Science.gov

Sample records for human small airway

  1. RNA-Seq quantification of the human small airway epithelium transcriptome

    PubMed Central

    2012-01-01

    Background The small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq). Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking. PMID:22375630

  2. 4-hydroxynonenal regulates mitochondrial function in human small airway epithelial cells.

    PubMed

    Galam, Lakshmi; Failla, Athena; Soundararajan, Ramani; Lockey, Richard F; Kolliputi, Narasaiah

    2015-12-01

    Prolonged exposure to oxidative stress causes Acute Lung Injury (ALI) and significantly impairs pulmonary function. Previously we have demonstrated that mitochondrial dysfunction is a key pathological factor in hyperoxic ALI. While it is known that hyperoxia induces the production of stable, but toxic 4-hydroxynonenal (4-HNE) molecule, it is unknown how the reactive aldehyde disrupts mitochondrial function. Our previous in vivo study indicated that exposure to hyperoxia significantly increases 4-HNE-Protein adducts, as well as levels of MDA in total lung homogenates. Based on the in vivo studies, we explored the effects of 4-HNE in human small airway epithelial cells (SAECs). Human SAECs treated with 25 μM of 4-HNE showed a significant decrease in cellular viability and increased caspase-3 activity. Moreover, 4-HNE treated SAECs showed impaired mitochondrial function and energy production indicated by reduced ATP levels, mitochondrial membrane potential, and aconitase activity. This was followed by a significant decrease in mitochondrial oxygen consumption and depletion of the reserve capacity. The direct effect of 4-HNE on the mitochondrial respiratory chain was confirmed using Rotenone. Furthermore, SAECs treated with 25 μM 4-HNE showed a time-dependent depletion of total Thioredoxin (Trx) proteins and Trx activity. Taken together, our results indicate that 4-HNE induces cellular and mitochondrial dysfunction in human SAECs, leading to an impaired endogenous antioxidant response. PMID:26484418

  3. Mitochondrial alteration in malignantly transformed human small airway epithelial cells induced by alpha particles

    PubMed Central

    Zhang, Suping; Wen, Gengyun; Huang, Sarah XL; Wang, Jianrong; Tong, Jian; Hei, Tom K.

    2012-01-01

    Human small airway epithelial cells (SAECs) immortalized with human telomerase reverse transcriptase (h-TERT) were exposed to either a single or multiple doses of α particles. Irradiated cells showed a dose-dependent cytotoxicity and progressive neoplastic transformation phenotype. These included an increase in saturation density of growth, a greater resistance to PALA, faster anchorage-independent growth, reinforced cell invasion and c-Myc expression. In addition, the transformed cells formed progressively growing tumors upon inoculation into athymic nude mice. Specifically, α-irradiation induced damage to both mitochondrial DNA (mtDNA) and mitochondrial functions in transformed cells as evidenced by increased mtDNA copy number and common deletion, decreased oxidative phosphorylation (OXPHOS) activity as measured by cytochrome C oxidase (COX) activity and oxygen consumption. There was a linear correlation between mtDNA copy number, common deletion, COX activity and cellular transformation represented by soft agar colony formation and c-Myc expression. These results suggest that mitochondria are associated with neoplastic transformation of SAEC cells induced by α particles, and that the oncogenesis process may depend not only on the genomes inside the nucleus, but also on the mitochondrial DNA outside the nucleus. PMID:22644783

  4. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  5. Role of Small Airways in Asthma.

    PubMed

    Finkas, Lindsay K; Martin, Richard

    2016-08-01

    Asthma is an inflammatory condition of both the small and large airways. Recently the small airways have gained attention as studies have shown significant inflammation in the small airways in all severities of asthma. This inflammation has correlated with peripheral airway resistance and as a result, noninvasive methods to reliably measure small airways have been pursued. In addition, recent changes in asthma inhalers have led to alterations in drug formulations and the development of extrafine particle inhalers that improve delivery to the distal airways. PMID:27401620

  6. Site of Fluid Secretion in Small Airways.

    PubMed

    Flores-Delgado, Guillermo; Lytle, Christian; Quinton, Paul M

    2016-03-01

    The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways. PMID:26562629

  7. Coordinate Control of Expression of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to Cigarette Smoking

    PubMed Central

    Hübner, Ralf-Harto; Schwartz, Jamie D; De Bishnu, P; Ferris, Barbara; Omberg, Larsson; Mezey, Jason G; Hackett, Neil R; Crystal, Ronald G

    2009-01-01

    Nuclear factor erythroid 2–related factor 2 (Nrf2) is an oxidant-responsive transcription factor known to induce detoxifying and antioxidant genes. Cigarette smoke, with its large oxidant content, is a major stress on the cells of small airway epithelium, which are vulnerable to oxidant damage. We assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample the small airway epithelium in healthy-nonsmoker and healthy-smoker, and gene expression was assessed using microarrays. Relative to nonsmokers, Nrf2 protein in the small airway epithelium of smokers was activated and localized in the nucleus. The human homologs of 201 known murine Nrf2-modulated genes were identified, and 13 highly smoking-responsive Nrf2-modulated genes were identified. Construction of an Nrf2 index to assess the expression levels of these 13 genes in the airway epithelium of smokers showed coordinate control, an observation confirmed by quantitative PCR. This coordinate level of expression of the 13 Nrf2-modulated genes was independent of smoking history or demographic parameters. The Nrf2 index was used to identify two novel Nrf2-modulated, smoking-responsive genes, pirin (PIR) and UDP glucuronosyltransferase 1-family polypeptide A4 (UGT1A4). Both genes were demonstrated to contain functional antioxidant response elements in the promoter region. These observations suggest that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cells, and that there is variability within the human population in the Nrf2 responsiveness to oxidant burden. PMID:19593404

  8. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  9. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  10. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  11. Techniques of assessing small airways dysfunction

    PubMed Central

    McNulty, William; Usmani, Omar S.

    2014-01-01

    The small airways are defined as those less than 2 mm in diameter. They are a major site of pathology in many lung diseases, not least chronic obstructive pulmonary disease (COPD) and asthma. The small airways are frequently involved early in the course of these diseases, with significant pathology demonstrable often before the onset of symptoms or changes in spirometry and imaging. Despite their importance, they have proven relatively difficult to study. This is in part due to their relative inaccessibility to biopsy and their small size which makes their imaging difficult. Traditional lung function tests may only become abnormal once there is a significant burden of disease within them. This has led to the term ‘the quiet zone’ of the lung. In recent years, more specialised tests have been developed which may detect these changes earlier, perhaps offering the possibility of earlier diagnosis and intervention. These tests are now moving from the realms of clinical research laboratories into routine clinical practice and are increasingly useful in the diagnosis and monitoring of respiratory diseases. This article gives an overview of small airways physiology and some of the routine and more advanced tests of airway function. PMID:26557240

  12. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  13. BEHAVIOR OF CIGARETTE SMOKE IN HUMAN AIRWAYS

    EPA Science Inventory

    Experimental deposition patterns of cigarette smoke in surrogate human airway systems are very heterogeneous. article deposits are enhanced at predictable, well-defined morphological regions; most specifically, carinal ridges within bifurcation zones, and along posterior sections...

  14. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM DHILDHOOD TO ADULT

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  15. Robust system for human airway-tree segmentation

    NASA Astrophysics Data System (ADS)

    Graham, Michael W.; Gibbs, Jason D.; Higgins, William E.

    2008-03-01

    Robust and accurate segmentation of the human airway tree from multi-detector computed-tomography (MDCT) chest scans is vital for many pulmonary-imaging applications. As modern MDCT scanners can detect hundreds of airway tree branches, manual segmentation and semi-automatic segmentation requiring significant user intervention are impractical for producing a full global segmentation. Fully-automated methods, however, may fail to extract small peripheral airways. We propose an automatic algorithm that searches the entire lung volume for airway branches and poses segmentation as a global graph-theoretic optimization problem. The algorithm has shown strong performance on 23 human MDCT chest scans acquired by a variety of scanners and reconstruction kernels. Visual comparisons with adaptive region-growing results and quantitative comparisons with manually-defined trees indicate a high sensitivity to peripheral airways and a low false-positive rate. In addition, we propose a suite of interactive segmentation tools for cleaning and extending critical areas of the automatically segmented result. These interactive tools have potential application for image-based guidance of bronchoscopy to the periphery, where small, terminal branches can be important visual landmarks. Together, the automatic segmentation algorithm and interactive tool suite comprise a robust system for human airway-tree segmentation.

  16. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia. PMID:7740210

  17. Human airway epithelia express catalytically active NEU3 sialidase

    PubMed Central

    Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Sun, Wenji; Luzina, Irina G.; Webb, Tonya J.; Atamas, Sergei P.; Passaniti, Antonino; Twaddell, William S.; Puché, Adam C.; Wang, Lai-Xi; Cross, Alan S.; Goldblum, Simeon E.

    2014-01-01

    Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase. PMID:24658138

  18. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model.

    PubMed

    Sisler, Jennifer D; Pirela, Sandra V; Friend, Sherri; Farcas, Mariana; Schwegler-Berry, Diane; Shvedova, Anna; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2015-01-01

    The printer is one of the most common office equipment. Recently, it was reported that toner formulations for printing equipment constitute nano-enabled products (NEPs) and contain engineered nanomaterials (ENMs) that become airborne during printing. To date, insufficient research has been performed to understand the potential toxicological properties of printer-emitted particles (PEPs) with several studies using bulk toner particles as test particles. These studies demonstrated the ability of toner particles to cause chronic inflammation and fibrosis in animal models. However, the toxicological implications of inhalation exposures to ENMs emitted from laser printing equipment remain largely unknown. The present study investigates the toxicological effects of PEPs using an in vitro alveolar-capillary co-culture model with Human Small Airway Epithelial Cells (SAEC) and Human Microvascular Endothelial Cells (HMVEC). Our data demonstrate that direct exposure of SAEC to low concentrations of PEPs (0.5 and 1.0 µg/mL) caused morphological changes of actin remodeling and gap formations within the endothelial monolayer. Furthermore, increased production of reactive oxygen species (ROS) and angiogenesis were observed in the HMVEC. Analysis of cytokine and chemokine levels demonstrates that interleukin (IL)-6 and MCP-1 may play a major role in the cellular communication observed between SAEC and HMVEC and the resultant responses in HMVEC. These data indicate that PEPs at low, non-cytotoxic exposure levels are bioactive and affect cellular responses in an alveolar-capillary co-culture model, which raises concerns for potential adverse health effects. PMID:25387250

  19. Basolateral chloride current in human airway epithelia.

    PubMed

    Itani, Omar A; Lamb, Fred S; Melvin, James E; Welsh, Michael J

    2007-10-01

    Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement. PMID:17660331

  20. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 [mu]m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 [mu]m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 [mu]m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  1. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  2. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells

    PubMed Central

    Mihalchik, Amy L.; Ding, Weiqiang; Porter, Dale W.; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D.; Stefaniak, Aleksandr B.; Snyder-Talkington, Brandi N.; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-01-01

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose–response cell proliferation assay showed that low doses of ND-MWCNT (1.2 mg/ml) or MWCNT-7 (0.1 mg/ml) increased cellular proliferation, while the highest dose of 120 mg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6 h and were internalized by 24 h. ROS were elevated at 6 and 24 h in ND-MWCNT exposed cells, but only at 6 h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2 mg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. PMID:25797581

  3. Divers' lung function: small airways disease?

    PubMed Central

    Thorsen, E; Segadal, K; Kambestad, B; Gulsvik, A

    1990-01-01

    Pulmonary function was measured in 152 professional saturation divers and in a matched control group of 106 subjects. Static lung volumes, dynamic lung volumes and flows, transfer factor for carbon monoxide (T1CO), transfer volume per unit alveolar volume (KCO), delta-N2, and closing volume (CV) were measured and compared with reference values from recent Scandinavian studies, British submariners, and the European Community for Coal and Steel (ECCS) recommended reference values. Diving exposure was assessed as years of diving experience, total number of days in saturation and depth, and as the product of days in saturation and mean depth. Divers had significantly lower values for forced expired volume in one second (FEV1), FEV1/forced vital capacity (FVC) ratio, FEF25-75%, FEF75-85%, FEF50%, FEF75%, T1CO, and KCO compared with the controls and a significantly higher CV. There was a positive correlation between diving exposure and CV, whereas the other variables had negative correlations with diving exposure. Values for the control group were not different from the predictive values of Scandinavian reference studies or British submariners, although the ECCS standard predicted significantly lower values for the lung function variables both in divers and the control group. The pattern of the differences in lung function variables between the divers and controls is consistent with small airways dysfunction and with the transient changes in lung function found immediately after a single saturation dive. The association between reduced pulmonary function and previous diving exposure further indicates the presence of cumulative long term effects of diving on pulmonary function. PMID:2393630

  4. Measuring and imaging small airways dysfunction in asthma

    PubMed Central

    2013-01-01

    Asthma is a chronic inflammatory disorder of the airways causing typical symptoms, and the diagnosis is supported by evidence of airflow obstruction which is variable, reversible or inducible. However, standard assessment of lung function with spirometry does not measure dysfunction in small airways which are < 2 mm in diameter towards the periphery of the lung. These airways make only a small contribution to airway resistance under normal circumstances. Nevertheless, there is mounting evidence that pathology and dysfunction in these small airways are implicated in the pathogenesis and natural history of asthma. Using forced oscillation and the multibreath nitrogen washout techniques, uneven ventilation (ventilation heterogeneity) due to small airways dysfunction has been shown to be an important marker of asthma disease activity, even in the absence of abnormalities in standard spirometric measurements. Recent advances in imaging research, particularly with hyperpolarised gas magnetic resonance imaging, have also given insights into the significance and dynamic nature of ventilation heterogeneity in asthma. The challenge is to integrate these new physiological and imaging insights to further our understanding of asthma and facilitate potential new treatments. PMID:24260727

  5. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-01

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  6. Clinical characteristics of adult asthma associated with small airway dysfunction.

    PubMed

    Kjellberg, S; Houltz, B K; Zetterström, O; Robinson, P D; Gustafsson, Per M

    2016-08-01

    Suboptimal asthma control is common despite modern asthma therapy. The degree of peripheral airway involvement remains unclear and poor medication delivery to these regions might be a contributing reason for this failure in obtaining adequate symptom control. A cohort of 196 adults (median (range) age 44 (18-61) years, 109 females, 54 ex-smokers, six current smokers) with physician-diagnosed asthma were recruited from primary care. Subjects were characterized clinically by interviews, questionnaires, skin prick tests (SPT) and blood eosinophil counts. Lung function was assessed by spirometry, impulse oscillometry (IOS) and nitrogen multiple breath washout (N2 MBW). IOS assessed peripheral airway resistance (FDR, frequency dependence of resistance). N2 MBW assessed global ventilation inhomogeneity (LCI, lung clearance index), specific indices of peripheral airway function (Scond × VT and Sacin × VT; VT, tidal volume), and inter-regional inhomogeneity (specific ventilation ratio). Never-smoking healthy cohorts of 158 and 400 adult subjects provided local reference values for IOS and N2 MBW variables, respectively. Peripheral airway dysfunction was detected in 31% (FDR or specific ventilation ratio) to 47% (Scond x VT) of subjects. Risk factors for peripheral airway dysfunction were identified. Among subjects with low FEV1 and either positive smoking history and/or blood eosinophilia (>4.0%), 63% had abnormality across all peripheral airway outcomes, whilst only one subject was completely normal. Abnormal peripheral airway function was present in a large proportion of adult asthmatics at baseline. Reduced FEV1, a positive smoking history, and/or blood eosinophilia identified "a small airway asthma subtype" that might benefit from peripheral airway targeted therapy. PMID:27492518

  7. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense.

    PubMed

    Li, Xiaopeng; Tang, Xiao Xiao; Vargas Buonfiglio, Luis G; Comellas, Alejandro P; Thornell, Ian M; Ramachandran, Shyam; Karp, Philip H; Taft, Peter J; Sheets, Kelsey; Abou Alaiwa, Mahmoud H; Welsh, Michael J; Meyerholz, David K; Stoltz, David A; Zabner, Joseph

    2016-04-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl(-) and bicarbonate (HCO3 (-)) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl(-) and HCO3 (-) transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. PMID:26801568

  8. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  9. Cells and Culture Systems Used to Model the Small Airway Epithelium.

    PubMed

    Bhowmick, Rudra; Gappa-Fahlenkamp, Heather

    2016-06-01

    The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems. PMID:27071933

  10. Development of a realistic human airway model.

    PubMed

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained. PMID:22558834

  11. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1989-11-01

    During the report period significant progress on the quantitative understanding of regional upper airway deposition of airborne particle has been realized. Replicate models of the human upper airways obtained from post-mortem casting of the nasal, oral, pharyngeal, laryngeal and upper tracheal regions and in vivo magnetic resonance imaging (MRI) of the same regions of adults and children have been employed to determine the overall and local deposition characteristics of aerosols in the ultrafine (1--100 {mu}m diameter) and fine (0.8--12 {mu}m diameter) region. Studies have been carried out for both nasal and oral breathing during inspiratory and expiratory flow at constant flow rates representative of rest and states of exercise. The results of these investigations indicate that particles in the size range of unattached'' radon progeny (1--3 nm) are deposited in both the nasal and oral passages with high efficiency (60--80%) for both inspiration and expiration, with the nasal deposition being somewhat greater (5--10%) than oral deposition. The effect of flow rate on upper airway deposition for both pathways is not great; data analysis indicates that the deposition for all flow rates from 4--50 liters/minute can be grouped by plotting deposition vs Q-{sup 1/8}, where Q is flow rate, a far weaker dependency than observed for inertial deposition. Diffusional transport is the primary mechanism of deposition, and size dependence can be accounted for by plotting, deposition percent vs D{sup n} where D is particle diffusion coefficient and n ranges from 0.5--0.66. 2 refs.

  12. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  13. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    PubMed Central

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  14. A computational prediction for the effective drug and stem cell treatment of human airway burns.

    PubMed

    Park, Seungman

    2016-08-01

    Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-element method. From there, the depth of burned tissue is estimated for a range of exposure times. Additionally, the effectiveness of drug or stem cell delivery to the burned airway tissue is considered for a range of drug or cell sizes. Results showed that the highest temperature and lowest heat flux regions are observed near the pharynx and just upstream of the glottis. It was found that large particles such as stem cells (>20 μm) are effective for treatment of the upper airways, whereas small particles (<10 μm) such as drug nanoparticles are effective in the lower airways. PMID:26513000

  15. CD38 and Airway hyperresponsiveness: Studies on human airway smooth muscle cells and mouse models

    PubMed Central

    Guedes, Alonso GP; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-01-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility and airway smooth muscle (ASM) proliferation contribute to airway hyperresponsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g. TNF-α) that requires activation of MAP kinases and the transcription factors, NF-ƙB and AP-1 and post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3’ Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in CD38 exhibit reduced airway responsiveness to inhaled methacholine relative to response in wild-type mice. Intranasal challenge of CD38 deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared to wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyperresponsiveness to inhaled methacholine in the Cd38 deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyperresponsiveness, a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and/or activity are warranted. PMID:25594684

  16. Deposition of graphene nanomaterial aerosols in human upper airways.

    PubMed

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced. PMID:26317666

  17. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  18. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue

    PubMed Central

    2011-01-01

    Introduction Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student's t-test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results Thirty-one ARDS patients (A: PaO2/FiO2 ≤200, 45 ± 14 years, 16 males) and 11 controls (C: 52 ± 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 ± 27.2%, C:76.7 ± 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 ± 35.2%, C:21.8 ± 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 ± 54.3 μm, C:86.4 ± 33.3 μm, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P ≤0.03). The extension of normal epithelium

  19. Activity of abundant antimicrobials of the human airway.

    PubMed

    Travis, S M; Conway, B A; Zabner, J; Smith, J J; Anderson, N N; Singh, P K; Greenberg, E P; Welsh, M J

    1999-05-01

    Human airways produce several antimicrobial factors; the most abundant are lysozyme and lactoferrin. Despite their likely importance in preventing infection, and their possible key role in the pathogenesis of cystic fibrosis (CF), we know little about their antibacterial activity in the context of the CF airway. We found that abundant airway antimicrobial factors kill common CF pathogens, although Burkholderia was relatively resistant. To study the antibacterial activity, we developed a rapid, sensitive, and quantitative in vitro luminescence assay. Because NaCl concentrations may be elevated in CF airway surface liquid, we tested the effect of salt on antibacterial activity. Activity of individual factors and of airway lavage fluid was inhibited by high ionic strength, and it was particularly sensitive to divalent cations. However, it was not inhibited by nonionic osmolytes and thus did not require hypotonic liquid. The inhibition by ionic strength could be partially compensated by increased concentrations of antibacterial factors, thus there was no one unique salt concentration for inhibition. CF airway secretions also contain abundant mucin and elastase; however, these had no effect on antibacterial activity of lysozyme, lactoferrin, or airway lavage fluids. When studied at low NaCl concentrations, CF and non-CF airway lavage fluids contained similar levels of antibacterial activity. These results suggest approaches toward developing treatments aimed at preventing or reducing airway infections in individuals with CF. PMID:10226057

  20. Human airway xenograft models of epithelial cell regeneration.

    PubMed

    Puchelle, E; Peault, B

    2000-01-01

    Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa. PMID:11667974

  1. Human airway measurement from CT images

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Reeves, Anthony P.; Fotin, Sergei; Apanasovich, Tatiyana; Yankelevitz, David

    2008-03-01

    A wide range of pulmonary diseases, including common ones such as COPD, affect the airways. If the dimensions of airway can be measured with high confidence, the clinicians will be able to better diagnose diseases as well as monitor progression and response to treatment. In this paper, we introduce a method to assess the airway dimensions from CT scans, including the airway segments that are not oriented axially. First, the airway lumen is segmented and skeletonized, and subsequently each airway segment is identified. We then represent each airway segment using a segment-centric generalized cylinder model and assess airway lumen diameter (LD) and wall thickness (WT) for each segment by determining inner and outer wall boundaries. The method was evaluated on 14 healthy patients from a Weill Cornell database who had two scans within a 2 month interval. The corresponding airway segments were located in two scans and measured using the automated method. The total number of segments identified in both scans was 131. When 131 segments were considered altogether, the average absolute change over two scans was 0.31 mm for LD and 0.12 mm for WT, with 95% limits of agreement of [-0.85, 0.83] for LD and [-0.32, 0.26] for WT. The results were also analyzed on per-patient basis, and the average absolute change was 0.19 mm for LD and 0.05 mm for WT. 95% limits of agreement for per-patient changes were [-0.57, 0.47] for LD and [-0.16, 0.10] for WT.

