rusen, Luminita; Bensen-Kennedy, Debra; Blackman, Nicole; Limsakun, Tharin; Veldman, Alex; St Ledger, Katie; Pabinger, Ingrid

    2016-08-04

    Recombinant VIII (rVIII)-SingleChain is a novel B-domain-truncated recombinant factor VIII (rFVIII), comprised of covalently bonded factor VIII (FVIII) heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor (VWF). This phase 1/3 study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis, and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). The participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N = 146) or on-demand (N = 27). The total cumulative exposure was 14 306 exposure days (EDs), with 120 participants reaching ≥50 EDs and 52 participants having ≥100 EDs. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate (ABR) was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated as excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low ABR in patients on prophylaxis, and a favorable safety profile in this large clinical study. This trial was registered at www.clinicaltrials.gov as #NCT01486927. © 2016 by The American Society of Hematology.

  1. Quantum phase transitions driven by rhombic-type single-ion anisotropy in the S =1 Haldane chain

    NASA Astrophysics Data System (ADS)

    Tzeng, Yu-Chin; Onishi, Hiroaki; Okubo, Tsuyoshi; Kao, Ying-Jer

    2017-08-01

    The spin-1 Haldane chain is an example of the symmetry-protected-topological (SPT) phase in one dimension. Experimental realization of the spin chain materials usually involves both the uniaxial-type, D (Sz)2 , and the rhombic-type, E [(Sx)2-(Sy)2] , single-ion anisotropies. Here, we provide a precise ground-state phase diagram for a spin-1 Haldane chain with these single-ion anisotropies. Using quantum numbers, we find that the Z2 symmetry breaking phase can be characterized by double degeneracy in the entanglement spectrum. Topological quantum phase transitions take place on particular paths in the phase diagram, from the Haldane phase to the large-Ex, large-Ey, or large-D phases. The topological critical points are determined by the level spectroscopy method with a newly developed parity technique in the density matrix renormalization group [Phys. Rev. B 86, 024403 (2012), 10.1103/PhysRevB.86.024403], and the Haldane-large-D critical point is obtained with an unprecedented precision, (D/J ) c=0.9684713 (1 ) . Close to this critical point, a small rhombic single-ion anisotropy |E |/J ≪1 can destroy the Haldane phase and bring the system into a y -Néel phase. We propose that the compound [Ni (HF2) (3-Clpy ) 4] BF4 is a candidate system to search for the y -Néel phase.

  2. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    PubMed

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  3. Anti-CTGF Single-Chain Variable Fragment Dimers Inhibit Human Airway Smooth Muscle (ASM) Cell Proliferation by Down-Regulating p-Akt and p-mTOR Levels

    PubMed Central

    Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma. PMID:25478966

  4. Injection chaining of diode-pumped single-frequency ring lasers for free-space communication

    NASA Technical Reports Server (NTRS)

    Cheng, E. A. P.; Kane, T. J.; Wallace, R. W.; Cornwell, D. M., Jr.

    1991-01-01

    A high-power three-stage laser suitable for use in a space communication system has been built. This laser uses three diode-pumped Nd:YAG oscillators coherently combined using the technique of injection chaining. All three oscillators are in one compact and permanently aligned package, and are actively frequency locked to provide CW single frequency output. The three stages provide the redundancy desirable for space communications.

  5. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surinder Batra, Ph D

    2006-02-27

    increase its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  6. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  7. Structural Basis of Neutralization of the Major Toxic Component from the Scorpion Centruroides noxius Hoffmann by a Human-derived Single-chain Antibody Fragment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canul-Tec, Juan Carlos; Riaño-Umbarila, Lidia; Rudiño-Piñera, Enrique

    2011-08-09

    It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 {angstrom} resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complexmore » reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of {beta}-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.« less

  8. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    PubMed Central

    Zhao, Shuli; Zhao, Guangfeng; Xie, Hao; Huang, Yahong; Hou, Yayi

    2012-01-01

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex)1.3(DOX)20. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers. PMID:22267001

  9. Self-reporting and refoldable profluorescent single-chain nanoparticles.

    PubMed

    Fischer, Tobias S; Spann, Sebastian; An, Qi; Luy, Burkhard; Tsotsalas, Manuel; Blinco, James P; Mutlu, Hatice; Barner-Kowollik, Christopher

    2018-05-28

    We pioneer the formation of self-reporting and refoldable profluorescent single-chain nanoparticles (SCNPs) via the light-induced reaction ( λ max = 320 nm) of nitroxide radicals with a photo-active crosslinker. Whereas the tethered nitroxide moiety in these polymers fully quenches the luminescence ( i.e. fluorescence) of the aromatic backbone, nitroxide trapping of a transient C-radical leads to the corresponding closed shell alkoxyamine thereby restoring luminescence of the folded SCNP. Hence, the polymer in the folded state is capable of emitting light, while in the non-folded state the luminescence is silenced. Under oxidative conditions the initially folded SCNPs unfold, resulting in luminescence switch-off and the reestablishment of the initial precursor polymer. Critically, we show that the luminescence can be repeatedly silenced and reactivated. Importantly, the self-reporting character of the SCNPs was followed by size-exclusion chromatography (SEC), dynamic light scattering (DLS), fluorescence, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR) and diffusion ordered NMR spectroscopy (DOSY).

  10. Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.

    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less

  11. Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    DOE PAGES

    Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.; ...

    2017-10-25

    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less

  12. Optocontrol of glutamate receptor activity by single side-chain photoisomerization

    PubMed Central

    Klippenstein, Viktoria; Hoppmann, Christian; Ye, Shixin; Wang, Lei; Paoletti, Pierre

    2017-01-01

    Engineering light-sensitivity into proteins has wide ranging applications in molecular studies and neuroscience. Commonly used tethered photoswitchable ligands, however, require solvent-accessible protein labeling, face structural constrains, and are bulky. Here, we designed a set of optocontrollable NMDA receptors by directly incorporating single photoswitchable amino acids (PSAAs) providing genetic encodability, reversibility, and site tolerance. We identified several positions within the multi-domain receptor endowing robust photomodulation. PSAA photoisomerization at the GluN1 clamshell hinge is sufficient to control glycine sensitivity and activation efficacy. Strikingly, in the pore domain, flipping of a M3 residue within a conserved transmembrane cavity impacts both gating and permeation properties. Our study demonstrates the first detection of molecular rearrangements in real-time due to the reversible light-switching of single amino acid side-chains, adding a dynamic dimension to protein site-directed mutagenesis. This novel approach to interrogate neuronal protein function has general applicability in the fast expanding field of optopharmacology. DOI: http://dx.doi.org/10.7554/eLife.25808.001 PMID:28534738

  13. Production and characterization of a single chain variable fragment (scFv) for the mycotoxin deoxynivalenol

    USDA-ARS?s Scientific Manuscript database

    Deoxynivalenol (DON)is a mycotoxin produced by certain fungi that infest cereal grains worldwide. A hybridoma cell line producing a monoclonal antibody (Mab) recognizing DON was used as the starting point in the development of a recombinant single chain variable fragment (scFv) antibody. The scFv wa...

  14. On the dynamics of chain systems. [applications in manipulator and human body models

    NASA Technical Reports Server (NTRS)

    Huston, R. L.; Passerello, C. E.

    1974-01-01

    A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.

  15. Safety, efficacy and pharmacokinetics of rVIII-SingleChain in children with severe hemophilia A: results of a multicenter clinical trial.

    PubMed

    Stasyshyn, O; Djambas Khayat, C; Iosava, G; Ong, J; Abdul Karim, F; Fischer, K; Veldman, A; Blackman, N; St Ledger, K; Pabinger, I

    2017-04-01

    Essentials rVIII-SingleChain is a novel recombinant factor VIII with covalently bonded heavy and light chains. Efficacy, safety and pharmacokinetics were studied in pediatric patients with severe hemophilia A. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00. rVIII-SingleChain showed excellent hemostatic efficacy and a favorable safety profile. Background rVIII-SingleChain is a novel B-domain truncated recombinant factor VIII (rFVIII) comprised of covalently bonded FVIII heavy and light chains, demonstrating a high binding affinity to von Willebrand factor. Objectives This phase III study investigated the safety, efficacy and pharmacokinetics of rVIII-SingleChain in previously treated pediatric patients < 12 years of age with severe hemophilia A. Patients/Methods Patients could be assigned to prophylaxis or on-demand therapy by the investigator. For patients assigned to prophylaxis, the treatment regimen and dose were based on the bleeding phenotype. For patients receiving on-demand therapy, dosing was guided by World Federation of Hemophilia recommendations. The primary endpoint was treatment success, defined as a rating of 'excellent' or 'good' on the investigator's clinical assessment of hemostatic efficacy for all treated bleeding events. Results The study enrolled 84 patients (0 to < 6 years, n = 35; ≥ 6 to < 12 years, n = 49); 81 were assigned to prophylaxis and three to an on-demand regimen. Patients accumulated a total of 5239 exposure days (EDs), with 65 participants reaching > 50 EDs. In the 347 bleeds treated and evaluated by the investigator, hemostatic efficacy was rated as excellent or good in 96.3%. The median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.00, 2.20), and the median annualized bleeding rate was 3.69 (Q1, Q3: 0.00, 7.20) across all prophylaxis regimens. No participant developed an inhibitor. Conclusions rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic

  16. Human disease mortality kinetics are explored through a chain model embodying principles of extreme value theory and competing risks.

    PubMed

    Juckett, D A; Rosenberg, B

    1992-04-21

    The distributions for human disease-specific mortality exhibit two striking characteristics: survivorship curves that intersect near the longevity limit; and, the clustering of best-fitting Weibull shape parameter values into groups centered on integers. Correspondingly, we have hypothesized that the distribution intersections result from either competitive processes or population partitioning and the integral clustering in the shape parameter results from the occurrence of a small number of rare, rate-limiting events in disease progression. In this report we initiate a theoretical examination of these questions by exploring serial chain model dynamics and parameteric competing risks theory. The links in our chain models are composed of more than one bond, where the number of bonds in a link are denoted the link size and are the number of events necessary to break the link and, hence, the chain. We explored chains with all links of the same size or with segments of the chain composed of different size links (competition). Simulations showed that chain breakage dynamics depended on the weakest-link principle and followed kinetics of extreme-values which were very similar to human mortality kinetics. In particular, failure distributions for simple chains were Weibull-type extreme-value distributions with shape parameter values that were identifiable with the integral link size in the limit of infinite chain length. Furthermore, for chains composed of several segments of differing link size, the survival distributions for the various segments converged at a point in the S(t) tails indistinguishable from human data. This was also predicted by parameteric competing risks theory using Weibull underlying distributions. In both the competitive chain simulations and the parametric competing risks theory, however, the shape values for the intersecting distributions deviated from the integer values typical of human data. We conclude that rare events can be the source of

  17. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    PubMed

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  18. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors.

    PubMed

    Haynes, Nicole M; Trapani, Joseph A; Teng, Michèle W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2002-11-01

    Tumor cells are usually weakly immunogenic as they largely express self-antigens and can down-regulate major histocompatability complex/peptide molecules and critical costimulatory ligands. The challenge for immunotherapies has been to provide vigorous immune effector cells that circumvent these tumor escape mechanisms and eradicate established tumors. One promising approach is to engineer T cells with single-chain antibody receptors, and since T cells require 2 distinct signals for optimal activation, we have compared the therapeutic efficacy of erbB2-reactive chimeric receptors that contain either T-cell receptor zeta (TCR-zeta) or CD28/TCR-zeta signaling domains. We have demonstrated that primary mouse CD8(+) T lymphocytes expressing the single-chain Fv (scFv)-CD28-zeta receptor have a greater capacity to secrete Tc1 cytokines, induce T-cell proliferation, and inhibit established tumor growth and metastases in vivo. The suppression of established tumor burden by cytotoxic T cells expressing the CD28/TCR-zeta chimera was critically dependent upon their interferon gamma (IFN-gamma) secretion. Our study has illustrated the practical advantage of engineering a T-cell signaling complex that codelivers CD28 activation, dependent only upon the tumor's expression of the appropriate tumor associated antigen.

  19. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.

  20. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains

    DOE PAGES

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; ...

    2014-12-11

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, themore » second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.« less

  1. Humanization of Antibodies Using Heavy Chain Complementarity-determining Region 3 Grafting Coupled with in Vitro Somatic Hypermutation*

    PubMed Central

    Bowers, Peter M.; Neben, Tamlyn Y.; Tomlinson, Geoffery L.; Dalton, Jennifer L.; Altobell, Larry; Zhang, Xue; Macomber, John L.; Wu, Betty F.; Toobian, Rachelle M.; McConnell, Audrey D.; Verdino, Petra; Chau, Betty; Horlick, Robert A.; King, David J.

    2013-01-01

    A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods. PMID:23355464

  2. Direct detection of a single photon by humans

    PubMed Central

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  3. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption-Desorption Transition.

    PubMed

    Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G

    2018-05-23

    The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

  4. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition

    PubMed Central

    2018-01-01

    The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430

  5. A comparative study on the binding of single and double chain surfactant-cobalt(III) complexes with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Vignesh, G.; Sugumar, K.; Arunachalam, S.; Vignesh, S.; Arthur James, R.

    2013-09-01

    The comparative binding effect of single and double aliphatic chain containing surfactant-cobalt(III) complexes cis-[Co(bpy)2(DA)2](ClO4)3ṡ2H2O (1), cis-[Co(bpy)2(DA)Cl](ClO4)2ṡ2H2O (2), cis-[Co(phen)2(CA)2](ClO4)3ṡ2H2O (3), and cis-[Co(phen)2(CA)Cl](ClO4)2ṡ2H2O (4) with bovine serum albumin (BSA) under physiological condition was analyzed by steady state, time resolved fluorescence, synchronous, three-dimensional fluorescence, UV-Visible absorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of BSA through a static mechanism. The binding constants (Kb) and the number of binding sites were calculated and binding constant values are found in the range of 104-105 M-1. The results indicate that compared to single chain complex, double chain surfactant-cobalt(III) complex interacts strongly with BSA. Also the sign of thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicate that all the complexes interact with BSA through hydrophobic force. The binding distance (r) between complexes and BSA was calculated using Förster non-radiation energy transfer theory and found to be less than 7 nm. The results of synchronous, three dimensional fluorescence and circular dichroism spectroscopic methods indicate that the double chain surfactant-cobalt(III) complexes changed the conformation of the protein considerably than the respective single chain surfactant-cobalt(III) complexes. Antimicrobial studies of the complexes showed good activities against pathogenic microorganisms.

  6. Design and construction of immune phage antibody library against Tetanus neurotoxin: Production of single chain antibody fragments.

    PubMed

    Sadreddini, Sanam; Seifi-Najmi, Mehrnosh; Ghasemi, Babollah; Kafil, Hossein Samadi; Alinejad, Vahideh; Sadreddini, Sevil; Younesi, Vahid; Jadidi-Niaragh, Farhad; Yousefi, Mehdi

    2015-12-23

    Tetanus neurotoxin (TeNT) is composed of a light (LC) and heavy chain (HC) polypeptides, released by anaerobic bacterium Clostridium tetani and can cause fatal life-threatening infectious disease. Toxin HC and LC modules represents receptor binding and zinc metalloprotease activity, respectively. The passive administration of animal-derived antibodies against tetanus toxin has been considered as the mainstay therapy for years. However, this treatment is associated with several adverse effects due to the presence of anti-isotype antibodies. In the present study, we have produced the fully human single chain antibody fragments (HuScFv) from two human antibody phage display libraries. Twenty-four different HuscFvs were isolated from two anti TeNT immune libraries. Our produced human ScFv (HuScFv) were converted to IgG platform and analyzed regarding their specific reactivity to TeNT. All of the selected scFvs have the same VL but different VH. Three HuscFvs from the first library (TTX15, 51, 75) and two HuscFvs from the second library (TTX16, 20) were chosen to convert to IgG1 using pOptiVEC and pcDNA3.3 systems. Production of IgG1 from transfected DG44 and binding capacity of them to tetanus toxin and toxoid were measured by ELISA. ELISA results showed no detectable production of TTX16 and TTX20 IgG1. Although, TTX51 and TTX75 were converted and produced as IgG1, no reactivity to tetanus toxin and toxoid was observed. However, TTX15 was successfully produced as whole IgG1 platform with reactivity to both tetanus toxin and toxoid. The latter would be an appropriate replacement for conventional polyclonal antibodies if would meet the further characterization including specificity determination, affinity measurement and toxin neutralizing assays. Our results demonstrated production of functional IgG1 derived from TTX15 scFv and might be an appropriate replacement for polyclonal Tetabulin but it needs further characterization.

  7. Detecting memory and structure in human navigation patterns using Markov chain models of varying order.

    PubMed

    Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus

    2014-01-01

    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.

  8. Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order

    PubMed Central

    Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus

    2014-01-01

    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work. PMID:25013937

  9. Targeting nanodisks via a single chain variable antibody--apolipoprotein chimera.

    PubMed

    Iovannisci, David M; Beckstead, Jennifer A; Ryan, Robert O

    2009-02-06

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that alpha-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  10. Markov Chain Monte Carlo in the Analysis of Single-Molecule Experimental Data

    NASA Astrophysics Data System (ADS)

    Kou, S. C.; Xie, X. Sunney; Liu, Jun S.

    2003-11-01

    This article provides a Bayesian analysis of the single-molecule fluorescence lifetime experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The DNA hairpin's conformational change is initially modeled as a two-state Markov chain, which is not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule, in addition to the hidden Markov structure, further complicates the matter. We show that the analytical form of the likelihood function can be obtained in the simplest case and a Metropolis-Hastings algorithm can be designed to sample from the posterior distribution of the parameters of interest and to compute desired estiamtes. To cope with the molecular diffusion process and the potentially oscillating energy barrier between the two states of the DNA hairpin, we introduce a data augmentation technique to handle both the Brownian diffusion and the hidden Ornstein-Uhlenbeck process associated with the fluctuating energy barrier, and design a more sophisticated Metropolis-type algorithm. Our method not only increases the estimating resolution by several folds but also proves to be successful for model discrimination.

  11. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    NASA Astrophysics Data System (ADS)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  12. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.

    PubMed

    Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z

    2018-02-16

    Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.

  13. Dual gait generative models for human motion estimation from a single camera.

    PubMed

    Zhang, Xin; Fan, Guoliang

    2010-08-01

    This paper presents a general gait representation framework for video-based human motion estimation. Specifically, we want to estimate the kinematics of an unknown gait from image sequences taken by a single camera. This approach involves two generative models, called the kinematic gait generative model (KGGM) and the visual gait generative model (VGGM), which represent the kinematics and appearances of a gait by a few latent variables, respectively. The concept of gait manifold is proposed to capture the gait variability among different individuals by which KGGM and VGGM can be integrated together, so that a new gait with unknown kinematics can be inferred from gait appearances via KGGM and VGGM. Moreover, a new particle-filtering algorithm is proposed for dynamic gait estimation, which is embedded with a segmental jump-diffusion Markov Chain Monte Carlo scheme to accommodate the gait variability in a long observed sequence. The proposed algorithm is trained from the Carnegie Mellon University (CMU) Mocap data and tested on the Brown University HumanEva data with promising results.

  14. Stability of vertical magnetic chains

    PubMed Central

    2017-01-01

    A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement. PMID:28293135

  15. Stability of vertical magnetic chains

    NASA Astrophysics Data System (ADS)

    Schönke, Johannes; Fried, Eliot

    2017-02-01

    A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement.

  16. Generation of human Fab antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    PubMed

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human Fab (fragment antigen binding) antibody libraries. In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final Fab products that are used for cloning.

  17. Adsorption of a single polymer chain on a surface: effects of the potential range.

    PubMed

    Klushin, Leonid I; Polotsky, Alexey A; Hsu, Hsiao-Ping; Markelov, Denis A; Binder, Kurt; Skvortsov, Alexander M

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction

  18. Adsorption of a single polymer chain on a surface: Effects of the potential range

    NASA Astrophysics Data System (ADS)

    Klushin, Leonid I.; Polotsky, Alexey A.; Hsu, Hsiao-Ping; Markelov, Denis A.; Binder, Kurt; Skvortsov, Alexander M.

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value Uc corresponding to the adsorption transition scales as W-1/ν, where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory Uc≈((π2)/(24))(W+1/2)-2 and in the best-fit equation for the MC simulation data Uc=0.585(W+1/2)-5/3. Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NUc,U/Uc). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N˜5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent ϕeff(N). Strong corrections to scaling of order N-0.5 are observed, and the extrapolated value ϕ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why for

  19. Thermal conductivity of a single polymer chain

    NASA Astrophysics Data System (ADS)

    Freeman, J. J.; Morgan, G. J.; Cullen, C. A.

    1987-05-01

    Numerical experiments have been performed with use of a fairly realistic model for polyethylene which has enabled the effects of anharmonicity, temperature, and positional disorder on the thermal conductivity to be investigated. It has been shown that the classical conductivity may be substantially increased by both increasing the strength of the anharmonic forces and by decreasing the chain temperature. Although the conductivity of individual chains is found to be high, realistic values for the conductivity of a bulk material may be understood provided that due account is taken of the polymer conformation and interchain coupling.

  20. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1

    PubMed Central

    De Nardis, Camilla; Hendriks, Linda J. A.; Poirier, Emilie; Arvinte, Tudor; Gros, Piet; Bakker, Alexander B. H.; de Kruif, John

    2017-01-01

    Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G1. We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed “DEKK” consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics. PMID:28655766

  1. New Factorization Techniques and Parallel (log N) Algorithms for Forward Dynamics Solution of Single Closed-Chain Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper parallel 0(log N) algorithms for dynamic simulation of single closed-chain rigid multibody system as specialized to the case of a robot manipulatoar in contact with the environment are developed.

  2. Polyelectrolyte properties of single stranded DNA measured using SAXS and single molecule FRET: beyond the wormlike chain model

    PubMed Central

    Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois

    2013-01-01

    Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337

  3. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  4. Investigation on bisphenol A levels in human milk and dairy supply chain: A review.

    PubMed

    Mercogliano, Raffaelina; Santonicola, Serena

    2018-04-01

    Bisphenol A (BPA), widely used as additive in food packaging, is an environmental and food contaminant that shows a weak estrogenic activity in general population and toxicity in the infant population. A temporary tolerable daily intake (t-TDI) of 4 μg/kg bw/day and a migration limit of 0.6 mg/kg in food from plastic materials, intended to come in contact with food, were fixed. Dietary milk is important in the human diet. The review investigated the contamination levels in human milk and along the dairy supply chain. Despite the reported levels are generally below the fixed limits, breast milk is considered a continuous low-level exposure to endocrine-active compounds for infants. In addition, BPA residues are detected in milk and dairy products posing a risk to human health. BPA enters into milk chain via multiple pathways at various points during milk production (e.g., PVC tubing used during the milking process, transfer from bulk milk to storage tanks, during milk processing). To prevent or mitigate this hazard, a specific TDI for infants is recommended and evaluation of risk factors at each phase of the dairy supply chain, in the quality systems, is recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment.

    PubMed

    Austerberry, James I; Dajani, Rana; Panova, Stanislava; Roberts, Dorota; Golovanov, Alexander P; Pluen, Alain; van der Walle, Christopher F; Uddin, Shahid; Warwicker, Jim; Derrick, Jeremy P; Curtis, Robin

    2017-06-01

    The aggregation propensities for a series of single-chain variable fragment (scFv) mutant proteins containing supercharged sequences, salt bridges and lysine/arginine-enriched motifs were characterised as a function of pH and ionic strength to isolate the electrostatic contributions. Recent improvements in aggregation predictors rely on using knowledge of native-state protein-protein interactions. Consistent with previous findings, electrostatic contributions to native protein-protein interactions correlate with aggregate growth pathway and rates. However, strong reversible self-association observed for selected mutants under native conditions did not correlate with aggregate growth, indicating 'sticky' surfaces that are exposed in the native monomeric state are inaccessible when aggregates grow. We find that even though similar native-state protein-protein interactions occur for the arginine and lysine-enriched mutants, aggregation propensity is increased for the former and decreased for the latter, providing evidence that lysine suppresses interactions between partially folded states under these conditions. The supercharged mutants follow the behaviour observed for basic proteins under acidic conditions; where excess net charge decreases conformational stability and increases nucleation rates, but conversely reduces aggregate growth rates due to increased intermolecular electrostatic repulsion. The results highlight the limitations of using conformational stability and native-state protein-protein interactions as predictors for aggregation propensity and provide guidance on how to engineer stabilizing charged mutations. Copyright © 2017. Published by Elsevier B.V.

  6. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared with NZ-8 of Kappa Light Chain.

    PubMed

    Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG 2a , lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG 1 ) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG 1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.

  7. Tertiary structure of human {Lambda}6 light chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokkuluri, P. R.; Solomon, A.; Weiss, D. T.

    1999-01-01

    AL amyloidosis is a disease process characterized by the pathologic deposition of monoclonal light chains in tissue. To date, only limited information has been obtained on the molecular features that render such light chains amyloidogenic. Although protein products of the major human V kappa and V lambda gene families have been identified in AL deposits, one particular subgroup--lambda 6--has been found to be preferentially associated with this disease. Notably, the variable region of lambda 6 proteins (V lambda 6) has distinctive primary structural features including the presence in the third framework region (FR3) of two additional amino acid residues thatmore » distinguish members of this subgroup from other types of light chains. However, the structural consequences of these alterations have not been elucidated. To determine if lambda 6 proteins possess unique tertiary structural features, as compared to light chains of other V lambda subgroups, we have obtained x-ray diffraction data on crystals prepared from two recombinant V lambda 6 molecules. These components, isolated from a bacterial expression system, were generated from lambda 6-related cDNAs cloned from bone marrow-derived plasma cells from a patient (Wil) who had documented AL amyloidosis and another (Jto) with multiple myeloma and tubular cast nephropathy, but no evident fibrillar deposits. The x-ray crystallographic analyses revealed that the two-residue insertion located between positions 68 and 69 (not between 66 and 67 as previously surmised) extended an existing loop region that effectively increased the surface area adjacent to the first complementarity determining region (CDR1). Further, an unusual interaction between the Arg 25 and Phe 2 residues commonly found in lambda 6 molecules was noted. However, the structures of V lambda 6 Wil and Jto also differed from each other, as evidenced by the presence in the latter of certain ionic and hydrophobic interactions that we posit increased

  8. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs

    PubMed Central

    Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro

    2017-01-01

    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells. PMID:28332572

  9. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs.

    PubMed

    Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A; Munusamy, Murugan A; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro

    2017-03-23

    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.

  10. The role of the altruistic unbalanced chain in exchange living donor renal transplantation: single-center experience.

    PubMed

    Ahn, B K; Kwon, O J; Kang, C M

    2012-01-01

    The exchange donor program in renal transplantation is an efficient solution for recipients with a blood type or crossmatch-incompatible donor. However, this program has some difficulties to define unacceptable human leukocyte antigen matches, deteriorating clinical potential recipient condition, and withdrawal of donor consent. We analyzed the outcomes of exchange donor renal transplantation through the altruistic unbalanced chain. Among 152 cases of exchange donor renal transplantation from 1991 to 2010 in our hospital, we performed 58 procedures through altruistic unbalanced chains. We compared their outcomes with the direct and balanced chain group. We analyzed retrospectively whether this program expanded the donor pool, seeking better immunologic, size, and age matching. The graft survival and acute rejection rates did not differ significantly in the two groups. Of 152 cases, 58 (38.2%) renal transplantations were performed through an unbalanced chain. Seventeen waiting list recipients were transplanted through an altruistic unbalanced chain. In blood type O recipients (n = 32), the causes of registration in the exchange program were ABO incompatibility (93.3%), and positive crossmatch (6.7%). Nine altruistic blood type O donors and 9 (28.1%) type O recipients underwent transplantations through this chain. We suggest the altruistic unbalanced chain may expand the donor pool with advantages for difficult-to-match pairs. The disadvantages of type O recipients may be overcome through the use of an unbalanced chain. The altruistic unbalanced exchange transplantation program can help easy-to-match subjects, shortening the waiting periods. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Development of single chain variable fragment (scFv) antibodies against surface proteins of ‘Ca. Liberibacter asiaticus’

    USDA-ARS?s Scientific Manuscript database

    ‘Ca. Liberibacter asiaticus’ is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vec...

  12. Single unit approaches to human vision and memory.

    PubMed

    Kreiman, Gabriel

    2007-08-01

    Research on the visual system focuses on using electrophysiology, pharmacology and other invasive tools in animal models. Non-invasive tools such as scalp electroencephalography and imaging allow examining humans but show a much lower spatial and/or temporal resolution. Under special clinical conditions, it is possible to monitor single-unit activity in humans when invasive procedures are required due to particular pathological conditions including epilepsy and Parkinson's disease. We review our knowledge about the visual system and visual memories in the human brain at the single neuron level. The properties of the human brain seem to be broadly compatible with the knowledge derived from animal models. The possibility of examining high-resolution brain activity in conscious human subjects allows investigators to ask novel questions that are challenging to address in animal models.

  13. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    PubMed

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  14. Conformation of single block copolymer chain in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    PubMed

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-05-21

    The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.

  15. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1.

    PubMed

    De Nardis, Camilla; Hendriks, Linda J A; Poirier, Emilie; Arvinte, Tudor; Gros, Piet; Bakker, Alexander B H; de Kruif, John

    2017-09-01

    Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G 1 We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed "DEKK" consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Determinants of choice for pigeons and humans on concurrent-chains schedules of reinforcement.

    PubMed

    Belke, T W; Pierce, W D; Powell, R A

    1989-09-01

    Concurrent-chains schedules of reinforcement were arranged for humans and pigeons. Responses of humans were reinforced with tokens exchangeable for money, and key pecks of 4 birds were reinforced with food. Variable-interval 30-s and 40-s schedules operated in the terminal links of the chains. Condition 1 exposed subjects to variable-interval 90-s and variable-interval 30-s initial links, respectively. Conditions 2 and 3 arranged equal initial-link schedules of 40 s or 120 s. Experimental conditions tested the descriptive adequacy of five equations: reinforcement density, delay reduction, modified delay reduction, matching and maximization. Results based on choice proportions and switch rates during the initial links showed that pigeons behaved in accord with delay-reduction models, whereas humans maximized overall rate of reinforcement. As discussed by Logue and associates in self-control research, different types of reinforcement may affect sensitivity to delay differentially. Pigeons' responses were reinforced with food, a reinforcer that is consumable upon presentation. Humans' responses were reinforced with money, a reinforcer exchanged for consumable reinforcers after it was earned. Reinforcers that are immediately consumed may generate high sensitivity to delay and behavior described as delay reduction. Reinforces with longer times to consumption may generate low sensitivity to delay and behavior that maximizes overall payoff.

  17. End-anchored polymers in good solvents from the single chain limit to high anchoring densities.

    PubMed

    Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan

    2016-11-07

    An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.

  18. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease

    PubMed Central

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E.; Levites, Yona; Rincon-Limas, Diego E.

    2015-01-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  19. Mitochondrial DNA mutations in single human blood cells.

    PubMed

    Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S

    2015-09-01

    Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. Copyright © 2015 Elsevier B.V. All rights

  20. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  1. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum.

    PubMed

    Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo

    2017-01-01

    Ceramides in the human stratum corneum (SC) are a mixture of diverse N -acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N -acylated FAs and compare them with C18-ceramide N -stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.

  2. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum

    PubMed Central

    Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo

    2017-01-01

    Ceramides in the human stratum corneum (SC) are a mixture of diverse N-acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer. PMID:28979153

  3. Evidence for single-chain magnet behavior in a Mn(III)-Ni(II) chain designed with high spin magnetic units: a route to high temperature metastable magnets.

    PubMed

    Clérac, Rodolphe; Miyasaka, Hitoshi; Yamashita, Masahiro; Coulon, Claude

    2002-10-30

    We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization

  4. Harnessing the Risk-Related Data Supply Chain: An Information Architecture Approach to Enriching Human System Research and Operations Knowledge

    NASA Technical Reports Server (NTRS)

    Buquo, Lynn E.; Johnson-Throop, Kathy A.

    2011-01-01

    An Information Architecture facilitates the understanding and, hence, harnessing of the human system risk-related data supply chain which enhances the ability to securely collect, integrate, and share data assets that improve human system research and operations. By mapping the risk-related data flow from raw data to useable information and knowledge (think of it as a data supply chain), the Human Research Program (HRP) and Space Life Science Directorate (SLSD) are building an information architecture plan to leverage their existing, and often shared, IT infrastructure.

  5. Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies.

