Science.gov

Sample records for human small airway

  1. RNA-Seq quantification of the human small airway epithelium transcriptome

    PubMed Central

    2012-01-01

    Background The small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq). Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking. PMID:22375630

  2. 4-hydroxynonenal regulates mitochondrial function in human small airway epithelial cells.

    PubMed

    Galam, Lakshmi; Failla, Athena; Soundararajan, Ramani; Lockey, Richard F; Kolliputi, Narasaiah

    2015-12-01

    Prolonged exposure to oxidative stress causes Acute Lung Injury (ALI) and significantly impairs pulmonary function. Previously we have demonstrated that mitochondrial dysfunction is a key pathological factor in hyperoxic ALI. While it is known that hyperoxia induces the production of stable, but toxic 4-hydroxynonenal (4-HNE) molecule, it is unknown how the reactive aldehyde disrupts mitochondrial function. Our previous in vivo study indicated that exposure to hyperoxia significantly increases 4-HNE-Protein adducts, as well as levels of MDA in total lung homogenates. Based on the in vivo studies, we explored the effects of 4-HNE in human small airway epithelial cells (SAECs). Human SAECs treated with 25 μM of 4-HNE showed a significant decrease in cellular viability and increased caspase-3 activity. Moreover, 4-HNE treated SAECs showed impaired mitochondrial function and energy production indicated by reduced ATP levels, mitochondrial membrane potential, and aconitase activity. This was followed by a significant decrease in mitochondrial oxygen consumption and depletion of the reserve capacity. The direct effect of 4-HNE on the mitochondrial respiratory chain was confirmed using Rotenone. Furthermore, SAECs treated with 25 μM 4-HNE showed a time-dependent depletion of total Thioredoxin (Trx) proteins and Trx activity. Taken together, our results indicate that 4-HNE induces cellular and mitochondrial dysfunction in human SAECs, leading to an impaired endogenous antioxidant response. PMID:26484418

  3. Mitochondrial alteration in malignantly transformed human small airway epithelial cells induced by alpha particles

    PubMed Central

    Zhang, Suping; Wen, Gengyun; Huang, Sarah XL; Wang, Jianrong; Tong, Jian; Hei, Tom K.

    2012-01-01

    Human small airway epithelial cells (SAECs) immortalized with human telomerase reverse transcriptase (h-TERT) were exposed to either a single or multiple doses of α particles. Irradiated cells showed a dose-dependent cytotoxicity and progressive neoplastic transformation phenotype. These included an increase in saturation density of growth, a greater resistance to PALA, faster anchorage-independent growth, reinforced cell invasion and c-Myc expression. In addition, the transformed cells formed progressively growing tumors upon inoculation into athymic nude mice. Specifically, α-irradiation induced damage to both mitochondrial DNA (mtDNA) and mitochondrial functions in transformed cells as evidenced by increased mtDNA copy number and common deletion, decreased oxidative phosphorylation (OXPHOS) activity as measured by cytochrome C oxidase (COX) activity and oxygen consumption. There was a linear correlation between mtDNA copy number, common deletion, COX activity and cellular transformation represented by soft agar colony formation and c-Myc expression. These results suggest that mitochondria are associated with neoplastic transformation of SAEC cells induced by α particles, and that the oncogenesis process may depend not only on the genomes inside the nucleus, but also on the mitochondrial DNA outside the nucleus. PMID:22644783

  4. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  5. Role of Small Airways in Asthma.

    PubMed

    Finkas, Lindsay K; Martin, Richard

    2016-08-01

    Asthma is an inflammatory condition of both the small and large airways. Recently the small airways have gained attention as studies have shown significant inflammation in the small airways in all severities of asthma. This inflammation has correlated with peripheral airway resistance and as a result, noninvasive methods to reliably measure small airways have been pursued. In addition, recent changes in asthma inhalers have led to alterations in drug formulations and the development of extrafine particle inhalers that improve delivery to the distal airways. PMID:27401620

  6. Site of Fluid Secretion in Small Airways.

    PubMed

    Flores-Delgado, Guillermo; Lytle, Christian; Quinton, Paul M

    2016-03-01

    The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways. PMID:26562629

  7. Coordinate Control of Expression of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to Cigarette Smoking

    PubMed Central

    Hübner, Ralf-Harto; Schwartz, Jamie D; De Bishnu, P; Ferris, Barbara; Omberg, Larsson; Mezey, Jason G; Hackett, Neil R; Crystal, Ronald G

    2009-01-01

    Nuclear factor erythroid 2–related factor 2 (Nrf2) is an oxidant-responsive transcription factor known to induce detoxifying and antioxidant genes. Cigarette smoke, with its large oxidant content, is a major stress on the cells of small airway epithelium, which are vulnerable to oxidant damage. We assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample the small airway epithelium in healthy-nonsmoker and healthy-smoker, and gene expression was assessed using microarrays. Relative to nonsmokers, Nrf2 protein in the small airway epithelium of smokers was activated and localized in the nucleus. The human homologs of 201 known murine Nrf2-modulated genes were identified, and 13 highly smoking-responsive Nrf2-modulated genes were identified. Construction of an Nrf2 index to assess the expression levels of these 13 genes in the airway epithelium of smokers showed coordinate control, an observation confirmed by quantitative PCR. This coordinate level of expression of the 13 Nrf2-modulated genes was independent of smoking history or demographic parameters. The Nrf2 index was used to identify two novel Nrf2-modulated, smoking-responsive genes, pirin (PIR) and UDP glucuronosyltransferase 1-family polypeptide A4 (UGT1A4). Both genes were demonstrated to contain functional antioxidant response elements in the promoter region. These observations suggest that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cells, and that there is variability within the human population in the Nrf2 responsiveness to oxidant burden. PMID:19593404

  8. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  9. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  10. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  11. Techniques of assessing small airways dysfunction

    PubMed Central

    McNulty, William; Usmani, Omar S.

    2014-01-01

    The small airways are defined as those less than 2 mm in diameter. They are a major site of pathology in many lung diseases, not least chronic obstructive pulmonary disease (COPD) and asthma. The small airways are frequently involved early in the course of these diseases, with significant pathology demonstrable often before the onset of symptoms or changes in spirometry and imaging. Despite their importance, they have proven relatively difficult to study. This is in part due to their relative inaccessibility to biopsy and their small size which makes their imaging difficult. Traditional lung function tests may only become abnormal once there is a significant burden of disease within them. This has led to the term ‘the quiet zone’ of the lung. In recent years, more specialised tests have been developed which may detect these changes earlier, perhaps offering the possibility of earlier diagnosis and intervention. These tests are now moving from the realms of clinical research laboratories into routine clinical practice and are increasingly useful in the diagnosis and monitoring of respiratory diseases. This article gives an overview of small airways physiology and some of the routine and more advanced tests of airway function. PMID:26557240

  12. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  13. BEHAVIOR OF CIGARETTE SMOKE IN HUMAN AIRWAYS

    EPA Science Inventory

    Experimental deposition patterns of cigarette smoke in surrogate human airway systems are very heterogeneous. article deposits are enhanced at predictable, well-defined morphological regions; most specifically, carinal ridges within bifurcation zones, and along posterior sections...

  14. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM DHILDHOOD TO ADULT

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  15. Robust system for human airway-tree segmentation

    NASA Astrophysics Data System (ADS)

    Graham, Michael W.; Gibbs, Jason D.; Higgins, William E.

    2008-03-01

    Robust and accurate segmentation of the human airway tree from multi-detector computed-tomography (MDCT) chest scans is vital for many pulmonary-imaging applications. As modern MDCT scanners can detect hundreds of airway tree branches, manual segmentation and semi-automatic segmentation requiring significant user intervention are impractical for producing a full global segmentation. Fully-automated methods, however, may fail to extract small peripheral airways. We propose an automatic algorithm that searches the entire lung volume for airway branches and poses segmentation as a global graph-theoretic optimization problem. The algorithm has shown strong performance on 23 human MDCT chest scans acquired by a variety of scanners and reconstruction kernels. Visual comparisons with adaptive region-growing results and quantitative comparisons with manually-defined trees indicate a high sensitivity to peripheral airways and a low false-positive rate. In addition, we propose a suite of interactive segmentation tools for cleaning and extending critical areas of the automatically segmented result. These interactive tools have potential application for image-based guidance of bronchoscopy to the periphery, where small, terminal branches can be important visual landmarks. Together, the automatic segmentation algorithm and interactive tool suite comprise a robust system for human airway-tree segmentation.

  16. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia. PMID:7740210

  17. Human airway epithelia express catalytically active NEU3 sialidase

    PubMed Central

    Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Sun, Wenji; Luzina, Irina G.; Webb, Tonya J.; Atamas, Sergei P.; Passaniti, Antonino; Twaddell, William S.; Puché, Adam C.; Wang, Lai-Xi; Cross, Alan S.; Goldblum, Simeon E.

    2014-01-01

    Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase. PMID:24658138

  18. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model.

    PubMed

    Sisler, Jennifer D; Pirela, Sandra V; Friend, Sherri; Farcas, Mariana; Schwegler-Berry, Diane; Shvedova, Anna; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2015-01-01

    The printer is one of the most common office equipment. Recently, it was reported that toner formulations for printing equipment constitute nano-enabled products (NEPs) and contain engineered nanomaterials (ENMs) that become airborne during printing. To date, insufficient research has been performed to understand the potential toxicological properties of printer-emitted particles (PEPs) with several studies using bulk toner particles as test particles. These studies demonstrated the ability of toner particles to cause chronic inflammation and fibrosis in animal models. However, the toxicological implications of inhalation exposures to ENMs emitted from laser printing equipment remain largely unknown. The present study investigates the toxicological effects of PEPs using an in vitro alveolar-capillary co-culture model with Human Small Airway Epithelial Cells (SAEC) and Human Microvascular Endothelial Cells (HMVEC). Our data demonstrate that direct exposure of SAEC to low concentrations of PEPs (0.5 and 1.0 µg/mL) caused morphological changes of actin remodeling and gap formations within the endothelial monolayer. Furthermore, increased production of reactive oxygen species (ROS) and angiogenesis were observed in the HMVEC. Analysis of cytokine and chemokine levels demonstrates that interleukin (IL)-6 and MCP-1 may play a major role in the cellular communication observed between SAEC and HMVEC and the resultant responses in HMVEC. These data indicate that PEPs at low, non-cytotoxic exposure levels are bioactive and affect cellular responses in an alveolar-capillary co-culture model, which raises concerns for potential adverse health effects. PMID:25387250

  19. Basolateral chloride current in human airway epithelia.

    PubMed

    Itani, Omar A; Lamb, Fred S; Melvin, James E; Welsh, Michael J

    2007-10-01

    Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement. PMID:17660331

  20. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 [mu]m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 [mu]m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 [mu]m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  1. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  2. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells

    PubMed Central

    Mihalchik, Amy L.; Ding, Weiqiang; Porter, Dale W.; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D.; Stefaniak, Aleksandr B.; Snyder-Talkington, Brandi N.; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-01-01

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose–response cell proliferation assay showed that low doses of ND-MWCNT (1.2 mg/ml) or MWCNT-7 (0.1 mg/ml) increased cellular proliferation, while the highest dose of 120 mg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6 h and were internalized by 24 h. ROS were elevated at 6 and 24 h in ND-MWCNT exposed cells, but only at 6 h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2 mg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. PMID:25797581

  3. Divers' lung function: small airways disease?

    PubMed Central

    Thorsen, E; Segadal, K; Kambestad, B; Gulsvik, A

    1990-01-01

    Pulmonary function was measured in 152 professional saturation divers and in a matched control group of 106 subjects. Static lung volumes, dynamic lung volumes and flows, transfer factor for carbon monoxide (T1CO), transfer volume per unit alveolar volume (KCO), delta-N2, and closing volume (CV) were measured and compared with reference values from recent Scandinavian studies, British submariners, and the European Community for Coal and Steel (ECCS) recommended reference values. Diving exposure was assessed as years of diving experience, total number of days in saturation and depth, and as the product of days in saturation and mean depth. Divers had significantly lower values for forced expired volume in one second (FEV1), FEV1/forced vital capacity (FVC) ratio, FEF25-75%, FEF75-85%, FEF50%, FEF75%, T1CO, and KCO compared with the controls and a significantly higher CV. There was a positive correlation between diving exposure and CV, whereas the other variables had negative correlations with diving exposure. Values for the control group were not different from the predictive values of Scandinavian reference studies or British submariners, although the ECCS standard predicted significantly lower values for the lung function variables both in divers and the control group. The pattern of the differences in lung function variables between the divers and controls is consistent with small airways dysfunction and with the transient changes in lung function found immediately after a single saturation dive. The association between reduced pulmonary function and previous diving exposure further indicates the presence of cumulative long term effects of diving on pulmonary function. PMID:2393630

  4. Measuring and imaging small airways dysfunction in asthma

    PubMed Central

    2013-01-01

    Asthma is a chronic inflammatory disorder of the airways causing typical symptoms, and the diagnosis is supported by evidence of airflow obstruction which is variable, reversible or inducible. However, standard assessment of lung function with spirometry does not measure dysfunction in small airways which are < 2 mm in diameter towards the periphery of the lung. These airways make only a small contribution to airway resistance under normal circumstances. Nevertheless, there is mounting evidence that pathology and dysfunction in these small airways are implicated in the pathogenesis and natural history of asthma. Using forced oscillation and the multibreath nitrogen washout techniques, uneven ventilation (ventilation heterogeneity) due to small airways dysfunction has been shown to be an important marker of asthma disease activity, even in the absence of abnormalities in standard spirometric measurements. Recent advances in imaging research, particularly with hyperpolarised gas magnetic resonance imaging, have also given insights into the significance and dynamic nature of ventilation heterogeneity in asthma. The challenge is to integrate these new physiological and imaging insights to further our understanding of asthma and facilitate potential new treatments. PMID:24260727

  5. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-01

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  6. Clinical characteristics of adult asthma associated with small airway dysfunction.

    PubMed

    Kjellberg, S; Houltz, B K; Zetterström, O; Robinson, P D; Gustafsson, Per M

    2016-08-01

    Suboptimal asthma control is common despite modern asthma therapy. The degree of peripheral airway involvement remains unclear and poor medication delivery to these regions might be a contributing reason for this failure in obtaining adequate symptom control. A cohort of 196 adults (median (range) age 44 (18-61) years, 109 females, 54 ex-smokers, six current smokers) with physician-diagnosed asthma were recruited from primary care. Subjects were characterized clinically by interviews, questionnaires, skin prick tests (SPT) and blood eosinophil counts. Lung function was assessed by spirometry, impulse oscillometry (IOS) and nitrogen multiple breath washout (N2 MBW). IOS assessed peripheral airway resistance (FDR, frequency dependence of resistance). N2 MBW assessed global ventilation inhomogeneity (LCI, lung clearance index), specific indices of peripheral airway function (Scond × VT and Sacin × VT; VT, tidal volume), and inter-regional inhomogeneity (specific ventilation ratio). Never-smoking healthy cohorts of 158 and 400 adult subjects provided local reference values for IOS and N2 MBW variables, respectively. Peripheral airway dysfunction was detected in 31% (FDR or specific ventilation ratio) to 47% (Scond x VT) of subjects. Risk factors for peripheral airway dysfunction were identified. Among subjects with low FEV1 and either positive smoking history and/or blood eosinophilia (>4.0%), 63% had abnormality across all peripheral airway outcomes, whilst only one subject was completely normal. Abnormal peripheral airway function was present in a large proportion of adult asthmatics at baseline. Reduced FEV1, a positive smoking history, and/or blood eosinophilia identified "a small airway asthma subtype" that might benefit from peripheral airway targeted therapy. PMID:27492518

  7. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense.

    PubMed

    Li, Xiaopeng; Tang, Xiao Xiao; Vargas Buonfiglio, Luis G; Comellas, Alejandro P; Thornell, Ian M; Ramachandran, Shyam; Karp, Philip H; Taft, Peter J; Sheets, Kelsey; Abou Alaiwa, Mahmoud H; Welsh, Michael J; Meyerholz, David K; Stoltz, David A; Zabner, Joseph

    2016-04-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl(-) and bicarbonate (HCO3 (-)) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl(-) and HCO3 (-) transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. PMID:26801568

  8. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  9. Cells and Culture Systems Used to Model the Small Airway Epithelium.

    PubMed

    Bhowmick, Rudra; Gappa-Fahlenkamp, Heather

    2016-06-01

    The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems. PMID:27071933

  10. Development of a realistic human airway model.

    PubMed

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained. PMID:22558834

  11. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1989-11-01

    During the report period significant progress on the quantitative understanding of regional upper airway deposition of airborne particle has been realized. Replicate models of the human upper airways obtained from post-mortem casting of the nasal, oral, pharyngeal, laryngeal and upper tracheal regions and in vivo magnetic resonance imaging (MRI) of the same regions of adults and children have been employed to determine the overall and local deposition characteristics of aerosols in the ultrafine (1--100 {mu}m diameter) and fine (0.8--12 {mu}m diameter) region. Studies have been carried out for both nasal and oral breathing during inspiratory and expiratory flow at constant flow rates representative of rest and states of exercise. The results of these investigations indicate that particles in the size range of unattached'' radon progeny (1--3 nm) are deposited in both the nasal and oral passages with high efficiency (60--80%) for both inspiration and expiration, with the nasal deposition being somewhat greater (5--10%) than oral deposition. The effect of flow rate on upper airway deposition for both pathways is not great; data analysis indicates that the deposition for all flow rates from 4--50 liters/minute can be grouped by plotting deposition vs Q-{sup 1/8}, where Q is flow rate, a far weaker dependency than observed for inertial deposition. Diffusional transport is the primary mechanism of deposition, and size dependence can be accounted for by plotting, deposition percent vs D{sup n} where D is particle diffusion coefficient and n ranges from 0.5--0.66. 2 refs.

  12. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  13. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    PubMed Central

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  14. A computational prediction for the effective drug and stem cell treatment of human airway burns.

    PubMed

    Park, Seungman

    2016-08-01

    Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-element method. From there, the depth of burned tissue is estimated for a range of exposure times. Additionally, the effectiveness of drug or stem cell delivery to the burned airway tissue is considered for a range of drug or cell sizes. Results showed that the highest temperature and lowest heat flux regions are observed near the pharynx and just upstream of the glottis. It was found that large particles such as stem cells (>20 μm) are effective for treatment of the upper airways, whereas small particles (<10 μm) such as drug nanoparticles are effective in the lower airways. PMID:26513000

  15. CD38 and Airway hyperresponsiveness: Studies on human airway smooth muscle cells and mouse models

    PubMed Central

    Guedes, Alonso GP; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-01-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility and airway smooth muscle (ASM) proliferation contribute to airway hyperresponsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g. TNF-α) that requires activation of MAP kinases and the transcription factors, NF-ƙB and AP-1 and post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3’ Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in CD38 exhibit reduced airway responsiveness to inhaled methacholine relative to response in wild-type mice. Intranasal challenge of CD38 deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared to wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyperresponsiveness to inhaled methacholine in the Cd38 deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyperresponsiveness, a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and/or activity are warranted. PMID:25594684

  16. Deposition of graphene nanomaterial aerosols in human upper airways.

    PubMed

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced. PMID:26317666

  17. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  18. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue

    PubMed Central

    2011-01-01

    Introduction Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student's t-test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results Thirty-one ARDS patients (A: PaO2/FiO2 ≤200, 45 ± 14 years, 16 males) and 11 controls (C: 52 ± 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 ± 27.2%, C:76.7 ± 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 ± 35.2%, C:21.8 ± 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 ± 54.3 μm, C:86.4 ± 33.3 μm, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P ≤0.03). The extension of normal epithelium

  19. Activity of abundant antimicrobials of the human airway.

    PubMed

    Travis, S M; Conway, B A; Zabner, J; Smith, J J; Anderson, N N; Singh, P K; Greenberg, E P; Welsh, M J

    1999-05-01

    Human airways produce several antimicrobial factors; the most abundant are lysozyme and lactoferrin. Despite their likely importance in preventing infection, and their possible key role in the pathogenesis of cystic fibrosis (CF), we know little about their antibacterial activity in the context of the CF airway. We found that abundant airway antimicrobial factors kill common CF pathogens, although Burkholderia was relatively resistant. To study the antibacterial activity, we developed a rapid, sensitive, and quantitative in vitro luminescence assay. Because NaCl concentrations may be elevated in CF airway surface liquid, we tested the effect of salt on antibacterial activity. Activity of individual factors and of airway lavage fluid was inhibited by high ionic strength, and it was particularly sensitive to divalent cations. However, it was not inhibited by nonionic osmolytes and thus did not require hypotonic liquid. The inhibition by ionic strength could be partially compensated by increased concentrations of antibacterial factors, thus there was no one unique salt concentration for inhibition. CF airway secretions also contain abundant mucin and elastase; however, these had no effect on antibacterial activity of lysozyme, lactoferrin, or airway lavage fluids. When studied at low NaCl concentrations, CF and non-CF airway lavage fluids contained similar levels of antibacterial activity. These results suggest approaches toward developing treatments aimed at preventing or reducing airway infections in individuals with CF. PMID:10226057

  20. Human airway xenograft models of epithelial cell regeneration.

    PubMed

    Puchelle, E; Peault, B

    2000-01-01

    Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa. PMID:11667974

  1. Human airway measurement from CT images

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Reeves, Anthony P.; Fotin, Sergei; Apanasovich, Tatiyana; Yankelevitz, David

    2008-03-01

    A wide range of pulmonary diseases, including common ones such as COPD, affect the airways. If the dimensions of airway can be measured with high confidence, the clinicians will be able to better diagnose diseases as well as monitor progression and response to treatment. In this paper, we introduce a method to assess the airway dimensions from CT scans, including the airway segments that are not oriented axially. First, the airway lumen is segmented and skeletonized, and subsequently each airway segment is identified. We then represent each airway segment using a segment-centric generalized cylinder model and assess airway lumen diameter (LD) and wall thickness (WT) for each segment by determining inner and outer wall boundaries. The method was evaluated on 14 healthy patients from a Weill Cornell database who had two scans within a 2 month interval. The corresponding airway segments were located in two scans and measured using the automated method. The total number of segments identified in both scans was 131. When 131 segments were considered altogether, the average absolute change over two scans was 0.31 mm for LD and 0.12 mm for WT, with 95% limits of agreement of [-0.85, 0.83] for LD and [-0.32, 0.26] for WT. The results were also analyzed on per-patient basis, and the average absolute change was 0.19 mm for LD and 0.05 mm for WT. 95% limits of agreement for per-patient changes were [-0.57, 0.47] for LD and [-0.16, 0.10] for WT.

  2. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening.

    PubMed

    Hild, Marc; Jaffe, Aron B

    2016-01-01

    The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc. PMID:27171795

  3. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  4. AIRWAY EPITHELIAL CELL RESPONSE TO HUMAN METAPNEUMOVIRUS INFECTION

    PubMed Central

    X, Bao; T, Liu; L, Spetch; D, Kolli; R.P, Garofalo; A, Casola

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immuno-modulatory mediators. PMID:17655903

  5. Byssinosis and small airways disease: Terminal progress report

    SciTech Connect

    Bradford, J.M.

    1989-01-01

    In a study of byssinosis and small-airway disease, pulmonary-function measurements including helium and oxygen flow volume curves were made on 470 cotton mill employees exposed to various dust levels. The employees in these cotton mills had been screened previously for pulmonary abnormalities, and some employees had moved to work areas with lower dust levels. Results showed that there was no significant increase in bronchitis or byssinosis in the dust areas nor were there any significant decreases in the percentages of normal forced vital capacity (PFVC) or forced expiratory volume in 1 second (PFEV1) in the dusty areas. These results differ from those reported from mills in which no previous pulmonary testing had been conducted. A strong smoking/tenure/dust exposure interaction on PFVC and PFEV1 was found, with the long-tenured, high-dust-exposure, smokers having the lowest PFVC and PFEV1. There was no significant increase in small airways abnormalities with increased dust and smoking, but the mean change in the density dependence ratio is too small to have clinical significance.

  6. Small Airway Targeted Therapy in Pediatric Asthma: Are We There Yet?

    PubMed Central

    Blake, Kathryn

    2013-01-01

    Asthma is characterized by inflammation of proximal and distal airways. As new formulations of extrafine aerosol particles have become available, targeting small airways for the management of asthma has been investigated. As new studies attempt to explore the correlation between small airway dysfunction and clinical outcomes in asthma, well-designed clinical trials are needed to compare targeted and standard therapy for asthma management especially in pediatric patients. PMID:24380019

  7. Automated Measurement of Pulmonary Emphysema and Small Airway Remodeling in Cigarette Smoke-exposed Mice

    PubMed Central

    Laucho-Contreras, Maria E.; Taylor, Katherine L.; Mahadeva, Ravi; Boukedes, Steve S.; Owen, Caroline A.

    2015-01-01

    COPD is projected to be the third most common cause of mortality world-wide by 2020(1). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs(2). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD(3-5). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients(6), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill’s stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson’s trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD. PMID:25651034

  8. Small airway changes in healthy and ovalbumin-treated mice during quasi-static lung inflation.

    PubMed

    Sera, Toshihiro; Uesugi, Kentaro; Himeno, Ryutaro; Yagi, Naoto

    2007-06-15

    Previously, we developed a synchrotron radiation CT system to evaluate the morphometric changes (length and diameter, D) and small airway compliance (sC(aw)) of euthanized mice under quasi-static inflation [Sera, T., Uesugi, K., Yagi, N., 2005. Localized morphometric deformations of small airways and alveoli in intact mouse lungs under quasi-static inflation. Respir. Physiol. Neurobiol. 147, 51-63). Using this system, this study compared normal and asthmatic small airways. Ovalbumin-treated mice were used as an asthma model. Compared with the values at functional residual capacity, D of normal and asthmatic small airways (D<200microm) increased by 48% and 36% at the end of tidal inspiration. For larger airways (D>500microm), the increases were 23% and 20%, respectively. The ratio of the sC(aw) of asthmatic small airways to that of healthy small airways was 0.57, and the ratio was 0.70 for larger airways. The morphometric changes and sC(aw) in asthma model mice were significantly lower than those of healthy mice. The differences in sC(aw) between healthy and asthma model mice were greater for smaller airways. PMID:17174159

  9. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  10. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics.

    PubMed

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M; Collins, Jane E; Davies, Donna E; Morgan, Hywel; Swindle, Emily J

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL-8 release is detectable within the first 2h and peaks at 4-6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  11. A differential geometric approach to automated segmentation of human airway tree.

    PubMed

    Pu, Jiantao; Fuhrman, Carl; Good, Walter F; Sciurba, Frank C; Gur, David

    2011-02-01

    Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. PMID:20851792

  12. A Differential Geometric Approach to Automated Segmentation of Human Airway Tree

    PubMed Central

    Pu, Jiantao; Fuhrman, Carl; Good, Walter F; Sciurba, Frank C; Gur, David

    2012-01-01

    Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the three-dimensional human airway tree depicted on CT images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A “puzzle game” procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. PMID:20851792

  13. Regional aerosol deposition in human upper airways. Final report

    SciTech Connect

    Swift, D.L.

    1997-11-01

    During the award period, a number of studies have been carried out related to the overall objective of the project which is to elucidate important factors which influence the upper airway deposition and dose of particles in the size range 0.5 nm - 10 {mu}m, such as particle size, breathing conditions, age, airway geometry, and mode of breathing. These studies are listed below. (1) A high voltage electrospray system was constructed to generate polydispersed 1-10 {mu}m diameter di-ethylhexyl sebacate aerosol for particle deposition studies in nasal casts and in human subjects. (2) The effect of nostril dimensions, nasal passage geometry, and nasal resistance on particle deposition efficiency in forty healthy, nonsmoking adults at a constant flowrate were studied. (3) The effect of nostril dimensions, nasal passage dimensions and nasal resistance on the percentage of particle deposition in the anterior 3 cm of the nasal passage of spontaneously breathing humans were studied. (4) The region of deposition of monodispersed aerosols were studied using replicate casts. (5) Ultrafine aerosol deposition using simulated breath holding path and natural path was compared. (6) An experimental technique was proposed and tested to measure the oral deposition of inhaled ultrafine particles. (7) We have calculated the total deposition fraction of ultrafine aerosols from 5 to 200 n in the extrathoracic airways and in the lung. (8) The deposition fraction of radon progeny in the head airways was studied using several head airway models.

  14. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  15. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

    PubMed Central

    Wang, Liying; Stueckle, Todd A.; Mishra, Anurag; Derk, Raymond; Meighan, Terence; Castranova, Vincent; Rojanasakul, Yon

    2015-01-01

    Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos. PMID:23634900

  16. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1990-11-01

    During the current reporting period experimental studies of aerosol deposition in replicate NOPL airways have carried out. A replicate model of a 4 week old infant nasal passage was constructed from MR scans. The model completes the age range from newborn'' to 4 years, there now being one child model for 4 different ages. Deposition studies have been performed with unattached radon progeny aerosols in collaboration with ITRI, Albuquerque, NM and NRPB, Chilton, UK. Overall measurements have been performed in adult and child nasal airways indicating that the child nasal passage was slightly more efficient than the adult in removing 1 nm particles at corresponding flow rates. A similar weak dependence on flow rate was observed. Local deposition studies in an adult nasal model indicated predominant deposition in the anterior region during inspiratory flow, but measurable deposition was found throughout the model. The deposition pattern during expiration was reverse, greater deposition being observed in the posterior region. Local deposition studies of attached progeny aerosol size (100--200 nm) were performed in adult and child nasal models using technigas'' and a gamma scintillation camera. Similar to the unattached size, deposition occurred throughout the models, but was greater in the anterior region.

  17. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  18. Motile Cilia of Human Airway Epithelia Are Chemosensory

    PubMed Central

    Shah, Alok S; Ben-Shahar, Yehuda; Moninger, Thomas O; Kline, Joel N; Welsh, Michael J

    2010-01-01

    Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste receptors, which localized on motile cilia. Bitter compounds increased the intracellular Ca2+ concentration and stimulated ciliary beat frequency. Thus, airway epithelia contain a cell-autonomous system in which motile cilia both sense noxious substances entering airways and initiate a defensive mechanical mechanism to eliminate the offending compound. Hence, like primary cilia, classical motile cilia also contain sensors to detect the external environment. PMID:19628819

  19. Hyperresponsiveness in the human nasal airway: new targets for the treatment of allergic airway disease.

    PubMed Central

    Turner, P J; Foreman, J C

    1999-01-01

    Allergic rhinitis is a condition which affects over 15% of the population in the United Kingdom. The pathological process involves two stages: nasal inflammation, and the development of nasal airway hyperresponsiveness (AHR) to allergen and a number of other stimuli. This results in the amplification of any subsequent allergic reaction, contributing to the chronic allergic state. A number of different hypotheses have been proposed to explain the underlying mechanism of AHR, including a role for eosinophil-derived proteins, free radicals and neuropeptides. While there may be a number of independent pathways which can result in AHR, evidence obtained from both animal models and in vivo experiments in humans indicate that some mediators may interact with one another, resulting in AHR. Further research into these interactions may open new avenues for the pharmacological treatment of chronic allergic rhinitis, and possibly other allergic airway diseases. PMID:10704051

  20. Characterizing adult human nasal airway dimensions

    SciTech Connect

    Guilmette, R.A.; Griffith, W.C.

    1994-11-01

    Respiratory tract models used in calculating radiation dose from exposure to inhaled radioactive aerosols have only recently focused attention on the importance of the nasal airways (NAs). Because the NAs are the first tissues of the respiratory tract available for aerosol deposition in normally nose-breathing people, any deposition of aerosol in this anatomical structure will reduce the amounts available to be deposited in the remainder of the respiratory tract. Thus, uncertainties in estimating the deposition fractions in the NAs will propagate throughout the remainder of the respiratory tract, creating errors in the calculated dose estimates. Additionally, there is evidence that the NAs are also at risk for induction of cancer from exposure to certain occupational aerosols such as wood dust, leather dust, chromium, and nickel. The purpose of this investigation was to conduct an anatomical study to assess the variabilities in NA dimensions.

  1. On locating the obstruction in the human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Elghobashi, S.

    2013-11-01

    The fluid dynamical properties of the air flow in the human upper airway (UA) are not fully understood at present due to the three-dimensional, patient-specific complex geometry of the airway, flow transition from laminar to turbulent and flow-structure interaction during the breathing cycle. One of the major challenges to surgeons is determining the location of the UA obstruction before performing corrective surgeries. It is quite difficult at present to experimentally measure the instantaneous velocity and pressure at specific points in the human airway. On the other hand, direct numerical simulation (DNS) can predict all the flow properties and resolve all its relevant length- and time-scales. We developed a DNS solver with lattice Boltzmann method (LBM), and used it to investigate the flow in two patient-specific UAs reconstructed from CT scan data. Inspiration and expiration flows through these two airways are studied and compared. Pressure gradient-time signals at different locations in the UAs are used to determine the location of the obstruction. This work was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH).

  2. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    PubMed

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable. PMID:26037949

  3. DNA Methylation Is Globally Disrupted and Associated with Expression Changes in Chronic Obstructive Pulmonary Disease Small Airways

    PubMed Central

    Chari, Raj; Thu, Kelsie L.; Wilson, Ian M.; Cotton, Allison M.; Kennett, Jennifer Y.; Zhang, May; Lonergan, Kim M.; Steiling, Katrina; Brown, Carolyn J.; McWilliams, Annette; Ohtani, Keishi; Lenburg, Marc E.; Sin, Don D.; Spira, Avrum; MacAulay, Calum E.; Lam, Stephen; Lam, Wan L.

    2014-01-01

    DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina’s Infinium HM27 and Affymetrix’s Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2–related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD. PMID:24298892

  4. Small Airways Dysfunction in Asthma: Evaluation and Management to Improve Asthma Control

    PubMed Central

    2014-01-01

    The small airways have been neglected for many years, but interest in the topic has been rekindled with recent advances in measurement techniques to assess this region and also the ability to deliver therapeutics to the distal airways. Current levels of disease control in asthmatic patients remain poor and there are several contributory factors including; poor treatment compliance, heterogeneity of asthma phenotypes and associated comorbidities. However, the proposition that we may not be targeting all the inflammation that is present throughout the whole respiratory tree may also be an important factor. Indeed decades ago, pathologists and physiologists clearly identified the importance of small airways dysfunction in asthmatic patients. With improved inhaler technology to deliver drug to target the whole respiratory tree and more sensitive measures to assess the distal airways, we should certainly give greater consideration to treating the small airway region when seeing our asthmatic patients in clinic. The aim of this review is to address the relevance of small airways dysfunction in the daily clinical management of patients with asthma. In particular the role of small particle aerosols in the management of patients with asthma will be explored. PMID:25228994

  5. Relationship of small airway chymase-positive mast cells and lung function in severe asthma.

    PubMed

    Balzar, Silvana; Chu, Hong Wei; Strand, Matthew; Wenzel, Sally

    2005-03-01

    Distal lung inflammation may be important in asthma pathophysiology. The goal of this study was to measure cellular inflammation in the large airway and four distal lung regions (small airway inner and outer wall, alveolar attachments, and peripheral alveolar tissue) and to correlate the specific inflammatory cells with several lung function parameters. Sections of concurrently obtained endobronchial and transbronchial/surgical biopsy tissue from 20 individuals with severe asthma were immunostained for T-lymphocyte, eosinophil, monocyte/macrophage, neutrophil, and two mast cell markers (tryptase and chymase). Specific cell distributions were determined and correlated with lung function measures. The number of inflammatory cells generally increased toward the periphery, but the percentage of T-lymphocytes, eosinophils, monocytes/macrophages, and neutrophils remained similar or decreased from large to small airways. In contrast, mast cell number, percentage, and the chymase-positive phenotype increased in small airway regions. After the analysis was adjusted for multiple comparisons, only chymase-positive mast cells significantly and positively correlated with lung function. Such a relationship was seen only in the small airway/alveolar attachments lung region (r(s) = 0.61-0.89; p small airway outer wall/alveolar attachments region, may be protective for lung function in severe asthma. PMID:15563633

  6. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  7. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis.

    PubMed

    Haggie, Peter M; Phuan, Puay-Wah; Tan, Joseph-Anthony; Zlock, Lorna; Finkbeiner, Walter E; Verkman, A S

    2016-06-01

    Pendrin (SLC26A4) is a Cl(-)/anion exchanger expressed in the epithelium of inflamed airways where it is thought to facilitate Cl(-) absorption and HCO3 (-) secretion. Studies using pendrin knockout mice and airway epithelial cells from hearing-impaired subjects with pendrin loss of function suggest involvement of pendrin in inflammatory lung diseases, including cystic fibrosis (CF), perhaps by regulation of airway surface liquid (ASL) volume. Here we identified small-molecule pendrin inhibitors and demonstrated their efficacy in increasing ASL volume. A cell-based, functional high-throughput screen of ∼36,000 synthetic small molecules produced 3 chemical classes of inhibitors of human pendrin. After structure-activity studies, tetrahydropyrazolopyridine and pyrazolothiophenesulfonamide compounds reversibly inhibited pendrin-facilitated Cl(-) exchange with SCN(-), I(-), NO3 (-), and HCO3 (-) with drug concentration causing 50% inhibition down to ∼2.5 μM. In well-differentiated primary cultures of human airway epithelial cells from non-CF and CF subjects, treatment with IL-13, which causes inflammation with strong pendrin up-regulation, strongly increased Cl(-)/HCO3 (-) exchange and the increase was blocked by pendrin inhibition. Pendrin inhibition significantly increased ASL depth (by ∼8 μm) in IL-13-treated non-CF and CF cells but not in untreated cells. These studies implicate the involvement of pendrin-facilitated Cl(-)/HCO3 (-) in the regulation of ASL volume and suggest the utility of pendrin inhibitors in inflammatory lung diseases, including CF.-Haggie, P. M., Phuan, P.-W., Tan, J.-A., Zlock, L., Finkbeiner, W. E., Verkman, A. S. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis. PMID:26932931

  8. Chronic exposure to high levels of particulate air pollution and small airway remodeling.

    PubMed Central

    Churg, Andrew; Brauer, Michael; del Carmen Avila-Casado, Maria; Fortoul, Teresa I; Wright, Joanne L

    2003-01-01

    Recent evidence suggests that chronic exposure to high levels of ambient particulate matter (PM) is associated with decreased pulmonary function and the development of chronic airflow obstruction. To investigate the possible role of PM-induced abnormalities in the small airways in these functional changes, we examined histologic sections from the lungs of 20 women from Mexico City, a high PM locale. All subjects were lifelong residents of Mexico City, were never-smokers, never had occupational dust exposure, and never used biomass fuel for cooking. Twenty never-smoking, non-dust-exposed subjects from Vancouver, British Columbia, Canada, a low PM region, were used as a control. By light microscopy, abnormal small airways with fibrotic walls and excess muscle, many containing visible dust, were present in the Mexico City lungs. Formal grading analysis confirmed the presence of significantly greater amounts of fibrous tissue and muscle in the walls of the airways in the Mexico City compared with the Vancouver lungs. Electron microscopic particle burden measurements on four cases from Mexico City showed that carbonaceous aggregates of ultrafine particles, aggregates likely to be combustion products, were present in the airway mucosa. We conclude that PM penetrates into and is retained in the walls of small airways, and that, even in nonsmokers, long-term exposure to high levels of ambient particulate pollutants is associated with small airway remodeling. This process may produce chronic airflow obstruction. PMID:12727599

  9. Fiber deposition in human upper airway model. Final report

    SciTech Connect

    Swift, D.L.

    1986-01-01

    The possibility that airborne fibers may behave differently than spherical particles in their deposition in the upper airways was examined. Deposition measurements were taken in a replicate model of the upper human airways above the larynx with well-characterized glass-fiber aerosols typical of glass fibers in normal use. The overall deposition of the aerosols in the nasal airways ranged from 10 to 90 percent. The deposition increased with flow rate and was somewhat higher with nasal-hair stimulant in the anterior vestibule. There was no dependency between the effect of fiber diameter and inertial theory, suggesting that interception is an important factor. Deposition occurred mainly anterior to the nasopharynx, equally divided between the vestibule and the turbinate region. The establishment of the anterior nasal region as the prime site for interception deposition was verified by the lack of significant deposition in the nasopharynx and larynx during nasal breathing. The authors conclude that the human nasal passage is able to remove a significant fraction of inhaled fibers, most of which will be physically cleared and others of which will be cleared to the gastro-intestinal tract. No long-term effect is expected from fibers deposited in the nasal region and cleared physically.

  10. Characterization of side population cells from human airway epithelium.

    PubMed

    Hackett, Tillie-Louise; Shaheen, Furquan; Johnson, Andrew; Wadsworth, Samuel; Pechkovsky, Dmitri V; Jacoby, David B; Kicic, Anthony; Stick, Stephen M; Knight, Darryl A

    2008-10-01

    The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil-sensitive efflux of the DNA-binding dye Hoechst 33342. Using flow cytometry, CD45(-) SP, CD45(+) SP, and non-SP cells were isolated and sorted. CD45(-) SP cells made up 0.12% +/- 0.01% of the total epithelial cell population in normal airway but 4.1% +/- 0.06% of the epithelium in asthmatic airways. All CD45(-) SP cells showed positive staining for epithelial-specific markers cytokeratin-5, E-cadherin, ZO-1, and p63. CD45(-) SP cells exhibited stable telomere length and increased colony-forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non-SP cells, fewer than 100 CD45(-) SP cells were able to generate a multilayered and differentiated epithelium in air-liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short- and long-term proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium. Disclosure of potential conflicts of interest is found at the end of this article. PMID:18653771

  11. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1991-11-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po{sup 218} particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po{sup 218} particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po{sup 218} particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig.

  12. Wall shear stress distributions in a model of normal and constricted small airways.

    PubMed

    Evans, David J; Green, Anthony S; Thomas, Nicholas K

    2014-04-01

    Previous studies have highlighted flow shear stress as a possible damage mechanism for small airways, in particular those liable to constriction through disease or injury due to mechanical ventilation. Flow experiments in vitro have implicated shear stress as a relevant factor for mechanotransduction pathways with respect to airway epithelial cell function. Using computational fluid dynamics analysis, this study reports velocity profiles and calculations for wall shear stress distributions in a three-generation, asymmetric section of the small airways subjected to a steady, inspiratory flow. The results show distal variation of wall shear stress distributions due to velocity gradients on the carina side of each daughter airway branch. The maximum wall shear stresses in both normal and constricted small airways are shown to exceed those calculated using data from previous simpler one-dimensional experimental analyses. These findings have implications for lung cell flow experiments involving shear stress in the consideration of both normal airway function and pathology due to mechanotransduction mechanisms. PMID:24618983

  13. Effect of adrenergic stimulation on clearance from small ciliated airways in healthy subjects.

    PubMed

    Svartengren, K; Philipson, K; Svartengren, M; Camner, P

    1998-01-01

    Mucociliary transport is an important clearance mechanism of larger airways, but in the smallest ciliated airways (bronchioles) it may be less effective. The present study aimed at investigating whether clearance from the bronchioles in subjects with healthy airways was stimulated by an adrenergic agonist (terbutaline sulphate). Tracheobronchial clearance was studied twice in 10 healthy subjects after inhalation of 6-micron (aerodynamic diameter) monodisperse Teflon particles labeled with 111In. At one exposure, oral treatment with terbutaline sulphate, known to stimulate clearance in large airways, began immediately after inhalation of the particles. The other exposure was a control measurement. The particles were inhaled at an extremely slow flow, 0.05 L/s, which gave deposition mainly in the small ciliated airways (bronchioles). Lung retention was measured at 0, 24, 48, and 72 h. Clearance was significant every 24 h for both exposures (p < .05, two-tailed paired t-test), with similar fractions of retained particles at all time points. During treatment with terbutaline sulphate, the subjects' pulse rates tended to be higher, but clearance rates did not increase. We found, as expected, no significant correlation between lung retention and lung function in either exposure. This study shows that an adrenergic agonist does not significantly influence overall clearance from the bronchiolar region in healthy subjects. This suggests that mucociliary transport does not significantly contribute to clearance from the smallest ciliated airways. Other mechanisms may be more important for the transportation of mucus from these airways. PMID:9555573

  14. Contribution of air pollution to COPD and small airway dysfunction.

    PubMed

    Berend, Norbert

    2016-02-01

    Although in many Western countries levels of ambient air pollution have been improving with the setting of upper limits and better urban planning, air pollution in developing countries and particularly those with rapid industrialization has become a major global problem. Together with increased motor vehicle ownership and traffic congestion, there is a growing issue with airborne particles of respirable size. These particles are thought responsible for respiratory and cardiovascular effects and have also been implicated in cancer pathogenesis. The pathologic effects in the lung are mediated via inflammatory pathways and involve oxidative stress similar to cigarette smoking. These effects are seen in the peripheral airways where the smaller particle fractions are deposited and lead to airway remodelling. However, emphysema and loss of bronchioles seen with cigarette smoking have not been described with ambient air pollution, and there are few studies specifically looking at peripheral airway function. Definitive evidence of air pollution causing COPD is lacking and a different study design is required to link air pollution and COPD. PMID:26412571

  15. Numerical simulation of transitional flow in a human upper airway segment in the presence of uncertainty

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf

    2011-11-01

    The flow in human airways may be laminar, transitional, or turbulent in different airway segments. Specifically, laminar-turbulent transition is believed to occur in the larynx or in the trachea. Present approaches to simulate such flows typically employ numerical methods solving the steady Reynolds-averaged Navier-Stokes equations. However, natural airway deformations or pathological obstructions such as tumors may generate recirculation zones and lead to highly unsteady flow features that are not well captured by these numerical methods. We perform direct numerical simulations of transitional flow through a pipe-like canonical geometry representative of an airway segment. The incompressible Navier-Stokes equations in conjunction with an immersed boundary method are solved to simulate the unsteady flow. In order to model perturbations present in the incoming flow, small-amplitude disturbances are forced to explicitly trigger flow instabilities. Time-dependent inflow profiles are applied to model the change in flow velocity during the breathing process. In order to account for natural variability during breathing, the inflow profile is treated as an uncertain function. Resulting uncertainty in the flow field is quantified using stochastic collocation.