  2. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening.

    PubMed

    Hild, Marc; Jaffe, Aron B

    2016-01-01

    The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc. PMID:27171795

  3. AIRWAY EPITHELIAL CELL RESPONSE TO HUMAN METAPNEUMOVIRUS INFECTION

    PubMed Central

    X, Bao; T, Liu; L, Spetch; D, Kolli; R.P, Garofalo; A, Casola

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immuno-modulatory mediators. PMID:17655903

  4. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  5. Byssinosis and small airways disease: Terminal progress report

    SciTech Connect

    Bradford, J.M.

    1989-01-01

    In a study of byssinosis and small-airway disease, pulmonary-function measurements including helium and oxygen flow volume curves were made on 470 cotton mill employees exposed to various dust levels. The employees in these cotton mills had been screened previously for pulmonary abnormalities, and some employees had moved to work areas with lower dust levels. Results showed that there was no significant increase in bronchitis or byssinosis in the dust areas nor were there any significant decreases in the percentages of normal forced vital capacity (PFVC) or forced expiratory volume in 1 second (PFEV1) in the dusty areas. These results differ from those reported from mills in which no previous pulmonary testing had been conducted. A strong smoking/tenure/dust exposure interaction on PFVC and PFEV1 was found, with the long-tenured, high-dust-exposure, smokers having the lowest PFVC and PFEV1. There was no significant increase in small airways abnormalities with increased dust and smoking, but the mean change in the density dependence ratio is too small to have clinical significance.

  6. Small Airway Targeted Therapy in Pediatric Asthma: Are We There Yet?

    PubMed Central

    Blake, Kathryn

    2013-01-01

    Asthma is characterized by inflammation of proximal and distal airways. As new formulations of extrafine aerosol particles have become available, targeting small airways for the management of asthma has been investigated. As new studies attempt to explore the correlation between small airway dysfunction and clinical outcomes in asthma, well-designed clinical trials are needed to compare targeted and standard therapy for asthma management especially in pediatric patients. PMID:24380019

  7. Automated Measurement of Pulmonary Emphysema and Small Airway Remodeling in Cigarette Smoke-exposed Mice

    PubMed Central

    Laucho-Contreras, Maria E.; Taylor, Katherine L.; Mahadeva, Ravi; Boukedes, Steve S.; Owen, Caroline A.

    2015-01-01

    COPD is projected to be the third most common cause of mortality world-wide by 2020(1). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs(2). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD(3-5). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients(6), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill’s stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson’s trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD. PMID:25651034

  8. Small airway changes in healthy and ovalbumin-treated mice during quasi-static lung inflation.

    PubMed

    Sera, Toshihiro; Uesugi, Kentaro; Himeno, Ryutaro; Yagi, Naoto

    2007-06-15

    Previously, we developed a synchrotron radiation CT system to evaluate the morphometric changes (length and diameter, D) and small airway compliance (sC(aw)) of euthanized mice under quasi-static inflation [Sera, T., Uesugi, K., Yagi, N., 2005. Localized morphometric deformations of small airways and alveoli in intact mouse lungs under quasi-static inflation. Respir. Physiol. Neurobiol. 147, 51-63). Using this system, this study compared normal and asthmatic small airways. Ovalbumin-treated mice were used as an asthma model. Compared with the values at functional residual capacity, D of normal and asthmatic small airways (D<200microm) increased by 48% and 36% at the end of tidal inspiration. For larger airways (D>500microm), the increases were 23% and 20%, respectively. The ratio of the sC(aw) of asthmatic small airways to that of healthy small airways was 0.57, and the ratio was 0.70 for larger airways. The morphometric changes and sC(aw) in asthma model mice were significantly lower than those of healthy mice. The differences in sC(aw) between healthy and asthma model mice were greater for smaller airways. PMID:17174159

  9. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  10. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics.

    PubMed

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M; Collins, Jane E; Davies, Donna E; Morgan, Hywel; Swindle, Emily J

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL-8 release is detectable within the first 2h and peaks at 4-6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  11. A Differential Geometric Approach to Automated Segmentation of Human Airway Tree

    PubMed Central

    Pu, Jiantao; Fuhrman, Carl; Good, Walter F; Sciurba, Frank C; Gur, David

    2012-01-01

    Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the three-dimensional human airway tree depicted on CT images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A “puzzle game” procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. PMID:20851792

  12. A differential geometric approach to automated segmentation of human airway tree.

    PubMed

    Pu, Jiantao; Fuhrman, Carl; Good, Walter F; Sciurba, Frank C; Gur, David

    2011-02-01

    Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. PMID:20851792

  13. Regional aerosol deposition in human upper airways. Final report

    SciTech Connect

    Swift, D.L.

    1997-11-01

    During the award period, a number of studies have been carried out related to the overall objective of the project which is to elucidate important factors which influence the upper airway deposition and dose of particles in the size range 0.5 nm - 10 {mu}m, such as particle size, breathing conditions, age, airway geometry, and mode of breathing. These studies are listed below. (1) A high voltage electrospray system was constructed to generate polydispersed 1-10 {mu}m diameter di-ethylhexyl sebacate aerosol for particle deposition studies in nasal casts and in human subjects. (2) The effect of nostril dimensions, nasal passage geometry, and nasal resistance on particle deposition efficiency in forty healthy, nonsmoking adults at a constant flowrate were studied. (3) The effect of nostril dimensions, nasal passage dimensions and nasal resistance on the percentage of particle deposition in the anterior 3 cm of the nasal passage of spontaneously breathing humans were studied. (4) The region of deposition of monodispersed aerosols were studied using replicate casts. (5) Ultrafine aerosol deposition using simulated breath holding path and natural path was compared. (6) An experimental technique was proposed and tested to measure the oral deposition of inhaled ultrafine particles. (7) We have calculated the total deposition fraction of ultrafine aerosols from 5 to 200 n in the extrathoracic airways and in the lung. (8) The deposition fraction of radon progeny in the head airways was studied using several head airway models.

  14. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  15. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

    PubMed Central

    Wang, Liying; Stueckle, Todd A.; Mishra, Anurag; Derk, Raymond; Meighan, Terence; Castranova, Vincent; Rojanasakul, Yon

    2015-01-01

    Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos. PMID:23634900

  16. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1990-11-01

    During the current reporting period experimental studies of aerosol deposition in replicate NOPL airways have carried out. A replicate model of a 4 week old infant nasal passage was constructed from MR scans. The model completes the age range from newborn'' to 4 years, there now being one child model for 4 different ages. Deposition studies have been performed with unattached radon progeny aerosols in collaboration with ITRI, Albuquerque, NM and NRPB, Chilton, UK. Overall measurements have been performed in adult and child nasal airways indicating that the child nasal passage was slightly more efficient than the adult in removing 1 nm particles at corresponding flow rates. A similar weak dependence on flow rate was observed. Local deposition studies in an adult nasal model indicated predominant deposition in the anterior region during inspiratory flow, but measurable deposition was found throughout the model. The deposition pattern during expiration was reverse, greater deposition being observed in the posterior region. Local deposition studies of attached progeny aerosol size (100--200 nm) were performed in adult and child nasal models using technigas'' and a gamma scintillation camera. Similar to the unattached size, deposition occurred throughout the models, but was greater in the anterior region.

  17. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  18. Motile Cilia of Human Airway Epithelia Are Chemosensory

    PubMed Central

    Shah, Alok S; Ben-Shahar, Yehuda; Moninger, Thomas O; Kline, Joel N; Welsh, Michael J

    2010-01-01

    Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste receptors, which localized on motile cilia. Bitter compounds increased the intracellular Ca2+ concentration and stimulated ciliary beat frequency. Thus, airway epithelia contain a cell-autonomous system in which motile cilia both sense noxious substances entering airways and initiate a defensive mechanical mechanism to eliminate the offending compound. Hence, like primary cilia, classical motile cilia also contain sensors to detect the external environment. PMID:19628819

  19. Hyperresponsiveness in the human nasal airway: new targets for the treatment of allergic airway disease.

    PubMed Central

    Turner, P J; Foreman, J C

    1999-01-01

    Allergic rhinitis is a condition which affects over 15% of the population in the United Kingdom. The pathological process involves two stages: nasal inflammation, and the development of nasal airway hyperresponsiveness (AHR) to allergen and a number of other stimuli. This results in the amplification of any subsequent allergic reaction, contributing to the chronic allergic state. A number of different hypotheses have been proposed to explain the underlying mechanism of AHR, including a role for eosinophil-derived proteins, free radicals and neuropeptides. While there may be a number of independent pathways which can result in AHR, evidence obtained from both animal models and in vivo experiments in humans indicate that some mediators may interact with one another, resulting in AHR. Further research into these interactions may open new avenues for the pharmacological treatment of chronic allergic rhinitis, and possibly other allergic airway diseases. PMID:10704051

  20. Characterizing adult human nasal airway dimensions

    SciTech Connect

    Guilmette, R.A.; Griffith, W.C.

    1994-11-01

    Respiratory tract models used in calculating radiation dose from exposure to inhaled radioactive aerosols have only recently focused attention on the importance of the nasal airways (NAs). Because the NAs are the first tissues of the respiratory tract available for aerosol deposition in normally nose-breathing people, any deposition of aerosol in this anatomical structure will reduce the amounts available to be deposited in the remainder of the respiratory tract. Thus, uncertainties in estimating the deposition fractions in the NAs will propagate throughout the remainder of the respiratory tract, creating errors in the calculated dose estimates. Additionally, there is evidence that the NAs are also at risk for induction of cancer from exposure to certain occupational aerosols such as wood dust, leather dust, chromium, and nickel. The purpose of this investigation was to conduct an anatomical study to assess the variabilities in NA dimensions.

  1. On locating the obstruction in the human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Elghobashi, S.

    2013-11-01

    The fluid dynamical properties of the air flow in the human upper airway (UA) are not fully understood at present due to the three-dimensional, patient-specific complex geometry of the airway, flow transition from laminar to turbulent and flow-structure interaction during the breathing cycle. One of the major challenges to surgeons is determining the location of the UA obstruction before performing corrective surgeries. It is quite difficult at present to experimentally measure the instantaneous velocity and pressure at specific points in the human airway. On the other hand, direct numerical simulation (DNS) can predict all the flow properties and resolve all its relevant length- and time-scales. We developed a DNS solver with lattice Boltzmann method (LBM), and used it to investigate the flow in two patient-specific UAs reconstructed from CT scan data. Inspiration and expiration flows through these two airways are studied and compared. Pressure gradient-time signals at different locations in the UAs are used to determine the location of the obstruction. This work was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH).

  2. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    PubMed

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable. PMID:26037949

  3. DNA Methylation Is Globally Disrupted and Associated with Expression Changes in Chronic Obstructive Pulmonary Disease Small Airways

    PubMed Central

    Chari, Raj; Thu, Kelsie L.; Wilson, Ian M.; Cotton, Allison M.; Kennett, Jennifer Y.; Zhang, May; Lonergan, Kim M.; Steiling, Katrina; Brown, Carolyn J.; McWilliams, Annette; Ohtani, Keishi; Lenburg, Marc E.; Sin, Don D.; Spira, Avrum; MacAulay, Calum E.; Lam, Stephen; Lam, Wan L.

    2014-01-01

    DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina’s Infinium HM27 and Affymetrix’s Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2–related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD. PMID:24298892

  4. Relationship of small airway chymase-positive mast cells and lung function in severe asthma.

    PubMed

    Balzar, Silvana; Chu, Hong Wei; Strand, Matthew; Wenzel, Sally

    2005-03-01

    Distal lung inflammation may be important in asthma pathophysiology. The goal of this study was to measure cellular inflammation in the large airway and four distal lung regions (small airway inner and outer wall, alveolar attachments, and peripheral alveolar tissue) and to correlate the specific inflammatory cells with several lung function parameters. Sections of concurrently obtained endobronchial and transbronchial/surgical biopsy tissue from 20 individuals with severe asthma were immunostained for T-lymphocyte, eosinophil, monocyte/macrophage, neutrophil, and two mast cell markers (tryptase and chymase). Specific cell distributions were determined and correlated with lung function measures. The number of inflammatory cells generally increased toward the periphery, but the percentage of T-lymphocytes, eosinophils, monocytes/macrophages, and neutrophils remained similar or decreased from large to small airways. In contrast, mast cell number, percentage, and the chymase-positive phenotype increased in small airway regions. After the analysis was adjusted for multiple comparisons, only chymase-positive mast cells significantly and positively correlated with lung function. Such a relationship was seen only in the small airway/alveolar attachments lung region (r(s) = 0.61-0.89; p small airway outer wall/alveolar attachments region, may be protective for lung function in severe asthma. PMID:15563633

  5. Small Airways Dysfunction in Asthma: Evaluation and Management to Improve Asthma Control

    PubMed Central

    2014-01-01

    The small airways have been neglected for many years, but interest in the topic has been rekindled with recent advances in measurement techniques to assess this region and also the ability to deliver therapeutics to the distal airways. Current levels of disease control in asthmatic patients remain poor and there are several contributory factors including; poor treatment compliance, heterogeneity of asthma phenotypes and associated comorbidities. However, the proposition that we may not be targeting all the inflammation that is present throughout the whole respiratory tree may also be an important factor. Indeed decades ago, pathologists and physiologists clearly identified the importance of small airways dysfunction in asthmatic patients. With improved inhaler technology to deliver drug to target the whole respiratory tree and more sensitive measures to assess the distal airways, we should certainly give greater consideration to treating the small airway region when seeing our asthmatic patients in clinic. The aim of this review is to address the relevance of small airways dysfunction in the daily clinical management of patients with asthma. In particular the role of small particle aerosols in the management of patients with asthma will be explored. PMID:25228994

  6. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  7. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis.

    PubMed

    Haggie, Peter M; Phuan, Puay-Wah; Tan, Joseph-Anthony; Zlock, Lorna; Finkbeiner, Walter E; Verkman, A S

    2016-06-01

    Pendrin (SLC26A4) is a Cl(-)/anion exchanger expressed in the epithelium of inflamed airways where it is thought to facilitate Cl(-) absorption and HCO3 (-) secretion. Studies using pendrin knockout mice and airway epithelial cells from hearing-impaired subjects with pendrin loss of function suggest involvement of pendrin in inflammatory lung diseases, including cystic fibrosis (CF), perhaps by regulation of airway surface liquid (ASL) volume. Here we identified small-molecule pendrin inhibitors and demonstrated their efficacy in increasing ASL volume. A cell-based, functional high-throughput screen of ∼36,000 synthetic small molecules produced 3 chemical classes of inhibitors of human pendrin. After structure-activity studies, tetrahydropyrazolopyridine and pyrazolothiophenesulfonamide compounds reversibly inhibited pendrin-facilitated Cl(-) exchange with SCN(-), I(-), NO3 (-), and HCO3 (-) with drug concentration causing 50% inhibition down to ∼2.5 μM. In well-differentiated primary cultures of human airway epithelial cells from non-CF and CF subjects, treatment with IL-13, which causes inflammation with strong pendrin up-regulation, strongly increased Cl(-)/HCO3 (-) exchange and the increase was blocked by pendrin inhibition. Pendrin inhibition significantly increased ASL depth (by ∼8 μm) in IL-13-treated non-CF and CF cells but not in untreated cells. These studies implicate the involvement of pendrin-facilitated Cl(-)/HCO3 (-) in the regulation of ASL volume and suggest the utility of pendrin inhibitors in inflammatory lung diseases, including CF.-Haggie, P. M., Phuan, P.-W., Tan, J.-A., Zlock, L., Finkbeiner, W. E., Verkman, A. S. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis. PMID:26932931

  8. Chronic exposure to high levels of particulate air pollution and small airway remodeling.

    PubMed Central

    Churg, Andrew; Brauer, Michael; del Carmen Avila-Casado, Maria; Fortoul, Teresa I; Wright, Joanne L

    2003-01-01

    Recent evidence suggests that chronic exposure to high levels of ambient particulate matter (PM) is associated with decreased pulmonary function and the development of chronic airflow obstruction. To investigate the possible role of PM-induced abnormalities in the small airways in these functional changes, we examined histologic sections from the lungs of 20 women from Mexico City, a high PM locale. All subjects were lifelong residents of Mexico City, were never-smokers, never had occupational dust exposure, and never used biomass fuel for cooking. Twenty never-smoking, non-dust-exposed subjects from Vancouver, British Columbia, Canada, a low PM region, were used as a control. By light microscopy, abnormal small airways with fibrotic walls and excess muscle, many containing visible dust, were present in the Mexico City lungs. Formal grading analysis confirmed the presence of significantly greater amounts of fibrous tissue and muscle in the walls of the airways in the Mexico City compared with the Vancouver lungs. Electron microscopic particle burden measurements on four cases from Mexico City showed that carbonaceous aggregates of ultrafine particles, aggregates likely to be combustion products, were present in the airway mucosa. We conclude that PM penetrates into and is retained in the walls of small airways, and that, even in nonsmokers, long-term exposure to high levels of ambient particulate pollutants is associated with small airway remodeling. This process may produce chronic airflow obstruction. PMID:12727599

  9. Fiber deposition in human upper airway model. Final report

    SciTech Connect

    Swift, D.L.

    1986-01-01

    The possibility that airborne fibers may behave differently than spherical particles in their deposition in the upper airways was examined. Deposition measurements were taken in a replicate model of the upper human airways above the larynx with well-characterized glass-fiber aerosols typical of glass fibers in normal use. The overall deposition of the aerosols in the nasal airways ranged from 10 to 90 percent. The deposition increased with flow rate and was somewhat higher with nasal-hair stimulant in the anterior vestibule. There was no dependency between the effect of fiber diameter and inertial theory, suggesting that interception is an important factor. Deposition occurred mainly anterior to the nasopharynx, equally divided between the vestibule and the turbinate region. The establishment of the anterior nasal region as the prime site for interception deposition was verified by the lack of significant deposition in the nasopharynx and larynx during nasal breathing. The authors conclude that the human nasal passage is able to remove a significant fraction of inhaled fibers, most of which will be physically cleared and others of which will be cleared to the gastro-intestinal tract. No long-term effect is expected from fibers deposited in the nasal region and cleared physically.

  10. Characterization of side population cells from human airway epithelium.

    PubMed

    Hackett, Tillie-Louise; Shaheen, Furquan; Johnson, Andrew; Wadsworth, Samuel; Pechkovsky, Dmitri V; Jacoby, David B; Kicic, Anthony; Stick, Stephen M; Knight, Darryl A

    2008-10-01

    The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil-sensitive efflux of the DNA-binding dye Hoechst 33342. Using flow cytometry, CD45(-) SP, CD45(+) SP, and non-SP cells were isolated and sorted. CD45(-) SP cells made up 0.12% +/- 0.01% of the total epithelial cell population in normal airway but 4.1% +/- 0.06% of the epithelium in asthmatic airways. All CD45(-) SP cells showed positive staining for epithelial-specific markers cytokeratin-5, E-cadherin, ZO-1, and p63. CD45(-) SP cells exhibited stable telomere length and increased colony-forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non-SP cells, fewer than 100 CD45(-) SP cells were able to generate a multilayered and differentiated epithelium in air-liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short- and long-term proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium. Disclosure of potential conflicts of interest is found at the end of this article. PMID:18653771

  11. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1991-11-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po{sup 218} particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po{sup 218} particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po{sup 218} particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig.