    PubMed

    Romao, Ema; Morales-Yanez, Francisco; Hu, Yaozhong; Crauwels, Maxine; De Pauw, Pieter; Hassanzadeh, Gholamreza Ghassanzadeh; Devoogdt, Nick; Ackaert, Chloe; Vincke, Cecile; Muyldermans, Serge

    2016-01-01

    The discovery of functional heavy chain-only antibodies devoid of light chains in sera of camelids and sharks in the early nineties provided access to the generation of minimal-sized, single-domain, in vivo affinity-matured, recombinant antigenbinding fragments, also known as Nanobodies. Recombinant DNA technology and adaptation of phage display vectors form the basis to construct large naïve, synthetic or medium sized immune libraries from where multiple Nanobodies have been retrieved. Alternative selection methods (i.e. bacterial display, bacterial two-hybrid, Cis-display and ribosome display) have also been developed to identify Nanobodies. The antigen affinity, stability, expression yields and structural details of the Nanobodies have been determined by standard technology. Nanobodies were subsequently engineered for higher stability and affinity, to have a sequence closer to that of human immunoglobulin domains, or to add designed effector functions. Antigen specific Nanobodies recognizing with high affinity their cognate antigen were retrieved from various libraries. High expression yields are obtained from microorganisms, even when expressed in the cytoplasm. The purified Nanobodies are shown to possess beneficial biochemical and biophysical properties. The crystal structure of Nanobody::antigen complexes reveal the preference of Nanobodies for cavities on the antigen surface. Thanks to the properties described above, Nanobodies became a highly valued and versatile tool for biomolecular research. Moreover, numerous diagnostic and therapeutic Nanobody-based applications have been developed in the past decade. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells.

    PubMed Central

    Takeuchi, M; Inoue, N; Strickland, T W; Kubota, M; Wada, M; Shimizu, R; Hoshi, S; Kozutsumi, H; Takasaki, S; Kobata, A

    1989-01-01

    Two forms of erythropoietin, EPO-bi and EPO-tetra, with different biological activities were isolated from the culture medium of a recombinant Chinese hamster ovary cell line, B8-300, into which the human erythropoietin gene had been introduced. EPO-bi, an unusual form, showed only one-seventh the in vivo activity and 3 times higher in vitro activity of the previously described recombinant human EPO (standard EPO). In contrast, EPO-tetra showed both in vivo and in vitro activities comparable to those of the standard EPO. EPO-bi, EPO-tetra, and the standard EPO had the same amino acid composition and immunoreactivity. However, structural analyses of their N-linked sugar chains revealed that EPO-bi contains the biantennary complex type as the major sugar chain, while EPO-tetra and the standard EPO contain the tetraantennary complex type as the major sugar chain. From examination of various preparations of recombinant human EPO, we found a positive correlation between the in vivo activity of EPO and the ratio of tetraantennary to biantennary oligosaccharides. These results suggest that higher branching of the N-linked sugar chains is essential for effective expression of in vivo biological activity of EPO. PMID:2813359

  7. A conceptual framework for economic optimization of single hazard surveillance in livestock production chains.

    PubMed

    Guo, Xuezhen; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W

    2014-06-01

    Economic analysis of hazard surveillance in livestock production chains is essential for surveillance organizations (such as food safety authorities) when making scientifically based decisions on optimization of resource allocation. To enable this, quantitative decision support tools are required at two levels of analysis: (1) single-hazard surveillance system and (2) surveillance portfolio. This paper addresses the first level by presenting a conceptual approach for the economic analysis of single-hazard surveillance systems. The concept includes objective and subjective aspects of single-hazard surveillance system analysis: (1) a simulation part to derive an efficient set of surveillance setups based on the technical surveillance performance parameters (TSPPs) and the corresponding surveillance costs, i.e., objective analysis, and (2) a multi-criteria decision making model to evaluate the impacts of the hazard surveillance, i.e., subjective analysis. The conceptual approach was checked for (1) conceptual validity and (2) data validity. Issues regarding the practical use of the approach, particularly the data requirement, were discussed. We concluded that the conceptual approach is scientifically credible for economic analysis of single-hazard surveillance systems and that the practicability of the approach depends on data availability. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    NASA Astrophysics Data System (ADS)

    Reed, Jason; Hsueh, Carlin; Mishra, Bud; Gimzewski, James K.

    2008-09-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing.

  9. Modular Construction of Large Non-Immune Human Antibody Phage-Display Libraries from Variable Heavy and Light Chain Gene Cassettes.

    PubMed

    Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2018-01-01

    Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.

  10. Alkaloids in the human food chain--natural occurrence and possible adverse effects.

    PubMed

    Koleva, Irina I; van Beek, Teris A; Soffers, Ans E M F; Dusemund, Birgit; Rietjens, Ivonne M C M

    2012-01-01

    Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Expression and function of CD8 alpha/beta chains on rat and human mast cells.

    PubMed

    Kim, Mi-Sun; Kim, Sung-Hoon; Lee, Hye-Jung; Kim, Hyung-Min

    2004-03-01

    The expression and functional role of CD8 glycoprotein, a marker of cytotoxic/suppressor T lymphocytes and NK cells, were not studied on freshly isolated connective tissue type rat peritoneal mast cells, a rat mucosal type mast cell line (RBL 2H3), or human mast cell line (HMC-1). We used the reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, immunohistochemistry and enzyme-linked immunosorbent assay. RT-PCR and Western blot analysis identified the presence of CD8 alpha/beta chains on the mast cells, and immunohistochemistry confirmed CD8alpha expression on rat or human mast cells. Functional studies demonstrated that stimulation of CD8 alpha/beta chains on rat mast cells induced the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), which are regarded as important mediators during infection. However, co-stimulation with stem cell factor had no effect on CD8-induced mediator secretion. Our findings demonstrate novel biological roles of CD8 molecules in mast cells.

  12. A best on-line algorithm for single machine scheduling the equal length jobs with the special chain precedence and delivery time

    NASA Astrophysics Data System (ADS)

    Gu, Cunchang; Mu, Yundong

    2013-03-01

    In this paper, we consider a single machine on-line scheduling problem with the special chains precedence and delivery time. All jobs arrive over time. The chains chainsi arrive at time ri , it is known that the processing and delivery time of each job on the chain satisfy one special condition CD a forehand: if the job J(i)j is the predecessor of the job J(i)k on the chain chaini, then they satisfy p(i)j = p(i)k = p >= qj >= qk , i = 1,2, ---,n , where pj and qj denote the processing time and the delivery time of the job Jj respectively. Obviously, if the arrival jobs have no chains precedence, it shows that the length of the corresponding chain is 1. The objective is to minimize the time by which all jobs have been delivered. We provide an on-line algorithm with a competitive ratio of √2 , and the result is the best possible.

  13. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Chul; Kim, Su-Jin; Kim, Kyung-Sup; Shin, Hang-Cheol; Yoon, Ji-Won

    2000-11-01

    A cure for diabetes has long been sought using several different approaches, including islet transplantation, regeneration of β cells and insulin gene therapy. However, permanent remission of type 1 diabetes has not yet been satisfactorily achieved. The development of type 1 diabetes results from the almost total destruction of insulin-producing pancreatic β cells by autoimmune responses specific to β cells. Standard insulin therapy may not maintain blood glucose concentrations within the relatively narrow range that occurs in the presence of normal pancreatic β cells. We used a recombinant adeno-associated virus (rAAV) that expresses a single-chain insulin analogue (SIA), which possesses biologically active insulin activity without enzymatic conversion, under the control of hepatocyte-specific L-type pyruvate kinase (LPK) promoter, which regulates SIA expression in response to blood glucose levels. Here we show that SIA produced from the gene construct rAAV-LPK-SIA caused remission of diabetes in streptozotocin-induced diabetic rats and autoimmune diabetic mice for a prolonged time without any apparent side effects. This new SIA gene therapy may have potential therapeutic value for the cure of autoimmune diabetes in humans.

  14. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    PubMed

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  15. Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain-cleavage enzyme, P450scc [corrected], in human steroidogenic tissues.

    PubMed Central

    Voutilainen, R; Miller, W L

    1987-01-01

    Insulin-like growth factors (IGFs) are single-chain polypeptides important for cell proliferation and growth. IGFs are produced in several tissues, suggesting that they function in a paracrine or autocrine fashion as well as functioning as endocrine hormones. We studied the hormonal regulation of IGF-I and IGF-II mRNA in human steroidogenic tissues. In cultured human ovarian granulosa cells, follicle-stimulating hormone, human chorionic gonadotropin, and dibutyryl cAMP increased IGF-II mRNA, but corticotropin [adrenocorticotropic hormone (ACTH)], chorionic somatomammotropin, growth hormone, prolactin, dexamethasone, estradiol, and progesterone had no effect. In cultured human fetal adrenal cells, ACTH and dibutyryl cAMP increased IGF-II mRNA accumulation, but human chorionic gonadotropin and angiotensin II did not. The same five size species of IGF-II mRNA were detected in transfer blots of RNA from granulosa cells and fetal adrenal cells, and all of these increased after hormonal stimuli. Dibutyryl cAMP also increased IGF-II mRNA accumulation in cultured human placental cells. Accumulation of mRNA for the cholesterol side-chain-cleavage monooxygenase [P450scc [corrected]; cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving), EC 1.14.15.6] was regulated in parallel with IGF-II mRNA in all these steroidogenic tissues. IGF-I mRNA was not detected in transfer blots of these RNAs, and the minimal amounts detected in dot blots showed no detectable change after any of the hormonal stimuli studied. The data indicate that the IGF-II gene is expressed in human steroidogenic tissues and is regulated by cAMP. These data suggest that IGF-II may act in an autocrine or paracrine fashion to stimulate the adrenal and gonadal growth stimulated by ACTH and gonadotropins, respectively. Images PMID:3031644

  16. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.

  17. Development of coordination system model on single-supplier multi-buyer for multi-item supply chain with probabilistic demand

    NASA Astrophysics Data System (ADS)

    Olivia, G.; Santoso, A.; Prayogo, D. N.

    2017-11-01

    Nowadays, the level of competition between supply chains is getting tighter and a good coordination system between supply chains members is very crucial in solving the issue. This paper focused on a model development of coordination system between single supplier and buyers in a supply chain as a solution. Proposed optimization model was designed to determine the optimal number of deliveries from a supplier to buyers in order to minimize the total cost over a planning horizon. Components of the total supply chain cost consist of transportation costs, handling costs of supplier and buyers and also stock out costs. In the proposed optimization model, the supplier can supply various types of items to retailers whose item demand patterns are probabilistic. Sensitivity analysis of the proposed model was conducted to test the effect of changes in transport costs, handling costs and production capacities of the supplier. The results of the sensitivity analysis showed a significant influence on the changes in the transportation cost, handling costs and production capacity to the decisions of the optimal numbers of product delivery for each item to the buyers.

  18. Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert

    2018-06-01

    In this paper, we present a chain-of-sphere implementation of the external exchange term, the computational bottleneck of coupled-cluster calculations at the singles and doubles level. This implementation is compared to standard molecular orbital, atomic orbital and resolution of identity implementations of the same term within the ORCA package and turns out to be the most efficient one for larger molecules, with a better accuracy than the resolution-of-identity approximation. Furthermore, it becomes possible to perform a canonical CC calculation on a tetramer of nucleobases in 17 days, 20 hours.

  19. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    ERIC Educational Resources Information Center

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  20. College with a Single Degree--Human Ecology.

    ERIC Educational Resources Information Center

    Kane, Marion

    1983-01-01

    Describes the philosophy, history, curriculum, faculty (22), and students (200) of the College of the Atlantic (Bar Harbor, Maine), which offers a single degree: Bachelor of Arts in Human Ecology. (MH)

  1. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    EPA Science Inventory

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  2. T-cell receptor repertoire of human peripheral CD161hiTRAV1-2+ MAIT cells revealed by next generation sequencing and single cell analysis.

    PubMed

    Held, Kathrin; Beltrán, Eduardo; Moser, Markus; Hohlfeld, Reinhard; Dornmair, Klaus

    2015-09-01

    Mucosal-associated invariant T (MAIT) cells are a T-cell subset that expresses a conserved TRAV1-2 (Vα7.2) T-cell receptor (TCR) chain and the surface marker CD161. They are involved in the defence against microbes as they recognise small organic molecules of microbial origin that are presented by the non-classical MHC molecule 1 (MR1). MAIT cells express a semi-restricted TCR α chain with TRAV1-2 preferentially linked to TRAJ33, TRAJ12, or TRAJ20 which pairs with a limited set of β chains. To investigate the TCR repertoire of human CD161(hi)TRAV1-2(+) T cells in depth we analysed the α and β chains of this T-cell subset by next generation sequencing. Concomitantly we analysed 132 paired α and β chains from single cells to assess the αβ pairing preferences. We found that the CD161(hi)TRAV1-2(+) TCR repertoire in addition to the typical MAIT TCRs further contains polyclonal elements reminiscent of classical αβ T cells. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  3. EARLINET Single Calculus Chain - overview on methodology and strategy

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G.

    2015-11-01

    In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network - Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation

  4. Detection of human Pneumocystis carinii by the polymerase chain reaction.

    PubMed

    Becker-Hapak, M; Liberator, P; Graves, D

    1991-01-01

    Oligonucleotide primers were prepared from a clone (B12) which has been shown to be a repetitive sequence in the rat P. carinii genome. Polymerase chain reaction was employed to amplify both rat and human P. carinii DNA. The detection limit of the assay was approximately 600 ng of total nucleic acid. Amplification products from both the rat and human isolates (ca. 780 bp) were characterized by denaturing gradient gel electrophoresis after digestion with Sau3A. No amplification products were obtained when DNA from the following potential pulmonary pathogens were used in identical reactions: Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Mycobacterium avium-intracellulare and cytomegalovirus. In a blind study using the B12 primers, P. carinii DNA was successfully amplified in clinical samples which were positive by direct immunofluorescence assay (IFA) as well as in some specimens not identified by direct IFA.

  5. Genetic diversity of the human immunoglobulin heavy chain VH region.

    PubMed

    Li, Honghua; Cui, Xiangfeng; Pramanik, Sreemanta; Chimge, Nyam-Osor

    2002-12-01

    The human immunoglobulin heavy chain VH region is one of the most complex regions in the human genome. The high level of diversity of this region has been shown by a number of studies. However, because of the limitations of the conventional experimental methods, it has been difficult to learn the extent of the diversity and the underlying mechanisms. This review describes a number of new genetic approaches developed in the authors' laboratory. By using these approaches, significant progress has been made in assigning different VH sequences to their respective loci, in learning the diversity of gene segment number and composition among the VH haplotypes, and in learning VH gene segment organization in individual haplotypes. Information obtained toward this direction could help in understanding the mechanisms underlying VH region diversity and the biological impact of the VH region diversity.

  6. Rapid determination of human globin chains using reversed-phase high-performance liquid chromatography.

    PubMed

    Wan, Jun-Hui; Tian, Pei-Ling; Luo, Wei-Hao; Wu, Bing-Yi; Xiong, Fu; Zhou, Wan-Jun; Wei, Xiang-Cai; Xu, Xiang-Min

    2012-07-15

    Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    NASA Astrophysics Data System (ADS)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  8. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid [18:1 n-9], M = caprylic acid [8:01) for 2 wk. Then lymph was collected 24 h following administration of a single bolus of 13C-labeled MLM or LLL. The total lymphatic recovery of exogenous 18:1 n-9 24 h after administration of a single bolus of MLM or LLL was similar in rats on the LLL diet (43% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol structure and composition (P= 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long-chain fatty acids from a single meal depends on the overall long-chain fatty acid composition of the habitual diet. This could have implications for enteral feeding for longer periods.

  9. Structure Predictions of Two Bauhinia variegata Lectins Reveal Patterns of C-Terminal Properties in Single Chain Legume Lectins

    PubMed Central

    Moreira, Gustavo M. S. G.; Conceição, Fabricio R.; McBride, Alan J. A.; Pinto, Luciano da S.

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins. PMID:24260572

  10. Structure predictions of two Bauhinia variegata lectins reveal patterns of C-terminal properties in single chain legume lectins.

    PubMed

    Moreira, Gustavo M S G; Conceição, Fabricio R; McBride, Alan J A; Pinto, Luciano da S

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and -II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.

  11. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  12. Conformation transitions of a single polyelectrolyte chain in a poor solvent: a replica-exchange lattice Monte-Carlo study.

    PubMed

    Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui

    2017-03-15

    The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.

  13. IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST.

    PubMed

    Giudicelli, Véronique; Duroux, Patrice; Kossida, Sofia; Lefranc, Marie-Paule

    2017-06-26

    IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino

  14. Organization of polymer chains onto long, single-wall carbon nano-tubes: effect of tube diameter and cooling method.

    PubMed

    Kumar, Sunil; Pattanayek, Sudip K; Pereira, Gerald G

    2014-01-14

    We use molecular dynamics simulations to investigate the arrangement of polymer chains when absorbed onto a long, single-wall carbon nano-tube (SWCNT). We study the conformation and organization of the polymer chains on the SWCNT and their dependence on the tube's diameter and the rate of cooling. We use two types of cooling processes: direct quenching and gradual cooling. The radial density distribution function and bond orientational order parameter are used to characterize the polymer chain structure near the surface. In the direct cooling process, the beads of the polymer chain organize in lamella-like patterns on the surface of the SWCNT with the long axis of the lamella parallel to the axis of the SWCNT. In a stepwise, gradual cooling process, the polymer beads form a helical pattern on the surface of a relatively thick SWCNT, but form a lamella-like pattern on the surface of a very thin SWCNT. We develop a theoretical (free energy) model to explain this difference in pattern structures for the gradual cooling process and also provide a qualitative explanation for the pattern that forms from the direct cooling process.

  15. Engineered Single-Chain, Antiparallel, Coiled Coil Mimics the MerR Metal Binding Site

    PubMed Central

    Song, Lingyun; Caguiat, Jonathan; Li, Zhongrui; Shokes, Jacob; Scott, Robert A.; Olliff, Lynda; Summers, Anne O.

    2004-01-01

    The repressor-activator MerR that controls transcription of the mercury resistance (mer) operon is unusual for its high sensitivity and specificity for Hg(II) in in vivo and in vitro transcriptional assays. The metal-recognition domain of MerR resides at the homodimer interface in a novel antiparallel arrangement of α-helix 5 that forms a coiled-coil motif. To facilitate the study of this novel metal binding motif, we assembled this antiparallel coiled coil into a single chain by directly fusing two copies of the 48-residue α-helix 5 of MerR. The resulting 107-residue polypeptide, called the metal binding domain (MBD), and wild-type MerR were overproduced and purified, and their metal-binding properties were determined in vivo and in vitro. In vitro MBD bound ca. 1.0 equivalent of Hg(II) per pair of binding sites, just as MerR does, and it showed only a slightly lower affinity for Hg(II) than did MerR. Extended X-ray absorption fine structure data showed that MBD has essentially the same Hg(II) coordination environment as MerR. In vivo, cells overexpressing MBD accumulated 70 to 100% more 203Hg(II) than cells bearing the vector alone, without deleterious effects on cell growth. Both MerR and MBD variously bound other thiophilic metal ions, including Cd(II), Zn(II), Pb(II), and As(III), in vitro and in vivo. We conclude that (i) it is possible to simulate in a single polypeptide chain the in vitro and in vivo metal-binding ability of dimeric, full-length MerR and (ii) MerR's specificity in transcriptional activation does not reside solely in the metal-binding step. PMID:14996817

  16. Quantitative Detection of Low-Abundance Transcripts at Single-Cell Level in Human Epidermal Keratinocytes by Digital Droplet Reverse Transcription-Polymerase Chain Reaction.

    PubMed

    Auvré, Frédéric; Coutier, Julien; Martin, Michèle T; Fortunel, Nicolas O

    2018-05-08

    Genetic and epigenetic characterization of the large cellular diversity observed within tissues is essential to understanding the molecular networks that ensure the regulation of homeostasis, repair, and regeneration, but also pathophysiological processes. Skin is composed of multiple cell lineages and is therefore fully concerned by this complexity. Even within one particular lineage, such as epidermal keratinocytes, different immaturity statuses or differentiation stages are represented, which are still incompletely characterized. Accordingly, there is presently great demand for methods and technologies enabling molecular investigation at single-cell level. Also, most current methods used to analyze gene expression at RNA level, such as RT-qPCR, do not directly provide quantitative data, but rather comparative ratios between two conditions. A second important need in skin biology is thus to determine the number of RNA molecules in a given cell sample. Here, we describe a workflow that we have set up to meet these specific needs, by means of transcript quantification in cellular micro-samples using flow cytometry sorting and reverse transcription-digital droplet polymerase chain reaction. As a proof-of-principle, the workflow was tested for the detection of transcription factor transcripts expressed at low levels in keratinocyte precursor cells. A linear correlation was found between quantification values and keratinocyte input numbers in a low quantity range from 40 cells to 1 cell. Interpretable signals were repeatedly obtained from single-cell samples corresponding to estimated expression levels as low as 10-20 transcript copies per keratinocyte or less. The present workflow may have broad applications for the detection and quantification of low-abundance nucleic acid species in single cells, opening up perspectives for the study of cell-to-cell genetic and molecular heterogeneity. Interestingly, the process described here does not require internal references

  17. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  18. Pituitary adenylate cyclase-activating polypeptide is a potent inhibitor of the growth of light chain-secreting human multiple myeloma cells.

    PubMed

    Li, Min; Cortez, Shirley; Nakamachi, Tomoya; Batuman, Vecihi; Arimura, Akira

    2006-09-01

    Multiple myeloma represents a malignant proliferation of plasma cells in the bone marrow, which often overproduces immunoglobulin light chains. We have shown previously that pituitary adenylate cyclase-activating polypeptide (PACAP) markedly suppresses the release of proinflammatory cytokines from light chain-stimulated human renal proximal tubule epithelial cells and prevents the resulting tubule cell injury. In this study, we have shown that PACAP suppresses the proliferation of human kappa and lambda light chain-secreting multiple myeloma-derived cells. The addition of PACAP suppressed light chain-producing myeloma cell-stimulated interleukin 6 (IL-6) secretion by the bone marrow stromal cells (BMSCs). A specific antagonist to either the human PACAP-specific receptor or the vasoactive intestinal peptide receptor attenuated the suppressive effect of PACAP on IL-6 production in the adhesion of human multiple myeloma cells to BMSCs. The secretion of IL-6 by BMSCs was completely inhibited by 10(-9) mol/L PACAP, which also attenuated the phosphorylation of both p42/44 and p38 mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappaB (NF-kappaB) activation in response to the adhesion of multiple myeloma cells to BMSCs, whereas the inhibition of p42/44 MAPK signaling attenuated PACAP action. The signaling cascades involved in the inhibitory effect of PACAP on IL-6-mediated paracrine stimulation of light chain-secreting myeloma cell growth was mediated through the suppression of p38 MAPK as well as modulation of activation of transcription factor NF-kappaB. These findings suggest that PACAP may be a new antitumor agent that directly suppresses light chain-secreting myeloma cell growth and indirectly affects tumor cell growth by modifying the bone marrow milieu of the multiple myeloma.

  19. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    PubMed

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  20. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quantum phase transitions in spin-1 X X Z chains with rhombic single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Wang, Yimin; You, Wen-Long

    2018-04-01

    We explore numerically the inverse participation ratios in the ground state of one-dimensional spin-1 X X Z chains with the rhombic single-ion anisotropy. By employing the techniques of density-matrix renormalization group, effects of the rhombic single-ion anisotropy on various information theoretical measures are investigated, such as the fidelity susceptibility, the quantum coherence, and the entanglement entropy. Their relations with the quantum phase transitions are also analyzed. The phase transitions from the Y -Néel phase to the large-Ex or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence, the entanglement entropy, the Schmidt gap, and the inverse participation ratios can be used to detect the critical points of quantum phase transitions. Results drawn from these quantum information observables agree well with each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy Δ and the rhombic single-ion anisotropy E .

  2. Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for Ubiquitin Chain Assembly

    DOE PAGES

    Brown, Nicholas G.; Watson, Edmond R.; Weissmann, Florian; ...

    2014-10-09

    Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here in this paper we show that human APC’s RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms.more » During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.« less

  3. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation.

    PubMed

    Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2002-11-15

    A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express critical costimulatory ligands, modified single-chain Ab receptors have been engineered to codeliver CD28 costimulation. In this study, we have compared the antitumor potency of primary T lymphocytes expressing carcinoembryonic Ag (CEA)-reactive chimeric receptors that incorporate either TCR-zeta or CD28/TCR-zeta signaling. Although both receptor-transduced T cell effector populations demonstrated cytolysis of CEA(+) tumors in vitro, T cells expressing the single-chain variable fragment of Ig (scFv)-CD28-zeta chimera had a far greater capacity to control the growth of CEA(+) xenogeneic and syngeneic colon carcinomas in vivo. The observed enhanced antitumor activity of T cells expressing the scFv-CD28-zeta receptor was critically dependent on perforin and the production of IFN-gamma. Overall, this study has illustrated the ability of a chimeric scFv receptor capable of harnessing the signaling machinery of both TCR-zeta and CD28 to augment T cell immunity against tumors that have lost expression of both MHC/peptide and costimulatory ligands in vivo.

  4. Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2018-01-01

    We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.

  5. Crystal structures of a therapeutic single chain antibody in complex with two drugs of abuse—Methamphetamine and 3,4-methylenedioxymethamphetamine

    PubMed Central

    Celikel, Reha; Peterson, Eric C; Owens, S Michael; Varughese, Kottayil I

    2009-01-01

    Methamphetamine (METH) is a major drug threat in the United States and worldwide. Monoclonal antibody (mAb) therapy for treating METH abuse is showing exciting promise and the understanding of how mAb structure relates to function will be essential for future development of these important therapies. We have determined crystal structures of a high affinity anti-(+)-METH therapeutic single chain antibody fragment (scFv6H4, KD= 10 nM) derived from one of our candidate mAb in complex with METH and the (+) stereoisomer of another abused drug, 3,4-methylenedioxymethamphetamine (MDMA), known by the street name “ecstasy.” The crystal structures revealed that scFv6H4 binds to METH and MDMA in a deep pocket that almost completely encases the drugs mostly through aromatic interactions. In addition, the cationic nitrogen of METH and MDMA forms a salt bridge with the carboxylate group of a glutamic acid residue and a hydrogen bond with a histidine side chain. Interestingly, there are two water molecules in the binding pocket and one of them is positioned for a C—H⋯O interaction with the aromatic ring of METH. These first crystal structures of a high affinity therapeutic antibody fragment against METH and MDMA (resolution = 1.9 Å, and 2.4 Å, respectively) provide a structural basis for designing the next generation of higher affinity antibodies and also for carrying out rational humanization. PMID:19760665

  6. Crystal structures of a therapeutic single chain antibody in complex with two drugs of abuse-Methamphetamine and 3,4-methylenedioxymethamphetamine.

    PubMed

    Celikel, Reha; Peterson, Eric C; Owens, S Michael; Varughese, Kottayil I

    2009-11-01

    Methamphetamine (METH) is a major drug threat in the United States and worldwide. Monoclonal antibody (mAb) therapy for treating METH abuse is showing exciting promise and the understanding of how mAb structure relates to function will be essential for future development of these important therapies. We have determined crystal structures of a high affinity anti-(+)-METH therapeutic single chain antibody fragment (scFv6H4, K(D)= 10 nM) derived from one of our candidate mAb in complex with METH and the (+) stereoisomer of another abused drug, 3,4-methylenedioxymethamphetamine (MDMA), known by the street name "ecstasy." The crystal structures revealed that scFv6H4 binds to METH and MDMA in a deep pocket that almost completely encases the drugs mostly through aromatic interactions. In addition, the cationic nitrogen of METH and MDMA forms a salt bridge with the carboxylate group of a glutamic acid residue and a hydrogen bond with a histidine side chain. Interestingly, there are two water molecules in the binding pocket and one of them is positioned for a C--H...O interaction with the aromatic ring of METH. These first crystal structures of a high affinity therapeutic antibody fragment against METH and MDMA (resolution = 1.9 A, and 2.4 A, respectively) provide a structural basis for designing the next generation of higher affinity antibodies and also for carrying out rational humanization.

  7. Molecular Dynamics Simulation of Calbindin D9k in Apo, Singly and Doubly Loaded States in Various Side-Chains

    NASA Astrophysics Data System (ADS)

    Thapa, Mahendra Bahadur

    Calbindin D9k (CAB) is a single domain calcium-binding protein and is the smallest members of the calmodulin superfamily, possessing a pair of calcium-binding EF-hands, and structures for all four states have been determined and extensively characterized experimentally. Because of the tremendous advancement in hardware and software computer technologies in recent years, longer and more realistic molecular dynamics (MD) simulations of a protein are possible now in reasonable periods of time. These advances were exploited to generate multiple, all-atom MD simulations of CAB via the AMBER software package, and the resulting trajectories were employed to calculate backbone order parameters of the apo, the singly and the doubly loaded states of calcium in CAB. The results are in very good agreement with corresponding experimental NMR-based (Nuclear Magnetic Resonance spectroscopy) results, and are improved in comparison to those calculated over a decade ago; use of modified force fields played a key role in the observed improvements. The apo state is the most flexible, and the singly loaded and the doubly loaded states are similar, thus supporting positive cooperativity in line with the experimental results. Further, B-factor calculations of backbone atoms for these calcium-binding states of calbindin D9k also support such cooperativity. Although changes in side-chain motions are not necessarily correlated to changes in protein backbone mobility, past studies on the comparison of experimental and simulated methyl side-chain NMR relaxation parameters of CAB for the doubly-loaded state reported significant improvements in the quantitative representation of side-chain motion by MD simulation. In this project, the order parameters for various side chains in apo, singly loaded and doubly loaded states of CAB were calculated. The primary goal of this work was to determine whether or not the allosteric effect of calcium binding, as observed via the backbone order parameters

  8. Application of single-cell sequencing in human cancer.

    PubMed

    Rantalainen, Mattias

    2017-11-02

    Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells, while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to characterize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the field. © The Author 2017. Published by Oxford University Press.

  9. Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment.

    PubMed

    Boonsaner, Maliwan; Hawker, Darryl W

    2013-10-01

    There has been recent concern regarding the possibility of antibiotics entering the aquatic food chain and impacting human consumers. This work reports experimental results of the bioconcentration of the antibiotic oxytetracycline (OTC) by the Asian watermeal plant (Wolffia globosa Hartog & Plas) and bioaccumulation of OTC in watermeal and water by the seven-striped carp (Probarbus jullieni). They show, for the first time, the extent to which OTC is able to transfer from water to plant to fish and enter the food chain. The mean bioconcentration factor (dry weight basis) with watermeal was 1.28 × 10(3) L kg(-1). Separate experiments were undertaken to characterize accumulation of OTC by carp from water and watermeal. These showed the latter pathway to be dominant under the conditions employed. The bioconcentration and biomagnification factors for these processes were 1.75 L kg(-1) and 2 × 10(-4) kg g(-1) respectively. Using an aqueous concentration range of 0.34-3.0 μg L(-1), hazard quotients for human consumption of contaminated fish of 1.3 × 10(-2) to 1.15 × 10(-1) were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Mehalick, Leslie A.; Poulsen, Christopher; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26550599

  11. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    PubMed

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Distributed Representation of Visual Objects by Single Neurons in the Human Brain

    PubMed Central

    Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.

    2015-01-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044

  13. Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids.

    PubMed

    Peters, Bart D; Voineskos, Aristotle N; Szeszko, Philip R; Lett, Tristram A; DeRosse, Pamela; Guha, Saurav; Karlsgodt, Katherine H; Ikuta, Toshikazu; Felsky, Daniel; John, Majnu; Rotenberg, David J; Kennedy, James L; Lencz, Todd; Malhotra, Anil K

    2014-04-30

    The genetic and molecular pathways driving human brain white matter (WM) development are only beginning to be discovered. Long chain polyunsaturated fatty acids (LC-PUFAs) have been implicated in myelination in animal models and humans. The biosynthesis of LC-PUFAs is regulated by the fatty acid desaturase (FADS) genes, of which a human-specific haplotype is strongly associated with ω-3 and ω-6 LC-PUFA concentrations in blood. To investigate the relationship between LC-PUFA synthesis and human brain WM development, we examined whether this FADS haplotype is associated with age-related WM differences across the life span in healthy individuals 9-86 years of age (n = 207). Diffusion tensor imaging was performed to measure fractional anisotropy (FA), a putative measure of myelination, of the cerebral WM tracts. FADS haplotype status was determined with a single nucleotide polymorphism (rs174583) that tags this haplotype. Overall, normal age-related WM differences were observed, including higher FA values in early adulthood compared with childhood, followed by lower FA values across older age ranges. However, individuals homozygous for the minor allele (associated with lower LC-PUFA concentrations) did not display these normal age-related WM differences (significant age × genotype interactions, p(corrected) < 0.05). These findings suggest that LC-PUFAs are involved in human brain WM development from childhood into adulthood. This haplotype and LC-PUFAs may play a role in myelin-related disorders of neurodevelopmental origin.

  14. Observation of a commensurate array of flux chains in tilted flux lattices in Bi-Sr-Ca-Cu-O single crystals

    NASA Astrophysics Data System (ADS)

    Bolle, C. A.; Gammel, P. L.; Grier, D. G.; Murray, C. A.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1991-01-01

    We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields.

  15. Calculation of single chain cellulose elasticity using fully atomistic modeling

    Treesearch

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2011-01-01

    Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...

  16. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization

    PubMed Central

    Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang

    2014-01-01

    A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant colour change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10 pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays. PMID:25500528

  17. Human and animal health risk assessments of chemicals in the food chain: Comparative aspects and future perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorne, J.L.C.M., E-mail: jean-lou.dorne@efsa.europa.eu; Fink-Gremmels, J.

    Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chainmore » (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field. - Highlights: ► Principles of human and animal health risk assessment. ► Data gaps for each step of animal health risk assessment. ► Implications of animal risk assessment on human risk assessment. ► Future perspectives on chemical risk assessment.« less

  18. First principle study of the electronic and magnetic properties of a single iron atomic chain encapsulated in boron nitrite nanotubes

    NASA Astrophysics Data System (ADS)

    Fathalian, Ali; Jalilian, Jaafar; Shahidi, Sahar

    2011-11-01

    The electronic and magnetic properties for a single Fe atom chain wrapped in armchair (n,n) boron nitride nanotubes (BNNTs) ( 4≤n≤6) are investigated through the density functional theory. By increasing the nanotube diameter, the magnetic moments, total magnetic moments and spin polarization of Fe@(n,n) systems are increased. We have calculated the majority and minority density of states (DOS) of armchair Fe@(6,6) BNNT. Our results show that the magnetic moment of the system come mostly from the Fe atom chain. The magnetic moment on an Fe atom, the total magnetic moment and spin polarization decrease by increasing the axial separation of the Fe atom chain for the Fe@(6,6) system. The Fe@(6,6) BNNT can be used in the magnetic nanodevices because of higher magnetic moment and spin polarization.

  19. High-Throughput Determination and Characterization of Short-, Medium-, and Long-Chain Chlorinated Paraffins in Human Blood.

    PubMed

    Li, Tong; Wan, Yi; Gao, Shixiong; Wang, Beili; Hu, Jianying

    2017-03-21

    The industrial chlorinated paraffins (CPs) are comprised of short-chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) CPs. Although SCCPs and MCCPs are environmentally ubiquitous, little is known about CPs in humans. This study established a method for simultaneous determination of 261 SCCP, MCCP, and LCCP congener groups in one injection by reversed ultrahigh-pressure liquid chromatography coupled with chlorine-enhanced electron spray ionization-quadrupole time-of-flight mass spectrometry. The method yielded good peak shapes, high sensitivities, and low coeluted interferences for all examined CPs. LCCPs with carbon numbers of 21 to 27 were detected in their standard technical mixtures, and MCCPs and LCCPs impurities were detected in the LCCP and MCCP standard technical mixtures, respectively, causing quantification deviations when these mixtures were used for calibration. After considering these impurities' contribution to the total concentrations, the quantification accuracies for ∑SCCPs, ∑MCCPs, and ∑LCCPs ranged from 95.1 ± 8.4% to 105.6 ± 9.2% in the eight CP technical mixtures. The method was successfully applied to determine CPs in about 6 g human blood samples from a general population, and estimated ∑SCCP, ∑MCCP, and ∑LCCP concentrations to be 370-35 000, 130-3200, and 22-530 ng/g lipid weight (n = 50), respectively. A comparison of blood and soil/air CP profiles from the same areas suggested a relatively higher potential for the accumulation of SCCPs, compared with MCCPs, in humans.

  20. Exactly solved mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Lisnyi, Bohdan; Strečka, Jozef

    2015-03-01

    The mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration-iteration transformation and the transfer-matrix method. The decoration-iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively.

  1. Chains are more flexible under tension

    PubMed Central

    Carrillo, Jan-Michael Y.; Rubinstein, Michael

    2010-01-01

    The mechanical response of networks, gels, and brush layers is a manifestation of the elastic properties of the individual macromolecules. Furthermore, the elastic response of macromolecules to an applied force is the foundation of the single-molecule force spectroscopy techniques. The two main classes of models describing chain elasticity include the worm-like and freely-jointed chain models. The selection between these two classes of models is based on the assumptions about chain flexibility. In many experimental situations the choice is not clear and a model describing the crossover between these two limiting classes is therefore in high demand. We are proposing a unified chain deformation model which describes the force-deformation curve in terms of the chain bending constant K and bond length b. This model demonstrates that the worm-like and freely-jointed chain models correspond to two different regimes of polymer deformation and the crossover between these two regimes depends on the chain bending rigidity and the magnitude of the applied force. Polymer chains with bending constant K>1 behave as a worm-like chain under tension in the interval of the applied forces f ≤ KkBT/b and as a freely-jointed chain for f ≥ KkBT/b (kB is the Boltzmann constant and T is the absolute temperature). The proposed crossover expression for chain deformation is in excellent agreement with the results of the molecular dynamics simulations of chain deformation and single-molecule deformation experiments of biological and synthetic macromolecules. PMID:21415940

  2. Phage display of functional αβ single-chain T-cell receptor molecules specific for CD1b:Ac₂SGL complexes from Mycobacterium tuberculosis-infected cells.

    PubMed

    Camacho, Frank; Huggett, Jim; Kim, Louise; Infante, Juan F; Lepore, Marco; Perez, Viviana; Sarmiento, María E; Rook, Graham; Acosta, Armando

    2013-01-01

    The development of molecules specific for M. tuberculosis-infected cells has important implications, as these tools may facilitate understanding of the mechanisms regulating host pathogen interactions in vivo. In addition, development of new tools capable to targeting M. tuberculosis-infected cells may have potential applications to diagnosis, treatment, and prevention of tuberculosis (TB). Due to the lack of CD1b polymorphism, M. tuberculosis lipid-CD1b complexes could be considered as universal tuberculosis infection markers. The aim of the present study was to display on the PIII surface protein of m13 phage, a human αβ single-chain T-cell receptor molecule specific for CD1b:2-stearoyl-3-hydroxyphthioceranoyl-2´-sulfate-α-α´-D-trehalose (Ac₂SGL) which is a complex presented by human cells infected with M. tuberculosis. The results showed the pIII fusion particle was successfully displayed on the phage surface. The study of the recognition of the recombinant phage in ELISA and immunohistochemistry showed the recognition of CD1b:Ac₂SGL complexes and cells in human lung tissue from a tuberculosis patient respectively, suggesting the specific recognition of the lipid-CD1b complex.

  3. Distributed representation of visual objects by single neurons in the human brain.

    PubMed

    Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N

    2015-04-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.

  4. Peptide docking of HIV-1 p24 with single chain fragment variable (scFv) by CDOCKER algorithm

    NASA Astrophysics Data System (ADS)

    Karim, Hana Atiqah Abdul; Tayapiwatana, Chatchai; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abdul; Lee, Vannajan Sanghiran

    2014-10-01

    In search for the important residues that might have involve in the binding interaction between the p24 caspid protein of HIV-1 fragment (MET68 - PRO90) with the single chain fragment variable (scFv) of FAB23.5, modern computational chemistry approach has been conducted and applied. The p24 fragment was initially taken out from the 1AFV protein molecule consisting of both light (VL) and heavy (VH) chains of FAB23.5 as well as the HIV-1 caspid protein. From there, the p24 (antigen) fragment was made to dock back into the protein pocket receptor (antibody) by using the CDOCKER algorithm to conduct the molecular docking process. The score calculated from the CDOCKER gave 15 possible docked poses with various docked ligand's positions, the interaction energy as well as the binding energy. The best docked pose that imitates the original antigen's position was determined and further processed to the In Situ minimization to obtain the residues interaction energy as well as to observe the hydrogen bonds interaction in the protein-peptide complex. Based on the results demonstrated, the specific residues in the complex that have shown immense lower interaction energies in the 5Å vicinity region from the peptide are from the heavy chain (VH:TYR105) and light chain (VL: ASN31, TYR32, and GLU97). Those residues play vital roles in the binding mechanism of Antibody-Antigen (Ab-Ag) complex of p24 with FAB23.5.

  5. High-risk human papillomavirus infection involving multiple anatomic sites of the female lower genital tract: a multiplex real-time polymerase chain reaction-based study.

    PubMed

    Hui, Yiang; Manna, Pradip; Ou, Joyce J; Kerley, Spencer; Zhang, Cunxian; Sung, C James; Lawrence, W Dwayne; Quddus, M Ruhul

    2015-09-01

    High-risk human papillomavirus infection usually is seen at one anatomic site in an individual. Rarely, infection at multiple anatomic sites of the female lower genital tract in the same individual is encountered either simultaneously and/or at a later date. The current study identifies the various subtypes of high-risk human papillomavirus infection in these scenarios and analyzes the potential significance of these findings. High-risk human papillomavirus infection involving 22 anatomic sites from 7 individuals was identified after institutional review board approval. Residual paraffin-embedded tissue samples were retrieved, and all 15 high-risk human papillomavirus were identified and viral load quantified using multiplex real-time polymerase chain reaction-based method. Multiple high-risk human papillomavirus subtypes were identified in 32% of the samples and as many as 5 different subtypes of high-risk human papillomavirus infection in a single anatomic site. In general, each anatomic site has unique combination of viral subtypes, although one individual showed overlapping subtypes in the vagina, cervix, and vulvar samples. Higher viral load and rare subtypes are more frequent in younger patients and in dysplasia compared with carcinoma. Follow-up ranging from 3 to 84 months revealed persistent high-risk human papillomavirus infection in 60% of cases. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Poulsen, Christopher; Mehalick, Leslie A.; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 µM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propridium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2 to 10.0 µM long-chain bases and GML were not cytotoxic; 40.0 to 80.0 µM long-chain bases, but not GML, were cytotoxic; and 80.0 µM long-chain bases induced cellular damage and death in less than 20 minutes. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26005054

  7. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Poulsen, Christopher; Mehalick, Leslie A; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-08-19

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propidium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases, but not GML, were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity.

    PubMed

    Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter

    2016-04-01

    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.

  9. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction.

    PubMed

    Corman, V M; Eckerle, I; Bleicker, T; Zaki, A; Landt, O; Eschbach-Bludau, M; van Boheemen, S; Gopal, R; Ballhause, M; Bestebroer, T M; Muth, D; Müller, M A; Drexler, J F; Zambon, M; Osterhaus, A D; Fouchier, R M; Drosten, C

    2012-09-27

    We present two real-time reverse-transcription polymerase chain reaction assays for a novel human coronavirus (CoV), targeting regions upstream of the E gene (upE) or within open reading frame (ORF)1b, respectively. Sensitivity for upE is 3.4 copies per reaction (95% confidence interval (CI): 2.5–6.9 copies) or 291 copies/mL of sample. No cross-reactivity was observed with coronaviruses OC43, NL63, 229E, SARS-CoV, nor with 92 clinical specimens containing common human respiratory viruses. We recommend using upE for screening and ORF1b for confirmation.

  10. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Wei, Hui-Ling; Bai, Gui-Rong; Mweene, Aaron S; Zhou, Ying-Chun; Cong, Yan-Long; Pu, Juan; Wang, Shuai; Kida, Hiroshi; Liu, Jin-Hua

    2006-06-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) virus caused great economic losses to the poultry industry and resulted in human deaths in Thailand and Viet Nam in 2004. Rapid typing and subtyping of H5N1 viruses, especially from clinical specimens, are desirable for taking prompt control measures to prevent the spread of the disease. Here, we developed a set of oligonucleotide primers able to detect, type and subtype H5 and N1 influenza viruses in a single step multiplex reverse transcription-polymerase chain reaction (RT-PCR). RNA was extracted from allantoic fluid or from specimens with guanidinium isothiocyanate reagent. Reverse transcription and PCR were carried out with a mixture of primers specific for influenza viruses of type A, subtype H5 and N1 in a single reaction system under identical conditions. The amplified DNA fragments were analyzed by agarose gel electrophoresis. All the H5N1 viruses tested in the study and the experimental specimens presented three specific bands by the method established here. The results presented here suggest that the method described below is rapid and specific and, therefore, could be valuable in the rapid detection of H5N1 influenza viruses in clinics.

  11. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing.

    PubMed

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M T; Gradinaru, Viviana; Pierce, Niles A; Cai, Long

    2016-08-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. © 2016. Published by The Company of Biologists Ltd.

  12. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    NASA Technical Reports Server (NTRS)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  13. Analysis of the relationship between end-to-end distance and activity of single-chain antibody against colorectal carcinoma.

    PubMed

    Zhang, Jianhua; Liu, Shanhong; Shang, Zhigang; Shi, Li; Yun, Jun

    2012-08-22

    We investigated the relationship of End-to-end distance between VH and VL with different peptide linkers and the activity of single-chain antibodies by computer-aided simulation. First, we developed (G4S)n (where n = 1-9) as the linker to connect VH and VL, and estimated the 3D structure of single-chain Fv antibody (scFv) by homologous modeling. After molecular models were evaluated and optimized, the coordinate system of every protein was built and unified into one coordinate system, and End-to-end distances calculated using 3D space coordinates. After expression and purification of scFv-n with (G4S)n as n = 1, 3, 5, 7 or 9, the immunoreactivity of purified ND-1 scFv-n was determined by ELISA. A multi-factorial relationship model was employed to analyze the structural factors affecting scFv: rn=ABn-ABO2+CDn-CDO2+BCn-BCst2. The relationship between immunoreactivity and r-values revealed that fusion protein structure approached the desired state when the r-value = 3. The immunoreactivity declined as the r-value increased, but when the r-value exceeded a certain threshold, it stabilized. We used a linear relationship to analyze structural factors affecting scFv immunoreactivity.

  14. Consistency of the single calculus chain for climatological studies using long-term measurements from thessaloniki lidar station

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Voudouri, Kalliopi A.; Filioglou, Maria; Giannakaki, Eleni; Amiridis, Vasilis; D'Amico, Giuseppe; Balis, Dimitris S.

    2018-04-01

    The long term analysis of 15 years of lidar data derived from a Raman lidar at Thessaloniki is presented here. All measurements have been processed with the latest version 4 of the EARLINET Single Calculus Chain algorithm and are compared with the results from the current operational retrieval algorithm. In this paper we investigate the consistency between the EARLINET database and SCC for the case of Thessaloniki and we identify the issues to be considered when switching from current operations to SCC.

  15. Single Chain Antibodies as Tools to Study transforming growth factor-β-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    PubMed

    Blokzijl, Andries; Zieba, Agata; Hust, Michael; Schirrmann, Thomas; Helmsing, Saskia; Grannas, Karin; Hertz, Ellen; Moren, Anita; Chen, Lei; Söderberg, Ola; Moustakas, Aristidis; Dübel, Stefan; Landegren, Ulf

    2016-06-01

    The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors

  16. A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms

    ERIC Educational Resources Information Center

    Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.

    2016-01-01

    The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…

  17. Single-Cell RNA Sequencing of Human T Cells.

    PubMed

    Villani, Alexandra-Chloé; Shekhar, Karthik

    2017-01-01

    Understanding how populations of human T cells leverage cellular heterogeneity, plasticity, and diversity to achieve a wide range of functional flexibility, particularly during dynamic processes such as development, differentiation, and antigenic response, is a core challenge that is well suited for single-cell analysis. Hypothesis-free evaluation of cellular states and subpopulations by transcriptional profiling of single T cells can identify relationships that may be obscured by targeted approaches such as FACS sorting on cell-surface antigens, or bulk expression analysis. While this approach is relevant to all cell types, it is of particular interest in the study of T cells for which classical phenotypic criteria are now viewed as insufficient for distinguishing different T cell subtypes and transitional states, and defining the changes associated with dysfunctional T cell states in autoimmunity and tumor-related exhaustion. This unit describes a protocol to generate single-cell transcriptomic libraries of human blood CD4 + and CD8 + T cells, and also introduces the basic bioinformatic steps to process the resulting sequence data for further computational analysis. We show how cellular subpopulations can be identified from transcriptional data, and derive characteristic gene expression signatures that distinguish these states. We believe single-cell RNA-seq is a powerful technique to study the cellular heterogeneity in complex tissues, a paradigm that will be of great value for the immune system.

  18. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.

    PubMed

    Tricarico, Carmela; Pinzani, Pamela; Bianchi, Simonetta; Paglierani, Milena; Distante, Vito; Pazzagli, Mario; Bustin, Stephen A; Orlando, Claudio

    2002-10-15

    Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.

  19. Identification of the gene for fly non-muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family.

    PubMed Central

    Kiehart, D P; Lutz, M S; Chan, D; Ketchum, A S; Laymon, R A; Nguyen, B; Goldstein, L S

    1989-01-01

    In contrast to vertebrate species Drosophila has a single myosin heavy chain gene that apparently encodes all sarcomeric heavy chain polypeptides. Flies also contain a cytoplasmic myosin heavy chain polypeptide that by immunological and peptide mapping criteria is clearly different from the major thoracic muscle isoform. Here, we identify the gene that encodes this cytoplasmic isoform and demonstrate that it is distinct from the muscle myosin heavy chain gene. Thus, fly myosin heavy chains are the products of a gene family. Our data suggest that the contractile function required to power myosin based movement in non-muscle cells requires myosin diversity beyond that available in a single heavy chain gene. In addition, we show, that accumulation of cytoplasmic myosin transcripts is regulated in a developmental stage specific fashion, consistent with a key role for this protein in the movements of early embryogenesis. Images PMID:2498088

  20. A family of rare-earth-based single chain magnets: playing with anisotropy.

    PubMed

    Bernot, Kevin; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta

    2006-06-21

    The first family of rare-earth-based single chain magnets is presented. Compounds of general formula [M(hfac)3(NITPhOPh)], where M = Eu, Gd, Tb, Dy, Ho, Er, or Yb, and PhOPh is the nitronyl-nitroxide radical (2,4'-benzoxo-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), have been structurally characterized and found to be isostructural. The characterization of both static and dynamic magnetic properties of the whole family is reported. Dy, Tb, and Ho compounds display slow relaxation of the magnetization, and ac susceptibility shows a thermally activated regime with energy barriers of 69, 45, and 34 K for Dy, Tb, and Ho compounds, respectively, while only a frequency-dependent susceptibility is observed for Er below 2.0 K. In Gd and Yb derivatives, antiferromagnetic interactions dominate. The pre-exponential factors differ by about 4 orders of magnitude. Finite size effects, due to naturally occurring defects, affect the static and dynamic properties of the compounds differently.

  1. Direct observation of single flexible polymers using single stranded DNA†

    PubMed Central

    Brockman, Christopher; Kim, Sun Ju

    2012-01-01

    Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981

  2. Salmonella Brandenburg in the pork chain in Italy: Genetic comparison with the human isolates.

    PubMed

    Bonardi, Silvia; Morganti, Marina; Pupillo, Giovanni; Brindani, Franco

    2018-03-31

    Salmonella Brandenburg ranked 16 th among the serovars responsible for human infections in EU in 2015 and it was found to be associated with swine. In Emilia- Romagna and Lombardy regions of northern Italy, S. Brandenburg was isolated from mesenteric lymph nodes, fecal matter, carcasses and conveyor belts at pig slaughterhouses in 2014 and 2015. In the same area, S. Brandenburg was detected in pork salami in 2015. In the present study, 12 isolates of S. Brandenburg recovered from the pork food-chain were typed by Xba I PFGE and their three profiles were compared to all human S . Brandenburg isolates processed by the Surveillance System of Emilia- Romagna region from 2012 to 2017 (105 isolates). The most frequent pulsotype of porcine origin (6/12) was the second most frequent in humans (16/105). Of the other two pulsotypes of porcine origine (3/12 each), one was the most frequent in humans (41/105), the other was undetected among human isolates.

  3. Cell-free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire.

    PubMed

    Makeyev, E V; Kolb, V A; Spirin, A S

    1999-02-12

    A novel cloning-independent strategy has been developed to generate a combinatorial library of PCR fragments encoding a murine single-chain antibody repertoire and express it directly in a cell-free system. The new approach provides an effective alternative to the techniques involving in vivo procedures of preparation and handling large libraries of antibodies. The possible use of the described strategy in the ribosome display is discussed.

  4. A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor.

    PubMed

    Bernard, Clémence; Vincent, Clémentine; Testa, Damien; Bertini, Eva; Ribot, Jérôme; Di Nardo, Ariel A; Volovitch, Michel; Prochiantz, Alain

    2016-05-01

    During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In adult mice, the maintenance of a non-plastic adult state requires continuous Otx2 import by PV cells. An important source of extra-cortical Otx2 is the choroid plexus, which secretes Otx2 into the cerebrospinal fluid. Otx2 secretion and internalization requires two small peptidic domains that are part of the DNA-binding domain. Thus, mutating these "transfer" sequences also modifies cell autonomous transcription, precluding this approach to obtain a cell autonomous-only mouse. Here, we develop a mouse model with inducible secretion of an anti-Otx2 single-chain antibody to trap Otx2 in the extracellular milieu. Postnatal secretion of this single-chain antibody by PV cells delays PV maturation and reduces plasticity gene expression. Induced adult expression of this single-chain antibody in cerebrospinal fluid decreases Otx2 internalization by PV cells, strongly induces plasticity gene expression and reopens physiological plasticity. We provide the first mammalian genetic evidence for a signaling mechanism involving intercellular transfer of a homeoprotein transcription factor. Our single-chain antibody mouse model is a valid strategy for extracellular neutralization that could be applied to other homeoproteins and signaling molecules within and beyond the nervous system.

  5. Single polysaccharide assembly protein that integrates polymerization, termination, and chain-length quality control

    PubMed Central

    Williams, Danielle M.; Ovchinnikova, Olga G.; Koizumi, Akihiko; Mainprize, Iain L.; Kimber, Matthew S.; Lowary, Todd L.

    2017-01-01

    Lipopolysaccharides (LPS) are essential outer membrane glycolipids in most gram-negative bacteria. Biosynthesis of the O-antigenic polysaccharide (OPS) component of LPS follows one of three widely distributed strategies, and similar processes are used to assemble other bacterial surface glycoconjugates. This study focuses on the ATP-binding cassette (ABC) transporter-dependent pathway, where glycans are completed on undecaprenyl diphosphate carriers at the cytosol:membrane interface, before export by the ABC transporter. We describe Raoultella terrigena WbbB, a prototype for a family of proteins that, remarkably, integrates several key activities in polysaccharide biosynthesis into a single polypeptide. WbbB contains three glycosyltransferase (GT) modules. Each of the GT102 and GT103 modules characterized here represents a previously unrecognized GT family. They form a polymerase, generating a polysaccharide of [4)-α-Rhap-(1→3)-β-GlcpNAc-(1→] repeat units. The polymer chain is terminated by a β-linked Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) residue added by a third GT module belonging to the recently discovered GT99 family. The polymerase GT modules are separated from the GT99 chain terminator by a coiled-coil structure that forms a molecular ruler to determine product length. Different GT modules in the polymerase domains of other family members produce diversified OPS structures. These findings offer insight into glycan assembly mechanisms and the generation of antigenic diversity as well as potential tools for glycoengineering. PMID:28137848

  6. [Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids improves body composition and lipid profile in a patient with human immunodeficiency virus lipodystrophy].

    PubMed

    Vázquez, C; Reyes, R; Alcaraz, F; Balsa, J A; Botella-Carretero, J I

    2006-01-01

    Lipodystrophy is a frequent disorder among patients with human immunodeficiency virus (HIV) infection, characterized by a loss of adipose tissue from the extremities, gluteal region and face, with excess fat in the neck and abdominal region. Metabolic abnormalities such as hyperlipidaemia and diabetes mellitus frequently coexist, posing these patients to an increased cardiovascular risk. Drug therapy may improve some of these metabolic disturbances, but to date there are no treatments for lipodystrophy with proven benefit. A 42-year-old man with HIV lipodystrophy was started on a standard low caloric diet with <30% of total fat and <10% of saturated fat, together with rosiglitazone 8 mg daily. After five months of treatment, given that lipodystrophic features and dyslipidaemia were still present in our patient, we tried to further improve therapeutic results by eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids. Three months later, a dramatic change in body composition was shown with an increase in lean mass and a decrease in fat mass, together with an improvement in lipid profile. Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids may produce therapeutic benefits in HIV lipodystrophy.

  7. Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments.

    PubMed

    Wang, Yuling; Rauf, Sakandar; Grewal, Yadveer S; Spadafora, Lauren J; Shiddiky, Muhammad J A; Cangelosi, Gerard A; Schlücker, Sebastian; Trau, Matt

    2014-10-07

    Quantitative and accurate detection of multiple biomarkers would allow for the rapid diagnosis and treatment of diseases induced by pathogens. Monoclonal antibodies are standard affinity reagents applied for biomarkers detection; however, their production is expensive and labor-intensive. Herein, we report on newly developed nanoyeast single-chain variable fragments (NYscFv) as an attractive alternative to monoclonal antibodies, which offers the unique advantage of a cost-effective production, stability in solution, and target-specificity. By combination of surface-enhanced Raman scattering (SERS) microspectroscopy using glass-coated, highly purified SERS nanoparticle clusters as labels, with a microfluidic device comprising multiple channels, a robust platform for the sensitive duplex detection of pathogen antigens has been developed. Highly sensitive detection for individual Entamoeba histolytica antigen EHI_115350 (limit of detection = 1 pg/mL, corresponding to 58.8 fM) and EHI_182030 (10 pg/mL, corresponding 453 fM) with high specificity has been achieved, employing the newly developed corresponding NYscFv as probe in combination with SERS microspectroscopy at a single laser excitation wavelength. Our first report on SERS-based immunoassays using the novel NYscFv affinity reagent demonstrates the flexibility of NYscFv fragments as viable alternatives to monoclonal antibodies in a range of bioassay platforms and paves the way for further applications.

  8. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    PubMed

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    NASA Technical Reports Server (NTRS)

    Tucker, Brian

    2010-01-01

    Standard approach to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. End-to-end view. Total Lifecycle. Evaluate the readiness of the supply chain during the supply chain development phase.

  10. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    PubMed

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  11. Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle

    PubMed Central

    Cobley, James N.; Ab. Malik, Zulezwan; Morton, James P.; Close, Graeme L.; Edwards, Ben J.; Burniston, Jatin G.

    2016-01-01

    Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM). We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping. PMID:28248225

  12. Biotensegrity and myofascial chains: A global approach to an integrated kinetic chain.

    PubMed

    Dischiavi, S L; Wright, A A; Hegedus, E J; Bleakley, C M

    2018-01-01

    Human movement is a complex orchestration of events involving many different body systems. Understanding how these systems interact during musculoskeletal movements can directly inform a variety of research fields including: injury etiology, injury prevention and therapeutic exercise prescription. Traditionally scientists have examined human movement through a reductionist lens whereby movements are broken down and observed in isolation. The process of reductionism fails to capture the interconnected complexities and the dynamic interactions found within complex systems such as human movement. An emerging idea is that human movement may be better understood using a holistic philosophy. In this regard, the properties of a given system cannot be determined or explained by its components alone, rather, it is the complexity of the system as a whole, that determines how the individual component parts behave. This paper hypothesizes that human movement can be better understood through holism; and provides available observational evidence in musculoskeletal science, which help to frame human movement as a globally interconnected complex system. Central to this, is biotensegrity, a concept where the bones of the skeletal system are postulated to be held together by the resting muscle tone of numerous viscoelastic muscular chains in a tension dependent manner. The design of a biotensegrity system suggests that when human movement occurs, the entire musculoskeletal system constantly adjusts during this movement causing global patterns to occur. This idea further supported by recent anatomical evidence suggesting that the muscles of the human body can no longer by viewed as independent anatomical structures that simply connect one bone to another bone. Rather, the body consists of numerous muscles connected in series, and end to end, which span the entire musculoskeletal system, creating long polyarticular viscoelastic myofascial muscle chains. Although theoretical, the

  13. Quantum gates controlled by spin chain soliton excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino; Nuzzi, Davide

    2014-05-07

    Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes,more » according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.« less

  14. Oxygen vacancy chain and conductive filament formation in hafnia

    NASA Astrophysics Data System (ADS)

    Xue, Kan-Hao; Miao, Xiang-Shui

    2018-04-01

    The stability and aggregation mechanisms of oxygen vacancy chains are studied for hafnia using self-energy corrected density functional theory. While oxygen vacancies tend not to align along the c-axis of monoclinic HfO2, oxygen vacancy chains along a-axis and b-axis are energetically favorable, with cohesive energies of 0.05 eV and 0.03 eV per vacancy, respectively. Nevertheless, with an increase of the cross section area, intensive oxygen vacancy chains become much more stable in hafnia, which yields phase separation into Hf-clusters and HfO2. Compared with disperse single vacancy chains, intensive oxygen vacancy chains made of 4, 6, and 8 single vacancy chains are energetically more favorable by 0.17, 0.20, and 0.30 eV per oxygen vacancy, respectively. On the other hand, while a single oxygen vacancy chain exhibits a tiny electronic energy gap of around 0.5 eV, metallic conduction emerges for the intensive vacancy chain made of 8 single vacancy chains, which possesses a filament cross section area of ˜0.4 nm2. This sets a lower area limit for Hf-cluster filaments from metallic conduction point of view, but in real hafnia resistive RAM devices the cross section area of the filaments can generally be much larger (>5 nm2) for the sake of energy minimization. Our work sets up a bridge between oxygen vacancy ordering and phase separation in hafnia, and shows a clear trend of filament stabilization with larger dimensions. The results could explain the threshold switching phenomenon in hafnia when a small AFM tip was used as the top electrode, as well as the undesired multimode operation in resistive RAM cells with 3 nm-thick hafnia.

  15. Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin.

    PubMed

    Misaizu, T; Matsuki, S; Strickland, T W; Takeuchi, M; Kobata, A; Takasaki, S

    1995-12-01

    To elucidate the role of the branched structure of sugar chains of human erythropoietin (EPO) in the expression of in vivo activity, the pharmacokinetic profile of a less active recombinant human EPO sample (EPO-bi) enriched with biantennary sugar chains was compared with that of a highly active control EPO sample enriched with tetraantennary sugar chains. After an intravenous injection in rats, 125I-EPO-bi disappeared from the plasma with 3.2 times greater total body clearance (Cltot) than control 125I-EPO. Whole-body autoradiography after 20 minutes of administration indicated that the overall distribution of radioactivity is similar, but 125I-EPO-bi showed a higher level of radioactivity in the kidneys than control 125I-EPO. Quantitative determination of radioactivity in the tissues also indicated that radioactivity of 125I-EPO-bi in the kidneys was two times higher than that of control 125I-EPO. The difference in plasma disappearance between 125I-EPO-bi and control 125I-EPO was not observed in bilaterally nephrectomized rats. The distribution of 125I-EPO-bi to bone marrow and spleen was similarly inhibited by simultaneous injection of excess amounts of either the nonlabeled EPO-bi or control EPO. These results indicate that the low in vivo biologic activity of EPO-bi results from rapid clearance from the systemic circulation by renal handling. Thus, the well-branched structure of the N-linked sugar chain of EPO is suggested to play an important role in maintaining its higher plasma level, which guarantees an effective transfer to target organs and stimulation of erythroid progenitor cells.

  16. Characterization of deamidation at Asn138 in L-chain of recombinant humanized Fab expressed from Pichia pastoris.

    PubMed

    Ohkuri, Takatoshi; Murase, Eri; Sun, Shu-Lan; Sugitani, Jun; Ueda, Tadashi

    2013-10-01

    A method was previously established for evaluating Asn deamidation by matrix-assisted laser desorption/ionization time of flight-mass spectrometry using endoproteinase Asp-N. In this study, we demonstrated that this method could be applied to the identification of the deamidation site of the humanized fragment antigen-binding (Fab). First, a system for expressing humanized Fab from methylotrophic yeast Pichia pastoris was constructed, resulting in the preparation of ∼30 mg of the purified humanized Fab from 1 l culture. Analysis of the L-chain derived from recombinant humanized Fab that was heated at pH 7 and 100°C for 1 h showed the deamidation at Asn138 in the constant region. Then, we prepared L-N138D Fab and L-N138A Fab and examined their properties. The circular dichroism (CD) spectrum of the L-N138D Fab was partially different from that of the wild-type Fab. The measurement of the thermostability showed that L-N138D caused a significant decrease in the thermostability of Fab. On the other hand, the CD spectrum and thermostability of L-N138A Fab showed the same behaviour as the wild-type Fab. Thus, it was suggested that the introduction of a negative charge at position 138 in the L-chain by the deamidation significantly affected the stability of humanized Fab.