  16. Large-scale gene discovery in human airway epithelia reveals novel transcripts.

    PubMed

    Scheetz, Todd E; Zabner, Joseph; Welsh, Michael J; Coco, Justin; Eyestone, Mari de Fatima; Bonaldo, Maria; Kucaba, Tamara; Casavant, Thomas L; Soares, M Bento; McCray, Paul B

    2004-03-12

    The airway epithelium represents an important barrier between the host and the environment. It is a first site of contact with pathogens, particulates, and other stimuli, and has evolved the means to dynamically respond to these challenges. In an effort to define the transcript profile of airway epithelia, we created and sequenced cDNA libraries from cystic fibrosis (CF) and non-CF epithelia and from human lung tissue. Sequencing of these libraries produced approximately 53,000 3'-expressed sequence tags (3'-ESTs). From these, a nonredundant UniGene set of more than 19,000 sequences was generated. Despite the relatively small contribution of airway epithelia to the total mass of the lung, focused gene discovery in this tissue yielded novel results. The ESTs included several thousand transcripts (6,416) not previously identified from cDNA sequences as expressed in the lung. Among the abundant transcripts were several genes involved in host defense. Most importantly, the set also included 879 3'-ESTs that appear to be novel sequences not previously represented in the National Center for Biotechnology Information UniGene collection. This UniGene set should be useful for studies of pulmonary diseases involving the airway epithelium including cystic fibrosis, respiratory infections and asthma. It also provides a reagent for large-scale expression profiling. PMID:14701920

  17. Novel small airway bronchodilator responses to rosiglitazone in mouse lung slices.

    PubMed

    Bourke, Jane E; Bai, Yan; Donovan, Chantal; Esposito, James G; Tan, Xiahui; Sanderson, Michael J

    2014-04-01

    There is a need to identify novel agents that elicit small airway relaxation when β2-adrenoceptor agonists become ineffective in difficult-to-treat asthma. Because chronic treatment with the synthetic peroxisome proliferator activated receptor (PPAR)γ agonist rosiglitazone (RGZ) inhibits airway hyperresponsiveness in mouse models of allergic airways disease, we tested the hypothesis that RGZ causes acute airway relaxation by measuring changes in small airway size in mouse lung slices. Whereas the β-adrenoceptor agonists albuterol (ALB) and isoproterenol induced partial airway relaxation, RGZ reversed submaximal and maximal contraction to methacholine (MCh) and was similarly effective after precontraction with serotonin or endothelin-1. Concentration-dependent relaxation to RGZ was not altered by the β-adrenoceptor antagonist propranolol and was enhanced by ALB. RGZ-induced relaxation was mimicked by other synthetic PPARγ agonists but not by the putative endogenous agonist 15-deoxy-PGJ2 and was not prevented by the PPARγ antagonist GW9662. To induce airway relaxation, RGZ inhibited the amplitude and frequency of MCh-induced Ca(2+) oscillations of airway smooth muscle cells (ASMCs). In addition, RGZ reduced MCh-induced Ca(2+) sensitivity of the ASMCs. Collectively, these findings demonstrate that acute bronchodilator responses induced by RGZ are PPARγ independent, additive with ALB, and occur by the inhibition of ASMC Ca(2+) signaling and Ca(2+) sensitivity. Because RGZ continues to elicit relaxation when β-adrenoceptor agonists have a limited effect, RGZ or related compounds may have potential as bronchodilators for the treatment of difficult asthma. PMID:24188042

  18. Propagation and Breakup of Liquid Menisci and Aerosol Generation in Small Airways

    PubMed Central

    Malashenko, Andrei; Tsuda, Akira; Haber, Shimon

    2009-01-01

    Abstract Background Droplets exhaled during normal breathing and not associated with coughing may pose hazardous agents to infective diseases dissemination. The objective is to explore the physical mechanism, which may lead to droplets formation. Methods We hypothesize that liquid menisci occlusions, which may form inside small airways, travel along the airway, may lose mass and finally disintegrate into small droplets. This hypothesis was numerically investigated applying physiologically plausible values of the phenomenological coefficients and geometrical conformations. Results We show that three important dimensionless parameters control the motion and disintegration of menisci: the dimensionless mucus layer thickness, the dimensionless menisci initial thickness (all scaled by the airway radius), and the capillary number. Menisci traveling within airways may either remain at equilibrium or diminish or increase in size. Menisci that diminish in size may collapse into the mucus layer; form a large droplet that contains most of the menisci mass before disintegration; or form a larger number of small droplets (we show the forming of three or four droplets in a single occluded airway). Conclusions A critical capillary number for menisci at equilibrium could be defined. It was shown that menisci tend to diminish in size as the capillary number increases above the critical value, and a number of small droplets may be formed during normal breathing. PMID:19580367

  19. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers-due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation. PMID:26541595

  20. CT based computerized identification and analysis of human airways: A review

    PubMed Central

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-01-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work. PMID:22559631

  1. CT based computerized identification and analysis of human airways: A review

    SciTech Connect

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  2. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    PubMed

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken

    2015-10-15

    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation. PMID:26276826

  3. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma. PMID:16648239

  4. Transbronchial biopsy as a tool to evaluate small airways in asthma.

    PubMed

    Balzar, S; Wenzel, S E; Chu, H W

    2002-08-01

    Small airway (SA) inflammation in asthmatics is poorly understood. Surgical biopsies to obtain peripheral lung tissue are seldom justified in asthmatics. Therefore, the authors hypothesised that transbronchial biopsy could be an alternative approach to evaluate SA in asthma. Transbronchial and endobronchial biopsy tissue samples (TBBX and EBBX) from 12 severe asthmatics were evaluated for airway and parenchymal total inflammatory cell count expressed as the sum of immunostained T-cells (CD3), macrophages (CD68), mast cells (tryptase AAI), neutrophils (neutrophil elastase) and eosinophils (EG2) per mm2. The large airways (LA) were evaluated in EBBXs, while SA, medium airways (MA) and alveolar tissue (AT) were evaluated in TBBXs. When cell counts from SA, MA, LA and AT were compared, SA had a significantly higher cell count than MA or LA (SA 1011 x mm(-2) (539-1,290), MA 346 x mm(-2) (223-415), LA 332 x mm(-2) (189-416), AT 464 x mm(-2) (298-834)). The cell density and pattern of the inflammatory cell distribution in subjects with TBBXs appeared similar to those in three severe asthmatics whose inflammatory cells were analysed in surgical tissue samples. This study suggests that small airway may be identified and analysed in transbronchial biopsy tissue samples and therefore transbronchial biopsy tissue samples could expand the analysis of inflammation and tissue remodelling in asthma. PMID:12212952

  5. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype.

    PubMed

    Shaykhiev, Renat; Zuo, Wu-Lin; Chao, Ionwa; Fukui, Tomoya; Witover, Bradley; Brekman, Angelika; Crystal, Ronald G

    2013-07-16

    The airway epithelium of smokers acquires pathological phenotypes, including basal cell (BC) and/or goblet cell hyperplasia, squamous metaplasia, structural and functional abnormalities of ciliated cells, decreased number of secretoglobin (SCGB1A1)-expressing secretory cells, and a disordered junctional barrier. In this study, we hypothesized that smoking alters airway epithelial structure through modification of BC function via an EGF receptor (EGFR)-mediated mechanism. Analysis of the airway epithelium revealed that EGFR is enriched in airway BCs, whereas its ligand EGF is induced by smoking in ciliated cells. Exposure of BCs to EGF shifted the BC differentiation program toward the squamous and epithelial-mesenchymal transition-like phenotypes with down-regulation of genes related to ciliogenesis, secretory differentiation, and markedly reduced junctional barrier integrity, mimicking the abnormalities present in the airways of smokers in vivo. These data suggest that activation of EGFR in airway BCs by smoking-induced EGF represents a unique mechanism whereby smoking can alter airway epithelial differentiation and barrier function. PMID:23818594

  6. Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs.

    PubMed

    Ziebart, A; Garcia-Bardon, A; Kamuf, J; Thomas, R; Liu, T; Schad, A; Duenges, B; David, M; Hartmann, E K

    2015-10-01

    Novel devices for small-lumen ventilation may enable effective inspiration and expiratory ventilation assistance despite airway obstruction. In this study, we investigated a porcine model of complete upper airway obstruction. After ethical approval, we randomly assigned 13 anaesthetised pigs either to small-lumen ventilation following airway obstruction (n = 8) for 30 min, or to volume-controlled ventilation (sham setting, n = 5). Small-lumen ventilation enabled adequate gas exchange over 30 min. One animal died as a result of a tension pneumothorax in this setting. Redistribution of ventilation from dorsal to central compartments and significant impairment of the distribution of ventilation/perfusion occurred. Histopathology demonstrated considerable lung injury, predominantly through differences in the dorsal dependent lung regions. Small-lumen ventilation maintained adequate gas exchange in a porcine airway obstruction model. The use of this technique for 30 min by inexperienced clinicians was associated with considerable end-expiratory collapse leading to lung injury, and may also carry the risk of severe injury. PMID:26179167

  7. Vapor Dosimetry in the Nose and Upper Airways of Humans

    SciTech Connect

    Thrall, Karla D.

    2010-04-01

    A number of methodologies have been reported for measuring vapor uptake efficiencies in the upper respiratory tract of experimental animals (1). Hybrid computational fluid dynamic (CFD) and physiologically based pharmacokinetic (PBPK) models, as described by Frederick et al. (2) that incorporate information on the anatomy of both rats and humans have been used to improve interspecies dosimetric corrections for human health risk assessments. However, validation of these models requires sufficient experimental data, and robust data defining the role of the upper respiratory tract in modulating the absorption of gases and vapors in human volunteers, are lacking. A survey of the available literature shows a limited number of experimental studies to evaluate the dosimetry of vapors in the nose and upper airways of humans. The scarcity of literature data undoubtedly reflects the complication of conducting controlled studies in human volunteers, and with the exception of a few limited studies, little experimental data is available. This chapter will highlight studies specific for nasal dosimetry data from humans and briefly review modeling approaches for predictive extrapolations from animal data.

  8. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  9. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    EPA Science Inventory

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  10. Small Airway Impairment and Bronchial Hyperresponsiveness in Asthma Onset

    PubMed Central

    Scalese, Marco; Migliorini, Maria Giovanna; Di Tomassi, Maurizio; Scala, Raffaele

    2014-01-01

    Purpose Our study tried to find a relationship between baseline FEF25-75% and airway hyperresponsiveness (AHR) and whether a greater FEF25-75% impairment may be a marker of a more severe hyperresponsiveness in subjects with normal FEV1 and FEV1/FVC and suggestive asthma symptoms. Besides, we tried to asses a FEF25-75% cut-off value to identify hyper-reactive subjects. Methods 4,172 subjects (2,042 M; mean age: 38.3±14.9; mean FEV1 % predicted: 100.5±12.7 and FEV1/FVC: 85.4±6.8) were examined after performing a methacholine (Mch) test. All subjects reported a symptom onset within 3 years before the test. Subjects with PD20<400 or >400 µg were arbitrarily considered affected by moderate/severe and borderline AHR, respectively. Results PD20 values were 213 (IQR:86-557), 340 (IQR:157-872) and 433 (IQR:196-1032) µg in subjects with baseline FEF25-75≤50%, FEF25-75 between 50 and 70% and FEF25-75>70% respectively (P<0.0001). Only in moderate/severe hyper-reactive subjects (excluded borderlines), PD20 was lower in the FEF25-75≤50% subgroup than in the 1 with FEF25-75>70%. The hyperreactive subjects percentage, was higher in those with FEF25-75≤50% and lower in those with FEF25-75>70% (P<0.0001). FEF25-75<50% (compared to FEF25-75>70%) was a higher AHR risk factor, especially in subjects with moderate/severe AHR (OR: 2.18 [IQR:1.41-3.37]; P<0.0001). Thresholds yielding the highest combined sensitivity/specificity for FEF25-75% were 75.19 (area under curve [AUC]: 0.653) and 74.95 (AUC:0.688) in subjects with PD20<2,400 and <400 µg respectively. FEV1, FVC, and FEV1/FVC measured in subjects with different FEF25-75≤50%, FEF25-75>50 and ≤70% or FEF25-75>70% levels were similar both in normoreactive and hyperreactive subjects. Conclusions At asthma onset, reduced baseline FEF25-75 values with normal FEV1 and FEV1/FVC may predict AHR. Detectable predictive cut-off values do not exist because even normoreactive subjects can show lower FEF25-75 values. Furthermore, a

  11. Regulation of high glucose-mediated mucin expression by matrix metalloproteinase-9 in human airway epithelial cells.

    PubMed

    Yu, Hongmei; Yang, Juan; Xiao, Qian; Lü, Yang; Zhou, Xiangdong; Xia, Li; Nie, Daijing

    2015-04-10

    Mucus hypersecretion is the key manifestation in patients with chronic inflammatory airway diseases and mucin 5AC (MUC5AC) is a major component of airway mucus. Matrix metalloproteinases (MMP)-9, have been found to be involved in the pathogenesis of inflammatory airway diseases. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that high glucose (HG)-regulates MMP-9 production and MMP-9 activity through nicotinamide adenine dinucleotide phosphate (NADPH)/reactive oxygen species (ROS) cascades pathways, leading to mucin production in human airway epithelial cells (16HBE). We show that HG increases MMP-9 production, MMP-9 activity and MUC5AC expression. These effects are prevented by small interfering RNA (siRNA) for MMP-9, indicating that HG-induced mucin production is MMP-9-dependent. HG activates MMP-9 production, MMP-9 activity and MUC5AC overproduction, which is inhibited by nPG, DMSO and DPI (inhibitors of ROS and NADPH), suggesting that HG-activated mucin synthesis is mediated by NADPH/ROS in 16HBE cells. These observations demonstrate an important role for MMP-9 activated by NADPH/ROS signaling pathways in regulating HG-induced MUC5AC expression. These findings may bring new insights into the molecular pathogenesis of the infections related to diabetes mellitus and lead to novel therapeutic intervention for mucin overproduction in chronic inflammatory airway diseases. PMID:25704757

  12. Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells.

    PubMed

    Denning, G M; Railsback, M A; Rasmussen, G T; Cox, C D; Britigan, B E

    1998-06-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes both acute and chronic lung disease. P. aeruginosa exerts many of its pathophysiological effects by secreting virulence factors, including pyocyanine, a redox-active compound that increases intracellular oxidant stress. Because oxidant stress has been shown to affect cytosolic Ca2+ concentration ([Ca2+]c) in other cell types, we studied the effect of pyocyanine on [Ca2+]c in human airway epithelial cells (A549 and HBE). At lower concentrations, pyocyanine inhibits inositol 1,4,5-trisphosphate formation and [Ca2+]c increases in response to G protein-coupled receptor agonists. Conversely, at higher concentrations, pyocyanine itself increases [Ca2+]c. The pyocyanine-dependent [Ca2+]c increase appears to be oxidant dependent and to result from increased inositol trisphosphate and release of Ca2+ from intracellular stores. Ca2+ plays a central role in epithelial cell function, including regulation of ion transport, mucus secretion, and ciliary beat frequency. By disrupting Ca2+ homeostasis, pyocyanine could interfere with these critical functions and contribute to the pathophysiological effects observed in Pseudomonas-associated lung disease. PMID:9609727

  13. NEU1 Sialidase Expressed in Human Airway Epithelia Regulates Epidermal Growth Factor Receptor (EGFR) and MUC1 Protein Signaling*

    PubMed Central

    Lillehoj, Erik P.; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Luzina, Irina G.; Atamas, Sergei P.; Passaniti, Antonino; Twaddell, William S.; Puché, Adam C.; Wang, Lai-Xi; Cross, Alan S.; Goldblum, Simeon E.

    2012-01-01

    Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6–1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7–1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38–56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli. PMID:22247545

  14. Sensory neuropeptides and the human lower airways: present state and future directions.

    PubMed

    Joos, G F; Germonpre, P R; Kips, J C; Peleman, R A; Pauwels, R A

    1994-06-01

    The sensory neuropeptides, substance P and neurokinin A, are present in human airway nerves, beneath and within the epithelium, around blood vessels and submucosal glands, and within the bronchial smooth muscle layer. Studies on autopsy tissue, bronchoalveolar lavage and sputum suggest that in asthma the substance P content of the airways may be increased. Neurokinin A is a more potent bronchoconstrictor than substance P. Asthmatics are hyperresponsive to neurokinin A and substance P. The neuropeptide degrading enzyme, neutral endopeptidase is present in the airways and is involved in the degradation of endogenously released and exogenously administered substance P and neurokinin A, both in normal and asthmatic subjects. As for other indirect bronchoconstrictor stimuli, the effect of neurokinin A on airway calibre in asthmatics can be inhibited by pretreatment with nedocromil sodium. Evidence is accumulating, not only from studies in animals but also from experiments on human airways, that tachykinins may also cause mucus secretion and plasma extravasation. They also have important proinflammatory effects, such as the chemoattraction of eosinophils and neutrophils, the adhesion of neutrophils, and the stimulation of lymphocytes, macrophages and mast cells. The tachykinins interact with the targets on the airways by specific tachykinin receptors. The NK1 and the NK2 receptor have been characterized in human airways, both pharmacologically and by cloning. The NK2 receptor is responsible for the in vitro contraction of normal airways, whilst the NK1 receptor is responsible for most of the other airway effects. Because of their presence in the airways and because of their ability to mimic the various pathophysiological features of asthma, substance P and neurokinin A are presently considered as possible mediators of asthma. The present development of potent and selective tachykinin antagonists will allow us to further define the role of tachykinins in the pathogenesis

  15. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  16. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  17. Smokers with emphysema and small airway disease on computed tomography have lower bone density

    PubMed Central

    Pompe, Esther; de Jong, Pim A; van Rikxoort, Eva M; Gallardo Estrella, Leticia; de Jong, Werner U; Vliegenthart, Rozemarijn; Oudkerk, Matthijs; van der Aalst, Carlijn M; van Ginneken, Bram; Lammers, Jan-Willem J; Mohamed Hoesein, Firdaus AA

    2016-01-01

    Osteoporosis is more common in patients with COPD and in smokers. The aim of this study was to assess whether measures of emphysema and airway disease on computed tomography (CT) were associated with lower bone density or vertebral fractures in smokers with and without COPD. For this purpose, we included participants from the NELSON lung cancer screening trial. Bone density was measured as Hounsfield Units in the first lumbar vertebra, and vertebral fractures were assessed semiquantitatively. The 15th percentile method (Perc15) was used to assess emphysema, and the airway lumen perimeter (Pi10) was used for airway wall thickness. Expiratory/inspiratory-ratiomean lung density (E/I-ratioMLD) was used as a measure for air trapping and tracheal index to assess tracheal deformity. Linear regression models and logistic regression models were used to assess associations between CT biomarkers, bone density, and presence of fractures. Exactly 1,093 male participants were eligible for analysis. Lower Perc15 and higher E/I-ratioMLD were significantly associated with lower bone density (b=−1.27, P=0.02 and b=−0.37, P=0.02, respectively). Pi10 and tracheal index were not associated with bone density changes. CT-derived biomarkers were not associated with fracture prevalence. Bone density is lower with increasing extent of emphysema and small airway disease but is not associated with large airway disease and tracheal deformity. This may indicate the necessity to measure bone density early in smokers with emphysema and air trapping to prevent vertebral fractures. PMID:27354779

  18. Airway gene transfer in a non-human primate: lentiviral gene expression in marmoset lungs.

    PubMed

    Farrow, N; Miller, D; Cmielewski, P; Donnelley, M; Bright, R; Parsons, D W

    2013-01-01

    Genetic therapies for cystic fibrosis (CF) must be assessed for safety and efficacy, so testing in a non-human primate (NHP) model is invaluable. In this pilot study we determined if the conducting airways of marmosets (n = 2) could be transduced using an airway pre-treatment followed by an intratracheal bolus dose of a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector (LacZ reporter). LacZ gene expression (X-gal) was assessed after 7 days and found primarily in conducting airway epithelia as well as in alveolar regions. The LacZ gene was not detected in liver or spleen via qPCR. Vector p24 protein bio-distribution into blood was transient. Dosing was well tolerated. This preliminary study confirmed the transducibility of CF-relevant airway cell types. The marmoset is a promising NHP model for testing and translating genetic treatments for CF airway disease towards clinical trials. PMID:23412644

  19. Production of β-defensins by human airway epithelia

    PubMed Central

    Singh, Pradeep K.; Jia, Hong Peng; Wiles, Kerry; Hesselberth, Jay; Liu, Lide; Conway, Barbara-Ann D.; Greenberg, Everett P.; Valore, Erika V.; Welsh, Michael J.; Ganz, Tomas; Tack, Brian F.; McCray, Paul B.

    1998-01-01

    Human β-defensins (HBDs) are antimicrobial peptides that may play a role in mucosal defense. Diminished activity of these peptides has been implicated in the pathogenesis of cystic fibrosis (CF) lung disease. We show that HBD-1 and HBD-2 mRNAs are expressed in excised surface and submucosal gland epithelia from non-CF and CF patients. The pro-inflammatory cytokine interleukin-1β stimulated the expression of HBD-2 but not HBD-1 mRNA and peptide in primary cultures of airway epithelia. HBD-1 was found in bronchoalveolar lavage (BAL) fluid from normal volunteers, CF patients, and patients with inflammatory lung diseases, whereas HBD-2 was detected in BAL fluid from patients with CF or inflammatory lung diseases, but not in normal volunteers. Both HBD-1 and HBD-2 were found in BAL fluid in concentrations of several ng/ml, and both recombinant peptides showed salt-sensitive bactericidal activity. These data suggest that in the lung HBD-2 expression is induced by inflammation, whereas HBD-1 may serve as a defense in the absence of inflammation. PMID:9843998

  20. Cross-species immunoreactivity of airway mucin as revealed by monoclonal antibodies directed against mucins from human, hamster, and rat.

    PubMed

    Shin, C Y; Lee, W J; Kim, D J; Park, C S; Choi, E Y; Ko, K H

    2000-10-01

    Airway mucin plays crucial role in host-defense and has been implicated in pathophysiology of various airway diseases including asthma and cystic fibrosis. The analysis of airway mucin has been hampered mostly by the lack of specific and efficient methods for the detection of mucin. Recent production of antibodies against airway mucin from several species and also the development of immunoassay procedures make it more efficient to study the airway mucin. However, the cross-species immunoreactivity of antibodies against airway mucin has not been clearly demonstrated and this prompted us to investigate the cross-species immunoreactivity of monoclonal antibodies against human (HM02), hamster (HTA), and rat airway mucin (RT03), which is three most widely used species in the study of mucin. All the monoclonal antibodies (MAbs) used in this study is IgM isotype and recognizes N-acetyl-galactosamine-linked carbohydrate core or backbone portion of airway mucin. In enzyme-linked immunoadsorbent assay (ELISA), Western blot, immunoprecipitation, and immunohistochemical staining experiments, it was demonstrated that human and hamster airway mucin showed strong cross-species immunoreactivity. However, rat airway mucin did not show any cross-species immunoreactivity against human and hamster airway mucin. Endotoxin-induced secretory cell metaplasia and hence the increase in mucin release from hamster airway mucin could be detected with antibodies against hamster and human airway mucin in vivo and in vitro. However, the same increase from rat airway could only be detected with antibody against rat airway mucin but not with antibodies against human and hamster airway mucin. In addition, the increase in mucin release from asthmatic patients could be detected with antibodies against human and hamster airway mucin but not with the antibody against rat airway mucin. The data from the present study implicates that the carbohydrate chain of human and hamster airway mucin, but not that

  1. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes.

    PubMed

    White, Thomas A; Xue, Ailing; Chini, Eduardo N; Thompson, Michael; Sieck, Gary C; Wylam, Mark E

    2006-08-01

    Previous studies have suggested that the proinflammatory cytokine, TNF-alpha, contributes to airway hyperresponsivness by altering airway smooth muscle (ASM) Ca(2+) responses to agonist stimulation. The present study examined the effects of TNF-alpha on Ca(2+) influx pathways in cultured human ASM cells (HASMCs). Proteins encoded by the transient receptor potential (TRP) gene family function as channels through which receptor-operated and store-operated Ca(2+) entry (SOCE) occur. In the present study, the presence of TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 mRNA and protein expression was confirmed in cultured HASMCs using RT-PCR and Western blot analysis. TNF-alpha treatment significantly increased TRPC3 mRNA and protein levels in HASMCs as well as SOCE. TNF-alpha treatment also increased both the peak and plateau intracellular Ca(2+) concentration responses in HASMCs elicited by acetylcholine and bradykinin. The effects of TNF-alpha treatment on SOCE and agonist-induced intracellular Ca(2+) concentration responses were attenuated using small interfering RNA transfection, which knocked down TRPC3 expression. Thus, in inflammatory airway diseases, TNF-alpha treatment may result in increased myocyte activation due to altered Ca(2+) influx pathways. These results suggest that TRPC3 may be an important therapeutic target in inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. PMID:16574942

  2. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  3. AIRWAY CELL AND NUCLEAR DEPTH DISTRIBUTION IN HUMAN RAT LUNGS

    EPA Science Inventory

    To predict the critical cells that are subject to injury from inhaled radon and other alpha particle sources it is necessary to calculate the dose absorbed by the different cells in the lungs. n order to provide information necessary to make these dose determinations, the airway ...

  4. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths. PMID:17827075

  5. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia

    PubMed Central

    Drapkin, Paola T.; O’Riordan, Catherine R.; Yi, Su Min; Chiorini, John A.; Cardella, Jonathan; Zabner, Joseph; Welsh, Michael J.

    2000-01-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  6. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia.

    PubMed

    Drapkin, P T; O'Riordan, C R; Yi, S M; Chiorini, J A; Cardella, J; Zabner, J; Welsh, M J

    2000-03-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  7. O/sub 3/-induced change in bronchial reactivity to methacholine and airway inflammation in humans

    SciTech Connect

    Seltzer, J.; Bigby, B.G.; Stulbarg, M.; Holtzman, M.J.; Nadel, J.A.; Ueki, I.F.; Leikauf, G.D.; Goetzl, E.J.; Boushey, H.A.

    1986-04-01

    The increase in airway responsiveness induced by O/sub 3/ exposure in dogs is associated with airway epithelial inflammation, as evidenced by an increase in the number of neutrophils (polymorphonuclear leukocytes) found in epithelial biopsies and in bronchoalveolar lavage fluid. We investigated in 10 healthy, human subjects whether O/sub 3/-induced hyperresponsiveness was similarly associated with airway inflammation by examining changes in the types of cells recovered in bronchoalveolar lavage fluid obtained after exposure to air or to O/sub 3/ (0.4 or 0.6 ppm). We also measured the concentrations of cyclooxygenase and lipoxygenase metabolites of arachidonic acid in lavage fluid. We measured airway responsiveness to inhaled methacholine aerosol before and after each exposure and performed bronchoalveolar lavage 3 h later. We found more neutrophils in the lavage fluid from O/sub 3/-exposed subjects, especially in those in whom O/sub 3/ exposure produced an increase in airway responsiveness. We also found significant increases in the concentrations of prostaglandins E2, F2 alpha, and thromboxane B2 in lavage fluid from O/sub 3/-exposed subjects. These results show that in human subjects O/sub 3/-induced hyperresponsiveness to methacholine is associated with an influx of neutrophils into the airways and with changes in the levels of some cyclooxygenase metabolites of arachidonic acid.

  8. Time-Resolved PIV Measurements of Vortical Structures in the Upper Human Airways

    NASA Astrophysics Data System (ADS)

    e, Sebastian Groß; Schröder, Wolfgang; Klaas, Michael

    A detailed knowledge of the three-dimensional flow structures in the human lung is an inevitable prerequisite to optimize respiratory-assist devices. To achieve this goal the indepth analysis of the flow field that evolves during normal breathing conditions is indispensable. This study focuses on the experimental investigation of the steady and oscillatory flow in the first lung bifurcation of a three-dimensional realistic transparent silicone lung model. The particle image velocimetry technique was used for the measurements. To match the refractive index of the model, the fluid was a mixture of water and glycerine. The flow structures occurring in the first bifurcation during steady inflow have been studied in detail at different flow rates and Reynolds numbers ranging from ReD = 1250 to ReD = 1700 based on the hydraulic diameter D of the trachea. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. The inspiration flow shows large zones with secondary vortical flow structures with reduced streamwise velocity near the outer walls of the bifurcation and regions of high-speed fluid in the vicinity of the inner side walls of the bifurcation. Depending on the local geometry of the lung these zones extend to the next generation of the airway system, resulting in a strong impact on the flow-rate distribution in the different branches of the lung. During expiration small zones of reduced streamwise velocity can be observed mainly in the trachea and the flow profile is characterized by typical jet-like structures and an M-shaped velocity profile. To investigate the temporal evolution of the flow phenomena in the first lung bifurcation time-resolved recordings were performed for Womersley numbers α ranging from 3.3 to 5.8 and Reynolds

  9. Cigarette smoke enhances proliferation and extracellular matrix deposition by human fetal airway smooth muscle

    PubMed Central

    Vogel, Elizabeth R.; VanOosten, Sarah K.; Holman, Michelle A.; Hohbein, Danielle D.; Thompson, Michael A.; Vassallo, Robert; Pandya, Hitesh C.; Prakash, Y. S.

    2014-01-01

    Cigarette smoke is a common environmental insult associated with increased risk of developing airway diseases such as wheezing and asthma in neonates and children. In adults, asthma involves airway remodeling characterized by increased airway smooth muscle (ASM) cell proliferation and increased extracellular matrix (ECM) deposition, as well as airway hyperreactivity. The effects of cigarette smoke on remodeling and contractility in the developing airway are not well-elucidated. In this study, we used canalicular-stage (18–20 wk gestational age) human fetal airway smooth muscle (fASM) cells as an in vitro model of the immature airway. fASM cells were exposed to cigarette smoke extract (CSE; 0.5–1.5% for 24–72 h), and cell proliferation, ECM deposition, and intracellular calcium ([Ca2+]i) responses to agonist (histamine 10 μM) were used to evaluate effects on remodeling and hyperreactivity. CSE significantly increased cell proliferation and deposition of ECM molecules collagen I, collagen III, and fibronectin. In contrast, [Ca2+]i responses were not significantly affected by CSE. Analysis of key signaling pathways demonstrated significant increase in extracellular signal-related kinase (ERK) and p38 activation with CSE. Inhibition of ERK or p38 signaling prevented CSE-mediated changes in proliferation, whereas only ERK inhibition attenuated the CSE-mediated increase in ECM deposition. Overall, these results demonstrate that cigarette smoke may enhance remodeling in developing human ASM through hyperplasia and ECM production, thus contributing to development of neonatal and pediatric airway disease. PMID:25344066

  10. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry

    2016-05-01

    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission. PMID:26932515

  11. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway

    PubMed Central

    Edwards, Bradley A.; Sands, Scott A.; Butler, James P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Wellman, Andrew

    2014-01-01

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an “iron lung” and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2–4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects. PMID:24458746

  12. Small airway dysfunction and flow and volume bronchodilator responsiveness in patients with chronic obstructive pulmonary disease

    PubMed Central

    Pisi, Roberta; Aiello, Marina; Zanini, Andrea; Tzani, Panagiota; Paleari, Davide; Marangio, Emilio; Spanevello, Antonio; Nicolini, Gabriele; Chetta, Alfredo

    2015-01-01

    Background We investigated whether a relationship between small airways dysfunction and bronchodilator responsiveness exists in patients with chronic obstructive pulmonary disease (COPD). Methods We studied 100 (20 female; mean age: 68±10 years) patients with COPD (forced expiratory volume in 1 second [FEV1]: 55% pred ±21%; FEV1/forced vital capacity [FVC]: 53%±10%) by impulse oscillometry system. Resistance at 5 Hz and 20 Hz (R5 and R20, in kPa·s·L−1) and the fall in resistance from 5 Hz to 20 Hz (R5 – R20) were used as indices of total, proximal, and peripheral airway resistance; reactance at 5 Hz (X5, in kPa·s·L−1) was also measured. Significant response to bronchodilator (salbutamol 400 μg) was expressed as absolute (≥0.2 L) and percentage (≥12%) change relative to the prebronchodilator value of FEV1 (flow responders, FRs) and FVC (volume responders, VRs). Results Eighty out of 100 participants had R5 – R20 >0.03 kPa·s·L−1 (> upper normal limit) and, compared to patients with R5 – R20 ≤0.030 kPa·s·L−1, showed a poorer health status, lower values of FEV1, FVC, FEV1/FVC, and X5, along with higher values of residual volume/total lung capacity and R5 (P<0.05 for all comparisons). Compared to the 69 nonresponders and the 8 FRs, the 16 VRs had significantly higher R5 and R5 – R20 values (P<0.05), lower X5 values (P<0.05), and greater airflow obstruction and lung hyperinflation. Conclusion This study shows that peripheral airway resistance is increased in the vast majority of patients with COPD, who showed worse respiratory reactance, worse spirometry results, more severe lung hyperinflation, and poorer health status. Small airway dysfunction was also associated with the bronchodilator responsiveness in terms of FVC, but not in terms of FEV1. PMID:26150710

  13. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways

    PubMed Central

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-01-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  14. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  15. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid.

    PubMed

    Singh, P K; Tack, B F; McCray, P B; Welsh, M J

    2000-11-01

    Airway surface liquid contains multiple factors thought to provide a first line of defense against bacteria deposited in the airways. Although the antimicrobial action of individual factors has been studied, less is known about how they work in combination. We examined the combined action of six antimicrobial peptides found in airway surface liquid. The paired combinations of lysozyme-lactoferrin, lysozyme-secretory leukocyte protease inhibitor (SLPI), and lactoferrin-SLPI were synergistic. The triple combination of lysozyme, lactoferrin, and SLPI showed even greater synergy. Other combinations involving the human beta-defensins, LL-37, and tobramycin (often administered to cystic fibrosis patients by inhalation) were additive. Because the airway surface liquid salt concentration may be elevated in cystic fibrosis patients, we examined the effect of salt on the synergistic combinations. As the ionic strength increased, synergistic interactions were lost. Our data suggest that the antibacterial potency of airway surface liquid may be significantly increased by synergistic and additive interactions between antimicrobial factors. These results also suggest that increased salt concentrations that may exist in cystic fibrosis could inhibit airway defenses by diminishing these synergistic interactions. PMID:11053013

  16. Acute regulation of tight junction ion selectivity in human airway epithelia

    PubMed Central

    Flynn, Andrea N.; Itani, Omar A.; Moninger, Thomas O.; Welsh, Michael J.

    2009-01-01

    Electrolyte transport through and between airway epithelial cells controls the quantity and composition of the overlying liquid. Many studies have shown acute regulation of transcellular ion transport in airway epithelia. However, whether ion transport through tight junctions can also be acutely regulated is poorly understood both in airway and other epithelia. To investigate the paracellular pathway, we used primary cultures of differentiated human airway epithelia and assessed expression of claudins, the primary determinants of paracellular permeability, and measured transepithelial electrical properties, ion fluxes, and La3+ movement. Like many other tissues, airway epithelia expressed multiple claudins. Moreover, different cell types in the epithelium expressed the same pattern of claudins. To evaluate tight junction regulation, we examined the response to histamine, an acute regulator of airway function. Histamine stimulated a rapid and transient increase in the paracellular Na+ conductance, with a smaller increase in Cl− conductance. The increase was mediated by histamine H1 receptors and depended on an increase in intracellular Ca2+ concentration. These results suggest that ion flow through the paracellular pathway can be acutely regulated. Such regulation could facilitate coupling of the passive flow of counter ions to active transcellular transport, thereby controlling net transepithelial salt and water transport. PMID:19208806

  17. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  18. Regional aerosol deposition in human upper airways. Progress report, March 1, 1992--February 28, 1993

    SciTech Connect

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 {mu}m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 {mu}m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 {mu}m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  19. A novel chimeric adenoassociated virus 2/human bocavirus 1 parvovirus vector efficiently transduces human airway epithelia.

    PubMed

    Yan, Ziying; Keiser, Nicholas W; Song, Yi; Deng, Xuefeng; Cheng, Fang; Qiu, Jianming; Engelhardt, John F

    2013-12-01

    Human bocavirus virus-1 (HBoV1), a newly discovered autonomous parvovirus with a 5,500 nt genome, efficiently infects human-polarized airway epithelia (HAE) from the apical membrane. We hypothesized that the larger genome and high airway tropism of HBoV1 would be ideal for creating a viral vector for lung gene therapy. To this end, we successfully generated recombinant HBoV1 (rHBoV1) from an open reading frames-disrupted rHBoV1 genome that efficiently transduces HAE from the apical surface. We next evaluated whether HBoV1 capsids could package oversized rAAV2 genomes. These studies created a rAAV2/HBoV1 chimeric virus (5.5 kb genome) capable of apically transducing HAE at 5.6- and 70-fold greater efficiency than rAAV1 or rAAV2 (4.7-kb genomes), respectively. Molecular studies demonstrated that viral uptake from the apical surface was significantly greater for rAAV2/HBoV1 than for rAAV2 or rAAV1, and that polarization of airway epithelial cells was required for HBoV1 capsid-mediated gene transfer. Furthermore, rAAV2/HBoV1-CFTR virus containing the full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene coding sequence and the strong CBA promoter efficiently corrected CFTR-dependent chloride transport in cystic fibrosis (CF) HAE. In summary, using the combined advantages of AAV and HBoV1, we have developed a novel and promising viral vector for CF lung gene therapy and also potentially HBoV1 vaccine development. PMID:23896725

  20. Small airway dysfunction by impulse oscillometry in asthmatic patients with normal forced expiratory volume in the 1st second values.

    PubMed

    Pisi, Roberta; Tzani, Panagiota; Aiello, Marina; Martinelli, Enrico; Marangio, Emilio; Nicolini, Gabriele; Olivieri, Dario; Chetta, Alfredo

    2013-01-01

    Small airways are relevant to the pathophysiology of asthma. We investigated whether in asthmatic patients with normal forced expiratory volume in the 1st second (FEV(1)) values, impulse oscillometry system (IOS), as a measure of small airway function, contributed additional information to spirometry either at baseline or after bronchodilator, and whether it was related to the disease control. The fall in resistance from 5 to 20 Hz (R5-R20) and reactance at 5 Hz (X5) by IOS and spirometry measures of small airway function (forced expiratory flow at 25-75% [FEF(25-75)] and forced vital capacity/slow inspiratory vital capacity [FVC/SVC]) at baseline and after 400 micrograms of salbutamol were prospectively measured in 33 asthmatic patients (18 women; age range, 18-66 years). Disease control was assessed by the Asthma Control Test (ACT). R5-R20 but not X5 values were significantly related to FEF(25-75) and FVC/SVC values (p < 0.05 for both correlations). When the bronchodilator response was assessed, no correlation was found among IOS and spirometry changes. ACT scores were related to R5-R20, FEF(25-75), and FVC/SVC values (p < 0.01 for all correlations). In asthmatic patients with normal FEV(1) values, R5-R20 values were related to spirometry measures of small airway function. However, when the bronchodilator response was assessed, IOS and spirometry provided quite different results. Moreover, small airway dysfunction, as assessed by IOS and spirometry, was associated with poor disease control and history of asthma exacerbations. The results of this study confirm the value of IOS, as an investigative tool, and suggest that in asthmatic patients with normal FEV(1) values and poor disease control, small airway function should be investigated. PMID:23406931

  1. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant. PMID:17600317

  2. Three-dimensional inspiratory flow in the upper and central human airways

    NASA Astrophysics Data System (ADS)

    Banko, A. J.; Coletti, F.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.

    2015-06-01

    The steady inspiratory flow through an anatomically accurate model of the human airways was studied experimentally at a regime relevant to deep inspiration for aerosol drug delivery. Magnetic resonance velocimetry was used to obtain the three-component, mean velocity field. A strong, single-sided streamwise swirl was found in the trachea and persists up to the first bifurcation. There, the swirl and the asymmetric anatomy impact both the streamwise momentum distribution and the secondary flows in the main bronchi, with large differences compared to what is found in idealized branching tubes. In further generations, the streamwise velocity never recovers a symmetric profile and the relative intensity of the secondary flows remains strong. Overall, the results suggest that, in real human airways, both streamwise dispersion (due to streamwise gradients) and lateral dispersion (due to secondary flows) are very effective transport mechanisms. Neglecting the extrathoracic airways and idealizing the bronchial tree may lead to qualitatively different conclusions.

  3. Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease.

    PubMed

    Karta, Maya R; Broide, David H; Doherty, Taylor A

    2016-01-01

    Recent discoveries have led to the identification of a novel group of immune cells, the innate lymphoid cells (ILCs). The members of this group are divided into three subpopulations: ILC1s, ILC2s, and ILC3s. ILC2s produce Th2 cytokines, IL-4, IL-5, and IL-13, upon activation by epithelial cell-derived cytokines, lipid mediators (cysteinyl leukotrienes and prostaglandin D2), and TNF family member TL1A and promote structural and immune cell responses in the airways after antigen exposure. In addition, ILC2 function is also influenced by inducible T cell costimulator (ICOS)/ICOS-ligand (ICOS-L) interactions via direct contact between immune cells. The most common airway antigens are allergens and viruses which are highly linked to the induction of airway diseases with underlying type 2 inflammation including asthma and allergic rhinitis. Based on recent findings linking ILC2s and airway Th2 responses, there is intensive investigation into the role of ILC2s in human disease with the hope of a better understanding of the pathophysiology and the discovery of novel potential therapeutic targets. This review summarizes the recent advances made in elucidating ILC2 involvement in human Th2 airway disease. PMID:26746844

  4. DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).

    EPA Science Inventory

    We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...

  5. Experimental evidence of age-related adaptive changes in human acinar airways.

    PubMed

    Quirk, James D; Sukstanskii, Alexander L; Woods, Jason C; Lutey, Barbara A; Conradi, Mark S; Gierada, David S; Yusen, Roger D; Castro, Mario; Yablonskiy, Dmitriy A

    2016-01-15

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized (3)He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized (3)He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  6. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  7. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  8. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  9. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model.

    PubMed

    Ma, Baoshun; Lutchen, Kenneth R

    2009-02-01

    Quantitative data on aerosol deposition in the human respiratory tract are useful for understanding the causes of certain lung diseases and for designing efficient drug delivery systems via inhalation. In this study, aerosol deposition in a 3D anatomically based human large-medium airway model was simulated using computational fluid dynamics (CFD). The model extended from mouth to generation 10 and included two-thirds of the airways obtained by multi-detector row computed tomography (MDCT) imaging on normal healthy human subjects. Steady oral inhalation (15, 30, and 60 L/min) and aerosol (1-30 micrometer) deposition were computed by CFD using the realizable k-epsilon turbulence model. Based on the mean turbulence flow field, the computed extrathoracic deposition, ratio of left to right lung deposition, and deposition efficiency at each generation compared favorably with existing in vivo and in vitro experiments. The significant deposition in the large-medium airway model showed that the total tracheobronchial deposition is dominated by the large-medium airways for micrometer-sized aerosol particles. These quantitative data and the methods developed in this study provided valuable means toward subject-specific modeling of aerosol deposition in the human lung based on realistic lung geometry. PMID:19082892

  10. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  11. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  12. Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway.