  12. Wall shear stress distributions in a model of normal and constricted small airways.

    PubMed

    Evans, David J; Green, Anthony S; Thomas, Nicholas K

    2014-04-01

    Previous studies have highlighted flow shear stress as a possible damage mechanism for small airways, in particular those liable to constriction through disease or injury due to mechanical ventilation. Flow experiments in vitro have implicated shear stress as a relevant factor for mechanotransduction pathways with respect to airway epithelial cell function. Using computational fluid dynamics analysis, this study reports velocity profiles and calculations for wall shear stress distributions in a three-generation, asymmetric section of the small airways subjected to a steady, inspiratory flow. The results show distal variation of wall shear stress distributions due to velocity gradients on the carina side of each daughter airway branch. The maximum wall shear stresses in both normal and constricted small airways are shown to exceed those calculated using data from previous simpler one-dimensional experimental analyses. These findings have implications for lung cell flow experiments involving shear stress in the consideration of both normal airway function and pathology due to mechanotransduction mechanisms. PMID:24618983

  13. Numerical simulation of transitional flow in a human upper airway segment in the presence of uncertainty

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf

    2011-11-01

    The flow in human airways may be laminar, transitional, or turbulent in different airway segments. Specifically, laminar-turbulent transition is believed to occur in the larynx or in the trachea. Present approaches to simulate such flows typically employ numerical methods solving the steady Reynolds-averaged Navier-Stokes equations. However, natural airway deformations or pathological obstructions such as tumors may generate recirculation zones and lead to highly unsteady flow features that are not well captured by these numerical methods. We perform direct numerical simulations of transitional flow through a pipe-like canonical geometry representative of an airway segment. The incompressible Navier-Stokes equations in conjunction with an immersed boundary method are solved to simulate the unsteady flow. In order to model perturbations present in the incoming flow, small-amplitude disturbances are forced to explicitly trigger flow instabilities. Time-dependent inflow profiles are applied to model the change in flow velocity during the breathing process. In order to account for natural variability during breathing, the inflow profile is treated as an uncertain function. Resulting uncertainty in the flow field is quantified using stochastic collocation.

  14. Large-scale gene discovery in human airway epithelia reveals novel transcripts.

    PubMed

    Scheetz, Todd E; Zabner, Joseph; Welsh, Michael J; Coco, Justin; Eyestone, Mari de Fatima; Bonaldo, Maria; Kucaba, Tamara; Casavant, Thomas L; Soares, M Bento; McCray, Paul B

    2004-03-12

    The airway epithelium represents an important barrier between the host and the environment. It is a first site of contact with pathogens, particulates, and other stimuli, and has evolved the means to dynamically respond to these challenges. In an effort to define the transcript profile of airway epithelia, we created and sequenced cDNA libraries from cystic fibrosis (CF) and non-CF epithelia and from human lung tissue. Sequencing of these libraries produced approximately 53,000 3'-expressed sequence tags (3'-ESTs). From these, a nonredundant UniGene set of more than 19,000 sequences was generated. Despite the relatively small contribution of airway epithelia to the total mass of the lung, focused gene discovery in this tissue yielded novel results. The ESTs included several thousand transcripts (6,416) not previously identified from cDNA sequences as expressed in the lung. Among the abundant transcripts were several genes involved in host defense. Most importantly, the set also included 879 3'-ESTs that appear to be novel sequences not previously represented in the National Center for Biotechnology Information UniGene collection. This UniGene set should be useful for studies of pulmonary diseases involving the airway epithelium including cystic fibrosis, respiratory infections and asthma. It also provides a reagent for large-scale expression profiling. PMID:14701920

  15. Effect of adrenergic stimulation on clearance from small ciliated airways in healthy subjects.

    PubMed

    Svartengren, K; Philipson, K; Svartengren, M; Camner, P

    1998-01-01

    Mucociliary transport is an important clearance mechanism of larger airways, but in the smallest ciliated airways (bronchioles) it may be less effective. The present study aimed at investigating whether clearance from the bronchioles in subjects with healthy airways was stimulated by an adrenergic agonist (terbutaline sulphate). Tracheobronchial clearance was studied twice in 10 healthy subjects after inhalation of 6-micron (aerodynamic diameter) monodisperse Teflon particles labeled with 111In. At one exposure, oral treatment with terbutaline sulphate, known to stimulate clearance in large airways, began immediately after inhalation of the particles. The other exposure was a control measurement. The particles were inhaled at an extremely slow flow, 0.05 L/s, which gave deposition mainly in the small ciliated airways (bronchioles). Lung retention was measured at 0, 24, 48, and 72 h. Clearance was significant every 24 h for both exposures (p < .05, two-tailed paired t-test), with similar fractions of retained particles at all time points. During treatment with terbutaline sulphate, the subjects' pulse rates tended to be higher, but clearance rates did not increase. We found, as expected, no significant correlation between lung retention and lung function in either exposure. This study shows that an adrenergic agonist does not significantly influence overall clearance from the bronchiolar region in healthy subjects. This suggests that mucociliary transport does not significantly contribute to clearance from the smallest ciliated airways. Other mechanisms may be more important for the transportation of mucus from these airways. PMID:9555573

  16. Contribution of air pollution to COPD and small airway dysfunction.

    PubMed

    Berend, Norbert

    2016-02-01

    Although in many Western countries levels of ambient air pollution have been improving with the setting of upper limits and better urban planning, air pollution in developing countries and particularly those with rapid industrialization has become a major global problem. Together with increased motor vehicle ownership and traffic congestion, there is a growing issue with airborne particles of respirable size. These particles are thought responsible for respiratory and cardiovascular effects and have also been implicated in cancer pathogenesis. The pathologic effects in the lung are mediated via inflammatory pathways and involve oxidative stress similar to cigarette smoking. These effects are seen in the peripheral airways where the smaller particle fractions are deposited and lead to airway remodelling. However, emphysema and loss of bronchioles seen with cigarette smoking have not been described with ambient air pollution, and there are few studies specifically looking at peripheral airway function. Definitive evidence of air pollution causing COPD is lacking and a different study design is required to link air pollution and COPD. PMID:26412571

  17. Novel small airway bronchodilator responses to rosiglitazone in mouse lung slices.

    PubMed

    Bourke, Jane E; Bai, Yan; Donovan, Chantal; Esposito, James G; Tan, Xiahui; Sanderson, Michael J

    2014-04-01

    There is a need to identify novel agents that elicit small airway relaxation when β2-adrenoceptor agonists become ineffective in difficult-to-treat asthma. Because chronic treatment with the synthetic peroxisome proliferator activated receptor (PPAR)γ agonist rosiglitazone (RGZ) inhibits airway hyperresponsiveness in mouse models of allergic airways disease, we tested the hypothesis that RGZ causes acute airway relaxation by measuring changes in small airway size in mouse lung slices. Whereas the β-adrenoceptor agonists albuterol (ALB) and isoproterenol induced partial airway relaxation, RGZ reversed submaximal and maximal contraction to methacholine (MCh) and was similarly effective after precontraction with serotonin or endothelin-1. Concentration-dependent relaxation to RGZ was not altered by the β-adrenoceptor antagonist propranolol and was enhanced by ALB. RGZ-induced relaxation was mimicked by other synthetic PPARγ agonists but not by the putative endogenous agonist 15-deoxy-PGJ2 and was not prevented by the PPARγ antagonist GW9662. To induce airway relaxation, RGZ inhibited the amplitude and frequency of MCh-induced Ca(2+) oscillations of airway smooth muscle cells (ASMCs). In addition, RGZ reduced MCh-induced Ca(2+) sensitivity of the ASMCs. Collectively, these findings demonstrate that acute bronchodilator responses induced by RGZ are PPARγ independent, additive with ALB, and occur by the inhibition of ASMC Ca(2+) signaling and Ca(2+) sensitivity. Because RGZ continues to elicit relaxation when β-adrenoceptor agonists have a limited effect, RGZ or related compounds may have potential as bronchodilators for the treatment of difficult asthma. PMID:24188042

  18. Propagation and Breakup of Liquid Menisci and Aerosol Generation in Small Airways

    PubMed Central

    Malashenko, Andrei; Tsuda, Akira; Haber, Shimon

    2009-01-01

    Abstract Background Droplets exhaled during normal breathing and not associated with coughing may pose hazardous agents to infective diseases dissemination. The objective is to explore the physical mechanism, which may lead to droplets formation. Methods We hypothesize that liquid menisci occlusions, which may form inside small airways, travel along the airway, may lose mass and finally disintegrate into small droplets. This hypothesis was numerically investigated applying physiologically plausible values of the phenomenological coefficients and geometrical conformations. Results We show that three important dimensionless parameters control the motion and disintegration of menisci: the dimensionless mucus layer thickness, the dimensionless menisci initial thickness (all scaled by the airway radius), and the capillary number. Menisci traveling within airways may either remain at equilibrium or diminish or increase in size. Menisci that diminish in size may collapse into the mucus layer; form a large droplet that contains most of the menisci mass before disintegration; or form a larger number of small droplets (we show the forming of three or four droplets in a single occluded airway). Conclusions A critical capillary number for menisci at equilibrium could be defined. It was shown that menisci tend to diminish in size as the capillary number increases above the critical value, and a number of small droplets may be formed during normal breathing. PMID:19580367

  19. CT based computerized identification and analysis of human airways: A review

    SciTech Connect

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  20. CT based computerized identification and analysis of human airways: A review

    PubMed Central

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-01-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work. PMID:22559631

  1. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers-due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation. PMID:26541595

  2. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    PubMed

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken

    2015-10-15

    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation. PMID:26276826

  3. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma. PMID:16648239

  4. Transbronchial biopsy as a tool to evaluate small airways in asthma.

    PubMed

    Balzar, S; Wenzel, S E; Chu, H W

    2002-08-01

    Small airway (SA) inflammation in asthmatics is poorly understood. Surgical biopsies to obtain peripheral lung tissue are seldom justified in asthmatics. Therefore, the authors hypothesised that transbronchial biopsy could be an alternative approach to evaluate SA in asthma. Transbronchial and endobronchial biopsy tissue samples (TBBX and EBBX) from 12 severe asthmatics were evaluated for airway and parenchymal total inflammatory cell count expressed as the sum of immunostained T-cells (CD3), macrophages (CD68), mast cells (tryptase AAI), neutrophils (neutrophil elastase) and eosinophils (EG2) per mm2. The large airways (LA) were evaluated in EBBXs, while SA, medium airways (MA) and alveolar tissue (AT) were evaluated in TBBXs. When cell counts from SA, MA, LA and AT were compared, SA had a significantly higher cell count than MA or LA (SA 1011 x mm(-2) (539-1,290), MA 346 x mm(-2) (223-415), LA 332 x mm(-2) (189-416), AT 464 x mm(-2) (298-834)). The cell density and pattern of the inflammatory cell distribution in subjects with TBBXs appeared similar to those in three severe asthmatics whose inflammatory cells were analysed in surgical tissue samples. This study suggests that small airway may be identified and analysed in transbronchial biopsy tissue samples and therefore transbronchial biopsy tissue samples could expand the analysis of inflammation and tissue remodelling in asthma. PMID:12212952

  5. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype.

    PubMed

    Shaykhiev, Renat; Zuo, Wu-Lin; Chao, Ionwa; Fukui, Tomoya; Witover, Bradley; Brekman, Angelika; Crystal, Ronald G

    2013-07-16

    The airway epithelium of smokers acquires pathological phenotypes, including basal cell (BC) and/or goblet cell hyperplasia, squamous metaplasia, structural and functional abnormalities of ciliated cells, decreased number of secretoglobin (SCGB1A1)-expressing secretory cells, and a disordered junctional barrier. In this study, we hypothesized that smoking alters airway epithelial structure through modification of BC function via an EGF receptor (EGFR)-mediated mechanism. Analysis of the airway epithelium revealed that EGFR is enriched in airway BCs, whereas its ligand EGF is induced by smoking in ciliated cells. Exposure of BCs to EGF shifted the BC differentiation program toward the squamous and epithelial-mesenchymal transition-like phenotypes with down-regulation of genes related to ciliogenesis, secretory differentiation, and markedly reduced junctional barrier integrity, mimicking the abnormalities present in the airways of smokers in vivo. These data suggest that activation of EGFR in airway BCs by smoking-induced EGF represents a unique mechanism whereby smoking can alter airway epithelial differentiation and barrier function. PMID:23818594

  6. Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs.

    PubMed

    Ziebart, A; Garcia-Bardon, A; Kamuf, J; Thomas, R; Liu, T; Schad, A; Duenges, B; David, M; Hartmann, E K

    2015-10-01

    Novel devices for small-lumen ventilation may enable effective inspiration and expiratory ventilation assistance despite airway obstruction. In this study, we investigated a porcine model of complete upper airway obstruction. After ethical approval, we randomly assigned 13 anaesthetised pigs either to small-lumen ventilation following airway obstruction (n = 8) for 30 min, or to volume-controlled ventilation (sham setting, n = 5). Small-lumen ventilation enabled adequate gas exchange over 30 min. One animal died as a result of a tension pneumothorax in this setting. Redistribution of ventilation from dorsal to central compartments and significant impairment of the distribution of ventilation/perfusion occurred. Histopathology demonstrated considerable lung injury, predominantly through differences in the dorsal dependent lung regions. Small-lumen ventilation maintained adequate gas exchange in a porcine airway obstruction model. The use of this technique for 30 min by inexperienced clinicians was associated with considerable end-expiratory collapse leading to lung injury, and may also carry the risk of severe injury. PMID:26179167

  7. Vapor Dosimetry in the Nose and Upper Airways of Humans

    SciTech Connect

    Thrall, Karla D.

    2010-04-01

    A number of methodologies have been reported for measuring vapor uptake efficiencies in the upper respiratory tract of experimental animals (1). Hybrid computational fluid dynamic (CFD) and physiologically based pharmacokinetic (PBPK) models, as described by Frederick et al. (2) that incorporate information on the anatomy of both rats and humans have been used to improve interspecies dosimetric corrections for human health risk assessments. However, validation of these models requires sufficient experimental data, and robust data defining the role of the upper respiratory tract in modulating the absorption of gases and vapors in human volunteers, are lacking. A survey of the available literature shows a limited number of experimental studies to evaluate the dosimetry of vapors in the nose and upper airways of humans. The scarcity of literature data undoubtedly reflects the complication of conducting controlled studies in human volunteers, and with the exception of a few limited studies, little experimental data is available. This chapter will highlight studies specific for nasal dosimetry data from humans and briefly review modeling approaches for predictive extrapolations from animal data.

  8. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  9. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    EPA Science Inventory

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  10. Small Airway Impairment and Bronchial Hyperresponsiveness in Asthma Onset

    PubMed Central

    Scalese, Marco; Migliorini, Maria Giovanna; Di Tomassi, Maurizio; Scala, Raffaele

    2014-01-01

    Purpose Our study tried to find a relationship between baseline FEF25-75% and airway hyperresponsiveness (AHR) and whether a greater FEF25-75% impairment may be a marker of a more severe hyperresponsiveness in subjects with normal FEV1 and FEV1/FVC and suggestive asthma symptoms. Besides, we tried to asses a FEF25-75% cut-off value to identify hyper-reactive subjects. Methods 4,172 subjects (2,042 M; mean age: 38.3±14.9; mean FEV1 % predicted: 100.5±12.7 and FEV1/FVC: 85.4±6.8) were examined after performing a methacholine (Mch) test. All subjects reported a symptom onset within 3 years before the test. Subjects with PD20<400 or >400 µg were arbitrarily considered affected by moderate/severe and borderline AHR, respectively. Results PD20 values were 213 (IQR:86-557), 340 (IQR:157-872) and 433 (IQR:196-1032) µg in subjects with baseline FEF25-75≤50%, FEF25-75 between 50 and 70% and FEF25-75>70% respectively (P<0.0001). Only in moderate/severe hyper-reactive subjects (excluded borderlines), PD20 was lower in the FEF25-75≤50% subgroup than in the 1 with FEF25-75>70%. The hyperreactive subjects percentage, was higher in those with FEF25-75≤50% and lower in those with FEF25-75>70% (P<0.0001). FEF25-75<50% (compared to FEF25-75>70%) was a higher AHR risk factor, especially in subjects with moderate/severe AHR (OR: 2.18 [IQR:1.41-3.37]; P<0.0001). Thresholds yielding the highest combined sensitivity/specificity for FEF25-75% were 75.19 (area under curve [AUC]: 0.653) and 74.95 (AUC:0.688) in subjects with PD20<2,400 and <400 µg respectively. FEV1, FVC, and FEV1/FVC measured in subjects with different FEF25-75≤50%, FEF25-75>50 and ≤70% or FEF25-75>70% levels were similar both in normoreactive and hyperreactive subjects. Conclusions At asthma onset, reduced baseline FEF25-75 values with normal FEV1 and FEV1/FVC may predict AHR. Detectable predictive cut-off values do not exist because even normoreactive subjects can show lower FEF25-75 values. Furthermore, a

  11. Regulation of high glucose-mediated mucin expression by matrix metalloproteinase-9 in human airway epithelial cells.

    PubMed

    Yu, Hongmei; Yang, Juan; Xiao, Qian; Lü, Yang; Zhou, Xiangdong; Xia, Li; Nie, Daijing

    2015-04-10

    Mucus hypersecretion is the key manifestation in patients with chronic inflammatory airway diseases and mucin 5AC (MUC5AC) is a major component of airway mucus. Matrix metalloproteinases (MMP)-9, have been found to be involved in the pathogenesis of inflammatory airway diseases. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that high glucose (HG)-regulates MMP-9 production and MMP-9 activity through nicotinamide adenine dinucleotide phosphate (NADPH)/reactive oxygen species (ROS) cascades pathways, leading to mucin production in human airway epithelial cells (16HBE). We show that HG increases MMP-9 production, MMP-9 activity and MUC5AC expression. These effects are prevented by small interfering RNA (siRNA) for MMP-9, indicating that HG-induced mucin production is MMP-9-dependent. HG activates MMP-9 production, MMP-9 activity and MUC5AC overproduction, which is inhibited by nPG, DMSO and DPI (inhibitors of ROS and NADPH), suggesting that HG-activated mucin synthesis is mediated by NADPH/ROS in 16HBE cells. These observations demonstrate an important role for MMP-9 activated by NADPH/ROS signaling pathways in regulating HG-induced MUC5AC expression. These findings may bring new insights into the molecular pathogenesis of the infections related to diabetes mellitus and lead to novel therapeutic intervention for mucin overproduction in chronic inflammatory airway diseases. PMID:25704757

  12. Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells.

    PubMed

    Denning, G M; Railsback, M A; Rasmussen, G T; Cox, C D; Britigan, B E

    1998-06-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes both acute and chronic lung disease. P. aeruginosa exerts many of its pathophysiological effects by secreting virulence factors, including pyocyanine, a redox-active compound that increases intracellular oxidant stress. Because oxidant stress has been shown to affect cytosolic Ca2+ concentration ([Ca2+]c) in other cell types, we studied the effect of pyocyanine on [Ca2+]c in human airway epithelial cells (A549 and HBE). At lower concentrations, pyocyanine inhibits inositol 1,4,5-trisphosphate formation and [Ca2+]c increases in response to G protein-coupled receptor agonists. Conversely, at higher concentrations, pyocyanine itself increases [Ca2+]c. The pyocyanine-dependent [Ca2+]c increase appears to be oxidant dependent and to result from increased inositol trisphosphate and release of Ca2+ from intracellular stores. Ca2+ plays a central role in epithelial cell function, including regulation of ion transport, mucus secretion, and ciliary beat frequency. By disrupting Ca2+ homeostasis, pyocyanine could interfere with these critical functions and contribute to the pathophysiological effects observed in Pseudomonas-associated lung disease. PMID:9609727

  13. NEU1 Sialidase Expressed in Human Airway Epithelia Regulates Epidermal Growth Factor Receptor (EGFR) and MUC1 Protein Signaling*

    PubMed Central

    Lillehoj, Erik P.; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Luzina, Irina G.; Atamas, Sergei P.; Passaniti, Antonino; Twaddell, William S.; Puché, Adam C.; Wang, Lai-Xi; Cross, Alan S.; Goldblum, Simeon E.

    2012-01-01

    Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6–1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7–1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38–56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli. PMID:22247545

  14. Sensory neuropeptides and the human lower airways: present state and future directions.

    PubMed

    Joos, G F; Germonpre, P R; Kips, J C; Peleman, R A; Pauwels, R A

    1994-06-01

    The sensory neuropeptides, substance P and neurokinin A, are present in human airway nerves, beneath and within the epithelium, around blood vessels and submucosal glands, and within the bronchial smooth muscle layer. Studies on autopsy tissue, bronchoalveolar lavage and sputum suggest that in asthma the substance P content of the airways may be increased. Neurokinin A is a more potent bronchoconstrictor than substance P. Asthmatics are hyperresponsive to neurokinin A and substance P. The neuropeptide degrading enzyme, neutral endopeptidase is present in the airways and is involved in the degradation of endogenously released and exogenously administered substance P and neurokinin A, both in normal and asthmatic subjects. As for other indirect bronchoconstrictor stimuli, the effect of neurokinin A on airway calibre in asthmatics can be inhibited by pretreatment with nedocromil sodium. Evidence is accumulating, not only from studies in animals but also from experiments on human airways, that tachykinins may also cause mucus secretion and plasma extravasation. They also have important proinflammatory effects, such as the chemoattraction of eosinophils and neutrophils, the adhesion of neutrophils, and the stimulation of lymphocytes, macrophages and mast cells. The tachykinins interact with the targets on the airways by specific tachykinin receptors. The NK1 and the NK2 receptor have been characterized in human airways, both pharmacologically and by cloning. The NK2 receptor is responsible for the in vitro contraction of normal airways, whilst the NK1 receptor is responsible for most of the other airway effects. Because of their presence in the airways and because of their ability to mimic the various pathophysiological features of asthma, substance P and neurokinin A are presently considered as possible mediators of asthma. The present development of potent and selective tachykinin antagonists will allow us to further define the role of tachykinins in the pathogenesis

  15. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  16. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  17. Airway gene transfer in a non-human primate: lentiviral gene expression in marmoset lungs.