  17. Antitumor activity of a dual cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM expressing tumor cells.

    PubMed

    Schanzer, Juergen M; Fichtner, Iduna; Baeuerle, Patrick A; Kufer, Peter

    2006-01-01

    Cytokine targeting to tumor-associated antigens via antibody cytokine fusion proteins has demonstrated potent antitumor activity in numerous animal models and has led to the clinical development of 2 antibody-interleukin-2 (IL-2) fusion proteins. We previously reported on the construction and in vitro properties of a "dual" cytokine fusion protein for simultaneous targeted delivery of human granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-2 to human tumors. The fusion protein is based on a heterodimerized core structure formed by human CH1 and Ckappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused single-chain antibody fragments specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). For testing the antitumor activity in syngeneic mouse xenograft models, we developed "dual cytokine heterominibodies" with murine cytokines (mDCH). mDCH fusion proteins and, as controls, "single cytokine heterominibodies" (SCH) carrying either murine GM-CSF (mGM-CSF) or murine IL-2 (mIL-2) were constructed, of which all retained the specific activities of cytokines and binding to the Ep-CAM antigen on human Ep-CAM transfected mouse colon carcinoma CT26-KSA cells. Over a 5-day treatment course, DCH fusion proteins induced significant inhibition of established pulmonary CT26-KSA metastases in immune-competent Balb/c mice at low daily doses of 1 mug of fusion protein per mouse. However, with the tested dosing schemes, antitumor activity of mDCH was largely independent of cytokine targeting to tumors as demonstrated by a control protein with mutated Ep-CAM binding sites. Single cytokine fusion proteins mSCH-GM-CSF and mSCH-IL-2 showed similar antitumor activity as the dual cytokine fusion protein mDCH, indicating that GM-CSF and IL-2 in one molecule did not significantly synergize in tumor rejection under our experimental conditions. Our results seem to contradict the notion that IL-2 and GM

  18. Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Nguyen, Hung Quoc; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Ensinger, Wolfgang

    2012-04-24

    We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurable diode showing different rectifying behaviors by applying chemical and electrical signals. The remarkable characteristics of the new nanopore are the sharp response observed in the I-V curves, the improved tunability (with respect to previous designs of symmetric nanopores) which is achieved because of the direct external access to the nanostructure mouths, and the broad range of rectifying properties. The results concern both fundamental concepts useful for the understanding of transport processes in biological systems (ion channels) and applications relevant for tunable nanopore technology (information processing and drug controlled release).

  19. Direct observation of the discrete energy spectrum of two lanthanide-based single-chain magnets by far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Haas, Sabrina; Heintze, Eric; Zapf, Sina; Gorshunov, Boris; Dressel, Martin; Bogani, Lapo

    2014-05-01

    The far-infrared optical transmission has been studied for two lanthanide-based single-chain magnets DyPhOPh and TbPhOPh in the frequency range between 3 and 80 cm-1. The spectra were acquired at temperatures between 2 and 80 K and magnetic fields up to 6 T. Based on their magnetic field dependence in DyPhOPh two of the observed absorption lines are identified as transitions inside the crystal field split Dy3+ ground multiplet 6H15/2, coupled to the neighboring spins. In TbPhOPh one transition was observed inside the crystal-field-split Tb3+ ground multiplet 7F6. The results allow a spectroscopic investigation of the role of single-ion anisotropy and exchange in Glauber dynamics.

  20. Model systems for single molecule polymer dynamics

    PubMed Central

    Latinwo, Folarin

    2012-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980

  1. Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy

    PubMed Central

    Kimura, Tetsunari; Maeda, Akio; Nishiguchi, Shingo; Ishimori, Koichiro; Morishima, Isao; Konno, Takashi; Goto, Yuji; Takahashi, Satoshi

    2008-01-01

    Kinetic IR spectroscopy was used to reveal β-sheet formation and water expulsion in the folding of single-chain monellin (SMN) composed of a five-stranded β-sheet and an α-helix. The time-resolved IR spectra between 100 μs and 10 s were analyzed based on two consecutive intermediates, I1 and I2, appearing within 100 μs and with a time constant of ≈100 ms, respectively. The initial unfolded state showed broad amide I′ corresponded to a fluctuating conformation. In contrast, I1 possessed a feature at 1,636 cm−1 for solvated helix and weak features assignable to turns, demonstrating the rapid formation of helix and turns. I2 possessed a line for solvated helix at 1,637 cm−1 and major and minor lines for β-sheet at 1,625 and 1,680 cm−1, respectively. The splitting of the major and minor lines is smaller than that of the native state, implying an incomplete formation of the β-sheet. Furthermore, both major and minor lines demonstrated a low-frequency shift compared to those of the native state, which was interpreted to be caused by hydration of the CO group in the β-sheet. Together with the identification of solvated helix, the core domain of I2 was interpreted as being hydrated. Finally, slow conversion of the water-penetrated core of I2 to the dehydrated core of the native state was observed. We propose that both the expulsion of water, hydrogen-bonded to main-chain amides, and the completion of the secondary structure formation contribute to the energetic barrier of the rate-limiting step in SMN folding. PMID:18757727

  2. Toxicokinetics of short-chain chlorinated paraffins in Sprague-Dawley rats following single oral administration.

    PubMed

    Geng, Ningbo; Zhang, Haijun; Xing, Liguo; Gao, Yuan; Zhang, Baoqin; Wang, Feidi; Ren, Xiaoqian; Chen, Jiping

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) have attracted considerable attention for their characteristic of persistent organic pollutants. However, very limited information is available for their toxicokinetic characteristics, limiting the evaluation of their health risks. In this study, we performed a toxicokinetics study to explore the absorption and excretion processes of SCCPs (a mixture of C10-, C11-, C12- and C13-CPs) after a single oral administration to the Sprague-Dawley rats. The toxicokinetic results showed that peak blood concentration of total SCCPs was attained at 2.8 day with Cmax value of 2.3 mg L(-1). The half-lives of total SCCPs in blood for the absorption t1/2 (ka), distribution t1/2 (α) and elimination phases t1/2 (β) were calculated to be 1.0, 1.7 and 6.6 days, respectively. During the 28 days post-dosing, about 27.9% and 3.5% of orally administrated SCCPs were excreted through feces and urine without metabolism, respectively. Congener group abundance profiles indicate a relative increase of Cl5-SCCPs in blood and urine in the elimination stage, and a higher accumulation of Cl8-10-SCCPs in feces. The distribution discrepancies of SCCPs congener groups in blood and excreta were more dependent on chlorine contents than on carbon chain lengths. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Localized Single Frequency Lasing States in a Finite Parity-Time Symmetric Resonator Chain

    PubMed Central

    Phang, Sendy; Vukovic, Ana; Creagh, Stephen C.; Sewell, Phillip D.; Gradoni, Gabriele; Benson, Trevor M.

    2016-01-01

    In this paper a practical case of a finite periodic Parity Time chain made of resonant dielectric cylinders is considered. The paper analyzes a more general case where PT symmetry is achieved by modulating both the real and imaginary part of the material refractive index along the resonator chain. The band-structure of the finite periodic PT resonator chains is compared to infinite chains in order to understand the complex interdependence of the Bloch phase and the amount of the gain/loss in the system that causes the PT symmetry to break. The results show that the type of the modulation along the unit cell can significantly affect the position of the threshold point of the PT system. In all cases the lowest threshold is achieved near the end of the Brillouin zone. In the case of finite PT-chains, and for a particular type of modulation, early PT symmetry breaking is observed and shown to be caused by the presence of termination states localized at the edges of the finite chain resulting in localized lasing and dissipative modes at each end of the chain. PMID:26848095

  4. Human heavy chain disease protein WIS: implications for the organization of immunoglobulin genes.

    PubMed Central

    Franklin, E C; Prelli, F; Frangione, B

    1979-01-01

    Protein WIS is a human gamma3 heavy (H) chain disease immunoglobulin variant whose amino acid sequence is most readily interpreted by postulating that three residues of the amino terminus are followed by a deletion of most of the variable (VH) domain, which ends at the variable-constant (VC) joining region. Then there is a stretch of eight residues, three of which are unusual, while the other five have striking homology to the VC junction sequence. This is followed by a second deletion, which ends at the beginning of the quadruplicated hinge region. These findings are consistent with mutations resulting in deletions of most of the gene coding for the V region and CH1 domain followed by splicing at the VC joining region and at the hinge. These structural features fit well the notion of genetic discontinuity between V and C genes and also suggest similar mechanisms of excision and splicing in the interdomain regions of the C gene of the heavy chain. PMID:106391

  5. Determination of backbone chain direction of PDA using FFM

    NASA Astrophysics Data System (ADS)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  6. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    PubMed

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  7. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  8. SCPortalen: human and mouse single-cell centric database

    PubMed Central

    Noguchi, Shuhei; Böttcher, Michael; Hasegawa, Akira; Kouno, Tsukasa; Kato, Sachi; Tada, Yuhki; Ura, Hiroki; Abe, Kuniya; Shin, Jay W; Plessy, Charles; Carninci, Piero

    2018-01-01

    Abstract Published single-cell datasets are rich resources for investigators who want to address questions not originally asked by the creators of the datasets. The single-cell datasets might be obtained by different protocols and diverse analysis strategies. The main challenge in utilizing such single-cell data is how we can make the various large-scale datasets to be comparable and reusable in a different context. To challenge this issue, we developed the single-cell centric database ‘SCPortalen’ (http://single-cell.clst.riken.jp/). The current version of the database covers human and mouse single-cell transcriptomics datasets that are publicly available from the INSDC sites. The original metadata was manually curated and single-cell samples were annotated with standard ontology terms. Following that, common quality assessment procedures were conducted to check the quality of the raw sequence. Furthermore, primary data processing of the raw data followed by advanced analyses and interpretation have been performed from scratch using our pipeline. In addition to the transcriptomics data, SCPortalen provides access to single-cell image files whenever available. The target users of SCPortalen are all researchers interested in specific cell types or population heterogeneity. Through the web interface of SCPortalen users are easily able to search, explore and download the single-cell datasets of their interests. PMID:29045713

  9. Structure of resonances and formation of stationary points in symmetrical chains of bilinear oscillators

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady V.; Pasternak, Elena; Shufrin, Igor

    2014-12-01

    Dynamics of strongly nonlinear systems can in many cases be modelled by bilinear oscillators, which are the oscillators whose springs have different stiffnesses in compression and tension. This underpins the analysis of a wide range of phenomena, from oscillations of fragmented structures, connections and mooring lines to deformation of geological media. Single bilinear oscillators were studied previously and the presence of multiple resonances both super- and sub-harmonic was found. Less attention was paid to systems of multiple bilinear oscillators that describe many natural and engineering processes such as for example the behaviour of fragmented solids. Here we fill this gap concentrating on the simplest case - 1D symmetrical chains of bilinear oscillators. We show that the presence and structure of resonances in a symmetric chain of bilinear oscillators with fixed ends depends upon the number of oscillating masses. Two elementary chains act as the basic ones: a single mass bilinear chain (a mass connected to the fixed points by two bilinear springs) that behaves as a linear oscillator with a single resonance and a two mass chain that is a coupled bilinear oscillator (two masses connected by three bilinear springs). The latter has multiple resonances. We demonstrate that longer chains either do not have resonances or get decomposed, in the resonance, into either the single mass or two mass elementary chains with stationary masses in between. The resonance frequencies are inherited from the basic chains of decomposition. We show that if the number of masses is odd the chain can be decomposed into the single mass bilinear chains separated by stationary masses. It then inherits the resonances of the single mass bilinear chain. The chains with the number of masses minus 2 divisible by 3 can be decomposed into the two mass bilinear chains separated by stationary masses and inherit the resonances of the two mass chains. The chains whose lengths satisfy both criteria

  10. Increased Chain Length Promotes Pneumococcal Adherence and Colonization

    PubMed Central

    Rodriguez, Jesse L.; Dalia, Ankur B.

    2012-01-01

    Streptococcus pneumoniae is a mucosal pathogen that grows in chains of variable lengths. Short-chain forms are less likely to activate complement, and as a consequence they evade opsonophagocytic clearance more effectively during invasive disease. When grown in human nasal airway surface fluid, pneumococci exhibited both short- and long-chain forms. Here, we determined whether longer chains provide an advantage during colonization when the organism is attached to the epithelial surface. Chain-forming mutants and the parental strain grown under conditions to promote chain formation showed increased adherence to human epithelial cells (A549 cells) in vitro. Additionally, adherence to A549 cells selected for longer chains within the wild-type strain. In vivo in a murine model of colonization, chain-forming mutants outcompeted the parental strain. Together, our results demonstrate that morphological heterogeneity in the pneumococcus may promote colonization of the upper respiratory tract by enhancing the ability of the organism to bind to the epithelial surface. PMID:22825449

  11. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  12. Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yijia; Ford, Nicole R.; Hecht, Karen A.

    Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39 amino-acid targeting sequence (Sil3T8) to direct a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundances in excess of 200,000 proteins per frustule. The fluorescence of either a derivative of trinitrotoluene (TNT) bound to the scFv ormore » the endogenous fluorescence of EGFP was used to monitor pro-tein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. We find that proteins within isolated frustules undergo isotropic rotational motions with two-fold increases in rotational correlation times, which are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibod-ies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). These results argue that dramatic increases in protein conforma-tional stability within the biosilica frustule matrices arise through molecular crowding, acting to retain native protein folds and associated functionality to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations.« less

  13. Medium and Long Chain Fatty Acids Differentially Modulate Apoptosis and Release of Inflammatory Cytokines in Human Liver Cells.

    PubMed

    Li, Lumin; Wang, Baogui; Yu, Ping; Wen, Xuefang; Gong, Deming; Zeng, Zheling

    2016-06-01

    Medium chain fatty acids (MCFA) can be more easily absorbed and supply energy more rapidly than long chain fatty acids (LCFA). However, little is known about the inflammatory response by the treatment of MCFA in human liver cells. Thus this study used human liver cells (LO2) to evaluate the effects of MCFA on apoptosis and inflammatory response. Tetrazolim-based colorimetric assay and lactate dehydrogenase assay were used to measure the viability of LO2 cells, isolated spleens and liver cells from BALB/C mice. Inverted fluorescence microscopy and flow cytometry were used to assess the cell apoptosis. Activity of superoxide dismutase and malondialdehyde level were measured to determine the oxidative damage. mRNA or protein levels of classical pro-inflammatory cytokines were analyzed by quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay and western blotting. The results showed that the liver cells treated with the fatty acids at 200 μM for 24 h exhibited good viability. Fatty acids induced inflammatory cytokines at transcriptional and translational levels to a lesser extent than lipopolysaccharide. LCFA (oleic acid) up-regulated tumor necrosis fator-α, monocyte chemoattractant-1 and interleukin-1β while down-regulated IL-6 and IL-8 secretion to a higher extent than MCFA in mRNA and protein levels. These findings suggested that MCFA may induce apoptosis to a less extent and exert more gentle inflammation than LCFA in human liver cells. © 2016 Institute of Food Technologists®

  14. The Critical Role of Supply Chains in Preventing Human Immunodeficiency Virus Drug Resistance in Low- and Middle-Income Settings.

    PubMed

    Minior, Thomas; Douglas, Meaghan; Edgil, Dianna; Srivastava, Meena; Crowley, John; Firth, Jacqueline; Lapidos-Salaiz, Ilana; Williams, Jason; Lee, Lana

    2017-12-01

    The functioning of the supply chain may be a driving factor behind the development of human immunodeficiency virus (HIV) drug resistance (HIVDR) in many low- and middle-income countries (LMICs). Additionally, the effectiveness of supply chains will likely impact the scale-up of both viral-load monitoring and HIVDR testing. This article describes the complexities of global supply chains relevant for LMICs and presents early data on stock-outs and drug substitutions in several countries supported by the US President's Emergency Plan for AIDS Relief. Supply chain systems will need to be strengthened to minimize interruptions as new antiretroviral therapy regimens are introduced and to facilitate adoption of new laboratory technologies. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. The people factor: An analysis of the human resources landscape for immunization supply chain management.

    PubMed

    Kasonde, Musonda; Steele, Pamela

    2017-04-19

    Human resources is the backbone of any system and the key enabler for all other functions to effectively perform. This is no different with the Immunization Supply Chain, more so in todays' complex operating environment with the increasing strain caused by new vaccines and expanding immunization programmes (Source: WHO, UNICEF). In order to drive the change that is required for sustainability and continuous improvement, every immunization supply chain needs an effective leader. A dedicated and competent immunization supply chain leader with adequate numbers of skilled, accountable, motivated and empowered personnel at all levels of the health system to overcome existing and emerging immunization supply chain (ISC) challenges. Without an effective supply chain leader supported by capable and motivated staff, none of the interventions designed to strengthen the supply chain can be effective or sustainable (Source: Gavi Alliance SC Strategy 2014). This landscape analysis was preceded by an HR Evidence Review (March 2014) and has served to inform global partner strategies and country activities, as well as highlight where most support is required. The study also aimed to define the status quo in order to create some form of baseline against which to measure the impact of interventions related to HR going forward. The analysis was comprised of a comprehensive desk review, a survey of 40 respondents from 32 countries and consultations with ISC practitioners in several forums. The findings highlight key areas that should inform the pillars of a HR capacity development plan. At the same time, it revealed that there are some positive examples of where countries are actively addressing some of the issues identified and putting in place mechanisms and structures to optimize the SC function. Copyright © 2017. Published by Elsevier Ltd.

  16. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M.

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distributionmore » of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.« less

  17. Tumor-targeting CTL expressing a single-chain Fv specific for VEGFR2.

    PubMed

    Kanagawa, Naoko; Yanagawa, Tatsuya; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku

    2010-03-26

    Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. A survey of human brain transcriptome diversity at the single cell level.

    PubMed

    Darmanis, Spyros; Sloan, Steven A; Zhang, Ye; Enge, Martin; Caneda, Christine; Shuer, Lawrence M; Hayden Gephart, Melanie G; Barres, Ben A; Quake, Stephen R

    2015-06-09

    The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.

  19. Heterologous Antigen Selection of Camelid Heavy Chain Single Domain Antibodies against Tetrabromobisphenol A

    PubMed Central

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is a ubiquitous flame retardant. A high-throughput immunoassay would allow for monitoring of human and environmental exposures as a part of risk assessment. Naturally occurring antibodies in camelids that are devoid of light chain, show great promise as an efficient tool in monitoring environmental contaminants, but they have been rarely used for small molecules. An alpaca was immunized with a TBBPA hapten coupled to thyroglobulin and a variable domain of heavy chain antibody (VHH) T3–15 highly selective for TBBPA was isolated from a phage displayed VHH library using heterologous coating antigens. Compared to the VHHs isolated using homologous antigens, VHH T3–15 had about a 10-fold improvement in sensitivity in an immunoassay. This assay, under the optimized conditions of 10% methanol in the assay buffer (pH 7.4), had an IC50 for TBBPA of 0.40 ng mL–1 and negligible cross reactivity (<0.1%) with other tested analogues. After heating the VHH at 90 °C for 90 min about 20% of the affinity for coating antigen T3-BSA remained. The recoveries of TBBPA from spiked soil and fetal bovine serum samples ranged from 90.3% to 110.7% by ELISA and agreed well with a liquid chromatography–tandem mass spectrometry method. We conclude the many advantages of VHH make them attractive for the development of immunoassays to small molecules. PMID:25068372

  20. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX.

    PubMed

    Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J

    2010-10-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.

  1. Immunohistochemical characterization of slow and fast myosin heavy chain composition of muscle fibres in the styloglossus muscle of the human and macaque (Macaca rhesus).

    PubMed

    Sokoloff, Alan J; Yang, Betty; Li, Haiyan; Burkholder, Thomas J

    2007-06-01

    Muscle fibre contractile diversity is thought to be increased by the hybridization of multiple myosin heavy chain (MHC) isoforms in single muscle fibres. Reports of hybrid fibres composed of MHCI and MHCII isoforms in human, but not macaque, tongue muscles, suggest a human adaptation for increased tongue muscle contractile diversity. Here we test whether hybrid fibres composed of MHCI and MHCII are unique to human tongue muscles or are present as well in the macaque. MHC composition of the macaque and human styloglossus was characterized with antibodies that allowed identification of three muscle fibre phenotypes, a slow phenotype composed of MHCI, a fast phenotype composed of MHCII and a hybrid phenotype composed of MHCI and MHCII. The fast phenotype constitutes 68.5% of fibres in the macaque and 43.4% of fibres in the human (P<0.0001). The slow phenotype constitutes 20.2% of fibres in the macaque and 39.3% of fibres in the human (P<0.0001). The hybrid phenotype constitutes 11.2% of fibres in the macaque and 17.3% of fibres in the human (P=0.0002). Macaques and humans do not differ in fiber size (cross-sectional area, diameter). However, measures of fibre size differ by phenotype such that fast>hybrid>slow (P<0.05). These data demonstrate differences in the relative percent of muscle fibre phenotypes in the macaque and human styloglossus but also demonstrate that all three phenotypes are present in both species. These data suggest a similar range of mechanical properties in styloglossus muscle fibres of the macaque and human.

  2. Development and characterization of a camelid single-domain antibody directed to human CD22 biomarker.

    PubMed

    Faraji, Fatemeh; Tajik, Nader; Behdani, Mahdi; Shokrgozar, Mohammad Ali; Zarnani, Amir Hassan; Shahhosseini, Fatemeh; Habibi-Anbouhi, Mahdi

    2018-03-15

    CD22 is a B-cell-specific trans-membrane glycoprotein, which is found on the surface of the most B cells and modulates their function, survival, and apoptosis. Recently, targeting this cell surface biomarker in B-cell malignancies and disorders has attracted a lot of attention. The variable domain of camelid single-chain antibodies (VHH, nanobody) is a form of antibodies with novel properties including small size (15-17 kDa), thermal and chemical stability, high affinity and homology to human antibody sequences. In this study, a novel anti-CD22-specific VHH (Nb) has been developed and characterized by the screening of an immunized phage display library and its binding to CD22 + B cells is evaluated. Produced anti-CD22 VHH had a single protein band about 17 kDa of molecular size in Western blotting and its binding affinity was approximately 9 × 10 -9  M. Also, this product had high specificity and it was able to recognize the natural CD22 antigen in CD22+ cell lysate as well as on the cell surface (93%). This anti-CD22 VHH with both high affinity and specificity recognizes CD22 antigen well and can be used in diagnosis and treatment of B cell disorders and malignancies. © 2018 International Union of Biochemistry and Molecular Biology, Inc.

  3. Room temperature ferroelectricity in one-dimensional single chain molecular magnets [{M(Δ)M(Λ)}(ox)2(phen)2]n (M = Fe and Mn)

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Mukadam, M. D.; Meena, S. S.; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Mandal, B. P.; Yusuf, S. M.

    2017-03-01

    The ferroelectric materials are mainly focused on pure inorganic oxides; however, the organic molecule based materials have recently attracted great attention because of their multifunctional properties. The mixing of oxalate and phenanthroline ligands with metal ions (Fe or Mn) at room temperature followed by hydrothermal treatment results in the formation of one-dimensional single chain molecular magnets which exhibit room temperature dielectric and ferroelectric behavior. The compounds are chiral in nature, and exhibit a ferroelectric behavior, attributed to the polar point group C2, in which they crystallized. The compounds are also associated with a dielectric loss and thus a relaxation process. The observed electric dipole moment, essential for a ferroelectricity, has been understood quantitatively in terms of lattice distortions at two different lattice sites within the crystal structure. The studied single chain molecular magnetic materials with room temperature ferroelectric and dielectric properties could be of great technological importance in non-volatile memory elements, and high-performance insulators.

  4. Dissecting the human microbiome with single-cell genomics.

    PubMed

    Tolonen, Andrew C; Xavier, Ramnik J

    2017-06-14

    Recent advances in genome sequencing of single microbial cells enable the assignment of functional roles to members of the human microbiome that cannot currently be cultured. This approach can reveal the genomic basis of phenotypic variation between closely related strains and can be applied to the targeted study of immunogenic bacteria in disease.

  5. Controlling Chain Conformations of High-k Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Single-Crystal Field-Effect Transistors.

    PubMed

    Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D

    2016-12-01

    A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gallium-68-labeled anti-HER2 single-chain Fv fragment: development and in vivo monitoring of HER2 expression.

    PubMed

    Ueda, Masashi; Hisada, Hayato; Temma, Takashi; Shimizu, Yoichi; Kimura, Hiroyuki; Ono, Masahiro; Nakamoto, Yuji; Togashi, Kaori; Saji, Hideo

    2015-02-01

    We aimed to develop a gallium-68 (Ga-68)-labeled single-chain variable fragment (scFv) targeting the human epidermal growth factor receptor 2 (HER2) to rapidly and noninvasively evaluate the status of HER2 expression. Anti-HER2 scFv was labeled with Ga-68 by using deferoxamine (Df) as a bifunctional chelate. Biodistribution of [(68)Ga]Df-anti-HER2 scFv was examined with tumor-bearing mice and positron emission tomography (PET) imaging was performed. The changes in HER2 expression after anti-HER2 therapy were monitored by PET imaging. [(68)Ga]Df-anti-HER2 scFv was obtained with high radiochemical yield after only a 5-min reaction at room temperature. The probe showed high accumulation in HER2-positive xenografts and the intratumoral distribution of radioactivity coincided with HER2-positive regions. Furthermore, [(68)Ga]Df-anti-HER2 scFv helped visualize HER2-positive xenografts and monitor the changes in HER2 expression after anti-HER2 therapy. [(68)Ga]Df-anti-HER2 scFv could be a promising probe to evaluate HER2 status by in vivo PET imaging, unless trastuzumab is prescribed as part of the therapy.

  7. The finite scaling for S = 1 XXZ chains with uniaxial single-ion-type anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Xiong, Xingliang

    2014-03-01

    The scaling behavior of criticality for spin-1 XXZ chains with uniaxial single-ion-type anisotropy is investigated by employing the infinite matrix product state representation with the infinite time evolving block decimation method. At criticality, the accuracy of the ground state of a system is limited by the truncation dimension χ of the local Hilbert space. We present four evidences for the scaling of the entanglement entropy, the largest eigenvalue of the Schmidt decomposition, the correlation length, and the connection between the actual correlation length ξ and the energy. The result shows that the finite scalings are governed by the central charge of the critical system. Also, it demonstrates that the infinite time evolving block decimation algorithm by the infinite matrix product state representation can be a quite accurate method to simulate the critical properties at criticality.

  8. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    PubMed

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  9. Insight into the Structural and Biological Relevance of the T/R Transition of the N-Terminus of the B-Chain in Human Insulin

    PubMed Central

    2014-01-01

    The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin–insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states. Sites B3, B5, and B8, capable of affecting the conformation of the N-terminus of the B-chain, were subjects of rational substitutions with amino acids with specific allowed and disallowed dihedral φ and ψ main-chain angles. α-Aminoisobutyric acid was systematically incorporated into positions B3, B5, and B8 for stabilization of the R-state, and N-methylalanine and d-proline amino acids were introduced at position B8 for stabilization of the T-state. IR affinities of the analogues were compared and correlated with their T/R transition ability and analyzed against their crystal and nuclear magnetic resonance structures. Our data revealed that (i) the T-like state is indeed important for the folding efficiency of (pro)insulin, (ii) the R-state is most probably incompatible with an active form of insulin, (iii) the R-state cannot be induced or stabilized by a single substitution at a specific site, and (iv) the B1–B8 segment is capable of folding into a variety of low-affinity T-like states. Therefore, we conclude that the active conformation of the N-terminus of the B-chain must be different from the “classical” T-state and that a substantial flexibility of the B1–B8 segment, where GlyB8 plays a key role, is a crucial prerequisite for an efficient insulin–IR interaction. PMID:24819248

  10. Identification of Key Residues Essential for the Structural Fold and Receptor Selectivity within the A-chain of Human Gene-2 (H2) Relaxin*

    PubMed Central

    Chan, Linda J.; Rosengren, K. Johan; Layfield, Sharon L.; Bathgate, Ross A. D.; Separovic, Frances; Samuel, Chrishan S.; Hossain, Mohammed A.; Wade, John D.

    2012-01-01

    Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4–24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin. PMID:23024363

  11. Analysis of short-chain fatty acids in human feces: A scoping review.

    PubMed

    Primec, Maša; Mičetić-Turk, Dušanka; Langerholc, Tomaž

    2017-06-01

    Short-chain fatty acids (SCFAs) play a crucial role in maintaining homeostasis in humans, therefore the importance of a good and reliable SCFAs analytical detection has raised a lot in the past few years. The aim of this scoping review is to show the trends in the development of different methods of SCFAs analysis in feces, based on the literature published in the last eleven years in all major indexing databases. The search criteria included analytical quantification techniques of SCFAs in different human clinical and in vivo studies. SCFAs analysis is still predominantly performed using gas chromatography (GC), followed by high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and capillary electrophoresis (CE). Performances, drawbacks and advantages of these methods are discussed, especially in the light of choosing a proper pretreatment, as feces is a complex biological material. Further optimization to develop a simple, cost effective and robust method for routine use is needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Old and new news about single-photon sensitivity in human vision

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    It is sometimes said that ``our eyes can see single photons,'' when in fact the faintest flash of light that can reliably be reported by human subjects is closer to 100 photons. Nevertheless, there is a sense in which the familiar claim is true. Experiments conducted long after the seminal work of Hecht, Shlaer, and Pirenne in two distinct realms, those of human psychophysics and single-cell physiology, now admit a more precisem conclusion to be drawn about our visual apparatus. Finding a single framework that accommodates both kinds of result is a nontrivial challenge, and one that sets severe quantitative constraints on any model of dim-light visual processing. I will present one such model and compare it to a recent experiment. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  13. Sequence Analysis and Domain Motifs in the Porcine Skin Decorin Glycosaminoglycan Chain*

    PubMed Central

    Zhao, Xue; Yang, Bo; Solakylidirim, Kemal; Joo, Eun Ji; Toida, Toshihiko; Higashi, Kyohei; Linhardt, Robert J.; Li, Lingyun

    2013-01-01

    Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteoglycans, suggests that it has a single or small number of defined sequences. On this basis, a similar approach to sequence the decorin of porcine skin much larger and more structurally complex dermatan sulfate/chondroitin sulfate GAG chain was undertaken. This approach resulted in information on the consistency/variability of its linkage region at the reducing end of the GAG chain, its iduronic acid-rich domain, glucuronic acid-rich domain, and non-reducing end. A general motif for the porcine skin decorin GAG chain was established. A single small decorin GAG chain was sequenced using MS/MS analysis. The data obtained in the study suggest that the decorin GAG chain has a small or a limited number of sequences. PMID:23423381

  14. Effects of Long-Chain and Medium-Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis.

    PubMed

    Wang, Baogui; Li, Lumin; Fu, Jing; Yu, Ping; Gong, Deming; Zeng, Cheng; Zeng, Zheling

    2016-03-01

    Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity-related metabolic complications, which caused by excess energy intake and physical inactivity apart from genetic defects. The mechanisms that promote disease progression from NAFLD to further liver injury are still unclear. We hypothesize that the progression involved "2nd hit" is strongly influenced by the type of fatty acids in diets. Flow cytometric analysis showed that medium-chain fatty acid (MCFA) markedly decreased the percentage of late apoptotic and necrotic cells compared with long-chain fatty acid (LCFA), and MCFA inhibited the activities of caspase-3 and -9 in human liver cells with steatosis. Western blot analysis found that the levels of inflammatory markers (interleukin [IL]-6, IL-1-β, and tumor necrosis factor-α) were substantially reduced by MCFA compared with LCFA. Proteomic analysis further showed that LCFA inhibited the expression of antioxidant enzymes, and increased the expression of proteins associated with oxidative stress. It was found that LCFA (palmitate), not MCFA induced apoptosis, oxidative stress and chronic inflammatory responses in the hepatic cells with steatosis. In conclusion, reasonable selection of dietary fats has potential to translate therapeutically by ameliorating disease progression in patients with NAFLD. © 2016 Institute of Food Technologists®

  15. Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein.

    PubMed

    Kampmeier, Florian; Niesen, Judith; Koers, Alexander; Ribbert, Markus; Brecht, Andreas; Fischer, Rainer; Kiessling, Fabian; Barth, Stefan; Thepen, Theo

    2010-10-01

    The epidermal growth factor receptor (EGFR) is overexpressed in several types of cancer and its inhibition can effectively inhibit tumour progression. The purpose of this study was to design an EGFR-specific imaging probe that combines efficient tumour targeting with rapid systemic clearance to facilitate non-invasive assessment of EGFR expression. Genetic fusion of a single-chain antibody fragment with the SNAP-tag produced a 48-kDa antibody derivative that can be covalently and site-specifically labelled with substrates containing 0 (6)-benzylguanine. The EGFR-specific single-chain variable fragment (scFv) fusion protein 425(scFv)SNAP was labelled with the near infrared (NIR) dye BG-747, and its accumulation, specificity and kinetics were monitored using NIR fluorescence imaging in a subcutaneous pancreatic carcinoma xenograft model. The 425(scFv)SNAP fusion protein accumulates rapidly and specifically at the tumour site. Its small size allows efficient renal clearance and a high tumour to background ratio (TBR) of 33.2 +/- 6.3 (n = 4) 10 h after injection. Binding of the labelled antibody was efficiently competed with a 20-fold excess of unlabelled probe, resulting in an average TBR of 6 +/- 1.35 (n = 4), which is similar to that obtained with a non-tumour-specific probe (5.44 +/- 1.92, n = 4). When compared with a full-length antibody against EGFR (cetuximab), 425(scFv)SNAP-747 showed significantly higher TBRs and complete clearance 72 h post-injection. The 425(scFv)SNAP fusion protein combines rapid and specific targeting of EGFR-positive tumours with a versatile and robust labelling technique that facilitates the attachment of fluorophores for use in optical imaging. The same approach could be used to couple a chelating agent for use in nuclear imaging.

  16. Development of a rapid and sensitive one-step reverse transcription-nested polymerase chain reaction in a single tube using the droplet-polymerase chain reaction machine.