    PubMed

    Kang, Min-Yeong; Hwang, Jeongeun; Lee, Jin-Won

    2011-04-01

    Characteristics of pressure loss (ΔP) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the ΔP coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re<100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways. PMID:21354574

  13. In vivo deposition of ultrafine aerosols in human nasal and oral airways

    SciTech Connect

    Yeh, Hsu-Chi; Swift, D.L.; Simpson, S.Q.

    1995-12-01

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 {mu}m particles in 10 human subjects and in our preliminary studies using 0.004-0.15 {mu}m particles in four adult volunteers. No oral deposition was reported in either of these studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 {mu}m with the nasal dimensions of each subject.

  14. Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance.

    PubMed

    Itani, Omar A; Chen, Jeng-Haur; Karp, Philip H; Ernst, Sarah; Keshavjee, Shaf; Parekh, Kalpaj; Klesney-Tait, Julia; Zabner, Joseph; Welsh, Michael J

    2011-06-21

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR(-/-) and CFTR(ΔF508/ΔF508) airway epithelia lacked anion conductance, and they did not hyperabsorb Na(+). Therefore, we asked whether Cl(-) and Na(+) conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na(+) channel inhibitor amiloride produced similar reductions in Gt and Na(+) absorption, indicating that Na(+) conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl(-) conductance. These results indicate that Na(+) conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF. PMID:21646513

  15. Human cystic fibrosis airway epithelia have reduced Cl− conductance but not increased Na+ conductance

    PubMed Central

    Itani, Omar A.; Chen, Jeng-Haur; Karp, Philip H.; Ernst, Sarah; Keshavjee, Shaf; Parekh, Kalpaj; Klesney-Tait, Julia; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR−/− and CFTRΔF508/ΔF508 airway epithelia lacked anion conductance, and they did not hyperabsorb Na+. Therefore, we asked whether Cl− and Na+ conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na+ channel inhibitor amiloride produced similar reductions in Gt and Na+ absorption, indicating that Na+ conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl− conductance. These results indicate that Na+ conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF. PMID:21646513

  16. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells.

    PubMed

    White, Steven R; Martin, Linda D; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A

    2010-11-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  17. Expansive Generation of Functional Airway Epithelium From Human Embryonic Stem Cells

    PubMed Central

    McIntyre, Brendan A.S.; Alev, Cantas; Mechael, Rami; Salci, Kyle R.; Lee, Jung Bok; Fiebig-Comyn, Aline; Guezguez, Borhane; Wu, Yuping; Sheng, Guojun

    2014-01-01

    Production of human embryonic stem cell (hESC)-derived lung progenitors has broad applicability for drug screening and cell therapy; however, this is complicated by limitations in demarcating phenotypic changes with functional validation of airway cell types. In this paper, we reveal the potential of hESCs to produce multipotent lung progenitors using a combined growth factor and physical culture approach, guided by the use of novel markers LIFRα and NRP1. Lung specification of hESCs was achieved by priming differentiation via matrix-specific support, followed by air-liquid interface to allow generation of lung progenitors capable of in vitro maturation into airway epithelial cell types, resulting in functional characteristics such as secretion of pulmonary surfactant, ciliation, polarization, and acquisition of innate immune activity. This approach provided a robust expansion of lung progenitors, allowing in vivo assessment, which demonstrated that only fully differentiated hESC-derived airway cells were retained in the distal airway, where they aided in physiological recovery in immunocompromised mice receiving airway injury. Our study provides a basis for translational applications of hESCs for lung diseases. PMID:24300555

  18. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. PMID:27095271

  19. Continuous mucociliary transport by primary human airway epithelial cells in vitro

    PubMed Central

    Sears, Patrick R.; Yin, Wei-Ning

    2015-01-01

    Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated. PMID:25979076

  20. Matriptase Proteolytically Activates Influenza Virus and Promotes Multicycle Replication in the Human Airway Epithelium

    PubMed Central

    Beaulieu, Alexandre; Gravel, Émilie; Cloutier, Alexandre; Marois, Isabelle; Colombo, Éloïc; Désilets, Antoine; Verreault, Catherine; Leduc, Richard; Marsault, Éric

    2013-01-01

    Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place. PMID:23365447

  1. Modeled deposition of fine particles in human airway in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoying; Yan, Caiqing; Patterson, Regan F.; Zhu, Yujiao; Yao, Xiaohong; Zhu, Yifang; Ma, Shexia; Qiu, Xinghua; Zhu, Tong; Zheng, Mei

    2016-01-01

    This study aims to simulate depositions of size-segregated particles in human airway in Beijing, China during seasons when fine particulate matter concentrations are high (December 2011 and April 2012). Particle size distributions (5.6-560 nm, electrical mobility diameter) near a major road in Beijing were measured by the TSI Fast Mobility Particle Sizer (FMPS). The information of size distributions provided by FMPS was applied in the Multiple-Path Particle Dosimetry model (MPPD) to quantify number and mass depositions of particles in human airway including extrathoracic (ET), tracheobronchial (TB), and pulmonary (PUL) regions of exposed Chinese in Beijing. Our results show that under ambient conditions, particle number concentration (NC) deposition in PUL is the highest in the three major regions of human airway. The total particle NC deposition in human airway in winter is higher than that in spring, especially for ultrafine particles (1.8 times higher) while particle mass concentration (MC) deposition is higher in spring. Although particle MC in clean days are much lower than that in heavily polluted days, total particle NC deposition in human airway in clean days is comparable to that in heavily polluted days. NC deposition for nucleation mode particles (10-20 nm, aerodynamic diameter) in clean days is higher than that in heavily polluted days. MC deposition for accumulation mode particles (100-641 nm, aerodynamic diameter) in heavily polluted days is much higher than that in clean days, while that of nucleation mode is negligible. The temporal variation shows that the arithmetic mean and the median values of particle NC and MC depositions in the evening are both the highest, followed by morning and noon, and it is most likely due to increased contribution from traffic emissions.

  2. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  3. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells

    PubMed Central

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  4. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells.

    PubMed

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  5. High-Sensitivity C-Reactive Protein Can Reflect Small Airway Obstruction in Childhood Asthma

    PubMed Central

    Ko, A Ra; Sol, In Suk; Kim, Min Jung; Yoon, Seo Hee; Kim, Kyung Won; Kim, Kyu-Earn

    2016-01-01

    Purpose High-sensitivity assays enabled the identification of C-reactive protein (hs-CRP) at levels that were previously undetectable. We aimed to determine if hs-CRP could reflect airway inflammation in children, by comparing hs-CRP with spirometry and impulse oscillometry (IOS) parameters and symptomatic severities. Materials and Methods A total of 276 asthmatic children who visited Severance Children's Hospital from 2012–2014 were enrolled. Serum hs-CRP and pulmonary function tests were performed on the same day. Patients were divided into hs-CRP positive and negative groups (cut-off value, 3.0 mg/L). Results Of the 276 asthmatic children [median age 7.5 (5.9/10.1) years, 171 boys (62%)], 39 were hs-CRP positive and 237 were negative. Regarding spirometry parameters, we observed significant differences in maximum mid-expiratory flow, % predicted (FEF25–75) (p=0.010) between hs-CRP positive and negative groups, and a negative correlation between FEF25–75 and hs-CRP. There were significant differences in the reactance area (AX) (p=0.046), difference between resistance at 5 Hz and 20 Hz (R5–R20) (p=0.027), resistance at 5 Hz, % predicted (R5) (p=0.027), and reactance at 5 Hz, % predicted (X5) (p=0.041) between hs-CRP positive and negative groups. There were significant positive correlations between hs-CRP and R5 (r=0.163, p=0.008), and X5 (r=0.164, p=0.007). Spirometry and IOS parameters had more relevance in patients with higher blood neutrophil levels in comparison to hs-CRP. Conclusion Hs-CRP showed significant correlation with FEF25–75, R5, and X5. It can reflect small airway obstruction in childhood asthma, and it is more prominent in neutrophil dominant inflammation. PMID:26996570

  6. Ex Vivo Chemical Cytometric Analysis of Protein Tyrosine Phosphatase Activity in Single Human Airway Epithelial Cells

    PubMed Central

    Phillips, Ryan M.; Dailey, Lisa A.; Bair, Eric; Samet, James M.; Allbritton, Nancy L.

    2014-01-01

    We describe a novel method for the measurement of protein tyrosine phosphatase (PTP) activity in single human airway epithelial cells (hAECs) using capillary electrophoresis. This technique involved the microinjection of a fluorescent phosphopeptide that is hydrolyzed specifically by PTPs. Analyses in BEAS-2B immortalized bronchial epithelial cells showed rapid PTP-mediated dephosphorylation of the substrate (2.2 pmol min−1 mg−1) that was blocked by pretreatment of the cells with the PTP inhibitors pervanadate, Zn2+, and 1,2-naphthoquinone (76%, 69%, 100% inhibition relative to PTP activity in untreated controls, respectively). These studies were then extended to a more physiologically relevant model system: primary hAECs cultured from bronchial brushings of living human subjects. In primary hAECs, dephosphorylation of the substrate occurred at a rate of 2.2 pmol min−1 mg−1, and was also effectively inhibited by pre-incubation of the cells with the inhibitors pervanadate, Zn2+, and 1,2- naphthoquinone (91%, 88%, and 87% median PTP inhibition, respectively). Reporter proteolysis in single BEAS-2B cells occurred at a median rate of 43 fmol min−1 mg−1 resulting in a mean half-life of 20 min. The reporter displayed a similar median half-life of 28 min in these single primary cells. Finally, single viable epithelial cells (which were assayed for PTP activity immediately after collection by bronchial brushing of a human volunteer) showed dephosphorylation rates ranging from 0.34–36 pmol min−1 mg−1 (n = 6). These results demonstrate the utility and applicability of this technique for the ex vivo quantification of PTP activity in small, heterogeneous, human cells and tissues. PMID:24380370

  7. Evaluation of airway resistance in primary small cell carcinoma of the trachea by MostGraph: a case study.

    PubMed

    Hagiwara, Eri; Gon, Yasuhiro; Hayashi, Kentaro; Takahashi, Mai; Iida, Yuko; Hiranuma, Hisato; Nakagawa, Yoshiko; Hataoka, Tsukasa; Mizumura, Kenji; Maruoka, Shuichiro; Shimizu, Tetsuo; Takahashi, Noriaki; Hashimoto, Shu

    2016-08-01

    The case subject was a 58-year-old woman who presented to our hospital with a chief complaint of respiratory discomfort. Wheezing could be heard in both lungs; treatment was initiated with inhaled steroids for suspected bronchial asthma. However, 1 week later, the respiratory discomfort had not improved and the wheezing sound had progressed to the neck area. Upper airway obstruction was suspected; therefore, chest computed tomography (CT) was performed, revealing tracheal stenosis caused by a tumor in the upper airway. Because of the high risk of airway obstruction, tracheotomy and tracheal tumor resection were performed. Histopathological examination of the resected tumor revealed small cell lung cancer (SCLC); the stage was determined to be clinical stage IIIB (cT4N2M0), for which chemotherapy with two cycles of cisplatin plus etoposide followed by radiation therapy were administered. Pulmonary function testing revealed no change in the forced expiratory volume in 1 sec and flow volume (FV) curve before and after tumor resection, whereas airway resistance measured by MostGraph-01 showed a marked decrease following treatment. We believe that MostGraph-01 may be useful for measuring airway resistance and evaluating a tracheal tumor, and report a case using MostGraph-01. PMID:27621904

  8. Evaluation of airway resistance in primary small cell carcinoma of the trachea by MostGraph: a case study

    PubMed Central

    Hagiwara, Eri; Hayashi, Kentaro; Takahashi, Mai; Iida, Yuko; Hiranuma, Hisato; Nakagawa, Yoshiko; Hataoka, Tsukasa; Mizumura, Kenji; Maruoka, Shuichiro; Shimizu, Tetsuo; Takahashi, Noriaki; Hashimoto, Shu

    2016-01-01

    The case subject was a 58-year-old woman who presented to our hospital with a chief complaint of respiratory discomfort. Wheezing could be heard in both lungs; treatment was initiated with inhaled steroids for suspected bronchial asthma. However, 1 week later, the respiratory discomfort had not improved and the wheezing sound had progressed to the neck area. Upper airway obstruction was suspected; therefore, chest computed tomography (CT) was performed, revealing tracheal stenosis caused by a tumor in the upper airway. Because of the high risk of airway obstruction, tracheotomy and tracheal tumor resection were performed. Histopathological examination of the resected tumor revealed small cell lung cancer (SCLC); the stage was determined to be clinical stage IIIB (cT4N2M0), for which chemotherapy with two cycles of cisplatin plus etoposide followed by radiation therapy were administered. Pulmonary function testing revealed no change in the forced expiratory volume in 1 sec and flow volume (FV) curve before and after tumor resection, whereas airway resistance measured by MostGraph-01 showed a marked decrease following treatment. We believe that MostGraph-01 may be useful for measuring airway resistance and evaluating a tracheal tumor, and report a case using MostGraph-01.

  9. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  10. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia

    PubMed Central

    Chun, Carlene K.; Ozer, Egon A.; Welsh, Michael J.; Zabner, Joseph; Greenberg, E. P.

    2004-01-01

    Mammalian airways protect themselves from bacterial infection by using multiple defense mechanisms including antimicrobial peptides, mucociliary clearance, and phagocytic cells. We asked whether airways might also target a key bacterial cell-cell communication system, quorum-sensing. The opportunistic pathogen Pseudomonas aeruginosa uses two quorum-sensing molecules, N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), to control production of extracellular virulence factors and biofilm formation. We found that differentiated human airway epithelia inactivated 3OC12-HSL. Inactivation was selective for acyl-HSLs with certain acyl side chains, and C4-HSL was not inactivated. In addition, the capacity for inactivation varied widely in different cell types. 3OC12-HSL was inactivated by a cell-associated activity rather than a secreted factor. These data suggest that the ability of human airway epithelia to inactivate quorum-sensing signal molecules could play a role in the innate defense against bacterial infection. PMID:14970327

  11. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways.

    PubMed Central

    Gaston, B; Reilly, J; Drazen, J M; Fackler, J; Ramdev, P; Arnelle, D; Mullins, M E; Sugarbaker, D J; Chee, C; Singel, D J

    1993-01-01

    Recent discoveries suggesting essential bioactivities of nitric oxide (NO.) in the lung are difficult to reconcile with the established pulmonary cytotoxicity of this common air pollutant. These conflicting observations suggest that metabolic intermediaries may exist in the lung to modulate the bioactivity and toxicity of NO.. We report that S-nitrosothiols (RS-NO), predominantly the adduct with glutathione, are present at nano- to micromolar concentrations in the airways of normal subjects and that their levels vary in different human pathophysiologic states. These endogenous RS-NO are long-lived, potent relaxants of human airways under physiological O2 concentrations. Moreover, RS-NO form in high concentrations upon administration of NO. gas. Nitrite (10-20 microM) is found in airway lining fluid in concentrations linearly proportional to leukocyte counts, suggestive of local NO. metabolism. NO. itself was not detected either free in solution or in complexes with transition metals. These observations may provide insight into the means by which NO. is packaged in biological systems to preserve its bioactivity and limit its potential O2-dependent toxicity and suggest an important role for NO. in regulation of airway luminal homeostasis. PMID:8248198

  12. Ground truth and CT image model simulation for pathophysiological human airway system

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2010-02-01

    Recurrent problem in medical image segmentation and analysis, establishing a ground truth for assessment purposes is often difficult. Facing this problem, the scientific community orients its efforts towards the development of objective methods for evaluation, namely by building up or simulating the missing ground truth for analysis. This paper focuses on the case of human pulmonary airways and develops a method 1) to simulate the ground truth for different pathophysiological configurations of the bronchial tree as a mesh model, and 2) to generate synthetic 3D CT images of airways associated with the simulated ground truth. The airway model is here built up based on the information provided by a medial axis (describing bronchus shape, subdivision geometry and local radii), which is computed from real CT data to ensure realism and matching with a patient-specific morphology. The model parameters can be further on adjusted to simulate various pathophysiological conditions of the same patient (longitudinal studies). Based on the airway mesh model, a 3D image model is synthesized by simulating the CT acquisition process. The image realism is achieved by including textural features of the surrounding pulmonary tissue which are obtained by segmentation from the same original CT data providing the airway axis. By varying the scanning simulation parameters, several 3D image models can be generated for the same airway mesh ground truth. Simulation results for physiological and pathological configurations are presented and discussed, illustrating the interest of such a modeling process for designing computer-aided diagnosis systems or for assessing their sensitivity, mainly for follow-up studies in asthma and COPD.

  13. Validation of computational fluid dynamics methodology used for human upper airway flow simulations.

    PubMed

    Mylavarapu, Goutham; Murugappan, Shanmugam; Mihaescu, Mihai; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2009-07-22

    An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k-epsilon, standard k-omega, and k-omega Shear Stress Transport (SST)) and with one-equation Spalart-Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k-omega turbulence model resulted in the best agreement with the static pressure measurements, with an average error of approximately 20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway. PMID:19501360

  14. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    PubMed

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. J. Cell. Physiol. 231: 1586-1592, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566264

  15. Expression of RANTES in human airway epithelial cells: effect of corticosteroids and interleukin-4, -10 and -13.

    PubMed Central

    Berkman, N; Robichaud, A; Krishnan, V L; Roesems, G; Robbins, R; Jose, P J; Barnes, P J; Chung, K F

    1996-01-01

    RANTES is a C-C chemokine with strong chemoattractant and activating properties for eosinophils, basophils and T lymphocytes. We investigated the expression of RANTES in human airway epithelial cells and its modulation. Epithelial cells obtained from tracheas of donor lungs were stimulated with interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) or with a mixture of the three cytokines ('cytomix'). Levels of mRNA and protein were assayed by Northern blot and radioimmunoassay, respectively. Each individual cytokine produced a small increase in RANTES protein: IL-1 beta 24 +/- 1 pM, TNF-alpha 13 +/- 7 pM and IFN-gamma 29 +/- 7 pM, but cytomix increased protein to 236 +/- 22 pM (P < 0.002) and mRNA expression by > 20-fold (P < 0.002). Both RANTES protein and mRNA expression were inhibited by dexamethasone (10(-6) M) (38 +/- 5%, P < 0.05 and 55 +/- 8%, P < 0.007, respectively), and by IL-4 (42 +/- 7%, P < 0.03 and 19 +/- 1%, not significant, respectively). No inhibitory effect was observed with IL-10 or IL-13. We also demonstrated in vivo expression of RANTES protein by epithelial cells in human airways using immunohistochemistry. Our data show that human airway epithelial cells can be stimulated to express and release RANTES, an effect that is inhibited by corticosteroids and IL-4, but not by IL-10 and IL-13. Images Figure 1 Figure 2 Figure 3 PMID:8675215

  16. Microarray gene expression analysis of the human airway in patients exposed to sulfur mustard.

    PubMed

    Najafi, Ali; Masoudi-Nejad, Ali; Imani Fooladi, Abbas Ali; Ghanei, Mostafa; Nourani, Mohamad Reza

    2014-08-01

    There is much data about the acute effects of sulfur mustard gas on humans, animals and cells. But less is known regarding the molecular basics of chronic complications in humans. Basically, mustard gas, as an alkylating agent, causes several chronic problems in the eyes, skin and more importantly in the pulmonary system which is the main cause of death. Although recent proteomic research has been carried out on bronchoalveolar lavage (BAL) and serum, but high-throughput transcriptomics have not yet been applied to chronic airway remodeling. This is the first cDNA-microarray report on the chronic human mustard lung disease, 25 years after exposure during the Iran-Iraq war. Microarray transcriptional profiling indicated that a total of 122 genes were significantly dysregulated in tissues located in the airway of patients. These genes are associated with the extracellular matrix components, apoptosis, stress response, inflammation and mucus secretion. PMID:24823320

  17. 17β-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia

    PubMed Central

    Coakley, Ray D.; Sun, Hengrui; Clunes, Lucy A.; Rasmussen, Julia E.; Stackhouse, James R.; Okada, Seiko F.; Fricks, Ingrid; Young, Steven L.; Tarran, Robert

    2008-01-01

    Normal airways homeostatically regulate the volume of airway surface liquid (ASL) through both cAMP- and Ca2+-dependent regulation of ion and water transport. In cystic fibrosis (CF), a genetic defect causes a lack of cAMP-regulated CFTR activity, leading to diminished Cl– and water secretion from airway epithelial cells and subsequent mucus plugging, which serves as the focus for infections. Females with CF exhibit reduced survival compared with males with CF, although the mechanisms underlying this sex-related disadvantage are unknown. Despite the lack of CFTR, CF airways retain a limited capability to regulate ASL volume, as breathing-induced ATP release activates salvage purinergic pathways that raise intracellular Ca2+ concentration to stimulate an alternate pathway to Cl– secretion. We hypothesized that estrogen might affect this pathway by reducing the ability of airway epithelia to respond appropriately to nucleotides. We found that uridine triphosphate–mediated (UTP-mediated) Cl– secretion was reduced during the periovulatory estrogen maxima in both women with CF and normal, healthy women. Estrogen also inhibited Ca2+ signaling and ASL volume homeostasis in non-CF and CF airway epithelia by attenuating Ca2+ influx. This inhibition of Ca2+ signaling was prevented and even potentiated by estrogen antagonists such as tamoxifen, suggesting that antiestrogens may be beneficial in the treatment of CF lung disease because they increase Cl– secretion in the airways. PMID:19033671

  18. Cultured human airway epithelial cells (calu-3): a model of human respiratory function, structure, and inflammatory responses.

    PubMed

    Zhu, Yan; Chidekel, Aaron; Shaffer, Thomas H

    2010-01-01

    This article reviews the application of the human airway Calu-3 cell line as a respiratory model for studying the effects of gas concentrations, exposure time, biophysical stress, and biological agents on human airway epithelial cells. Calu-3 cells are grown to confluence at an air-liquid interface on permeable supports. To model human respiratory conditions and treatment modalities, monolayers are placed in an environmental chamber, and exposed to specific levels of oxygen or other therapeutic modalities such as positive pressure and medications to assess the effect of interventions on inflammatory mediators, immunologic proteins, and antibacterial outcomes. Monolayer integrity and permeability and cell histology and viability also measure cellular response to therapeutic interventions. Calu-3 cells exposed to graded oxygen concentrations demonstrate cell dysfunction and inflammation in a dose-dependent manner. Modeling positive airway pressure reveals that pressure may exert a greater injurious effect and cytokine response than oxygen. In experiments with pharmacological agents, Lucinactant is protective of Calu-3 cells compared with Beractant and control, and perfluorocarbons also protect against hyperoxia-induced airway epithelial cell injury. The Calu-3 cell preparation is a sensitive and efficient preclinical model to study human respiratory processes and diseases related to oxygen- and ventilator-induced lung injury. PMID:20948883

  19. Design, characterization and use of replicate human upper airways for radon dosimetry studies

    SciTech Connect

    Swift, D.L.; Cheng, Y.S.; Su, Y.F.; Yeh, H.C.

    1992-12-31

    The size distribution of inhaled radon progeny aerosols is a significant factor in dosimetry. The role of the airways above the trachea is an important determinant of the respiratory distribution of both attached and unattached progeny aerosols. In order to provide information on the effect of particle size and breathing conditions on the overall and local deposition, we have developed a method to produce a replicate airway model from an in vivo magnetic resonance imaging coronal scan. The model consists of a sandwich of methacrylate elements, each element having the thickness of the scan interval. The transition between successive scan outlines traced on the front and back surfaces of each element is handsculpted in the plastic. The hollow model of the nasal passages thus produced has been characterized both morphologically and fluid-mechanically and has a flow resistance typical of a normal adult. The model has several distinct advantages for studies of radon progeny aerosol deposition. After exposure to a radioaerosol (or to an aerosol of an otherwise measurable substance) the individual elements can be separated to determine local deposition. The dimensions of specific upper-airway regions can be changed by replacing a small number of elements. The model has been incorporated in an exposure system for determining overall nandregional deposition of aerosols whose median diameter is approximately 1.7 nm. Measurements at several flow rates are presented to demonstrate use of the model in radon dosimetry. The model should also be useful for determining the airway deposition of other environmental aerosols.

  20. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    PubMed

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  1. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium. PMID:26927796

  2. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    PubMed

    Kesic, Matthew J; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  3. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy.

    PubMed

    Chhin, Brigitte; Negre, Didier; Merrot, Olivier; Pham, Jacqueline; Tourneur, Yves; Ressnikoff, Denis; Jaspers, Martine; Jorissen, Mark; Cosset, François-Loïc; Bouvagnet, Patrice

    2009-03-01

    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1-deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT-PCR and western blot, respectively. Human airway epithelial cells that were DNAI1-deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease. PMID:19300481

  4. Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy

    PubMed Central

    Chhin, Brigitte; Negre, Didier; Merrot, Olivier; Pham, Jacqueline; Tourneur, Yves; Ressnikoff, Denis; Jaspers, Martine; Jorissen, Mark; Cosset, François-Loïc; Bouvagnet, Patrice

    2009-01-01

    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease. PMID:19300481

  5. Effect of morphological variability on particle deposition in idealized human airways

    NASA Astrophysics Data System (ADS)

    Lin, Eleanor; Bernate, Jorge A.; Parada San Martin, Daniel A.; Makitani, Yuzo; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2013-11-01

    This study is focused on the effects of variability in airway morphology on particle deposition in the lungs, which in turn impacts disease inception and drug delivery. We generated a parameterized geometry of the human airway derived from Lola: a realistic geometry obtained from CT scans (Zhang et al. J AEROSOL SCI 46, 34 (2012)). The upper airway geometry is parameterized using an elliptic model from Xi and Longest (ANN BIOMED ENG 35, 560 (2007)), with the glottis modified to a realistic triangular shape, based on measurements taken from Lola. The trachea and bronchi are generated using rules adapted from Kitaoka et al. (J Appl Physiol 87, 2207-2217 (1999)), with the first 3 generations closely matching those of Lola. We perform simulations corresponding to a full breathing cycle and illustrate the preferential deposition in each generation. In addition, we compared the deposition features in the idealized geometry to those from simulations in the original scanned airways. Perturbations are then applied to the parameterized geometry to study the effects of morphological variability on deposition patterns. This work is funded by the Army AHPCRC at Stanford.

  6. In Vitro Spatial and Temporal Analysis of Mycoplasma pneumoniae Colonization of Human Airway Epithelium

    PubMed Central

    Prince, Oliver A.; Krunkosky, Thomas M.

    2014-01-01

    Mycoplasma pneumoniae is an important cause of respiratory disease, especially in school-age children and young adults. We employed normal human bronchial epithelial (NHBE) cells in air-liquid interface culture to study the interaction of M. pneumoniae with differentiated airway epithelium. These airway cells, when grown in air-liquid interface culture, polarize, form tight junctions, produce mucus, and develop ciliary function. We examined both qualitatively and quantitatively the role of mycoplasma gliding motility in the colonization pattern of developing airway cells, comparing wild-type M. pneumoniae and mutants thereof with moderate to severe defects in gliding motility. Adherence assays with radiolabeled mycoplasmas demonstrated a dramatic reduction in binding for all strains with airway cell polarization, independent of acquisition of mucociliary function. Adherence levels dropped further once NHBE cells achieved terminal differentiation, with mucociliary activity strongly selecting for full gliding competence. Analysis over time by confocal microscopy demonstrated a distinct colonization pattern that appeared to originate primarily with ciliated cells, but lateral spread from the base of the cilia was slower than expected. The data support a model in which the mucociliary apparatus impairs colonization yet cilia provide a conduit for mycoplasma access to the host cell surface and suggest acquisition of a barrier function, perhaps associated with tethered mucin levels, with NHBE cell polarization. PMID:24478073

  7. IDENTIFICATION AND CHARACTERIZATION OF HUMAN AIRWAY EPITHELIAL CELL PROTEINS PHOSPHORYLATED IN RESPONSE TO PARTICULATE MATTER (PM) EXPOSURE.

    EPA Science Inventory

    Multiple studies conducted by NHEERL scientists in recent years have shown that acute exposure to metals found associated with combustion-derived particulate matter (PM) alters phosphoprotein metabolism in human airway epithelial cells causing intracellular signaling. This disreg...

  8. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  9. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    PubMed

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development. PMID:25758640

  10. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  11. Surfactant synthesis, secretion, and function in alveoli and small airways. Review of the physiologic basis for pharmacologic intervention.

    PubMed

    Mason, R J

    1987-01-01

    Surface-active material is known to lower surface tension at the air/liquid interface and provide alveolar stability. Less well appreciated is the potential role of surface-active material in maintaining the patency of small airways and in transporting particles from the alveolar surface to the small airways. The interactions between the two dominant secretory cells in the terminal lung units, i.e., the alveolar type II cell and the Clara cell, are just starting to be discovered. The biochemical signals for secretion of surface-active material in vivo are still not known. The dominant physiologic stimulus is hyperventilation. Secretion in vitro is stimulated by activation of protein-kinase C (tetradecanoyl phorbol acetate), protein-kinase A (cyclic AMP, beta-adrenergic agonists, cholera toxin), and calcium ionophores (A23187 or ionomycin). The biochemical basis for secretion will be discussed. PMID:2885907

  12. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  13. Small is the new big: An overview of newer supraglottic airways for children

    PubMed Central

    Goyal, Rakhee

    2015-01-01

    Almost all supraglottic airways (SGAs) are now available in pediatric sizes. The availability of these smaller sizes, especially in the last five years has brought a marked change in the whole approach to airway management in children. SGAs are now used for laparoscopic surgeries, head and neck surgeries, remote anesthesia; and for ventilation during resuscitation. A large number of reports have described the use of SGAs in difficult airway situations, either as a primary or a rescue airway. Despite this expanded usage, there remains little evidence to support its usage in prolonged surgeries and in the intensive care unit. This article presents an overview of the current options available, suitability of one over the other and reviews the published data relating to each device. In this review, the author also addresses some of the general concerns regarding the use of SGAs and explores newer roles of their use in children. PMID:26702197

  14. The guinea-pig isolated bronchus for the in vitro study of small calibre airway reactivity.

    PubMed Central

    Advenier, C.; Freslon, J. L.

    1985-01-01

    Small calibre airway reactivity to different contractile and relaxant agents was tested in vitro using small segments (about 1 mm long and 0.2 mm in internal diameter) of guinea-pig isolated intralobular bronchi. EC50 values of, and maximal contractile responses to contractile agents were as follows (mean +/- s.e.mean, n = 6): acetylcholine 13.6 +/- 2.6 microM and 1140 +/- 80 mg; histamine 5.2 +/- 0.7 microM and 1094 +/- 95 mg; 5-hydroxytryptamine (5-HT) 0.7 +/- 0.1 microM and 595 +/- 61 mg; prostaglandin F2 alpha (PGF2 alpha) 8.8 +/- 1.2 microM and 1100 +/- 88 mg; tetraethylammonium 2.9 +/- 0.3 mM and 1055 +/- 94 mg; KC1 14.6 +/- 0.5 mM and 965 +/- 81 mg. EC50 values of, and maximal relaxant responses to beta-adrenoceptor stimulants on preparations precontracted with acetylcholine (1.4 X 10(-4)M) were: isoprenaline 0.40 +/- 0.5 microM and 782 +/- 65 mg, n = 18; salbutamol 0.19 +/- 0.02 microM and 494 +/- 55 mg, n = 5; terbutaline 0.87 +/- 0.18 microM and 263 +/- 40 mg n = 5; fenoterol 0.06 +/- 0.02 microM and 722 +/- 47 mg, n = 5; adrenaline 0.71 +/- 0.13 microM and 653 +/- 62 mg, n = 5; noradrenaline 10.8 +/- 0.9 microM and 566 +/- 97 mg, n = 5. Differences in the maximal relaxant effects between the beta-adrenoceptor stimulants showed that the preparation utilized is a relevant model for assessment of the intrinsic activity of these drugs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4052734

  15. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation.

    PubMed

    Nesmith, Alexander Peyton; Agarwal, Ashutosh; McCain, Megan Laura; Parker, Kevin Kit

    2014-10-21

    Many potential new asthma therapies that show promise in the pre-clinical stage of drug development do not demonstrate efficacy during clinical trials. One factor contributing to this problem is the lack of human-relevant models of the airway that recapitulate the tissue-level structural and functional phenotypes of asthma. Hence, we sought to build a model of a human airway musculature on a chip that simulates healthy and asthmatic bronchoconstriction and bronchodilation in vitro by engineering anisotropic, laminar bronchial smooth muscle tissue on elastomeric thin films. In response to a cholinergic agonist, the muscle layer contracts and induces thin film bending, which serves as an in vitro analogue for bronchoconstriction. To mimic asthmatic inflammation, we exposed the engineered tissues to interleukin-13, which resulted in hypercontractility and altered relaxation in response to cholinergic challenge, similar to responses observed clinically in asthmatic patients as well as in studies with animal tissue. Moreover, we reversed asthmatic hypercontraction using a muscarinic antagonist and a β-agonist which are used clinically to relax constricted airways. Importantly, we demonstrated that targeting RhoA-mediated contraction using HA1077 decreased basal tone, prevented hypercontraction, and improved relaxation of the engineered tissues exposed to IL-13. These data suggest that we can recapitulate the structural and functional hallmarks of human asthmatic musculature on a chip, including responses to drug treatments for evaluation of safety and efficacy of new drugs. Further, our airway musculature on a chip provides an important tool for enabling mechanism-based search for new therapeutic targets through the ability to evaluate engineered muscle at the levels of protein expression, tissue structure, and tissue function. PMID:25093641

  16. FLUID DYNAMICS OF THE HUMAN LARYNX AND UPPER TRACHEOBRONCHIAL AIRWAYS

    EPA Science Inventory

    An airflow pattern that is used to study aerosol deposition in the human lung must attempt to be physiologically realistic. ecause of anatomical conditions, caution must be applied in using only calculated Reynolds number values in biological applications to designate either velo...

  17. Quantitative imaging of the human upper airway: instrument design and clinical studies

    NASA Astrophysics Data System (ADS)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  18. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    SciTech Connect

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-11-15

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs.

  19. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures.

    PubMed

    Cholon, Deborah M; O'Neal, Wanda K; Randell, Scott H; Riordan, John R; Gentzsch, Martina

    2010-03-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, DeltaF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in DeltaF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of DeltaF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of DeltaF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  20. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    PubMed Central

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  1. Disruption of β-catenin/CBP signaling inhibits human airway epithelial-mesenchymal transition and repair.

    PubMed

    Moheimani, Fatemeh; Roth, Hollis M; Cross, Jennifer; Reid, Andrew T; Shaheen, Furquan; Warner, Stephanie M; Hirota, Jeremy A; Kicic, Anthony; Hallstrand, Teal S; Kahn, Michael; Stick, Stephen M; Hansbro, Philip M; Hackett, Tillie-Louise; Knight, Darryl A

    2015-11-01

    The epithelium of asthmatics is characterized by reduced expression of E-cadherin and increased expression of the basal cell markers ck-5 and p63 that is indicative of a relatively undifferentiated repairing epithelium. This phenotype correlates with increased proliferation, compromised wound healing and an enhanced capacity to undergo epithelial-mesenchymal transition (EMT). The transcription factor β-catenin plays a vital role in epithelial cell differentiation and regeneration, depending on the co-factor recruited. Transcriptional programs driven by the β-catenin/CBP axis are critical for maintaining an undifferentiated and proliferative state, whereas the β-catenin/p300 axis is associated with cell differentiation. We hypothesized that disrupting the β-catenin/CBP signaling axis would promote epithelial differentiation and inhibit EMT. We treated monolayer cultures of human airway epithelial cells with TGFβ1 in the presence or absence of the selective small molecule ICG-001 to inhibit β-catenin/CBP signaling. We used western blots to assess expression of an EMT signature, CBP, p300, β-catenin, fibronectin and ITGβ1 and scratch wound assays to assess epithelial cell migration. Snai-1 and -2 expressions were determined using q-PCR. Exposure to TGFβ1 induced EMT, characterized by reduced E-cadherin expression with increased expression of α-smooth muscle actin and EDA-fibronectin. Either co-treatment or therapeutic administration of ICG-001 completely inhibited TGFβ1-induced EMT. ICG-001 also reduced the expression of ck-5 and -19 independent of TGFβ1. Exposure to ICG-001 significantly inhibited epithelial cell proliferation and migration, coincident with a down regulation of ITGβ1 and fibronectin expression. These data support our hypothesis that modulating the β-catenin/CBP signaling axis plays a key role in epithelial plasticity and function. PMID:26315281

  2. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    PubMed Central

    2011-01-01

    Background Is Impulse Oscillometry System (IOS) a valuable tool to measure respiratory system function in Children? Asthma (A) is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI) and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC) and augmented RIC (aRIC) models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B) and post- bronchodilation (post-B) conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H) and Small Airway-Impaired (SAI). The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp) and peripheral resistance (Rp) tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle") showed good correlations. Conclusions What are the most useful IOS and model parameters? In this work we

  3. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    PubMed Central

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2015-01-01

    Summary Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  4. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells.

    PubMed

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2016-01-12

    Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1(+)-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM(+) VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a "9 + 2" microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  5. Computational model of soft tissues in the human upper airway.

    PubMed

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus. PMID:25830209

  6. Measurement of Flow Patterns and Dispersion in the Human Airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank E.; Prasad, Ajay K.

    2006-03-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF was used to determine the amount of convective dispersion across an individual generation of the lung.

  7. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  8. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle

    PubMed Central

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C.; Pabelick, Christina M.

    2014-01-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  9. KGF alters gene expression in human airway epithelia: potential regulation of the inflammatory response.

    PubMed

    Prince, L S; Karp, P H; Moninger, T O; Welsh, M J

    2001-07-17

    Keratinocyte growth factor (KGF) regulates several functions in adult and developing lung epithelia; it causes proliferation, stimulates secretion of fluid and electrolytes, enhances repair, and may minimize injury. To gain insight into the molecular processes influenced by KGF, we applied KGF to primary cultures of well-differentiated human airway epithelia and used microarray hybridization to assess the abundance of gene transcripts. Of 7,069 genes tested, KGF changed expression levels of 910. Earlier studies showed that KGF causes epithelial proliferation, and as expected, treatment altered expression of numerous genes involved in cell proliferation. We found that KGF stimulated transepithelial Cl(-) transport, but the number of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) transcripts fell. Although transcripts for ClC-1 and ClC-7 Cl(-) channels increased, KGF failed to augment transepithelial Cl(-) transport in CF epithelia, suggesting that KGF-stimulated Cl(-) transport in differentiated airway epithelia depends on the CFTR Cl(-) channel. Interestingly, KGF decreased transcripts for many interferon (IFN)-induced genes. IFN causes trafficking of Stat dimers to the nucleus, where they activate transcription of IFN-induced genes. We found that KGF prevented the IFN-stimulated trafficking of Stat1 from the cytosol to the nucleus, suggesting a molecular mechanism for KGF-mediated suppression of the IFN-signaling pathway. These results suggest that in addition to stimulating proliferation and repair of damaged airway epithelia, KGF stimulates Cl(-) transport and may dampen the response of epithelial cells to inflammatory mediators. PMID:11459923

  10. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  11. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior. PMID:26586376

  12. Arsenic alters ATP-dependent Ca²+ signaling in human airway epithelial cell wound response.

    PubMed

    Sherwood, Cara L; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2011-05-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca²+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4 μM as Na-arsenite) on wound-induced Ca²+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca²+ signaling in a dose-dependent manner and results in a reshaping of the Ca²+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca²+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  13. Effect of surface tension of mucosal lining liquid on upper airway mechanics in anesthetized humans.

    PubMed

    Kirkness, Jason P; Eastwood, Peter R; Szollosi, Irene; Platt, Peter R; Wheatley, John R; Amis, Terence C; Hillman, David R

    2003-07-01

    Upper airway (UA) patency may be influenced by surface tension (gamma) operating within the (UAL). We examined the role of gamma of UAL in the maintenance of UA patency in eight isoflurane-anesthetized supine human subjects breathing via a nasal mask connected to a pneumotachograph attached to a pressure delivery system. We evaluated 1). mask pressure at which the UA closed (Pcrit), 2). UA resistance upstream from the site of UA collapse (RUS), and 3). mask pressure at which the UA reopened (Po). A multiple pressure-transducer catheter was used to identify the site of airway closure (velopharyngeal in all subjects). UAL samples (0.2 microl) were collected, and the gamma of UAL was determined by using the "pull-off force" technique. Studies were performed before and after the intrapharyngeal instillation of 5 ml of exogenous surfactant (Exosurf, Glaxo Smith Kline). The gamma of UAL decreased from 61.9 +/- 4.1 (control) to 50.3 +/- 5.0 mN/m (surfactant; P < 0.02). Changes in Po, RUS, and Po - Pcrit (change = control - surfactant) were positively correlated with changes in gamma (r2 > 0.6; P < 0.02) but not with changes in Pcrit (r2 = 0.4; P > 0.9). In addition, mean peak inspiratory airflow (no flow limitation) significantly increased (P < 0.04) from 0.31 +/- 0.06 (control) to 0.36 +/- 0.06 l/s (surfactant). These findings suggest that gamma of UAL exerts a force on the UA wall that hinders airway opening. Instillation of exogenous surfactant into the UA lowers the gamma of UAL, thus increasing UA patency and augmenting reopening of the collapsed airway. PMID:12626492

  14. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  15. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR

    PubMed Central

    Stauffer, Brandon; Moriarty, Hannah K.; Kim, Agnes H.; McCarty, Nael A.; Koval, Michael

    2015-01-01

    Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTRwt/wt) and CuFi-5 (CFTRΔF508/ΔF508) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na+ channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells. PMID:26115671

  16. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR.

    PubMed

    Molina, Samuel A; Stauffer, Brandon; Moriarty, Hannah K; Kim, Agnes H; McCarty, Nael A; Koval, Michael

    2015-09-01

    Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTR(wt/wt)) and CuFi-5 (CFTR(ΔF508/ΔF508)) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na(+) channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells. PMID:26115671

  17. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  18. Pharyngeal abscess presenting with upper airway obstruction and atlanto-axial subluxation in a small infant.

    PubMed

    Brookes, A; Moriarty, A

    2000-05-01

    We describe an infant who presented with a combination of upper airway obstruction and atlanto-axial subluxation, secondary to a pharyngeal abscess resulting from cosmetic ear piercing. This combination posed a number of difficulties for the anasthetist and a detailed plan was formulated to prepare the child for anasthesia. PMID:10792140

  19. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  20. Clinical, functional and pathological correspondence in early stage idiopathic pulmonary fibrosis: evidence for small airway obstruction 1-2.

    PubMed

    Myre, M; Allard, S; Bernard, C; Martin, R R

    1988-01-01

    We describe the clinical, physiological and pathological features of 23 subjects with early stage idiopathic pulmonary fibrosis. Thirteen subjects who had no symptoms had been fortuitously recruited by a routine chest radiograph, whereas the 10 other subjects complained of dyspnea. Twenty-one subjects showed only light to moderate extent of abnormalities on the chest radiograph. Fourteen subjects had a reduced vital capacity whereas 16 and 17 showed a reduced pulmonary compliance and an increase in lung elastic recoil, respectively. Transfer factor was significantly reduced in 18 subjects. Evidence for significant airway obstruction, mainly located at the peripheral level, was demonstrated by a reduced specific lung conductance and upstream conductance in 13 subjects. Airway obstruction was not associated with smoking habits. Bronchial hyperresponsiveness was noted in 50% of the 18 subjects studied. Although fibrosis was mild to moderate in 15 instances, it was only focal, i.e. at least one zone of normal parenchyma in the lung specimen in 17 subjects. Peribronchial fibrosis was established in 8/11 satisfactory biopsy specimens. Significant correlations were observed between rales, the radiological score, some functional indices and the characteristics of fibrosis. We conclude that small airway obstruction documented by physiological and pathological means is frequent in early stage idiopathic pulmonary fibrosis. PMID:3420306

  1. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  2. Bubble continuous positive airway pressure in a human immunodeficiency virus-infected infant

    PubMed Central

    McCollum, E. D.; Smith, A.; Golitko, C. L.