    PubMed

    Farrow, N; Miller, D; Cmielewski, P; Donnelley, M; Bright, R; Parsons, D W

    2013-01-01

    Genetic therapies for cystic fibrosis (CF) must be assessed for safety and efficacy, so testing in a non-human primate (NHP) model is invaluable. In this pilot study we determined if the conducting airways of marmosets (n = 2) could be transduced using an airway pre-treatment followed by an intratracheal bolus dose of a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector (LacZ reporter). LacZ gene expression (X-gal) was assessed after 7 days and found primarily in conducting airway epithelia as well as in alveolar regions. The LacZ gene was not detected in liver or spleen via qPCR. Vector p24 protein bio-distribution into blood was transient. Dosing was well tolerated. This preliminary study confirmed the transducibility of CF-relevant airway cell types. The marmoset is a promising NHP model for testing and translating genetic treatments for CF airway disease towards clinical trials. PMID:23412644

  18. Smokers with emphysema and small airway disease on computed tomography have lower bone density

    PubMed Central

    Pompe, Esther; de Jong, Pim A; van Rikxoort, Eva M; Gallardo Estrella, Leticia; de Jong, Werner U; Vliegenthart, Rozemarijn; Oudkerk, Matthijs; van der Aalst, Carlijn M; van Ginneken, Bram; Lammers, Jan-Willem J; Mohamed Hoesein, Firdaus AA

    2016-01-01

    Osteoporosis is more common in patients with COPD and in smokers. The aim of this study was to assess whether measures of emphysema and airway disease on computed tomography (CT) were associated with lower bone density or vertebral fractures in smokers with and without COPD. For this purpose, we included participants from the NELSON lung cancer screening trial. Bone density was measured as Hounsfield Units in the first lumbar vertebra, and vertebral fractures were assessed semiquantitatively. The 15th percentile method (Perc15) was used to assess emphysema, and the airway lumen perimeter (Pi10) was used for airway wall thickness. Expiratory/inspiratory-ratiomean lung density (E/I-ratioMLD) was used as a measure for air trapping and tracheal index to assess tracheal deformity. Linear regression models and logistic regression models were used to assess associations between CT biomarkers, bone density, and presence of fractures. Exactly 1,093 male participants were eligible for analysis. Lower Perc15 and higher E/I-ratioMLD were significantly associated with lower bone density (b=−1.27, P=0.02 and b=−0.37, P=0.02, respectively). Pi10 and tracheal index were not associated with bone density changes. CT-derived biomarkers were not associated with fracture prevalence. Bone density is lower with increasing extent of emphysema and small airway disease but is not associated with large airway disease and tracheal deformity. This may indicate the necessity to measure bone density early in smokers with emphysema and air trapping to prevent vertebral fractures. PMID:27354779

  19. Production of β-defensins by human airway epithelia

    PubMed Central

    Singh, Pradeep K.; Jia, Hong Peng; Wiles, Kerry; Hesselberth, Jay; Liu, Lide; Conway, Barbara-Ann D.; Greenberg, Everett P.; Valore, Erika V.; Welsh, Michael J.; Ganz, Tomas; Tack, Brian F.; McCray, Paul B.

    1998-01-01

    Human β-defensins (HBDs) are antimicrobial peptides that may play a role in mucosal defense. Diminished activity of these peptides has been implicated in the pathogenesis of cystic fibrosis (CF) lung disease. We show that HBD-1 and HBD-2 mRNAs are expressed in excised surface and submucosal gland epithelia from non-CF and CF patients. The pro-inflammatory cytokine interleukin-1β stimulated the expression of HBD-2 but not HBD-1 mRNA and peptide in primary cultures of airway epithelia. HBD-1 was found in bronchoalveolar lavage (BAL) fluid from normal volunteers, CF patients, and patients with inflammatory lung diseases, whereas HBD-2 was detected in BAL fluid from patients with CF or inflammatory lung diseases, but not in normal volunteers. Both HBD-1 and HBD-2 were found in BAL fluid in concentrations of several ng/ml, and both recombinant peptides showed salt-sensitive bactericidal activity. These data suggest that in the lung HBD-2 expression is induced by inflammation, whereas HBD-1 may serve as a defense in the absence of inflammation. PMID:9843998

  20. Cross-species immunoreactivity of airway mucin as revealed by monoclonal antibodies directed against mucins from human, hamster, and rat.

    PubMed

    Shin, C Y; Lee, W J; Kim, D J; Park, C S; Choi, E Y; Ko, K H

    2000-10-01

    Airway mucin plays crucial role in host-defense and has been implicated in pathophysiology of various airway diseases including asthma and cystic fibrosis. The analysis of airway mucin has been hampered mostly by the lack of specific and efficient methods for the detection of mucin. Recent production of antibodies against airway mucin from several species and also the development of immunoassay procedures make it more efficient to study the airway mucin. However, the cross-species immunoreactivity of antibodies against airway mucin has not been clearly demonstrated and this prompted us to investigate the cross-species immunoreactivity of monoclonal antibodies against human (HM02), hamster (HTA), and rat airway mucin (RT03), which is three most widely used species in the study of mucin. All the monoclonal antibodies (MAbs) used in this study is IgM isotype and recognizes N-acetyl-galactosamine-linked carbohydrate core or backbone portion of airway mucin. In enzyme-linked immunoadsorbent assay (ELISA), Western blot, immunoprecipitation, and immunohistochemical staining experiments, it was demonstrated that human and hamster airway mucin showed strong cross-species immunoreactivity. However, rat airway mucin did not show any cross-species immunoreactivity against human and hamster airway mucin. Endotoxin-induced secretory cell metaplasia and hence the increase in mucin release from hamster airway mucin could be detected with antibodies against hamster and human airway mucin in vivo and in vitro. However, the same increase from rat airway could only be detected with antibody against rat airway mucin but not with antibodies against human and hamster airway mucin. In addition, the increase in mucin release from asthmatic patients could be detected with antibodies against human and hamster airway mucin but not with the antibody against rat airway mucin. The data from the present study implicates that the carbohydrate chain of human and hamster airway mucin, but not that

  1. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes.

    PubMed

    White, Thomas A; Xue, Ailing; Chini, Eduardo N; Thompson, Michael; Sieck, Gary C; Wylam, Mark E

    2006-08-01

    Previous studies have suggested that the proinflammatory cytokine, TNF-alpha, contributes to airway hyperresponsivness by altering airway smooth muscle (ASM) Ca(2+) responses to agonist stimulation. The present study examined the effects of TNF-alpha on Ca(2+) influx pathways in cultured human ASM cells (HASMCs). Proteins encoded by the transient receptor potential (TRP) gene family function as channels through which receptor-operated and store-operated Ca(2+) entry (SOCE) occur. In the present study, the presence of TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 mRNA and protein expression was confirmed in cultured HASMCs using RT-PCR and Western blot analysis. TNF-alpha treatment significantly increased TRPC3 mRNA and protein levels in HASMCs as well as SOCE. TNF-alpha treatment also increased both the peak and plateau intracellular Ca(2+) concentration responses in HASMCs elicited by acetylcholine and bradykinin. The effects of TNF-alpha treatment on SOCE and agonist-induced intracellular Ca(2+) concentration responses were attenuated using small interfering RNA transfection, which knocked down TRPC3 expression. Thus, in inflammatory airway diseases, TNF-alpha treatment may result in increased myocyte activation due to altered Ca(2+) influx pathways. These results suggest that TRPC3 may be an important therapeutic target in inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. PMID:16574942

  2. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  3. AIRWAY CELL AND NUCLEAR DEPTH DISTRIBUTION IN HUMAN RAT LUNGS

    EPA Science Inventory

    To predict the critical cells that are subject to injury from inhaled radon and other alpha particle sources it is necessary to calculate the dose absorbed by the different cells in the lungs. n order to provide information necessary to make these dose determinations, the airway ...

  4. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths. PMID:17827075

  5. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia

    PubMed Central

    Drapkin, Paola T.; O’Riordan, Catherine R.; Yi, Su Min; Chiorini, John A.; Cardella, Jonathan; Zabner, Joseph; Welsh, Michael J.

    2000-01-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  6. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia.

    PubMed

    Drapkin, P T; O'Riordan, C R; Yi, S M; Chiorini, J A; Cardella, J; Zabner, J; Welsh, M J

    2000-03-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  7. O/sub 3/-induced change in bronchial reactivity to methacholine and airway inflammation in humans

    SciTech Connect

    Seltzer, J.; Bigby, B.G.; Stulbarg, M.; Holtzman, M.J.; Nadel, J.A.; Ueki, I.F.; Leikauf, G.D.; Goetzl, E.J.; Boushey, H.A.

    1986-04-01

    The increase in airway responsiveness induced by O/sub 3/ exposure in dogs is associated with airway epithelial inflammation, as evidenced by an increase in the number of neutrophils (polymorphonuclear leukocytes) found in epithelial biopsies and in bronchoalveolar lavage fluid. We investigated in 10 healthy, human subjects whether O/sub 3/-induced hyperresponsiveness was similarly associated with airway inflammation by examining changes in the types of cells recovered in bronchoalveolar lavage fluid obtained after exposure to air or to O/sub 3/ (0.4 or 0.6 ppm). We also measured the concentrations of cyclooxygenase and lipoxygenase metabolites of arachidonic acid in lavage fluid. We measured airway responsiveness to inhaled methacholine aerosol before and after each exposure and performed bronchoalveolar lavage 3 h later. We found more neutrophils in the lavage fluid from O/sub 3/-exposed subjects, especially in those in whom O/sub 3/ exposure produced an increase in airway responsiveness. We also found significant increases in the concentrations of prostaglandins E2, F2 alpha, and thromboxane B2 in lavage fluid from O/sub 3/-exposed subjects. These results show that in human subjects O/sub 3/-induced hyperresponsiveness to methacholine is associated with an influx of neutrophils into the airways and with changes in the levels of some cyclooxygenase metabolites of arachidonic acid.

  8. Time-Resolved PIV Measurements of Vortical Structures in the Upper Human Airways

    NASA Astrophysics Data System (ADS)

    e, Sebastian Groß; Schröder, Wolfgang; Klaas, Michael

    A detailed knowledge of the three-dimensional flow structures in the human lung is an inevitable prerequisite to optimize respiratory-assist devices. To achieve this goal the indepth analysis of the flow field that evolves during normal breathing conditions is indispensable. This study focuses on the experimental investigation of the steady and oscillatory flow in the first lung bifurcation of a three-dimensional realistic transparent silicone lung model. The particle image velocimetry technique was used for the measurements. To match the refractive index of the model, the fluid was a mixture of water and glycerine. The flow structures occurring in the first bifurcation during steady inflow have been studied in detail at different flow rates and Reynolds numbers ranging from ReD = 1250 to ReD = 1700 based on the hydraulic diameter D of the trachea. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. The inspiration flow shows large zones with secondary vortical flow structures with reduced streamwise velocity near the outer walls of the bifurcation and regions of high-speed fluid in the vicinity of the inner side walls of the bifurcation. Depending on the local geometry of the lung these zones extend to the next generation of the airway system, resulting in a strong impact on the flow-rate distribution in the different branches of the lung. During expiration small zones of reduced streamwise velocity can be observed mainly in the trachea and the flow profile is characterized by typical jet-like structures and an M-shaped velocity profile. To investigate the temporal evolution of the flow phenomena in the first lung bifurcation time-resolved recordings were performed for Womersley numbers α ranging from 3.3 to 5.8 and Reynolds

  9. Cigarette smoke enhances proliferation and extracellular matrix deposition by human fetal airway smooth muscle

    PubMed Central

    Vogel, Elizabeth R.; VanOosten, Sarah K.; Holman, Michelle A.; Hohbein, Danielle D.; Thompson, Michael A.; Vassallo, Robert; Pandya, Hitesh C.; Prakash, Y. S.

    2014-01-01

    Cigarette smoke is a common environmental insult associated with increased risk of developing airway diseases such as wheezing and asthma in neonates and children. In adults, asthma involves airway remodeling characterized by increased airway smooth muscle (ASM) cell proliferation and increased extracellular matrix (ECM) deposition, as well as airway hyperreactivity. The effects of cigarette smoke on remodeling and contractility in the developing airway are not well-elucidated. In this study, we used canalicular-stage (18–20 wk gestational age) human fetal airway smooth muscle (fASM) cells as an in vitro model of the immature airway. fASM cells were exposed to cigarette smoke extract (CSE; 0.5–1.5% for 24–72 h), and cell proliferation, ECM deposition, and intracellular calcium ([Ca2+]i) responses to agonist (histamine 10 μM) were used to evaluate effects on remodeling and hyperreactivity. CSE significantly increased cell proliferation and deposition of ECM molecules collagen I, collagen III, and fibronectin. In contrast, [Ca2+]i responses were not significantly affected by CSE. Analysis of key signaling pathways demonstrated significant increase in extracellular signal-related kinase (ERK) and p38 activation with CSE. Inhibition of ERK or p38 signaling prevented CSE-mediated changes in proliferation, whereas only ERK inhibition attenuated the CSE-mediated increase in ECM deposition. Overall, these results demonstrate that cigarette smoke may enhance remodeling in developing human ASM through hyperplasia and ECM production, thus contributing to development of neonatal and pediatric airway disease. PMID:25344066

  10. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry

    2016-05-01

    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission. PMID:26932515

  11. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway

    PubMed Central

    Edwards, Bradley A.; Sands, Scott A.; Butler, James P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Wellman, Andrew

    2014-01-01

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an “iron lung” and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2–4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects. PMID:24458746

  12. Small airway dysfunction and flow and volume bronchodilator responsiveness in patients with chronic obstructive pulmonary disease

    PubMed Central

    Pisi, Roberta; Aiello, Marina; Zanini, Andrea; Tzani, Panagiota; Paleari, Davide; Marangio, Emilio; Spanevello, Antonio; Nicolini, Gabriele; Chetta, Alfredo

    2015-01-01

    Background We investigated whether a relationship between small airways dysfunction and bronchodilator responsiveness exists in patients with chronic obstructive pulmonary disease (COPD). Methods We studied 100 (20 female; mean age: 68±10 years) patients with COPD (forced expiratory volume in 1 second [FEV1]: 55% pred ±21%; FEV1/forced vital capacity [FVC]: 53%±10%) by impulse oscillometry system. Resistance at 5 Hz and 20 Hz (R5 and R20, in kPa·s·L−1) and the fall in resistance from 5 Hz to 20 Hz (R5 – R20) were used as indices of total, proximal, and peripheral airway resistance; reactance at 5 Hz (X5, in kPa·s·L−1) was also measured. Significant response to bronchodilator (salbutamol 400 μg) was expressed as absolute (≥0.2 L) and percentage (≥12%) change relative to the prebronchodilator value of FEV1 (flow responders, FRs) and FVC (volume responders, VRs). Results Eighty out of 100 participants had R5 – R20 >0.03 kPa·s·L−1 (> upper normal limit) and, compared to patients with R5 – R20 ≤0.030 kPa·s·L−1, showed a poorer health status, lower values of FEV1, FVC, FEV1/FVC, and X5, along with higher values of residual volume/total lung capacity and R5 (P<0.05 for all comparisons). Compared to the 69 nonresponders and the 8 FRs, the 16 VRs had significantly higher R5 and R5 – R20 values (P<0.05), lower X5 values (P<0.05), and greater airflow obstruction and lung hyperinflation. Conclusion This study shows that peripheral airway resistance is increased in the vast majority of patients with COPD, who showed worse respiratory reactance, worse spirometry results, more severe lung hyperinflation, and poorer health status. Small airway dysfunction was also associated with the bronchodilator responsiveness in terms of FVC, but not in terms of FEV1. PMID:26150710

  13. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  14. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways

    PubMed Central

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-01-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  15. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid.

    PubMed

    Singh, P K; Tack, B F; McCray, P B; Welsh, M J

    2000-11-01

    Airway surface liquid contains multiple factors thought to provide a first line of defense against bacteria deposited in the airways. Although the antimicrobial action of individual factors has been studied, less is known about how they work in combination. We examined the combined action of six antimicrobial peptides found in airway surface liquid. The paired combinations of lysozyme-lactoferrin, lysozyme-secretory leukocyte protease inhibitor (SLPI), and lactoferrin-SLPI were synergistic. The triple combination of lysozyme, lactoferrin, and SLPI showed even greater synergy. Other combinations involving the human beta-defensins, LL-37, and tobramycin (often administered to cystic fibrosis patients by inhalation) were additive. Because the airway surface liquid salt concentration may be elevated in cystic fibrosis patients, we examined the effect of salt on the synergistic combinations. As the ionic strength increased, synergistic interactions were lost. Our data suggest that the antibacterial potency of airway surface liquid may be significantly increased by synergistic and additive interactions between antimicrobial factors. These results also suggest that increased salt concentrations that may exist in cystic fibrosis could inhibit airway defenses by diminishing these synergistic interactions. PMID:11053013

  16. Acute regulation of tight junction ion selectivity in human airway epithelia

    PubMed Central

    Flynn, Andrea N.; Itani, Omar A.; Moninger, Thomas O.; Welsh, Michael J.

    2009-01-01

    Electrolyte transport through and between airway epithelial cells controls the quantity and composition of the overlying liquid. Many studies have shown acute regulation of transcellular ion transport in airway epithelia. However, whether ion transport through tight junctions can also be acutely regulated is poorly understood both in airway and other epithelia. To investigate the paracellular pathway, we used primary cultures of differentiated human airway epithelia and assessed expression of claudins, the primary determinants of paracellular permeability, and measured transepithelial electrical properties, ion fluxes, and La3+ movement. Like many other tissues, airway epithelia expressed multiple claudins. Moreover, different cell types in the epithelium expressed the same pattern of claudins. To evaluate tight junction regulation, we examined the response to histamine, an acute regulator of airway function. Histamine stimulated a rapid and transient increase in the paracellular Na+ conductance, with a smaller increase in Cl− conductance. The increase was mediated by histamine H1 receptors and depended on an increase in intracellular Ca2+ concentration. These results suggest that ion flow through the paracellular pathway can be acutely regulated. Such regulation could facilitate coupling of the passive flow of counter ions to active transcellular transport, thereby controlling net transepithelial salt and water transport. PMID:19208806

  17. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  18. Regional aerosol deposition in human upper airways. Progress report, March 1, 1992--February 28, 1993

    SciTech Connect

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 {mu}m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 {mu}m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 {mu}m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  19. A novel chimeric adenoassociated virus 2/human bocavirus 1 parvovirus vector efficiently transduces human airway epithelia.

    PubMed

    Yan, Ziying; Keiser, Nicholas W; Song, Yi; Deng, Xuefeng; Cheng, Fang; Qiu, Jianming; Engelhardt, John F

    2013-12-01

    Human bocavirus virus-1 (HBoV1), a newly discovered autonomous parvovirus with a 5,500 nt genome, efficiently infects human-polarized airway epithelia (HAE) from the apical membrane. We hypothesized that the larger genome and high airway tropism of HBoV1 would be ideal for creating a viral vector for lung gene therapy. To this end, we successfully generated recombinant HBoV1 (rHBoV1) from an open reading frames-disrupted rHBoV1 genome that efficiently transduces HAE from the apical surface. We next evaluated whether HBoV1 capsids could package oversized rAAV2 genomes. These studies created a rAAV2/HBoV1 chimeric virus (5.5 kb genome) capable of apically transducing HAE at 5.6- and 70-fold greater efficiency than rAAV1 or rAAV2 (4.7-kb genomes), respectively. Molecular studies demonstrated that viral uptake from the apical surface was significantly greater for rAAV2/HBoV1 than for rAAV2 or rAAV1, and that polarization of airway epithelial cells was required for HBoV1 capsid-mediated gene transfer. Furthermore, rAAV2/HBoV1-CFTR virus containing the full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene coding sequence and the strong CBA promoter efficiently corrected CFTR-dependent chloride transport in cystic fibrosis (CF) HAE. In summary, using the combined advantages of AAV and HBoV1, we have developed a novel and promising viral vector for CF lung gene therapy and also potentially HBoV1 vaccine development. PMID:23896725

  20. Small airway dysfunction by impulse oscillometry in asthmatic patients with normal forced expiratory volume in the 1st second values.