    PubMed

    Yamaguchi, Akemi; Matsuda, Kazuyuki; Sueki, Akane; Taira, Chiaki; Uehara, Masayuki; Saito, Yasunori; Honda, Takayuki

    2015-08-25

    Reverse transcription (RT)-nested polymerase chain reaction (PCR) is a time-consuming procedure because it has several handling steps and is associated with the risk of cross-contamination during each step. Therefore, a rapid and sensitive one-step RT-nested PCR was developed that could be performed in a single tube using a droplet-PCR machine. The K562 BCR-ABL mRNA-positive cell line as well as bone marrow aspirates from 5 patients with chronic myelogenous leukemia (CML) and 5 controls without CML were used. We evaluated one-step RT-nested PCR using the droplet-PCR machine. One-step RT-nested PCR performed in a single tube using the droplet-PCR machine enabled the detection of BCR-ABL mRNA within 40min, which was 10(3)-fold superior to conventional RT nested PCR using three steps in separate tubes. The sensitivity of the one-step RT-nested PCR was 0.001%, with sample reactivity comparable to that of the conventional assay. One-step RT-nested PCR was developed using the droplet-PCR machine, which enabled all reactions to be performed in a single tube accurately and rapidly and with high sensitivity. This one-step RT-nested PCR may be applicable to a wide spectrum of genetic tests in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  18. Single-site neural tube closure in human embryos revisited.

    PubMed

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. New insights into human primordial germ cells and early embryonic development from single-cell analysis.

    PubMed

    Otte, Jörg; Wruck, Wasco; Adjaye, James

    2017-08-01

    Human preimplantation developmental studies are difficult to accomplish due to associated ethical and moral issues. Preimplantation cells are rare and exist only in transient cell states. From a single cell, it is very challenging to analyse the origination of the heterogeneity and complexity inherent to the human body. However, recent advances in single-cell technology and data analysis have provided new insights into the process of early human development and germ cell specification. In this Review, we examine the latest single-cell datasets of human preimplantation embryos and germ cell development, compare them to bulk cell analyses, and interpret their biological implications. © 2017 Federation of European Biochemical Societies.

  20. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    NASA Astrophysics Data System (ADS)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  1. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    PubMed

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Aβ-oligomer uptake and the resulting inflammatory response in adult human astrocytes are precluded by an anti-Aβ single chain variable fragment in combination with an apoE mimetic peptide.

    PubMed

    Montoliu-Gaya, Laia; Mulder, Sandra D; Herrebout, Maaike A C; Baayen, Johannes C; Villegas, Sandra; Veerhuis, Robert

    2018-06-01

    An imbalance between production and clearance of soluble amyloid-β (Aβ) initiates the pathological process in sporadic Alzheimer's disease (AD). Aβ-specific antibodies seemed promising as therapeutic option in AD mouse models. In patients, however, vascular side-effects and Aβ-antibody complex-induced microglial and/or perivascular macrophage inflammatory responses were encountered. To prevent inflammatory reactions, we designed a single chain variable fragment (scFv-h3D6), based on monoclonal antibody bapineuzumab (mAb-h3D6), but lacking the Fc region. ScFv-h3D6 reduced Aβ-oligomer burden and prevented AD-associated behavioral and cellular changes in 3xTg-AD mice. As scFv-h3D6 lacks the Fc-tail, it cannot enhance Fc-receptor mediated Aβ clearance by microglia and probably exerts its beneficial effects in 3xTg-AD mice through other mechanisms. ScFv-h3D6 restored the increased apoE and apoJ levels in 3xTg-AD brains back to normal. ApoE and apoJ influence cholesterol transport, Aβ aggregation and clearance, and their genetic variants are risk factors for sporadic AD. Astrocytes are constitutive scavengers of soluble Aβ from the CNS. We previously found apoE and apoJ to inhibit Aβ uptake by adult human astrocytes, in vitro, and thus to potentially protect astrocytes from Aβ cytotoxicity. In the present study, scFv-h3D6 and mAb-h3D6 inhibited Aβ-oligomer uptake by adult human astrocytes. ApoE- and apoJ- mimetic peptides (MP) affected Aβ uptake as well as Aβ-induced cytokine release similar to intact apoE and apoJ, without interfering with the strong inhibitory effects of scFv-h3D6 on Aβ-oligomer uptake. These results suggest that combining Aβ-specific scFv and apoE-MP, that inhibits Aβ oligomer-induced cytokine release by astrocytes, could offer advantages over currently used therapeutics. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds.

    PubMed

    Wei, Rong-Min; Cao, Fan; Li, Jing; Yang, Li; Han, Yuan; Zhang, Xiu-Ling; Zhang, Zaichao; Wang, Xin-Yi; Song, You

    2016-04-13

    By introducing large counter cations as the spacer, two isolated 3, 3-ladder compounds, (Ph4P)[Co(II)(3-Mepy)2.7(H2O)0.3W(V)(CN)8] · 0.6H2O (1) and (Ph4As)[Co(II)(3-Mepy)3W(V)(CN)8] (2, 3-Mepy = 3-methylpyridine), were synthesized and characterized. Static and dynamic magnetic characterizations reveal that compounds 1 and 2 both behave as the single-chain magnets (SCMs) with very high energy barriers: 252(9) K for 1 and 224(7) K for 2, respectively. These two compounds display the highest relaxation barriers for cyano-bridged SCMs and are preceded only by two cobalt(II)-radical compounds among all SCMs. Meanwhile, a large coercive field of 26.2 kOe (1) and 22.6 kOe (2) were observed at 1.8 K.

  4. Imaging of myocardial infarction in dogs and humans using monoclonal antibodies specific for human myosin heavy chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leger, J.; Chevalier, J.; Larue, C.

    1991-08-01

    The use of three different monoclonal antibodies specific for human ventricular myosin heavy chains in the visualization of the location and extent of necrosis in dogs with experimental acute myocardial infarction and in humans is described. Using a classic immunohistochemical method or ex vivo analysis of heart slices in dogs with acute myocardial infarction subjected to intravenous injection of unlabeled antimyosin antibodies or antimyosin antibodies labeled with indium-111, it was observed that all antibody fragments specifically reached the targeted necrotic zone less than 2 h after antibody injection and remained bound for up to 24 h. In a limited butmore » significant number of cases (5 of the 12 humans and 11 of 43 dogs), it was possible to image the necrotic zone in vivo as early as 2 to 4 h after antibody injection. In other cases, individual blood clearance variations retarded or even prevented in vivo necrosis detection. Higher antimyosin fixation values were obtained in the necrotic zones in dogs with a rapid blood clearance relative to that of the other dogs. It is concluded that antimyosin antibodies always reached necrotic areas within 2 h. If blood clearance was rapid, in vivo imaging of the necrotic area was possible 2 to 6 h after necrosis, even in humans. In some cases, however, uncontrolled individual variations in the timing required for sufficient blood clearance hampered this rapid in vivo detection of myocardial necrosis.« less

  5. Block copolymer systems: from single chain to self-assembled nanostructures.

    PubMed

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  6. Human single follicle growth in vitro from cryopreserved ovarian tissue after slow freezing or vitrification.

    PubMed

    Wang, Tian-ren; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhi, Xu; Zhu, Xiao-hui; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Yan, Li-ying; Qiao, Jie

    2016-04-01

    What is the effect of human ovarian tissue cryopreservation on single follicular development in vitro? Vitrification had a greater negative effect on growth and gene expression of human ovarian follicles when compared with fresh follicles. For human ovarian cortex cryopreservation, the conventional option is slow freezing while more recently vitrification has been demonstrated to maintain good quality and function of ovarian tissues. Ovarian tissues were collected from 11 patients. For every patient, the ovarian cortex was divided into three samples: Fresh, slow-rate freezing (Slow) and vitrification (Vit). Tissue histology was performed and follicles were isolated for single-cell mRNA analysis and in vitro culture (IVC) in 1% alginate for 8 days. Follicle morphology was assessed with hematoxylin-eosin analysis. Follicles were individually embedded in alginate (1% w/v) and cultured in vitro for 8 days. Follicle survival and growth were assessed by microscopy. Follicle viability was observed after Calcein-AM and ethidium homodimer-I (Ca-AM/EthD-I) staining. Expression of genes, including GDF9 (growth differentiation factor 9), BMP15 (bone morphogenetic protein 15) and ZP3 (zona pellucida glycoprotein 3) in oocytes and AMH (anti-Mullerian hormone), FSHR (FSH receptor), CYP11A (cholesterol side-chain cleavage cytochrome P450) and STAR (steroidogenic acute regulatory protein) in GCs, was evaluated by single-cell mRNA analysis. A total of 129 follicles were separated from ovarian cortex (Fresh n = 44; Slow n = 40; Vit n = 45). The percentage of damaged oocytes and granulosa cells was significantly higher in both the Slow and Vit groups, as compared with Fresh control (P< 0.05). The growth of follicles in vitro was significantly delayed in the Vit group compared with the Fresh group (P< 0.05). Both slow freezing (P< 0.05) and vitrification (P< 0.05) down-regulated the mRNA levels of ZP3 and CYP11A compared with Fresh group, while there was no significant difference

  7. Linear ubiquitin chains: enzymes, mechanisms and biology

    PubMed Central

    2017-01-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. PMID:28446710

  8. Binding of the human "electron transferring flavoprotein" (ETF) to the medium chain acyl-CoA dehydrogenase (MCAD) involves an arginine and histidine residue.

    PubMed

    Parker, Antony R

    2003-10-01

    The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.

  9. Enhancement and Analysis of Human Antiaflatoxin B1 (AFB1) scFv Antibody-Ligand Interaction Using Chain Shuffling.

    PubMed

    Rangnoi, Kuntalee; Choowongkomon, Kiattawee; O'Kennedy, Richard; Rüker, Florian; Yamabhai, Montarop

    2018-06-06

    A human antiaflatoxin B1 (AFB1) scFv antibody (yAFB1-c3), selected from a naı̈ve human phage-displayed scFv library, was used as a template for improving and analysis of antibody-ligand interactions using the chain-shuffling technique. The variable-heavy and variable-light (VH/VL)-shuffled library was constructed from the VH of 25 preselected clones recombined with the VL of yAFB1-c3 and vice versa. Affinity selection from these libraries demonstrated that the VH domain played an important role in the binding of scFv to free AFB1. Therefore, in the next step, VH-shuffled scFv library was constructed from variable-heavy (VH) chain repertoires, amplified from the naı̈ve library, recombined with the variable-light (VL) chain of the clone yAFB1-c3. This library was then used to select a specific scFv antibody against soluble AFB1 by a standard biopanning method. Three clones that showed improved binding properties were isolated. Amino acid sequence analysis indicated that the improved clones have amino acid mutations in framework 1 (FR1) and the complementarity determining region (CDR1) of the VH chain. One clone, designated sAFH-3e3, showed 7.5-fold improvement in sensitivity over the original scFv clone and was selected for molecular binding studies with AFB1. Homology modeling and molecular docking were used to compare the binding of this and the original clones. The results confirmed that VH is more important than VL for AFB1 binding.

  10. The C-Terminal Amino Acid of the MHC-I Heavy Chain Is Critical for Binding to Derlin-1 in Human Cytomegalovirus US11-Induced MHC-I Degradation

    PubMed Central

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation. PMID:23951315

  11. The C-terminal amino acid of the MHC-I heavy chain is critical for binding to Derlin-1 in human cytomegalovirus US11-induced MHC-I degradation.

    PubMed

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.

  12. Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres.

    PubMed

    Rannou, F; Droguet, M; Giroux-Metges, M A; Pennec, Y; Gioux, M; Pennec, J P

    2009-11-01

    The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n = 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (I(max)), maximal sodium conductance (g(Na,max)) and time constants of activation and inactivation ((m) and (h)) increase according to the scheme I-->IIa-->IIx-->IIb (P < 0.05). (m) values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P = 0.97) despite different contractile properties. The voltage dependence of activation (V(a,1/2)) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle.

  13. Engineering a Single Chain Fv Antibody to αvβ6 Integrin using the Specificity-Determining Loop of a Foot-and-Mouth Disease Virus

    PubMed Central

    Kogelberg, Heide; Tolner, Berend; Thomas, Gareth J.; Di Cara, Danielle; Minogue, Shane; Ramesh, Bala; Sodha, Serena; Marsh, Dan; Lowdell, Mark W.; Meyer, Tim; Begent, Richard H.J.; Hart, Ian; Marshall, John F; Chester, Kerry

    2010-01-01

    Summary The αvβ6 integrin is a promising target for cancer therapy. Its expression is up-regulated de novo on many types of carcinoma where it may activate transforming growth factor-β1 and transforming growth factor-β3, interact with the specific extracellular matrix proteins and promote migration and invasion of tumour cells. The viral protein 1 (VP1) coat protein of the O1 British field strain serotype of foot-and-mouth disease virus is a high-affinity ligand for αvβ6, and we recently reported that a peptide derived from VP1 exhibited αvβ6-specific binding in vitro and in vivo. We hypothesized that this peptide could confer binding specificity of an antibody to αvβ6. A 17-mer peptide of VP1 was inserted into the complementary-determining region H3 loop of MFE-23, a murine single-chain Fv (scFv) antibody reactive with carcinoembryonic antigen (CEA). The resultant scFv (B6-1) bound to αvβ6 but retained residual reactivity with CEA. This was eliminated by point mutation (Y100bP) in the variable heavy-chain domain to create an scFv (B6-2) that was as structurally stable as MFE-23 and reacted specifically with αvβ6 but not α5β1, αvβ3, αvβ5, αvβ8 or CEA. B6-2 was internalized into αvβ6-expressing cells and inhibited αvβ6-dependent migration of carcinoma cells. B6-2 was subsequently humanized. The humanized form (B6-3) was obtained as a non-covalent dimer from secretion in Pichia pastoris (115 mg/l) and was a potent inhibitor of αvβ6-mediated cell adhesion. Thus, we have used a rational stepwise approach to create a humanized scFv with therapeutic potential to block αvβ6-mediated cancer cell invasion or to deliver and internalize toxins specifically to αvβ6-expressing tumours. PMID:18656482

  14. Gene encoding the human. beta. -hexosaminidase. beta. chain: Extensive homology of intron placement in the. alpha. - and. beta. -chain genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proia, R.L.

    1988-03-01

    Lysosomal {beta}-hexosaminidase is composed of two structurally similar chains, {alpha} and {beta}, that are the products of different genes. Mutations in either gene causing {beta}-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the {alpha} and {beta} chains, the {beta}-chain gene was isolated, and its organization was characterized. The {beta}-chain coding region is divided into 14 exons distributed over {approx}40 kilobases of DNA. Comparison with the {alpha}-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions.more » This extensive sharing of intron placement demonstrates that the {alpha} and {beta} chains evolved by way of the duplication of a common ancestor.« less

  15. Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins.

    PubMed

    Migrino, Raymond Q; Truran, Seth; Gutterman, David D; Franco, Daniel A; Bright, Megan; Schlundt, Brittany; Timmons, Mitchell; Motta, Angelica; Phillips, Shane A; Hari, Parameswaran

    2011-12-01

    Light chain amyloidosis (AL) involves overproduction of amyloidogenic light chain proteins (LC) leading to heart failure, yet the mechanisms underlying tissue toxicity remain unknown. We hypothesized that LC induces endothelial dysfunction in non-AL human microvasculature and apoptotic injury in human coronary artery endothelial cells (HCAECs). Adipose arterioles (n = 34, 50 ± 3 yr) and atrial coronary arterioles (n = 19, 68 ± 2 yr) from non-AL subjects were cannulated. Adipose arteriole dilator responses to acetylcholine/papaverine were measured at baseline and 1 h exposure to LC (20 μg/ml) from biopsy-proven AL subjects (57 ± 11 yr) without and with antioxidant cotreatment. Coronary arteriole dilation to bradykinin/papaverine was measured post-LC exposure. HCAECs were exposed to 1 or 24 h of LC. LC reduced dilation to acetylcholine (10(-4) M: 41.6 ± 7 vs. 85.8 ± 2.2% control, P < 0.001) and papaverine (81.4 ± 4.6 vs. 94.8 ± 1.3% control, P < 0.01) in adipose arterioles and to bradykinin (10(-6) M: 68.6 ± 6.2 vs. 90.9 ± 1.6% control, P < 0.001) but not papaverine in coronary arterioles. There was an increase in superoxide and peroxynitrite in arterioles treated with LC. Adipose arteriole dilation was restored by cotreatment with polyethylene glycol-superoxide dismutase and tetrahydrobiopterin but only partially restored by mitoquinone (mitochondria-targeted antioxidant) and gp91ds-tat (NADPH oxidase inhibitor). HCAECs exposed to LC showed reduced NO and increased superoxide, peroxynitrite, annexin-V, and propidium iodide compared with control. Brief exposure to physiological amounts of LC induced endothelial dysfunction in human adipose and coronary arterioles and increased apoptotic injury in coronary artery endothelial cells likely as a result of oxidative stress, reduced NO bioavailability, and peroxynitrite production. Microvascular dysfunction and injury is a novel mechanism underlying AL pathobiology and is a potential target for therapy.

  16. Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection.

    PubMed

    Tůma, Petr; Gojda, Jan

    2015-08-01

    A CE method with contactless conductivity detection has been developed for the clinical determination of the branched chain amino acids (BCAAs) valine, isoleucine and leucine in human blood plasma. The CE separation was performed in an optimised BGE with composition of 3.2 M acetic acid in 20% v/v methanol, pH 2.0. The achieved separation time was 125 s when using a capillary with an effective length of 14.7 cm, electric field intensity of 0.96 kV/cm and simultaneous application of a hydrodynamic pressure of 50 mbar. The separation efficiency in blood plasma equalled 461 000 theoretical plates/m for valine and isoleucine, and 455 000 theoretical plates/m for leucine; the detection limits are equal to 0.4 μM for all three amino acids. The RSD values for repeatability of the migration time equalled 0.1% for measurements during a single day and 0.3% for measurements on different days; the RSD values for repeatability of the peak areas equalled 2.3-2.6% for measurements during a single day and 2.7-4.6% for measurements on different days. It followed from the performed tests that the plasmatic levels of BCAAs attain a maximum 60 min after intravenous application of an infusion of BCAAs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The generation and selection of single-domain, v region libraries from nurse sharks.

    PubMed

    Flajnik, Martin F; Dooley, Helen

    2009-01-01

    The cartilaginous fish (sharks, skates, and rays) are the oldest phylogenetic group in which a human-type adaptive immune system and immunoglobulins (Igs) have been found. In addition to their conventional (heavy-light chain heterodimeric) isotypes, IgM and IgW, sharks produce the novel isotype, IgNAR, a heavy chain homodimer that does not associate with light chains. Instead, its variable (V) regions act as independent, soluble units in order to bind antigen. In this chapter, we detail our immunization protocol in order to raise a humoral IgNAR response in the nurse shark (Ginglymostoma cirratum) and the subsequent cloning of the single-domain V regions from this isotype in order to select antigen-specific binders by phage display.

  18. Time Average Holography Study of Human Tympanic Membrane with Altered Middle Ear Ossicular Chain

    NASA Astrophysics Data System (ADS)

    Cheng, Jeffrey T.; Ravicz, Michael E.; Rosowski, John J.; Hulli, Nesim; Hernandez-Montes, Maria S.; Furlong, Cosme

    2009-02-01

    Computer-assisted time average holographic interferometry was used to study the vibration of the human tympanic membrane (TM) in cadaveric temporal bones before and after alterations of the ossicular chain. Simultaneous laser Doppler vibrometer measurements of stapes velocity were performed to estimate the conductive hearing loss caused by ossicular alterations. The quantified TM motion described from holographic images was correlated with stapes velocity to define relations between TM motion and stapes velocity in various ossicular disorders. The results suggest that motions of the TM are relatively uncoupled from stapes motion at frequencies above 1000 Hz.

  19. [Identification of human pathogenic variola and monkeypox viruses by real-time polymerase chain reaction].

    PubMed

    Kostina, E V; Gavrilova, E V; Riabinin, V A; Shchelkunov, S N; Siniakov, A N

    2009-01-01

    A kit of specific oligonucleotide primers and hybridization probes has been proposed to detect orthopoxviruses (OPV) and to discriminate human pathogenic viruses, such as variola virus and monkey virus by real-time polymerase chain reaction (PCR). For real-time PCR, the following pairs of fluorophore and a fluorescence quencher were used: TAMRA-BHQ2 for genus-specific probes and FAM-BHQ1 for species-specific ones (variola virus, monkeypox virus, ectomelia virus). The specificity of this assay was tested on 38 strains of 6 OPV species and it was 100%.

  20. Quantifying side-chain conformational variations in protein structure

    PubMed Central

    Miao, Zhichao; Cao, Yang

    2016-01-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406

  1. Quantifying side-chain conformational variations in protein structure

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Cao, Yang

    2016-11-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  2. Quantifying side-chain conformational variations in protein structure.

    PubMed

    Miao, Zhichao; Cao, Yang

    2016-11-15

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  3. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  4. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  5. Buckling behaviors of single-walled carbon nanotubes inserted with a linear carbon-atom chain.

    PubMed

    Zhu, Chunhua; Chen, Yinfeng; Liu, Rumeng; Zhao, Junhua

    2018-08-17

    Buckling behaviors of single-walled carbon nanotubes (SWCNTs) inserted with a linear carbon-atom chain (CAC) (the composite structures are also called carbon nanowires (CNWs)) under torsion and bending as well as compression are studied using molecular dynamics (MD) simulations, respectively. Our MD results show that the critical buckling angles (or strains) of CNWs under the three presented kinds of loading patterns can be two times those of corresponding independent SWCNTs for long CNWs, while the buckling improvement is not obvious for short ones. The main reason is that the radial van der Waals force between the CAC and the SWCNT is very small for a short CNW, while it increases with increasing length and then tends to a constant for a long CNW. The obtained MD results agree well with those from available theoretical models. These findings will be a great help towards understanding the stability and reliability of the special CNT structures, and designing flexible CNT-based devices.

  6. Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Lange, Florian; Ejima, Satoshi; Fehske, Holger

    2018-02-01

    Improving matrix-product state techniques based on the purification of the density matrix, we are able to accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion anisotropy in the Haldane, large-D , and antiferromagnetic phases. Distinct thermally activated scattering processes make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches. In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important and strongly enhances the spectral weight for momentum transfer π .

  7. Ergonomics and sustainability--challenges from global supply chains.

    PubMed

    Hasle, Peter; Jensen, Per Langaa

    2012-01-01

    The development of globalised supply chains is a major challenge for sustainability. For several years, there has been discussion within the profession whether and how ergonomics and human factors can play a role. Based on our research, we have identified five major challenges from global supply chains especially related to the social aspects of sustainability: (1) criteria for social sustainability, (2) the role of key performance indicators in the management of supply chains, (3) the constant changes in supply chains, (4) the challenge in establishing participation, and (5) the development of agency and regulatory mechanisms. There are obviously no clear and simple solutions to these challenges. One possible avenue for progress might lie in acquiring a greater understanding of the challenges from global supply chains and developing a strategy which combines social and long-term business sustainability. Starting from such a basis, the next step would be to find ways for the ergonomics and human factors community to create international collaboration which can impact specific global supply chains.

  8. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA.

    PubMed

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D; Hahn, Andreas; Schebb, Nils Helge

    2014-06-01

    Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48h of fish oil (1008mg EPA and 672mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC-MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. All EPA-derived oxylipin levels were significantly increased 6h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Scattering of waves by impurities in precompressed granular chains.

    PubMed

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  10. Human serum-derived hydroxy long-chain fatty acids exhibit anti-inflammatory and anti-proliferative activity

    PubMed Central

    2011-01-01

    Background Circulating levels of novel long-chain hydroxy fatty acids (called GTAs) were recently discovered in the serum of healthy subjects which were shown to be reduced in subjects with colorectal cancer (CRC), independent of tumor burden or disease stage. The levels of GTAs were subsequently observed to exhibit an inverse association with age in the general population. The current work investigates the biological activity of these fatty acids by evaluating the effects of enriched human serum extracts on cell growth and inflammation. Methods GTAs were extracted from commercially available bulk human serum and then chromatographically separated into enriched (GTA-positive) and depleted (GTA-negative) fractions. SW620, MCF7 and LPS stimulated RAW264.7 cells were treated with various concentrations of the GTA-positive and GTA-negative extracts, and the effects on cell growth and inflammation determined. Results Enriched fractions resulted in poly-ADP ribose polymerase (PARP) cleavage, suppression of NFκB, induction of IκBα, and reduction in NOS2 mRNA transcript levels. In RAW264.7 mouse macrophage cells, incubation with enriched fractions prior to treatment with LPS blocked the induction of several pro-inflammatory markers including nitric oxide, TNFα, IL-1β, NOS2 and COX2. Conclusions Our results show that human serum extracts enriched with endogenous long-chain hydroxy fatty acids possess anti-inflammatory and anti-proliferative activity. These findings support a hypothesis that the reduction of these metabolites with age may result in a compromised ability to defend against uncontrolled cell growth and inflammation, and could therefore represent a significant risk for the development of CRC. PMID:21586136

  11. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers

    PubMed Central

    Gorusupudi, Aruna; Liu, Aihua; Hageman, Gregory S.; Bernstein, Paul S.

    2016-01-01

    The human retina is well-known to have unique lipid profiles enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and very long-chain polyunsaturated fatty acids (VLC-PUFAs) that appear to promote normal retinal structure and function, but the influence of diet on retinal lipid profiles in health and disease remains controversial. In this study, we examined two independent cohorts of donor eyes and related their retinal lipid profiles with systemic biomarkers of lipid intake. We found that serum and red blood cell lipids, and to a lesser extent orbital fat, are indeed excellent biomarkers of retinal lipid content and n-3/n-6 ratios in both the LC-PUFA and VLC-PUFA series. Eyes from age-related macular degeneration (AMD) donors have significantly decreased levels of VLC-PUFAs and low n-3/n-6 ratios. These results are consistent with the protective role of dietary n-3 LC-PUFAs against AMD and emphasize the importance of monitoring systemic biomarkers of lipid intake when undertaking clinical trials of lipid supplements for prevention and treatment of retinal disease. PMID:26764040

  12. Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device.

    PubMed

    Phoolcharoen, Waranyoo; Prehaud, Christophe; van Dolleweerd, Craig J; Both, Leonard; da Costa, Anaelle; Lafon, Monique; Ma, Julian K-C

    2017-10-01

    The biomedical applications of antibody engineering are developing rapidly and have been expanded to plant expression platforms. In this study, we have generated a novel antibody molecule in planta for targeted delivery across the blood-brain barrier (BBB). Rabies virus (RABV) is a neurotropic virus for which there is no effective treatment after entry into the central nervous system. This study investigated the use of a RABV glycoprotein peptide sequence to assist delivery of a rabies neutralizing single-chain antibody (ScFv) across an in cellulo model of human BBB. The 29 amino acid rabies virus peptide (RVG) recognizes the nicotinic acetylcholine receptor (nAchR) at neuromuscular junctions and the BBB. ScFv and ScFv-RVG fusion proteins were produced in Nicotiana benthamiana by transient expression. Both molecules were successfully expressed and purified, but the ScFv expression level was significantly higher than that of ScFv-RVG fusion. Both ScFv and ScFv-RVG fusion molecules had potent neutralization activity against RABVin cellulo. The ScFv-RVG fusion demonstrated increased binding to nAchR and entry into neuronal cells, compared to ScFv alone. Additionally, a human brain endothelial cell line BBB model was used to demonstrate that plant-produced ScFv-RVG P fusion could translocate across the cells. This study indicates that the plant-produced ScFv-RVG P fusion protein was able to cross the in celluloBBB and neutralize RABV. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Single cardiac ventricular myosins are autonomous motors

    PubMed Central

    Wang, Yihua; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta

    2018-01-01

    Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule. PMID:29669825

  14. Generation of a Highly Reactive Chicken-Derived Single-Chain Variable Fragment against Fusarium verticillioides by Phage Display

    PubMed Central

    Hu, Zu-Quan; Liu, Jin-Long; Li, He-Ping; Xing, Shu; Xue, Sheng; Zhang, Jing-Bo; Wang, Jian-Hua; Nölke, Greta; Liao, Yu-Cai

    2012-01-01

    Fusarium verticillioides is the primary causal agent of Fusarium ear and kernel rot in maize, producing fumonisin mycotoxins that are toxic to humans and domestic animals. Rapid detection and monitoring of fumonisin-producing fungi are pivotally important for the prevention of mycotoxins from entering into food/feed products. Chicken-derived single-chain variable fragments (scFvs) against cell wall-bound proteins from F. verticillioides were isolated from an immunocompetent phage display library. Comparative phage enzyme-linked immunosorbant assays (ELISAs) and sequencing analyses identified four different scFv antibodies with high sensitivity. Soluble antibody ELISAs identified two highly sensitive scFv antibodies, FvCA3 and FvCA4, with the latter being slightly more sensitive. Three-dimensional modeling revealed that the FvCA4 may hold a better overall structure with CDRH3, CDRL1 and CDRL3 centered in the core region of antibody surface compared with that of other scFvs. Immunofluorescence labeling revealed that the binding of FvCA4 antibody was localized to the cell walls of conidiospores and hyphae of F. verticillioides, confirming the specificity of this antibody for a surface target. This scFv antibody was able to detect the fungal mycelium as low as 10−2 μg/mL and contaminating mycelium at a quantity of 10−2 mg/g maize. This is the first report that scFv antibodies derived from phage display have a wide application for rapid and accurate detection and monitoring of fumonisin-producing pathogens in agricultural samples. PMID:22837678

  15. Lambda light chain revision in the human intestinal IgA response.

    PubMed

    Su, Wen; Gordon, John N; Barone, Francesca; Boursier, Laurent; Turnbull, Wayne; Mendis, Surangi; Dunn-Walters, Deborah K; Spencer, Jo

    2008-07-15

    Revision of Ab L chains by secondary rearrangement in mature B cells has the potential to change the specific target of the immune response. In this study, we show for the first time that L chain revision is normal and widespread in the largest Ab producing population in man: intestinal IgA plasma cells (PC). Biases in the productive and non-productive repertoire of lambda L chains, identification of the circular products of rearrangement that have the characteristic biases of revision, and identification of RAG genes and protein all reflect revision during normal intestinal IgA PC development. We saw no evidence of IgH revision, probably due to inappropriately orientated recombination signal sequences, and little evidence of kappa-chain revision, probably due to locus inactivation by the kappa-deleting element. We propose that the lambda L chain locus is available and a principal modifier and diversifier of Ab specificity in intestinal IgA PCs.

  16. Linear ubiquitin chains: enzymes, mechanisms and biology.

    PubMed

    Rittinger, Katrin; Ikeda, Fumiyo

    2017-04-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. © 2017 The Authors.

  17. Old and new results about single-photon sensitivity in human vision

    NASA Astrophysics Data System (ADS)

    Nelson, Philip C.

    2016-04-01

    It is sometimes said that ‘our eyes can see single photons’. This article begins by finding a more precise version of that claim and reviewing evidence gathered for it up to around 1985 in two distinct realms, those of human psychophysics and single-cell physiology. Finding a single framework that accommodates both kinds of result is then a nontrivial challenge, and one that sets severe quantitative constraints on any model of dim-light visual processing. This article presents one such model and compares it to a recent experiment.

  18. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency.

    PubMed

    Turki, Imène; Hammami, Akil; Kharmachi, Habib; Mousli, Mohamed

    2014-02-01

    Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Novel high-speed droplet-allele specific-polymerase chain reaction: application in the rapid genotyping of single nucleotide polymorphisms.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki

    2013-09-23

    Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    PubMed Central

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  1. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.

    PubMed

    Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M

    2016-11-01

    Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The

  2. Slow magnetic relaxation in a cobalt magnetic chain.

    PubMed

    Yang, Chen-I; Chuang, Po-Hsiang; Lu, Kuang-Lieh

    2011-04-21

    A homospin ladder-like chain, [Co(Hdhq)(OAc)](n) (1; H(2)dhq = 2,3-dihydroxyquinoxaline), shows a single-chain-magnet-like (SCM-like) behavior with the characteristics of frequency dependence of the out-of-phase component in alternating current (ac) magnetic susceptibilities and hysteresis loops. © The Royal Society of Chemistry 2011

  3. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  4. Gender differences in human single neuron responses to male emotional faces.

    PubMed

    Newhoff, Morgan; Treiman, David M; Smith, Kris A; Steinmetz, Peter N

    2015-01-01

    Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala.

  5. Gender differences in human single neuron responses to male emotional faces

    PubMed Central

    Newhoff, Morgan; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.

    2015-01-01

    Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala. PMID:26441597

  6. Stabilization of bacterially expressed erythropoietin by single site-specific introduction of short branched PEG chains at naturally occurring glycosylation sites.

    PubMed

    Hoffmann, E; Streichert, K; Nischan, N; Seitz, C; Brunner, T; Schwagerus, S; Hackenberger, C P R; Rubini, M

    2016-05-24

    The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.

  7. Determination of the molecular weight of human gamma-3 chains by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

    PubMed Central

    Virella, G.; Parkhouse, R. M. E.

    1972-01-01

    The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255

  8. Single-cell gene expression analysis reveals diversity among human spermatogonia.

    PubMed

    Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R

    2017-02-10

    Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human

  9. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    PubMed

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection. Copyright © 2016. Published by Elsevier Inc.