    2014-01-01

    SUMMARY World Health Organization-classified very severe pneumonia due to Pneumocystis jirovecii infection is recognized as a life-threatening condition in human immunodeficiency virus (HIV) infected infants. We recount the use of nasal bubble continuous positive airway pressure (BCPAP) in an HIV-infected African infant with very severe pneumonia and treatment failure due to suspected infection with P. jirovecii. We also examine the potential implications of BCPAP use in resource-poor settings with a high case index of acute respiratory failure due to HIV-related pneumonia, but limited access to mechanical ventilation. PMID:21396221

  3. Arachidonate-Regulated Ca2+ Influx in Human Airway Smooth Muscle

    PubMed Central

    Thompson, Michael A.; Prakash, Y. S.

    2014-01-01

    Plasma membrane Ca2+ influx, especially store-operated Ca2+ entry triggered by sarcoplasmic reticulum (SR) Ca2+ release, is a key component of intracellular calcium concentration ([Ca2+]i) regulation in airway smooth muscle (ASM). Agonist-induced Ca2+ oscillations in ASM that involve both influx and SR mechanisms have been previously demonstrated. In nonexcitable cells, [Ca2+]i oscillations involve Ca2+ influx via arachidonic acid (AA) –stimulated channels, which show similarities to store-operated Ca2+ entry, although their molecular identity remains undetermined. Little is known about AA-regulated Ca2+ channels or their regulation in ASM. In enzymatically dissociated human ASM cells loaded with the Ca2+ indicator, fura-2, AA (1–10 μM) triggered [Ca2+]i oscillations that were inhibited by removal of extracellular Ca2+. Other fatty acids, such as the diacylglycerol analog, 1-oleoyl-2-acetyl-SN-glycerol, oleic acid, and palmitic acid (10 μM each), failed to elicit similar [Ca2+]i responses. Preincubation with LaCl3 (1 μM or 1 mM) inhibited AA-induced oscillations. Inhibition of receptor-operated channels (SKF96,365 [10 μM]), lipoxygenase (zileuton [10 μM]), or cyclooxygenase (indomethacin [10 μM]) did not affect oscillation parameters. Inhibition of SR Ca2+ release (ryanodine [10 μM] or inositol 1,4,5-trisphosphate receptor inhibitor, xestospongin C [1 μM]) decreased [Ca2+]i oscillation frequency and amplitude. Small interfering RNA against caveolin-1, stromal interaction molecule 1, or Orai3 (20 nM each) reduced the frequency and amplitude of AA-induced [Ca2+]i oscillations. In ASM cells derived from individuals with asthma, AA increased oscillation amplitude, but not frequency. These results are highly suggestive of a novel AA-mediated Ca2+–regulatory mechanism in human ASM, reminiscent of agonist-induced oscillations. Given the role of AA in ASM intracellular signaling, especially with inflammation, AA-regulated Ca2+ channels could potentially

  4. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors

    PubMed Central

    Teixeira, Vitor H; Nadarajan, Parthiban; Graham, Trevor A; Pipinikas, Christodoulos P; Brown, James M; Falzon, Mary; Nye, Emma; Poulsom, Richard; Lawrence, David; Wright, Nicholas A; McDonald, Stuart; Giangreco, Adam; Simons, Benjamin D; Janes, Sam M

    2013-01-01

    Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to “neutral drift” of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI: http://dx.doi.org/10.7554/eLife.00966.001 PMID:24151545

  5. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  6. β2-Agonists Inhibit TNF-α-Induced ICAM-1 Expression in Human Airway Parasympathetic Neurons

    PubMed Central

    Nie, Zhenying; Fryer, Allison D.; Jacoby, David B.

    2012-01-01

    Background Major basic protein released from eosinophils to airway parasympathetic nerves blocks inhibitory M2 muscarinic receptors on the parasympathetic nerves, increasing acetylcholine release and potentiating reflex bronchoconstriction. Recruitment of eosinophils to airway parasympathetic neurons requires neural expression of both intercellular adhesion molecular-1 (ICAM-1) and eotaxin. We have shown that inflammatory cytokines induce eotaxin and ICAM-1 expression in parasympathetic neurons. Objective To test whether the β2 agonist albuterol, which is used to treat asthma, changes TNF-alpha-induced eotaxin and ICAM-1 expression in human parasympathetic neurons. Methods Parasympathetic neurons were isolated from human tracheas and grown in serum-free medium for one week. Cells were incubated with either (R)-albuterol (the active isomer), (S)-albuterol (the inactive isomer) or (R,S)-albuterol for 90 minutes before adding 2 ng/ml TNF-alpha for another 4 hours (for mRNA) or 24 hours (for protein). Results and Conclusions Baseline expression of eotaxin and ICAM-1 were not changed by any isomer of albuterol as measured by real time RT-PCR. TNF-alpha induced ICAM-1 expression was significantly inhibited by (R)-albuterol in a dose dependent manner, but not by (S) or (R,S)-albuterol. Eotaxin expression was not changed by TNF-alpha or by any isomer of albuterol. The β-receptor antagonist propranolol blocked the inhibitory effect of (R)-albuterol on TNF-alpha-induced ICAM-1 expression. Clinical Implication The suppressive effect of (R)-albuterol on neural ICAM-1 expression may be an additional mechanism for decreasing bronchoconstriction, since it would decrease eosinophil recruitment to the airway nerves. PMID:23049757

  7. Anti-inflammatory effects of methoxyphenolic compounds on human airway cells

    PubMed Central

    2012-01-01

    Background The respiratory epithelium plays a central role in the inflammatory response in asthma and other diseases. Methoxyphenolic compounds are purported to be effective anti-inflammatory agents, but their effects on the airway epithelium have not been well characterized. Methods Human airway cells were stimulated with TNF-α in the presence or absence of 4-substituted methoxyphenols and resveratrol. The expression of various cytokines was measured by qPCR, ELISAs, and protein arrays. Reactive oxygen species (ROS) production was measured with a reactive fluorescent probe (3',6'-diacetate-2',7'-dichlorofluorescein). Activation of NF-κB was measured by nuclear translocation and phosphorylation. Ribonuclear protein association with mRNA was assessed with a biotin-RNA affinity isolation assay. Results Multiple inflammatory mediators were inhibited by methoxyphenols, including: CCL2, CCL5, IL-6, IL-8, ICAM-1, MIF, CXCL1, CXCL10, and Serpin E1. IC50 values were obtained for each compound that showed significant anti-inflammatory activity: diapocynin (20.3 μM), resveratrol (42.7 μM), 2-methoxyhydroquinone (64.3 μM), apocynin (146.6 μM), and 4-amino-2-methoxyphenol (410 μM). The anti-inflammatory activity did not correlate with inhibition of reactive oxygen species production or NF-κB activation. However, methoxyphenols inhibited binding of the RNA-binding protein HuR to mRNA, indicating that they may act post-transcriptionally. Conclusions Methoxyphenols demonstrate anti-inflammatory activity in human airway cells. More potent compounds that act via similar mechanisms may have therapeutic potential as novel anti-inflammatory agents. PMID:22414048

  8. ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...

  9. Cr(VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck

    PubMed Central

    O'hara, Kimberley A.; Vaghjiani, Rasilaben J.; Nemec, Antonia A.; Klei, Linda R.; Barchowsky, Aaron

    2006-01-01

    Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein–DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 μM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3α and STAT3β. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression. PMID:17078813

  10. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells.

    PubMed

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca(2+) increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  11. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  12. A microfluidic model to study fluid dynamics of mucus plug rupture in small lung airways

    PubMed Central

    Hu, Yingying; Bian, Shiyao; Grotberg, John; Filoche, Marcel; White, Joshua; Takayama, Shuichi; Grotberg, James B.

    2015-01-01

    Fluid dynamics of mucus plug rupture is important to understand mucus clearance in lung airways and potential effects of mucus plug rupture on epithelial cells at lung airway walls. We established a microfluidic model to study mucus plug rupture in a collapsed airway of the 12th generation. Mucus plugs were simulated using Carbopol 940 (C940) gels at concentrations of 0.15%, 0.2%, 0.25%, and 0.3%, which have non-Newtonian properties close to healthy and diseased lung mucus. The airway was modeled with a polydimethylsiloxane microfluidic channel. Plug motion was driven by pressurized air. Global strain rates and shear stress were defined to quantitatively describe plug deformation and rupture. Results show that a plug needs to overcome yield stress before deformation and rupture. The plug takes relatively long time to yield at the high Bingham number. Plug length shortening is the more significant deformation than shearing at gel concentration higher than 0.15%. Although strain rates increase dramatically at rupture, the transient shear stress drops due to the shear-thinning effect of the C940 gels. Dimensionless time-averaged shear stress, Txy, linearly increases from 3.7 to 5.6 times the Bingham number as the Bingham number varies from 0.018 to 0.1. The dimensionless time-averaged shear rate simply equals to Txy/2. In dimension, shear stress magnitude is about one order lower than the pressure drop, and one order higher than yield stress. Mucus with high yield stress leads to high shear stress, and therefore would be more likely to cause epithelial cell damage. Crackling sounds produced with plug rupture might be more detectable for gels with higher concentration. PMID:26392827

  13. Attenuation of human nasal airway responses to bradykinin and histamine by inhibitors of nitric oxide synthase.

    PubMed Central

    Dear, J. W.; Ghali, S.; Foreman, J. C.

    1996-01-01

    1. The effects of inhibitors of nitric oxide synthase and local anaesthetics were studied on changes in human nasal airway patency and albumin extravasation in response to bradykinin and histamine, in vivo. 2. Compared with the action of the vasoconstrictor, ephedrine, 2.5 mumol, NG-nitro-L-arginine methyl ester (L-NAME), 1 mumol alone, did not change the resting value of the minimal cross-sectional area (A min) of the human nasal airway. L-NAME, 0.1 to 10 mumol, produced a dose-related inhibition of the reduction in A min caused by bradykinin, 300 micrograms. NG-monomethyl-L-arginine (L-NMMA), 1 mumol, similarly reduced the effect of bradykinin, 300 micrograms, on A min, but NG-nitro-D-arginine methyl ester (D-NAME), had no effect. L-NAME, 0.1 to 10 mumol, or L-NMMA, 10 mumol, failed to inhibit the effect of histamine, 300 micrograms on A min. 3. The inhibition by L-NAME, 1 mumol of the action of bradykinin, 300 micrograms on A min was maximal between 15 and 30 min after pretreatment with L-NAME. 4. L-NAME, 1 and 10 mumol, inhibited the extravasation of albumin into the nasal cavity induced by bradykinin, 300 micrograms, and also by histamine, 300 micrograms. D-NAME, 1 and 10 mumol had no effect on the extravasation of albumin in response to bradykinin or histamine. 5. L-Arginine, 30 mumol, reversed the effect of L-NAME, 1 mumol, on the bradykinin- and histamine-induced albumin extravasation into the nasal airway. 6. Local anaesthesia of the nasal airway with lignocaine, 10 mg, or benzocaine, 10 mg, failed to inhibit the reduction in A min or the albumin extravasation induced by either bradykinin, 300 micrograms, and histamine, 300 micrograms. 7. We conclude that the extravasation of plasma albumin caused by bradykinin and by histamine involves the generation of nitric oxide. The nasal blockage induced by bradykinin involves nitric oxide generation but the nasal blockage induced by histamine does not. PMID:8818341

  14. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells

    SciTech Connect

    Leikauf, G.D.; Zhao, Q.; Zhou, S.; Santrock, J. )

    1993-12-01

    When inhaled, ozone reacts at the airway luminal surface with unsaturated fatty acids contained in the extracellular fluid and plasma membrane to form an aldehyde and hydroxyhydroperoxide. The resulting hydroxyhydroperoxide degrades in aqueous systems to yield a second aldehyde and hydrogen peroxide (H2O2). Previously, we demonstrated that ozone can augment eicosanoid metabolism in bovine airway epithelial cells. To examine structure-activity relationships of ozone-fatty acid degradation products on eicosanoid metabolism in human airway epithelial cells, 3-, 6-, and 9-carbon saturated aldehydes and hydroxyhydroperoxides were synthesized and purified. Eicosanoid metabolism was evaluated by determination of total 3H-activity release from confluent cells previously incubated with [3H]arachidonic acid and by identification of specific metabolites with high performance liquid chromatography and radioimmunoassay. The major metabolites detected were prostaglandin E2, prostaglandin F2 alpha, and 15-hydroxyeicosatetraenoic acid. The 9-carbon aldehyde, nonanal, in contrast to 3- or 6-carbon aldehydes, stimulated release at concentrations > or = 100 microM, suggesting that the stimulatory effect increases with increasing chain length. When tested under identical conditions, the 3-, 6-, and 9-carbon hydroxyhydroperoxides were more potent than the corresponding aldehydes. Again, a greater effect was noted when the chain length was increased. One possible explanation for the increased potency of the hydroxyhydroperoxides over the aldehydes could be due to degradation of the hydroxyhydroperoxide into H2O2 and aldehyde. We consider this an unlikely explanation because responses varied with chain length (although each hydroxyhydroperoxide would produce an equivalent amount of H2O2) and because exposure to H2O2 alone or H2O2 plus hexanal produced a response dissimilar to 1-hydroxy-1-hexanehydroperoxide.

  15. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans.

    PubMed

    Torchio, Roberto; Gobbi, Alessandro; Gulotta, Carlo; Dellacà, Raffaele; Tinivella, Marco; Hyatt, Robert E; Brusasco, Vito; Pellegrino, Riccardo

    2009-08-01

    We investigated whether obesity is associated with airway hyperresponsiveness in otherwise healthy humans and, if so, whether this correlates with a restrictive lung function pattern or a decreased number of sighs at rest and/or during walking. Lung function was studied before and after inhaling methacholine (MCh) in 41 healthy subjects with body mass index ranging from 20 to 56. Breathing pattern was assessed during a 60-min rest period and a 30-min walk. The dose of MCh that produced a 50% decrease in the maximum expiratory flow measured in a body plethysmograph (PD50MCh) was inversely correlated with body mass index (r2=0.32, P<0.001) and waist circumference (r2=0.25, P<0.001). Significant correlations with body mass index were also found with the maximum changes in respiratory resistance (r2=0.19, P<0.001) and reactance (r2=0.40, P<0.001) measured at 5 Hz. PD50MCh was also positively correlated with functional residual capacity (r2=0.56, P<0.001) and total lung capacity (r2=0.59, P<0.001) in men, but not in women. Neither PD50MCh nor body mass index correlated with number of sighs, average tidal volume, ventilation, or breathing frequency. In this study, airway hyperresponsiveness was significantly associated with obesity in otherwise healthy subjects. In obese men, but not in women, airway hyperresponsiveness was associated with the decreases in lung volumes. PMID:19541741

  16. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    PubMed Central

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  17. Test of the Starling resistor model in the human upper airway during sleep

    PubMed Central

    Genta, Pedro R.; Owens, Robert L.; Edwards, Bradley A.; Sands, Scott A.; Loring, Stephen H.; White, David P.; Jackson, Andrew C.; Pedersen, Ole F.; Butler, James P.

    2014-01-01

    The human pharyngeal airway during sleep is conventionally modeled as a Starling resistor. However, inspiratory flow often decreases with increasing effort (negative effort dependence, NED) rather than remaining fixed as predicted by the Starling resistor model. In this study, we tested a major prediction of the Starling resistor model—that the resistance of the airway upstream from the site of collapse remains fixed during flow limitation. During flow limitation in 24 patients with sleep apnea, resistance at several points along the pharyngeal airway was measured using a pressure catheter with multiple sensors. Resistance between the nose and the site of collapse (the upstream segment) was measured before and after the onset of flow limitation to determine whether the upstream dimensions remained fixed (as predicted by the Starling resistor model) or narrowed (a violation of the Starling resistor model). The upstream resistance from early to mid inspiration increased considerably during flow limitation (by 35 ± 41 cmH2O·liter−1·s−1, P < 0.001). However, there was a wide range of variability between patients, and the increase in upstream resistance was strongly correlated with the amount of NED (r = 0.75, P < 0.001). Therefore, patients with little NED exhibited little upstream narrowing (consistent with the Starling model), and patients with large NED exhibited large upstream narrowing (inconsistent with the Starling model). These findings support the idea that there is not a single model of pharyngeal collapse, but rather that different mechanisms may dominate in different patients. These differences could potentially be exploited for treatment selection. PMID:25324514

  18. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  19. IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells.

    PubMed

    Gounni, Abdelilah Soussi; Hamid, Qutayba; Rahman, Sahidur M; Hoeck, Jutta; Yang, Jie; Shan, Lianyu

    2004-08-15

    Recent work has shown the potential importance of IL-9 in allergic diseases. The development of transgenic mice overexpressing IL-9 has suggested a key role for this cytokine in the development of the asthmatic phenotype including airway eosinophilia. In this study, we evaluated the expression of the IL-9R and the effects of IL-9 on human ASM cells by examining the release of Th2-associated chemokines (eotaxin1/CCL11 and thymus- and activation-regulated chemokine (TARC)/CCL17). IL-9R alpha-chain mRNA and surface expression were detected in cultured human airway smooth muscle (ASM) cells. In addition, primary cultured ASM cells, as well as bronchial smooth muscle cells within biopsies of asthmatics and not control subjects, revealed IL-9R protein expression. IL-9 stimulation of human ASM cells resulted in release of eotaxin1/CCL11, but had no effect on the release of TARC/CCL17, in time- and dose-dependent manner. Moreover, in vitro chemotaxis assay demonstrated that conditioned medium from IL-9-stimulated ASM cells attracted human eosinophils. Neutralizing Abs to IL-9, but not to IL-4 or IL-13, reduced significantly IL-9-induced production of eotaxin1/CCL11 from ASM cells. Interestingly, real-time RT-PCR showed that IL-9 up-regulated eotaxin1/CCL11 mRNA expression, but had no effect on TARC/CCL17. Treatment with Act D abrogates IL-9-induced eotaxin1/CCL11 mRNA and protein release by ASM cells. Finally, transfection study using eotaxin1/CCL11 promoter luciferase construct confirmed that IL-9 induced eotaxin1/CCL11 at the transcriptional level. Taken together, these data provide new evidence demonstrating that IL-9-dependent activation of ASM cells contributes to eosinophilic inflammation observed in asthma. PMID:15294996

  20. Influence of upper airway sensory receptors on respiratory muscle activation in humans.

    PubMed

    Redline, S; Strohl, K P

    1987-07-01

    We reasoned that neural information from upper airway (UA) sensory receptors could influence the relationship between UA and diaphragmatic neuromuscular responses to hypercapnia. In this study, the electromyographic (EMG) activities of the alae nasi (AN), genioglossus (GG), and chest wall (CW) or diaphragm (Di) to ventilatory loading were assessed in six laryngectomized, tracheostomized human subjects and in six subjects breathing with an intact UA before and after topical UA anesthesia. The EMG activities of the UA and thoracic muscles increased at similar rates with increasing hypercapnia in normal subjects, in subjects whose upper airways were anesthetized, and in laryngectomized subjects breathing with a cervical tracheostomy. Furthermore, in the laryngectomized subjects, respiratory muscle EMG activation increased with resistive inspiratory loading (15 cmH2O X l-1 X s) applied at the level of a cervical tracheostomy. At an average expired CO2 fraction of 7.0%, resistive loading resulted in a 93 +/- 26.3% (SE) increase in peak AN EMG activity, a 39 +/- 2.0% increase in peak GG EMG activity, and a 43.2 +/- 16.5% increase in peak CW (Di) EMG activity compared with control values. We conclude that the ventilatory responses of the UA and thoracic muscles to ventilatory loading are not substantially influenced by laryngectomy or UA anesthesia. PMID:3624139

  1. Effects of cigarette smoke extract on human airway smooth muscle cells in COPD.

    PubMed

    Chen, Ling; Ge, Qi; Tjin, Gavin; Alkhouri, Hatem; Deng, Linghong; Brandsma, Corry-Anke; Adcock, Ian; Timens, Wim; Postma, Dirkje; Burgess, Janette K; Black, Judith L; Oliver, Brian G G

    2014-09-01

    We hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA. The effects of CSE on cell attachment and wound healing were measured by toluidine blue attachment and cell tracker green wound healing assays. CSE increased the release of CXCL8 and CXCL1 from human ASM cells, and cells from smokers with COPD produced more CSE-induced CXCL1. The production of MMP-1, -3 and -10, and the deposition of collagen VIII alpha 1 (COL8A1) were increased by CSE, especially in the COPD group which had higher production of MMP-1 and deposition of COL8A1. CSE decreased ASM cell attachment and wound healing in the COPD group only. ASM cells from smokers with COPD were more sensitive to CSE stimulation, which may explain, in part, why some smokers develop COPD. PMID:24969654

  2. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. PMID:26608528

  3. Oscillatory Flow in the Human Airways from the Mouth through Several Bronchial Generations

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Coletti, Filippo; Elkins, Chris; Eaton, John

    2014-11-01

    The time-varying flow is studied experimentally in an anatomically accurate model of the human airways from the mouth through the fourth to eighth generation of the bronchi. The airway geometry is obtained from the CT scan of a healthy adult male of normal height and build. The three-component, three-dimensional mean velocity field is obtained throughout the entire model using phase-locked magnetic resonance velocimetry. A pulsatile pump drives a sinusoidal waveform (inhalation and exhalation) with frequency and stroke-length such that the mean trachea Reynolds number at peak inspiration is Re = 4200 and the Womersley number is α = 7. This represents a regime of moderate exertion. Integral parameters are defined to quantify the degree of velocity profile non-uniformity (which correlates with axial dispersion) and secondary flow strength (which correlates with lateral dispersion). It is found that the streamwise momentum flux and secondary flow strength increase and decrease in proportion throughout most of the breathing cycle. On the other hand, the strength of secondary flows during the 10% of the breathing cycle surrounding flow reversal remains approximately half of that at peak inspiration while the streamwise momentum flux goes to zero. The strong and persistent secondary flows have important implications for dispersion of scalar or particulate contaminants in the lungs.

  4. Proteomic Analysis of Pure Human Airway Gland Mucus Reveals a Large Component of Protective Proteins

    PubMed Central

    Joo, Nam Soo; Evans, Idil Apak T.; Cho, Hyung-Ju; Park, Il-Ho; Engelhardt, John F.; Wine, Jeffrey J.

    2015-01-01

    Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269–319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment. PMID:25706550

  5. Vaccinia Virus Entry, Exit, and Interaction with Differentiated Human Airway Epithelia▿

    PubMed Central

    Vermeer, Paola D.; McHugh, Julia; Rokhlina, Tatiana; Vermeer, Daniel W.; Zabner, Joseph; Welsh, Michael J.

    2007-01-01

    Variola virus, the causative agent of smallpox, enters and exits the host via the respiratory route. To better understand the pathogenesis of poxvirus infection and its interaction with respiratory epithelia, we used vaccinia virus and examined its interaction with primary cultures of well-differentiated human airway epithelia. We found that vaccinia virus preferentially infected the epithelia through the basolateral membrane and released viral progeny across the apical membrane. Despite infection and virus production, epithelia retained tight junctions, transepithelial electrical conductance, and a steep transepithelial concentration gradient of virus, indicating integrity of the epithelial barrier. In fact, during the first four days of infection, epithelial height and cell number increased. These morphological changes and maintenance of epithelial integrity required vaccinia virus growth factor, which was released basolaterally, where it activated epidermal growth factor 1 receptors. These data suggest a complex interaction between the virus and differentiated airway epithelia; the virus preferentially enters the cells basolaterally, exits apically, and maintains epithelial integrity by stimulating growth factor receptors. PMID:17581984

  6. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells.

    PubMed

    Denning, G M; Wollenweber, L A; Railsback, M A; Cox, C D; Stoll, L L; Britigan, B E

    1998-12-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1alpha. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  7. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  8. Cigarette Smoke Modulates Expression of Human Rhinovirus-Induced Airway Epithelial Host Defense Genes

    PubMed Central

    Proud, David; Hudy, Magdalena H.; Wiehler, Shahina; Zaheer, Raza S.; Amin, Minaa A.; Pelikan, Jonathan B.; Tacon, Claire E.; Tonsaker, Tabitha O.; Walker, Brandie L.; Kooi, Cora; Traves, Suzanne L.; Leigh, Richard

    2012-01-01

    Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes. PMID:22808255

  9. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer.

    PubMed Central

    Willumsen, N J; Davis, C W; Boucher, R C

    1994-01-01

    The response of cultured human nasal epithelia to hypertonic bathing solutions was tested using ion-selective microelectrode and quantitative microscopy. Raised luminal, but not serosal, osmolality (+/- 150 mM mannitol) decreased Na+ absorption but did not induce Cl- secretion. Raised luminal osmolality increased cell Cl- activity, Na+ activity, and transepithelial resistance and decreased both apical and basolateral membrane potentials and the fractional resistance of the apical membrane; equivalent circuit analysis revealed increases in apical, basolateral, and shunt resistances. Prolonged exposure (10 min) to 430 mosM luminal solution elicited no regulation of any parameter. Optical measurements revealed a reduction in the thickness of preparations only in response to luminal hypertonic solutions. We conclude that (a) airway epithelial cells exhibit asymmetric water transport properties, with the apical membrane water permeability exceeding that of the basolateral membrane; (b) the cellular response to volume loss is a deactivation of the basolateral membrane K+ conductance and the apical membrane Cl- conductance; (c) luminal hypertonicity slows the rate of Na+ absorption but does not induce Cl- secretion; and (d) cell volume loss increases the resistance of the paracellular path. We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall. Images PMID:8040333

  10. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  11. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.
    R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  12. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  13. Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study

    PubMed Central

    Chen, Jie; Gutmark, Ephraim

    2013-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  14. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L., Jr.

    1978-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  15. Collective motion of motile cilia: from human airways to model systems

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Feriani, Luigi; Chioccioli, Maurizio; Kotar, Jurij

    Mammalian airways are a fantastic playground of nonlinear phenomena, from the function of individual active filaments, to the emerging collective behaviour, to the rheology of the mucus solution surrounding cilia. We have been investigating the fundamental physics of this system through a variety of model system approaches, both experimental and computational. In the last year we have started measurements on living human cells, observing cilia shape during beating, and measuring speed and coherence of the collective dynamics. We report on significant differences in the collective motion in ciliated cell carpets from a variety of diseases, and we attempt to reconcile the collective dynamical phenotypes to the properties of individual filaments and the mechanics of the environment.

  16. Numerical investigation of airflow in an idealized human extra-thoracic airway: a comparison study.

    PubMed

    Chen, Jie; Gutmark, Ephraim

    2014-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealized human extra-thoracic airway under different breathing conditions, 10, 30, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard [Formula: see text] and [Formula: see text]-SST Reynolds-averaged Navier-Stokes (RANS) models and the Lattice Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  17. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  18. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells.

    PubMed

    Devor, D C; Singh, A K; Lambert, L C; DeLuca, A; Frizzell, R A; Bridges, R J

    1999-05-01

    Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance

  19. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. PMID:26777422

  20. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways

    PubMed Central

    Lin, Ching-Long; Tawhai, Merryn H.; McLennan, Geoffrey; Hoffman, Eric A.

    2007-01-01

    A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouth piece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to 6 generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry. PMID:17360247

  1. Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis

    SciTech Connect

    Bao, X.; Sinha, M. |; Liu, T.; Hong, C.; Luxon, B.A. |; Garofalo, R.P. ||; Casola, A. ||

    2008-04-25

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections in infants, elderly and immunocompromised patients. Little is known about the response to hMPV infection of airway epithelial cells, which play a pivotal role in initiating and shaping innate and adaptive immune responses. In this study, we analyzed the transcriptional profiles of airway epithelial cells infected with hMPV using high-density oligonucleotide microarrays. Of the 47,400 transcripts and variants represented on the Affimetrix GeneChip Human Genome HG-U133 plus 2 array, 1601 genes were significantly altered following hMPV infection. Altered genes were then assigned to functional categories and mapped to signaling pathways. Many up-regulated genes are involved in the initiation of pro-inflammatory and antiviral immune responses, including chemokines, cytokines, type I interferon and interferon-inducible proteins. Other important functional classes up-regulated by hMPV infection include cellular signaling, gene transcription and apoptosis. Notably, genes associated with antioxidant and membrane transport activity, several metabolic pathways and cell proliferation were down-regulated in response to hMPV infection. Real-time PCR and Western blot assays were used to confirm the expression of genes related to several of these functional groups. The overall result of this study provides novel information on host gene expression upon infection with hMPV and also serves as a foundation for future investigations of genes and pathways involved in the pathogenesis of this important viral infection. Furthermore, it can facilitate a comparative analysis of other paramyxoviral infections to determine the transcriptional changes that are conserved versus the one that are specific to individual pathogens.

  2. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells

    PubMed Central

    Berntsen, P.; Park, C. Y.; Rothen-Rutishauser, B.; Tsuda, A.; Sager, T. M.; Molina, R. M.; Donaghey, T. C.; Alencar, A. M.; Kasahara, D. I.; Ericsson, T.; Millet, E. J.; Swenson, J.; Tschumperlin, D. J.; Butler, J. P.; Brain, J. D.; Fredberg, J. J.; Gehr, P.; Zhou, E. H.

    2010-01-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40–100 nm and less than 44 μm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 μm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 μM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  3. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    PubMed Central

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. PMID:27354786

  4. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells.

    PubMed

    Faksh, Arij; Britt, Rodney D; Vogel, Elizabeth R; Thompson, Michael A; Pandya, Hitesh C; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2016-01-15

    Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-κB. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma. PMID:26589477

  5. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model.

    PubMed

    Bonfield, Tracey L; Koloze, Mary; Lennon, Donald P; Zuchowski, Brandon; Yang, Sung Eun; Caplan, Arnold I

    2010-12-01

    Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma. PMID:20817776

  6. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells.

    PubMed

    Berntsen, P; Park, C Y; Rothen-Rutishauser, B; Tsuda, A; Sager, T M; Molina, R M; Donaghey, T C; Alencar, A M; Kasahara, D I; Ericsson, T; Millet, E J; Swenson, J; Tschumperlin, D J; Butler, J P; Brain, J D; Fredberg, J J; Gehr, P; Zhou, E H

    2010-06-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  7. Induction by inhibitors of nitric oxide synthase of hyperresponsiveness in the human nasal airway

    PubMed Central

    Turner, P J; Maggs, J R L; Foreman, J C

    2000-01-01

    The effects of inhibitors of nitric oxide synthase (NOS) on the responsiveness of the human nasal airway were investigated, by measuring the nasal response to histamine and bradykinin. Repeated intranasal administration of NG-nitro-L-arginine methyl ester (L-NAME) or NG-monomethyl-L-arginine (L-NMMA), 1 μmol per nostril every 30 min for 6 h, increased the nasal obstruction induced by histamine, 50–500 μg, and bradykinin, 200 μg per nostril. A single administration of L-NAME, 1 μmol per nostril did not induce hyperresponsiveness to histamine. Pretreatment with L-arginine, 30 μmol, abolished the hyperresponsiveness to histamine caused by L-NAME, 1 μmol. Pretreatment with NG-nitro-D-arginine methyl ester (D-NAME), 1 μmol, did not induce hyperresponsiveness to histamine. Repeated administration of L-NAME, 1 μmol, caused a significant reduction in the amount of nitric oxide measured in the nasal cavity. Neither L-NMMA, 1 μmol, nor L-arginine, 30 μmol, altered the nasal hyperresponsiveness induced by platelet activating factor (PAF), 60 μg. PAF did not alter the levels of nitric oxide in the nasal cavity. The results suggest that inhibition of nitric oxide synthase induces a hyperresponsiveness in the human nasal airway, and that this occurs by a mechanism different from that involved in PAF-induced hyperresponsiveness. PMID:10991932

  8. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage.

    PubMed

    Cheng, K H; Cheng, Y S; Yeh, H C; Swift, D L

    1997-11-01

    This paper presents measurements of the geometric shape, perimeter, and cross-sectional area of the human oral passage (from oral entrance to midtrachea) and relates them through dimensionless parameters to the depositional mass transfer of ultrafine particles. Studies were performed in two identical replicate oral passage models, one of which was cut orthogonal to the airflow direction into 3 mm elements for measurement, the other used intact for experimental measurements of ultrafine aerosol deposition. Dimensional data were combined with deposition measurements in two sections of the oral passage (the horizontal oral cavity and the vertical laryngeal-tracheal airway) to calculate the dimensionless mass transfer Sherwood number (Sh). Mass transfer theory suggests that Sh should be expressible as a function of the Reynolds number (Re) and the Schmidt number (Sc). For inhalation and exhalation through the oral cavity (O-C), an empirical relationship was obtained for flow rates from 7.5-30.0 1 min-1: Sh = 15.3 Re0.812 Sc-0.986 An empirical relationship was likewise obtained for the laryngeal-tracheal (L-T) region over the same range of flow rates: Sh = 25.9 Re0.861 Sc-1.37 These relationships were compared to heat transfer in the human upper airways through the well-known analogy between heat and mass transfer. The Reynolds number dependence for both the O-C and L-T relationships was in good agreement with that for heat transfer. The mass transfer coefficients were compared to extrathoracic uptake of gases and vapors and showed similar flow rate dependence. For gases and vapors that conform to the zero concentration boundary condition, the empirical relationships are applicable when diffusion coefficients are taken into consideration. PMID:9407288

  9. Oxidative Stress Regulates CFTR Gene Expression in Human Airway Epithelial Cells through a Distal Antioxidant Response Element

    PubMed Central

    Zhang, Zhaolin; Leir, Shih-Hsing

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at −44 kb and −35 kb from the gene. The −35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the −44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the −44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-κB binding site are required for activation of the –44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the −35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. PMID:25259561

  10. The impact of vitamin D on asthmatic human airway smooth muscle.

    PubMed

    Hall, Sannette C; Fischer, Kimberly D; Agrawal, Devendra K

    2016-02-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624

  11. Airway irritation and cough evoked by acid: from human to ion channel

    PubMed Central

    Gu, Qihai; Lee, Lu-Yuan

    2011-01-01

    Inhalation or aspiration of acid solution evokes airway defense responses such as cough and reflex bronchoconstriction, resulting from activation of vagal bronchopulmonary C-fibers and Aδ afferents. The stimulatory effect of hydrogen ion on these sensory nerves is generated by activation of two major types of ion channels expressed in these neurons: a rapidly activating and inactivating current mediated through ASICs, and a slow sustaining current via activation of TRPV1. Recent studies have shown that these acid-evoked responses are elevated during airway inflammatory reaction, revealing the potential convergence of a wide array of inflammatory signaling on these ion channels. Since pH in the airway fluid drops substantially in patients with inflammatory airway diseases, these heightened stimulatory effects of acid on airway sensory nerves may play a part in the manifestation of airway irritation and excessive cough under those pathophysiological conditions. PMID:21543258

  12. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model. PMID:27062579

  13. Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel.

    PubMed

    Stenfors, N; Nordenhäll, C; Salvi, S S; Mudway, I; Söderberg, M; Blomberg, A; Helleday, R; Levin, J O; Holgate, S T; Kelly, F J; Frew, A J; Sandström, T

    2004-01-01

    Particulate matter (PM) pollution adversely affects the airways, with asthmatic subjects thought to be especially sensitive. The authors hypothesised that exposure to diesel exhaust (DE), a major source of PM, would induce airway neutrophilia in healthy subjects, and that either these responses would be exaggerated in subjects with mild allergic asthma, or DE would exacerbate pre-existent allergic airways. Healthy and mild asthmatic subjects were exposed for 2 h to ambient levels of DE (particles with a 50% cut-off aerodynamic diameter of 10 microm (PM10) 108 microg x m(-3)) and lung function and airway inflammation were assessed. Both groups showed an increase in airway resistance of similar magnitude after DE exposure. Healthy subjects developed airway inflammation 6 h after DE exposure, with airways neutrophilia and lymphocytosis together with an increase in interleukin-8 (IL-8) protein in lavage fluid, increased IL-8 messenger ribonucleic acid expression in the bronchial mucosa and upregulation of the endothelial adhesion molecules. In asthmatic subjects, DE exposure did not induce a neutrophilic response or exacerbate their pre-existing eosinophilic airway inflammation. Epithelial staining for the cytokine IL-10 was increased after DE in the asthmatic group. Differential effects on the airways of healthy subjects and asthmatics of particles with a 50% cut-off aerodynamic diameter of 10 microm at concentrations below current World Health Organisation air quality standards have been observed in this study. Further work is required to elucidate the significance of these differential responses. PMID:14738236

  14. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure

    PubMed Central

    Tyrrell, Jean; Qian, Xiaozhong; Freire, Jose

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis. PMID:25795727

  15. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells

    PubMed Central

    Dileepan, Mythili; Sarver, Anne E.; Rao, Savita P.; Panettieri, Reynold A.; Subramanian, Subbaya; Kannan, Mathur S.

    2016-01-01

    Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma. PMID:26998837

  16. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure.

    PubMed

    Tyrrell, Jean; Qian, Xiaozhong; Freire, Jose; Tarran, Robert

    2015-05-15

    Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis. PMID:25795727

  17. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.

    PubMed

    Emura, M; Aufderheide, M

    2016-05-01

    Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis. PMID:26951634

  18. Human Lung Mast Cell Products Regulate Airway Smooth Muscle CXCL10 Levels

    PubMed Central

    Alkhouri, H.; Cha, V.; Tong, K.; Moir, L. M.; Armour, C. L.; Hughes, J. M.

    2014-01-01

    In asthma, the airway smooth muscle (ASM) produces CXCL10 which may attract CXCR3+ mast/T cells to it. Our aim was to investigate the effects of mast cell products on ASM cell CXCL10 production. ASM cells from people with and without asthma were stimulated with IL-1β, TNF-α, and/or IFNγ and treated with histamine (1–100 μM) ± chlorpheniramine (H1R antagonist; 1 μM) or ranitidine (H2R antagonist; 50 μM) or tryptase (1 nM) ± leupeptin (serine protease inhibitor; 50 μM), heat-inactivated tryptase, or vehicle for 4 h or 24 h. Human lung mast cells (MC) were isolated and activated with IgE/anti-IgE and supernatants were collected after 2 h or 24 h. The supernatants were added to ASM cells for 48 h and ASM cell CXCL10 production detected using ELISA (protein) and real-time PCR (mRNA). Histamine reduced IL-1β/TNF-α-induced CXCL10 protein, but not mRNA, levels independent of H1 and H2 receptor activation, whereas tryptase and MC 2 h supernatants reduced all cytokine-induced CXCL10. Tryptase also reduced CXCL10 levels in a cell-free system. Leupeptin inhibited the effects of tryptase and MC 2 h supernatants. MC 24 h supernatants contained TNF-α and amplified IFNγ-induced ASM cell CXCL10 production. This is the first evidence that MC can regulate ASM cell CXCL10 production and its degradation. Thus MC may regulate airway myositis in asthma. PMID:24648846

  19. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells.

    PubMed

    Dileepan, Mythili; Sarver, Anne E; Rao, Savita P; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2016-01-01

    Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma. PMID:26998837

  20. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    PubMed

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul

    2011-12-01

    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology. PMID:22044398

  1. Apical localization of the coxsackie-adenovirus receptor by glycosyl-phosphatidylinositol modification is sufficient for adenovirus-mediated gene transfer through the apical surface of human airway epithelia.

    PubMed

    Walters, R W; van't Hof, W; Yi, S M; Schroth, M K; Zabner, J; Crystal, R G; Welsh, M J

    2001-08-01

    In well-differentiated human airway epithelia, the coxsackie B and adenovirus type 2 and 5 receptor (CAR) resides primarily on the basolateral membrane. This location may explain the observation that gene transfer is inefficient when adenovirus vectors are applied to the apical surface. To further test this hypothesis and to investigate requirements and barriers to apical gene transfer to differentiated human airway epithelia, we expressed CAR in which the transmembrane and cytoplasmic tail were replaced by a glycosyl-phosphatidylinositol (GPI) anchor (GPI-CAR). As controls, we expressed wild-type CAR and CAR lacking the cytoplasmic domain (Tailless-CAR). All three constructs enhanced gene transfer with similar efficiencies in fibroblasts. In airway epithelia, GPI-CAR localized specifically to the apical membrane, where it bound adenovirus and enhanced gene transfer to levels obtained when vector was applied to the basolateral membrane. Moreover, GPI-CAR facilitated gene transfer of the cystic fibrosis transmembrane conductance regulator to cystic fibrosis airway epithelia, correcting the Cl(-) transport defect. In contrast, when we expressed wild-type CAR it localized to the basolateral membrane and failed to increase apical gene transfer. Only a small amount of Tailless-CAR resided in the apical membrane, and the effects on apical virus binding and gene transfer were minimal. These data indicate that binding of adenovirus to an apical membrane receptor is sufficient to mediate effective gene transfer to human airway epithelia and that the cytoplasmic domain of CAR is not required for this process. The results suggest that targeting apical receptors in differentiated airway epithelia may be sufficient for gene transfer in the genetic disease cystic fibrosis. PMID:11462042

  2. Apical Localization of the Coxsackie-Adenovirus Receptor by Glycosyl-Phosphatidylinositol Modification Is Sufficient for Adenovirus-Mediated Gene Transfer through the Apical Surface of Human Airway Epithelia

    PubMed Central

    Walters, Robert W.; van't Hof, Wouter; Yi, Su Min P.; Schroth, Mary K.; Zabner, Joseph; Crystal, Ronald G.; Welsh, Michael J.

    2001-01-01

    In well-differentiated human airway epithelia, the coxsackie B and adenovirus type 2 and 5 receptor (CAR) resides primarily on the basolateral membrane. This location may explain the observation that gene transfer is inefficient when adenovirus vectors are applied to the apical surface. To further test this hypothesis and to investigate requirements and barriers to apical gene transfer to differentiated human airway epithelia, we expressed CAR in which the transmembrane and cytoplasmic tail were replaced by a glycosyl-phosphatidylinositol (GPI) anchor (GPI-CAR). As controls, we expressed wild-type CAR and CAR lacking the cytoplasmic domain (Tailless-CAR). All three constructs enhanced gene transfer with similar efficiencies in fibroblasts. In airway epithelia, GPI-CAR localized specifically to the apical membrane, where it bound adenovirus and enhanced gene transfer to levels obtained when vector was applied to the basolateral membrane. Moreover, GPI-CAR facilitated gene transfer of the cystic fibrosis transmembrane conductance regulator to cystic fibrosis airway epithelia, correcting the Cl− transport defect. In contrast, when we expressed wild-type CAR it localized to the basolateral membrane and failed to increase apical gene transfer. Only a small amount of Tailless-CAR resided in the apical membrane, and the effects on apical virus binding and gene transfer were minimal. These data indicate that binding of adenovirus to an apical membrane receptor is sufficient to mediate effective gene transfer to human airway epithelia and that the cytoplasmic domain of CAR is not required for this process. The results suggest that targeting apical receptors in differentiated airway epithelia may be sufficient for gene transfer in the genetic disease cystic fibrosis. PMID:11462042

  3. Human Resource Development in Small Organizations.

    ERIC Educational Resources Information Center

    Hill, Rosemary; Stewart, Jim

    2000-01-01

    Case studies of three small and medium-sized enterprises in England examined how characteristics of small organizations influence their human resource development (HRD) policies and practices. Three models emerged, based on differences in planning, doing, and evaluating HRD activities. (SK)

  4. Human Airway Epithelial Cell Responses to Single Walled Carbon Nanotube Exposure: Nanorope-Residual Body Formation

    SciTech Connect

    Panessa-Warren, Barbara J.; Warren, John B.; Kisslinger, Kim; Crosson, Kenya; Maye, Mathew M.