    PubMed

    Pisi, Roberta; Tzani, Panagiota; Aiello, Marina; Martinelli, Enrico; Marangio, Emilio; Nicolini, Gabriele; Olivieri, Dario; Chetta, Alfredo

    2013-01-01

    Small airways are relevant to the pathophysiology of asthma. We investigated whether in asthmatic patients with normal forced expiratory volume in the 1st second (FEV(1)) values, impulse oscillometry system (IOS), as a measure of small airway function, contributed additional information to spirometry either at baseline or after bronchodilator, and whether it was related to the disease control. The fall in resistance from 5 to 20 Hz (R5-R20) and reactance at 5 Hz (X5) by IOS and spirometry measures of small airway function (forced expiratory flow at 25-75% [FEF(25-75)] and forced vital capacity/slow inspiratory vital capacity [FVC/SVC]) at baseline and after 400 micrograms of salbutamol were prospectively measured in 33 asthmatic patients (18 women; age range, 18-66 years). Disease control was assessed by the Asthma Control Test (ACT). R5-R20 but not X5 values were significantly related to FEF(25-75) and FVC/SVC values (p < 0.05 for both correlations). When the bronchodilator response was assessed, no correlation was found among IOS and spirometry changes. ACT scores were related to R5-R20, FEF(25-75), and FVC/SVC values (p < 0.01 for all correlations). In asthmatic patients with normal FEV(1) values, R5-R20 values were related to spirometry measures of small airway function. However, when the bronchodilator response was assessed, IOS and spirometry provided quite different results. Moreover, small airway dysfunction, as assessed by IOS and spirometry, was associated with poor disease control and history of asthma exacerbations. The results of this study confirm the value of IOS, as an investigative tool, and suggest that in asthmatic patients with normal FEV(1) values and poor disease control, small airway function should be investigated. PMID:23406931

  1. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant. PMID:17600317

  2. Three-dimensional inspiratory flow in the upper and central human airways

    NASA Astrophysics Data System (ADS)

    Banko, A. J.; Coletti, F.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.

    2015-06-01

    The steady inspiratory flow through an anatomically accurate model of the human airways was studied experimentally at a regime relevant to deep inspiration for aerosol drug delivery. Magnetic resonance velocimetry was used to obtain the three-component, mean velocity field. A strong, single-sided streamwise swirl was found in the trachea and persists up to the first bifurcation. There, the swirl and the asymmetric anatomy impact both the streamwise momentum distribution and the secondary flows in the main bronchi, with large differences compared to what is found in idealized branching tubes. In further generations, the streamwise velocity never recovers a symmetric profile and the relative intensity of the secondary flows remains strong. Overall, the results suggest that, in real human airways, both streamwise dispersion (due to streamwise gradients) and lateral dispersion (due to secondary flows) are very effective transport mechanisms. Neglecting the extrathoracic airways and idealizing the bronchial tree may lead to qualitatively different conclusions.

  3. Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease.

    PubMed

    Karta, Maya R; Broide, David H; Doherty, Taylor A

    2016-01-01

    Recent discoveries have led to the identification of a novel group of immune cells, the innate lymphoid cells (ILCs). The members of this group are divided into three subpopulations: ILC1s, ILC2s, and ILC3s. ILC2s produce Th2 cytokines, IL-4, IL-5, and IL-13, upon activation by epithelial cell-derived cytokines, lipid mediators (cysteinyl leukotrienes and prostaglandin D2), and TNF family member TL1A and promote structural and immune cell responses in the airways after antigen exposure. In addition, ILC2 function is also influenced by inducible T cell costimulator (ICOS)/ICOS-ligand (ICOS-L) interactions via direct contact between immune cells. The most common airway antigens are allergens and viruses which are highly linked to the induction of airway diseases with underlying type 2 inflammation including asthma and allergic rhinitis. Based on recent findings linking ILC2s and airway Th2 responses, there is intensive investigation into the role of ILC2s in human disease with the hope of a better understanding of the pathophysiology and the discovery of novel potential therapeutic targets. This review summarizes the recent advances made in elucidating ILC2 involvement in human Th2 airway disease. PMID:26746844

  4. DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).

    EPA Science Inventory

    We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...

  5. Experimental evidence of age-related adaptive changes in human acinar airways.

    PubMed

    Quirk, James D; Sukstanskii, Alexander L; Woods, Jason C; Lutey, Barbara A; Conradi, Mark S; Gierada, David S; Yusen, Roger D; Castro, Mario; Yablonskiy, Dmitriy A

    2016-01-15

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized (3)He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized (3)He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  6. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  7. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  8. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  9. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model.

    PubMed

    Ma, Baoshun; Lutchen, Kenneth R

    2009-02-01

    Quantitative data on aerosol deposition in the human respiratory tract are useful for understanding the causes of certain lung diseases and for designing efficient drug delivery systems via inhalation. In this study, aerosol deposition in a 3D anatomically based human large-medium airway model was simulated using computational fluid dynamics (CFD). The model extended from mouth to generation 10 and included two-thirds of the airways obtained by multi-detector row computed tomography (MDCT) imaging on normal healthy human subjects. Steady oral inhalation (15, 30, and 60 L/min) and aerosol (1-30 micrometer) deposition were computed by CFD using the realizable k-epsilon turbulence model. Based on the mean turbulence flow field, the computed extrathoracic deposition, ratio of left to right lung deposition, and deposition efficiency at each generation compared favorably with existing in vivo and in vitro experiments. The significant deposition in the large-medium airway model showed that the total tracheobronchial deposition is dominated by the large-medium airways for micrometer-sized aerosol particles. These quantitative data and the methods developed in this study provided valuable means toward subject-specific modeling of aerosol deposition in the human lung based on realistic lung geometry. PMID:19082892

  10. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  11. Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway.

    PubMed

    Kang, Min-Yeong; Hwang, Jeongeun; Lee, Jin-Won

    2011-04-01

    Characteristics of pressure loss (ΔP) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the ΔP coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re<100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways. PMID:21354574

  12. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  13. Expansive Generation of Functional Airway Epithelium From Human Embryonic Stem Cells

    PubMed Central

    McIntyre, Brendan A.S.; Alev, Cantas; Mechael, Rami; Salci, Kyle R.; Lee, Jung Bok; Fiebig-Comyn, Aline; Guezguez, Borhane; Wu, Yuping; Sheng, Guojun

    2014-01-01

    Production of human embryonic stem cell (hESC)-derived lung progenitors has broad applicability for drug screening and cell therapy; however, this is complicated by limitations in demarcating phenotypic changes with functional validation of airway cell types. In this paper, we reveal the potential of hESCs to produce multipotent lung progenitors using a combined growth factor and physical culture approach, guided by the use of novel markers LIFRα and NRP1. Lung specification of hESCs was achieved by priming differentiation via matrix-specific support, followed by air-liquid interface to allow generation of lung progenitors capable of in vitro maturation into airway epithelial cell types, resulting in functional characteristics such as secretion of pulmonary surfactant, ciliation, polarization, and acquisition of innate immune activity. This approach provided a robust expansion of lung progenitors, allowing in vivo assessment, which demonstrated that only fully differentiated hESC-derived airway cells were retained in the distal airway, where they aided in physiological recovery in immunocompromised mice receiving airway injury. Our study provides a basis for translational applications of hESCs for lung diseases. PMID:24300555

  14. In vivo deposition of ultrafine aerosols in human nasal and oral airways

    SciTech Connect

    Yeh, Hsu-Chi; Swift, D.L.; Simpson, S.Q.

    1995-12-01

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 {mu}m particles in 10 human subjects and in our preliminary studies using 0.004-0.15 {mu}m particles in four adult volunteers. No oral deposition was reported in either of these studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 {mu}m with the nasal dimensions of each subject.

  15. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells.

    PubMed

    White, Steven R; Martin, Linda D; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A

    2010-11-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  16. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. PMID:27095271

  17. Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance.

    PubMed

    Itani, Omar A; Chen, Jeng-Haur; Karp, Philip H; Ernst, Sarah; Keshavjee, Shaf; Parekh, Kalpaj; Klesney-Tait, Julia; Zabner, Joseph; Welsh, Michael J

    2011-06-21

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR(-/-) and CFTR(ΔF508/ΔF508) airway epithelia lacked anion conductance, and they did not hyperabsorb Na(+). Therefore, we asked whether Cl(-) and Na(+) conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na(+) channel inhibitor amiloride produced similar reductions in Gt and Na(+) absorption, indicating that Na(+) conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl(-) conductance. These results indicate that Na(+) conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF. PMID:21646513

  18. Human cystic fibrosis airway epithelia have reduced Cl− conductance but not increased Na+ conductance

    PubMed Central

    Itani, Omar A.; Chen, Jeng-Haur; Karp, Philip H.; Ernst, Sarah; Keshavjee, Shaf; Parekh, Kalpaj; Klesney-Tait, Julia; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR−/− and CFTRΔF508/ΔF508 airway epithelia lacked anion conductance, and they did not hyperabsorb Na+. Therefore, we asked whether Cl− and Na+ conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na+ channel inhibitor amiloride produced similar reductions in Gt and Na+ absorption, indicating that Na+ conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl− conductance. These results indicate that Na+ conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF. PMID:21646513

  19. Continuous mucociliary transport by primary human airway epithelial cells in vitro

    PubMed Central

    Sears, Patrick R.; Yin, Wei-Ning

    2015-01-01

    Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated. PMID:25979076

  20. Matriptase Proteolytically Activates Influenza Virus and Promotes Multicycle Replication in the Human Airway Epithelium

    PubMed Central

    Beaulieu, Alexandre; Gravel, Émilie; Cloutier, Alexandre; Marois, Isabelle; Colombo, Éloïc; Désilets, Antoine; Verreault, Catherine; Leduc, Richard; Marsault, Éric

    2013-01-01

    Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place. PMID:23365447

  1. Modeled deposition of fine particles in human airway in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoying; Yan, Caiqing; Patterson, Regan F.; Zhu, Yujiao; Yao, Xiaohong; Zhu, Yifang; Ma, Shexia; Qiu, Xinghua; Zhu, Tong; Zheng, Mei

    2016-01-01

    This study aims to simulate depositions of size-segregated particles in human airway in Beijing, China during seasons when fine particulate matter concentrations are high (December 2011 and April 2012). Particle size distributions (5.6-560 nm, electrical mobility diameter) near a major road in Beijing were measured by the TSI Fast Mobility Particle Sizer (FMPS). The information of size distributions provided by FMPS was applied in the Multiple-Path Particle Dosimetry model (MPPD) to quantify number and mass depositions of particles in human airway including extrathoracic (ET), tracheobronchial (TB), and pulmonary (PUL) regions of exposed Chinese in Beijing. Our results show that under ambient conditions, particle number concentration (NC) deposition in PUL is the highest in the three major regions of human airway. The total particle NC deposition in human airway in winter is higher than that in spring, especially for ultrafine particles (1.8 times higher) while particle mass concentration (MC) deposition is higher in spring. Although particle MC in clean days are much lower than that in heavily polluted days, total particle NC deposition in human airway in clean days is comparable to that in heavily polluted days. NC deposition for nucleation mode particles (10-20 nm, aerodynamic diameter) in clean days is higher than that in heavily polluted days. MC deposition for accumulation mode particles (100-641 nm, aerodynamic diameter) in heavily polluted days is much higher than that in clean days, while that of nucleation mode is negligible. The temporal variation shows that the arithmetic mean and the median values of particle NC and MC depositions in the evening are both the highest, followed by morning and noon, and it is most likely due to increased contribution from traffic emissions.

  2. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  3. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells

    PubMed Central

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  4. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells.

    PubMed

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  5. Ex Vivo Chemical Cytometric Analysis of Protein Tyrosine Phosphatase Activity in Single Human Airway Epithelial Cells

    PubMed Central

    Phillips, Ryan M.; Dailey, Lisa A.; Bair, Eric; Samet, James M.; Allbritton, Nancy L.

    2014-01-01

    We describe a novel method for the measurement of protein tyrosine phosphatase (PTP) activity in single human airway epithelial cells (hAECs) using capillary electrophoresis. This technique involved the microinjection of a fluorescent phosphopeptide that is hydrolyzed specifically by PTPs. Analyses in BEAS-2B immortalized bronchial epithelial cells showed rapid PTP-mediated dephosphorylation of the substrate (2.2 pmol min−1 mg−1) that was blocked by pretreatment of the cells with the PTP inhibitors pervanadate, Zn2+, and 1,2-naphthoquinone (76%, 69%, 100% inhibition relative to PTP activity in untreated controls, respectively). These studies were then extended to a more physiologically relevant model system: primary hAECs cultured from bronchial brushings of living human subjects. In primary hAECs, dephosphorylation of the substrate occurred at a rate of 2.2 pmol min−1 mg−1, and was also effectively inhibited by pre-incubation of the cells with the inhibitors pervanadate, Zn2+, and 1,2- naphthoquinone (91%, 88%, and 87% median PTP inhibition, respectively). Reporter proteolysis in single BEAS-2B cells occurred at a median rate of 43 fmol min−1 mg−1 resulting in a mean half-life of 20 min. The reporter displayed a similar median half-life of 28 min in these single primary cells. Finally, single viable epithelial cells (which were assayed for PTP activity immediately after collection by bronchial brushing of a human volunteer) showed dephosphorylation rates ranging from 0.34–36 pmol min−1 mg−1 (n = 6). These results demonstrate the utility and applicability of this technique for the ex vivo quantification of PTP activity in small, heterogeneous, human cells and tissues. PMID:24380370

  6. High-Sensitivity C-Reactive Protein Can Reflect Small Airway Obstruction in Childhood Asthma

    PubMed Central

    Ko, A Ra; Sol, In Suk; Kim, Min Jung; Yoon, Seo Hee; Kim, Kyung Won; Kim, Kyu-Earn

    2016-01-01

    Purpose High-sensitivity assays enabled the identification of C-reactive protein (hs-CRP) at levels that were previously undetectable. We aimed to determine if hs-CRP could reflect airway inflammation in children, by comparing hs-CRP with spirometry and impulse oscillometry (IOS) parameters and symptomatic severities. Materials and Methods A total of 276 asthmatic children who visited Severance Children's Hospital from 2012–2014 were enrolled. Serum hs-CRP and pulmonary function tests were performed on the same day. Patients were divided into hs-CRP positive and negative groups (cut-off value, 3.0 mg/L). Results Of the 276 asthmatic children [median age 7.5 (5.9/10.1) years, 171 boys (62%)], 39 were hs-CRP positive and 237 were negative. Regarding spirometry parameters, we observed significant differences in maximum mid-expiratory flow, % predicted (FEF25–75) (p=0.010) between hs-CRP positive and negative groups, and a negative correlation between FEF25–75 and hs-CRP. There were significant differences in the reactance area (AX) (p=0.046), difference between resistance at 5 Hz and 20 Hz (R5–R20) (p=0.027), resistance at 5 Hz, % predicted (R5) (p=0.027), and reactance at 5 Hz, % predicted (X5) (p=0.041) between hs-CRP positive and negative groups. There were significant positive correlations between hs-CRP and R5 (r=0.163, p=0.008), and X5 (r=0.164, p=0.007). Spirometry and IOS parameters had more relevance in patients with higher blood neutrophil levels in comparison to hs-CRP. Conclusion Hs-CRP showed significant correlation with FEF25–75, R5, and X5. It can reflect small airway obstruction in childhood asthma, and it is more prominent in neutrophil dominant inflammation. PMID:26996570

  7. Evaluation of airway resistance in primary small cell carcinoma of the trachea by MostGraph: a case study.

    PubMed

    Hagiwara, Eri; Gon, Yasuhiro; Hayashi, Kentaro; Takahashi, Mai; Iida, Yuko; Hiranuma, Hisato; Nakagawa, Yoshiko; Hataoka, Tsukasa; Mizumura, Kenji; Maruoka, Shuichiro; Shimizu, Tetsuo; Takahashi, Noriaki; Hashimoto, Shu

    2016-08-01

    The case subject was a 58-year-old woman who presented to our hospital with a chief complaint of respiratory discomfort. Wheezing could be heard in both lungs; treatment was initiated with inhaled steroids for suspected bronchial asthma. However, 1 week later, the respiratory discomfort had not improved and the wheezing sound had progressed to the neck area. Upper airway obstruction was suspected; therefore, chest computed tomography (CT) was performed, revealing tracheal stenosis caused by a tumor in the upper airway. Because of the high risk of airway obstruction, tracheotomy and tracheal tumor resection were performed. Histopathological examination of the resected tumor revealed small cell lung cancer (SCLC); the stage was determined to be clinical stage IIIB (cT4N2M0), for which chemotherapy with two cycles of cisplatin plus etoposide followed by radiation therapy were administered. Pulmonary function testing revealed no change in the forced expiratory volume in 1 sec and flow volume (FV) curve before and after tumor resection, whereas airway resistance measured by MostGraph-01 showed a marked decrease following treatment. We believe that MostGraph-01 may be useful for measuring airway resistance and evaluating a tracheal tumor, and report a case using MostGraph-01. PMID:27621904

  8. Evaluation of airway resistance in primary small cell carcinoma of the trachea by MostGraph: a case study

    PubMed Central

    Hagiwara, Eri; Hayashi, Kentaro; Takahashi, Mai; Iida, Yuko; Hiranuma, Hisato; Nakagawa, Yoshiko; Hataoka, Tsukasa; Mizumura, Kenji; Maruoka, Shuichiro; Shimizu, Tetsuo; Takahashi, Noriaki; Hashimoto, Shu

    2016-01-01

    The case subject was a 58-year-old woman who presented to our hospital with a chief complaint of respiratory discomfort. Wheezing could be heard in both lungs; treatment was initiated with inhaled steroids for suspected bronchial asthma. However, 1 week later, the respiratory discomfort had not improved and the wheezing sound had progressed to the neck area. Upper airway obstruction was suspected; therefore, chest computed tomography (CT) was performed, revealing tracheal stenosis caused by a tumor in the upper airway. Because of the high risk of airway obstruction, tracheotomy and tracheal tumor resection were performed. Histopathological examination of the resected tumor revealed small cell lung cancer (SCLC); the stage was determined to be clinical stage IIIB (cT4N2M0), for which chemotherapy with two cycles of cisplatin plus etoposide followed by radiation therapy were administered. Pulmonary function testing revealed no change in the forced expiratory volume in 1 sec and flow volume (FV) curve before and after tumor resection, whereas airway resistance measured by MostGraph-01 showed a marked decrease following treatment. We believe that MostGraph-01 may be useful for measuring airway resistance and evaluating a tracheal tumor, and report a case using MostGraph-01.

  9. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  10. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways.

    PubMed Central

    Gaston, B; Reilly, J; Drazen, J M; Fackler, J; Ramdev, P; Arnelle, D; Mullins, M E; Sugarbaker, D J; Chee, C; Singel, D J

    1993-01-01

    Recent discoveries suggesting essential bioactivities of nitric oxide (NO.) in the lung are difficult to reconcile with the established pulmonary cytotoxicity of this common air pollutant. These conflicting observations suggest that metabolic intermediaries may exist in the lung to modulate the bioactivity and toxicity of NO.. We report that S-nitrosothiols (RS-NO), predominantly the adduct with glutathione, are present at nano- to micromolar concentrations in the airways of normal subjects and that their levels vary in different human pathophysiologic states. These endogenous RS-NO are long-lived, potent relaxants of human airways under physiological O2 concentrations. Moreover, RS-NO form in high concentrations upon administration of NO. gas. Nitrite (10-20 microM) is found in airway lining fluid in concentrations linearly proportional to leukocyte counts, suggestive of local NO. metabolism. NO. itself was not detected either free in solution or in complexes with transition metals. These observations may provide insight into the means by which NO. is packaged in biological systems to preserve its bioactivity and limit its potential O2-dependent toxicity and suggest an important role for NO. in regulation of airway luminal homeostasis. PMID:8248198

  11. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia

    PubMed Central

    Chun, Carlene K.; Ozer, Egon A.; Welsh, Michael J.; Zabner, Joseph; Greenberg, E. P.