  10. Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against Bacillus thuringiensis Cry1F Toxin Single-Chain Antibodies.

    PubMed

    Xu, Chongxin; Zhang, Cunzheng; Zhong, Jianfeng; Hu, Hui; Luo, Shimin; Liu, Xiaoqin; Zhang, Xiao; Liu, Yuan; Liu, Xianjin

    2017-07-26

    In the present study, a Cry1F-immunized rabbit phage display library (6.96 × 10 8 cfu/mL) was constructed for selecting high activity of anti-Cry1F toxin single-chain antibody (a single-chain variable fragment, scFv) by biopanning. A total of 16 positive monoclonal phage scFv's were obtained after 4 rounds of panning, which were identified by enzyme-linked immunosorbent assay (ELISA), polymerized chain reaction, and DNA sequencing. The most positive phage scFv (named RF4) was expressed in Escherichia coli HB2151, and a soluble protein of approximately 30 kDa was purified with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An indirect competitive ELISA (IC-ELISA) was established on the basis of purified soluble RF4-scFv for Cry1F toxin. It indicated the 50% inhibition of the control (IC 50 ) was 11.56 ng/mL and the detection limit (IC 10 ) was 0.18 ng/mL and showed weak cross-reactivities for Cry1Ab (2.8%), Cry1Ac (1.3%), and Cry1B, Cry1C, Cry1Ie, and Cry2A (less than 0.1%). It was found that IC-ELISA detected Cry1F toxin spiked in rice, wheat, corn, and soil samples with good accuracy, stability, and repeatability. The recoveries were in the range of 80.2-99.6%, and the coefficients of variation were in the range of 2.5-10.0%. These results showed that IC-ELISA based on scFv from the immunized rabbit phage display library was promising for specific detection of Cry1F toxin in agroproducts and environmental samples.

  11. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory.

    PubMed

    Dammeyer, Thorben; Steinwand, Miriam; Krüger, Sarah-C; Dübel, Stefan; Hust, Michael; Timmis, Kenneth N

    2011-02-21

    Recombinant antibody fragments have a wide range of applications in research, diagnostics and therapy. For many of these, small fragments like single chain fragment variables (scFv) function well and can be produced inexpensively in bacterial expression systems. Although Escherichia coli K-12 production systems are convenient, yields of different fragments, even those produced from codon-optimized expression systems, vary significantly. Where yields are inadequate, alternative production systems are needed. Pseudomonas putida strain KT2440 is a versatile biosafety strain known for good expression of heterologous genes, so we have explored its utility as a cell factory for production of scFvs. We have generated new broad host range scFv expression constructs and assessed their production in the Pseudomonas putida KT2440 host. Two scFvs bind either to human C-reactive protein or to mucin1, proteins of significant medical diagnostic and therapeutic interest, whereas a third is a model anti-lysozyme scFv. The KT2440 antibody expression systems produce scFvs targeted to the periplasmic space that were processed precisely and were easily recovered and purified by single-step or tandem affinity chromatography. The influence of promoter system, codon optimization for P. putida, and medium on scFv yield was examined. Yields of up to 3.5 mg/l of pure, soluble, active scFv fragments were obtained from shake flask cultures of constructs based on the original codon usage and expressed from the Ptac expression system, yields that were 2.5-4 times higher than those from equivalent cultures of an E. coli K-12 expression host. Pseudomonas putida KT2440 is a good cell factory for the production of scFvs, and the broad host range constructs we have produced allow yield assessment in a number of different expression hosts when yields in one initially selected are insufficient. High cell density cultivation and further optimization and refinement of the KT2440 cell factory will achieve

  12. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant

    DOE PAGES

    Li, Ting-Feng; Painter, Richard G.; Ban, Bhupal; ...

    2015-06-03

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm2 in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pHmore » 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s -1. The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment.« less

  13. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  14. Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths.

    PubMed

    Wolf, Cynthia J; Takacs, Margy L; Schmid, Judith E; Lau, Christopher; Abbott, Barbara D

    2008-11-01

    Perfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects. This study evaluated the ability of numerous PFAAs to induce mouse and human PPARalpha activity in a transiently transfected COS-1 cell assay. COS-1 cells were transfected with either a mouse or human PPARalpha receptor-luciferase reporter plasmid. After 24 h, cells were exposed to either negative controls (water or dimethyl sulfoxide, 0.1%); positive control (WY-14643, PPARalpha agonist); perfluorooctanoic acid or perfluorononanoic acid at 0.5-100 microM; perfluorobutanoic acid, perfluorohexanoic acid, perfluorohexane sulfonate, or perfluorodecanoic acid (PFDA) at 5-100 microM; or perfluorobutane sulfonate or perfluorooctane sulfonate at 1-250 microM. After 24 h of exposure, luciferase activity from the plasmid was measured. Each PFAA activated both mouse and human PPARalpha in a concentration-dependent fashion, except PFDA with human PPARalpha. Activation of PPARalpha by PFAA carboxylates was positively correlated with carbon chain length, up to C9. PPARalpha activity was higher in response to carboxylates compared to sulfonates. Activation of mouse PPARalpha was generally higher compared to that of human PPARalpha. We conclude that, in general, (1) PFAAs of increasing carbon backbone chain lengths induce increasing activity of the mouse and human PPARalpha with a few exceptions, (2) PFAA carboxylates are stronger activators of mouse and human PPARalpha than PFAA sulfonates, and (3) in most cases, the mouse PPARalpha appears to be more sensitive to PFAAs than the human PPARalpha in this model.

  15. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells

    PubMed Central

    JU, Schmohl; MK, Gleason; PR, Dougherty; JS, Miller; DA, Vallera

    2015-01-01

    Background Natural killer (NK) cells are potent cytotoxic lymphocytes that play a critical role in tumor immunosurveillance and control. Cancer stem cells (CSC) initiate and sustain tumor cell growth, mediate drug refractory cancer relapse and express the well-known surface marker CD133. Methods DNA fragments from two fully humanized single chain fragment variable (scFv) antibody recognizing CD16 on NK-cells and CD133 on CSC were genetically spliced forming a novel drug, 16 × 133 BiKE that simultaneously recognizes these antigen to facilitate an immunologic synapse. The anti-CD133 was created using a fusion protein prepared by fusing DNA fragments encoding the two extracellular domains of CD133. Immunization of mice with the resulting fusion protein generated an unique antibody that recognized the molecular framework and was species cross-reactive. Results In vitro 51chromium release cytotoxicity assays at both high and low effector:target ratios demonstrated the ability of the heterodimeric biological drug to greatly enhance NK-cell killing of human Caco-2 colorectal carcinoma cells known to overexpress CD133. The tumor associated antigen specificity of the drug for CD133 even enhanced NK-cell cytotoxicity against the NK-resistant human Burkitt's lymphoma Daudi cell line, which has less than 5% CD133 surface expression. Flow cytometry analysis revealed increases in NK-cell degranulation and Interferon-γ production upon co-culture with Caco-2 targets in the presence of the drug. Conclusion These studies demonstrate that the innate immune system can be effectively recruited to kill CSC using bispecific antibodies targeting CD133, and that this anti-CD133 scFv may be useful in this bispecific platform or, perhaps, in the design of more complex trispecific molecules for carcinoma therapy. PMID:26566946

  16. Ribosome Display of Combinatorial Antibody Libraries Derived from Mice Immunized with Heat-Killed Xylella fastidiosa and the Selection of MopB-Specific Single-Chain Antibodies

    PubMed Central

    Azizi, Armaghan; Arora, Arinder; Markiv, Anatoliy; Lampe, David J.; Miller, Thomas A.

    2012-01-01

    Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules. PMID:22327580

  17. Side-chain-side-chain interactions and stability of the helical state

    NASA Astrophysics Data System (ADS)

    Zangi, Ronen

    2014-01-01

    Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.

  18. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain.

    PubMed

    Azizur Rahman, M; Hasegawa, H; Mahfuzur Rahman, M; Mazid Miah, M A; Tasmin, A

    2008-02-01

    Although human exposure to arsenic is thought to be caused mainly through arsenic-contaminated underground drinking water, the use of this water for irrigation enhances the possibility of arsenic uptake into crop plants. Rice is the staple food grain in Bangladesh. Arsenic content in straw, grain and husk of rice is especially important since paddy fields are extensively irrigated with underground water having high level of arsenic concentration. However, straw and husk are widely used as cattle feed. Arsenic concentration in rice grain was 0.5+/-0.02 mg kg(-1) with the highest concentrations being in grains grown on soil treated with 40 mg As kg(-1) soil. With the average rice consumption between 400 and 650 g/day by typical adults in the arsenic-affected areas of Bangladesh, the intake of arsenic through rice stood at 0.20-0.35 mg/day. With a daily consumption of 4 L drinking water, arsenic intake through drinking water stands at 0.2mg/day. Moreover, when the rice plant was grown in 60 mg of As kg(-1) soil, arsenic concentrations in rice straw were 20.6+/-0.52 at panicle initiation stage and 23.7+/-0.44 at maturity stage, whereas it was 1.6+/-0.20 mg kg(-1) in husk. Cattle drink a considerable amount of water. So alike human beings, arsenic gets deposited into cattle body through rice straw and husk as well as from drinking water which in turn finds a route into the human body. Arsenic intake in human body from rice and cattle could be potentially important and it exists in addition to that from drinking water. Therefore, a hypothesis has been put forward elucidating the possible food chain pathways through which arsenic may enter into human body.

  19. Single-nucleotide polymorphisms associated with symptomatic infection and differential human gene expression in healthy seropositive persons each implicate the cytoskeleton, integrin signaling, and oncosuppression in the pathogenesis of human parvovirus B19 infection.

    PubMed

    Kerr, Jonathan R; Kaushik, Narendra; Fear, David; Baldwin, Don A; Nuwaysir, Emile F; Adcock, Ian M

    2005-07-15

    This study was undertaken to further examine the role of the host response to parvovirus B19 in the development of symptoms and consequences of viral persistence. Genomic DNA from 42 patients with symptomatic B19 infection was analyzed using the HuSNP assay (Affymetrix), and the results were compared with those from analysis of 53 healthy control individuals. Fifty-seven single-nucleotide polymorphisms were identified that were significantly associated with symptomatic infection. Total RNA from peripheral blood mononuclear cells from 57 B19-seropositive and 13 B19-seronegative donors was analyzed by hybridization to a single-color microarray representing 9522 human genes. Ninety-two genes were shown to be differentially expressed. Differential expression was confirmed in 6 of 38 genes (SKIP, MACF1, SPAG7, FLOT1, c6orf48, and RASSF5) tested using real-time quantitative polymerase chain reaction in a different group of healthy subjects. Genes identified in both studies play a functional role in the cytoskeleton, integrin signaling, and oncosuppression, themes that have been shown to be important in parvovirus infections.

  20. Polymerase chain reaction amplification fails to detect aromatase cytochrome P450 transcripts in normal human endometrium or decidua.

    PubMed

    Bulun, S E; Mahendroo, M S; Simpson, E R

    1993-06-01

    It has been proposed that the biosynthesis of estrogens by the human endometrium may be of physiological significance during the menstrual cycle. Local estrogen production was also suggested to be important in the development of endometrial cancer; however, the presence or absence of aromatase enzyme activity in normal human endometrium is controversial. To address this issue, we used a sensitive technique capable of detecting mRNA transcripts present in only very low copy number. The polymerase chain reaction linked to reverse transcription (RT-PCR) was used to evaluate the presence or absence of aromatase cytochrome P450 (P450arom) transcripts in endometrial tissues (n = 7) and endometrial stromal cells (n = 9) under various culture conditions. RNA was isolated from four proliferative and three secretory tissue samples and from cultured endometrial stromal cells isolated from seven proliferative and two secretory endometria. Five sets of cultures were treated with medroxyprogesterone acetate (MPA), estradiol (E2), and forskolin. Additionally, RNA was isolated from decidualized endometrium obtained from a patient with tubal pregnancy. A single stranded cDNA was synthesized from total RNA using Moloney murine leukemia virus reverse transcriptase and a P450arom-specific oligonucleotide. The single stranded cDNA was used as a template for PCR and was amplified for 20-35 cycles using P450arom-specific primers. RNA from adipose tissue and placenta was amplified to provide positive controls, whereas myometrial RNA was used as a negative control. In two experiments involving two endometrial tissues and three sets of cells in culture, a rat P450arom cRNA was coamplified in each sample as an internal control to demonstrate that the remote possibility of RT-PCR failures in individual test samples cannot account for our negative results. By Southern or slot blot hybridization of the amplified fragments using human and rat P450arom-specific probes, we found no evidence for

  1. Finite T spectral function of a single carrier injected into an Ising chain: a comparison of 3 different models

    NASA Astrophysics Data System (ADS)

    Moeller, Mirko; Berciu, Mona

    2015-03-01

    When studying the properties of complex, magnetic materials it is often necessary to work with effective Hamiltonians. In many cases the effective Hamiltonian is obtained by mapping the full, multiband Hamiltonian onto a simpler, single band model. A prominent example is the use of Zhang-Rice singlets to map the multiband Emery model for cuprates onto the single band t - J -model. Such mappings are usually done at zero temperature (T) and it is implicitly assumed that they are justified at finite T, as well. We present results on 3 different models of a single charge carrier (electron or hole) injected into a ferromagnetic Ising chain. Model I is a two band, two sublattice model, Model II is a two band, single sublattice model, and Model III is a single band model, the so called t -Jz -model. Due to the absence of spin-flip terms, a numerically exact solution of all 3 Models is possible, even at finite T. At zero T a mapping between all 3 models results in the same low energy physics. However, this is no longer true at finite T. Here the low energy behavior of Model III is significantly different from that of Models I and II. The reasons for this discrepancy and its implications for more realistic models (higher dimension, inclusion of spin-flip terms) are discussed. This work was supported by NSERC, QMI and the UBC 4YF (M.M.).

  2. Effect of side-chain structure of rigid polyimide dispersant on mechanical properties of single-walled carbon nanotube/cyanate ester composite.

    PubMed

    Yuan, Wei; Li, Weifeng; Mu, Yuguang; Chan-Park, Mary B

    2011-05-01

    Three kinds of polymer, polyimide without side-chain (PI), polyimide-graft-glyceryl 4-nonylphenyl ether (PI-GNE), and polyimide-graft-bisphenol A diglyceryl acrylate (PI-BDA), have been synthesized and used to disperse single-walled carbon nanotubes (SWNTs) and to improve the interfacial bonding between SWNTs and cyanate ester (CE) matrix. Visual observation, UV-vis-near-IR (UV-vis-NIR) spectra, and atomic force microscopy (AFM) images show that both PI-GNE and PI-BDA are highly effective at dispersing and debundling SWNTs in DMF, whereas PI is less effective. Interaction between SWNTs and PI, PI-GNE or PI-BDA was confirmed by computer simulation and Raman spectra. A series of CE-based composite films reinforced with different loadings of SWNTs, SWNTs/PI, SWNTs/PI-GNE and SWNTs/PI-BDA were prepared by solution casting. It was found that, because of the unique side-chain structure of PI-BDA, SWNTs/PI-BDA disperse better in CE matrix than do SWNTs/PI-GNE, SWNTs/PI, and SWNTs. As a result, SWNTs/PI-BDA/CE composites have the greatest improvement in mechanical properties of the materials tested. These results imply that the choice of side-chain on a dispersant is very important to the dispersion of SWNTs in matrix and the filler/matrix interfacial adhesion, which are two key requirements for achieving effective reinforcement.

  3. Human Immunity and the Design of Multi-Component, Single Target Vaccines

    PubMed Central

    Saul, Allan; Fay, Michael P.

    2007-01-01

    Background Inclusion of multiple immunogens to target a single organism is a strategy being pursued for many experimental vaccines, especially where it is difficult to generate a strongly protective response from a single immunogen. Although there are many human vaccines that contain multiple defined immunogens, in almost every case each component targets a different pathogen. As a consequence, there is little practical experience for deciding where the increased complexity of vaccines with multiple defined immunogens vaccines targeting single pathogens will be justifiable. Methodology/Principal Findings A mathematical model, with immunogenicity parameters derived from a database of human responses to established vaccines, was used to predict the increase in the efficacy and the proportion of the population protected resulting from addition of further immunogens. The gains depended on the relative protection and the range of responses in the population to each immunogen and also to the correlation of the responses between immunogens. In most scenarios modeled, the gain in overall efficacy obtained by adding more immunogens was comparable to gains obtained from a single immunogen through the use of better formulations or adjuvants. Multi-component single target vaccines were more effective at decreasing the proportion of poor responders than increasing the overall efficacy of the vaccine in a population. Conclusions/Significance Inclusion of limited number of antigens in a vaccine aimed at targeting a single organism will increase efficacy, but the gains are relatively modest and for a practical vaccine there are constraints that are likely to limit multi-component single target vaccines to a small number of key antigens. The model predicts that this type of vaccine will be most useful where the critical issue is the reduction in proportion of poor responders. PMID:17786221

  4. The topological basis realization and the corresponding XXX spin chain

    NASA Astrophysics Data System (ADS)

    Sun, C. F.; Xue, K.; Wang, G. C.; Zhou, C. C.; Du, G. J.

    2011-06-01

    In this paper, it is shown that the XXX model can be constructed from the Temperley-Lieb algebra (TLA) generator. We find that the topological basis states are the two eigenstaes of a closed four-qubit Heisenberg XXX spin chain. Specifically, the spin single states and the energy single state of the system all fall on the topological basis states. It is worth mentioning that for the closed 2N-qubit (N=2, 3, 4, ...) Heisenberg XXX spin chain, all the topological basis states for 2N particles are the spin single states of the system. And the number of the topological basis states is equal to the number of the spin single states of the system, which is \\frac{(2N)!}{N!(N+1)!} .

  5. Human Exposure to Short- and Medium-Chain Chlorinated Paraffins via Mothers' Milk in Chinese Urban Population.

    PubMed

    Xia, Dan; Gao, Lirong; Zheng, Minghui; Li, Jingguang; Zhang, Lei; Wu, Yongning; Tian, Qichang; Huang, Huiting; Qiao, Lin

    2017-01-03

    Chlorinated paraffins (CPs) are high production volume synthetic chemicals, found ubiquitously in various environmental matrices. However, little information is available on CP contamination in mothers' milk. In this study, 1370 urban mothers' milk samples were collected from 12 Chinese provinces in 2007 and 16 provinces in 2011. CP geographical distribution and congener group profiles were studied to assess the CP levels and figure out the source of exposure in humans. Twenty-eight pooled samples were analyzed for 48 short-chain CP (SCCP) and medium-chain CP (MCCP) congener groups using the GC × GC-ECNI-HRTOFMS method. The median concentrations of SCCPs were 681 and 733 ng/g lipid in 2007 and 2011, respectively; median concentrations of MCCPs were 60.4 and 64.3 ng/g lipid in 2007 and 2011, respectively. Variations of more than 2 orders of magnitude in CP exposure levels were found between different provinces. The levels of CPs increased from 2007 to 2011, which indicates that CP production and use may be an important exposure source. This is the first global comprehensive and large-scale investigation of CPs in mothers' milk, and it lays foundations for improving our understanding of the metabolism of CPs in humans. The high CP concentrations found in Chinese mothers' milk should raise concern about potential toxic effects in both mothers and breastfeeding infants.

  6. Determination of allergen specificity by heavy chains in grass pollen allergen-specific IgE antibodies.

    PubMed

    Gadermaier, Elisabeth; Flicker, Sabine; Lupinek, Christian; Steinberger, Peter; Valenta, Rudolf

    2013-04-01

    Affinity and clonality of allergen-specific IgE antibodies are important determinants for the magnitude of IgE-mediated allergic inflammation. We sought to analyze the contribution of heavy and light chains of human allergen-specific IgE antibodies for allergen specificity and to test whether promiscuous pairing of heavy and light chains with different allergen specificity allows binding and might affect affinity. Ten IgE Fabs specific for 3 non-cross-reactive major timothy grass pollen allergens (Phl p 1, Phl p 2, and Phl p 5) obtained by means of combinatorial cloning from patients with grass pollen allergy were used to construct stable recombinant single chain variable fragments (ScFvs) representing the original Fabs and shuffled ScFvs in which heavy chains were recombined with light chains from IgE Fabs with specificity for other allergens by using the pCANTAB 5 E expression system. Possible ancestor genes for the heavy chain and light chain variable region-encoding genes were determined by using sequence comparison with the ImMunoGeneTics database, and their chromosomal locations were determined. Recombinant ScFvs were tested for allergen specificity and epitope recognition by means of direct and sandwich ELISA, and affinity by using surface plasmon resonance experiments. The shuffling experiments demonstrate that promiscuous pairing of heavy and light chains is possible and maintains allergen specificity, which is mainly determined by the heavy chains. ScFvs consisting of different heavy and light chains exhibited different affinities and even epitope specificity for the corresponding allergen. Our results indicate that allergen specificity of allergen-specific IgE is mainly determined by the heavy chains. Different heavy and light chain pairings in allergen-specific IgE antibodies affect affinity and epitope specificity and thus might influence clinical reactivity to allergens. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by

  7. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  8. The Fate of a Normal Human Cell Traversed by a Single Charged Particle

    NASA Astrophysics Data System (ADS)

    Fournier, C.; Zahnreich, S.; Kraft, D.; Friedrich, T.; Voss, K.-O.; Durante, M.; Ritter, S.

    2012-09-01

    The long-term ``fate'' of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability.

  9. The Fate of a Normal Human Cell Traversed by a Single Charged Particle

    PubMed Central

    Fournier, C.; Zahnreich, S.; Kraft, D.; Friedrich, T.; Voss, K.-O.; Durante, M.; Ritter, S.

    2012-01-01

    The long-term “fate” of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability. PMID:22966418

  10. Rearrangement and expression of the human {Psi}C{lambda}6 gene segment results in a surface Ig receptor with a truncated light chain constant region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiernholm, N.B.J.; Verkoczy, L.K.; Berinstein, N.L.

    1995-05-01

    The constant region of the human Ig{lambda} locus consists of seven tandemly organized J-C gene segments. Although it has been established that the J-C{lambda}1, J-C{lambda}2, J-C{lambda}3, and J-C{lambda}7 gene segments are functional, and code for the four distinct Ig{lambda} isotypes found in human serum, the J-C{lambda}4, J-C{lambda}5, and J-C{lambda}6 gene segments are generally considered to be pseudogenes. Although one example of a functional J-C{lambda}6 gene segment has been documented, in the majority of cases, J-C{lambda}6 is rendered nonfunctional by virtue of a single duplication of four nucleotides, creating a premature translational arrest. We show here that rearrangements to the J-C{lambda}6more » gene segment do occur, and that such a rearrangement encodes an Ig{lambda} protein that lacks the terminal end of the constant region. We also show that this truncated protein is expressed on the surface with the IgH chain, creating an unusual surface Ig (sIg) receptor (sIg{triangle}CL). Cells that express this receptor on the surface do so at significantly reduced levels compared with clonally related variants, which express sIg receptors with conventional Ig{lambda} L chains. However, the effects of sIg cross-linking on tyrosine phosphorylation and surface expression of the CD25 and CD71 Ags are similar in cells that express conventional sIg receptors and in those that express sIg{triangle}CL receptors, suggesting that the latter could possibly function as an Ag receptor. 35 refs., 7 figs.« less

  11. Characterization of a highly polymorphic region 5′ to JH in the human immunoglobulin heavy chain

    PubMed Central

    Silva, Alcino J.; Johnson, John P.; White, Raymond L.

    1987-01-01

    A cloned DNA segment 1.25 kilobases (kb) upstream from the joining segments of the human heavy chain immunoglobulin gene revealed extensive polymorphic variation at this locus, and the polymorphic pattern was stably transmitted to the next generation. Genomic restriction analysis showed that the polymorphism was caused by insertions/deletions within an MspI/BamHI fragment. Sequencing of one allele, 848 base pairs (bp) long, revealed eleven 50-base-pair tandem repeats. A second allele, 648 bp long, was cloned from a human genomic cosmid library, sequenced, and found to contain four fewer repeats than the first allele. A survey of 186 chromosomes from unrelated individuals of primarily northern European descent revealed at least six alleles. Images PMID:2884636

  12. Size, shape, and diffusivity of a single Debye-Hückel polyelectrolyte chain in solution.

    PubMed

    Soysa, W Chamath; Dünweg, B; Prakash, J Ravi

    2015-08-14

    Brownian dynamics simulations of a coarse-grained bead-spring chain model, with Debye-Hückel electrostatic interactions between the beads, are used to determine the root-mean-square end-to-end vector, the radius of gyration, and various shape functions (defined in terms of eigenvalues of the radius of gyration tensor) of a weakly charged polyelectrolyte chain in solution, in the limit of low polymer concentration. The long-time diffusivity is calculated from the mean square displacement of the centre of mass of the chain, with hydrodynamic interactions taken into account through the incorporation of the Rotne-Prager-Yamakawa tensor. Simulation results are interpreted in the light of the Odjik, Skolnick, Fixman, Khokhlov, and Khachaturian blob scaling theory (Everaers et al., Eur. Phys. J. E 8, 3 (2002)) which predicts that all solution properties are determined by just two scaling variables-the number of electrostatic blobs X and the reduced Debye screening length, Y. We identify three broad regimes, the ideal chain regime at small values of Y, the blob-pole regime at large values of Y, and the crossover regime at intermediate values of Y, within which the mean size, shape, and diffusivity exhibit characteristic behaviours. In particular, when simulation results are recast in terms of blob scaling variables, universal behaviour independent of the choice of bead-spring chain parameters, and the number of blobs X, is observed in the ideal chain regime and in much of the crossover regime, while the existence of logarithmic corrections to scaling in the blob-pole regime leads to non-universal behaviour.

  13. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.

    PubMed

    Zhang, Lei; Zeng, Zhi; Ji, Qiang

    2011-09-01

    Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.

  14. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  15. The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA.

    PubMed Central

    Nikolova, E B; Tomana, M; Russell, M W

    1994-01-01

    In contrast to antigen-antibody complexes containing native human IgA, solid-phase-deposited IgA activates the alternative complement pathway and binds C3b. To investigate the role of carbohydrate chains in this, various human IgA preparations were treated with neuraminidase alone or together with N-glycanase or O-glycanase, or with mixed glycosidases from the oral bacterium, Streptococcus mitis. Depletion of oligosaccharides was determined by carbohydrate analysis. Removal of sialic acid and N-linked glycan chains greatly increased the C3b-fixing properties of normal serum IgA1 and IgA2. Myeloma IgA1 and IgA2 proteins and secretory IgA had higher C3b-binding activity than normal serum IgA, and this was further increased by removal of sialic acid and N-linked glycans. Fc alpha and Fc alpha-SC fragments of myeloma and secretory IgA1, respectively, but not Fab alpha fragments, obtained by cleavage with bacterial IgA1 proteases and also free secretory component, fixed C3b by the alternative pathway. Images Figure 4 PMID:7927504

  16. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    NASA Astrophysics Data System (ADS)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2016-07-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  17. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    NASA Astrophysics Data System (ADS)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2018-06-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  18. Human single-neuron responses at the threshold of conscious recognition

    PubMed Central

    Quiroga, R. Quian; Mukamel, R.; Isham, E. A.; Malach, R.; Fried, I.

    2008-01-01

    We studied the responses of single neurons in the human medial temporal lobe while subjects viewed familiar faces, animals, and landmarks. By progressively shortening the duration of stimulus presentation, coupled with backward masking, we show two striking properties of these neurons. (i) Their responses are not statistically different for the 33-ms, 66-ms, and 132-ms stimulus durations, and only for the 264-ms presentations there is a significantly higher firing. (ii) These responses follow conscious perception, as indicated by the subjects' recognition report. Remarkably, when recognized, a single snapshot as brief as 33 ms was sufficient to trigger strong single-unit responses far outlasting stimulus presentation. These results suggest that neurons in the medial temporal lobe can reflect conscious recognition by “all-or-none” responses. PMID:18299568

  19. Isolation and gene expression analysis of single potential human spermatogonial stem cells.

    PubMed

    von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N

    2016-04-01

    It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT

  20. Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing.

    PubMed

    Renthal, William

    2018-01-01

    Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.

  1. Single-friction-surface triboelectric generator with human body conduit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Bo; Cheng, Xiaoliang; Zhang, Xiaosheng

    2014-03-10

    We present a transparent single-friction-surface triboelectric generator (STEG) employing human body as the conduit, making the applications of STEG in portable electronics much more practical and leading to a significant output improvement. The STEG with micro-patterned polydimethylsiloxane surface achieved an output voltage of over 200 V with a current density of 4.7 μA/cm{sup 2}. With human body conduit, the output current increased by 39% and the amount of charge that transferred increased by 34% compared to the results with grounded electrode. A larger increment of 210% and 81% was obtained in the case of STEG with a large-size flat polyethylenemore » terephthalate surface.« less

  2. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells.

    PubMed

    Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith

    2017-05-01

    Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression

  3. Myosin conformational states determined by single fluorophore polarization

    PubMed Central

    Warshaw, David M.; Hayes, Eric; Gaffney, Donald; Lauzon, Anne-Marie; Wu, Junru; Kennedy, Guy; Trybus, Kathleen; Lowey, Susan; Berger, Christopher

    1998-01-01

    Muscle contraction is powered by the interaction of the molecular motor myosin with actin. With new techniques for single molecule manipulation and fluorescence detection, it is now possible to correlate, within the same molecule and in real time, conformational states and mechanical function of myosin. A spot-confocal microscope, capable of detecting single fluorophore polarization, was developed to measure orientational states in the smooth muscle myosin light chain domain during the process of motion generation. Fluorescently labeled turkey gizzard smooth muscle myosin was prepared by removal of endogenous regulatory light chain and re-addition of the light chain labeled at cysteine-108 with the 6-isomer of iodoacetamidotetramethylrhodamine (6-IATR). Single myosin molecule fluorescence polarization data, obtained in a motility assay, provide direct evidence that the myosin light chain domain adopts at least two orientational states during the cyclic interaction of myosin with actin, a randomly disordered state, most likely associated with myosin whereas weakly bound to actin, and an ordered state in which the light chain domain adopts a finite angular orientation whereas strongly bound after the powerstroke. PMID:9653135

  4. Thy-1+ dendritic epidermal cells express T3 antigen and the T-cell receptor gamma chain.

    PubMed Central

    Stingl, G; Koning, F; Yamada, H; Yokoyama, W M; Tschachler, E; Bluestone, J A; Steiner, G; Samelson, L E; Lew, A M; Coligan, J E

    1987-01-01

    The murine epidermis is a heterogeneous epithelium composed of keratinocytes, melanocytes, Langerhans cells, and a recently described subpopulation (2-3%) of bone-marrow-derived leukocytes with a dendritic morphology and the cell surface phenotype Thy-1+, L3T4-, Lyt-2-. Previous studies have demonstrated that cell lines derived from freshly explanted Thy-1+ dendritic epidermal cells (DEC) have abundant mRNA for rearranged T-cell receptor (TCR) gamma-chain genes. Analysis of Thy-1+ DEC in situ, freshly isolated cell suspensions of Thy-1+ DEC, and long-term Thy-1+ DEC lines demonstrated that 100% of the Thy-1+ DEC reacted with a monoclonal antibody to the epsilon chain of the murine T3 complex and that 40-60% of resident Thy-1+ DEC were also reactive with an antiserum to the TCR gamma chain. Two Thy-1+ DEC lines expressed a disulfide-linked 70-kDa molecule that could be precipitated with an anti-gamma-chain antiserum and could be coprecipitated with an antiserum to the T3 delta chain; the molecule appeared as a single 34-kDa band under reducing conditions. The phenotype of Thy-1+ DEC (T3+, L3T4-, Lyt-2-, TCR gamma chain+) thus resembles that of the recently described subpopulation of murine and human lymphocytes that have been identified in the thymus, peripheral blood, and fetal blood. Images PMID:2885839

  5. Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease

    NASA Astrophysics Data System (ADS)

    Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.

    2018-04-01

    We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.

  6. An ellipsoid-chain model for conjugated polymer solutions

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.; Chen, Show A.