    2012-11-01

    This investigation examines the 'first contact responses' of in vitro human epithelial airway cells exposed to unrefined single walled carbon nanotubes (SWCNTs) [containing metal catalyst, carbon black, amorphous carbon, graphitic shells, and SWCNTs], and refined acid/peroxide cleaned and cut SWCNTs at low and high dose exposures (0.16 ug/L and 1.60 ug/L) for 2, 3 and 3.5 hours. FTIR, X-ray compositional analysis, morphological TEM analysis and UV-Vis were used to physicochemically characterize the SWCNTs in this study. Following SWCNT exposure to human lung NCI-H292 epithelial monolayers, the airway cells were prepared for light microscopy vital staining, or fixed in glutaraldehyde for SEM/TEM imaging to determine SWCNT binding, uptake, intracellular processing and organellar/SWCNT fate within the exposure period. At 2 hr exposures to both unrefined Carbolex, and refined SWCNTs (at both high and low doses), there were no increases in lung cell necrosis compared to controls. However high dose, 3 hr exposures to unrefined Carbolex material produced severe cell damage (apical and basal plasma membrane holes, decreased mitochondria, numerous intracellular vesicles containing nanomaterial and membrane fragments) and increased cell necrosis. The refined SWCNTs exposed for 3 hr at low dose produced no increase in cell death, although high dose exposure produced significant cell death. By TEM, Acid/peroxide cleaned SWCNT 3 hr exposures at high and low doses, revealed SWCNTs attachment to cell surface mucin, and SWCNT uptake into the cells during membrane recycling. Membranes and SWCNTs were seen within cytoplasmic lamellar body-type vesicles, where vesicular contents were bio-degraded, eventually forming long SWCNT-nanoropes, which were subsequently released into the cytoplasm as clusters of attached nanoropes, as the vesicle membranes fragmented. These Nanorope-Residual Bodies did not cause damage to the surrounding organelles or cytoplasm, and seemed very stabile in the

  5. Bronchial hyperreactivity is correlated with increased baseline airway tone.

    PubMed

    Bergner, A; Kellner, J; Kemp da Silva, A; Fischer, R; Gamarra, F; Huber, R M

    2006-02-21

    Physiologically, airways are not completely relaxed but maintain a baseline airway tone (BAT). Although not fulfilling the criteria for obstructive airway disease, increased BAT may nevertheless be important because the same amount of airway narrowing can be well tolerated or can cause severe airway obstruction depending on the starting point of the narrowing. In this study, we aimed at studying if BAT is correlated with bronchial hyperreactivity (BHR). For in vitro studies, airways in murine lung slices were digitally recorded and the change in cross-sectional area with time was quantified. BAT was measured by the amount of relaxation induced by permeabilization of the cell membrane with beta-escin in zero external calcium. BHR was induced by incubation of lung slices with interleukin-13 (IL-13). T-bet knock-out mice served as an additional model for BHR. T-bet knock-out mice show a shift towards TH2-lymphocytes and display histological as well as functional characteristics of asthma. In vivo, the specific airway resistance of healthy non-smoking volunteers was assessed before and after inhalation of formoterol and bronchial challenge was performed using methacholin. In murine lung slices that had been cultivated without serum, only a minimal BAT could be observed. But, after cultivation with 10 % new born calve serum, airways showed a BAT of approximately 13 % that could be reduced by incubation with an IL-13 receptor antagonist. Atropine, isoproterenol and indomethacin failed to relax airways regardless of cultivation with serum. Incubation of lung slices without serum but with IL-13 increased BAT as well as airway responsiveness to acetylcholine and both effects were more pronounced in small compared to large airways. In lung slices from T-bet knock-out mice, airways were hyperreactive compared to airways in slices from wild type mice and BAT was found to be increased. Again, both effects were more pronounced in small compared to large airways. In human non

  6. IL-13 Augments Compressive Stress-Induced Tissue Factor Expression in Human Airway Epithelial Cells.

    PubMed

    Mitchel, Jennifer A; Antoniak, Silvio; Lee, Joo-Hyeon; Kim, Sae-Hoon; McGill, Maureen; Kasahara, David I; Randell, Scott H; Israel, Elliot; Shore, Stephanie A; Mackman, Nigel; Park, Jin-Ah

    2016-04-01

    Tissue factor (TF) is best known as a cellular initiator of coagulation, but it is also a multifunctional protein that has been implicated in multiple pathophysiologic conditions, including asthma. In the lung, airway epithelial cells express TF, but it is unknown how TF expression is regulated by asthma-associated mediators. We investigated the role of IL-13, a type 2 cytokine, alone and in combination with compressive stress, which mimics asthmatic bronchoconstriction, on TF expression and release of TF-positive extracellular vesicles from primary normal human bronchial epithelial cells. Well-differentiated normal human bronchial epithelial cells were treated with IL-13 and compressive stress, alone and in combination. TF mRNA, protein and activity were measured in the cells and conditioned media. TF was also measured in the bronchoalveolar lavage (BAL) fluid of allergen-challenged mice and patients with asthma. IL-13 and compressive stress increased TF expression, but only compressive stress induced TF-positive extracellular vesicle release. Pretreatment with IL-13 augmented compressive stress-induced TF expression and release. TF protein and activity in BAL fluid were increased in allergen-sensitized and -challenged mice. TF was elevated in the BAL fluid of patients with mild asthma after an allergen challenge. Our in vitro and in vivo data indicate close cooperation between mechanical and inflammatory stimuli on TF expression and release of TF-positive extracellular vesicles in the lungs, which may contribute to pathophysiology of asthma. PMID:26407210

  7. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis

    PubMed Central

    DUHAIME, MICHAEL J.; PAGE, KHALIPH O.; VARELA, FAUSTO A.; MURRAY, ANDREW S.; SILVERMAN, MICHAEL E.; ZORATTI, GINA L.; LIST, KARIN

    2016-01-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  8. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  9. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Yao, Jing; Zhang, Yun-Shi; Feng, Gan-Zhu; Du, Qiang

    2015-11-01

    Asthma is a chronic airway inflammatory disease characterized by an increased mass of airway smooth muscle (ASM). Chrysin (5,7-dihydroxyflavone), a natural flavonoid, has been shown to exert multiple biological activities, including anti-inflammatory, anti-proliferative and anti-oxidant effects, as well as the potency to ameliorate asthma in animal models. The objective of the present study was to identify the underlying mechanism of the therapeutic effects of chrysin. The impact of chrysin on basal and platelet-derived growth factor (PDGF)-induced proliferation and apoptosis of human airway smooth muscle cells (HASMCs) was investigated. Furthermore, the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway was evaluated in HASMCs. The results revealed that chrysin significantly inhibited basal as well as PDGF-induced HASMC proliferation, most likely through the suppression of ERK1/2 phosphorylation. However, chrysin did not significantly reduce PDGF-induced apoptosis of HASMCs. The present study indicated that chrysin may be a promising medication for controlling airway remodeling and clinical manifestations of asthma. PMID:26502995

  10. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma. PMID:16014803

  11. Recent advances and key challenges in investigations of the flow inside human oro-pharyngeal-laryngeal airway

    NASA Astrophysics Data System (ADS)

    Pollard, A.; Uddin, M.; Shinneeb, A.-M.; Ball, C. G.

    2012-07-01

    The oro-pharyngeal-laryngeal human airway is a complex geometry; the flow physics within are subjected to and influenced by a variety of different factors that produce jet-like flow, re-circulating flows that are enhanced by curvature, detached and secondary flows. Simulation and experiment are the tools available to the fluid dynamics researcher. Simulation results obtained from direct and large-eddy simulation, and Reynolds-averaged Navier-Stokes and associated models of turbulence are reviewed. Experimental data obtained through the use of flow visualisation, hot-wire anemometry and particle image velocimetry are also reviewed. A comparison of data obtained from the application of these tools reveals many inconsistencies that are explored in this article. While much progress has been made to understand some of the physics of the flow in the human airway, we continue to uncover new and significant fluid dynamic behaviour. Finally, future research directions are suggested.

  12. Potential of in vitro reconstituted 3D human airway epithelia (MucilAir™) to assess respiratory sensitizers.

    PubMed

    Huang, Song; Wiszniewski, Ludovic; Constant, Samuel; Roggen, Erwin

    2013-04-01

    Respiratory sensitizers are considered as substances of higher risk, at the same level as carcinogens, mutagens and toxic chemicals for reproduction. Presently, there is no validated assay for identifying the respiratory sensitizers. Based on a fully differentiated and functional in vitro cell model of the human airway epithelium, MucilAir™, we attempt to develop such assay. To this end, we invented a novel method, using Dextran as carrier, for applying the water insoluble chemicals to the apical surface of the airway epithelia. Using the Dextran carrier method, we successfully tested some reference chemical compounds known to cause respiratory sensitisation in human beings, including MDI, TMA and HCPt. Interestingly, these chemical sensitizers differentially up-regulated the releases of certain cytokines and chemokines involved in allergic responses. We believe that based on MucilAir™ an in vitro assay could be developed for identification and characterization of the respiratory sensitizers. PMID:23089132

  13. Smad molecules expression pattern in human bronchial airway induced by sulfur mustard.

    PubMed

    Adelipour, Maryam; Imani Fooladi, Abbas Ali; Yazdani, Samaneh; Vahedi, Ensieh; Ghanei, Mostafa; Nourani, Mohammad Reza

    2011-09-01

    Airway remodelling is characterized by the thickening and reorganization of the airways seen in mustard lung patients. Mustard lung is the general description for the chronic obstructive pulmonary disease induced by sulfur mustard(SM). Pulmonary disease was diagnosed as the most important disorder in individuals that had been exposed to sulfur mustard. Sulfur mustard is a chemical warfare agent developed during Wars. Iraqi forces frequently used it against Iranian during Iran -Iraq in the 1980-1988. Peribronchial fibrosis result from airway remodeling that include excess of collagen of extracellular matrix deposition in the airway wall. Some of Smads families in association with TGF-β are involved in airway remodeling due to lung fibrosis. In the present study we compared the mRNA expression of Smad2, Smad3, and Smad4 and Smad7 genes in airway wall biopsies of chemical-injured patients with non-injured patients as control. We used airway wall biopsies of ten unexposed patients and fifteen SM-induced patients. Smads expression was evaluated by RT-PCR followed by bands densitometry. Expression levels of Smad3 and Smad4 in SM exposed patients were upregulated but Smad2 and Smad7 was not significantly altered. Our results revealed that Smad3, and 4 may be involved in airway remodeling process in SM induced patients by activation of TGF-β. Smad pathway is the most represented signaling mechanism for airway remodeling and peribronchial fibrosis. The complex of Smads in the nucleus affects a series of genes that results in peribronchial fibrosis in SM-induced patients. PMID:21891820

  14. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    SciTech Connect

    Tal, Tamara L.; Simmons, Steven O.; Silbajoris, Robert; Dailey, Lisa; Cho, Seung-Hyun; Ramabhadran, Ram; Linak, William; Reed, William; Bromberg, Philip A.; Samet, James M.

    2010-02-15

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  15. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.

    PubMed

    Sun, Yue-Qi; Deng, Meng-Xia; He, Jia; Zeng, Qing-Xiang; Wen, Weiping; Wong, David S H; Tse, Hung-Fat; Xu, Geng; Lian, Qizhou; Shi, Jianbo; Fu, Qing-Ling

    2012-12-01

    We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. PMID:22987325

  16. Steady Flow in Subject-Specific Human Airways from Mouth to Sixth Bronchial Generation

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Coletti, Filippo; Schiavazzi, Daniele; Elkins, Christopher; Eaton, John

    2013-11-01

    Understanding the complex flow topology within the human lung is critical to assess gas exchange and particle transport as they relate to the development and treatment of respiratory diseases. While idealized airway models have been investigated extensively, only limited information is available for anatomically accurate geometries. We have measured the full three-dimensional, mean velocity field from the mouth to the sixth bronchial generation in a patient-specific geometry at steady inspiration. Magnetic resonance velocimetry is used to measure the flow of water at realistic Reynolds number in a 3D-printed model derived from the CT scan of a healthy subject. The canonical laryngeal jet is observed; however, its structure is altered by an upstream jet behind the tongue, which is not discussed in the literature. Regions of separation in the supraglottic space are found to generate streamwise vortices. The resulting swirl persists to the first bifurcation and modifies the vorticity distribution in the main bronchi relative to that of a symmetric bifurcation with uniform inlet conditions. An integral momentum distortion parameter is calculated along several complete bronchial paths to assess the impact of branching angle and generation length on the flow field.

  17. Expression of the chloride channel CLC-K in human airway epithelial cells.

    PubMed

    Mummery, Jennifer L; Killey, Jennifer; Linsdell, Paul

    2005-12-01

    Airway submucosal gland function is severely disrupted in cystic fibrosis (CF), as a result of genetic mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane Cl(-) channel. To identify other Cl(-) channel types that could potentially substitute for lost CFTR function in these cells, we investigated the functional and molecular expression of Cl(-) channels in Calu-3 cells, a human cell line model of the submucosal gland serous cell. Whole cell patch clamp recording from these cells identified outwardly rectified, pH- and calcium-sensitive Cl(-) currents that resemble those previously ascribed to ClC-K type chloride channels. Using reverse transcription polymerase chain reaction, we identified expression of mRNA for ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, ClC-7, ClC-Ka, and ClC-Kb, as well as the common ClC-K channel beta subunit barttin. Western blotting confirmed that Calu-3 cells express both ClC-K and barttin protein. Thus, Calu-3 cells express multiple members of the ClC family of Cl(-) channels that, if also expressed in native submucosal gland serous cells within the CF lung, could perhaps act to partially substitute lost CFTR function. Furthermore, this work represents the first evidence for functional ClC-K chloride channel expression within the lung. PMID:16462912

  18. Activation of CFTR by genistein in human airway epithelial cell lines.

    PubMed

    Andersson, Charlotte; Servetnyk, Zhanna; Roomans, Godfried M

    2003-08-29

    Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel expressed in epithelial cells. The effects of genistein and 4-phenylbutyrate (PBA) on CFTR were studied in three human airway epithelial cell lines expressing wild-type or DeltaF508 CFTR: Calu-3, CFSMEo-, and CFBE41o- cells. The cells were loaded with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) and chloride efflux was studied. Forskolin and 3-isobutyl-1-methylxanthine (IBMX) induced chloride efflux in Calu-3 cells but not in CF lines. Genistein (2.5-50 microM) alone was able to induce chloride efflux in all cell lines. Genistein did not enhance the effect of forskolin and IBMX. PBA had little or no effect on genistein-induced chloride efflux. The effect of genistein seen at low concentrations makes genistein interesting for possible pharmacological treatment of CF, since it is known that similar concentrations can be obtained in plasma by a soy-rich diet. PMID:12914781

  19. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  20. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    PubMed

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport. PMID:26818810

  1. DNS and PIV Measurements of the Flow in a Model of the Human Upper Airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Oren, Liran; Gutmark, Epharim; Elghobashi, Said; University of California, Irvine Collaboration; Univ. of Cincinnati, Cincinnati Collaboration

    2014-11-01

    The flow in the human upper airway (HUA) is 3D, unsteady, undergoes transition from laminar to turbulent, and reverses its main direction about every two seconds. In order to enhance the understanding of the flow properties, both numerical and experimental studies are needed. In the present study, DNS results of the flow in a patient-specific model of HUA are compared with experimental data. The DNS solver uses the lattice Boltzmann method which was validated for some canonical laminar and turbulent flows The experimental model was constructed from transparent silicone using a mold prepared by 3D printing. Velocity measurements were performed via high speed particle image velocimetry (HSPIV). The refractive index of the fluid used in the HUA experimental model matched the refractive index of the silicone. Both inspiration and expiration cases with several flow rates in the HUA are studied. The DNS velocity fields at several cross section planes are compared with the HSPIV measurements. The computed pressure and vorticity distributions will be also presented. NIH Heart Lung and Blood Inst.-Grant HL105215.

  2. Direct Numerical Simulation of the Flow in the Human Upper Airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Elghobashi, Said

    2012-11-01

    The objective of our study is to understand the flow details in the critical zones inside the human upper airway (HUA) to minimize the guess work in performing surgeries for removing flow obstructions. The 3D flow in HUA consists of unsteady laminar, transitional and turbulent regimes. We perform DNS of HUA flow using lattice Boltzmann method (LBM). We validated our DNS- LBM via comparisons with other DNS methods and experiments for several canonical flows. Excellent agreement was achieved for 3D turbulent channel flow of Kim et al. (JFM 1987) and experimental data for 3D flows in curved pipes. Our predictions of the flow in an idealized HUA model agree well with the experimental data. We predict the flow in a real HUA whose geometry is reconstructed from optical coherence tomography (OCT) data. Both inspiration and expiration cases with various inflow rates are studied. Velocity, pressure and shear stress distributions, time-dependent trajectories of tracer particles and instantaneous streamlines throughout the domain are presented. This research is supported by NIH grant HL105215-01.

  3. Differential interaction of bacterial species from the Burkholderia cepacia complex with human airway epithelial cells.

    PubMed

    Moura, Jane A; Cristina de Assis, Maria; Ventura, Grasiella C; Saliba, Alessandra M; Gonzaga, Luiz; Si-Tahar, Mustapha; Marques, Elizabeth de A; Plotkowski, Maria Cristina

    2008-01-01

    To increase knowledge of the pathogenic potential of the Burkholderia cepacia complex (BCC), we investigated the effects of reference strains of the nine BCC species on human bronchial epithelial cells in vitro. B. multivorans exhibited the highest rates of adherence to and internalization by host cells. Two out of three clinical isolates recovered from cystic fibrosis patients confirmed the B. multivorans high adhesiveness. All four B. multivorans isolates exhibited an aggregated pattern of adherence but any of them expressed cable pili. When bacteria were centrifuged onto cell cultures to circumvent their poor adhesiveness, B. pyrrocinia exhibited the highest internalization rate, followed by B. multivorans. The percentages of apoptotic cells in cultures infected with B. cepacia, B. multivorans, B. cenocepacia (subgroups IIIA and IIIB), B. stabilis and B. vietnamiensis were significantly higher than in control non-infected cultures. All nine BCC species triggered a similar release of the inflammatory cytokine IL-8, that was not reduced by cell treatment with cytochalasin D. Hence, our data demonstrate, for the first time, that all BCC species exhibit a similar ability to induce the expression of host immune mediators whereas they differ on their ability to adhere to, invade and kill airway epithelial cells. PMID:18068390

  4. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    PubMed

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway. PMID:24885163

  5. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study.

    PubMed

    Tsu, M E; Babb, A L; Ralph, D D; Hlastala, M P

    1988-01-01

    In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases. PMID:3228218

  6. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma.

    PubMed

    Mehra, Divya; Sternberg, David I; Jia, Yuxia; Canfield, Stephen; Lemaitre, Vincent; Nkyimbeng, Takwi; Wilder, Julie; Sonett, Joshua; D'Armiento, Jeanine

    2010-02-01

    Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tissue macrophage to determine the direct effect of human MMP-9 expression on airway inflammation. Transgenic (TG) and wild-type (WT) mice were immunized and challenged with ovalbumin. Forty-eight hours after the ovalbumin challenge, airway hyperresponsiveness (AHR) was measured, and inflammatory cell infiltration was evaluated in bronchoalveolar lavage fluid (BALF) and lung tissue. Baseline levels of inflammation were similar in the TG and WT groups of mice, and pulmonary eosinophilia was established in both groups by sensitization and challenge with ovalbumin. There was a significant reduction in AHR in sensitized and challenged trangenics compared with WT controls. Although total BALF cell counts were similar in both groups, the lymphocyte number in the lavage of the TG group was significantly diminished compared with the WT group (0.25 +/- 0.08 vs. 0.89 +/- 0.53; P = 0.0032). In addition, the draining lymphocytes were found to be larger in the TG animals compared with the WT mice. Equal numbers of macrophages, eosinophils, and neutrophils were seen in both groups. IL-13 levels were found to be lower in the sensitized TG compared with the WT mice. These results demonstrate an inverse relationship between human MMP-9 and AHR and suggest that MMP-9 expression alters leukocyte extravasation by reducing lymphocyte accumulation in the walls of asthmatic airways. PMID:19940022

  7. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma

    PubMed Central

    Mehra, Divya; Sternberg, David I.; Jia, Yuxia; Canfield, Stephen; Lemaitre, Vincent; Nkyimbeng, Takwi; Wilder, Julie; Sonett, Joshua

    2010-01-01

    Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tissue macrophage to determine the direct effect of human MMP-9 expression on airway inflammation. Transgenic (TG) and wild-type (WT) mice were immunized and challenged with ovalbumin. Forty-eight hours after the ovalbumin challenge, airway hyperresponsiveness (AHR) was measured, and inflammatory cell infiltration was evaluated in bronchoalveolar lavage fluid (BALF) and lung tissue. Baseline levels of inflammation were similar in the TG and WT groups of mice, and pulmonary eosinophilia was established in both groups by sensitization and challenge with ovalbumin. There was a significant reduction in AHR in sensitized and challenged trangenics compared with WT controls. Although total BALF cell counts were similar in both groups, the lymphocyte number in the lavage of the TG group was significantly diminished compared with the WT group (0.25 ± 0.08 vs. 0.89 ± 0.53; P = 0.0032). In addition, the draining lymphocytes were found to be larger in the TG animals compared with the WT mice. Equal numbers of macrophages, eosinophils, and neutrophils were seen in both groups. IL-13 levels were found to be lower in the sensitized TG compared with the WT mice. These results demonstrate an inverse relationship between human MMP-9 and AHR and suggest that MMP-9 expression alters leukocyte extravasation by reducing lymphocyte accumulation in the walls of asthmatic airways. PMID:19940022

  8. Effects of air pollution-related heavy metals on the viability and inflammatory responses of human airway epithelial cells.

    PubMed

    Honda, Akiko; Tsuji, Kenshi; Matsuda, Yugo; Hayashi, Tomohiro; Fukushima, Wataru; Sawahara, Takahiro; Kudo, Hitomi; Murayama, Rumiko; Takano, Hirohisa

    2015-01-01

    Various metals produced from human activity are ubiquitously detected in ambient air. The metals may lead to induction and/or exacerbation of respiratory diseases, but the significant metals and factors contributing to such diseases have not been identified. To compare the effects of each metal and different oxidation states of metals on human airway, we examined the viability and production of interleukin (IL)-6 and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway epithelial cells were exposed to Mn(2+), V(4+), V(5+), Cr(3+), Cr(6+), Zn(2+), Ni(2+), and Pb(2+) at a concentration of 0.5, 5, 50, or 500 μmol/L for 24 hours. Mn and V decreased the cell viability in a concentration-dependent manner, and V(5+) tended to have a greater effect than V(4+). The Cr decreased the cell viability, and (Cr(+6)) at concentrations of 50 and 500 μmol/L was more toxic than (Cr(+3)). Zn at a concentration of 500 μmol/L greatly decreased the cell viability, whereas Ni at the same concentration increased it. Pb produced fewer changes. Mn and Ni at a concentration of 500 μmol/L induced the significant production of IL-6 and IL-8. However, most of the metals including (V(+4), V(+5)), (Cr(+3), Cr(+6)), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present results indicate that various heavy metals have different effects on toxicity and the proinflammatory responses of airway epithelial cells, and those influences also depend on the oxidation states of the metals. PMID:25808165

  9. Vulnerability of the human airway epithelium to hyperoxia. Constitutive expression of the catalase gene in human bronchial epithelial cells despite oxidant stress.

    PubMed

    Yoo, J H; Erzurum, S C; Hay, J G; Lemarchand, P; Crystal, R G

    1994-01-01

    Although catalase is a major intracellular antioxidant, the expression of the human catalase gene appears to be limited in the airway epithelium, making these cells vulnerable to oxidant stress. The basis for this limited gene expression was examined by evaluation of the expression of the endogenous gene in human bronchial epithelial cells in response to hyperoxia. Hyperoxia failed to upregulate endogenous catalase gene expression, in contrast to a marked increase in expression of the heat shock protein gene. Sequence analysis of 1.7 kb of the 5'-flanking region of the human catalase gene showed features of a "house-keeping" gene (no TATA box, high GC content, multiple CCAAT boxes, and transcription start sites). Transfection of human bronchial epithelial cells with fusion genes composed of various lengths of the catalase 5'-flanking region and luciferase as a reporter gene showed low level constitutive promoter activity that did not change after exposure to hyperoxia. Importantly, using a replication-deficient recombinant adenoviral vector containing the human catalase cDNA, levels of catalase were significantly increased in human airway epithelial cells and this was associated with increased survival of the cells when exposed to hyperoxia. These observations provide a basis for understanding the sensitivity of the human airway epithelium to oxidant stress and a strategy for protecting the epithelium from such injury. PMID:8282800

  10. Bidirectional counter-regulation of human lung mast cell and airway smooth muscle β2-adrenoceptors

    PubMed Central

    Newby, Chris; Amrani, Yassine; Bradding, Peter

    2015-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesised that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at tyrosine 350 (Tyr350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC co-culture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC co-culture. These effects were reversed by neutralisation of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr350 occurred within 5 minutes in both HLMCs and HASMCs when the cells were co-cultured, and was inhibited by neutralising SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  11. Bidirectional Counterregulation of Human Lung Mast Cell and Airway Smooth Muscle β2 Adrenoceptors.

    PubMed

    Lewis, Rebecca J; Chachi, Latifa; Newby, Chris; Amrani, Yassine; Bradding, Peter

    2016-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesized that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at Tyr(350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC coculture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC coculture. These effects were reversed by neutralization of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr(350) occurred within 5 min in both HLMCs and HASMCs when the cells were cocultured, and was inhibited by neutralizing SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  12. Human Reliability Considerations for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

    2012-01-27

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

  13. The phosphorylation of endogenous Nedd4-2 In Na+—absorbing human airway epithelial cells

    PubMed Central

    Ismail, Noor A.S.; Baines, Deborah L.; Wilson, Stuart M.

    2014-01-01

    Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na+ channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser221, -Ser327 and -Thr246. This Nedd4-2 inactivation process is thought to be central to the hormonal control of Na+ absorption. The present study of H441 human airway epithelial cells therefore explores the effects of SGK1 and / or PKA upon the phosphorylation / abundance of endogenous Nedd4-2; the surface expression of ENaC subunits, and electrogenic Na+ transport. Effects on Nedd4-2 phosphorylation/abundance and the surface expression of ENaC were monitored by western analysis, whilst Na+ absorption was quantified electrometrically. Acutely (20 min) activating PKA in glucocorticoid-deprived (24 h) cells increased the abundance of Ser221-phosphorylated, Ser327-phosphorylated and total Nedd4-2 without altering the abundance of Thr246-phosphorylated Nedd4-2. Activating PKA under these conditions did not cause a co-ordinated increase in the surface abundance of α-, β- and γ-ENaC and had only a very small effect upon electrogenic Na+ absorption. Activating PKA (20 min) in glucocorticoid-treated (0.2 µM dexamethasone, 24 h) cells, on the other hand, increased the abundance of Ser221-, Ser327- and Thr246-phosphorylated and total Nedd4-2; increased the surface abundance of α-, β- and γ-ENaC and evoked a clear stimulation of Na+ transport. Chronic glucocorticoid stimulation therefore appears to allow cAMP-dependent control of Na+ absorption by facilitating the effects of PKA upon the Nedd4-2 and ENaC subunits. PMID:24657276

  14. Down-regulation of IL-8 expression in human airway epithelial cells through helper-dependent adenoviral-mediated RNA interference

    PubMed Central

    CAO, Huibi; WANG, Anan; MARTIN, Bernard; KOEHLER, David R.; ZEITLIN, Pamela L.; TANAWELL, A. Keith; HU, Jim

    2015-01-01

    Interleukin (IL)-8 is a potent neutrophil chemotactic factor and a crucial mediator in neutrophil-dependent inflammation. Various cell types produce IL-8, either in response to external stimuli such as cytokines or bacterial infection, or after malignant transformation. Anti-IL-8 strategies have been considered for anti-inflammatory therapy. In this paper we demonstrate that the RNA interference technique can be used to efficiently down-regulate IL-8 protein expression in airway epithelial cells. We used a helper-dependent adenoviral vector to express a small hairpin (sh)RNA targeting human IL-8 in cultured airway epithelial cells (IB3-1, Cftr−/−; C38, Cftr-corrected) stimulated with TNF-α, IL-1β or heat-inactivated Burkholderia cenocepacia. Stimulated IL-8 expression in IB3-1 and C38 cells was significantly reduced by shRNA expression. The shRNA targeting IL-8 had no effect on the activation of NF-κB, or on the protein levels of IκB or IL-6, suggesting that this anti-IL-8 strategy was highly specific, and therefore may offer potential for the treatment of inflammatory diseases. PMID:15740640

  15. Capsaicin exposure elicits complex airway defensive motor patterns in normal humans in a concentration-dependent manner.

    PubMed

    Vovk, A; Bolser, D C; Hey, J A; Danzig, M; Vickroy, T; Berry, R; Martin, A D; Davenport, P W

    2007-01-01

    The airway defensive response to tussive agents, such as capsaicin, is frequently assessed by counting the number of cough sounds, or expulsive events. This method does not identify or differentiate important respiratory events that occur in the respiratory muscles and lungs, which are critical in assessing airway defensive responses. The purpose of this study was to characterize the airway defensive behaviours (cough and expiration reflex) to capsaicin exposure in humans. We observed complex motor behaviours in response to capsaicin exposure. These behaviours were defined as cough reacceleration (CRn) and expiration reflex (ERn), where n is the number of expulsive events with and without a preceding inspiratory phase, respectively. Airway defensive responses were defined in terms of frequency (number of expulsive events), strength (activation of abdominal muscles) and behaviour type (CRn vs. ERn). Thirty-six subjects (15 females, 24+/-4 yr) were instrumented with EMG electrodes placed over the rectus abdominis (RA), external abdominal oblique (EO) and the 8th intercostal space (IC8). A custom-designed mouth pneumotachograph was used to assess the airflow acceleration, plateau velocity and phase duration of the expulsive phase. Subjects inhaled seven concentrations of capsaicin (5-200 microM) in a randomized block order. The total number of expulsive events (frequency) and the sum of integrated EMG for the IC8, RA and EO (strength) increased in a curvilinear fashion. Differentiating the airway defense responses into type demonstrated predominately CR1 and CR2 (i.e. inspiration followed by one and two expulsive events, respectively) with very few ER's at <50 microM capsaicin. At higher concentrations (>50 microM) ER's with one or more expulsive events (ER1) appeared, and the number of CR's with three or more expulsive events (CR3) increased. The decrease in EMG activation and airflow measurements with each successive expulsive event suggests a decline in power and

  16. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron

    2009-01-01

    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  17. Pulmonary effects of exposure to fine fibreglass: irregular opacities and small airways obstruction.

    PubMed Central

    Kilburn, K H; Powers, D; Warshaw, R H

    1992-01-01

    OBJECTIVE--Man made mineral fibres imitate asbestos and produce tumours of the pleura in animals. To answer the question, Does prolonged exposure to fibreglass adversely affect pulmonary function or produce radiographic abnormalities in human subjects? we studied workers in a midwestern appliance plant where refrigerator doors and previously entire cabinets were insulated with fibreglass sheeting and loose rotary spun fibreglass. METHODS--Spirometry and lung volumes were measured, respiratory and occupational questionnaires were administered, and chest x-ray films were read for pneumoconiosis using International Labour Office (ILO) 1980 criteria in 284 workers with exposure of 20 years or more. RESULTS--Expiratory flows were reduced including FEV1 (mean 90.3% of predicted (pr), FEF25-75 (85.5% pr), and FEF75-85 (76.2% pr). Forced vital capacity was significantly reduced (92.8% pr) and total lung capacity was significantly increased (109.2% pr). In white male smokers, a group large enough for comparisons, parameters of pulmonary function were reduced further in the presence of irregular opacities. Forty three workers (15.1%) had evidence of pneumoconiosis on chest radiographs: 26 of these (9.1%), had no known exposure to asbestos and 17 (6.0%) had some exposure. The best judgement was that in 36 (13.0%), pulmonary opacities or pleural abnormalities were due to fibreglass. CONCLUSION--Commercial rotary spun fibreglass used for insulating appliances appears to produce human disease that is similar to asbestosis. PMID:1419860

  18. VNIR data processing of small (human) targets

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton

    2012-05-01

    We demonstrate that human skin biometrics in the visible to near infrared (VNIR) regime can be used as reliable features in a multistage human target tracking algorithm suite. We collected outdoor VNIR hyperspectral data of human skin, consisting of two human subjects of different skin types in the Fitzpatrick Scale (Type I [Very Fair] and Type III [White to Olive]), standing side by side at seven ranges (50 ft to 370 ft) in a suburban background. At some of these ranges, the subjects fall under the small target category. We propose a three-step approach: Step 1, reflectance retrieval; Step 2, exploitation of absorption wavelength line at 577 nanometers, due to oxygenated hemoglobin in blood near the surface of skin; and Step 3, matched filtering on candidate patches in the input imagery that successfully passed Step 2, using as input all of the available bands in a spectral average representation of human skin. Step-3 functionality is only applied to patches in the imagery showing evidence of human skin (Step 2 output). Regardless of the targets' kinematic states, the approach produced some excellent results locating the presence of human skin in the example dataset, yielding zero false alarms from potential confusers in the scene. The approach is expected to function as the focus of attention stage of a multistage algorithm suite for human target tracking.

  19. Reconstituted Human Upper Airway Epithelium as 3-D In Vitro Model for Nasal Polyposis

    PubMed Central

    de Borja Callejas, Francisco; Martínez-Antón, Asunción; Alobid, Isam; Fuentes, Mireya; Cortijo, Julio; Picado, César

    2014-01-01

    Background Primary human airway epithelial cells cultured in an air-liquid interface (ALI) develop a well-differentiated epithelium. However, neither characterization of mucociliar differentiation overtime nor the inflammatory function of reconstituted nasal polyp (NP) epithelia have been described. Objectives 1st) To develop and characterize the mucociliar differentiation overtime of human epithelial cells of chronic rhinosinusitis with nasal polyps (CRSwNP) in ALI culture system; 2nd) To corroborate that 3D in vitro model of NP reconstituted epithelium maintains, compared to control nasal mucosa (NM), an inflammatory function. Methods Epithelial cells were obtained from 9 NP and 7 control NM, and differentiated in ALI culture for 28 days. Mucociliary differentiation was characterized at different times (0, 7, 14, 21, and 28 days) using ultrastructure analysis by electron microscopy; ΔNp63 (basal stem/progenitor cell), β-tubulin IV (cilia), and MUC5AC (goblet cell) expression by immunocytochemistry; and mucous (MUC5AC, MUC5B) and serous (Lactoferrin) secretion by ELISA. Inflammatory function of ALI cultures (at days 0, 14, and 28) through cytokine (IL-8, IL-1β, IL-6, IL-10, TNF-α, and IL-12p70) and chemokine (RANTES, MIG, MCP-1, IP-10, eotaxin-1, and GM-CSF) production was analysed by CBA (Cytometric Bead Array). Results In both NP and control NM ALI cultures, pseudostratified epithelium with ciliated, mucus-secreting, and basal cells were observed by electron microscopy at days 14 and 28. Displaying epithelial cell re-differentation, β-tubulin IV and MUC5AC positive cells increased, while ΔNp63 positive cells decreased overtime. No significant differences were found overtime in MUC5AC, MUC5B, and lactoferrin secretions between both ALI cultures. IL-8 and GM-CSF were significantly increased in NP compared to control NM regenerated epithelia. Conclusion Reconstituted epithelia from human NP epithelial cells cultured in ALI system provides a 3D in vitro model

  20. Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma.

    PubMed

    Martínez-González, Itziar; Cruz, Maria-Jesús; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier; Aran, Josep M

    2014-10-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 × 10(6) cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA. PMID:24798370

  1. Numerical modeling of steady inspiratory airflow through a three-generation model of the human central airways.

    PubMed

    Wilquem, F; Degrez, G

    1997-02-01

    Two-dimensional steady inspiratory airflow through a three-generation model of the human central airways is numerically investigated, with dimensions corresponding to those encountered in the fifth to seventh generations of the Weibel's model. Wall curvatures are added at the outer walls of the junctions for physiological purposes. Computations are carried out for Reynolds numbers in the mother branch ranging from 200 to 1200, which correspond to mouth air breathing at flow rates ranging from 0.27 to 1.63 liters per second. The difficulty of generating grids in a so complex configuration is overcome using a nonoverlapping multiblock technique. Simulations demonstrate the existence of separation regions whose number, location, and size strongly depend on the Reynolds number. Consequently, four different flow configurations are detected. Velocity profiles downstream of the bifurcations are shown to be highly skewed, thus leading to an important unbalance in the flow distribution between the medial and lateral branches of the model. These results confirm the observations of Snyder et al. and Tsuda et al. and suggest that a resistance model of flow partitioning based on Kirchhoff's laws is inadequate to simulate the flow behavior accurately within the airways. When plotted in a Moody diagram, airway resistance throughout the model is shown to fit with a linear relation of slope -0.61. This is qualitatively in good agreement with the experimental investigations of Pedley et al, and Slutsky et al. PMID:9083850

  2. Large-eddy Simulation of Heat and Water Vapor Transfer in CT-Based Human Airway Models

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tawhai, Merryn; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    We propose a novel imaging-based thermodynamic model to study local heat and mass transfers in the human airways. Both 3D and 1D CFD models are developed and validated. Large-eddy simulation (LES) is adopted to solve 3D incompressible Navier-Stokes equations with Boussinesq approximation along with temperature and water vapor transport equations and energy-flux based wall boundary condition. The 1D model provides initial and boundary conditions to the 3D model. The computed tomography (CT) lung images of three healthy subjects with sinusoidal waveforms and minute ventilations of 6, 15 and 30 L/min are considered. Between 1D and 3D models and between subjects, the average temperature and water vapor distributions are similar, but their regional distributions are significantly different. In particular, unlike the 1D model, the heat and water vapor transfers in the 3D model are elevated at the bifurcations during inspiration. Moreover, the correlations of Nusselt number (Nu) and Sherwood number (Sh) with local Reynolds number and airway diameter are proposed. In conclusion, use of the subject-specific lung model is essential for accurate prediction of local thermal impacts on airway epithelium. Supported in part by NIH grants R01-HL094315, U01-HL114494 and S10-RR022421.

  3. Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds

    PubMed Central

    Morris, G. E.; Bridge, J. C.; Eltboli, O. M. I.; Lewis, M. P.; Knox, A. J.; Aylott, J. W.; Brightling, C. E.; Ghaemmaghami, A. M.

    2014-01-01

    Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment. PMID:24793171

  4. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  5. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model.

    PubMed

    Choe, Melanie M; Sporn, Peter H S; Swartz, Melody A

    2006-09-01

    Airway wall remodeling is a hallmark of asthma, characterized by subepithelial thickening and extracellular matrix (ECM) remodeling. Mechanical stress due to hyperresponsive smooth muscle cells may contribute to this remodeling, but its relevance in a three-dimensional environment (where the ECM plays an important role in modulating stresses felt by cells) is unclear. To characterize the effects of dynamic compression in ECM remodeling in a physiologically relevant three-dimensional environment, a tissue-engineered human airway wall model with differentiated bronchial epithelial cells atop a collagen gel containing lung fibroblasts was used. Lateral compressive strain of 10 or 30% at 1 or 60 cycles per hour was applied using a novel straining device. ECM remodeling was assessed by immunohistochemistry and zymography. Dynamic strain, particularly at the lower magnitude, induced airway wall remodeling, as indicated by increased deposition of types III and IV collagen and increased secretion of matrix metalloproteinase-2 and -9. These changes paralleled increased myofibroblast differentiation and were fibroblast-dependent. Furthermore, the spatial pattern of type III collagen deposition correlated with that of myofibroblasts; both were concentrated near the epithelium and decreased diffusely away from the surface, indicating some epithelial control of the remodeling response. Thus, in a physiologically relevant three-dimensional model of the bronchial wall, dynamic compressive strain induced tissue remodeling that mimics many features of remodeling seen in asthma, in the absence of inflammation and dependent on epithelial-fibroblast signaling. PMID:16601241

  6. Tomatidine Inhibits Replication of Staphylococcus aureus Small-Colony Variants in Cystic Fibrosis Airway Epithelial Cells▿

    PubMed Central

    Mitchell, Gabriel; Gattuso, Mariza; Grondin, Gilles; Marsault, Éric; Bouarab, Kamal; Malouin, François

    2011-01-01

    Small-colony variants (SCVs) often are associated with chronic Staphylococcus aureus infections, such as those encountered by cystic fibrosis (CF) patients. We report here that tomatidine, the aglycon form of the plant secondary metabolite tomatine, has a potent growth inhibitory activity against SCVs (MIC of 0.12 μg/ml), whereas the growth of normal S. aureus strains was not significantly altered by tomatidine (MIC, >16 μg/ml). The specific action of tomatidine was bacteriostatic for SCVs and was clearly associated with their dysfunctional electron transport system, as the presence of the electron transport inhibitor 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) caused normal S. aureus strains to become susceptible to tomatidine. Inversely, the complementation of SCVs' respiratory deficiency conferred resistance to tomatidine. Tomatidine provoked a general reduction of macromolecular biosynthesis but more specifically affected the incorporation of radiolabeled leucine in proteins of HQNO-treated S. aureus at a concentration corresponding to the MIC against SCVs. Furthermore, tomatidine inhibited the intracellular replication of a clinical SCV in polarized CF-like epithelial cells. Our results suggest that tomatidine eventually will find some use in combination therapy with other traditional antibiotics to eliminate persistent forms of S. aureus. PMID:21357296

  7. IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways.

    PubMed

    Redhu, Naresh Singh; Shan, Lianyu; Al-Subait, Duaa; Ashdown, Heather L; Movassagh, Hesam; Lamkhioued, Bouchaib; Gounni, Abdelilah S

    2013-01-01

    Airway remodeling is not specifically targeted by current asthma medications, partly owing to the lack of understanding of remodeling mechanisms, altogether posing great challenges in asthma treatment. Increased airway smooth muscle (ASM) mass due to hyperplasia/hypertrophy contributes significantly to overall airway remodeling and correlates with decline in lung function. Recent evidence suggests that IgE sensitization can enhance the survival and mediator release in inflammatory cells. Human ASM (HASM) cells express both low affinity (FcεRII/CD23) and high affinity IgE Fc receptors (FcεRI), and IgE can modulate the contractile and synthetic function of HASM cells. IgE was recently shown to induce HASM cell proliferation but the detailed mechanisms remain unknown. We report here that IgE sensitization induces HASM cell proliferation, as measured by 3H-thymidine, EdU incorporation, and manual cell counting. As an upstream signature component of FcεRI signaling, inhibition of spleen tyrosine kinase (Syk) abrogated the IgE-induced HASM proliferation. Further analysis of IgE-induced signaling depicted an IgE-mediated activation of Erk 1/2, p38, JNK MAPK, and Akt kinases. Lastly, lentiviral-shRNA-mediated STAT3 silencing completely abolished the IgE-mediated HASM cell proliferation. Collectively, our data provide mechanisms of a novel function of IgE which may contribute, at least in part, to airway remodeling observed in allergic asthma by directly inducing HASM cell proliferation. PMID:24499258

  8. Small-Bodied Humans from Palau, Micronesia

    PubMed Central

    Berger, Lee R.; Churchill, Steven E.; De Klerk, Bonita; Quinn, Rhonda L.

    2008-01-01

    Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. Background Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. Principle Findings Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to “pygmoid” populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. Significance These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo. PMID:18347737

  9. INFLUENCE OF HYGROSCOPIC GROWTH UPON THE DEPOSITION OF BRONCHODILATOR AEROSOLS IN UPPER HUMAN AIRWAYS

    EPA Science Inventory

    The influence of hygroscopic growth upon the behavior of two bronchodilator drugs in upper airways is studied with an aerosol deposition model. The latter accounts for laryngeal jet impaction and turbulent flow instabilities caused by the larynx in computing particle deposition e...

  10. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  11. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  12. Lung function score including a parameter of small airway disease as a highly predictive indicator of survival after allogeneic hematopoietic cell transplantation.

    PubMed

    Nakamae, Mika; Yamashita, Mariko; Koh, Hideo; Nishimoto, Mitsutaka; Hayashi, Yoshiki; Nakane, Takahiko; Nakashima, Yasuhiro; Hirose, Asao; Hino, Masayuki; Nakamae, Hirohisa

    2016-06-01

    Some studies on the predictive value of determining pulmonary function prior to allogeneic hematopoietic cell transplantation (allo-HCT) have shown a significant association between pulmonary function test (PFT) parameters and pulmonary complications, and mortality. However, the percentage of patients showing abnormalities in pretransplant PFT parameters is low. We comprehensively evaluated the effect of pretransplant PFT parameters, including a marker of small airway disease (ratio of the airflow rate of 50% vital capacity to the airflow rate of 25% vital capacity (V˙50/V˙25), on outcomes in 206 evaluable patients who underwent allo-HCT at our institute. Notable among the significant parameters in a univariable analysis, V˙50/V˙25 was the most powerful indicator of survival following allo-HCT (delta-Akaike information criterion [∆AIC] = 12.47, ∆χ(2)  = 14.47; P = 0.0001). Additionally, a pretransplant lung function score (pLFS) established by applying three parameters with superior predictive values including V˙50/V˙25 represented a better discriminating variable for the prediction of survival. Our data demonstrate that a pLFS incorporating a parameter of small airway disease, rather than the parameters of central airway obstruction, may be useful for predicting patient survival following allo-HCT. PMID:27018997

  13. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18.