    2004-01-01

    Mammalian airways protect themselves from bacterial infection by using multiple defense mechanisms including antimicrobial peptides, mucociliary clearance, and phagocytic cells. We asked whether airways might also target a key bacterial cell-cell communication system, quorum-sensing. The opportunistic pathogen Pseudomonas aeruginosa uses two quorum-sensing molecules, N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), to control production of extracellular virulence factors and biofilm formation. We found that differentiated human airway epithelia inactivated 3OC12-HSL. Inactivation was selective for acyl-HSLs with certain acyl side chains, and C4-HSL was not inactivated. In addition, the capacity for inactivation varied widely in different cell types. 3OC12-HSL was inactivated by a cell-associated activity rather than a secreted factor. These data suggest that the ability of human airway epithelia to inactivate quorum-sensing signal molecules could play a role in the innate defense against bacterial infection. PMID:14970327

  12. Ground truth and CT image model simulation for pathophysiological human airway system

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2010-02-01

    Recurrent problem in medical image segmentation and analysis, establishing a ground truth for assessment purposes is often difficult. Facing this problem, the scientific community orients its efforts towards the development of objective methods for evaluation, namely by building up or simulating the missing ground truth for analysis. This paper focuses on the case of human pulmonary airways and develops a method 1) to simulate the ground truth for different pathophysiological configurations of the bronchial tree as a mesh model, and 2) to generate synthetic 3D CT images of airways associated with the simulated ground truth. The airway model is here built up based on the information provided by a medial axis (describing bronchus shape, subdivision geometry and local radii), which is computed from real CT data to ensure realism and matching with a patient-specific morphology. The model parameters can be further on adjusted to simulate various pathophysiological conditions of the same patient (longitudinal studies). Based on the airway mesh model, a 3D image model is synthesized by simulating the CT acquisition process. The image realism is achieved by including textural features of the surrounding pulmonary tissue which are obtained by segmentation from the same original CT data providing the airway axis. By varying the scanning simulation parameters, several 3D image models can be generated for the same airway mesh ground truth. Simulation results for physiological and pathological configurations are presented and discussed, illustrating the interest of such a modeling process for designing computer-aided diagnosis systems or for assessing their sensitivity, mainly for follow-up studies in asthma and COPD.

  13. Validation of computational fluid dynamics methodology used for human upper airway flow simulations.

    PubMed

    Mylavarapu, Goutham; Murugappan, Shanmugam; Mihaescu, Mihai; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2009-07-22

    An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k-epsilon, standard k-omega, and k-omega Shear Stress Transport (SST)) and with one-equation Spalart-Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k-omega turbulence model resulted in the best agreement with the static pressure measurements, with an average error of approximately 20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway. PMID:19501360

  14. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    PubMed

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. J. Cell. Physiol. 231: 1586-1592, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566264

  15. Expression of RANTES in human airway epithelial cells: effect of corticosteroids and interleukin-4, -10 and -13.

    PubMed Central

    Berkman, N; Robichaud, A; Krishnan, V L; Roesems, G; Robbins, R; Jose, P J; Barnes, P J; Chung, K F

    1996-01-01

    RANTES is a C-C chemokine with strong chemoattractant and activating properties for eosinophils, basophils and T lymphocytes. We investigated the expression of RANTES in human airway epithelial cells and its modulation. Epithelial cells obtained from tracheas of donor lungs were stimulated with interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) or with a mixture of the three cytokines ('cytomix'). Levels of mRNA and protein were assayed by Northern blot and radioimmunoassay, respectively. Each individual cytokine produced a small increase in RANTES protein: IL-1 beta 24 +/- 1 pM, TNF-alpha 13 +/- 7 pM and IFN-gamma 29 +/- 7 pM, but cytomix increased protein to 236 +/- 22 pM (P < 0.002) and mRNA expression by > 20-fold (P < 0.002). Both RANTES protein and mRNA expression were inhibited by dexamethasone (10(-6) M) (38 +/- 5%, P < 0.05 and 55 +/- 8%, P < 0.007, respectively), and by IL-4 (42 +/- 7%, P < 0.03 and 19 +/- 1%, not significant, respectively). No inhibitory effect was observed with IL-10 or IL-13. We also demonstrated in vivo expression of RANTES protein by epithelial cells in human airways using immunohistochemistry. Our data show that human airway epithelial cells can be stimulated to express and release RANTES, an effect that is inhibited by corticosteroids and IL-4, but not by IL-10 and IL-13. Images Figure 1 Figure 2 Figure 3 PMID:8675215

  16. Microarray gene expression analysis of the human airway in patients exposed to sulfur mustard.

    PubMed

    Najafi, Ali; Masoudi-Nejad, Ali; Imani Fooladi, Abbas Ali; Ghanei, Mostafa; Nourani, Mohamad Reza

    2014-08-01

    There is much data about the acute effects of sulfur mustard gas on humans, animals and cells. But less is known regarding the molecular basics of chronic complications in humans. Basically, mustard gas, as an alkylating agent, causes several chronic problems in the eyes, skin and more importantly in the pulmonary system which is the main cause of death. Although recent proteomic research has been carried out on bronchoalveolar lavage (BAL) and serum, but high-throughput transcriptomics have not yet been applied to chronic airway remodeling. This is the first cDNA-microarray report on the chronic human mustard lung disease, 25 years after exposure during the Iran-Iraq war. Microarray transcriptional profiling indicated that a total of 122 genes were significantly dysregulated in tissues located in the airway of patients. These genes are associated with the extracellular matrix components, apoptosis, stress response, inflammation and mucus secretion. PMID:24823320

  17. Cultured human airway epithelial cells (calu-3): a model of human respiratory function, structure, and inflammatory responses.

    PubMed

    Zhu, Yan; Chidekel, Aaron; Shaffer, Thomas H

    2010-01-01

    This article reviews the application of the human airway Calu-3 cell line as a respiratory model for studying the effects of gas concentrations, exposure time, biophysical stress, and biological agents on human airway epithelial cells. Calu-3 cells are grown to confluence at an air-liquid interface on permeable supports. To model human respiratory conditions and treatment modalities, monolayers are placed in an environmental chamber, and exposed to specific levels of oxygen or other therapeutic modalities such as positive pressure and medications to assess the effect of interventions on inflammatory mediators, immunologic proteins, and antibacterial outcomes. Monolayer integrity and permeability and cell histology and viability also measure cellular response to therapeutic interventions. Calu-3 cells exposed to graded oxygen concentrations demonstrate cell dysfunction and inflammation in a dose-dependent manner. Modeling positive airway pressure reveals that pressure may exert a greater injurious effect and cytokine response than oxygen. In experiments with pharmacological agents, Lucinactant is protective of Calu-3 cells compared with Beractant and control, and perfluorocarbons also protect against hyperoxia-induced airway epithelial cell injury. The Calu-3 cell preparation is a sensitive and efficient preclinical model to study human respiratory processes and diseases related to oxygen- and ventilator-induced lung injury. PMID:20948883

  18. 17β-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia

    PubMed Central

    Coakley, Ray D.; Sun, Hengrui; Clunes, Lucy A.; Rasmussen, Julia E.; Stackhouse, James R.; Okada, Seiko F.; Fricks, Ingrid; Young, Steven L.; Tarran, Robert

    2008-01-01

    Normal airways homeostatically regulate the volume of airway surface liquid (ASL) through both cAMP- and Ca2+-dependent regulation of ion and water transport. In cystic fibrosis (CF), a genetic defect causes a lack of cAMP-regulated CFTR activity, leading to diminished Cl– and water secretion from airway epithelial cells and subsequent mucus plugging, which serves as the focus for infections. Females with CF exhibit reduced survival compared with males with CF, although the mechanisms underlying this sex-related disadvantage are unknown. Despite the lack of CFTR, CF airways retain a limited capability to regulate ASL volume, as breathing-induced ATP release activates salvage purinergic pathways that raise intracellular Ca2+ concentration to stimulate an alternate pathway to Cl– secretion. We hypothesized that estrogen might affect this pathway by reducing the ability of airway epithelia to respond appropriately to nucleotides. We found that uridine triphosphate–mediated (UTP-mediated) Cl– secretion was reduced during the periovulatory estrogen maxima in both women with CF and normal, healthy women. Estrogen also inhibited Ca2+ signaling and ASL volume homeostasis in non-CF and CF airway epithelia by attenuating Ca2+ influx. This inhibition of Ca2+ signaling was prevented and even potentiated by estrogen antagonists such as tamoxifen, suggesting that antiestrogens may be beneficial in the treatment of CF lung disease because they increase Cl– secretion in the airways. PMID:19033671

  19. Design, characterization and use of replicate human upper airways for radon dosimetry studies

    SciTech Connect

    Swift, D.L.; Cheng, Y.S.; Su, Y.F.; Yeh, H.C.

    1992-12-31

    The size distribution of inhaled radon progeny aerosols is a significant factor in dosimetry. The role of the airways above the trachea is an important determinant of the respiratory distribution of both attached and unattached progeny aerosols. In order to provide information on the effect of particle size and breathing conditions on the overall and local deposition, we have developed a method to produce a replicate airway model from an in vivo magnetic resonance imaging coronal scan. The model consists of a sandwich of methacrylate elements, each element having the thickness of the scan interval. The transition between successive scan outlines traced on the front and back surfaces of each element is handsculpted in the plastic. The hollow model of the nasal passages thus produced has been characterized both morphologically and fluid-mechanically and has a flow resistance typical of a normal adult. The model has several distinct advantages for studies of radon progeny aerosol deposition. After exposure to a radioaerosol (or to an aerosol of an otherwise measurable substance) the individual elements can be separated to determine local deposition. The dimensions of specific upper-airway regions can be changed by replacing a small number of elements. The model has been incorporated in an exposure system for determining overall nandregional deposition of aerosols whose median diameter is approximately 1.7 nm. Measurements at several flow rates are presented to demonstrate use of the model in radon dosimetry. The model should also be useful for determining the airway deposition of other environmental aerosols.

  20. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    PubMed

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  1. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium. PMID:26927796

  2. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy.

    PubMed

    Chhin, Brigitte; Negre, Didier; Merrot, Olivier; Pham, Jacqueline; Tourneur, Yves; Ressnikoff, Denis; Jaspers, Martine; Jorissen, Mark; Cosset, François-Loïc; Bouvagnet, Patrice

    2009-03-01

    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1-deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT-PCR and western blot, respectively. Human airway epithelial cells that were DNAI1-deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease. PMID:19300481

  3. Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy

    PubMed Central

    Chhin, Brigitte; Negre, Didier; Merrot, Olivier; Pham, Jacqueline; Tourneur, Yves; Ressnikoff, Denis; Jaspers, Martine; Jorissen, Mark; Cosset, François-Loïc; Bouvagnet, Patrice

    2009-01-01

    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease. PMID:19300481

  4. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    PubMed

    Kesic, Matthew J; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  5. In Vitro Spatial and Temporal Analysis of Mycoplasma pneumoniae Colonization of Human Airway Epithelium

    PubMed Central

    Prince, Oliver A.; Krunkosky, Thomas M.

    2014-01-01

    Mycoplasma pneumoniae is an important cause of respiratory disease, especially in school-age children and young adults. We employed normal human bronchial epithelial (NHBE) cells in air-liquid interface culture to study the interaction of M. pneumoniae with differentiated airway epithelium. These airway cells, when grown in air-liquid interface culture, polarize, form tight junctions, produce mucus, and develop ciliary function. We examined both qualitatively and quantitatively the role of mycoplasma gliding motility in the colonization pattern of developing airway cells, comparing wild-type M. pneumoniae and mutants thereof with moderate to severe defects in gliding motility. Adherence assays with radiolabeled mycoplasmas demonstrated a dramatic reduction in binding for all strains with airway cell polarization, independent of acquisition of mucociliary function. Adherence levels dropped further once NHBE cells achieved terminal differentiation, with mucociliary activity strongly selecting for full gliding competence. Analysis over time by confocal microscopy demonstrated a distinct colonization pattern that appeared to originate primarily with ciliated cells, but lateral spread from the base of the cilia was slower than expected. The data support a model in which the mucociliary apparatus impairs colonization yet cilia provide a conduit for mycoplasma access to the host cell surface and suggest acquisition of a barrier function, perhaps associated with tethered mucin levels, with NHBE cell polarization. PMID:24478073

  6. Effect of morphological variability on particle deposition in idealized human airways

    NASA Astrophysics Data System (ADS)

    Lin, Eleanor; Bernate, Jorge A.; Parada San Martin, Daniel A.; Makitani, Yuzo; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2013-11-01

    This study is focused on the effects of variability in airway morphology on particle deposition in the lungs, which in turn impacts disease inception and drug delivery. We generated a parameterized geometry of the human airway derived from Lola: a realistic geometry obtained from CT scans (Zhang et al. J AEROSOL SCI 46, 34 (2012)). The upper airway geometry is parameterized using an elliptic model from Xi and Longest (ANN BIOMED ENG 35, 560 (2007)), with the glottis modified to a realistic triangular shape, based on measurements taken from Lola. The trachea and bronchi are generated using rules adapted from Kitaoka et al. (J Appl Physiol 87, 2207-2217 (1999)), with the first 3 generations closely matching those of Lola. We perform simulations corresponding to a full breathing cycle and illustrate the preferential deposition in each generation. In addition, we compared the deposition features in the idealized geometry to those from simulations in the original scanned airways. Perturbations are then applied to the parameterized geometry to study the effects of morphological variability on deposition patterns. This work is funded by the Army AHPCRC at Stanford.

  7. IDENTIFICATION AND CHARACTERIZATION OF HUMAN AIRWAY EPITHELIAL CELL PROTEINS PHOSPHORYLATED IN RESPONSE TO PARTICULATE MATTER (PM) EXPOSURE.

    EPA Science Inventory

    Multiple studies conducted by NHEERL scientists in recent years have shown that acute exposure to metals found associated with combustion-derived particulate matter (PM) alters phosphoprotein metabolism in human airway epithelial cells causing intracellular signaling. This disreg...

  8. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  9. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    PubMed

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development. PMID:25758640

  10. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  11. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  12. Surfactant synthesis, secretion, and function in alveoli and small airways. Review of the physiologic basis for pharmacologic intervention.

    PubMed

    Mason, R J

    1987-01-01

    Surface-active material is known to lower surface tension at the air/liquid interface and provide alveolar stability. Less well appreciated is the potential role of surface-active material in maintaining the patency of small airways and in transporting particles from the alveolar surface to the small airways. The interactions between the two dominant secretory cells in the terminal lung units, i.e., the alveolar type II cell and the Clara cell, are just starting to be discovered. The biochemical signals for secretion of surface-active material in vivo are still not known. The dominant physiologic stimulus is hyperventilation. Secretion in vitro is stimulated by activation of protein-kinase C (tetradecanoyl phorbol acetate), protein-kinase A (cyclic AMP, beta-adrenergic agonists, cholera toxin), and calcium ionophores (A23187 or ionomycin). The biochemical basis for secretion will be discussed. PMID:2885907

  13. Small is the new big: An overview of newer supraglottic airways for children

    PubMed Central

    Goyal, Rakhee

    2015-01-01

    Almost all supraglottic airways (SGAs) are now available in pediatric sizes. The availability of these smaller sizes, especially in the last five years has brought a marked change in the whole approach to airway management in children. SGAs are now used for laparoscopic surgeries, head and neck surgeries, remote anesthesia; and for ventilation during resuscitation. A large number of reports have described the use of SGAs in difficult airway situations, either as a primary or a rescue airway. Despite this expanded usage, there remains little evidence to support its usage in prolonged surgeries and in the intensive care unit. This article presents an overview of the current options available, suitability of one over the other and reviews the published data relating to each device. In this review, the author also addresses some of the general concerns regarding the use of SGAs and explores newer roles of their use in children. PMID:26702197

  14. The guinea-pig isolated bronchus for the in vitro study of small calibre airway reactivity.

    PubMed Central

    Advenier, C.; Freslon, J. L.

    1985-01-01

    Small calibre airway reactivity to different contractile and relaxant agents was tested in vitro using small segments (about 1 mm long and 0.2 mm in internal diameter) of guinea-pig isolated intralobular bronchi. EC50 values of, and maximal contractile responses to contractile agents were as follows (mean +/- s.e.mean, n = 6): acetylcholine 13.6 +/- 2.6 microM and 1140 +/- 80 mg; histamine 5.2 +/- 0.7 microM and 1094 +/- 95 mg; 5-hydroxytryptamine (5-HT) 0.7 +/- 0.1 microM and 595 +/- 61 mg; prostaglandin F2 alpha (PGF2 alpha) 8.8 +/- 1.2 microM and 1100 +/- 88 mg; tetraethylammonium 2.9 +/- 0.3 mM and 1055 +/- 94 mg; KC1 14.6 +/- 0.5 mM and 965 +/- 81 mg. EC50 values of, and maximal relaxant responses to beta-adrenoceptor stimulants on preparations precontracted with acetylcholine (1.4 X 10(-4)M) were: isoprenaline 0.40 +/- 0.5 microM and 782 +/- 65 mg, n = 18; salbutamol 0.19 +/- 0.02 microM and 494 +/- 55 mg, n = 5; terbutaline 0.87 +/- 0.18 microM and 263 +/- 40 mg n = 5; fenoterol 0.06 +/- 0.02 microM and 722 +/- 47 mg, n = 5; adrenaline 0.71 +/- 0.13 microM and 653 +/- 62 mg, n = 5; noradrenaline 10.8 +/- 0.9 microM and 566 +/- 97 mg, n = 5. Differences in the maximal relaxant effects between the beta-adrenoceptor stimulants showed that the preparation utilized is a relevant model for assessment of the intrinsic activity of these drugs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4052734

  15. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation.

    PubMed

    Nesmith, Alexander Peyton; Agarwal, Ashutosh; McCain, Megan Laura; Parker, Kevin Kit

    2014-10-21

    Many potential new asthma therapies that show promise in the pre-clinical stage of drug development do not demonstrate efficacy during clinical trials. One factor contributing to this problem is the lack of human-relevant models of the airway that recapitulate the tissue-level structural and functional phenotypes of asthma. Hence, we sought to build a model of a human airway musculature on a chip that simulates healthy and asthmatic bronchoconstriction and bronchodilation in vitro by engineering anisotropic, laminar bronchial smooth muscle tissue on elastomeric thin films. In response to a cholinergic agonist, the muscle layer contracts and induces thin film bending, which serves as an in vitro analogue for bronchoconstriction. To mimic asthmatic inflammation, we exposed the engineered tissues to interleukin-13, which resulted in hypercontractility and altered relaxation in response to cholinergic challenge, similar to responses observed clinically in asthmatic patients as well as in studies with animal tissue. Moreover, we reversed asthmatic hypercontraction using a muscarinic antagonist and a β-agonist which are used clinically to relax constricted airways. Importantly, we demonstrated that targeting RhoA-mediated contraction using HA1077 decreased basal tone, prevented hypercontraction, and improved relaxation of the engineered tissues exposed to IL-13. These data suggest that we can recapitulate the structural and functional hallmarks of human asthmatic musculature on a chip, including responses to drug treatments for evaluation of safety and efficacy of new drugs. Further, our airway musculature on a chip provides an important tool for enabling mechanism-based search for new therapeutic targets through the ability to evaluate engineered muscle at the levels of protein expression, tissue structure, and tissue function. PMID:25093641

  16. FLUID DYNAMICS OF THE HUMAN LARYNX AND UPPER TRACHEOBRONCHIAL AIRWAYS

    EPA Science Inventory

    An airflow pattern that is used to study aerosol deposition in the human lung must attempt to be physiologically realistic. ecause of anatomical conditions, caution must be applied in using only calculated Reynolds number values in biological applications to designate either velo...

  17. Quantitative imaging of the human upper airway: instrument design and clinical studies

    NASA Astrophysics Data System (ADS)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  18. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    SciTech Connect

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-11-15

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs.

  19. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures.

    PubMed

    Cholon, Deborah M; O'Neal, Wanda K; Randell, Scott H; Riordan, John R; Gentzsch, Martina

    2010-03-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, DeltaF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in DeltaF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of DeltaF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of DeltaF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  20. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    PubMed Central

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  1. Disruption of β-catenin/CBP signaling inhibits human airway epithelial-mesenchymal transition and repair.

    PubMed

    Moheimani, Fatemeh; Roth, Hollis M; Cross, Jennifer; Reid, Andrew T; Shaheen, Furquan; Warner, Stephanie M; Hirota, Jeremy A; Kicic, Anthony; Hallstrand, Teal S; Kahn, Michael; Stick, Stephen M; Hansbro, Philip M; Hackett, Tillie-Louise; Knight, Darryl A

    2015-11-01

    The epithelium of asthmatics is characterized by reduced expression of E-cadherin and increased expression of the basal cell markers ck-5 and p63 that is indicative of a relatively undifferentiated repairing epithelium. This phenotype correlates with increased proliferation, compromised wound healing and an enhanced capacity to undergo epithelial-mesenchymal transition (EMT). The transcription factor β-catenin plays a vital role in epithelial cell differentiation and regeneration, depending on the co-factor recruited. Transcriptional programs driven by the β-catenin/CBP axis are critical for maintaining an undifferentiated and proliferative state, whereas the β-catenin/p300 axis is associated with cell differentiation. We hypothesized that disrupting the β-catenin/CBP signaling axis would promote epithelial differentiation and inhibit EMT. We treated monolayer cultures of human airway epithelial cells with TGFβ1 in the presence or absence of the selective small molecule ICG-001 to inhibit β-catenin/CBP signaling. We used western blots to assess expression of an EMT signature, CBP, p300, β-catenin, fibronectin and ITGβ1 and scratch wound assays to assess epithelial cell migration. Snai-1 and -2 expressions were determined using q-PCR. Exposure to TGFβ1 induced EMT, characterized by reduced E-cadherin expression with increased expression of α-smooth muscle actin and EDA-fibronectin. Either co-treatment or therapeutic administration of ICG-001 completely inhibited TGFβ1-induced EMT. ICG-001 also reduced the expression of ck-5 and -19 independent of TGFβ1. Exposure to ICG-001 significantly inhibited epithelial cell proliferation and migration, coincident with a down regulation of ITGβ1 and fibronectin expression. These data support our hypothesis that modulating the β-catenin/CBP signaling axis plays a key role in epithelial plasticity and function. PMID:26315281

  2. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    PubMed Central

    2011-01-01

    Background Is Impulse Oscillometry System (IOS) a valuable tool to measure respiratory system function in Children? Asthma (A) is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI) and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC) and augmented RIC (aRIC) models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B) and post- bronchodilation (post-B) conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H) and Small Airway-Impaired (SAI). The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp) and peripheral resistance (Rp) tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle") showed good correlations. Conclusions What are the most useful IOS and model parameters? In this work we

  3. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    PubMed Central

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2015-01-01

    Summary Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  4. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells.