    2012-02-01

    We propose an ellipsoid-chain model which may be routinely parameterized to capture large-scale properties of semiflexible, amphiphilic conjugated polymers in various solvent media. The model naturally utilizes the defect locations as pivotal centers connecting adjacent ellipsoids (each currently representing ten monomer units), and a variant umbrella-sampling scheme is employed to construct the potentials of mean force (PMF) for specific solvent media using atomistic dynamics data and simplex optimization. The performances, both efficacy and efficiency, of the model are thoroughly evaluated by comparing the simulation results on long, single-chain (i.e., 300-mer) structures with those from two existing, finer-grained models for a standard conjugated polymer (i.e., poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV) in two distinct solvents (i.e., chloroform or toluene) as well as a hybrid, binary-solvent medium (i.e., chloroform/toluene = 1:1 in number density). The coarse-grained Monte Carlo (CGMC) simulation of the ellipsoid-chain model is shown to be the most efficient—about 300 times faster than the coarse-grained molecular dynamics (CGMD) simulation of the finest CG model that employs explicit solvents—in capturing elementary single-chain structures for both single-solvent media, and is a few times faster than the coarse-grained Langevin dynamics (CGLD) simulation of another implicit-solvent polymer model with a slightly greater coarse-graining level than in the CGMD simulation. For the binary-solvent system considered, however, both of the two implicit-solvent schemes (i.e., CGMC and CGLD) fail to capture the effects of conspicuous concentration fluctuations near the polymer-solvent interface, arising from a pronounced coupling between the solvent molecules and different parts of the polymer. Essential physical implications are elaborated on the success as well as the failure of the two implicit-solvent CG schemes under varying solvent

  7. A simplified method for identification of human cardiac myosin heavy-chain isoforms.

    PubMed

    Piao, Shengfu; Yu, Fushun; Mihm, Michael J; Reiser, Peter J; McCarthy, Patrick M; Van Wagoner, David R; Bauer, John Anthony

    2003-02-01

    Cardiac myosin is a central participant in the cross-bridge cycling that mediates myocyte contraction and consists of multiple subunits that mediate both hydrolysis of ATP and mechanical production of contractile force Two isoforms of myosin heavy chain (MHC- alpha and MHC- beta ) are known to exist in mammalian cardiac tissue, and it is within this myosin subunit that ATPase activity resides. These isoforms differ by less than 0.2% in total molecular mass and amino acid sequence, but, strikingly, influence the rate and efficiency of energy utilization for generation of contractile force. Changes in the MHC- alpha /MHC- beta ratio has been classically viewed as an adaptation of a failing myocyte in both animal models and humans; however, their measurement has traditionally required specialized preparations and materials for sufficient resolution. Here we describe a greatly simplified method for routine assessments of myosin isoform composition in human cardiac tissues. The primary advantages of our approach include higher throughput and reduced supply costs with no apparent loss of statistical power, reproducibility or achieved results. Use of this more convenient method may provide enhanced access to an otherwise specialized technique and could provide additional opportunity for investigation of cardiac myocyte adaptive changes.

  8. Ultraaccurate genome sequencing and haplotyping of single human cells.

    PubMed

    Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun

    2017-11-21

    Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.

  9. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    PubMed Central

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were

  10. Selection of Single-Chain Antibodies against the VP8* Subunit of Rotavirus VP4 Outer Capsid Protein and Their Expression in Lactobacillus casei

    PubMed Central

    Monedero, Vicente; Rodríguez-Díaz, Jesús; Viana, Rosa; Buesa, Javier; Pérez-Martínez, Gaspar

    2004-01-01

    Single-chain antibodies (scFv) recognizing the VP8* fraction of rotavirus outer capsid and blocking rotavirus infection in vitro were isolated by phage display. Vectors for the extracellular expression in Lactobacillus casei of one of the scFv were constructed. L. casei was able to secrete active scFv to the growth medium, showing the potential of probiotic bacteria to be engineered to express molecules suitable for in vivo antirotavirus therapies. PMID:15528568

  11. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.

    PubMed

    Szczęsna, Agnieszka; Pruszowski, Przemysław

    2016-01-01

    Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.

  12. Chain-reaction crash in traffic flow controlled by taillights

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2015-02-01

    We study the chain-reaction crash (multiple-vehicle collision) in low-visibility condition on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle. The first crash may induce more collisions. We investigate whether or not the first collision induces the chain-reaction crash, numerically and analytically. The dynamic transitions occur from no collisions through a single collision, double collisions and triple collisions, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow controlled by taillights.

  13. A single amino acid substitution in the variable region of the light chain specifically blocks immunoglobulin secretion.

    PubMed Central

    Dul, J L; Argon, Y

    1990-01-01

    Although immunoglobulin light chains are usually secreted in association with heavy chains, free light chains can be secreted by lymphocytes. To identify the structural features of light chains that are essential for their secretion, we mutated a conserved sequence in the variable domain of a lambda I light chain. The effects of the mutations on secretion were assayed by transient expression in COS-1 cells. One mutant (AV60), which replaced Ala-60 with Val, was secreted as efficiently as wild-type lambda I by transfected COS-1 cells. This result was not surprising because secreted lambda II chains contain valine in this position. However, a second lambda I mutant (AV60FS62), which replaced Phe-62 with Ser as well as Ala-60 with Val, was not secreted. This mutant was arrested in the endoplasmic reticulum, as judged by immunofluorescence and by its association with a lumenal endoplasmic reticulum protein, immunoglobulin heavy chain binding protein (BiP). The defect in secretion was not due to gross misfolding of the lambda I chain, since cells cotransfected with AV60FS62 and an immunoglobulin heavy chain gene produced functional antigen-binding antibodies. These assembled IgM molecules were still not secreted. Hence, the replacement of Phe-62 with Ser specifically affects a determinant on the lambda I light chain that is necessary for the intracellular transport of this molecule. Images PMID:2122454

  14. Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation.

    PubMed

    Kelich, Payam; Asadinezhad, Ahmad

    2016-09-01

    Understanding the interaction between single polymer chain and graphene nanosheets at local and global length scales is essential for it underlies the mesoscopic properties of polymer nanocomposites. A computational attempt was then performed using atomistic molecular dynamics simulation to gain physical insights into behavior of a model aliphatic polyester, poly(ethylene succinate), single chain near graphene nanosheets, where the effects of the polymer chain length, graphene functionalization, and temperature on conformational properties of the polymer were studied comparatively. Graphene functionalization was carried out through extending the parameters set of an all-atom force field. The results showed a significant conformational transition of the polymer chain from three-dimensional statistical coil, in initial state, to two-dimensional fold, in final state, during adsorption on graphene. The conformational order, overall shape, end-to-end separation statistics, and mobility of the polymer chain were found to be influenced by the graphene functionalization, temperature, and polymer chain length. Furthermore, the polymer chain dynamics mode during adsorption on graphene was observed to transit from normal diffusive to slow subdiffusive mode. The findings from this computational study could shed light on the physics of the early stages of aliphatic polyester chain organization induced by graphene. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons.

    PubMed

    Grünewald, Anne; Rygiel, Karolina A; Hepplewhite, Philippa D; Morris, Christopher M; Picard, Martin; Turnbull, Doug M

    2016-03-01

    To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication-associated 7S DNA employing a triplex real-time polymerase chain reaction (PCR) assay. Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single-cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  16. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  17. Explicit Encoding of Multimodal Percepts by Single Neurons in the Human Brain

    PubMed Central

    Quiroga, Rodrigo Quian; Kraskov, Alexander; Koch, Christof; Fried, Itzhak

    2010-01-01

    Summary Different pictures of Marilyn Monroe can evoke the same percept, even if greatly modified as in Andy Warhol’s famous portraits. But how does the brain recognize highly variable pictures as the same percept? Various studies have provided insights into how visual information is processed along the “ventral pathway,” via both single-cell recordings in monkeys [1, 2] and functional imaging in humans [3, 4]. Interestingly, in humans, the same “concept” of Marilyn Monroe can be evoked with other stimulus modalities, for instance by hearing or reading her name. Brain imaging studies have identified cortical areas selective to voices [5, 6] and visual word forms [7, 8]. However, how visual, text, and sound information can elicit a unique percept is still largely unknown. By using presentations of pictures and of spoken and written names, we show that (1) single neurons in the human medial temporal lobe (MTL) respond selectively to representations of the same individual across different sensory modalities; (2) the degree of multimodal invariance increases along the hierarchical structure within the MTL; and (3) such neuronal representations can be generated within less than a day or two. These results demonstrate that single neurons can encode percepts in an explicit, selective, and invariant manner, even if evoked by different sensory modalities. PMID:19631538

  18. Antiretroviral procurement and supply chain management.

    PubMed

    Ripin, David J; Jamieson, David; Meyers, Amy; Warty, Umesh; Dain, Mary; Khamsi, Cyril

    2014-01-01

    Procurement, the country-level process of ordering antiretrovirals (ARVs), and supply chain management, the mechanism by which they are delivered to health-care facilities, are critical processes required to move ARVs from manufacturers to patients. To provide a glimpse into the ARV procurement and supply chain, the following pages provide an overview of the primary stakeholders, principal operating models, and policies and regulations involved in ARV procurement. Also presented are key challenges that need to be addressed to ensure that the supply chain is not a barrier to the goal of universal coverage. This article will cover the steps necessary to order and distribute ARVs, including different models of delivery, key stakeholders involved, strategic considerations that vary depending on context and policies affecting them. The single drug examples given illustrate the complications inherent in fragmented supply and demand-driven models of procurement and supply chain management, and suggest tools for navigating these hurdles that will ultimately result in more secure and reliable ARV provision. Understanding the dynamics of ARV supply chain is important for the global health community, both to ensure full and efficient treatment of persons living with HIV as well as to inform the supply chain decisions for other public health products.

  19. Conformational explosion: Understanding the complexity of short chain para-dialkylbenzene potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.

    2018-05-01

    The single-conformation ultraviolet and infrared spectroscopy of three short-chain para-dialkylbenzenes (para-diethylbenzene, para-dipropylbenzene, and para-dibutylbenzene) is reported for the jet-cooled, isolated molecules. The present study builds off previous work on single-chain n-alkylbenzenes, where an anharmonic local mode Hamiltonian method was developed to account for stretch-bend Fermi resonance in the alkyl CH stretch region [D. P. Tabor et al., J. Chem. Phys. 144, 224310 (2016)]. The jet-cooled molecules are interrogated using laser-induced fluorescence (LIF) excitation, fluorescence dip infrared spectroscopy, and dispersed fluorescence. The LIF spectra in the S1 ← S0 origin region show a dramatic increase in the number of resolved transitions with increasing length of the alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an "egg carton" shaped potential energy surface. A combination of electronic frequency shift and alkyl CH stretch infrared spectra is used to generate a consistent set of conformational assignments. Using these experimental techniques in conjunction with computational methods, subsets of origin transitions in the LIF excitation spectrum can be classified into different conformational families. Two conformations are resolved in para-diethylbenzene, seven in para-dipropylbenzene, and about nineteen in para-dibutylbenzene. These chains are largely independent of each other as there are no new single-chain conformations induced by the presence of a second chain. A cursory LIF excitation scan of para-dioctylbenzene shows a broad congested spectrum at frequencies consistent with interactions of alkyl chains with the phenyl π cloud.

  20. Conformational explosion: Understanding the complexity of short chain para-dialkylbenzene potential energy surfaces.

    PubMed

    Mishra, Piyush; Hewett, Daniel M; Zwier, Timothy S

    2018-05-14

    The single-conformation ultraviolet and infrared spectroscopy of three short-chain para-dialkylbenzenes (para-diethylbenzene, para-dipropylbenzene, and para-dibutylbenzene) is reported for the jet-cooled, isolated molecules. The present study builds off previous work on single-chain n-alkylbenzenes, where an anharmonic local mode Hamiltonian method was developed to account for stretch-bend Fermi resonance in the alkyl CH stretch region [D. P. Tabor et al., J. Chem. Phys. 144, 224310 (2016)]. The jet-cooled molecules are interrogated using laser-induced fluorescence (LIF) excitation, fluorescence dip infrared spectroscopy, and dispersed fluorescence. The LIF spectra in the S 1 ← S 0 origin region show a dramatic increase in the number of resolved transitions with increasing length of the alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an "egg carton" shaped potential energy surface. A combination of electronic frequency shift and alkyl CH stretch infrared spectra is used to generate a consistent set of conformational assignments. Using these experimental techniques in conjunction with computational methods, subsets of origin transitions in the LIF excitation spectrum can be classified into different conformational families. Two conformations are resolved in para-diethylbenzene, seven in para-dipropylbenzene, and about nineteen in para-dibutylbenzene. These chains are largely independent of each other as there are no new single-chain conformations induced by the presence of a second chain. A cursory LIF excitation scan of para-dioctylbenzene shows a broad congested spectrum at frequencies consistent with interactions of alkyl chains with the phenyl π cloud.

  1. Animal vocal sequences: not the Markov chains we thought they were

    PubMed Central

    Kershenbaum, Arik; Bowles, Ann E.; Freeberg, Todd M.; Jin, Dezhe Z.; Lameira, Adriano R.; Bohn, Kirsten

    2014-01-01

    Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the ‘renewal process’ (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037

  2. Animal vocal sequences: not the Markov chains we thought they were.

    PubMed

    Kershenbaum, Arik; Bowles, Ann E; Freeberg, Todd M; Jin, Dezhe Z; Lameira, Adriano R; Bohn, Kirsten

    2014-10-07

    Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Detection of human papillomavirus (HPV) DNA in human prostatic tissues by polymerase chain reaction (PCR).

    PubMed

    Sarkar, F H; Sakr, W A; Li, Y W; Sreepathi, P; Crissman, J D

    1993-01-01

    Human papillomavirus (HPV) infections are strongly linked to the pathogenesis of uterine cervical neoplasms, and have been implicated in other cancers of the female genital tract. In contrast, the association of HPV with the cancers of the male urogenital tract is less evident, except in anal and penile cancers. However, recent studies reporting the prevalence of HPV infections in human prostate cancers (60-100% HPV 16 positive vs. no infection of HPV) have raised controversies regarding the prevalence of HPV in benign and neoplastic human prostate. We investigated the prevalence of HPV infections in prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinomas in 23 surgically resected prostates. Polymerase chain reaction (PCR) was used to amplify HPV 6b/11, 16, and 18 specific DNA sequences, using type specific HPV primers selected from the transforming gene E6-E7. The areas of PIN and cancer in 6 microns H&E stained tissue sections were identified, and respective areas of PIN and cancer were isolated from the adjacent serial sections and used for DNA amplification and HPV detection (Fig. 1). Our results demonstrated the presence of HPV 16 in three carcinomas (13%), using type specific primers in PCR amplified samples. We were not able to demonstrate the presence of other HPV types (HPV 6b/11 or HPV 18) in any of the samples using specific primers. Two of these prostates showed relatively strong positive signals by dot blot analysis, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. One more sample showed weak positivity, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. Subsequently, we have confirmed these results by Southern hybridization of the samples transferred to nylon membrane after agarose gel electrophoresis and detected by HPV 16 type specific oligonucleotide probe, using chemiluminescent assay. We, therefore, conclude that HPV infections of the prostate in general are not as common

  4. Elastic interactions between single microcrack and single osteon microstructure of human femur cortical bone

    NASA Astrophysics Data System (ADS)

    Mansor, N. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, Y.; Ariffin, A. K.

    2017-09-01

    Inmultiscale Haversian system of cortical bone fracture, a homogenous bone modeling consideration is limited to only one Young modulus was significant for each cortex without having any constituents in that bone. A two dimension model of human femur cortical bone is presented by considering the anatomical positions of four cortices, e.g anterior, posterior, medial and lateral. The Haversian system is modeled under tensile loading by considering the interstitial matrix, osteon and cement line mechanical properties. The interaction between single microcrack and single osteon is evaluated using linear elastic fracture mechanics theory, and was determined using of stress intensity factor, strain energy release rate, and the critical stress intensity factor and critical strain energy release rate parameter. The results indicate that the medial cortex has the highest SIFs while the lowest was posterior cortex. The Young modulus of material was greatly influence the fracture parameters. More stiff the material, the SIF was reduced.

  5. Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors

    PubMed Central

    Kropp, Christina; Kempf, Henning; Halloin, Caroline; Robles-Diaz, Diana; Franke, Annika; Scheper, Thomas; Kinast, Katharina; Knorpp, Thomas; Joos, Thomas O.; Haverich, Axel; Martin, Ulrich; Olmer, Ruth

    2016-01-01

    The routine application of human pluripotent stem cells (hPSCs) and their derivatives in biomedicine and drug discovery will require the constant supply of high-quality cells by defined processes. Culturing hPSCs as cell-only aggregates in (three-dimensional [3D]) suspension has the potential to overcome numerous limitations of conventional surface-adherent (two-dimensional [2D]) cultivation. Utilizing single-use instrumented stirred-tank bioreactors, we showed that perfusion resulted in a more homogeneous culture environment and enabled superior cell densities of 2.85 × 106 cells per milliliter and 47% higher cell yields compared with conventional repeated batch cultures. Flow cytometry, quantitative reverse-transcriptase polymerase chain reaction, and global gene expression analysis revealed a high similarity across 3D suspension and 2D precultures, underscoring that matrix-free hPSC culture efficiently supports maintenance of pluripotency. Interestingly, physiological data and gene expression assessment indicated distinct changes of the cells’ energy metabolism, suggesting a culture-induced switch from glycolysis to oxidative phosphorylation in the absence of hPSC differentiation. Our data highlight the plasticity of hPSCs’ energy metabolism and provide clear physiological and molecular targets for process monitoring and further development. This study paves the way toward more efficient GMP-compliant cell production and underscores the enormous process development potential of hPSCs in suspension culture. Significance Human pluripotent stem cells (hPSCs) are a unique source for the, in principle, unlimited production of functional human cell types in vitro, which are of high value for therapeutic and industrial applications. This study applied single-use, clinically compliant bioreactor technology to develop advanced, matrix-free, and more efficient culture conditions for the mass production of hPSCs in scalable suspension culture. Using extensive

  6. Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors.

    PubMed

    Kropp, Christina; Kempf, Henning; Halloin, Caroline; Robles-Diaz, Diana; Franke, Annika; Scheper, Thomas; Kinast, Katharina; Knorpp, Thomas; Joos, Thomas O; Haverich, Axel; Martin, Ulrich; Zweigerdt, Robert; Olmer, Ruth

    2016-10-01

    : The routine application of human pluripotent stem cells (hPSCs) and their derivatives in biomedicine and drug discovery will require the constant supply of high-quality cells by defined processes. Culturing hPSCs as cell-only aggregates in (three-dimensional [3D]) suspension has the potential to overcome numerous limitations of conventional surface-adherent (two-dimensional [2D]) cultivation. Utilizing single-use instrumented stirred-tank bioreactors, we showed that perfusion resulted in a more homogeneous culture environment and enabled superior cell densities of 2.85 × 10 6 cells per milliliter and 47% higher cell yields compared with conventional repeated batch cultures. Flow cytometry, quantitative reverse-transcriptase polymerase chain reaction, and global gene expression analysis revealed a high similarity across 3D suspension and 2D precultures, underscoring that matrix-free hPSC culture efficiently supports maintenance of pluripotency. Interestingly, physiological data and gene expression assessment indicated distinct changes of the cells' energy metabolism, suggesting a culture-induced switch from glycolysis to oxidative phosphorylation in the absence of hPSC differentiation. Our data highlight the plasticity of hPSCs' energy metabolism and provide clear physiological and molecular targets for process monitoring and further development. This study paves the way toward more efficient GMP-compliant cell production and underscores the enormous process development potential of hPSCs in suspension culture. Human pluripotent stem cells (hPSCs) are a unique source for the, in principle, unlimited production of functional human cell types in vitro, which are of high value for therapeutic and industrial applications. This study applied single-use, clinically compliant bioreactor technology to develop advanced, matrix-free, and more efficient culture conditions for the mass production of hPSCs in scalable suspension culture. Using extensive analytical tools to

  7. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity

    PubMed Central

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A.; Motamedi-Shad, Neda; Irving, James A.; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J.; Miranda, Elena; Lomas, David A.

    2015-01-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin.—Ordóñez, A., Pérez, J., Tan, L., Dickens, J. A., Motamedi-Shad, N., Irving, J. A., Haq, I., Ekeowa, U., Marciniak, S. J., Miranda, E., Lomas, D. A. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity. PMID:25757566

  8. Beating of grafted chains induced by active Brownian particles

    NASA Astrophysics Data System (ADS)

    Yang, Qiu-song; Fan, Qing-wei; Shen, Zhuang-lin; Xia, Yi-qi; Tian, Wen-de; Chen, Kang

    2018-06-01

    We study the interplay between active Brownian particles (ABPs) and a "hairy" surface in two-dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of a dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between the period and amplitude for various chain lengths, and propelling forces agree very well with simulation data.

  9. Case Report of Focal Epithelial Hyperplasia (Heck's Disease) with Polymerase Chain Reaction Detection of Human Papillomavirus 13.

    PubMed

    Brehm, Mary A; Gordon, Katie; Firan, Miahil; Rady, Peter; Agim, Nnenna

    2016-05-01

    Focal epithelial hyperplasia (FEH), or Heck's disease, is an uncommon benign proliferation of oral mucosa caused by the human papillomavirus (HPV), particularly subtypes 13 and 32. The disease typically presents in young Native American patients and is characterized by multiple asymptomatic papules and nodules on the oral mucosa, lips, tongue, and gingiva. The factors that determine susceptibility to FEH are unknown, but the ethnic and geographic distribution of FEH suggests that genetic predisposition, particularly having the human lymphocytic antigen DR4 type, may be involved in pathogenesis. We report a case of FEH with polymerase chain reaction detection of HPV13 in a healthy 11-year-old Hispanic girl and discuss the current understanding of disease pathogenesis, susceptibility, and treatment. © 2016 Wiley Periodicals, Inc.

  10. Persistence in Food Webs. I. Lotka-Volterra Food Chains,

    DTIC Science & Technology

    1978-07-01

    0256 UNCLASSIFIED N i EE’hEZE *1 Al 1,1 IqI 0 - r ~PERSISTENCE IN FOOD WEBS.A I. LOTKA - VOLTERRA FOOD CHAINS Thomas C./Gard en9 Mt aisFEB 2 7 1980...2260n80 PERSISTENCE IN FOOD WEBS: \\’ ,.’ ’,-’ - 1. LOTKA - VOLTERRA FOOD CHAINS Thomas C. Gard and Thomas G. Hallam \\\\ . ’ \\7 INTRODUCTION bf numerous...modelled by Lotka - Volterra dynamics are determined. Here a simple food chain has a single species composing each trophic level with its dynamics

  11. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.

    PubMed

    Pomès, Régis; Roux, Benoît

    2002-05-01

    The conduction of protons in the hydrogen-bonded chain of water molecules (or "proton wire") embedded in the lumen of gramicidin A is studied with molecular dynamics free energy simulations. The process may be described as a "hop-and-turn" or Grotthuss mechanism involving the chemical exchange (hop) of hydrogen nuclei between hydrogen-bonded water molecules arranged in single file in the lumen of the pore, and the subsequent reorganization (turn) of the hydrogen-bonded network. Accordingly, the conduction cycle is modeled by two complementary steps corresponding respectively to the translocation 1) of an ionic defect (H+) and 2) of a bonding defect along the hydrogen-bonded chain of water molecules in the pore interior. The molecular mechanism and the potential of mean force are analyzed for each of these two translocation steps. It is found that the mobility of protons in gramicidin A is essentially determined by the fine structure and the dynamic fluctuations of the hydrogen-bonded network. The translocation of H+ is mediated by spontaneous (thermal) fluctuations in the relative positions of oxygen atoms in the wire. In this diffusive mechanism, a shallow free-energy well slightly favors the presence of the excess proton near the middle of the channel. In the absence of H+, the water chain adopts either one of two polarized configurations, each of which corresponds to an oriented donor-acceptor hydrogen-bond pattern along the channel axis. Interconversion between these two conformations is an activated process that occurs through the sequential and directional reorientation of water molecules of the wire. The effect of hydrogen-bonding interactions between channel and water on proton translocation is analyzed from a comparison to the results obtained previously in a study of model nonpolar channels, in which such interactions were missing. Hydrogen-bond donation from water to the backbone carbonyl oxygen atoms lining the pore interior has a dual effect: it

  12. Channel characteristics and coordination in three-echelon dual-channel supply chain

    NASA Astrophysics Data System (ADS)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  13. Clinical characteristics of children with viral single- and co-infections and a petechial rash.

    PubMed

    Schneider, Henriette; Adams, Ortwin; Weiss, Christel; Merz, Ulrich; Schroten, Horst; Tenenbaum, Tobias

    2013-05-01

    Children with petechial rash are more likely to undergo invasive diagnostics, to be treated with antibiotics for potential bacterial infection and to be hospitalized. However, viruses have also been associated with petechial rash. Nonetheless, a systematic analysis of viral infections with modern available techniques as quantitative real-time polymerase chain reaction in the context of petechial rash is lacking. The purpose of this pediatric study was to prospectively uncover viral pathogens that may promote the emergence of petechiae and to analyze the correlation with the clinical characteristics and course. We conducted a prospective study in children (0 to 18 years) presenting with petechiae and signs or symptoms of infection at the emergency department between November 2009 and March 2012. In nasopharyngeal aspirates the following viruses were analyzed by quantitative real-time polymerase chain reaction: cytomegalovirus, Epstein-Barr virus, parvovirus B19, influenza A and B, parainfluenza viruses, human respiratory syncytial virus A and B, human metapneumovirus, rhinovirus, enterovirus, adenovirus, human coronavirus OC43, 229E, NL63 and human bocavirus. A viral pathogen was identified in 67% of the analyzed 58 cases with petechial rash. Virus positive patients showed a significantly higher incidence of lower respiratory tract infections. Forty-one percent were viral coinfections, which were significantly younger than virus negative patients, had a higher leukocyte count and were hospitalized for a longer time. A petechial rash is frequently associated viral single- and coinfections and can rapidly be identified via quantitative real-time polymerase chain reaction.

  14. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films

    PubMed Central

    Sledge, Samiyyah M.; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria; Michael, Heidi; Dennis, Emily K.; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-01-01

    Purpose The inhibition of the rate of evaporation (Revap) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit Revap. Methods Revap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11–24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. Results The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 µm2. All of the surface lipids were ordered. Revap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. Revap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence Revap over an estimated average thickness range of 0.69 to >6.9 µm. Revap of human tears and buffer with and without human meibum (34.4 µm thick) was not significantly different. Revap of human tears was not significantly different from buffer. Conclusions Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit Revap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit Revap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits Revap of tears. PMID:27395776

  15. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments

    PubMed Central

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.

    2014-01-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866

  16. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus

    PubMed Central

    Fraser, Louise D.; Zhao, Yuan; Lutalo, Pamela M. K.; D'Cruz, David P.; Cason, John; Silva, Joselli S.; Dunn‐Walters, Deborah K.; Nayar, Saba; Cope, Andrew P.

    2015-01-01

    The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa‐deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. PMID:26036683

  17. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    PubMed

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  18. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    PubMed

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  19. Price competition and equilibrium analysis in multiple hybrid channel supply chain

    NASA Astrophysics Data System (ADS)

    Kuang, Guihua; Wang, Aihu; Sha, Jin

    2017-06-01

    The amazing boom of Internet and logistics industry prompts more and more enterprises to sell commodity through multiple channels. Such market conditions make the participants of multiple hybrid channel supply chain compete each other in traditional and direct channel at the same time. This paper builds a two-echelon supply chain model with a single manufacturer and a single retailer who both can choose different channel or channel combination for their own sales, then, discusses the price competition and calculates the equilibrium price under different sales channel selection combinations. Our analysis shows that no matter the manufacturer and retailer choose same or different channel price to compete, the equilibrium price does not necessarily exist the equilibrium price in the multiple hybrid channel supply chain and wholesale price change is not always able to coordinate supply chain completely. We also present the sufficient and necessary conditions for the existence of equilibrium price and coordination wholesale price.

  20. Development of anti-bovine IgA single chain variable fragment and its application in diagnosis of foot-and-mouth disease

    PubMed Central

    Sridevi, N. V.; Shukra, A. M.; Neelakantam, B.; Anilkumar, J.; Madhanmohan, M.; Rajan, S.; Dev Chandran

    2014-01-01

    Recombinant antibody fragments like single chain variable fragments (scFvs) represent an attractive yet powerful alternative to immunoglobulins and hold great potential in the development of clinical diagnostic/therapeutic reagents. Structurally, scFvs are the smallest antibody fragments capable of retaining the antigen-binding capacity of whole antibodies and are composed of an immunoglobulin (Ig) variable light (VL) and variable heavy (VH) chain joined by a flexible polypeptide linker. In the present study, we constructed a scFv against bovine IgA from a hybridoma cell line IL-A71 that secretes a monoclonal antibody against bovine IgA using recombinant DNA technology. The scFv was expressed in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC). The binding activity and specificity of the scFv was established by its non-reactivity toward other classes of immunoglobulins as determined by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Kinetic measurement of the scFv indicated that the recombinant antibody fragment had an affinity in picomolar range toward purified IgA. Furthermore, the scFv was used to develop a sensitive ELISA for the detection of foot and mouth disease virus (FMDV) carrier animals. PMID:24678404

  1. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.

    PubMed

    Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R; Weissmann, Florian; Ordureau, Alban; Wu, Kuen-Phon; Zhang, Wei; Yu, Shanshan; Mercredi, Peter Y; Harrison, Joseph S; Davidson, Iain F; Qiao, Renping; Lu, Ying; Dube, Prakash; Brunner, Michael R; Grace, Christy R R; Miller, Darcie J; Haselbach, David; Jarvis, Marc A; Yamaguchi, Masaya; Yanishevski, David; Petzold, Georg; Sidhu, Sachdev S; Kuhlman, Brian; Kirschner, Marc W; Harper, J Wade; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-06-02

    Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.

    Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.

  3. Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions

    DOE PAGES

    Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.

    2017-03-27

    Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.

  4. The interaction of flavivirus M protein with light chain Tctex-1 of human dynein plays a role in late stages of virus replication.

    PubMed

    Brault, Jean-Baptiste; Kudelko, Mateusz; Vidalain, Pierre-Olivier; Tangy, Frédéric; Desprès, Philippe; Pardigon, Nathalie

    2011-09-01

    The role of the membrane protein (prM/M) in flavivirus life cycle remains unclear. Here, we identified a cellular interactor to the 40-residue-long ectodomain of prM/M (ectoM) using a yeast two-hybrid screen against a human cDNA library and GST pull-down assays. We showed that dynein light chain Tctex-1 interacts with the ectoM of dengue 1-4, West Nile, and Japanese encephalitis flaviviruses. No interaction was found with yellow fever and tick-borne flaviviruses. This interaction is highly specific since a single amino-acid change in the ectoM abrogates the interaction with Tctex-1. To understand the role of this interaction, silencing of Tctex-1 using siRNA was performed prior to infection. A significant decrease in progeny production was observed for dengue and West Nile viruses. Silencing Tctex-1 inhibited the production of recombinant dengue subviral particles (RSPs). Thus Tctex-1 may play a role in late stages of viral replication through its interaction with the membrane protein. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    PubMed Central

    Metzgar, David; Myers, Christopher A.; Russell, Kevin L.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Vo, Scott; Swayne, David E.; Thomas, Colleen; Stenger, David A.; Lin, Baochuan; Malanoski, Anthony P.; Wang, Zheng; Blaney, Kate M.; Long, Nina C.; Schnur, Joel M.; Saad, Magdi D.; Borsuk, Lisa A.; Lichanska, Agnieszka M.; Lorence, Matthew C.; Weslowski, Brian; Schafer, Klaus O.; Tibbetts, Clark

    2010-01-01

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence

  6. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    PubMed

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-02-03

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence

  7. Human papilloma virus prevalence in laryngeal squamous cell carcinoma.

    PubMed

    Gungor, A; Cincik, H; Baloglu, H; Cekin, E; Dogru, S; Dursun, E

    2007-08-01

    To determine the prevalence and type of human papilloma virus deoxyribonucleic acid (DNA) in cases of laryngeal squamous cell carcinoma. We analysed the prevalence of human papilloma virus infection in archived paraffin block specimens taken from 99 cases of laryngeal squamous cell carcinoma between 1990 and 2005, using polymerase chain reaction techniques. Biopsy specimens from five proven verrucous skin lesions were used as positive controls, and peripheral blood samples from five healthy volunteers were used as negative controls. Four test samples were found to have inadequate deoxyribonucleic acid purity and were therefore excluded from the study. Human papilloma virus deoxyribonucleic acid was detected in seven of 95 cases of laryngeal squamous cell carcinoma (7.36 per cent). Human papilloma virus genotyping revealed double human papilloma virus infection in three cases and single human papilloma virus infection in the remaining four cases. The human papilloma virus genotypes detected were 6, 11 and 16 (the latter detected in only one case). In our series, a very low human papilloma virus prevalence was found among laryngeal squamous cell carcinoma cases. The human papilloma virus genotypes detected were mostly 6 and/or 11, and 16 in only one case. To the best of our knowledge, this is the first report of human papilloma virus prevalence in laryngeal squamous cell carcinoma, based on polymerase chain reaction genotyping in a Turkish population.

  8. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each

  9. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.

    PubMed

    Nikodinovic, Jasmina; Kenny, Shane T; Babu, Ramesh P; Woods, Trevor; Blau, Werner J; O'Connor, Kevin E

    2008-09-01

    Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.

  10. Teaching Verbal Chains Using Flow Diagrams and Texts

    ERIC Educational Resources Information Center

    Holliday, William G.

    1976-01-01

    A discussion of the recent diagram and attention theory and research surprisingly suggests that a single flow diagram with instructive questions constitutes an effective learning medium in terms of verbal chaining. (Author)

  11. Entanglement entropy and fidelity susceptibility in the one-dimensional spin-1 XXZ chains with alternating single-site anisotropy.

    PubMed

    Ren, Jie; Liu, Guang-Hua; You, Wen-Long

    2015-03-18

    We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other.