    PubMed

    Chu, H W; Rios, C; Huang, C; Wesolowska-Andersen, A; Burchard, E G; O'Connor, B P; Fingerlin, T E; Nichols, D; Reynolds, S D; Seibold, M A

    2015-10-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9-mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a proinflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9-mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a proinflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli. PMID:26043872

  14. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Jedelský, Jan; Lízal, František; Jícha, Miroslav

    2012-04-01

    Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA) for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS) particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal) breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 - 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  15. Agonist binding to β-adrenergic receptors on human airway epithelial cells inhibits migration and wound repair.

    PubMed

    Peitzman, Elizabeth R; Zaidman, Nathan A; Maniak, Peter J; O'Grady, Scott M

    2015-12-15

    Human airway epithelial cells express β-adrenergic receptors (β-ARs), which regulate mucociliary clearance by stimulating transepithelial anion transport and ciliary beat frequency. Previous studies using airway epithelial cells showed that stimulation with isoproterenol increased cell migration and wound repair by a cAMP-dependent mechanism. In the present study, impedance-sensing arrays were used to measure cell migration and epithelial restitution following wounding of confluent normal human bronchial epithelial (NHBE) and Calu-3 cells by electroporation. Stimulation with epinephrine or the β2-AR-selective agonist salbutamol significantly delayed wound closure and reduced the mean surface area of lamellipodia protruding into the wound. Treatment with the β-AR bias agonist carvedilol or isoetharine also produced a delay in epithelial restitution similar in magnitude to epinephrine and salbutamol. Measurements of extracellular signal-regulated kinase phosphorylation following salbutamol or carvedilol stimulation showed no significant change in the level of phosphorylation compared with untreated control cells. However, inhibition of protein phosphatase 2A activity completely blocked the delay in wound closure produced by β-AR agonists. In Calu-3 cells, where CFTR expression was inhibited by RNAi, salbutamol did not inhibit wound repair, suggesting that β-AR agonist stimulation and loss of CFTR function share a common pathway leading to inhibition of epithelial repair. Confocal images of the basal membrane of Calu-3 cells labeled with anti-β1-integrin (clone HUTS-4) antibody showed that treatment with epinephrine or carvedilol reduced the level of activated integrin in the membrane. These findings suggest that treatment with β-AR agonists delays airway epithelial repair by a G protein- and cAMP-independent mechanism involving protein phosphatase 2A and a reduction in β1-integrin activation in the basal membrane. PMID:26491049

  16. The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation

    PubMed Central

    Komalavilas, Padmini; Penn, Raymond B.; Flynn, Charles R.; Thresher, Jeffrey; Lopes, Luciana B.; Furnish, Elizabeth J.; Guo, Manhong; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.; Brophy, Colleen M.

    2009-01-01

    Activation of the cAMP/cAMP-dependent PKA pathway leads to relaxation of airway smooth muscle (ASM). The purpose of this study was to examine the role of the small heat shock-related protein HSP20 in mediating PKA-dependent ASM relaxation. Human ASM cells were engineered to constitutively express a green fluorescent protein-PKA inhibitory fusion protein (PKI-GFP) or GFP alone. Activation of the cAMP-dependent signaling pathways by isoproterenol (ISO) or forskolin led to increases in the phosphorylation of HSP20 in GFP but not PKI-GFP cells. Forskolin treatment in GFP but not PKI-GFP cells led to a loss of central actin stress fibers and decreases in the number of focal adhesion complexes. This loss of stress fibers was associated with dephosphorylation of the actin-depolymerizing protein cofilin in GFP but not PKI-GFP cells. To confirm that phosphorylated HSP20 plays a role in PKA-induced ASM relaxation, intact strips of bovine ASM were precontracted with serotonin followed by ISO. Activation of the PKA pathway led to relaxation of bovine ASM, which was associated with phosphorylation of HSP20 and dephosphorylation of cofilin. Finally, treatment with phosphopeptide mimetics of HSP20 possessing a protein transduction domain partially relaxed precontracted bovine ASM strips. In summary, ISO-induced phosphorylation of HSP20 or synthetic phosphopeptide analogs of HSP20 decreases phosphorylation of cofilin and disrupts actin in ASM, suggesting that one possible mechanism by which HSP20 mediates ASM relaxation is via regulation of actin filament dynamics. PMID:17993590

  17. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  18. Small Molecules from the Human Microbiota

    PubMed Central

    Donia, Mohamed S.; Fischbach, Michael A.

    2015-01-01

    Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of natural products from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota-derived molecules are discovered in the future, and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and their biological relevance. PMID:26206939

  19. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  20. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation

    SciTech Connect

    Skowron-zwarg, Marie; Boland, Sonja; Caruso, Nathalie; Coraux, Christelle; Marano, Francelyne; Tournier, Frederic . E-mail: f-tournier@paris7.jussieu.fr

    2007-07-15

    Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.

  1. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery.

    PubMed

    Bahmanzadeh, Hojat; Abouali, Omid; Faramarzi, Mohammad; Ahmadi, Goodarz

    2015-06-01

    In the present study, the effects of endoscopic sphenoidotomy surgery on the flow patterns and deposition of micro-particles in the human nasal airway and sphenoid sinus were investigated. A realistic model of a human nasal passage including nasal cavity and paranasal sinuses was constructed using a series of CT scan images of a healthy subject. Then, a virtual sphenoidotomy by endoscopic sinus surgery was performed in the left nasal passage and sphenoid sinus. Transient airflow patterns pre- and post-surgery during a full breathing cycle (inhalation and exhalation) were simulated numerically under cyclic flow condition. The Lagrangian approach was used for evaluating the transport and deposition of inhaled micro-particles. An unsteady particle tracking was performed for the inhalation phase of the breathing cycle for the case that particles were continuously entering into the nasal airway. The total deposition pattern and sphenoid deposition fraction of micro-particles were evaluated and compared for pre- and post-surgery cases. The presented results show that sphenoidotomy increased the airflow into the sphenoid sinus, which led to increased deposition of micro-particles in this region. Particles up to 25 μm were able to penetrate into the sphenoid in the post-operation case, and the highest deposition in the sphenoid for the resting breathing rate occurred for 10 μm particles at about 1.5%. PMID:25862997

  2. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua; Longest, Worth

    2014-01-01

    Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN) k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges. PMID:24481172

  3. T-bet is induced by interferon-γ to mediate chemokine secretion and migration in human airway smooth muscle cells

    PubMed Central

    2011-01-01

    An inappropriate balance between T-helper (Th)1 and Th2 cytokine production underlies inflammatory changes that result in airway disease. Expression of the T-box transcription factor T-bet regulates differentiation of Th cells and production of Th1 cytokines, particularly IFNγ. T-bet-deficient mice develop airway hyperreactivity, undergo airway remodeling, and exhibit defects in IFNγ production while overproducing Th2 cytokines. T-bet is also reduced in the airways of asthmatic patients, suggesting loss of T-bet expression or activity promotes development of inflammatory airway disease. We present novel data demonstrating T-bet expression is induced in human airway smooth muscle cells (ASMC) by IFNγ. This IFNγ-stimulated expression of T-bet is dependent on signaling through JAK2 and signal transducers and activators of transcription 1 (STAT1) and activates T-bet-dependent DNA binding activity. Expression of T-bet stimulates IFNγ-stimulated IFNγ expression, secretion, and promoter activity, while inhibiting IFNγ-stimulated release of chemokines including monocyte chemoattractant protein (MCP)-1/CCL2, regulated on activation normal T-expressed and secreted (RANTES)/CCL5, and eotaxin/CCL11. This is accompanied by changes in expression of the chemokine receptors CCR3 and IL12Rβ2 and TNFα. T-bet expression also reduces chemotactic migration of ASMC in response to serum and PDGF, which contributes to airway hyperplasia. These results are the first to identify T-bet expression and activity in a structural cell of the lung and may provide new insights into therapeutic targets for inflammatory airway disease. PMID:21239533

  4. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.

    PubMed

    Calmet, Hadrien; Gambaruto, Alberto M; Bates, Alister J; Vázquez, Mariano; Houzeaux, Guillaume; Doorly, Denis J

    2016-02-01

    The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. PMID:26773939

  5. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results.

    PubMed

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav; Chovancova, Michaela

    2016-04-01

    In this article, the results of numerical simulations using computational fluid dynamics (CFD) and a comparison with experiments performed with phase Doppler anemometry are presented. The simulations and experiments were conducted in a realistic model of the human airways, which comprised the throat, trachea and tracheobronchial tree up to the fourth generation. A full inspiration/expiration breathing cycle was used with tidal volumes 0.5 and 1 L, which correspond to a sedentary regime and deep breath, respectively. The length of the entire breathing cycle was 4 s, with inspiration and expiration each lasting 2 s. As a boundary condition for the CFD simulations, experimentally obtained flow rate distribution in 10 terminal airways was used with zero pressure resistance at the throat inlet. CCM+ CFD code (Adapco) was used with an SST k-[Formula: see text] low-Reynolds Number RANS model. The total number of polyhedral control volumes was 2.6 million with a time step of 0.001 s. Comparisons were made at several points in eight cross sections selected according to experiments in the trachea and the left and right bronchi. The results agree well with experiments involving the oscillation (temporal relocation) of flow structures in the majority of the cross sections and individual local positions. Velocity field simulation in several cross sections shows a very unstable flow field, which originates in the tracheal laryngeal jet and propagates far downstream with the formation of separation zones in both left and right airways. The RANS simulation agrees with the experiments in almost all the cross sections and shows unstable local flow structures and a quantitatively acceptable solution for the time-averaged flow field. PMID:26163996

  6. Effects of a potassium channel opener (SDZ PCO 400) on guinea-pig and human pulmonary airways.

    PubMed Central

    Chapman, I. D.; Kristersson, A.; Mathelin, G.; Schaeublin, E.; Mazzoni, L.; Boubekeur, K.; Murphy, N.; Morley, J.

    1992-01-01

    1. SDZ PCO 400 evoked dose-related relaxation of isolated airway smooth muscle. For human bronchus precontracted by endogenous tone or addition of carbachol (10(-5) M), IC50 values were 1.74 microM and 1.82 microM respectively. With guinea-pig trachea contracted by endogenous tone, a comparable IC50 (1.79 microM) was observed, but no IC50 (less than 100 microM) could be determined following contraction by carbachol (10(-6) M). 2. Airway obstruction induced by intravenous bombesin in the anaesthetized ventilated guinea-pig was diminished by intravenous injection of SDZ PCO 400 (ID50 54 micrograms kg-1) or by introduction into the duodenum (ID50 1.0 mg kg-1). Inhalation of nebulized SDZ PCO 400 (0.1 mg kg-1) diminished airway obstruction due to intravenous injection of histamine (3.2-5.6 micrograms kg-1) for up to 20 min. 3. Increased bronchoconstrictor responses to bombesin (180-240 ng kg-1) following intravenous infusion of platelet activating factor (PAF) or (+/-)-isoprenaline, or to histamine (1.0-3.2 micrograms kg-1) following intravenous injections of immune complexes, were suppressed following concomitant intravenous infusion of SDZ PCO 400 (ID50 0.3 mg kg-1 h-1, 1.0 mg kg-1 h-1 and 0.1 mg kg-1 h-1 respectively). 4. Intravenous injection of SDZ PCO 400 (0.1 mg kg-1) effected transient (less than 10 min) inhibition of histamine-induced bronchospasm, yet diminished, for prolonged periods [up to 40 min] the enhanced bronchoconstrictor responses to histamine that followed intravenous injections of immune complexes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1382782

  7. Impact of varying physical activity levels on airway sensitivity and bronchodilation in healthy humans.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Johnson, Ariel M; Kolmer, Sarah A; Harms, Craig

    2015-12-01

    The purpose of this study was to determine if the amount of physical activity influences airway sensitivity and bronchodilation in healthy subjects across a range of physical activity levels. Thirty healthy subjects (age, 21.9 ± 2.6 years; 13 men/17 women) with normal pulmonary function reported to the laboratory on 2 separate occasions where they were randomized to breathe either hypertonic saline (HS) (nebulized hypertonic saline (25%) for 20 min) or HS followed by 5 deep inspirations (DIs), which has been reported to bronchodilate the airways. Pulmonary function tests (PFTs) were performed prior to both conditions and following the HS breathing or 5 DIs. Moderate to vigorous physical activity (MVPA) level was measured via accelerometer worn for 7 days. Following the HS breathing, forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) significantly decreased from baseline by -11.8% ± 8.4% and -9.3% ± 6.7%, respectively. A 2-segment linear model determined significant relationships between MVPA and percent change in FEV1 (r = 0.50) and FVC (r = 0.55). MVPA above ∼497 and ∼500 min/week for FEV1 and FVC, respectively, resulted in minor additional improvements (p > 0.05) in PFTs following the HS breathing. Following the DIs, FEV1 and FVC decreased (p < 0.05) by -7.3% ± 8.6% and -5.7% ± 5.7%, respectively, from baseline, but were not related (p > 0.05) to MVPA. In conclusion, these data demonstrate that higher MVPA levels attenuated airway sensitivity but not bronchodilation in healthy subjects. PMID:26575101

  8. NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence

    PubMed Central

    Buttigieg, Josef; Pan, Jie; Yeger, Herman

    2012-01-01

    Pulmonary neuroepithelial bodies (NEBs), composed of clusters of amine [serotonin (5-HT)] and peptide-producing cells, are widely distributed within the airway mucosa of human and animal lungs. NEBs are thought to function as airway O2-sensors, since they are extensively innervated and release 5-HT upon hypoxia exposure. The small cell lung carcinoma cell line (H146) provides a useful model for native NEBs, since they contain (and secrete) 5-HT and share the expression of a membrane-delimited O2 sensor [classical NADPH oxidase (NOX2) coupled to an O2-sensitive K+ channel]. In addition, both native NEBs and H146 cells express different NADPH oxidase homologs (NOX1, NOX4) and its subunits together with a variety of O2-sensitive voltage-dependent K+ channel proteins (Kv) and tandem pore acid-sensing K+ channels (TASK). Here we used H146 cells to investigate the role and interactions of various NADPH oxidase components in O2-sensing using a combination of coimmunoprecipitation, Western blot analysis (quantum dot labeling), and electrophysiology (patchclamp, amperometry) methods. Coimmunoprecipitation studies demonstrated formation of molecular complexes between NOX2 and Kv3.3 and Kv4.3 ion channels but not with TASK1 ion channels, while NOX4 associated with TASK1 but not with Kv channel proteins. Downregulation of mRNA for NOX2, but not for NOX4, suppressed hypoxia-sensitive outward current and significantly reduced hypoxia -induced 5-HT release. Collectively, our studies suggest that NOX2/Kv complexes are the predominant O2 sensor in H146 cells and, by inference, in native NEBs. Present findings favor a NEB cell-specific plasma membrane model of O2-sensing and suggest that unique NOX/K+ channel combinations may serve diverse physiological functions. PMID:22865553

  9. Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways

    EPA Science Inventory

    Background: Particulate matter is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (small noncoding RNAs) have been suggested as important in maintaining the lung in a disease free...

  10. Study of airflow in the trachea of idealized model of human tracheobronchial airways during breathing cycle

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2015-05-01

    The article deals with a numerical simulation and its verification by experiments in the trachea of idealized geometry of tracheobronchial airways by using unsteady RANS method. The breathing cycle was simulated by sinusoidal function with period of 4 seconds and tidal volume of 0.5 litres of air, which corresponds to breathing during resting condition. Results were compared with experiments measured by laser-Doppler velocimeter in eight points of four cross sections in the trachea. Model consists of the mouth cavity, larynx and tracheobronchial tree down to fourth generation of branching.

  11. Human Factors Aspects of Operating Small Reactors

    SciTech Connect

    OHara, J.M.; Higgins, J.; Deem, R.; Xing, J.; DAgostino, A.

    2010-11-07

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. They are considering small modular reactors (SMRs) as one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants, and so may require a concept of operations (ConOps) that also is different. The U.S. Nuclear Regulatory Commission (NRC) has begun examining the human factors engineering- (HFE) and ConOps- aspects of SMRs; if needed, they will formulate guidance to support SMR licensing reviews. We developed a ConOps model, consisting of the following dimensions: Plant mission; roles and responsibilities of all agents; staffing, qualifications, and training; management of normal operations; management of off-normal conditions and emergencies; and, management of maintenance and modifications. We are reviewing information on SMR design to obtain data about each of these dimensions, and have identified several preliminary issues. In addition, we are obtaining operations-related information from other types of multi-module systems, such as refineries, to identify lessons learned from their experience. Here, we describe the project's methodology and our preliminary findings.

  12. Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Airway Cells

    PubMed Central

    Hatch, Gary E.; Duncan, Kelly E.; Diaz-Sanchez, David; Schmitt, Michael T.; Ghio, Andrew J.; Carraway, Martha Sue; McKee, John; Dailey, Lisa A.; Berntsen, Jon; Devlin, Robert B.

    2014-01-01

    In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in vivo exposure of a living person. The goal of the present study was to compare the dose and effect of O3 in airway cells of humans exposed in vivo to that of human cells exposed in vitro. Ten subjects breathed labeled O3 (18O3, 0.3 ppm, 2 h) while exercising intermittently. Bronchial brush biopsies and lung lavage fluids were collected 1 h post exposure for in vivo data whereas in vitro data were obtained from primary cultures of human bronchial epithelial cells exposed to 0.25–1.0 ppm 18O3 for 2 h. The O3 dose to the cells was defined as the level of 18O incorporation and the O3 effect as the fold increase in expression of inflammatory marker genes (IL-8 and COX-2). Dose and effect in cells removed from in vivo exposed subjects were lower than in cells exposed to the same 18O3 concentration in vitro suggesting upper airway O3 scrubbing in vivo. Cells collected by lavage as well as previous studies in monkeys show that cells deeper in the lung receive a higher O3 dose than cells in the bronchus. We conclude that the methods used herein show promise for replicating and comparing the in vivo dose and effect of O3 in an in vitro system. PMID:24928893

  13. Vasoactive peptides upregulate mRNA expression and secretion of vascular endothelial growth factor in human airway smooth muscle cells.

    PubMed

    Alagappan, Vijay K T; Willems-Widyastuti, Anna; Seynhaeve, Ann L B; Garrelds, Ingrid M; ten Hagen, Timo L M; Saxena, Pramod R; Sharma, Hari S

    2007-01-01

    Airway remodeling and associated angiogenesis are documented features of asthma, of which the molecular mechanisms are not fully understood. Angiotensin (ANG)II and endothelin (ET)-1 are potent vasoconstricting circulatory hormones implicated in asthma. We investigated the effects of ANG II and ET-1 on human airway smooth muscle (ASM) cells proliferation and growth and examined the mRNA expression and release of the angiogenic peptide, vascular endothelial growth factor (VEGF). Serum deprived (48 h) human ASM cells were incubated with ANG II (100 nM) or ET-1 (10 nM) for 30 min, 1, 2, 4, 8, 16, and 24 h and the endogenous synthesis of VEGF was examined in relation to control cells receiving serum free culture medium. ET-1 induced time dependent DNA biosynthesis as determined by [3H]-thymidine incorporation assay. Using northern blot hybridization, we detected two mRNA species of 3.9 and 1.7 kb encoding VEGF in the cultured smooth muscle cells. Both ANG II and ET-1 induced the mRNA expression (two- to threefold) and secretion (1.8- to 2.8-fold) of VEGF reaching maximal levels between 4-8 h of incubation. Induced expression and release of VEGF declined after 8 h of ANG II incubation while levels remained elevated in the case of ET-1. The conditioned medium derived from ET-1-treated ASM cells induced [3H]-thymidine incorporation and cell number in porcine pulmonary artery endothelial as well as human umbilical vein endothelial cells. Moreover, the VEGF tyrosine kinase receptor inhibitor blocked the conditioned medium induced mitogenesis in endothelial cells. Our results suggest a potential role for ANG II and ET-1 in ASM cell growth and upregulation of VEGF that may participate in endothelial cell proliferation via paracrine mechanisms and thus causing pathological angiogenesis and vascular remodelling seen during asthma. PMID:17406064

  14. S-nitrosothiols regulate cell-surface pH buffering by airway epithelial cells during the human immune response to rhinovirus.

    PubMed

    Carraro, Silvia; Doherty, Joseph; Zaman, Khalequz; Gainov, Iain; Turner, Ronald; Vaughan, John; Hunt, John F; Márquez, Javier; Gaston, Benjamin

    2006-05-01

    Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation. PMID:16603595

  15. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  16. Pharmacological characterization of the cysteinyl-leukotriene antagonists CGP 45715A (iralukast) and CGP 57698 in human airways in vitro.

    PubMed

    Capra, V; Bolla, M; Belloni, P A; Mezzetti, M; Folco, G C; Nicosia, S; Rovati, G E

    1998-02-01

    1. Cysteinyl-leukotrienes (cysteinyl-LTs) are important mediators in the pathogenesis of asthma. They cause bronchoconstriction, mucus hypersecretion, increase in microvascular permeability, plasma extravasation and eosinophil recruitment. 2. We investigated the pharmacological profile of the cysteinyl-LT antagonists CGP 45715A (iralukast), a structural analogue of LTD4 and CGP 57698, a quinoline type antagonist, in human airways in vitro, by performing binding studies on human lung parenchyma membranes and functional studies on human isolated bronchial strips. 3. Competition curves vs [3H]-LTD4 on human lung parenchyma membranes demonstrated that: (a) both antagonists were able to compete for the two sites labelled by [3H]-LTD4; (b) as in all the G-protein coupled receptors, iralukast and CGP 57698 did not discriminate between the high and the low affinity states of the CysLT receptor labelled by LTD4 (Ki1=Ki2= 16.6 nM+/-36% CV and Ki1= Ki2 = 5.7 nM+/-19% CV, respectively); (c) iralukast, but not CGP 57698, displayed a slow binding kinetic, because preincubation (15 min) increased its antagonist potency. 4. In functional studies: (a) iralukast and CGP 57698 antagonized LTD4-induced contraction of human bronchi, with pA2 values of 7.77+/-4.3% CV and 8.51+/-1.6% CV, respectively, and slopes not significantly different from unity; (b) the maximal LTD4 response in the presence of CGP 57698 was actually increased, thus clearly deviating from apparent simple competition. 5. Both antagonists significantly inhibited antigen-induced contraction of human isolated bronchial strips in a concentration-dependent manner, lowering the upper plateau of the anti-IgE curves. 6. In conclusion, the results of the present in vitro investigation indicate that iralukast and CGP 57698 are potent antagonists of LTD4 in human airways, with affinities in the nanomolar range, similar to those obtained for ICI 204,219 and ONO 1078, two of the most clinically advanced CysLT receptor antagonists

  17. Analysis of the interplay between neurochemical control of respiration and upper airway mechanics producing upper airway obstruction during sleep in humans.

    PubMed

    Longobardo, G S; Evangelisti, C J; Cherniack, N S

    2008-02-01

    Increased loop gain (a function of both controller gain and plant gain), which results in instability in feedback control, is of major importance in producing recurrent central apnoeas during sleep but its role in causing obstructive apnoeas is not clear. The purpose of this study was to investigate the role of loop gain in producing obstructive sleep apnoeas. Owing to the complexity of factors that may operate to produce obstruction during sleep, we used a mathematical model to sort them out. The model used was based on our previous model of neurochemical control of breathing, which included the effects of chemical stimuli and changes in alertness on respiratory pattern generator activity. To this we added a model of the upper airways that contained a narrowed section which behaved as a compressible elastic tube and was tethered during inspiration by the contraction of the upper airway dilator muscles. These muscles in the model, as in life, responded to changes in hypoxia, hypercapnia and alertness in a manner similar to the action of the chest wall muscles, opposing the compressive action caused by the negative intraluminal pressure generated during inspiration which was magnified by the Bernoulli Effect. As the velocity of inspiratory airflow increased, with sufficiently large increase in airflow velocity, obstruction occurred. Changes in breathing after sleep onset were simulated. The simulations showed that increases in controller gain caused the more rapid onset of obstructive apnoeas. Apnoea episodes were terminated by arousal. With a constant controller gain, as stiffness decreased, obstructed breaths appeared and periods of obstruction recurred longer after sleep onset before disappearing. Decreased controller gain produced, for example, by breathing oxygen eliminated the obstructive apnoeas resulting from moderate reductions in constricted segment stiffness. This became less effective as stiffness was reduced more. Contraction of the upper airway muscles

  18. Replication of an Autonomous Human Parvovirus in Non-dividing Human Airway Epithelium Is Facilitated through the DNA Damage and Repair Pathways

    PubMed Central

    Deng, Xuefeng; Yan, Ziying; Cheng, Fang; Engelhardt, John F.; Qiu, Jianming

    2016-01-01

    Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae family, and is an emerging human pathogenic respiratory virus. In vitro, HBoV1 infects well-differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). Although it is well known that autonomous parvovirus replication depends on the S phase of the host cells, we demonstrate here that the HBoV1 genome amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Analysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its ssDNA genome following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably, HBoV1 infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three phosphatidylinositol 3-kinase–related kinases (PI3KKs). We found that the activation of the three PI3KKs is required for HBoV1 genome amplification; and, more importantly, we identified that two Y-family DNA polymerases, Pol η and Pol κ, are involved in HBoV1 genome amplification. Overall, we have provided an example of de novo DNA synthesis (genome amplification) of an autonomous parvovirus in non-dividing cells, which is dependent on the cellular DNA damage and repair pathways. PMID:26765330

  19. Association of Lung Inflammatory Cells with Small Airways Function and Exhaled Breath Markers in Smokers – Is There a Specific Role for Mast Cells?

    PubMed Central

    Nussbaumer-Ochsner, Yvonne; Stolk, Jan; Ferraz da Silva, Luiz F.; van Schadewijk, Annemarie; de Jeu, Ronald C.; Prins, Frans A.; Mauad, Thais; Rabe, Klaus F.; Hiemstra, Pieter S.

    2015-01-01

    Background Smoking is associated with a mixed inflammatory infiltrate in the airways. We evaluated whether airway inflammation in smokers is related to lung function parameters and inflammatory markers in exhaled breath. Methods Thirty-seven smokers undergoing lung resection for primary lung cancer were assessed pre-operatively by lung function testing including single-breath-nitrogen washout test (sb-N2-test), measurement of fractional exhaled nitric oxide (FeNO) and pH/8-isoprostane in exhaled breath condensate (EBC). Lung tissue sections containing cancer-free large (LA) and small airways (SA) were stained for inflammatory cells. Mucosal (MCT) respectively connective tissue mast cells (MCTC) and interleukin-17A (IL-17A) expression by mast cells was analysed using a double-staining protocol. Results The median number of neutrophils, macrophages and mast cells infiltrating the lamina propria and adventitia of SA was higher than in LA. Both MCTC and MCT were higher in the lamina propria of SA compared to LA (MCTC: 49 vs. 27.4 cells/mm2; MCT: 162.5 vs. 35.4 cells/mm2; P<0.005 for both instances). IL-17A expression was predominantly detected in MCTC of LA. Significant correlations were found for the slope of phase III % pred. of the sb-N2-test (rs= -0.39), for the FEV1% pred. (rs= 0.37) and for FEV1/FVC ratio (rs=0.38) with MCT in SA (P<0.05 for all instances). 8-isoprostane concentration correlated with the mast cells in the SA (rs=0.44), there was no correlation for pH or FeNO with cellular distribution in SA. Conclusions Neutrophils, macrophages and mast cells are more prominent in the SA indicating that these cells are involved in the development of small airway dysfunction in smokers. Among these cell types, the best correlation was found for mast cells with lung function parameters and inflammatory markers in exhaled breath. Furthermore, the observed predominant expression of IL-17A in mast cells warrants further investigation to elucidate their role in smoking

  20. EFFECTS OF COREXIT DISPERSANTS ON CYTOTOXICITY PARAMETERS IN A CULTURED HUMAN BRONCHIAL AIRWAY CELLS, BEAS-2B

    PubMed Central

    Shi, Yongli; Roy-Engel, Astrid M.; Wang, He

    2013-01-01

    The objective of this study was to assess the cytotoxicity of COREXIT dispersants EC9500A, EC9527A, and EC9580A on human airway BEAS-2B epithelial cells. Cells were exposed to dispersants for 2 or 24 h at concentrations ranging from 0 to 300 ppm. COREXIT EC9527 at 100 ppm produced 50% viability loss as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) at 24 h. COREXIT 9527 at 200 ppm produced 50% cell death at 2 h and 100% at 24 h. At 300 ppm COREXIT 9527 induced 100% cell death at 2 or 24 h. In the case of COREXIT 9500A 50% cell viability was noted with 200 ppm at 2 or 24 h, with a significant decrease in cell survival to 2% at 300 ppm. In contrast, no marked change in cell viability was observed in cells treated at any COREXIT 9580A concentration examined. Western blot analysis showed an increase in expression of LC3B, a marker of autophagy, in cells treated for 2 h with 300 ppm COREXIT EC9527A as well as 100 or 300 ppm Corexit EC9500A. No marked effect on LC3B expression was observed for any COREXIT 9580A concentration. Apoptosis markers as measured by cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) were detectable only in cells incubated with 300 ppm COREXIT EC9527A. Although all three dispersants induced enhanced generation of reactive oxygen species (ROS) after 2-h treatment at 300 ppm, Western blot analysis revealed that 2-h incubation was not sufficient to induce a significant change in the protein expression of superoxide dismutases SOD1, SOD2, and SOD3. Data thus indicate exposure to certain dispersants may be harmful to human airway epithelial cells in a concentration-dependent manner. PMID:24028667

  1. Effects of COREXIT dispersants on cytotoxicity parameters in a cultured human bronchial airway cells, BEAS-2B.

    PubMed

    Shi, Yongli; Roy-Engel, Astrid M; Wang, He

    2013-01-01

    The objective of this study was to assess the cytotoxicity of COREXIT dispersants EC9500A, EC9527A, and EC9580A on human airway BEAS-2B epithelial cells. Cells were exposed to dispersants for 2 or 24 h at concentrations ranging from 0 to 300 ppm. COREXIT EC9527 at 100 ppm produced 50% viability loss as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) at 24 h. COREXIT 9527 at 200 ppm produced 50% cell death at 2 h and 100% at 24 h. At 300 ppm COREXIT 9527 induced 100% cell death at 2 or 24 h. In the case of COREXIT 9500A 50% cell viability was noted with 200 ppm at 2 or 24 h, with a significant decrease in cell survival to 2% at 300 ppm. In contrast, no marked change in cell viability was observed in cells treated at any COREXIT 9580A concentration examined. Western blot analysis showed an increase in expression of LC3B, a marker of autophagy, in cells treated for 2 h with 300 ppm COREXIT EC9527A as well as 100 or 300 ppm Corexit EC9500A. No marked effect on LC3B expression was observed for any COREXIT 9580A concentration. Apoptosis markers as measured by cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) were detectable only in cells incubated with 300 ppm COREXIT EC9527A. Although all three dispersants induced enhanced generation of reactive oxygen species (ROS) after 2-h treatment at 300 ppm, Western blot analysis revealed that 2-h incubation was not sufficient to induce a significant change in the protein expression of superoxide dismutases SOD1, SOD2, and SOD3. Data thus indicate exposure to certain dispersants may be harmful to human airway epithelial cells in a concentration-dependent manner. PMID:24028667

  2. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway connector. 868.5810 Section 868.5810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5810 Airway connector. (a) Identification. An airway connector is a device intended to...

  3. Macrolides Inhibit Fusobacterium nucleatum-Induced MUC5AC Production in Human Airway Epithelial Cells

    PubMed Central

    Nagaoka, Kentaro; Harada, Yosuke; Yamada, Koichi; Migiyama, Yohei; Morinaga, Yoshitomo; Hasegawa, Hiroo; Izumikawa, Koichi; Kakeya, Hiroshi; Nishimura, Masaharu; Kohno, Shigeru

    2013-01-01

    Fusobacterium nucleatum is one of the most common anaerobic bacteria in periodontitis and is responsible for several extraoral infections, including respiratory tract diseases. In this study, we examined whether F. nucleatum induces mucin secretion in airway epithelial cells. We also examined the effects of macrolides on F. nucleatum-induced mucus production compared with the effects of other antibiotics that exert anti-anaerobic activities. The production of MUC5AC, the major core protein of mucin secreted from the airway surface epithelium, in bronchial epithelial cells after stimulation with culture supernatants (Sup) of F. nucleatum was analyzed by performing enzyme-linked immunosorbent assay and quantitative RT-PCR. The cell-signaling pathway of F. nucleatum Sup stimulation was also analyzed by Western blotting. For inhibition studies, cells were treated with azithromycin, clarithromycin, clindamycin (CLDM), and metronidazole (MTZ). The F. nucleatum Sup induced NCI-H292 cells to express MUC5AC at both the protein level and the mRNA level in both a time- and dose-dependent manner. Macrolides inhibited F. nucleatum Sup-induced MUC5AC production, while CLDM and MTZ were less effective. F. nucleatum Sup induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and this induction was suppressed by macrolides. F. nucleatum Sup-induced MUC5AC production was blocked by the ERK pathway inhibitor U0126. F. nucleatum is likely to contribute to excessive mucin production, which suggests that periodontitis may correlate with the pathogenesis of chronic respiratory tract infection. Macrolides seem to reduce this mucin production and might represent an additional means of therapeutic intervention for F. nucleatum respiratory tract infections other than CLDM and MTZ. PMID:23380724

  4. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  5. Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3

    PubMed Central

    Cowley, Elizabeth A; Linsdell, Paul

    2002-01-01

    Transepithelial anion secretion in many tissues depends upon the activity of basolateral channels. Using monolayers of the Calu-3 cell line, a human submucosal serous cell model mounted in an Ussing chamber apparatus, we investigated the nature of the K+ channels involved in basal, cAMP- and Ca2+-stimulated anion secretion, as reflected by the transepithelial short circuit current (Isc). The non-specific K+ channel inhibitor Ba2+ inhibited the basal Isc by either 77 or 16 % when applied directly to the basolateral or apical membranes, respectively, indicating that a basolateral K+ conductance is required for maintenance of basal anion secretion. Using the K+ channel blockers clofilium and clotrimazole, we found basal Isc to be sensitive to clofilium, with a small clotrimazole-sensitive component. By stimulating the cAMP and Ca2+ pathways, we determined that cAMP-stimulated anion secretion was almost entirely abolished by clofilium, but insensitive to clotrimazole. In contrast, the Ca2+-stimulated response was sensitive to both clofilium and clotrimazole. Thus, pharmacologically distinct basolateral K+ channels are differentially involved in the control of anion secretion under different conditions. Isolation of the basolateral K+ conductance in permeabilized monolayers revealed a small basal and forskolin-stimulated Isc. Finally, using the reverse transcriptase-polymerase chain reaction, we found that Calu-3 cells express the K+ channel genes KCNN4 and KCNQ1 and the subunits KCNE2 and KCNE3. We conclude that while KCNN4 contributes to Ca2+-activated anion secretion by Calu-3 cells, basal and cAMP-activated secretion are more critically dependent on other K+ channel types, possibly involving one or more class of KCNQ1-containing channel complexes. PMID:11826162

  6. Bronchodilator and anti-inflammatory activities of glaucine: In vitro studies in human airway smooth muscle and polymorphonuclear leukocytes.

    PubMed

    Cortijo, J; Villagrasa, V; Pons, R; Berto, L; Martí-Cabrera, M; Martinez-Losa, M; Domenech, T; Beleta, J; Morcillo, E J

    1999-08-01

    1. Selective phosphodiesterase 4 (PDE4) inhibitors are of potential interest in the treatment of asthma. We examined the effects of the alkaloid S-(+)-glaucine, a PDE4 inhibitor, on human isolated bronchus and granulocyte function. 2. Glaucine selectively inhibited PDE4 from human bronchus and polymorphonuclear leukocytes (PMN) in a non-competitive manner (Ki=3.4 microM). Glaucine displaced [3H]-rolipram from its high-affinity binding sites in rat brain cortex membranes (IC50 approximately 100 microM). 3. Glaucine inhibited the spontaneous and histamine-induced tone in human isolated bronchus (pD2 approximately 4.5). Glaucine (10 microM) did not potentiate the isoprenaline-induced relaxation but augmented cyclic AMP accumulation by isoprenaline. The glaucine-induced relaxation was resistant to H-89, a protein kinase A inhibitor. Glaucine depressed the contractile responses to Ca2+ (pD'2 approximately 3.62) and reduced the sustained rise of [Ca2+]i produced by histamine in cultured human airway smooth muscle cells (-log IC50 approximately 4.3). 4. Glaucine augmented cyclic AMP levels in human polymorphonuclear leukocytes challenged with N-formyl-Met-Leu-Phe (FMLP) or isoprenaline, and inhibited FMLP-induced superoxide generation, elastase release, leukotriene B4 production, [Ca2+]i signal and platelet aggregation as well as opsonized zymosan-, phorbol myristate acetate-, and A23187-induced superoxide release. The inhibitory effect of glaucine on superoxide generation by FMLP was reduced by H-89. 5. In conclusion, Ca2+ channel antagonism by glaucine appears mainly responsible for the relaxant effect of glaucine in human isolated bronchus while PDE4 inhibition contributes to the inhibitory effects of glaucine in human granulocytes. The very low PDE4/binding site ratio found for glaucine makes this compound attractive for further structure-activity studies. PMID:10455321

  7. Bronchodilator and anti-inflammatory activities of glaucine: In vitro studies in human airway smooth muscle and polymorphonuclear leukocytes

    PubMed Central

    Cortijo, J; Villagrasa, V; Pons, R; Berto, L; Martí-Cabrera, M; Martinez-Losa, M; Domenech, T; Beleta, J; Morcillo, E J

    1999-01-01

    Selective phosphodiesterase 4 (PDE4) inhibitors are of potential interest in the treatment of asthma. We examined the effects of the alkaloid S-(+)-glaucine, a PDE4 inhibitor, on human isolated bronchus and granulocyte function.Glaucine selectively inhibited PDE4 from human bronchus and polymorphonuclear leukocytes (PMN) in a non-competitive manner (Ki=3.4 μM). Glaucine displaced [3H]-rolipram from its high-affinity binding sites in rat brain cortex membranes (IC50∼100 μM).Glaucine inhibited the spontaneous and histamine-induced tone in human isolated bronchus (pD2∼4.5). Glaucine (10 μM) did not potentiate the isoprenaline-induced relaxation but augmented cyclic AMP accumulation by isoprenaline. The glaucine-induced relaxation was resistant to H-89, a protein kinase A inhibitor. Glaucine depressed the contractile responses to Ca2+ (pD'2∼3.62) and reduced the sustained rise of [Ca2+]i produced by histamine in cultured human airway smooth muscle cells (−log IC50∼4.3).Glaucine augmented cyclic AMP levels in human polymorphonuclear leukocytes challenged with N-formyl-Met-Leu-Phe (FMLP) or isoprenaline, and inhibited FMLP-induced superoxide generation, elastase release, leukotriene B4 production, [Ca2+]i signal and platelet aggregation as well as opsonized zymosan-, phorbol myristate acetate-, and A23187-induced superoxide release. The inhibitory effect of glaucine on superoxide generation by FMLP was reduced by H-89.In conclusion, Ca2+ channel antagonism by glaucine appears mainly responsible for the relaxant effect of glaucine in human isolated bronchus while PDE4 inhibition contributes to the inhibitory effects of glaucine in human granulocytes. The very low PDE4/binding site ratio found for glaucine makes this compound attractive for further structure-activity studies. PMID:10455321

  8. Human middle-ear model with compound eardrum and airway branching in mastoid air cells

    PubMed Central

    Keefe, Douglas H.

    2015-01-01

    An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25–13 kHz), equivalent input impedance at the eardrum (0.25–11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1–11 kHz), and reverse middle-ear impedance (0.25–8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold. PMID:25994701

  9. Extracellular nucleotides regulate CCL20 release from human primary airway epithelial cells, monocytes and monocyte-derived dendritic cells.

    PubMed

    Marcet, Brice; Horckmans, Michael; Libert, Frédérick; Hassid, Sergio; Boeynaems, Jean-Marie; Communi, Didier

    2007-06-01

    Extracellular nucleotides regulate ion transport and mucociliary clearance in human airway epithelial cells (HAECs) via the activation of P2 receptors, especially P2Y(2). Therefore, P2Y(2) receptor agonists represent potential pharmacotherapeutic agents to treat cystic fibrosis (CF). Nucleotides also modulate inflammatory properties of immune cells like dendritic cells (DCs), which play an important role in mucosal immunity. Using DNA-microarray experiments, quantitative RT-PCR and cytokine measurements, we show here that UTP up-regulated approximately 2- to 3-fold the antimicrobial chemokine CCL20 expression and release in primary HAECs cultured on permeable supports at an air-liquid interface (ALI). Both P2Y(2) (ATPgammaS, UTP, INS365) and P2Y(6) (UDP, INS48823) agonists increased CCL20 release. UTP-induced CCL20 release was insensitive to NF-kappaB pathway inhibitors but sensitive to inhibitors of ERK1/2 and p38/MAPK pathways. Furthermore, UTP had no effect on interleukin-(IL)-8 release and reduced the release of both CCL20 and IL-8 induced by TNF-alpha and LPS. Accordingly, UTP reduced the capacity of basolateral supernatants of HAECs treated with TNF-alpha or LPS to induce the chemoattraction of both CD4(+) T lymphocytes and neutrophils. In addition, we show that, in monocyte-derived DCs, ATPgammaS, and UDP but not UTP/INS365-stimulated CCL20 release. Likewise, UDP but not ATPgammaS was also able to increase CCL20 release from monocytes. Pharmacological experiments suggested an involvement of P2Y(11) or P2Y(6) receptors through NF-kappaB, ERK1/2, and p38/MAPK pathways. Altogether, our data demonstrate that nucleotides may modulate chemokine release and leukocyte recruitment in inflamed airways by acting on both epithelial and immune cells. Our results could be relevant for further clinical investigations in CF. PMID:17295217

  10. Numerical study of high frequency oscillatory air flow and convective mixing in a CT-based human airway model

    PubMed Central

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    High frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this work, the high frequency oscillatory flow is studied using a computational fluid dynamics (CFD) analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed-tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re case, and the HFOV case. The counter-flow structure is more evident in the high-frequency-normal-Re case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  11. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model.

    PubMed

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-12-01

    High-frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this study, the high-frequency oscillatory flow is studied using a computational fluid dynamics analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds (Re) numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re (HFNR) case, and the HFOV case. The counter-flow structure is more evident in the HFNR case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  12. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells

    PubMed Central

    Schwarzer, Christian; Fischer, Horst; Machen, Terry E.

    2016-01-01

    Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11) with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses) in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI) were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells). PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins) and massively (10–80 fold increase, termed “swarming”), but transiently (random swimming after 15 mins), to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW) and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC) and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i) PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii) PA use pili to bind to epithelial cells near wounds. PMID:27031335

  13. Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys

    PubMed Central

    Schaap-Nutt, Anne; Scull, Margaret A.; Schmidt, Alexander C.; Murphy, Brian R.; Pickles, Raymond J.