    PubMed

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2016-01-12

    Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1(+)-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM(+) VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a "9 + 2" microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  5. Computational model of soft tissues in the human upper airway.

    PubMed

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus. PMID:25830209

  6. Measurement of Flow Patterns and Dispersion in the Human Airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank E.; Prasad, Ajay K.

    2006-03-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF was used to determine the amount of convective dispersion across an individual generation of the lung.

  7. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  8. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle

    PubMed Central

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C.; Pabelick, Christina M.

    2014-01-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  9. KGF alters gene expression in human airway epithelia: potential regulation of the inflammatory response.

    PubMed

    Prince, L S; Karp, P H; Moninger, T O; Welsh, M J

    2001-07-17

    Keratinocyte growth factor (KGF) regulates several functions in adult and developing lung epithelia; it causes proliferation, stimulates secretion of fluid and electrolytes, enhances repair, and may minimize injury. To gain insight into the molecular processes influenced by KGF, we applied KGF to primary cultures of well-differentiated human airway epithelia and used microarray hybridization to assess the abundance of gene transcripts. Of 7,069 genes tested, KGF changed expression levels of 910. Earlier studies showed that KGF causes epithelial proliferation, and as expected, treatment altered expression of numerous genes involved in cell proliferation. We found that KGF stimulated transepithelial Cl(-) transport, but the number of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) transcripts fell. Although transcripts for ClC-1 and ClC-7 Cl(-) channels increased, KGF failed to augment transepithelial Cl(-) transport in CF epithelia, suggesting that KGF-stimulated Cl(-) transport in differentiated airway epithelia depends on the CFTR Cl(-) channel. Interestingly, KGF decreased transcripts for many interferon (IFN)-induced genes. IFN causes trafficking of Stat dimers to the nucleus, where they activate transcription of IFN-induced genes. We found that KGF prevented the IFN-stimulated trafficking of Stat1 from the cytosol to the nucleus, suggesting a molecular mechanism for KGF-mediated suppression of the IFN-signaling pathway. These results suggest that in addition to stimulating proliferation and repair of damaged airway epithelia, KGF stimulates Cl(-) transport and may dampen the response of epithelial cells to inflammatory mediators. PMID:11459923

  10. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  11. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior. PMID:26586376

  12. Arsenic alters ATP-dependent Ca²+ signaling in human airway epithelial cell wound response.

    PubMed

    Sherwood, Cara L; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2011-05-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca²+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4 μM as Na-arsenite) on wound-induced Ca²+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca²+ signaling in a dose-dependent manner and results in a reshaping of the Ca²+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca²+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  13. Effect of surface tension of mucosal lining liquid on upper airway mechanics in anesthetized humans.

    PubMed

    Kirkness, Jason P; Eastwood, Peter R; Szollosi, Irene; Platt, Peter R; Wheatley, John R; Amis, Terence C; Hillman, David R

    2003-07-01

    Upper airway (UA) patency may be influenced by surface tension (gamma) operating within the (UAL). We examined the role of gamma of UAL in the maintenance of UA patency in eight isoflurane-anesthetized supine human subjects breathing via a nasal mask connected to a pneumotachograph attached to a pressure delivery system. We evaluated 1). mask pressure at which the UA closed (Pcrit), 2). UA resistance upstream from the site of UA collapse (RUS), and 3). mask pressure at which the UA reopened (Po). A multiple pressure-transducer catheter was used to identify the site of airway closure (velopharyngeal in all subjects). UAL samples (0.2 microl) were collected, and the gamma of UAL was determined by using the "pull-off force" technique. Studies were performed before and after the intrapharyngeal instillation of 5 ml of exogenous surfactant (Exosurf, Glaxo Smith Kline). The gamma of UAL decreased from 61.9 +/- 4.1 (control) to 50.3 +/- 5.0 mN/m (surfactant; P < 0.02). Changes in Po, RUS, and Po - Pcrit (change = control - surfactant) were positively correlated with changes in gamma (r2 > 0.6; P < 0.02) but not with changes in Pcrit (r2 = 0.4; P > 0.9). In addition, mean peak inspiratory airflow (no flow limitation) significantly increased (P < 0.04) from 0.31 +/- 0.06 (control) to 0.36 +/- 0.06 l/s (surfactant). These findings suggest that gamma of UAL exerts a force on the UA wall that hinders airway opening. Instillation of exogenous surfactant into the UA lowers the gamma of UAL, thus increasing UA patency and augmenting reopening of the collapsed airway. PMID:12626492

  14. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  15. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR

    PubMed Central

    Stauffer, Brandon; Moriarty, Hannah K.; Kim, Agnes H.; McCarty, Nael A.; Koval, Michael

    2015-01-01

    Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTRwt/wt) and CuFi-5 (CFTRΔF508/ΔF508) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na+ channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells. PMID:26115671

  16. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR.

    PubMed

    Molina, Samuel A; Stauffer, Brandon; Moriarty, Hannah K; Kim, Agnes H; McCarty, Nael A; Koval, Michael

    2015-09-01

    Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTR(wt/wt)) and CuFi-5 (CFTR(ΔF508/ΔF508)) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na(+) channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells. PMID:26115671

  17. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  18. Pharyngeal abscess presenting with upper airway obstruction and atlanto-axial subluxation in a small infant.

    PubMed

    Brookes, A; Moriarty, A

    2000-05-01

    We describe an infant who presented with a combination of upper airway obstruction and atlanto-axial subluxation, secondary to a pharyngeal abscess resulting from cosmetic ear piercing. This combination posed a number of difficulties for the anasthetist and a detailed plan was formulated to prepare the child for anasthesia. PMID:10792140

  19. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  20. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  1. Clinical, functional and pathological correspondence in early stage idiopathic pulmonary fibrosis: evidence for small airway obstruction 1-2.

    PubMed

    Myre, M; Allard, S; Bernard, C; Martin, R R

    1988-01-01

    We describe the clinical, physiological and pathological features of 23 subjects with early stage idiopathic pulmonary fibrosis. Thirteen subjects who had no symptoms had been fortuitously recruited by a routine chest radiograph, whereas the 10 other subjects complained of dyspnea. Twenty-one subjects showed only light to moderate extent of abnormalities on the chest radiograph. Fourteen subjects had a reduced vital capacity whereas 16 and 17 showed a reduced pulmonary compliance and an increase in lung elastic recoil, respectively. Transfer factor was significantly reduced in 18 subjects. Evidence for significant airway obstruction, mainly located at the peripheral level, was demonstrated by a reduced specific lung conductance and upstream conductance in 13 subjects. Airway obstruction was not associated with smoking habits. Bronchial hyperresponsiveness was noted in 50% of the 18 subjects studied. Although fibrosis was mild to moderate in 15 instances, it was only focal, i.e. at least one zone of normal parenchyma in the lung specimen in 17 subjects. Peribronchial fibrosis was established in 8/11 satisfactory biopsy specimens. Significant correlations were observed between rales, the radiological score, some functional indices and the characteristics of fibrosis. We conclude that small airway obstruction documented by physiological and pathological means is frequent in early stage idiopathic pulmonary fibrosis. PMID:3420306

  2. Bubble continuous positive airway pressure in a human immunodeficiency virus-infected infant

    PubMed Central

    McCollum, E. D.; Smith, A.; Golitko, C. L.

    2014-01-01

    SUMMARY World Health Organization-classified very severe pneumonia due to Pneumocystis jirovecii infection is recognized as a life-threatening condition in human immunodeficiency virus (HIV) infected infants. We recount the use of nasal bubble continuous positive airway pressure (BCPAP) in an HIV-infected African infant with very severe pneumonia and treatment failure due to suspected infection with P. jirovecii. We also examine the potential implications of BCPAP use in resource-poor settings with a high case index of acute respiratory failure due to HIV-related pneumonia, but limited access to mechanical ventilation. PMID:21396221

  3. Arachidonate-Regulated Ca2+ Influx in Human Airway Smooth Muscle

    PubMed Central

    Thompson, Michael A.; Prakash, Y. S.

    2014-01-01

    Plasma membrane Ca2+ influx, especially store-operated Ca2+ entry triggered by sarcoplasmic reticulum (SR) Ca2+ release, is a key component of intracellular calcium concentration ([Ca2+]i) regulation in airway smooth muscle (ASM). Agonist-induced Ca2+ oscillations in ASM that involve both influx and SR mechanisms have been previously demonstrated. In nonexcitable cells, [Ca2+]i oscillations involve Ca2+ influx via arachidonic acid (AA) –stimulated channels, which show similarities to store-operated Ca2+ entry, although their molecular identity remains undetermined. Little is known about AA-regulated Ca2+ channels or their regulation in ASM. In enzymatically dissociated human ASM cells loaded with the Ca2+ indicator, fura-2, AA (1–10 μM) triggered [Ca2+]i oscillations that were inhibited by removal of extracellular Ca2+. Other fatty acids, such as the diacylglycerol analog, 1-oleoyl-2-acetyl-SN-glycerol, oleic acid, and palmitic acid (10 μM each), failed to elicit similar [Ca2+]i responses. Preincubation with LaCl3 (1 μM or 1 mM) inhibited AA-induced oscillations. Inhibition of receptor-operated channels (SKF96,365 [10 μM]), lipoxygenase (zileuton [10 μM]), or cyclooxygenase (indomethacin [10 μM]) did not affect oscillation parameters. Inhibition of SR Ca2+ release (ryanodine [10 μM] or inositol 1,4,5-trisphosphate receptor inhibitor, xestospongin C [1 μM]) decreased [Ca2+]i oscillation frequency and amplitude. Small interfering RNA against caveolin-1, stromal interaction molecule 1, or Orai3 (20 nM each) reduced the frequency and amplitude of AA-induced [Ca2+]i oscillations. In ASM cells derived from individuals with asthma, AA increased oscillation amplitude, but not frequency. These results are highly suggestive of a novel AA-mediated Ca2+–regulatory mechanism in human ASM, reminiscent of agonist-induced oscillations. Given the role of AA in ASM intracellular signaling, especially with inflammation, AA-regulated Ca2+ channels could potentially

  4. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors

    PubMed Central

    Teixeira, Vitor H; Nadarajan, Parthiban; Graham, Trevor A; Pipinikas, Christodoulos P; Brown, James M; Falzon, Mary; Nye, Emma; Poulsom, Richard; Lawrence, David; Wright, Nicholas A; McDonald, Stuart; Giangreco, Adam; Simons, Benjamin D; Janes, Sam M

    2013-01-01

    Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to “neutral drift” of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI: http://dx.doi.org/10.7554/eLife.00966.001 PMID:24151545

  5. β2-Agonists Inhibit TNF-α-Induced ICAM-1 Expression in Human Airway Parasympathetic Neurons

    PubMed Central

    Nie, Zhenying; Fryer, Allison D.; Jacoby, David B.

    2012-01-01

    Background Major basic protein released from eosinophils to airway parasympathetic nerves blocks inhibitory M2 muscarinic receptors on the parasympathetic nerves, increasing acetylcholine release and potentiating reflex bronchoconstriction. Recruitment of eosinophils to airway parasympathetic neurons requires neural expression of both intercellular adhesion molecular-1 (ICAM-1) and eotaxin. We have shown that inflammatory cytokines induce eotaxin and ICAM-1 expression in parasympathetic neurons. Objective To test whether the β2 agonist albuterol, which is used to treat asthma, changes TNF-alpha-induced eotaxin and ICAM-1 expression in human parasympathetic neurons. Methods Parasympathetic neurons were isolated from human tracheas and grown in serum-free medium for one week. Cells were incubated with either (R)-albuterol (the active isomer), (S)-albuterol (the inactive isomer) or (R,S)-albuterol for 90 minutes before adding 2 ng/ml TNF-alpha for another 4 hours (for mRNA) or 24 hours (for protein). Results and Conclusions Baseline expression of eotaxin and ICAM-1 were not changed by any isomer of albuterol as measured by real time RT-PCR. TNF-alpha induced ICAM-1 expression was significantly inhibited by (R)-albuterol in a dose dependent manner, but not by (S) or (R,S)-albuterol. Eotaxin expression was not changed by TNF-alpha or by any isomer of albuterol. The β-receptor antagonist propranolol blocked the inhibitory effect of (R)-albuterol on TNF-alpha-induced ICAM-1 expression. Clinical Implication The suppressive effect of (R)-albuterol on neural ICAM-1 expression may be an additional mechanism for decreasing bronchoconstriction, since it would decrease eosinophil recruitment to the airway nerves. PMID:23049757

  6. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  7. Anti-inflammatory effects of methoxyphenolic compounds on human airway cells

    PubMed Central

    2012-01-01

    Background The respiratory epithelium plays a central role in the inflammatory response in asthma and other diseases. Methoxyphenolic compounds are purported to be effective anti-inflammatory agents, but their effects on the airway epithelium have not been well characterized. Methods Human airway cells were stimulated with TNF-α in the presence or absence of 4-substituted methoxyphenols and resveratrol. The expression of various cytokines was measured by qPCR, ELISAs, and protein arrays. Reactive oxygen species (ROS) production was measured with a reactive fluorescent probe (3',6'-diacetate-2',7'-dichlorofluorescein). Activation of NF-κB was measured by nuclear translocation and phosphorylation. Ribonuclear protein association with mRNA was assessed with a biotin-RNA affinity isolation assay. Results Multiple inflammatory mediators were inhibited by methoxyphenols, including: CCL2, CCL5, IL-6, IL-8, ICAM-1, MIF, CXCL1, CXCL10, and Serpin E1. IC50 values were obtained for each compound that showed significant anti-inflammatory activity: diapocynin (20.3 μM), resveratrol (42.7 μM), 2-methoxyhydroquinone (64.3 μM), apocynin (146.6 μM), and 4-amino-2-methoxyphenol (410 μM). The anti-inflammatory activity did not correlate with inhibition of reactive oxygen species production or NF-κB activation. However, methoxyphenols inhibited binding of the RNA-binding protein HuR to mRNA, indicating that they may act post-transcriptionally. Conclusions Methoxyphenols demonstrate anti-inflammatory activity in human airway cells. More potent compounds that act via similar mechanisms may have therapeutic potential as novel anti-inflammatory agents. PMID:22414048

  8. ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...

  9. Cr(VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck

    PubMed Central

    O'hara, Kimberley A.; Vaghjiani, Rasilaben J.; Nemec, Antonia A.; Klei, Linda R.; Barchowsky, Aaron

    2006-01-01

    Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein–DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 μM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3α and STAT3β. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression. PMID:17078813

  10. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells.

    PubMed

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca(2+) increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  11. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  12. Attenuation of human nasal airway responses to bradykinin and histamine by inhibitors of nitric oxide synthase.

    PubMed Central

    Dear, J. W.; Ghali, S.; Foreman, J. C.

    1996-01-01

    1. The effects of inhibitors of nitric oxide synthase and local anaesthetics were studied on changes in human nasal airway patency and albumin extravasation in response to bradykinin and histamine, in vivo. 2. Compared with the action of the vasoconstrictor, ephedrine, 2.5 mumol, NG-nitro-L-arginine methyl ester (L-NAME), 1 mumol alone, did not change the resting value of the minimal cross-sectional area (A min) of the human nasal airway. L-NAME, 0.1 to 10 mumol, produced a dose-related inhibition of the reduction in A min caused by bradykinin, 300 micrograms. NG-monomethyl-L-arginine (L-NMMA), 1 mumol, similarly reduced the effect of bradykinin, 300 micrograms, on A min, but NG-nitro-D-arginine methyl ester (D-NAME), had no effect. L-NAME, 0.1 to 10 mumol, or L-NMMA, 10 mumol, failed to inhibit the effect of histamine, 300 micrograms on A min. 3. The inhibition by L-NAME, 1 mumol of the action of bradykinin, 300 micrograms on A min was maximal between 15 and 30 min after pretreatment with L-NAME. 4. L-NAME, 1 and 10 mumol, inhibited the extravasation of albumin into the nasal cavity induced by bradykinin, 300 micrograms, and also by histamine, 300 micrograms. D-NAME, 1 and 10 mumol had no effect on the extravasation of albumin in response to bradykinin or histamine. 5. L-Arginine, 30 mumol, reversed the effect of L-NAME, 1 mumol, on the bradykinin- and histamine-induced albumin extravasation into the nasal airway. 6. Local anaesthesia of the nasal airway with lignocaine, 10 mg, or benzocaine, 10 mg, failed to inhibit the reduction in A min or the albumin extravasation induced by either bradykinin, 300 micrograms, and histamine, 300 micrograms. 7. We conclude that the extravasation of plasma albumin caused by bradykinin and by histamine involves the generation of nitric oxide. The nasal blockage induced by bradykinin involves nitric oxide generation but the nasal blockage induced by histamine does not. PMID:8818341

  13. A microfluidic model to study fluid dynamics of mucus plug rupture in small lung airways

    PubMed Central

    Hu, Yingying; Bian, Shiyao; Grotberg, John; Filoche, Marcel; White, Joshua; Takayama, Shuichi; Grotberg, James B.

    2015-01-01

    Fluid dynamics of mucus plug rupture is important to understand mucus clearance in lung airways and potential effects of mucus plug rupture on epithelial cells at lung airway walls. We established a microfluidic model to study mucus plug rupture in a collapsed airway of the 12th generation. Mucus plugs were simulated using Carbopol 940 (C940) gels at concentrations of 0.15%, 0.2%, 0.25%, and 0.3%, which have non-Newtonian properties close to healthy and diseased lung mucus. The airway was modeled with a polydimethylsiloxane microfluidic channel. Plug motion was driven by pressurized air. Global strain rates and shear stress were defined to quantitatively describe plug deformation and rupture. Results show that a plug needs to overcome yield stress before deformation and rupture. The plug takes relatively long time to yield at the high Bingham number. Plug length shortening is the more significant deformation than shearing at gel concentration higher than 0.15%. Although strain rates increase dramatically at rupture, the transient shear stress drops due to the shear-thinning effect of the C940 gels. Dimensionless time-averaged shear stress, Txy, linearly increases from 3.7 to 5.6 times the Bingham number as the Bingham number varies from 0.018 to 0.1. The dimensionless time-averaged shear rate simply equals to Txy/2. In dimension, shear stress magnitude is about one order lower than the pressure drop, and one order higher than yield stress. Mucus with high yield stress leads to high shear stress, and therefore would be more likely to cause epithelial cell damage. Crackling sounds produced with plug rupture might be more detectable for gels with higher concentration. PMID:26392827

  14. Test of the Starling resistor model in the human upper airway during sleep

    PubMed Central

    Genta, Pedro R.; Owens, Robert L.; Edwards, Bradley A.; Sands, Scott A.; Loring, Stephen H.; White, David P.; Jackson, Andrew C.; Pedersen, Ole F.; Butler, James P.