  12. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2

    PubMed Central

    Wickliffe, Katherine E.; Lorenz, Sonja; Wemmer, David E.; Kuriyan, John; Rape, Michael

    2011-01-01

    Ubiquitin chains of different topologies trigger distinct functional consequences, including protein degradation and reorganization of complexes. The assembly of most ubiquitin chains is promoted by E2s, yet how these enzymes achieve linkage specificity is poorly understood. We have discovered that the K11-specific Ube2S orients the donor ubiquitin through an essential non-covalent interaction that occurs in addition to the thioester bond at the E2 active site. The E2-donor ubiquitin complex transiently recognizes the acceptor ubiquitin, primarily through electrostatic interactions. The recognition of the acceptor ubiquitin surface around Lys11, but not around other lysines, generates a catalytically competent active site, which is composed of residues of both Ube2S and ubiquitin. Our studies suggest that monomeric E2s promote linkage-specific ubiquitin chain formation through substrate-assisted catalysis. PMID:21376237

  13. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain

    PubMed Central

    Lintner, Nathanael G.; McClure, Kim F.; Petersen, Donna; Londregan, Allyn T.; Piotrowski, David W.; Wei, Liuqing; Xiao, Jun; Bolt, Michael; Loria, Paula M.; Maguire, Bruce; Geoghegan, Kieran F.; Huang, Austin; Rolph, Tim; Liras, Spiros; Doudna, Jennifer A.; Dullea, Robert G.

    2017-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. PMID:28323820

  14. trans Octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: results of a large birth cohort study.

    PubMed

    Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás

    2007-05-01

    Several observational studies indicate that trans isomeric fatty acids may interfere with the metabolism of essential fatty acids in the human organism. The objective was to investigate the relation between trans fatty acids and long-chain polyunsaturates in mature human milk. Human milk samples (n=769) were obtained at the 6th week of lactation from mothers participating in a birth cohort study in Germany. The fatty acid composition of the milk samples was measured by high-resolution capillary gas-liquid chromatography. trans Octadecenoic and trans octadecadienoic acids were inversely correlated with linoleic acid (r=-0.32 and -0.33, P<0.0001 for both), alpha-linolenic acid (r=-0.35 and -0.27, P<0.0001), arachidonic acid (r=-0.60 and -0.47, P<0.0001), and docosahexaenoic acid (r=-0.51 and -0.33, P<0.0001). In contrast, no inverse correlations were observed between trans hexadecenoic acid and polyunsaturated fatty acids. The data obtained in the present study suggest that the availability of 18-carbon trans isomeric fatty acids may be inversely related to the availability of long-chain polyunsaturated fatty acids in mature human milk.

  15. Postprandial lipid responses of butter blend containing fish oil in a single-meal study in humans.

    PubMed

    Overgaard, Julie; Porsgaard, Trine; Guo, Zheng; Lauritzen, Lotte; Mu, Huiling

    2008-10-01

    The postprandial effects of a butter product containing fish oil were investigated in a single-meal, randomized crossover study with a commercial butter product as the control. Twelve healthy males consumed two test meals with (13)C-labelled cholesterol (45 mg) and either an interesterified butter blend with fish oil (352 mg n-3 long-chain PUFA (LCPUFA)) or the commercial butter blend. Blood samples were collected after the meals and in the fasting condition on the test day and the following morning, and were analysed for cholesterol absorption, plasma lipid profile and fatty acid composition. No significant difference in the postprandial plasma fatty acid composition was observed between the groups, neither difference in cholesterol absorption, plasma cholesterol or the cholesterol contents of plasma lipoproteins. The incorporation of fish oil in the butter resulted in a significant lower concentration of triacylglycerols in the plasma 2 h after the meal in comparison with the commercial butter blend (p = 0.02); there was, however, no significant difference 24 h after the meal. In conclusion, fish oil-enriched butter blend provides a source to increase the intake of n-3 LCPUFA in the population, but has no acute effect on cholesterol absorption and plasma cholesterol concentration in human.

  16. Coordinating a Supply Chain with Price and Advertisement Dependent Stochastic Demand

    PubMed Central

    Li, Liying; Wang, Yong; Yan, Xiaoming

    2013-01-01

    This paper investigates pricing and ordering as well as advertising coordination issues in a single-manufacturer single-retailer supply chain, where the manufacturer sells a newsvendor-type product through the retailer who faces a stochastic demand depending on both retail price and advertising expenditure. Under the assumption that the market demand has a multiplicative functional form, the Stackelberg and cooperative game models are developed, and the closed form solution to each model is provided as well. Comparisons and insights are presented. We show that a properly designed revenue-cost-sharing contract can achieve supply chain coordination and lead to a Pareto improving win-win situation for channel members. We also discuss the allocation of the extra joint profit according to individual supply chain members' risk preferences and negotiating powers. PMID:24453832

  17. Coordinating a supply chain with price and advertisement dependent stochastic demand.

    PubMed

    Li, Liying; Wang, Yong; Yan, Xiaoming

    2013-01-01

    This paper investigates pricing and ordering as well as advertising coordination issues in a single-manufacturer single-retailer supply chain, where the manufacturer sells a newsvendor-type product through the retailer who faces a stochastic demand depending on both retail price and advertising expenditure. Under the assumption that the market demand has a multiplicative functional form, the Stackelberg and cooperative game models are developed, and the closed form solution to each model is provided as well. Comparisons and insights are presented. We show that a properly designed revenue-cost-sharing contract can achieve supply chain coordination and lead to a Pareto improving win-win situation for channel members. We also discuss the allocation of the extra joint profit according to individual supply chain members' risk preferences and negotiating powers.

  18. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin.

    PubMed

    Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Forouzandeh, Mehdi; Allameh, Abdolamir; Sarrami, Ramin; Nasiry, Habib; Sadeghizadeh, Majid

    2005-01-01

    Camelidae are known to produce immunoglobulins (Igs) devoid of light chains and constant heavy-chain domains (CH1). Antigen-specific fragments of these heavy-chain IgGs (VHH) are of great interest in biotechnology applications. This paper describes the first example of successfully raised heavy-chain antibodies in Camelus dromedarius (single-humped camel) and Camelus bactrianus (two-humped camel) against a MUC1 related peptide that is found to be an important epitope expressed in cancerous tissue. Camels were immunized against a synthetic peptide corresponding to the tandem repeat region of MUC1 mucin and cancerous tissue preparation obtained from patients suffering from breast carcinoma. Three IgG subclasses with different binding properties to protein A and G were purified by affinity chromatography. Both conventional and heavy-chain IgG antibodies were produced in response to MUC1-related peptide. The elicited antibodies could react specifically with the tandem repeat region of MUC1 mucin in an enzyme linked immunosorbant assay (ELISA). Anti-peptide antibodies were purified after passing antiserum over two affinity chromatography columns. Using ELISA, immunocytochemistry and Western blotting, the interaction of purified antibodies with different antigens was evaluated. The antibodies were observed to be selectively bound to antigens namely: MUC1 peptide (tandem repeat region), human milk fat globule membrane (HMFG), deglycosylated human milk fat globule membrane (D-HMFG), homogenized cancerous breast tissue and a native MUC1 purified from ascitic fluid. Ka values of specific polyclonal antipeptide antibodies were estimated in C. dromedarius and C. bactrianus, as 7 x 10(10) M(-1) and 1.4 x 10(10) M(-1) respectively.

  19. Chain-reaction crash on a highway in high visibility

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2016-05-01

    We study the chain-reaction crash (multiple-vehicle collision) in high-visibility condition on a highway. In the traffic situation, drivers control their vehicles by both gear-changing and braking. Drivers change the gears according to the headway and brake according to taillights of the forward vehicle. We investigate whether or not the first collision induces the chain-reaction crash numerically. It is shown that dynamic transitions occur from no collisions, through a single collision, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We compare the multiple-vehicle collisions in high-visibility with that in low-visibility. We derive the transition points and the region maps for the chain-reaction crash in high visibility.

  20. Three-Dimensional Conformation of Folded Polymers in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-01

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.

  1. A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.

    PubMed

    Sun, Huihui; Li, Fanfan; Liu, Jie; Yang, Fayu; Zeng, Zhenhai; Lv, Xiujuan; Tu, Mengjun; Liu, Yeqing; Ge, Xianglian; Liu, Changbao; Zhao, Junzhao; Zhang, Zongduan; Qu, Jia; Song, Zongming; Gu, Feng

    2018-06-15

    Cpf1 has been harnessed as a tool for genome manipulation in various species because of its simplicity and high efficiency. Our recent study demonstrated that FnCpf1 could be utilized for human genome editing with notable advantages for target sequence selection due to the flexibility of the protospacer adjacent motif (PAM) sequence. Multiplex genome editing provides a powerful tool for targeting members of multigene families, dissecting gene networks, modeling multigenic disorders in vivo, and applying gene therapy. However, there are no reports at present that show FnCpf1-mediated multiplex genome editing via a single customized CRISPR RNA (crRNA) array. In the present study, we utilize a single customized crRNA array to simultaneously target multiple genes in human cells. In addition, we also demonstrate that a single customized crRNA array to target multiple sites in one gene could be achieved. Collectively, FnCpf1, a powerful genome-editing tool for multiple genomic targets, can be harnessed for effective manipulation of the human genome. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  2. Identification of the five human Plasmodium species including P. knowlesi by real-time polymerase chain reaction.

    PubMed

    Oddoux, O; Debourgogne, A; Kantele, A; Kocken, C H; Jokiranta, T S; Vedy, S; Puyhardy, J M; Machouart, M

    2011-04-01

    Recently, Plasmodium knowlesi has been recognised as the fifth Plasmodium species causing malaria in humans. Hundreds of human cases infected with this originally simian Plasmodium species have been described in Asian countries and increasing numbers are reported in Europe from travellers. The growing impact of tourism and economic development in South and Southeast Asia are expected to subsequently lead to a further increase in cases both among locals and among travellers. P. knowlesi is easily misidentified in microscopy as P. malariae or P. falciparum. We developed new primers for the rapid and specific detection of this species by low-cost real-time polymerase chain reaction (PCR) and added this method to an already existing panel of primers used for the molecular identification of the other four species in one reaction. Reference laboratories should now be able to identify undisputably and rapidly P. knowlesi, as it is a potentially fatal pathogen.

  3. Assembly and diploid architecture of an individual human genome via single-molecule technologies

    PubMed Central

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-01-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality. PMID:26121404

  4. Assembly and diploid architecture of an individual human genome via single-molecule technologies.

    PubMed

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-08-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.

  5. EARLINET Single Calculus Chain - technical - Part 2: Calculation of optical products

    NASA Astrophysics Data System (ADS)

    Mattis, Ina; D'Amico, Giuseppe; Baars, Holger; Amodeo, Aldo; Madonna, Fabio; Iarlori, Marco

    2016-07-01

    In this paper we present the automated software tool ELDA (EARLINET Lidar Data Analyzer) for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the calculus modules of the EARLINET Single Calculus Chain (SCC) which allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way. ELDA delivers profiles of particle extinction coefficients from Raman signals as well as profiles of particle backscatter coefficients from combinations of Raman and elastic signals or from elastic signals only. Those analyses start from pre-processed signals which have already been corrected for background, range dependency and hardware specific effects. An expert group reviewed all algorithms and solutions for critical calculus subsystems which are used within EARLINET with respect to their applicability for automated retrievals. Those methods have been implemented in ELDA. Since the software was designed in a modular way, it is possible to add new or alternative methods in future. Most of the implemented algorithms are well known and well documented, but some methods have especially been developed for ELDA, e.g., automated vertical smoothing and temporal averaging or the handling of effective vertical resolution in the case of lidar ratio retrievals, or the merging of near-range and far-range products. The accuracy of the retrieved profiles was tested following the procedure of the EARLINET-ASOS algorithm inter-comparison exercise which is based on the analysis of synthetic signals. Mean deviations, mean relative deviations, and normalized root-mean-square deviations were calculated for all possible products and three height layers. In all cases, the deviations were clearly below the maximum allowed values according to the EARLINET quality requirements.

  6. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films.

    PubMed

    Sledge, Samiyyah M; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria L; Michael, Heidi; Dennis, Emily K; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-10-01

    The inhibition of the rate of evaporation (R evap ) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit R evap . R evap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11-24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 μm 2 . All of the surface lipids were ordered. R evap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. R evap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence R evap over an estimated average thickness range of 0.69 to >6.9 μm. R evap of human tears and buffer with and without human meibum (34.4 μm thick) was not significantly different. R evap of human tears was not significantly different from buffer. Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit R evap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit R evap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits R evap of tears. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.

    PubMed

    Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu

    2014-01-01

    Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.

  8. The catalytic activity of a recombinant single chain variable fragment nucleic acid-hydrolysing antibody varies with fusion tag and expression host.

    PubMed

    Lee, Joungmin; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Park, Hyunjoon; Byun, Sung June; Kwon, Myung-Hee

    2017-11-01

    The antigen-binding properties of single chain Fv antibodies (scFvs) can vary depending on the position and type of fusion tag used, as well as the host cells used for expression. The issue is even more complicated with a catalytic scFv antibody that binds and hydrolyses a specific antigen. Herein, we investigated the antigen-binding and -hydrolysing activities of the catalytic anti-nucleic acid antibody 3D8 scFv expressed in Escherichia coli or HEK293f cells with or without additional amino acid residues at the N- and C-termini. DNA-binding activity was retained in all recombinant forms. However, the DNA-hydrolysing activity varied drastically between forms. The DNA-hydrolysing activity of E. coli-derived 3D8 scFvs was not affected by the presence of a C-terminal human influenza haemagglutinin (HA) or His tag. By contrast, the activity of HEK293f-derived 3D8 scFvs was completely lost when additional residues were included at the N-terminus and/or when a His tag was incorporated at the C-terminus, whereas a HA tag at the C-terminus did not diminish activity. Thus, we demonstrate that the antigen-binding and catalytic activities of a catalytic antibody can be separately affected by the presence of additional residues at the N- and C-termini, and by the host cell type. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation

    PubMed Central

    Yango, Pamela; Altman, Eran; Smith, James F.; Klatsky, Peter C.; Tran, Nam D.

    2015-01-01

    Objective To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. Design In vitro human testicular tissues. Setting Academic research unit. Patients Adult testicular tissues (n = 4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n = 3). Intervention(s) Testicular tissue vs. single cell suspension cryopreservation. Main Outcome Measures Cell viability, total cell recovery per milligram of tissue, as well as, viable and SSEA-4+ cell recovery. Results Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. Conclusions Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient age, type of samples cryopreserved, and end points of therapeutic applications. PMID:25241367

  10. Conformational stability and thermodynamic characterization of the lipoic acid bearing domain of human mitochondrial branched chain α-ketoacid dehydrogenase

    PubMed Central

    Naik, Mandar T.; Huang, Tai-Huang

    2004-01-01

    The lipoic acid bearing domain (hbLBD) of human mitochondrial branched chain α-ketoacid dehydrogenase (BCKD) plays important role of substrate channeling in oxidative decarboxylation of the branched chain α-ketoacids. Recently hbLBD has been found to follow two-step folding mechanism without detectable presence of stable or kinetic intermediates. The present study describes the conformational stability underlying the folding of this small β-barrel domain. Thermal denaturation in presence of urea and isothermal urea denaturation titrations are used to evaluate various thermodynamic parameters defining the equilibrium unfolding. The linear extrapolation model successfully describes the two-step; native state ↔denatured state unfolding transition of hbLBD. The average temperature of maximum stability of hbLBD is estimated as 295.6 ± 0.9 K. Cold denaturation of hbLBD is also predicted and discussed. PMID:15322287

  11. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor.

    PubMed Central

    Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G

    1991-01-01

    Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547

  12. Role of the constant region domain in the structural diversity of human antibody light chains.

    PubMed

    Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo

    2017-04-01

    Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.

  13. Single-polymer dynamics under constraints: scaling theory and computer experiment.

    PubMed

    Milchev, Andrey

    2011-03-16

    The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces--a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations.

  14. Half the entanglement in critical systems is distillable from a single specimen

    NASA Astrophysics Data System (ADS)

    Orús, R.; Latorre, J. I.; Eisert, J.; Cramer, M.

    2006-06-01

    We establish a quantitative relationship between the entanglement content of a single quantum chain at a critical point and the corresponding entropy of entanglement. We find that, surprisingly, the leading critical scaling of the single-copy entanglement with respect to any bipartitioning is exactly one-half of the entropy of entanglement, in a general setting of conformal field theory and quasifree systems. Conformal symmetry imposes that the single-copy entanglement scales as E1(ρL)=(c/6)lnL-(c/6)(π2/lnL)+O(1/L) , where L is the number of constituents in a block of an infinite chain and c denotes the central charge. This shows that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to all isotropic quasifree fermionic models. An example of the XY spin chain shows that away from criticality the above relation is maintained only near the quantum phase transition.

  15. The Impact of Basic Skills on Human Resource Management in the Retailing Industry.

    ERIC Educational Resources Information Center

    McCord, Alice Bird

    A recent survey of retailing firms, ranging from single stores to nationwide chains, showed that the most significant human resources challenge facing these organizations is how to attract and retain qualified employees. Faced with the many changes in the retailing industry and in the composition of the work force that have taken place over the…

  16. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus.

    PubMed

    Fraser, Louise D; Zhao, Yuan; Lutalo, Pamela M K; D'Cruz, David P; Cason, John; Silva, Joselli S; Dunn-Walters, Deborah K; Nayar, Saba; Cope, Andrew P; Spencer, Jo

    2015-08-01

    The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa-deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    PubMed

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  18. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose

    PubMed Central

    DiScipio, Richard G.; Liddington, Robert C.; Schraufstatter, Ingrid U.

    2016-01-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  19. Harnessing the Risk-Related Data Supply Chain: An Information Architecture Approach to Enriching Human System Research and Operations Knowledge

    NASA Technical Reports Server (NTRS)

    Buquo, Lynn; Johnson-Throop, Kathy

    2010-01-01

    NASA's Human Research Program (HRP) and Space Life Sciences Directorate (SLSD), not unlike many NASA organizations today, struggle with the inherent inefficiencies caused by dependencies on heterogeneous data systems and silos of data and information spread across decentralized discipline domains. The capture of operational and research-based data/information (both in-flight and ground-based) in disparate IT systems impedes the extent to which that data/information can be efficiently and securely shared, analyzed, and enriched into knowledge that directly and more rapidly supports HRP's research-focused human system risk mitigation efforts and SLSD s operationally oriented risk management efforts. As a result, an integrated effort is underway to more fully understand and document how specific sets of risk-related data/information are generated and used and in what IT systems that data/information currently resides. By mapping the risk-related data flow from raw data to useable information and knowledge (think of it as the data supply chain), HRP and SLSD are building an information architecture plan to leverage their existing, shared IT infrastructure. In addition, it is important to create a centralized structured tool to represent risks including attributes such as likelihood, consequence, contributing factors, and the evidence supporting the information in all these fields. Representing the risks in this way enables reasoning about the risks, e.g. revisiting a risk assessment when a mitigation strategy is unavailable, updating a risk assessment when new information becomes available, etc. Such a system also provides a concise way to communicate the risks both within the organization as well as with collaborators. Understanding and, hence, harnessing the human system risk-related data supply chain enhances both organizations' abilities to securely collect, integrate, and share data assets that improve human system research and operations.

  20. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETÁ) is a potent immunotoxin against a Hodgkin-derived cell line

    PubMed Central

    Klimka, A; Barth, S; Matthey, B; Roovers, R C; Lemke, H; Hansen, H; Arends, J-W; Diehl, V; Hoogenboom, H R; Engert, A

    1999-01-01

    The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin A (ETÁ). The resulting immunotoxin Ki-4(scFv)-ETÁ specifically binds to CD30+ L540Cy cells and inhibits the protein synthesis by 50% at a concentration (IC50) of 43 pM. This recombinant immunotoxin is a promising candidate for further clinical evaluation in patients with Hodgkin's lymphoma or other CD30+ malignancies. © 1999 Cancer Research Campaign PMID:10376974

  1. Intact Protein Analysis at 21 Tesla and X-Ray Crystallography Define Structural Differences in Single Amino Acid Variants of Human Mitochondrial Branched-Chain Amino Acid Aminotransferase 2 (BCAT2)

    NASA Astrophysics Data System (ADS)

    Anderson, Lissa C.; Håkansson, Maria; Walse, Björn; Nilsson, Carol L.

    2017-09-01

    Structural technologies are an essential component in the design of precision therapeutics. Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right patient at the right time. In the field of oncology, protein structural variants are often associated with oncogenic potential. In a previous proteogenomic screen of patient-derived glioblastoma (GBM) tumor materials, we identified a sequence variant of human mitochondrial branched-chain amino acid aminotransferase 2 as a putative factor of resistance of GBM to standard-of-care-treatments. The enzyme generates glutamate, which is neurotoxic. To elucidate structural coordinates that may confer altered substrate binding or activity of the variant BCAT2 T186R, a 45 kDa protein, we applied combined ETD and CID top-down mass spectrometry in a LC-FT-ICR MS at 21 T, and X-Ray crystallography in the study of both the variant and non-variant intact proteins. The combined ETD/CID fragmentation pattern allowed for not only extensive sequence coverage but also confident localization of the amino acid variant to its position in the sequence. The crystallographic experiments confirmed the hypothesis generated by in silico structural homology modeling, that the Lys59 side-chain of BCAT2 may repulse the Arg186 in the variant protein (PDB code: 5MPR), leading to destabilization of the protein dimer and altered enzyme kinetics. Taken together, the MS and novel 3D structural data give us reason to further pursue BCAT2 T186R as a precision drug target in GBM. [Figure not available: see fulltext.

  2. Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-specific Residue Interactions in Human Protein Disulfide Isomerase.

    PubMed

    Karamzadeh, Razieh; Karimi-Jafari, Mohammad Hossein; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Salekdeh, Ghasem Hosseini; Moosavi-Movahedi, Ali Akbar

    2017-06-16

    The human protein disulfide isomerase (hPDI), is an essential four-domain multifunctional enzyme. As a result of disulfide shuffling in its terminal domains, hPDI exists in two oxidation states with different conformational preferences which are important for substrate binding and functional activities. Here, we address the redox-dependent conformational dynamics of hPDI through molecular dynamics (MD) simulations. Collective domain motions are identified by the principal component analysis of MD trajectories and redox-dependent opening-closing structure variations are highlighted on projected free energy landscapes. Then, important structural features that exhibit considerable differences in dynamics of redox states are extracted by statistical machine learning methods. Mapping the structural variations to time series of residue interaction networks also provides a holistic representation of the dynamical redox differences. With emphasizing on persistent long-lasting interactions, an approach is proposed that compiled these time series networks to a single dynamic residue interaction network (DRIN). Differential comparison of DRIN in oxidized and reduced states reveals chains of residue interactions that represent potential allosteric paths between catalytic and ligand binding sites of hPDI.

  3. Two-echelon logistics service supply chain decision game considering quality supervision

    NASA Astrophysics Data System (ADS)

    Shi, Jiaying

    2017-10-01

    Due to the increasing importance of supply chain logistics service, we established the Stackelberg game model between single integrator and single subcontractors under decentralized and centralized circumstances, and found that logistics services integrators as a leader prefer centralized decision-making but logistics service subcontractors tend to the decentralized decision-making. Then, we further analyzed why subcontractor chose to deceive and rebuilt a principal-agent game model to monitor the logistics services quality of them. Mixed Strategy Nash equilibrium and related parameters were discussed. The results show that strengthening the supervision and coordination can improve the quality level of logistics service supply chain.

  4. Mesoscopic modeling for nucleic acid chain dynamics

    PubMed Central

    Sales-Pardo, M.; Guimerà, R.; Moreira, A. A.; Widom, J.; Amaral, L. A. N.

    2007-01-01

    To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands. PMID:16089566

  5. Quantifying the atomic-level mechanics of single long physisorbed molecular chains.

    PubMed

    Kawai, Shigeki; Koch, Matthias; Gnecco, Enrico; Sadeghi, Ali; Pawlak, Rémy; Glatzel, Thilo; Schwarz, Jutta; Goedecker, Stefan; Hecht, Stefan; Baratoff, Alexis; Grill, Leonhard; Meyer, Ernst

    2014-03-18

    Individual in situ polymerized fluorene chains 10-100 nm long linked by C-C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel-Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule-surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.

  6. Genome-wide maps of nuclear lamina interactions in single human cells.

    PubMed

    Kind, Jop; Pagie, Ludo; de Vries, Sandra S; Nahidiazar, Leila; Dey, Siddharth S; Bienko, Magda; Zhan, Ye; Lajoie, Bryan; de Graaf, Carolyn A; Amendola, Mario; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A; Jalink, Kees; Dekker, Job; van Oudenaarden, Alexander; van Steensel, Bas

    2015-09-24

    Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-05

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.

    PubMed

    Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei

    2017-11-24

    Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normalmore » protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.« less

  10. Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear.

    PubMed

    Volandri, G; Di Puccio, F; Forte, P; Manetti, S

    2012-11-01

    The ossicular chain of the human middle ear has a key role in sound conduction since it transfers vibrations from the tympanic membrane to the cochlea, connecting the outer and the inner part of the hearing organ. This study reports firstly a description of the main anatomical features of the middle ear to introduce a detailed survey of its biomechanics, focused on model development, with a collection of geometric, inertial and mechanical/material parameters. The joint issues are particularly discussed from the perspective of developing a model of the middle ear both explanatory and predictive. Such a survey underlines the remarkable dispersion of data, due also to the lack of a standardization of the experimental techniques and conditions. Subsequently, a 3D multi-body model of the ossicular chain and other structures of the middle ear is described. Such an approach is justified as the ossicles were proven to behave as rigid bodies in the human hearing range and was preferred to the more widely used finite element one as it simplifies the model development and improves joint modeling. The displacement of the umbo (a reference point of the tympanic membrane) in the 0.3-6kHz frequency range was defined as input of the model, while the stapes footplate displacement as output. A parameter identification procedure was used to find parameter values for reproducing experimental and numerical reference curves taken from the literature. This simple model might represent a valid alternative to more complex models and might provide a useful tool to simulate pathological/post-surgical/post-traumatic conditions and evaluate ossicular replacement prostheses. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Binding of Soluble Natural Ligands to a Soluble Human T-Cell Receptor Fragment Produced in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Hilyard, Katherine L.; Reyburn, Hugh; Chung, Shan; Bell, John I.; Strominger, Jack L.

    1994-09-01

    An Escherichia coli expression system has been developed to produce milligram quantities of the variable domains of a human T-cell receptor from a cytotoxic T cell that recognizes the HLA-A2-influenza matrix peptide complex as a single polypeptide chain. The recombinant protein was purified by metal-chelate chromatography and then refolded in a redox buffer system. The refolded protein was shown to directly bind both Staphylococcus aureus enterotoxin B and the major histocompatibility complex protein-peptide complex using a BIAcore biosensor. Thus this preparation of a single-chain, variable-domain, T-cell receptor fragment can bind both of its natural ligands and some of it is therefore a functional fragment of the receptor molecule.

  12. Analysis of production-inventory decisions in a decentralized supply chain with price-dependent demand

    NASA Astrophysics Data System (ADS)

    Kurdhi, N. A.; Irsanianto, S. T.; Sutanto

    2017-01-01

    In this paper, we consider a production-inventory supply chain system with single-manufacturer and single-retailer. There are many types of contract that guarantee the supply chain. However, the administrative costs of the contract are usually neglected in real situation. The additional gain from integration may not cover the extra administrative costs may not addressed to supply chain. Therefore, a Stackelberg game and RFM policy are examined in order to investigate its performance on supply chain. The RFM policy is applied because its administrative costs are lower than othe policies. Although RFM policy is not capable of coordinating the channel, it leads to considerable improvements over the channel. The purpose of this research is to present a model of integrated policy, in which the goal is to maximize the whole system profit, and to evaluate decentralized-Stackelberg and RFM policies, in which individual firms in the supply chain have their own objectives and decisions to optimize.

  13. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    NASA Astrophysics Data System (ADS)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  14. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions.

    PubMed

    Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan

    2016-03-03

    By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.

  15. Metal-Folded Single-Chain Nanoparticle: Nanoclusters and Self-Assembled Reduction-Responsive Sub-5-nm Discrete Subdomains.

    PubMed

    Cao, Hui; Cui, Zhigang; Gao, Pan; Ding, Yi; Zhu, Xuechao; Lu, Xinhua; Cai, Yuanli

    2017-09-01

    Easy access to discrete nanoclusters in metal-folded single-chain nanoparticles (metal-SCNPs) and independent ultrafine sudomains in the assemblies via coordination-driven self-assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1 H NMR, dynamic light scattering, and NMR diffusion-ordered spectroscopy results demonstrate self-assembly into metal-SCNPs (>70% imidazole-units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self-assembly of metal-SCNPs (pH 4.6-5.0) and shrinkage (pH 5.0-5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6-7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub-5-nm subdomains in metal-SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media-tunable discrete ultrafine interiors in metal-SCNPs and assemblies have hence been achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.

    PubMed

    Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H

    2017-01-17

    Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Recombinant dissection of myosin heavy chain of Toxocara canis shows strong clustering of antigenic regions.

    PubMed

    Obwaller, A; Duchêne, M; Bruhn, H; Steipe, B; Tripp, C; Kraft, D; Wiedermann, G; Auer, H; Aspöck, H

    2001-05-01

    Myosins from nematode parasites elicit strong humoral and cellular immune responses and have been investigated as vaccine candidates. In this study we cloned and sequenced a cDNA coding for myosin heavy chain from Toxocara canis, a nematode parasite of canids which may also infect humans and cause various unspecific symptoms. To determine the major antigenic regions the myosin heavy chain was systematically dissected into ten overlapping recombinant fusion polypeptides which were purified by metal chelate chromatography. Single fragments were then tested for their IgG reactivity in sera from toxocarosis patients and healthy probands. Two regions, one region at the mid to carboxy-terminal end of the head domain and one region in the rod domain, were identified as major antigens, which in combination were positive with 86% of the sera. The other domains were less reactive. This shows that the patients' IgG reactivity was not directed evenly against all parts of the molecule, but was rather clustered in few regions.

  18. Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria.

    PubMed

    Nguyen, Thuy-Khanh; Lam, Shu Jie; Ho, Kitty K K; Kumar, Naresh; Qiao, Greg G; Egan, Suhelen; Boyer, Cyrille; Wong, Edgar H H

    2017-03-10

    Infections caused by multidrug-resistant bacteria are on the rise and, therefore, new antimicrobial agents are required to prevent the onset of a postantibiotic era. In this study, we develop new antimicrobial compounds in the form of single-chain polymeric nanoparticles (SCPNs) that exhibit excellent antimicrobial activity against Gram-negative bacteria (e.g., Pseudomonas aeruginosa) at micromolar concentrations (e.g., 1.4 μM) and remarkably kill ≥99.99% of both planktonic cells and biofilm within an hour. Linear random copolymers, which comprise oligoethylene glycol (OEG), hydrophobic, and amine groups, undergo self-folding in aqueous systems due to intramolecular hydrophobic interactions to yield these SCPNs. By systematically varying the hydrophobicity of the polymer, we can tune the extent of cell membrane wall disruption, which in turn governs the antimicrobial activity and rate of resistance acquisition in bacteria. We also show that the incorporation of OEG groups into the polymer design is essential in preventing complexation with proteins in biological medium, thereby maintaining the antimicrobial efficacy of the compound even in in vivo mimicking conditions. In comparison to the last-resort antibiotic colistin, our lead agents have a higher therapeutic index (by ca. 2-3 times) and hence better biocompatibility. We believe that the SCPNs developed here have potential for clinical applications and the information pertaining to their structure-activity relationship will be valuable toward the general design of synthetic antimicrobial (macro)molecules.

  19. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. J chain in the nurse shark: implications for function in a lower vertebrate.

    PubMed

    Hohman, Valerie S; Stewart, Sue E; Rumfelt, Lynn L; Greenberg, Andrew S; Avila, David W; Flajnik, Martin F; Steiner, Lisa A

    2003-06-15

    J chain is a small polypeptide covalently attached to polymeric IgA and IgM. In humans and mice, it plays a role in binding Ig to the polymeric Ig receptor for transport into secretions. The putative orthologue of mammalian J chain has been identified in the nurse shark by sequence analysis of cDNA and the polypeptide isolated from IgM. Conservation with J chains from other species is relatively poor, especially in the carboxyl-terminal portion, and, unlike other J chains, the shark protein is not acidic. The only highly conserved segment in all known J chains is a block of residues surrounding an N-linked glycosylation site. Of the eight half-cystine residues that are conserved in mammalian J chains, three are lacking in the nurse shark, including two in the carboxyl-terminal segment that have been reported to be required for binding of human J chain-containing IgA to secretory component. Taken together with these data, the relative abundance of J chain transcripts in the spleen and their absence in the spiral valve (intestine) suggest that J chain in nurse sharks may not have a role in Ig secretion. Analysis of J chain sequences in diverse species is in agreement with accepted phylogenetic relationships, with the exception of the earthworm, suggesting that the reported presence of J chain in invertebrates should be reassessed.