    2010-01-01

    Human parainfluenza viruses (HPIVs) are common causes of severe pediatric respiratory viral disease. We characterized wild-type HPIV2 infection in an in vitro model of human airway epithelium (HAE) and found that the virus replicates to high titer, sheds apically, targets ciliated cells, and induces minimal cytopathology. Replication of an experimental, live attenuated HPIV2 vaccine strain, containing both temperature sensitive (ts) and non-ts attenuating mutations, was restricted >30-fold compared to rHPIV2-WT in HAE at 32°C and exhibited little productive replication at 37°C. This restriction paralleled attenuation in the upper and lower respiratory tract of African green monkeys, supporting the HAE model as an appropriate and convenient system for characterizing HPIV2 vaccine candidates. PMID:20139039

  14. Computer simulations of pressure and velocity fields in a human upper airway during sneezing.

    PubMed

    Rahiminejad, Mohammad; Haghighi, Abdalrahman; Dastan, Alireza; Abouali, Omid; Farid, Mehrdad; Ahmadi, Goodarz

    2016-04-01

    In this paper, the airflow field including the velocity, pressure and turbulence intensity distributions during sneezing of a female subject was simulated using a computational fluid dynamics model of realistic upper airways including both oral and nasal cavities. The effects of variation of reaction of the subject during sneezing were also investigated. That is, the impacts of holding the nose or closing the mouth during sneezing on the pressure and velocity distributions were studied. Few works have studied the sneeze and therefore different aspects of this phenomenon have remained unknown. To cover more possibilities about the inlet condition of trachea in different sneeze scenarios, it was assumed that the suppressed sneeze happens with either the same inlet pressure or the same flow rate as the normal sneeze. The simulation results showed that during a normal sneeze, the pressure in the trachea reaches about 7000Pa, which is much higher than the pressure level of about 200Pa during the high activity exhalation. In addition, the results showed that, suppressing the sneeze by holding the nose or mouth leads to a noticeable increase in pressure difference in the tract. This increase was about 5 to 24 times of that during a normal sneeze. This significant rise in the pressure can justify some reported damage due to suppressing a sneeze. PMID:26914240

  15. Ozone-induced inflammation in the lower airways of human subjects

    SciTech Connect

    Koren, H.S.; Devlin, R.B.; Graham, D.E.; Mann, R.; McGee, M.P.; Horstman, D.H.; Kozumbo, W.J.; Becker, S.; House, D.E.; McDonnell, W.F.

    1989-02-01

    Although ozone (O3) has been shown to induce inflammation in the lungs of animals, very little is known about its inflammatory effects on humans. In this study, 11 healthy nonsmoking men, 18 to 35 yr of age (mean, 25.4 +/- 3.5), were exposed once to 0.4 ppm O3 and once to filtered air for 2 h with intermittent exercise. Eighteen hours later, bronchoalveolar lavage (BAL) was performed and the cells and fluid were analyzed for various indicators of inflammation. There was an 8.2-fold increase in the percentage of polymorphonuclear leukocytes (PMN) in the total cell population, and a small but significant decrease in the percentage of macrophages after exposure to O3. Immunoreactive neutrophil elastase often associated with inflammation and lung damage increased by 3.8-fold in the fluid while its activity increased 20.6-fold in the lavaged cells. A 2-fold increase in the levels of protein, albumin, and IgG suggested increased vascular permeability of the lung. Several biochemical markers that could act as chemotactic or regulatory factors in an inflammatory response were examined in the BAL fluid (BALF). The level of complement fragment C3 alpha was increased by 1.7-fold. The chemotactic leukotriene B4 was unchanged while prostaglandin E2 increased 2-fold. In contrast, three enzyme systems of phagocytes with potentially damaging effects on tissues and microbes, namely, NADPH-oxidase and the lysosomal enzymes acid phosphatase and beta-glucuronidase, were increased neither in the lavaged fluid nor cells. In addition, the amounts of fibrogenic-related molecules were assessed in BALF.

  16. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells

    PubMed Central

    Chirkova, Tatiana; Lin, Songbai; Oomens, Antonius G. P.; Gaston, Kelsey A.; Boyoglu-Barnum, Seyhan; Meng, Jia; Stobart, Christopher C.; Cotton, Calvin U.; Hartert, Tina V.; Moore, Martin L.; Ziady, Assem G.

    2015-01-01

    Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains. The G protein also has a CX3C chemokine motif which binds to the fractalkine receptor CX3CR1. G protein binding to CX3CR1 is not important for infection of immortalized cell lines, but reportedly is so for primary human airway epithelial cells (HAECs), the primary site for human infection. We studied the role of CX3CR1 in RSV infection with CX3CR1-transfected cell lines and HAECs with variable percentages of CX3CR1-expressing cells, and the effect of anti-CX3CR1 antibodies or a mutation in the RSV CX3C motif. Immortalized cells lacking HSPGs had low RSV binding and infection, which was increased markedly by CX3CR1 transfection. CX3CR1 was expressed primarily on ciliated cells, and ∼50 % of RSV-infected cells in HAECs were CX3CR1+. HAECs with more CX3CR1-expressing cells had a proportional increase in RSV infection. Blocking G binding to CX3CR1 with anti-CX3CR1 antibody or a mutation in the CX3C motif significantly decreased RSV infection in HAECs. The kinetics of cytokine production suggested that the RSV/CX3CR1 interaction induced RANTES (regulated on activation normal T-cell expressed and secreted protein), IL-8 and fractalkine production, whilst it downregulated IL-15, IL1-RA and monocyte chemotactic protein-1. Thus, the RSV G protein/CX3CR1 interaction is likely important in infection and infection-induced responses of the airway epithelium, the primary site of human infection. PMID:26297201

  17. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed. PMID:22082167

  18. In vivo antioxidant gene expression in human airway epithelium of normal individuals exposed to 100% O2.

    PubMed

    Erzurum, S C; Danel, C; Gillissen, A; Chu, C S; Trapnell, B C; Crystal, R G

    1993-09-01

    Human bronchial epithelium is exquisitely sensitive to high O2 levels, with tracheobronchitis usually developing after 12 h of exposure to 100% O2. To evaluate whether this vulnerability results from inability of the bronchial epithelium to provide adequate antioxidant protection, we quantified antioxidant gene expression in bronchial epithelium of normal volunteers at baseline and after exposure to 100% O2 in vivo. After 14.8 +/- 0.2 h of 100% O2, 24 of 33 individuals had evidence of tracheobronchitis. Baseline gene expression of CuZn superoxide dismutase (SOD), MnSOD, and catalase in bronchial epithelium was very low (CuZnSOD 4.1 +/- 0.8 transcripts/cell, MnSOD 5.1 +/- 0.9, catalase 1.3 +/- 0.2), with control gamma-actin expression relatively abundant (50 +/- 6 transcripts/cell). Importantly, despite 100% O2 exposure sufficient to cause tracheobronchitis in most individuals, antioxidant mRNA transcripts/cell in bronchial epithelium did not increase (P > 0.5). Catalase activity in bronchial epithelium did not change after exposure to hyperoxia (P > 0.05). Total SOD activity increased mildly (P < 0.01) but not sufficiently to protect the epithelium. Together, the very low levels of expression of intracellular antioxidant enzymes and the inability to upregulate expression at the mRNA level with oxidant stress likely have a role in human airway epithelium susceptibility to hyperoxia. PMID:8226538

  19. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection

    PubMed Central

    Jozwik, Agnieszka; Habibi, Maximillian S.; Paras, Allan; Zhu, Jie; Guvenel, Aleks; Dhariwal, Jaideep; Almond, Mark; Wong, Ernie H. C.; Sykes, Annemarie; Maybeno, Matthew; Del Rosario, Jerico; Trujillo-Torralbo, Maria-Belen; Mallia, Patrick; Sidney, John; Peters, Bjoern; Kon, Onn Min; Sette, Alessandro; Johnston, Sebastian L.; Openshaw, Peter J.; Chiu, Christopher

    2015-01-01

    In animal models, resident memory CD8+ T (Trm) cells assist in respiratory virus elimination but their importance in man has not been determined. Here, using experimental human respiratory syncytial virus (RSV) infection, we investigate systemic and local virus-specific CD8+ T-cell responses in adult volunteers. Having defined the immunodominance hierarchy, we analyse phenotype and function longitudinally in blood and by serial bronchoscopy. Despite rapid clinical recovery, we note surprisingly extensive lower airway inflammation with persistent viral antigen and cellular infiltrates. Pulmonary virus-specific CD8+ T cells display a CD69+CD103+ Trm phenotype and accumulate to strikingly high frequencies into convalescence without continued proliferation. While these have a more highly differentiated phenotype, they express fewer cytotoxicity markers than in blood. Nevertheless, their abundance before infection correlates with reduced symptoms and viral load, implying that CD8+ Trm cells in the human lung can confer protection against severe respiratory viral disease when humoral immunity is overcome. PMID:26687547

  20. One-dimensional modelling of pulse wave propagation in human airway bifurcations in space-time variables.

    PubMed

    Clavica, Francesco; Alastruey, Jordi; Sherwin, Spencer J; Khir, Ashraf W

    2009-01-01

    Airflow in the respiratory system is complicated as it goes through various regions with different geometries and mechanical properties. Three-dimensional (3-D) simulations are typically limited to local areas of the system because of their high computational cost. On the other hand, the one-dimensional (1-D) equations of flow in compliant tubes offer a good compromise between accuracy and computational cost when a global assessment of airflow in the system is required. The aim of the current study is to apply the 1-D formulation in space and time variables to study the propagation of a pulse wave in human airways; first in a simple system composed of just one bifurcation, trachea-main bronchi, according to the symmetrical Weibel model. Then extending the system to include a further generation, the bronchi branches. Pulse waveforms carry information about the functionality and morphology of the respiratory system and the 1-D modelling, in terms of space and time variables, represents an innovative approach for respiratory response interpretation. 1-D modelling in space-time variables has been extensively applied to simulate blood pressure and flow in the cardiovascular system. This work represents the first attempt to apply this formulation to study pulse waveforms in the human bronchial tree. PMID:19965046

  1. Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells

    PubMed Central

    Schulz, Benjamin L.; Power, Peter M.; Swords, W. Edward; Weiser, Jeffery N.; Apicella, Michael A.; Edwards, Jennifer L.; Jennings, Michael P.

    2013-01-01

    Pili of pathogenic Neisseria are major virulence factors associated with adhesion, twitching motility, auto-aggregation, and DNA transformation. Pili of N. meningitidis are subject to several different post-translational modifications. Among these pilin modifications, the presence of phosphorylcholine (ChoP) and a glycan on the pilin protein are phase-variable (subject to high frequency, reversible on/off switching of expression). In this study we report the location of two ChoP modifications on the C-terminus of N. meningitidis pilin. We show that the surface accessibility of ChoP on pili is affected by phase variable changes to the structure of the pilin-linked glycan. We identify for the first time that the platelet activating factor receptor (PAFr) is a key, early event receptor for meningococcal adherence to human bronchial epithelial cells and tissue, and that synergy between the pilin-linked glycan and ChoP post-translational modifications is required for pili to optimally engage PAFr to mediate adherence to human airway cells. PMID:23696740

  2. Rhythmic Pressure Waves Induce Mucin5AC Expression via an EGFR-Mediated Signaling Pathway in Human Airway Epithelial Cells

    PubMed Central

    Liu, Chunyi; Li, Qi; Kolosov, Victor P.; Perelman, Juliy M.

    2013-01-01

    Rhythmic pressure waves (RPW), mimicking the mechanical forces generated during normal breathing, play a key role in airway surface liquid (ASL) homeostasis. As a major component of ASL, we speculated that the mucin5AC (MUC5AC) expression must also be regulated by RPW. However, fewer researches have focused on this question. Therefore, our aim was to test the effect and mechanism of RPW on MUC5AC expression in cultured human bronchial epithelial cells. Compared with the relevant controls, the transcriptional level of MUC5AC and the protein expressions of MUC5AC, the phospho-epidermal growth factor receptor (p-EGFR), phospho-extracellular signal-related kinase (p-ERK), and phospho-Akt (p-Akt) were all significantly increased after mechanical stimulation. However, this effect could be significantly attenuated by transfecting with EGFR-siRNA. Similarly, pretreating with the inhibitor of ERK or phosphatidylinositol 3-kinases (PI3K)/Akt separately or jointly also significantly reduced MUC5AC expression. Collectively, these results indicate that RPW modulate MUC5AC expression via the EGFR-PI3K-Akt/ERK-signaling pathway in human bronchial epithelial cells. PMID:23768102

  3. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.

    PubMed

    Rock, Jason R; Randell, Scott H; Hogan, Brigid L M

    2010-01-01

    The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease. PMID:20699479

  4. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    PubMed Central

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  5. MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF-β1 and IL-13 in human airway fibroblasts.

    PubMed

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B; Wenzel, Sally E

    2012-06-15

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and posttranscriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation, and binding to the CCL11 promoter as compared with IL-13 alone. STAT-6 small interfering RNA significantly knocked down both STAT-6 mRNA expression and phosphorylation and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4Rα complex by TGF-β1 augmented IL-13 signaling by dampening IL-13Rα2 expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK/ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK-dependent conditions. PMID:22573806

  6. Targeted gene delivery to human airway epithelial cells with synthetic vectors incorporating novel targeting peptides selected by phage display.

    PubMed

    Writer, Michele J; Marshall, Barry; Pilkington-Miksa, Michael A; Barker, Susie E; Jacobsen, Marianne; Kritz, Angelika; Bell, Paul C; Lester, Douglas H; Tabor, Alethea B; Hailes, Helen C; Klein, Nigel; Hart, Stephen L

    2004-05-01

    Human airway epithelial cell targeting peptides were identified by biopanning on 1HAEo-cells, a well characterised epithelial cell line. Bound phage were recovered after three rounds of binding, high stringency washing and elution, leading to the production of an enriched phage peptide population. DNA sequencing of 56 clones revealed 14 unique sequences. Subsequent binding analysis revealed that 13 of these peptides bound 1HAEo-cells with high affinity. Three peptides, SERSMNF, YGLPHKF and PSGAARA were represented at high frequency. Three clearly defined families of peptide were identified on the basis of sequence motifs including (R/K)SM, L(P/Q)HK and PSG(A/T)ARA. Two peptides, LPHKSMP and LQHKSMP contained two motifs. Further detailed sequence analysis by comparison of peptide sequences with the SWISSPROT protein database revealed that some of the peptides closely resembled the cell binding proteins of viral and bacterial pathogens including Herpes Simplex Virus, rotavirus, Mycoplasma pneumoniae and rhinovirus, the latter two being respiratory pathogens, as well as peptide YGLPHKF having similarity to a protein of unknown function from the respiratory pathogen Legionella pneumophila. Peptides were incorporated into gene delivery formulations with the cationic lipid Lipofectin and plasmid DNA and shown to confer a high degree of transfection efficiency and specificity in 1HAEo-cells. Improved transfection efficiency and specificity was also observed in human endothelial cells, fibroblasts and keratinocytes. Therefore, on the basis of clone frequency after biopanning, cell binding affinity, peptide sequence conservation and pathogenic similarity, we have identified 3 novel peptide families and 5 specific peptides that have the potential for gene transfer to respiratory epithelium in vivo as well as providing useful in vitro transfection reagents for primary human cell types of scientific and commercial interest. PMID:15506167

  7. Cold-inducible RNA binding protein regulates mucin expression induced by cold temperatures in human airway epithelial cells.

    PubMed

    Ran, DanHua; Chen, LingXiu; Xie, WenYue; Xu, Qing; Han, Zhong; Huang, HuaPing; Zhou, XiangDong

    2016-08-01

    Mucus overproduction is an important manifestation of chronic airway inflammatory diseases, however, the mechanisms underlying the association between cold air and mucus overproduction remain unknown. We found that the expression of the cold-inducible RNA binding protein (CIRP) was increased in patients with chronic obstructive pulmonary disease (COPD). In the present study, we tested whether CIRP was involved in inflammatory factors and mucin5AC (MUC5AC) expression after cold stimulation and investigated the potential signaling pathways involved in this process. We found that CIRP was highly expressed in the bronchi of COPD patients. The expression of CIRP, interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were increased, and the CIRP was localized in cytoplasm after cold stimulation. MUC5AC mRNA and protein expression levels were elevated in a temperature- and time-dependent manner after cold stimulation and were associated with the phosphorylation of ERK and NF-κB, which reflected their activation. These responses were suppressed by knockdown of CIRP with a specific siRNA or the ERK and NF-κB inhibitors. These results demonstrated that CIRP was expressed in the bronchi of human COPD patients and was involved in inflammatory factors and MUC5AC expression after cold stimulation through the ERK and NF-κB pathways. PMID:27184164

  8. Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type

    PubMed Central

    Belvisi, Maria G; Saunders, Michael A; Haddad, El-Bdaoui; Hirst, Stuart J; Yacoub, Magdi H; Barnes, Peter J; Mitchell, Jane A

    1997-01-01

    Cyclo-oxygenase (COX) is the enzyme that converts arachidonic acid to prostaglandin H2 (PGH2) which can then be further metabolized to prostanoids which modulate various airway functions. COX exists in at least two isoforms. COX-1 is expressed constitutively, whereas COX-2 is expressed in response to pro-inflammatory stimuli. Prostanoids are produced under physiological and pathophysiological conditions by many cell types in the lung. However, the regulation of the different COX isoforms in human airway smooth muscle (HASM) cells has not yet been determined.COX-1 and COX-2 protein were measured by Western blot analysis with specific antibodies for COX-1 and COX-2. COX-2 mRNA levels were assessed by Northern blot analysis by use of a COX-2 cDNA probe. COX activity was determined by measuring conversion of either endogenous or exogenous arachidonic acid to three metabolites, PGE2, thromboxane B2 or 6-ketoPGF1α by radioimmunoassay.Under control culture conditions HASM cells expressed COX-1, but not COX-2, protein. However, a mixture of cytokines (interleukin-1β (IL-1β), tumour necrosis factor α (TNFα) and interferon γ (IFNγ) each at 10 ng ml−1) induced COX-2 mRNA expression, which was maximal at 12 h and inhibited by dexamethasone (1 μM; added 30 min before the cytokines). Furthermore, COX-2 protein was detected 24 h after the cytokine treatment and the expression of this protein was also inhibited by dexamethasone (1 μM) and cyclohexamide (10 μg ml−1; added 30 min before the cytokines).Untreated HASM cells released low or undetectable amounts of all COX metabolites measured over a 24 h period. Incubation of the cells with the cytokine mixture (IL-1β, TNFα, IFNγ each at 10 ng ml−1 for 24 h) caused the accumulation of PGE2 and 6-keto-PGF1α.In experiments where COX-2 metabolized endogenous stores of arachidonic acid, treatment of HASM cells with IL-1β in combination with TNFα caused a similar release of PGE2 to that when

  9. Acute and chronic responses of the upper airway to inspiratory loading in healthy awake humans: an MRI study.

    PubMed

    How, Stephen C; McConnell, Alison K; Taylor, Bryan J; Romer, Lee M

    2007-08-01

    We assessed upper airway responses to acute and chronic inspiratory loading. In Experiment I, 11 healthy subjects underwent T(2)-weighted magnetic resonance imaging (MRI) of upper airway dilator muscles (genioglossus and geniohyoid) before and up to 10 min after a single bout of pressure threshold inspiratory muscle training (IMT) at 60% maximal inspiratory mouth pressure (MIP). T(2) values for genioglossus and geniohyoid were increased versus control (p<0.001), suggesting that these airway dilator muscles are activated in response to acute IMT. In Experiment II, nine subjects underwent 2D-Flash sequence MRI of the upper airway during quiet breathing and while performing single inspirations against resistive loads (10%, 30% and 50% MIP); this procedure was repeated after 6 weeks of IMT. Lateral narrowing of the upper airway occurred at all loads, whilst anteroposterior narrowing occurred at the level of the laryngopharynx at loads > or =30% MIP. Changes in upper airway morphology and narrowing after IMT were undetectable using MRI. PMID:17341450

  10. Exposure to sodium butyrate leads to functional downregulation of calcium-activated potassium channels in human airway epithelial cells.

    PubMed

    Roy, Jeremy; Denovan-Wright, Eileen M; Linsdell, Paul; Cowley, Elizabeth A

    2006-11-01

    Cystic fibrosis (CF) is caused by genetic mutations that lead to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. The most common mutation, DeltaF508, causes inefficient trafficking of mutant CFTR protein from the endoplasmic reticulum to the cell membrane. Therapeutic efforts have been aimed at increasing the level of DeltaF508-CFTR protein in the membrane using agents such as sodium butyrate. In this study, we investigated the effects of culturing a human airway epithelial cell line, Calu-3, in the presence of 5 mM sodium butyrate. Within 24 h, butyrate exposure caused a significant decrease in the basal, as well as Ca(2+)-activated, anion secretion by Calu-3 cell monolayers, determined by the change in transepithelial short-circuit current in response to the Ca(2+)-elevating agent thapsigargin. The secretory response to 1-ethyl-2-benzimidazolinone, an activator of the basolateral Ca(2+)-activated K(+) channel KCNN4, was similarly reduced by butyrate treatment. Quantitative PCR revealed that these functional effects were associated with dramatic decreases in mRNA for both KCNN4 and CFTR. Furthermore, the KCNQ1 K(+) channel was upregulated after butyrate treatment. We suggest that prolonged exposure to sodium butyrate downregulates the expression of both KCNN4 and CFTR, leading to a functional loss of Ca(2+)-activated anion secretion. Thus, butyrate may inhibit, rather than stimulate, the anion secretory capacity of human epithelial cells that express wild-type CFTR, particularly in tissues that normally exhibit robust Ca(2+)-activated secretion. PMID:17047984

  11. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells☆

    PubMed Central

    Wages, Phillip A.; Silbajoris, Robert; Speen, Adam; Brighton, Luisa; Henriquez, Andres; Tong, Haiyan; Bromberg, Philip A.; Simmons, Steven O.; Samet, James M.

    2014-01-01

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn2+) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn2+ toxicity is not fully understood. H2O2 and Zn2+ have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn2+ to cause cellular H2O2 production. To determine the role of Zn2+-induced H2O2 production in the human airway epithelial cell response to Zn2+ exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50 µM Zn2+ for 5 min in the presence of 1 µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn2+ exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn2+-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn2+-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn2+ leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms. PMID:25462065

  12. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells.

    PubMed

    Wages, Phillip A; Silbajoris, Robert; Speen, Adam; Brighton, Luisa; Henriquez, Andres; Tong, Haiyan; Bromberg, Philip A; Simmons, Steven O; Samet, James M

    2014-01-01

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H2O2 and Zn(2+) have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn(2+) to cause cellular H2O2 production. To determine the role of Zn(2+)-induced H2O2 production in the human airway epithelial cell response to Zn(2+) exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50µM Zn(2+) for 5min in the presence of 1µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn(2+) exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn(2+)-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn(2+)-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn(2+) leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms. PMID:25462065

  13. MORPHOMETRIC COMPARISON OF NASOPHARYNGEAL AIRWAY OF LABORATORY ANIMALS AND THE HUMAN

    EPA Science Inventory

    Solid silicone rubber casts of the nasopharyngeal and laryngeal regions of a human cadaver (child, three years old) and a laboratory primate (baboon, 10 years old) were made and cross-sectional areas were measured in detail. ross-sectional areas of other species reported in the p...

  14. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection

    EPA Science Inventory

    Exposure to oxidant air pollution is associated with Increased respiratory morbiditses and susceptibility to Infections Ozone is a commonly encountered oxidant air pollutant, yet Its effects on influenza infections in humans are not known ‘the greater Mexico City area was the pri...

  15. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  16. Catheter-Based Sensing In The Airways

    NASA Astrophysics Data System (ADS)

    Fouke, J. M.; Saunders, K. G.

    1988-04-01

    Studies attempting to define the role of the respiratory tract in heating and humidifying inspired air point to the need for sensing many variables including airway wall and airstream temperatures, humidity, and surface fluid pH and osmolarity. In order to make such measurements in vivo in human volunteers, catheter based technologies must be exploited both to assure subject safety and subject comfort. Miniturization of the electrodes or sensors becomes a top priority. This paper describes the use of thin-film microelectronic technology to fabricate a miniature, flexible sensor which can be placed directly onto the surface of the airway to measure the electrical conductance of the fluids present. From this information the osmolarity of the surface fluid was calculated. Physiologic evaluation of the device and corroboration of the calculations was performed in mongrel dogs. We also describe the successful application of current thermistor technology for the thermal mapping of the airways in humans in order to characterize the dynamic intrathoracic events that occur during breathing. The thermal probe consisted of a flexible polyvinyl tube that contained fourteen small thermistors fixed into the catheter. Data have been obtained in dozens of people, both normal subjects and asthmatic patients, under a variety of interventions. These data have substantively advanced the study of asthma, a particularly troublesome chronic obstructive pulmonary disorder.

  17. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia.

    PubMed

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-04-15

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na(+)-channel-mediated Na(+) absorption and stimulation of Cl(-) secretion through CFTR and the Ca(2+)-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  18. Investigation of the Airflow inside Realistic and Semi-Realistic Replicas of Human Airways

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Belka, Miloslav; Zaremba, Matous; Maly, Milan; Jicha, Miroslav

    2015-05-01

    Measurement of velocity in human lungs during breathing cycle is a challenging task for researchers, since the measuring location is accessible only with significant difficulties. A special measuring rig consisting of optically transparent replica of human lungs, breathing simulator, particle generator and Laser-Doppler anemometer was developed and used for investigation of the velocity in specific locations of lungs during simulated breathing cycle. Experiments were performed on two different replicas of human lungs in corresponding measuring points to facilitate the analysis of the influence of the geometry and its simplification on the flow. The analysis of velocity course and turbulence intensity revealed that special attention should be devoted to the modelling of vocal cords position during breathing, as the position of laryngeal jet created by vocal cords significantly influences velocity profiles in trachea. The shapes of velocity courses during expiration proved to be consistent for both replicas; however magnitudes of peak expiratory velocity differ between the corresponding measuring points in both the replicas.

  19. Features of Circulating Parainfluenza Virus Required for Growth in Human Airway

    PubMed Central

    Palermo, Laura M.; Uppal, Manik; Skrabanek, Lucy; Zumbo, Paul; Germer, Soren; Toussaint, Nora C.; Rima, Bert K.; Huey, Devra; Niewiesk, Stefan; Porotto, Matteo

    2016-01-01

    ABSTRACT Respiratory paramyxoviruses, including the highly prevalent human parainfluenza viruses, cause the majority of childhood croup, bronchiolitis, and pneumonia, yet there are currently no vaccines or effective treatments. Paramyxovirus research has relied on the study of laboratory-adapted strains of virus in immortalized cultured cell lines. We show that findings made in such systems about the receptor interaction and viral fusion requirements for entry and fitness—mediated by the receptor binding protein and the fusion protein—can be drastically different from the requirements for infection in vivo. Here we carried out whole-genome sequencing and genomic analysis of circulating human parainfluenza virus field strains to define functional and structural properties of proteins of circulating strains and to identify the genetic basis for properties that confer fitness in the field. The analysis of clinical strains suggests that the receptor binding-fusion molecule pairs of circulating viruses maintain a balance of properties that result in an inverse correlation between fusion in cultured cells and growth in vivo. Future analysis of entry mechanisms and inhibitory strategies for paramyxoviruses will benefit from considering the properties of viruses that are fit to infect humans, since a focus on viruses that have adapted to laboratory work provides a distinctly different picture of the requirements for the entry step of infection. PMID:26980833

  20. The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia

    PubMed Central

    Singh, Brajesh K.; Hornick, Andrew L.; Krishnamurthy, Sateesh; Locke, Anna C.; Mendoza, Crystal A.; Mateo, Mathieu; Miller-Hunt, Catherine L.; Cattaneo, Roberto

    2015-01-01

    ABSTRACT The discovery that measles virus (MV) uses the adherens junction protein nectin-4 as its epithelial receptor provides a new vantage point from which to characterize its rapid spread in the airway epithelium. We show here that in well-differentiated primary cultures of airway epithelial cells from human donors (HAE), MV infectious centers form rapidly and become larger than those of other respiratory pathogens: human respiratory syncytial virus, parainfluenza virus 5, and Sendai virus. While visible syncytia do not form after MV infection of HAE, the cytoplasm of an infected cell suddenly flows into an adjacent cell, as visualized through wild-type MV-expressed cytoplasmic green fluorescent protein (GFP). High-resolution video microscopy documents that GFP flows through openings that form on the lateral surfaces between columnar epithelial cells. To assess the relevance of the protein afadin, which connects nectin-4 to the actin cytoskeleton, we knocked down its mRNA. This resulted in more-limited infectious-center formation. We also generated a nectin-4 mutant without the afadin-binding site in its cytoplasmic tail. This mutant was less effective than wild-type human nectin-4 at promoting MV infection in primary cultures of porcine airway epithelia. Thus, in airway epithelial cells, MV spread requires the nectin-4/afadin complex and is based on cytoplasm transfer between columnar cells. Since the viral membrane fusion apparatus may open the passages that allow cytoplasm transfer, we refer to them as intercellular membrane pores. Virus-induced intercellular pores may contribute to extremely efficient measles contagion by promoting the rapid spread of the virus through the upper respiratory epithelium. IMPORTANCE Measles virus (MV), while targeted for eradication, still causes about 120,000 deaths per year worldwide. The recent reemergence of measles in insufficiently vaccinated populations in Europe and North America reminds us that measles is extremely

  1. Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors

    PubMed Central

    Grassin-Delyle, S; Naline, E; Buenestado, A; Faisy, C; Alvarez, J-C; Salvator, H; Abrial, C; Advenier, C; Zemoura, L; Devillier, P

    2014-01-01

    Background and Purpose Marijuana smoking is widespread in many countries, and the use of smoked synthetic cannabinoids is increasing. Smoking a marijuana joint leads to bronchodilation in both healthy subjects and asthmatics. The effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids on human bronchus reactivity have not previously been investigated. Here, we sought to assess the effects of natural and synthetic cannabinoids on cholinergic bronchial contraction. Experimental Approach Human bronchi isolated from 88 patients were suspended in an organ bath and contracted by electrical field stimulation (EFS) in the presence of the phytocannabinoid Δ9-tetrahydrocannabinol, the endogenous 2-arachidonoylglycerol, the synthetic dual CB1 and CB2 receptor agonists WIN55,212-2 and CP55,940, the synthetic, CB2-receptor-selective agonist JWH-133 or the selective GPR55 agonist O-1602. The receptors involved in the response were characterized by using selective CB1 and CB2 receptor antagonists (SR141716 and SR144528 respectively). Key Results Δ9-tetrahydrocannabinol, WIN55,212-2 and CP55,940 induced concentration-dependent inhibition of cholinergic contractions, with maximum inhibitions of 39, 76 and 77% respectively. JWH-133 only had an effect at high concentrations. 2-Arachidonoylglycerol and O-1602 were devoid of any effect. Only CB1 receptors were involved in the response because the effects of cannabinoids were antagonized by SR141716, but not by SR144528. The cannabinoids did not alter basal tone or contractions induced by exogenous Ach. Conclusions and Implications Activation of prejunctional CB1 receptors mediates the inhibition of EFS-evoked cholinergic contraction in human bronchus. This mechanism may explain the acute bronchodilation produced by marijuana smoking. PMID:24467410

  2. Identification of Meningococcal Genes Necessary for Colonization of Human Upper Airway Tissue ▿

    PubMed Central

    Exley, Rachel M.; Sim, Richard; Goodwin, Linda; Winterbotham, Megan; Schneider, Muriel C.; Read, Robert C.; Tang, Christoph M.

    2009-01-01

    Neisseria meningitidis is an exclusively human pathogen that has evolved primarily to colonize the nasopharynx rather than to cause systemic disease. Colonization is the most frequent outcome following meningococcal infection and a prerequisite for invasive disease. The mechanism of colonization involves attachment of the organism to epithelial cells via bacterial type IV pili (Tfp), but subsequent events during colonization remain largely unknown. We analyzed 576 N. meningitidis mutants for their capacity to colonize human nasopharyngeal tissue in an organ culture model to identify bacterial genes required for colonization. Eight colonization-defective mutants were isolated. Two mutants were unable to express Tfp and were defective for adhesion to epithelial cells, which is likely to be the basis of their attenuation in nasopharyngeal tissue. Three other mutants are predicted to have lost previously uncharacterized surface molecules, while the remaining mutants have transposon insertions in genes of unknown function. We have identified novel meningococcal colonization factors, and this should provide insights into the survival of this important pathogen in its natural habitat. PMID:18936183

  3. Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures

    PubMed Central

    Johnson, Sara M.; McNally, Beth A.; Ioannidis, Ioannis; Flano, Emilio; Teng, Michael N.; Oomens, Antonius G.; Walsh, Edward E.; Peeples, Mark E.

    2015-01-01

    Respiratory syncytial virus (RSV) is the most frequent cause of lower respiratory disease in infants, but no vaccine or effective therapy is available. The initiation of RSV infection of immortalized cells is largely dependent on cell surface heparan sulfate (HS), a receptor for the RSV attachment (G) glycoprotein in immortalized cells. However, RSV infects the ciliated cells in primary well differentiated human airway epithelial (HAE) cultures via the apical surface, but HS is not detectable on this surface. Here we show that soluble HS inhibits infection of immortalized cells, but not HAE cultures, confirming that HS is not the receptor on HAE cultures. Conversely, a “non-neutralizing” monoclonal antibody against the G protein that does not block RSV infection of immortalized cells, does inhibit infection of HAE cultures. This antibody was previously shown to block the interaction between the G protein and the chemokine receptor CX3CR1 and we have mapped the binding site for this antibody to the CX3C motif and its surrounding region in the G protein. We show that CX3CR1 is present on the apical surface of ciliated cells in HAE cultures and especially on the cilia. RSV infection of HAE cultures is reduced by an antibody against CX3CR1 and by mutations in the G protein CX3C motif. Additionally, mice lacking CX3CR1 are less susceptible to RSV infection. These findings demonstrate that RSV uses CX3CR1 as a cellular receptor on HAE cultures and highlight the importance of using a physiologically relevant model to study virus entry and antibody neutralization. PMID:26658574

  4. Oxidant stress stimulates anion secretion from the human airway epithelial cell line calu-3: implications for cystic fibrosis lung disease

    PubMed Central

    Cowley, Elizabeth A; Linsdell, Paul

    2002-01-01

    Exposure to reactive oxygen species (ROS) is associated with tissue damage in the lung and may be a common element in the pathogenesis of all inflammatory lung diseases. Exposure to the ROS hydrogen peroxide (H2O2) evoked a rapid increase in transepithelial anion secretion across monolayers of the human submucosal gland serous cell line Calu-3. This increase was almost entirely abolished by the addition of diphenylamine-2-carboxylate (DPC), implicating the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel in the response. The response was also reduced by inhibitors of basolateral K+ channels. Studies of electrically isolated apical and basolateral membranes revealed that H2O2 stimulated both apical Cl− and basolateral K+ conductances (GCl and GK). Apical GCl was sensitive to DPC, but unaffected by 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), suggesting that CFTR is the major anion conduction pathway mediating the response to H2O2. Additionally, H2O2 had no effect on GCl in the presence of the adenylate cyclase inhibitor SQ22536 or following maximal stimulation of GCl with forskolin, implicating the cAMP-dependent protein kinase pathway in the apical response to H2O2. Basolateral GK was reduced by the K+ channel inhibitors clotrimazole and clofilium, indicating roles for KCNN4 and KCNQ1 in the H2O2-stimulated response. We propose that ROS-stimulated anion secretion from serous cells plays an important role in keeping the airways clear from damaging radicals that could potentially initiate tissue destruction. Our finding that this response is CFTR dependent suggests that an important host defence mechanism would be dysfunctional in the cystic fibrosis (CF) lung. Loss of this compensatory protective mechanism could expose the CF lung to ROS for extended periods, which could be important in the pathogenesis of CF lung disease. PMID:12181292

  5. Oxidant stress stimulates anion secretion from the human airway epithelial cell line Calu-3: implications for cystic fibrosis lung disease.

    PubMed

    Cowley, Elizabeth A; Linsdell, Paul

    2002-08-15

    Exposure to reactive oxygen species (ROS) is associated with tissue damage in the lung and may be a common element in the pathogenesis of all inflammatory lung diseases. Exposure to the ROS hydrogen peroxide (H2O2) evoked a rapid increase in transepithelial anion secretion across monolayers of the human submucosal gland serous cell line Calu-3. This increase was almost entirely abolished by the addition of diphenylamine-2-carboxylate (DPC), implicating the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel in the response. The response was also reduced by inhibitors of basolateral K+ channels. Studies of electrically isolated apical and basolateral membranes revealed that H2O2 stimulated both apical Cl- and basolateral K+ conductances (G(Cl) and G(K)). Apical G(Cl) was sensitive to DPC, but unaffected by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), suggesting that CFTR is the major anion conduction pathway mediating the response to H2O2. Additionally, H2O2 had no effect on G(Cl) in the presence of the adenylate cyclase inhibitor SQ22536 or following maximal stimulation of G(Cl) with forskolin, implicating the cAMP-dependent protein kinase pathway in the apical response to H2O2. Basolateral G(K) was reduced by the K+ channel inhibitors clotrimazole and clofilium, indicating roles for KCNN4 and KCNQ1 in the H2O2-stimulated response. We propose that ROS-stimulated anion secretion from serous cells plays an important role in keeping the airways clear from damaging radicals that could potentially initiate tissue destruction. Our finding that this response is CFTR dependent suggests that an important host defence mechanism would be dysfunctional in the cystic fibrosis (CF) lung. Loss of this compensatory protective mechanism could expose the CF lung to ROS for extended periods, which could be important in the pathogenesis of CF lung disease. PMID:12181292

  6. Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures.

    PubMed

    Johnson, Sara M; McNally, Beth A; Ioannidis, Ioannis; Flano, Emilio; Teng, Michael N; Oomens, Antonius G; Walsh, Edward E; Peeples, Mark E

    2015-12-01

    Respiratory syncytial virus (RSV) is the most frequent cause of lower respiratory disease in infants, but no vaccine or effective therapy is available. The initiation of RSV infection of immortalized cells is largely dependent on cell surface heparan sulfate (HS), a receptor for the RSV attachment (G) glycoprotein in immortalized cells. However, RSV infects the ciliated cells in primary well differentiated human airway epithelial (HAE) cultures via the apical surface, but HS is not detectable on this surface. Here we show that soluble HS inhibits infection of immortalized cells, but not HAE cultures, confirming that HS is not the receptor on HAE cultures. Conversely, a "non-neutralizing" monoclonal antibody against the G protein that does not block RSV infection of immortalized cells, does inhibit infection of HAE cultures. This antibody was previously shown to block the interaction between the G protein and the chemokine receptor CX3CR1 and we have mapped the binding site for this antibody to the CX3C motif and its surrounding region in the G protein. We show that CX3CR1 is present on the apical surface of ciliated cells in HAE cultures and especially on the cilia. RSV infection of HAE cultures is reduced by an antibody against CX3CR1 and by mutations in the G protein CX3C motif. Additionally, mice lacking CX3CR1 are less susceptible to RSV infection. These findings demonstrate that RSV uses CX3CR1 as a cellular receptor on HAE cultures and highlight the importance of using a physiologically relevant model to study virus entry and antibody neutralization. PMID:26658574

  7. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  8. 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells

    PubMed Central

    Zhao, Jinming; O'Donnell, Valerie B.; Balzar, Silvana; St. Croix, Claudette M.; Trudeau, John B.; Wenzel, Sally E.

    2011-01-01

    Epithelial 15-lipoxygenase 1 (15LO1) and activated ERK are increased in asthma despite modest elevations in IL-13. MAPK kinase (MEK)/ERK activation is regulated by interactions of Raf-1 with phosphatidylethanolamine-binding protein 1 (PEBP1). Epithelial 15LO1 generates intracellular 15-hydroxyeicosatetraenoic acid (15HETE) conjugated to phosphatidylethanolamine (PE) (15HETE–PE). We hypothesized that (i) 15LO1 and its product 15HETE–PE serve as signaling molecules interacting with PEBP1 to activate Raf-1/MEK/ERK and that (ii) this 15LO1–15HETE–PE-regulated ERK activation amplifies IL-4Rα downstream pathways. Our results demonstrate that high epithelial 15LO1 levels correlate with ERK phosphorylation ex vivo. In vitro, IL-13 induces 15LO1, which preferentially binds to PEBP1, causing PEBP1 to dissociate from Raf-1 and activate ERK. Exogenous 15HETE–PE similarly induces dissociation of PEBP1 from Raf-1 independently of IL-13/15LO1. siRNA knockdown of 15LO1 decreases the dissociation of Raf-1 from PEBP1, and the resulting lower ERK activation leads to lower downstream IL-4Rα–related gene expression. Identical protein–protein interactions are observed in endobronchial biopsies and fresh epithelial cells from asthmatics ex vivo. Colocalization of Raf-1 to PEBP1 is low in asthmatic tissue and cells compared with normals, whereas there is striking colocalization of 15LO1 with PEBP1 in asthma. Low 15LO1 levels in normals limit its colocalization with PEBP1. The results confirm a previously unknown signaling role for 15LO1 and its PE-conjugated eicosanoid product in human airway epithelial cells. This pathway enhances critical inflammatory pathways integral to asthma pathogenesis. PMID:21831839

  9. 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells.

    PubMed

    Zhao, Jinming; O'Donnell, Valerie B; Balzar, Silvana; St Croix, Claudette M; Trudeau, John B; Wenzel, Sally E

    2011-08-23

    Epithelial 15-lipoxygenase 1 (15LO1) and activated ERK are increased in asthma despite modest elevations in IL-13. MAPK kinase (MEK)/ERK activation is regulated by interactions of Raf-1 with phosphatidylethanolamine-binding protein 1 (PEBP1). Epithelial 15LO1 generates intracellular 15-hydroxyeicosatetraenoic acid (15HETE) conjugated to phosphatidylethanolamine (PE) (15HETE-PE). We hypothesized that (i) 15LO1 and its product 15HETE-PE serve as signaling molecules interacting with PEBP1 to activate Raf-1/MEK/ERK and that (ii) this 15LO1-15HETE-PE-regulated ERK activation amplifies IL-4Rα downstream pathways. Our results demonstrate that high epithelial 15LO1 levels correlate with ERK phosphorylation ex vivo. In vitro, IL-13 induces 15LO1, which preferentially binds to PEBP1, causing PEBP1 to dissociate from Raf-1 and activate ERK. Exogenous 15HETE-PE similarly induces dissociation of PEBP1 from Raf-1 independently of IL-13/15LO1. siRNA knockdown of 15LO1 decreases the dissociation of Raf-1 from PEBP1, and the resulting lower ERK activation leads to lower downstream IL-4Rα-related gene expression. Identical protein-protein interactions are observed in endobronchial biopsies and fresh epithelial cells from asthmatics ex vivo. Colocalization of Raf-1 to PEBP1 is low in asthmatic tissue and cells compared with normals, whereas there is striking colocalization of 15LO1 with PEBP1 in asthma. Low 15LO1 levels in normals limit its colocalization with PEBP1. The results confirm a previously unknown signaling role for 15LO1 and its PE-conjugated eicosanoid product in human airway epithelial cells. This pathway enhances critical inflammatory pathways integral to asthma pathogenesis. PMID:21831839

  10. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  11. Volatile Emanations From In Vitro Airway Cells Infected With Human Rhinovirus

    PubMed Central

    Schivo, Michael; Aksenov, Alexander A.; Linderholm, Angela L.; McCartney, Mitchell M.; Simmons, Jason; Harper, Richart W.; Davis, Cristina E.

    2014-01-01

    Respiratory viral infections such as human rhinovirus (HRV) can lead to substantial morbidity and mortality, especially in people with underlying lung diseases such as asthma and COPD. One proposed strategy to detect viral infections non-invasively is by volatile organic compound (VOC) assessment via analysis of exhaled breath. The epithelial cells are one of the most important cell lines affected during respiratory infections as they are the first line of pathogen defense. Efforts to discover infection-specific biomarkers can be significantly aided by understanding the VOC emanations of respiratory epithelial cells. Here we test the hypothesis that VOCs obtained from the headspace of respiratory cell culture will differentiate healthy cells from those infected with HRV. Primary human tracheobronchial cells were cultured and placed in a system designed to trap headspace VOCs. HRV-infected cells were compared to uninfected control cells. In addition, cells treated with heat-killed HRV and poly(I:C), a TLR3 agonist, were compared to controls. The headspace was sampled with solid-phase microextraction fibers and VOCs were analyzed by gas chromatography/mass spectrometry. We determined differential expression of compounds such as aliphatic alcohols, branched hydrocarbons, and dimethyl sulfide by the infected cells, VOCs previously associated with oxidative stress and bacterial infection. We saw no major differences between the killed-HRV, poly(I:C), and control cell VOCs. We postulate that these compounds may serve as biomarkers of HRV infection, and that the production of VOCs is not due to TLR3 stimulation but does require active viral replication. Our novel approach may be used for the in vitro study of other important respiratory viruses, and ultimately it may aid in identifying VOC biomarkers of viral infection for point-of-care diagnostics. PMID:25189196

  12. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    PubMed

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2016-01-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. PMID:25045158

  13. Analysis of basic flow regimes in a human airway model by stereo-scanning PIV

    NASA Astrophysics Data System (ADS)

    Soodt, Thomas; Pott, Desirée; Klaas, Michael; Schröder, Wolfgang

    2013-06-01

    The detailed understanding of the human lung flow is of high relevance for the optimization of mechanical ventilation. Therefore, the spatial and temporal development of the flow field in a realistic human lung model is investigated for several oscillatory flow regimes using stereo-scanning particle-image velocimetry (PIV). The flow in the right primary bronchus is always measured for a complete sinusoidal ventilation cycle. Three Reynolds and Womersley number sets describing viscous ( Re = 10; α = 1.5), unsteady ( Re = 40; α = 5), and convective ( Re = 150; α = 1.5) regimes are defined to cover various dominating fluid mechanical effects. In addition, multi-plane PIV measurements are performed to analyze steady laminar ( Re = 150) and turbulent ( Re = 2,650) flow at inspiration and expiration. The steady results show that the maximum velocity is shifted to the outer wall at inspiration and toward the inner wall of the bronchial bend at expiration. At inhalation, a U-shaped high-speed velocity profile develops only inside the left primary bronchus, whereas both primary bronchi contain one vortex pair. During expiration, the vortex pairs from each main bronchus merge into a two-vortex-pair system inside the trachea. From the oscillatory findings, it is evident that an undersupply for the right upper lobe is noticed at low ventilatory frequencies, whereas high-frequency flow leads to a more homogeneous ventilation. The analysis of the temporal development of the absolute velocity in the center plane shows a variable phase lag. Unlike the flow in the unsteady regime, the flow of the viscous flow domain ( α = 1.5) is in phase with the applied pressure gradient. Additionally, a premature outflow of the upper right lung lobe can be observed in the unsteady flow regime.