    2014-01-01

    The human pharyngeal airway during sleep is conventionally modeled as a Starling resistor. However, inspiratory flow often decreases with increasing effort (negative effort dependence, NED) rather than remaining fixed as predicted by the Starling resistor model. In this study, we tested a major prediction of the Starling resistor model—that the resistance of the airway upstream from the site of collapse remains fixed during flow limitation. During flow limitation in 24 patients with sleep apnea, resistance at several points along the pharyngeal airway was measured using a pressure catheter with multiple sensors. Resistance between the nose and the site of collapse (the upstream segment) was measured before and after the onset of flow limitation to determine whether the upstream dimensions remained fixed (as predicted by the Starling resistor model) or narrowed (a violation of the Starling resistor model). The upstream resistance from early to mid inspiration increased considerably during flow limitation (by 35 ± 41 cmH2O·liter−1·s−1, P < 0.001). However, there was a wide range of variability between patients, and the increase in upstream resistance was strongly correlated with the amount of NED (r = 0.75, P < 0.001). Therefore, patients with little NED exhibited little upstream narrowing (consistent with the Starling model), and patients with large NED exhibited large upstream narrowing (inconsistent with the Starling model). These findings support the idea that there is not a single model of pharyngeal collapse, but rather that different mechanisms may dominate in different patients. These differences could potentially be exploited for treatment selection. PMID:25324514

  15. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells

    SciTech Connect

    Leikauf, G.D.; Zhao, Q.; Zhou, S.; Santrock, J. )

    1993-12-01

    When inhaled, ozone reacts at the airway luminal surface with unsaturated fatty acids contained in the extracellular fluid and plasma membrane to form an aldehyde and hydroxyhydroperoxide. The resulting hydroxyhydroperoxide degrades in aqueous systems to yield a second aldehyde and hydrogen peroxide (H2O2). Previously, we demonstrated that ozone can augment eicosanoid metabolism in bovine airway epithelial cells. To examine structure-activity relationships of ozone-fatty acid degradation products on eicosanoid metabolism in human airway epithelial cells, 3-, 6-, and 9-carbon saturated aldehydes and hydroxyhydroperoxides were synthesized and purified. Eicosanoid metabolism was evaluated by determination of total 3H-activity release from confluent cells previously incubated with [3H]arachidonic acid and by identification of specific metabolites with high performance liquid chromatography and radioimmunoassay. The major metabolites detected were prostaglandin E2, prostaglandin F2 alpha, and 15-hydroxyeicosatetraenoic acid. The 9-carbon aldehyde, nonanal, in contrast to 3- or 6-carbon aldehydes, stimulated release at concentrations > or = 100 microM, suggesting that the stimulatory effect increases with increasing chain length. When tested under identical conditions, the 3-, 6-, and 9-carbon hydroxyhydroperoxides were more potent than the corresponding aldehydes. Again, a greater effect was noted when the chain length was increased. One possible explanation for the increased potency of the hydroxyhydroperoxides over the aldehydes could be due to degradation of the hydroxyhydroperoxide into H2O2 and aldehyde. We consider this an unlikely explanation because responses varied with chain length (although each hydroxyhydroperoxide would produce an equivalent amount of H2O2) and because exposure to H2O2 alone or H2O2 plus hexanal produced a response dissimilar to 1-hydroxy-1-hexanehydroperoxide.

  16. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans.

    PubMed

    Torchio, Roberto; Gobbi, Alessandro; Gulotta, Carlo; Dellacà, Raffaele; Tinivella, Marco; Hyatt, Robert E; Brusasco, Vito; Pellegrino, Riccardo

    2009-08-01

    We investigated whether obesity is associated with airway hyperresponsiveness in otherwise healthy humans and, if so, whether this correlates with a restrictive lung function pattern or a decreased number of sighs at rest and/or during walking. Lung function was studied before and after inhaling methacholine (MCh) in 41 healthy subjects with body mass index ranging from 20 to 56. Breathing pattern was assessed during a 60-min rest period and a 30-min walk. The dose of MCh that produced a 50% decrease in the maximum expiratory flow measured in a body plethysmograph (PD50MCh) was inversely correlated with body mass index (r2=0.32, P<0.001) and waist circumference (r2=0.25, P<0.001). Significant correlations with body mass index were also found with the maximum changes in respiratory resistance (r2=0.19, P<0.001) and reactance (r2=0.40, P<0.001) measured at 5 Hz. PD50MCh was also positively correlated with functional residual capacity (r2=0.56, P<0.001) and total lung capacity (r2=0.59, P<0.001) in men, but not in women. Neither PD50MCh nor body mass index correlated with number of sighs, average tidal volume, ventilation, or breathing frequency. In this study, airway hyperresponsiveness was significantly associated with obesity in otherwise healthy subjects. In obese men, but not in women, airway hyperresponsiveness was associated with the decreases in lung volumes. PMID:19541741

  17. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    PubMed Central

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  18. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  19. IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells.

    PubMed

    Gounni, Abdelilah Soussi; Hamid, Qutayba; Rahman, Sahidur M; Hoeck, Jutta; Yang, Jie; Shan, Lianyu

    2004-08-15

    Recent work has shown the potential importance of IL-9 in allergic diseases. The development of transgenic mice overexpressing IL-9 has suggested a key role for this cytokine in the development of the asthmatic phenotype including airway eosinophilia. In this study, we evaluated the expression of the IL-9R and the effects of IL-9 on human ASM cells by examining the release of Th2-associated chemokines (eotaxin1/CCL11 and thymus- and activation-regulated chemokine (TARC)/CCL17). IL-9R alpha-chain mRNA and surface expression were detected in cultured human airway smooth muscle (ASM) cells. In addition, primary cultured ASM cells, as well as bronchial smooth muscle cells within biopsies of asthmatics and not control subjects, revealed IL-9R protein expression. IL-9 stimulation of human ASM cells resulted in release of eotaxin1/CCL11, but had no effect on the release of TARC/CCL17, in time- and dose-dependent manner. Moreover, in vitro chemotaxis assay demonstrated that conditioned medium from IL-9-stimulated ASM cells attracted human eosinophils. Neutralizing Abs to IL-9, but not to IL-4 or IL-13, reduced significantly IL-9-induced production of eotaxin1/CCL11 from ASM cells. Interestingly, real-time RT-PCR showed that IL-9 up-regulated eotaxin1/CCL11 mRNA expression, but had no effect on TARC/CCL17. Treatment with Act D abrogates IL-9-induced eotaxin1/CCL11 mRNA and protein release by ASM cells. Finally, transfection study using eotaxin1/CCL11 promoter luciferase construct confirmed that IL-9 induced eotaxin1/CCL11 at the transcriptional level. Taken together, these data provide new evidence demonstrating that IL-9-dependent activation of ASM cells contributes to eosinophilic inflammation observed in asthma. PMID:15294996

  20. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells.

    PubMed

    Denning, G M; Wollenweber, L A; Railsback, M A; Cox, C D; Stoll, L L; Britigan, B E

    1998-12-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1alpha. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  1. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  2. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. PMID:26608528

  3. Oscillatory Flow in the Human Airways from the Mouth through Several Bronchial Generations

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Coletti, Filippo; Elkins, Chris; Eaton, John

    2014-11-01

    The time-varying flow is studied experimentally in an anatomically accurate model of the human airways from the mouth through the fourth to eighth generation of the bronchi. The airway geometry is obtained from the CT scan of a healthy adult male of normal height and build. The three-component, three-dimensional mean velocity field is obtained throughout the entire model using phase-locked magnetic resonance velocimetry. A pulsatile pump drives a sinusoidal waveform (inhalation and exhalation) with frequency and stroke-length such that the mean trachea Reynolds number at peak inspiration is Re = 4200 and the Womersley number is α = 7. This represents a regime of moderate exertion. Integral parameters are defined to quantify the degree of velocity profile non-uniformity (which correlates with axial dispersion) and secondary flow strength (which correlates with lateral dispersion). It is found that the streamwise momentum flux and secondary flow strength increase and decrease in proportion throughout most of the breathing cycle. On the other hand, the strength of secondary flows during the 10% of the breathing cycle surrounding flow reversal remains approximately half of that at peak inspiration while the streamwise momentum flux goes to zero. The strong and persistent secondary flows have important implications for dispersion of scalar or particulate contaminants in the lungs.

  4. Proteomic Analysis of Pure Human Airway Gland Mucus Reveals a Large Component of Protective Proteins

    PubMed Central

    Joo, Nam Soo; Evans, Idil Apak T.; Cho, Hyung-Ju; Park, Il-Ho; Engelhardt, John F.; Wine, Jeffrey J.

    2015-01-01

    Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269–319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment. PMID:25706550

  5. Influence of upper airway sensory receptors on respiratory muscle activation in humans.

    PubMed

    Redline, S; Strohl, K P

    1987-07-01

    We reasoned that neural information from upper airway (UA) sensory receptors could influence the relationship between UA and diaphragmatic neuromuscular responses to hypercapnia. In this study, the electromyographic (EMG) activities of the alae nasi (AN), genioglossus (GG), and chest wall (CW) or diaphragm (Di) to ventilatory loading were assessed in six laryngectomized, tracheostomized human subjects and in six subjects breathing with an intact UA before and after topical UA anesthesia. The EMG activities of the UA and thoracic muscles increased at similar rates with increasing hypercapnia in normal subjects, in subjects whose upper airways were anesthetized, and in laryngectomized subjects breathing with a cervical tracheostomy. Furthermore, in the laryngectomized subjects, respiratory muscle EMG activation increased with resistive inspiratory loading (15 cmH2O X l-1 X s) applied at the level of a cervical tracheostomy. At an average expired CO2 fraction of 7.0%, resistive loading resulted in a 93 +/- 26.3% (SE) increase in peak AN EMG activity, a 39 +/- 2.0% increase in peak GG EMG activity, and a 43.2 +/- 16.5% increase in peak CW (Di) EMG activity compared with control values. We conclude that the ventilatory responses of the UA and thoracic muscles to ventilatory loading are not substantially influenced by laryngectomy or UA anesthesia. PMID:3624139

  6. Effects of cigarette smoke extract on human airway smooth muscle cells in COPD.

    PubMed

    Chen, Ling; Ge, Qi; Tjin, Gavin; Alkhouri, Hatem; Deng, Linghong; Brandsma, Corry-Anke; Adcock, Ian; Timens, Wim; Postma, Dirkje; Burgess, Janette K; Black, Judith L; Oliver, Brian G G

    2014-09-01

    We hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA. The effects of CSE on cell attachment and wound healing were measured by toluidine blue attachment and cell tracker green wound healing assays. CSE increased the release of CXCL8 and CXCL1 from human ASM cells, and cells from smokers with COPD produced more CSE-induced CXCL1. The production of MMP-1, -3 and -10, and the deposition of collagen VIII alpha 1 (COL8A1) were increased by CSE, especially in the COPD group which had higher production of MMP-1 and deposition of COL8A1. CSE decreased ASM cell attachment and wound healing in the COPD group only. ASM cells from smokers with COPD were more sensitive to CSE stimulation, which may explain, in part, why some smokers develop COPD. PMID:24969654

  7. Vaccinia Virus Entry, Exit, and Interaction with Differentiated Human Airway Epithelia▿

    PubMed Central

    Vermeer, Paola D.; McHugh, Julia; Rokhlina, Tatiana; Vermeer, Daniel W.; Zabner, Joseph; Welsh, Michael J.

    2007-01-01

    Variola virus, the causative agent of smallpox, enters and exits the host via the respiratory route. To better understand the pathogenesis of poxvirus infection and its interaction with respiratory epithelia, we used vaccinia virus and examined its interaction with primary cultures of well-differentiated human airway epithelia. We found that vaccinia virus preferentially infected the epithelia through the basolateral membrane and released viral progeny across the apical membrane. Despite infection and virus production, epithelia retained tight junctions, transepithelial electrical conductance, and a steep transepithelial concentration gradient of virus, indicating integrity of the epithelial barrier. In fact, during the first four days of infection, epithelial height and cell number increased. These morphological changes and maintenance of epithelial integrity required vaccinia virus growth factor, which was released basolaterally, where it activated epidermal growth factor 1 receptors. These data suggest a complex interaction between the virus and differentiated airway epithelia; the virus preferentially enters the cells basolaterally, exits apically, and maintains epithelial integrity by stimulating growth factor receptors. PMID:17581984

  8. Cigarette Smoke Modulates Expression of Human Rhinovirus-Induced Airway Epithelial Host Defense Genes

    PubMed Central

    Proud, David; Hudy, Magdalena H.; Wiehler, Shahina; Zaheer, Raza S.; Amin, Minaa A.; Pelikan, Jonathan B.; Tacon, Claire E.; Tonsaker, Tabitha O.; Walker, Brandie L.; Kooi, Cora; Traves, Suzanne L.; Leigh, Richard

    2012-01-01

    Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes. PMID:22808255

  9. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer.

    PubMed Central

    Willumsen, N J; Davis, C W; Boucher, R C

    1994-01-01

    The response of cultured human nasal epithelia to hypertonic bathing solutions was tested using ion-selective microelectrode and quantitative microscopy. Raised luminal, but not serosal, osmolality (+/- 150 mM mannitol) decreased Na+ absorption but did not induce Cl- secretion. Raised luminal osmolality increased cell Cl- activity, Na+ activity, and transepithelial resistance and decreased both apical and basolateral membrane potentials and the fractional resistance of the apical membrane; equivalent circuit analysis revealed increases in apical, basolateral, and shunt resistances. Prolonged exposure (10 min) to 430 mosM luminal solution elicited no regulation of any parameter. Optical measurements revealed a reduction in the thickness of preparations only in response to luminal hypertonic solutions. We conclude that (a) airway epithelial cells exhibit asymmetric water transport properties, with the apical membrane water permeability exceeding that of the basolateral membrane; (b) the cellular response to volume loss is a deactivation of the basolateral membrane K+ conductance and the apical membrane Cl- conductance; (c) luminal hypertonicity slows the rate of Na+ absorption but does not induce Cl- secretion; and (d) cell volume loss increases the resistance of the paracellular path. We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall. Images PMID:8040333

  10. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.
    R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  11. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  12. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  13. Numerical investigation of airflow in an idealized human extra-thoracic airway: a comparison study.

    PubMed

    Chen, Jie; Gutmark, Ephraim

    2014-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealized human extra-thoracic airway under different breathing conditions, 10, 30, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard [Formula: see text] and [Formula: see text]-SST Reynolds-averaged Navier-Stokes (RANS) models and the Lattice Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  14. Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study

    PubMed Central

    Chen, Jie; Gutmark, Ephraim

    2013-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  15. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L., Jr.

    1978-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  16. Collective motion of motile cilia: from human airways to model systems

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Feriani, Luigi; Chioccioli, Maurizio; Kotar, Jurij

    Mammalian airways are a fantastic playground of nonlinear phenomena, from the function of individual active filaments, to the emerging collective behaviour, to the rheology of the mucus solution surrounding cilia. We have been investigating the fundamental physics of this system through a variety of model system approaches, both experimental and computational. In the last year we have started measurements on living human cells, observing cilia shape during beating, and measuring speed and coherence of the collective dynamics. We report on significant differences in the collective motion in ciliated cell carpets from a variety of diseases, and we attempt to reconcile the collective dynamical phenotypes to the properties of individual filaments and the mechanics of the environment.

  17. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  18. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells.

    PubMed

    Devor, D C; Singh, A K; Lambert, L C; DeLuca, A; Frizzell, R A; Bridges, R J

    1999-05-01

    Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance

  19. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. PMID:26777422

  20. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways

    PubMed Central

    Lin, Ching-Long; Tawhai, Merryn H.; McLennan, Geoffrey; Hoffman, Eric A.

    2007-01-01

    A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouth piece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to 6 generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry. PMID:17360247

  1. Induction by inhibitors of nitric oxide synthase of hyperresponsiveness in the human nasal airway

    PubMed Central

    Turner, P J; Maggs, J R L; Foreman, J C

    2000-01-01

    The effects of inhibitors of nitric oxide synthase (NOS) on the responsiveness of the human nasal airway were investigated, by measuring the nasal response to histamine and bradykinin. Repeated intranasal administration of NG-nitro-L-arginine methyl ester (L-NAME) or NG-monomethyl-L-arginine (L-NMMA), 1 μmol per nostril every 30 min for 6 h, increased the nasal obstruction induced by histamine, 50–500 μg, and bradykinin, 200 μg per nostril. A single administration of L-NAME, 1 μmol per nostril did not induce hyperresponsiveness to histamine. Pretreatment with L-arginine, 30 μmol, abolished the hyperresponsiveness to histamine caused by L-NAME, 1 μmol. Pretreatment with NG-nitro-D-arginine methyl ester (D-NAME), 1 μmol, did not induce hyperresponsiveness to histamine. Repeated administration of L-NAME, 1 μmol, caused a significant reduction in the amount of nitric oxide measured in the nasal cavity. Neither L-NMMA, 1 μmol, nor L-arginine, 30 μmol, altered the nasal hyperresponsiveness induced by platelet activating factor (PAF), 60 μg. PAF did not alter the levels of nitric oxide in the nasal cavity. The results suggest that inhibition of nitric oxide synthase induces a hyperresponsiveness in the human nasal airway, and that this occurs by a mechanism different from that involved in PAF-induced hyperresponsiveness. PMID:10991932

  2. Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis

    SciTech Connect

    Bao, X.; Sinha, M. |; Liu, T.; Hong, C.; Luxon, B.A. |; Garofalo, R.P. ||; Casola, A. ||

    2008-04-25

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections in infants, elderly and immunocompromised patients. Little is known about the response to hMPV infection of airway epithelial cells, which play a pivotal role in initiating and shaping innate and adaptive immune responses. In this study, we analyzed the transcriptional profiles of airway epithelial cells infected with hMPV using high-density oligonucleotide microarrays. Of the 47,400 transcripts and variants represented on the Affimetrix GeneChip Human Genome HG-U133 plus 2 array, 1601 genes were significantly altered following hMPV infection. Altered genes were then assigned to functional categories and mapped to signaling pathways. Many up-regulated genes are involved in the initiation of pro-inflammatory and antiviral immune responses, including chemokines, cytokines, type I interferon and interferon-inducible proteins. Other important functional classes up-regulated by hMPV infection include cellular signaling, gene transcription and apoptosis. Notably, genes associated with antioxidant and membrane transport activity, several metabolic pathways and cell proliferation were down-regulated in response to hMPV infection. Real-time PCR and Western blot assays were used to confirm the expression of genes related to several of these functional groups. The overall result of this study provides novel information on host gene expression upon infection with hMPV and also serves as a foundation for future investigations of genes and pathways involved in the pathogenesis of this important viral infection. Furthermore, it can facilitate a comparative analysis of other paramyxoviral infections to determine the transcriptional changes that are conserved versus the one that are specific to individual pathogens.

  3. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells

    PubMed Central

    Berntsen, P.; Park, C. Y.; Rothen-Rutishauser, B.; Tsuda, A.; Sager, T. M.; Molina, R. M.; Donaghey, T. C.; Alencar, A. M.; Kasahara, D. I.; Ericsson, T.; Millet, E. J.; Swenson, J.; Tschumperlin, D. J.; Butler, J. P.; Brain, J. D.; Fredberg, J. J.; Gehr, P.; Zhou, E. H.

    2010-01-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40–100 nm and less than 44 μm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 μm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 μM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  4. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    PubMed Central

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. PMID:27354786

  5. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells.

    PubMed

    Faksh, Arij; Britt, Rodney D; Vogel, Elizabeth R; Thompson, Michael A; Pandya, Hitesh C; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2016-01-15

    Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-κB. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma. PMID:26589477

  6. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage.

    PubMed

    Cheng, K H; Cheng, Y S; Yeh, H C; Swift, D L

    1997-11-01

    This paper presents measurements of the geometric shape, perimeter, and cross-sectional area of the human oral passage (from oral entrance to midtrachea) and relates them through dimensionless parameters to the depositional mass transfer of ultrafine particles. Studies were performed in two identical replicate oral passage models, one of which was cut orthogonal to the airflow direction into 3 mm elements for measurement, the other used intact for experimental measurements of ultrafine aerosol deposition. Dimensional data were combined with deposition measurements in two sections of the oral passage (the horizontal oral cavity and the vertical laryngeal-tracheal airway) to calculate the dimensionless mass transfer Sherwood number (Sh). Mass transfer theory suggests that Sh should be expressible as a function of the Reynolds number (Re) and the Schmidt number (Sc). For inhalation and exhalation through the oral cavity (O-C), an empirical relationship was obtained for flow rates from 7.5-30.0 1 min-1: Sh = 15.3 Re0.812 Sc-0.986 An empirical relationship was likewise obtained for the laryngeal-tracheal (L-T) region over the same range of flow rates: Sh = 25.9 Re0.861 Sc-1.37 These relationships were compared to heat transfer in the human upper airways through the well-known analogy between heat and mass transfer. The Reynolds number dependence for both the O-C and L-T relationships was in good agreement with that for heat transfer. The mass transfer coefficients were compared to extrathoracic uptake of gases and vapors and showed similar flow rate dependence. For gases and vapors that conform to the zero concentration boundary condition, the empirical relationships are applicable when diffusion coefficients are taken into consideration. PMID:9407288

  7. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells.

    PubMed

    Berntsen, P; Park, C Y; Rothen-Rutishauser, B; Tsuda, A; Sager, T M; Molina, R M; Donaghey, T C; Alencar, A M; Kasahara, D I; Ericsson, T; Millet, E J; Swenson, J; Tschumperlin, D J; Butler, J P; Brain, J D; Fredberg, J J; Gehr, P; Zhou, E H

    2010-06-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  8. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model.

    PubMed

    Bonfield, Tracey L; Koloze, Mary; Lennon, Donald P; Zuchowski, Brandon; Yang, Sung Eun; Caplan, Arnold I

    2010-12-01

    Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma. PMID:20817776

  9. Oxidative Stress Regulates CFTR Gene Expression in Human Airway Epithelial Cells through a Distal Antioxidant Response Element

    PubMed Central

    Zhang, Zhaolin; Leir, Shih-Hsing

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at −44 kb and −35 kb from the gene. The −35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the −44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the −44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-κB binding site are required for activation of the –44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the −35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. PMID:25259561

  10. The impact of vitamin D on asthmatic human airway smooth muscle.

    PubMed

    Hall, Sannette C; Fischer, Kimberly D; Agrawal, Devendra K

    2016-02-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624