  14. Simulation of the Velocity and Temperature Distribution of Inhalation Thermal Injury in a Human Upper Airway Model by Application of Computational Fluid Dynamics.

    PubMed

    Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an

    2015-01-01

    Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air. PMID:25412055

  15. Effects of Staphylococcus aureus-hemolysin A on calcium signalling in immortalized human airway epithelial cells.

    PubMed

    Eichstaedt, Stefanie; Gäbler, Karoline; Below, Sabine; Müller, Christian; Kohler, Christian; Engelmann, Susanne; Hildebrandt, Petra; Völker, Uwe; Hecker, Michael; Hildebrandt, Jan-Peter

    2009-02-01

    Part of the innate defence of bronchial epithelia against bacterial colonization is secretion of salt and water which generally depends on coordinated actions of receptor-mediated cAMP- and calcium signalling. The hypothesis that Staphylococcus aureus-virulence factors interfere with endogenous signals in host cells was tested by measuring agonist-mediated changes in [Ca(2+)](i) in S9 cells upon pre-incubation with bacterial secretory products. S9 cells responded to mAChR-activation with calcium release from intracellular stores and capacitative calcium influx. Treatment of cells with culture supernatants of S. aureus (COL) or with recombinant alpha-hemolysin (Hla) resulted in time- and concentration-dependent changes in [Ca(2+)](i). High concentrations of Hla (2000 ng/ml) resulted in elevations in [Ca(2+)](i) elicited by accelerated calcium influx. A general Hla-mediated permeabilization of S9 cell membranes to small molecules, however, did not occur. Lower concentrations of Hla (200 ng/ml) induced a reduction in [Ca(2+)](i)-levels during the sustained plateau phase of receptor-mediated calcium signalling which was abolished by pre-incubation of cells with carboxyeosin, an inhibitor of the plasma membrane calcium-ATPase. This indicates that low concentrations of Hla change calcium signalling by accelerating pump-driven extrusion of Ca(2+) ions. In vivo, such a mechanism may result in attenuation of calcium-mediated cellular defence functions and facilitation of bacterial adherence to the bronchial epithelium. PMID:18922576

  16. Emergency airway puncture

    MedlinePlus

    Emergency airway puncture is the placement of a hollow needle through the throat into the airway. It ... Emergency airway puncture is done in an emergency situation, when someone is choking and all other efforts ...

  17. Brd4 Is Essential for IL-1β-Induced Inflammation in Human Airway Epithelial Cells

    PubMed Central

    Khan, Younis M.; Kirkham, Paul; Barnes, Peter J.; Adcock, Ian M.

    2014-01-01

    Background Chronic inflammation and oxidative stress are key features of chronic obstructive pulmonary disease (COPD). Oxidative stress enhances COPD inflammation under the control of the pro-inflammatory redox-sensitive transcription factor nuclear factor-kappaB (NF-κB). Histone acetylation plays a critical role in chronic inflammation and bromodomain and extra terminal (BET) proteins act as “readers” of acetylated histones. Therefore, we examined the role of BET proteins in particular Brd2 and Brd4 and their inhibitors (JQ1 and PFI-1) in oxidative stress- enhanced inflammation in human bronchial epithelial cells. Methods Human primary epithelial (NHBE) cells and BEAS-2B cell lines were stimulated with IL-1β (inflammatory stimulus) in the presence or absence of H2O2 (oxidative stress) and the effect of pre-treatment with bromodomain inhibitors (JQ1 and PFI-1) was investigated. Pro-inflammatory mediators (CXCL8 and IL-6) were measured by ELISA and transcripts by RT-PCR. H3 and H4 acetylation and recruitment of p65 and Brd4 to the native IL-8 and IL-6 promoters was investigated using chromatin immunoprecipitation (ChIP). The impact of Brd2 and Brd4 siRNA knockdown on inflammatory mediators was also investigated. Result H2O2 enhanced IL1β-induced IL-6 and CXCL8 expression in NHBE and BEAS-2B cells whereas H2O2 alone did not have any affect. H3 acetylation at the IL-6 and IL-8 promoters was associated with recruitment of p65 and Brd4 proteins. Although p65 acetylation was increased this was not directly targeted by Brd4. The BET inhibitors JQ1 and PFI-1 significantly reduced IL-6 and CXCL8 expression whereas no effect was seen with the inactive enantiomer JQ1(-). Brd4, but not Brd2, knockdown markedly reduced IL-6 and CXCL8 release. JQ1 also inhibited p65 and Brd4 recruitment to the IL-6 and IL-8 promoters. Conclusion Oxidative stress enhanced IL1β-induced IL-6 and CXCL8 expression was significantly reduced by Brd4 inhibition. Brd4 plays an important role in

  18. Tachykinin receptors and airway pathophysiology.

    PubMed

    Maggi, C A

    1993-05-01

    The mammalian tachykinins (TKs), substance P and neurokinin A, are present in sensory nerve fibres in the upper and lower airways of various mammalian species, including humans. TKs are released from these afferent nerves in an "efferent" mode at peripheral level, especially in response to irritant stimuli. TKs exert a variety of biological effects (bronchoconstriction, plasma protein extravasation, stimulation of mucus secretion), collectively known as "neurogenic inflammation", and this process is thought to be of potential pathogenic relevance for various airway diseases. The recent development of potent and selective TK receptor antagonists on the one hand provides important new tools for the understanding of basic airway physiology and pathophysiology and, on the other, opens new possibilities for therapy of airway diseases. PMID:8390944

  19. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair

    PubMed Central

    Itokazu, Yutaka; Pagano, Richard E.; Schroeder, Andreas S.; O'Grady, Scott M.; Limper, Andrew H.

    2014-01-01

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ∼60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (∼40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury. PMID:24500283

  20. Tachykinin antagonists and the airways.

    PubMed

    Joos, G F; Kips, J C; Peleman, R A; Pauwels, R A

    1995-01-01

    There is now convincing evidence for the presence of substance P (SP) and neurokinin A (NKA) in human airway nerves. Studies on autopsy tissue, on bronchoalveolar lavage fluid and on sputum suggest that SP may be present in increased amounts in the asthmatic airway. Substance P and NKA are potent bronchoconstrictors of human airways, asthmatics being more sensitive than normal persons. The major enzyme responsible for the degradation of the tachykinins, the neutral endopeptidase, is present in the airways and is involved in the breakdown of exogenously administered SP and NKA, both in normal and asthmatic persons. Other, less well documented airway effects of SP and NKA include mucus secretion, vasodilation and plasma extravasation, as well as the chemoattraction and stimulation of various cells presumed to be involved in asthmatic airway inflammation. NK2 receptors and, to a lesser extent, NK1 receptors have been shown to be involved in bronchoconstriction, whereas NK1 receptors were found to be involved in mucus secretion, microvascular leakage and vasodilatation, and in most of the effects on inflammatory cells. The first clinical trial with FK224, a peptide NK1 and NK2 receptor antagonist, and CP99994, a nonpeptide NK1 receptor antagonist, are negative. However, FK224 failed to block the bronchoconstrictor effect of NKA in asthmatics and the dose of CP99994, needed to antagonize tachykinin effects in man, remains to be determined. PMID:7543746

  1. Simulation of the flow field and particle deposition in a realistic geometry of the human airways

    NASA Astrophysics Data System (ADS)

    Bernate, Jorge A.; Lin, Eleanor; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2013-11-01

    Using the dynamic Smagorinsky sub-grid scale model, we carry out Large Eddie Simulations (LES) of the flow field in a realistic geometry reconstructed from a CT scan of an adult male human subject (Zhang et al. J AEROSOL SCI 46, 34 (2012)). The geometry comprises the oral cavity, larynx, trachea, and bronchi extending to generations 6 to 9. The computed time-averaged flow field is validated with magnetic resonance velocimetry (MRV) measurements obtained in a 3D printed model of the realistic geometry (Andrew J. Banko, Filippo Coletti, Daniele Schiavazzi, Christopher J. Elkins, John K. Eaton, submitted to this conference). The comparison is done at a constant inspiratory flow rate of 60 L/min, at which turbulence is expected to develop. Probing the mean flow, we compare integral factors quantifying the ventilation, the shape of stream-wise velocity profile, and the strength of secondary flows in different branches. Via simulations, we also characterize the unsteadiness of the flow, focusing on the dynamics of the laryngeal jet and its effect on the structure of the flow field and particle deposition patterns. This work is funded by the Army AHPCRC at Stanford.

  2. Modeling and measurements of dispersion in a multi-generational model of the human airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank

    2005-11-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment, and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features both theoretical and experimental efforts aimed at elucidating the fluid mechanics of the lung. Steady streaming due to dissimilar velocity profiles between inspiration and expiration is addressed theoretically. This model employs a parameterized velocity profile to determine the effect on mass transport in the limit of no mixing and full mixing in the cross-section. Particle image velocimetry and laser induced fluorescence measurements of oscillatory flows in anatomically accurate models (single and multi-generational) of the conductive region of the lung illustrate pertinent flow features. Results are interpreted in the light of physiological applications.

  3. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.

    PubMed

    Huh, Dongeun; Fujioka, Hideki; Tung, Yi-Chung; Futai, Nobuyuki; Paine, Robert; Grotberg, James B; Takayama, Shuichi

    2007-11-27

    We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds. PMID:18006663

  4. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy E.; Coffey, Amy; Antunes, Mariana; Robinson, Kristen L.; Mitsialis, S. Alex; Kourembanas, Stella; Thane, Kristen; Hoffman, Andrew M.; McKenna, David H.; Rocco, Patricia R.M.

    2015-01-01

    An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. Significance There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the

  5. Laser microspectrofluorometry for measuring dynamic changes of intracellular free Ca2+ in human airway gland cells

    NASA Astrophysics Data System (ADS)

    Millot, Jean-Marc; Merten, M.; Sharonov, S.; Figarella, C.; Jacquot, J.; Manfait, Michel

    1996-01-01

    Intracellular Ca2+ is a ubiquitous second messenger that regulates a wide variety of cellular functions including secretion, transepithelial solute and fluid transport. Laser confocal microspectrofluorometry (DILOR, Lille, France) was applied to visualize fluorescence emission spectra of the Indo-1 for measuring the intracellular free Ca2+ levels ([Ca2+]i) in a human tracheal gland immortalized cell line (MM39 cell line). Under a 351 nm laser excitation (0.5 (mu) W), the intracellular spectrum was analyzed as a ratio of the emission intensities at 420 and 500 nm. Previously, the intracellular Ca2+ calibration has been performed to define the relation between the intensity ratio and [Ca2+]i. Dynamic changes of single-cell [Ca2+]i were measured either from one substrate-attached cell or from different adjacent cells in monolayer culture. Measurements of [Ca2+]i are taken successively in different subcellular locations (up to 10 measurement points). Each measurement cycle was repeated 60 times. To do so, an (X,Y) motorized stage coupled with a computer allowed us to store the (X,Y) positions of several chosen points for the laser radiation. Cells were monitored for about 10 min. After agonist stimulation. Upon stimulating with calcium ionophore, 4BrA23187 (1 (mu) M), [Ca2+]i increased immediately up to 10 fold from a resting value of 31 plus or minus 6 nM (n equals 36). Histamine (1 to 100 (mu) M) increased [Ca2+]i in a concentration dependent manner with levels of up to 88 nM and 140 nM for 1 (mu) M and 100 (mu) M concentration, respectively, followed by a smooth decay back to baseline. Removal of extracellular Ca2+ did not abolish the histamine-stimulation [Ca2+]i rise, suggesting that a part of Ca2+ mobilization comes from intracellular Ca2+ stores. These results show that the combined use of the UV microspectrofluorometry and Indo-1 is well adapted and straight forward for the measurement of rapid responses of substrate-attached cells during experiments of long

  6. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  7. Distinct microRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-associated Gene

    EPA Science Inventory

    Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...

  8. Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2.

    PubMed

    Ryan, Dorothy M; Vincent, Thomas L; Salit, Jacqueline; Walters, Matthew S; Agosto-Perez, Francisco; Shaykhiev, Renat; Strulovici-Barel, Yael; Downey, Robert J; Buro-Auriemma, Lauren J; Staudt, Michelle R; Hackett, Neil R; Mezey, Jason G; Crystal, Ronald G

    2014-01-01

    Genome-wide association studies (GWAS) and candidate gene studies have identified a number of risk loci associated with the smoking-related disease COPD, a disorder that originates in the airway epithelium. Since airway basal cell (BC) stem/progenitor cells exhibit the earliest abnormalities associated with smoking (hyperplasia, squamous metaplasia), we hypothesized that smoker BC have a dysregulated transcriptome, enriched, in part, at known GWAS/candidate gene loci. Massive parallel RNA sequencing was used to compare the transcriptome of BC purified from the airway epithelium of healthy nonsmokers (n = 10) and healthy smokers (n = 7). The chromosomal location of the differentially expressed genes was compared to loci identified by GWAS to confer risk for COPD. Smoker BC have 676 genes differentially expressed compared to nonsmoker BC, dominated by smoking up-regulation. Strikingly, 166 (25%) of these genes are located on chromosome 19, with 13 localized to 19q13.2 (p<10⁻⁴ compared to chance), including 4 genes (NFKBIB, LTBP4, EGLN2 and TGFB1) associated with risk for COPD. These observations provide the first direct connection between known genetic risks for smoking-related lung disease and airway BC, the population of lung cells that undergo the earliest changes associated with smoking. PMID:24498427

  9. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  10. Airway injury during high-level exercise.

    PubMed

    Kippelen, Pascale; Anderson, Sandra D

    2012-05-01

    Airway epithelial cells act as a physical barrier against environmental toxins and injury, and modulate inflammation and the immune response. As such, maintenance of their integrity is critical. Evidence is accumulating to suggest that exercise can cause injury to the airway epithelium. This seems the case particularly for competitive athletes performing high-level exercise, or when exercise takes place in extreme environmental conditions such as in cold dry air or in polluted air. Dehydration of the small airways and increased forces exerted on to the airway surface during severe hyperpnoea are thought to be key factors in determining the occurrence of injury of the airway epithelium. The injury-repair process of the airway epithelium may contribute to the development of the bronchial hyper-responsiveness that is documented in many elite athletes. PMID:22247295

  11. Interaction between haemopoietic regulation and airway inflammation.

    PubMed

    O'Byrne, P M; Gauvreau, G M; Wood, L J

    1999-06-01

    Asthma is characterized by reversible airway narrowing, by airway hyperresponsiveness, and by airway inflammation. Inhaled allergens are the most important of the stimuli known to cause asthma. Methods for studying inhaled allergen in the laboratory have been well standardized and extensively used for the investigation of the pathophysiology and the pharmacological modulation of allergen-induced airway responses. Allergen inhalation by a sensitized subject results in an early asthmatic response, and, in the majority of subjects, a late asthmatic response and airway hyperresponsiveness. The late response and airway hyperresponsiveness are associated with increases in airway eosinophils and metachromatic cells. Allergen-induced airway inflammation in dogs (predominantly neutrophilic) is associated with increased granulocyte-macrophage progenitors in bone marrow, which is dependent on the effects of a circulating serum factor stimulating the bone marrow. The newly formed cells traffic to the airways. These increases in granulocyte-macrophage progenitors are blocked by inhaled corticosteroids. In human subjects, allergen-induced eosinophilic inflammation is associated with increases in Eo/B progenitors, mediated through up-regulation if the IL-5 receptor on progenitors and increases responsiveness to IL-5. Inhaled corticosteroids also attenuate all allergen-induced physiological responses and airway inflammation, an effect possibly mediated, in part, through inhibition of eosinophil and basophil maturation or release from the bone marrow. PMID:10421819

  12. Understanding Cellular Mechanisms Underlying Airway Epithelial Repair: Selecting the Most Appropriate Animal Models

    PubMed Central

    Yahaya, B.

    2012-01-01

    Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans. PMID:23049478

  13. CRISPR-Cas9 mediated gene knockout in primary human airway epithelial cells reveals a pro-inflammatory role for MUC18

    PubMed Central

    Chu, Hong Wei; Rios, Cydney; Huang, Chunjian; Wesolowska-Andersen, Agata; Burchard, Esteban G.; O'Connor, Brian P.; Fingerlin, Tasha E.; Nichols, David; Reynolds, Susan D.; Seibold, Max A.

    2015-01-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9 mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a pro-inflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9 mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a pro-inflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli. PMID:26043872

  14. Modulation of Human Airway Barrier Functions during Burkholderia thailandensis and Francisella tularensis Infection Running Title: Airway Barrier Functions during Bacterial Infections.

    PubMed

    Blume, Cornelia; David, Jonathan; Bell, Rachel E; Laver, Jay R; Read, Robert C; Clark, Graeme C; Davies, Donna E; Swindle, Emily J

    2016-01-01

    The bronchial epithelium provides protection against pathogens from the inhaled environment through the formation of a highly-regulated barrier. In order to understand the pulmonary diseases melioidosis and tularemia caused by Burkholderia thailandensis and Fransicella tularensis, respectively, the barrier function of the human bronchial epithelium were analysed. Polarised 16HBE14o- or differentiated primary human bronchial epithelial cells (BECs) were exposed to increasing multiplicities of infection (MOI) of B. thailandensis or F. tularensis Live Vaccine Strain and barrier responses monitored over 24-72 h. Challenge of polarized BECs with either bacterial species caused an MOI- and time-dependent increase in ionic permeability, disruption of tight junctions, and bacterial passage from the apical to the basolateral compartment. B. thailandensis was found to be more invasive than F. tularensis. Both bacterial species induced an MOI-dependent increase in TNF-α release. An increase in ionic permeability and TNF-α release was induced by B. thailandensis in differentiated BECs. Pretreatment of polarised BECs with the corticosteroid fluticasone propionate reduced bacterial-dependent increases in ionic permeability, bacterial passage, and TNF-α release. TNF blocking antibody Enbrel(®) reduced bacterial passage only. BEC barrier properties are disrupted during respiratory bacterial infections and targeting with corticosteroids or anti-TNF compounds may represent a therapeutic option. PMID:27527221

  15. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  16. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  17. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  18. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  19. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  20. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  1. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  2. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  3. Factors Influencing Adeno-Associated Virus-Mediated Gene Transfer to Human Cystic Fibrosis Airway Epithelial Cells: Comparison with Adenovirus Vectors

    PubMed Central

    Teramoto, S.; Bartlett, J. S.; McCarty, D.; Xiao, X.; Samulski, R. J.; Boucher, R. C.

    1998-01-01

    Adeno-associated virus (AAV) vectors appear promising for use in gene therapy in cystic fibrosis (CF) patients, yet many features of AAV-mediated gene transfer to airway epithelial cells are not well understood. We compared the transduction efficiencies of AAV vectors and adenovirus (Ad) vectors in immortalized cell lines from CF patients and in nasal epithelial primary cultures from normal humans and CF patients. Similar dose-dependent relationships between the vector multiplicities of infection and the efficiencies of lacZ gene transfer were observed. However, levels of transduction for both Ad and recombinant AAV (rAAV) were significantly lower in the airway epithelial cell than in the control cell lines HeLa and HEK 293. Transduction efficiencies differed among cultured epithelial cell types, with poorly differentiated cells transducing more efficiently than well-differentiated cells. A time-dependent increase in gene expression was observed after infection for both vectors. For Ad, but not for AAV, this increase was dependent on prolonged incubation of cells with the vector. Furthermore, for rAAV (but not for rAd), the delay in maximal transduction could be abrogated by wild-type Ad helper infection. Thus, although helper virus is not required for maximal transduction, it increases the kinetics by which this is achieved. Expression of Ad E4 open reading frame 6 or addition of either hydroxyurea or camptothecin resulted in increased AAV transduction, as previously demonstrated for nonairway cells (albeit to lower final levels), suggesting that second-strand synthesis may not be the sole cause of inefficient transduction. Finally, the efficiency of AAV-mediated ex vivo gene transfer to lung cells was similar to that previously described for Ad vectors in that transduction was limited to regions of epithelial injury and preferentially targeted basal-like cells. These studies address the primary factors influencing rAAV infection of human airway cells and should

  4. Factors influencing adeno-associated virus-mediated gene transfer to human cystic fibrosis airway epithelial cells: comparison with adenovirus vectors.

    PubMed

    Teramoto, S; Bartlett, J S; McCarty, D; Xiao, X; Samulski, R J; Boucher, R C

    1998-11-01

    Adeno-associated virus (AAV) vectors appear promising for use in gene therapy in cystic fibrosis (CF) patients, yet many features of AAV-mediated gene transfer to airway epithelial cells are not well understood. We compared the transduction efficiencies of AAV vectors and adenovirus (Ad) vectors in immortalized cell lines from CF patients and in nasal epithelial primary cultures from normal humans and CF patients. Similar dose-dependent relationships between the vector multiplicities of infection and the efficiencies of lacZ gene transfer were observed. However, levels of transduction for both Ad and recombinant AAV (rAAV) were significantly lower in the airway epithelial cell than in the control cell lines HeLa and HEK 293. Transduction efficiencies differed among cultured epithelial cell types, with poorly differentiated cells transducing more efficiently than well-differentiated cells. A time-dependent increase in gene expression was observed after infection for both vectors. For Ad, but not for AAV, this increase was dependent on prolonged incubation of cells with the vector. Furthermore, for rAAV (but not for rAd), the delay in maximal transduction could be abrogated by wild-type Ad helper infection. Thus, although helper virus is not required for maximal transduction, it increases the kinetics by which this is achieved. Expression of Ad E4 open reading frame 6 or addition of either hydroxyurea or camptothecin resulted in increased AAV transduction, as previously demonstrated for nonairway cells (albeit to lower final levels), suggesting that second-strand synthesis may not be the sole cause of inefficient transduction. Finally, the efficiency of AAV-mediated ex vivo gene transfer to lung cells was similar to that previously described for Ad vectors in that transduction was limited to regions of epithelial injury and preferentially targeted basal-like cells. These studies address the primary factors influencing rAAV infection of human airway cells and should

  5. Novel genes in Human Asthma Based on a Mouse Model of Allergic Airway Inflammation and Human Investigations

    PubMed Central

    Temesi, Gergely; Virág, Viktor; Hadadi, Éva; Ungvári, Ildikó; Fodor, Lili E; Bikov, András; Nagy, Adrienne; Gálffy, Gabriella; Tamási, Lilla; Horváth, Ildikó; Kiss, András; Hullám, Gábor; Gézsi, András; Sárközy, Péter; Antal, Péter; Buzás, Edit

    2014-01-01

    Purpose Based on a previous gene expression study in a mouse model of asthma, we selected 60 candidate genes and investigated their possible roles in human asthma. Methods In these candidate genes, 90 SNPs were genotyped using MassARRAY technology from 311 asthmatic children and 360 healthy controls of the Hungarian (Caucasian) population. Moreover, gene expression levels were measured by RT PCR in the induced sputum of 13 asthmatics and 10 control individuals. t-tests, chi-square tests, and logistic regression were carried out in order to assess associations of SNP frequency and expression level with asthma. Permutation tests were performed to account for multiple hypothesis testing. Results The frequency of 4 SNPs in 2 genes differed significantly between asthmatic and control subjects: SNPs rs2240572, rs2240571, rs3735222 in gene SCIN, and rs32588 in gene PPARGC1B. Carriers of the minor alleles had reduced risk of asthma with an odds ratio of 0.64 (0.51-0.80; P=7×10-5) in SCIN and 0.56 (0.42-0.76; P=1.2×10-4) in PPARGC1B. The expression levels of SCIN, PPARGC1B and ITLN1 genes were significantly lower in the sputum of asthmatics. Conclusions Three potentially novel asthma-associated genes were identified based on mouse experiments and human studies. PMID:25374748

  6. Airway closure in microgravity.

    PubMed

    Dutrieue, Brigitte; Verbanck, Sylvia; Darquenne, Chantal; Prisk, G Kim

    2005-08-25

    Recent single breath washout (SBW) studies in microgravity and on the ground have suggested an important effect of airway closure on gas mixing in the human lung, reflected particularly in the phase III slope of vital capacity SBW and bolus tests. In order to explore this effect, we designed a SBW in which subjects inspired 2-l from residual volume (RV) starting with a 150 ml bolus of He and SF6. In an attempt to vary the pattern of airways closure configuration before the test, the experiments were conducted in 1G and in microgravity during parabolic flight allowing the pre-test expiration to RV to be either in microgravity or at 1.8 G, with the actual test gas inhalation performed entirely in microgravity. Contrary to our expectations, the measured phase III slope and phase IV height and volume obtained from seven subjects in microgravity were essentially identical irrespective of the gravity level during the pre-test expiration to RV. The results suggest that airway closure configuration at RV before the test inspiration has no apparent impact on phases III and IV generation. PMID:15979418

  7. No effect of elevated operating lung volumes on airway function during variable workrate exercise in asthmatic humans.

    PubMed

    Klansky, Andrew; Irvin, Charlie; Morrison-Taylor, Adriane; Ahlstrand, Sarah; Labrie, Danielle; Haverkamp, Hans Christian

    2016-07-01

    In asthmatic adults, airway caliber fluctuates during variable intensity exercise such that bronchodilation (BD) occurs with increased workrate whereas bronchoconstriction (BC) occurs with decreased workrate. We hypothesized that increased lung mechanical stretch would prevent BC during such variable workrate exercise. Ten asthmatic and ten nonasthmatic subjects completed two exercise trials on a cycle ergometer. Both trials included a 28-min exercise bout consisting of alternating four min periods at workloads equal to 40 % (Low) and 70% (High) peak power output. During one trial, subjects breathed spontaneously throughout exercise (SVT), such that tidal volume (VT) and end-inspiratory lung volume (EILV) were increased by 0.5 and 0.6 liters during the high compared with the low workload in nonasthmatic and asthmatic subjects, respectively. During the second trial (MVT), VT and EILV were maintained constant when transitioning from the high to the low workload. Forced exhalations from total lung capacity were performed during each exercise workload. In asthmatic subjects, forced expiratory volume 1.0 s (FEV1.0) increased and decreased with the increases and decreases in workrate during both SVT (Low, 3.3 ± 0.3 liters; High, 3.6 ± 0.2 liters; P < 0.05) and MVT (Low, 3.3 ± 0.3 liters; High, 3.5 ± 0.2 liters; P < 0.05). Thus increased lung stretch during MVT did not prevent decreases in airway caliber when workload was reduced. We conclude that neural factors controlling airway smooth muscle (ASM) contractile activity during whole body exercise are more robust determinants of airway caliber than the ability of lung stretch to alter ASM actin-myosin binding and contraction. PMID:27150833

  8. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma. PMID:22652198

  9. Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of human volunteers.

    PubMed

    Bumann, Dirk; Behre, Christoph; Behre, Katharina; Herz, Steffen; Gewecke, Britta; Gessner, J Engelbert; von Specht, Bernd Ulrich; Baumann, Ulrich

    2010-01-01

    Vaccination against Pseudomonas aeruginosa is a desirable, yet challenging strategy for prevention of airway infection in patients with cystic fibrosis. We compared the formation of antibodies in lower airways induced by systemic and mucosal vaccination strategies. We immunised 48 volunteers in six vaccination groups with either a systemic, a nasal, or four newly constructed oral live vaccines based on attenuated live Salmonella (strains CVD908 and Ty21a), followed by a systemic booster vaccination. All vaccines were based on a recombinant fusion protein of the highly conserved P. aeruginosa outer membrane proteins OprF and OprI as antigen. While systemic and mucosal vaccines induced a comparable rise of serum antibody titers, a significant rise of IgA and IgG antibodies in the lower airways was noted only after nasal and oral vaccinations. We conclude that nasal and oral OprF-OprI vaccines are promising candidates for development of antipseudomonal immunisation through inducing a specific antibody response in the lung. PMID:19887136

  10. The relation of airway size to lung function

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Fuhrman, Carl R.; Bon, Jessica M.; Park, Sang C.; Pu, Jiantao; Gur, David

    2008-03-01

    Chronic obstructive pulmonary disease may cause airway remodeling, and small airways are the mostly likely site of associated airway flow obstruction. Detecting and quantifying airways depicted on a typical computed tomography (CT) images is limited by spatial resolution. In this study, we examined the association between lung function and airway size. CT examinations and spirometry measurement of forced expiratory volume in one second as a percent predicted (FEV I%) from 240 subjects were used in this study. Airway sections depicted in axial CT section were automatically detected and quantified. Pearson correlation coefficients (PCC) were computed to compare lung function across three size categories: (1) all detected airways, (2) the smallest 50% of detected airways, and (3) the largest 50% of detected airways using the CORANOVA test. The mean number of all airways detected per subject was 117.4 (+/- 40.1) with mean size ranging from 20.2 to 50.0 mm2. The correlation between lung function (i.e., FEV I) and airway morphometry associated with airway remodeling and airflow obstruction (i.e., lumen perimeter and wall area as a percent of total airway area) was significantly stronger for smaller compared to larger airways (p < 0.05). The PCCs between FEV I and all airways, the smallest 50%, and the largest 50% were 0.583, 0.617, 0.523, respectively, for lumen perimeter and -0.560, -0.584, and -0.514, respectively, for wall area percent. In conclusion, analyzing a set of smaller airways compared to larger airways may improve detection of an association between lung function and airway morphology change.

  11. Preventing Cleavage of the Respiratory Syncytial Virus Attachment Protein in Vero Cells Rescues the Infectivity of Progeny Virus for Primary Human Airway Cultures

    PubMed Central

    Corry, Jacqueline; Johnson, Sara M.; Cornwell, Jessica

    2015-01-01

    ABSTRACT All live attenuated respiratory syncytial virus (RSV) vaccines that have advanced to clinical trials have been produced in Vero cells. The attachment (G) glycoprotein in virions produced in these cells is smaller than that produced in other immortalized cells due to cleavage. These virions are 5-fold less infectious for primary well-differentiated human airway epithelial (HAE) cell cultures. Because HAE cells are isolated directly from human airways, Vero cell-grown vaccine virus would very likely be similarly inefficient at initiating infection of the nasal epithelium following vaccination, and therefore, a larger inoculum would be required for effective vaccination. We hypothesized that Vero cell-derived virus containing an intact G protein would be more infectious for HAE cell cultures. Using protease inhibitors with increasing specificity, we identified cathepsin L to be the protease responsible for cleavage. Our evidence suggests that cleavage occurs in the late endosome or lysosome during endocytic recycling. Cathepsin L activity was 100-fold greater in Vero cells than in HeLa cells. In addition, cathepsin L was able to cleave the G protein in Vero cell-grown virions but not in HeLa cell-grown virions, suggesting a difference in G-protein posttranslational modification in the two cell lines. We identified by mutagenesis amino acids important for cleavage, and these amino acids included a likely cathepsin L cleavage site. Virus containing a modified, noncleavable G protein produced in Vero cells was 5-fold more infectious for HAE cells in culture, confirming our hypothesis and indicating the value of including such a mutation in future live attenuated RSV vaccines. IMPORTANCE Worldwide, RSV is the second leading infectious cause of infant death, but no vaccine is available. Experimental live attenuated RSV vaccines are grown in Vero cells, but during production the virion attachment (G) glycoprotein is cleaved. Virions containing a cleaved G protein

  12. Human T lymphocyte migration towards the supernatants of human rhinovirus infected airway epithelial cells: influence of exercise and carbohydrate intake.

    PubMed

    Bishop, Nicolette C; Walker, Gary J; Gleeson, Michael; Wallace, Fiona A; Hewitt, Colin R A

    2009-01-01

    Physical stress induces a marked redistribution of T lymphocytes that may be influenced by carbohydrate (CHO) availability, yet the effect of these on T lymphocyte migration towards infected tissue is unknown. Therefore, the aim of this study was to determine the effect of strenuous exercise and CHO ingestion on subsequent ex vivo lymphocyte migration towards the supernatants of a Human Rhinovirus (HRV)-infected bronchial epithelial cell line. In a randomised, cross-over, double-blind design, 7 trained males ran for 2 h at 60% VO2peak on two occasions with regular ingestion of either a 6.4% w/v glucose and maltodextrin solution (CHO trial) or placebo solution (PLA trial). Plasma glucose concentration was higher on CHO than PLA after exercise (P<0.05). Migration of CD4+ and CD8+ cells and their CD45RA+ and CD45RO+ subpopulations towards supernatants from HRV-infected cells decreased following exercise (main effect for exercise, P<0.01 for CD4+, CD4+CD45RA+ and CD4+CD45RO+; P<0.05 for CD8+, CD8+CD45RA+ and CD8+CD45RO+). Migration of CD4+ cells and CD4+CD45RA+ cells was approximately 35% and approximately 30% higher, respectively, on CHO than PLA at 1 h post-exercise (interaction, P<0.05 for both) and was higher on CHO than PLA for all other subpopulations (P<0.05, main effect for trial). There was little effect of exercise or CHO on migration of these cells towards uninfected (control) cell supernatants or on the proportion of these cells within the peripheral blood mononuclear cell population. The findings of this study suggest that physical stress reduces T cell migration towards HRV-infected cell supernatants and that ingestion of CHO can lessen this effect. PMID:19957874

  13. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  14. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents.

    PubMed

    Zaccone, Eric J; Goldsmith, W Travis; Shimko, Michael J; Wells, J R; Schwegler-Berry, Diane; Willard, Patsy A; Case, Shannon L; Thompson, Janet A; Fedan, Jeffrey S

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  15. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    PubMed Central

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2016-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport, without affecting Cl− transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  16. AMP-activated protein kinase (AMPK)–dependent and –independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells

    PubMed Central

    Tan, CD; Smolenski, RT; Harhun, MI; Patel, HK; Ahmed, SG; Wanisch, K; Yáñez-Muñoz, RJ; Baines, DL

    2012-01-01

    BACKGROUND AND PURPOSE Pulmonary transepithelial Na+ transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ ATPase activity. EXPERIMENTAL APPROACH H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS. KEY RESULTS AMPK was activated by exposure to 3% or 0.2% O2 for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm−2) was added to the apical surface of cells grown at the air–liquid interface. Only 0.2% O2 activated AMPK in cells grown at the air–liquid interface. AMPK activation was associated with elevation of cellular AMP : ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity prevented the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (epithelial Na+ channels). CONCLUSIONS AND IMPLICATIONS Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ ATPase activity to decrease transepithelial Na+ transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions. PMID:22509822

  17. Size Variation in Small-Bodied Humans from Palau, Micronesia

    PubMed Central

    Gallagher, Andrew

    2008-01-01

    Background Recent discoveries on Palau are claimed to represent the remains of small-bodied humans that may display evidence insular size reduction. This claim has yet to be statistically validated Methodology/Principal Findings Published postcranial specimens (n = 16) from Palau were assessed relative to recent small-bodied comparative samples. Resampling statistical approaches were employed to test specific hypotheses relating to body size in the Palau sample. Results confirm that the Palau postcranial sample is indisputably small-bodied. Conclusions/Significance A single, homogenous body size morph is represented in early prehistoric postcrania from Palau. Small body size in early Palauans is an ancestral characteristic and was likely not a consequence of in-situ size reduction. Specimens from Palau have little bearing upon hypothesised insular size reduction in the ancestral lineage of Homo floresiensis. PMID:19088844

  18. Three-Dimensional Coculture Of Human Small-Intestine Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

    1994-01-01

    Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

  19. Effects of corexit oil dispersants and the WAF of dispersed oil on DNA damage and repair in cultured human bronchial airway cells, BEAS-2B

    PubMed Central

    Major, Danielle; Derbes, Rebecca S.; Wang, He; Roy-Engel, Astrid M.

    2016-01-01

    Large quantities of dispersants were used as a method to disperse the roughly 210 million gallons of spilled crude oil that consumed the Gulf of Mexico. Little is known if the oil-dispersant and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to Corexit dispersants EC9500 and EC9527, Water Accommodated Fraction (WAF) -crude, WAF-9500 + Oil, and WAF-9527 + Oil. Cellular cytotoxicity to WAF-dispersed oil samples was observed at concentrations greater than 1000 ppm with over 70% of observed cellular death. At low concentration exposures (100 and 300 ppm) DNA damage was evidenced by the detection of single strand breaks (SSBs) and double strand breaks (DSBs) as measured by alkaline and neutral comet assay analyses. Immunoblot analyses of the phosphorylated histone H2A.X (ɣ-H2A.X) and tumor suppressor p53 protein confirmed activation of the DNA damage response due to the exposure-induced DNA breaks. Although, many xenobiotics interfere with DNA repair pathways, in vitro evaluation of the nucleotide excision repair (NER) and DSB repair pathways appear to be unaffected by the oil-dispersant mixtures tested. Overall, this study supports that oil-dispersant mixtures induce genotoxic effects in culture.

  20. Deposition of {open_quotes}unattached{close_quotes} radon daughters in models of human nasal and oral airways

    SciTech Connect

    Strong, J.C.; Swift, D.L.

    1992-12-31

    In order to estimate accurately an effective dose equivalent for exposures to radon daughters, knowledge of their deposition in the lung is required. However, the nose and mouth are effective filters for removing aerosol particles, especially in the range of sizes of {open_quotes}unattached{close_quotes} radon daughters. Therefore, it is equally important to have reliable data on deposition in this region of the respiratory tract. We will describe our work in studying nasal and oral deposition of {open_quotes}unattached{close_quotes} radon daughters in casts of these airways. Several hollow casts of adult and child nasal and oral airways were fabricated at The John Hopkins University from layers of Perspect{trademark} (an acrylic plastic). The shapes of the airway passages were obtained from nuclear magnetic resonance sectional images of healthy subjects. The casts were exposed to radon gas and daughters produced by flushing filtered air through a commercially available {sup 226}Ra source. The gas stream was drawn through a 1.4-L cylindrical tube to allow measurable growth of {sup 218}Po activity before it was passed through casts of both nasal passages or the oral cavity. The deposition of {open_quotes}unattached{close_quotes} {sup 218}Po was measured by comparing the activity collected on filters mounted in series and in parallel with a cast. Measurements were made at various flow rates (Q; 4 to 20 L min{sup -1}). The diffusion coefficient (D) of {sup 218}Po was measured each time the flow rate was changed, by replacing the cast with a stainless steel gauze screen and measuring the activity penetrating the screen. The measured diffusion coefficient ranged from 0.02 to 0.05 cm{sup 2} s{sup -1} and was found to vary with the residence time of {sup 218}Po in the growth tube. The deposition efficiency ({eta}) of {sup 218}Po measured in these casts ranged from 50 to 70%, and was similar to values we found previously, using casts of nasal and oral airways from cadavers.

  1. Airway Gland Structure and Function.

    PubMed

    Widdicombe, Jonathan H; Wine, Jeffrey J

    2015-10-01

    Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis. PMID:26336032

  2. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  3. A Revised Model for Dosimetry in the Human Small Intestine

    SciTech Connect

    John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  4. Natural human gene correction by small extracellular genomic DNA fragments.

    PubMed

    Yakubov, Leonid A; Rogachev, Vladimir A; Likhacheva, Anastasia C; Bogachev, Sergei S; Sebeleva, Tamara E; Shilov, Alexander G; Baiborodin, Sergei I; Petrova, Natalia A; Mechetina, Ludmila V; Shurdov, Mikhail A; Wickstrom, Eric

    2007-09-15

    Classical gene targeting employs natural homologous recombination for a gene correction using a specially designed and artificially delivered DNA construct but the method is very inefficient. On the other hand, small DNA fragments in the form of tiny chromatin-like particles naturally present in blood plasma can spontaneously penetrate into human cells and cell nuclei. We hypothesized that these natural DNA nanoparticles with recombinagenic free ends might be effective agents for gene replacement therapy. We demonstrate that a mixture of small fragments of total human chromatin from non-mutant cells added to a culture medium without transfection agents efficiently repaired a 47 base pair deletion in the CASP3 gene in 30% of treated human MCF7 breast cancer cells, as shown by restoration of caspase-3 apoptotic function and CASP3 DNA and mRNA structure. Such an innate gene replacement mechanism might function naturally in an organism using its own apoptotic DNA fragments. This mechanism might enable human cancer cell phenotype normalization in the presence of excess normal cells. PMID:17703110

  5. Photoacoustic tomography of small-animal and human peripheral joints

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Chamberland, David L.; Fowlkes, J. Brian; Carson, Paul L.; Jamadar, David A.

    2008-02-01

    As an emerging imaging technology that combines the merits of both light and ultrasound, photoacoustic tomography (PAT) holds promise for screening and diagnosis of inflammatory joint diseases such as rheumatoid arthritis. In this study, the feasibility of PAT in imaging small-animal joints and human peripheral joints in a noninvasive manner was explored. Ex vivo rat tail and fresh cadaveric human finger joints were imaged. Based on the intrinsic optical contrast, intra- and extra-articular tissue structures in the joints were visualized successfully. Using light in the near-infrared region, the imaging depth of PAT is sufficient for cross-sectional imaging of a human peripheral joint as a whole organ. PAT, as a novel imaging modality with unique advantages, may contribute significantly to the early diagnosis of inflammatory joint disorders and accurate monitoring of disease progression and response to therapy.

  6. Upper airway test (image)

    MedlinePlus

    An upper airway biopsy is obtained by using a flexible scope called a bronchoscope. The scope is passed down through ... may be performed when an abnormality of the upper airway is suspected. It may also be performed as ...

  7. Distinct Human Stem Cell Populations in Small and Large Intestine

    PubMed Central

    Cramer, Julie M.; Thompson, Timothy; Geskin, Albert; LaFramboise, William; Lagasse, Eric

    2015-01-01

    The intestine is composed of an epithelial layer containing rapidly proliferating cells that mature into two regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for intestinal epithelial cells, no studies have directly compared stem cells derived from these anatomically distinct regions. Here, we examine intrinsic differences between primary epithelial cells isolated from human fetal small and large intestine, after in vitro expansion, using the Wnt agonist R-spondin 2. We utilized flow cytometry, fluorescence-activated cell sorting, gene expression analysis and a three-dimensional in vitro differentiation assay to characterize their stem cell properties. We identified stem cell markers that separate subpopulations of colony-forming cells in the small and large intestine and revealed important differences in differentiation, proliferation and disease pathways using gene expression analysis. Single cells from small and large intestine cultures formed organoids that reflect the distinct cellular hierarchy found in vivo and respond differently to identical exogenous cues. Our characterization identified numerous differences between small and large intestine epithelial stem cells suggesting possible connections to intestinal disease. PMID:25751518

  8. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia.

    PubMed

    Hao, Yuan; Chow, Alison W; Yip, Wallace C; Li, Chi H; Wan, Tai F; Tong, Benjamin C; Cheung, King H; Chan, Wood Y; Chen, Yangchao; Cheng, Christopher H; Ko, Wing H

    2016-08-01

    P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia. PMID:27271044

  9. Induction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells.

    PubMed

    Holden, Neil S; George, Tresa; Rider, Christopher F; Chandrasekhar, Ambika; Shah, Suharsh; Kaur, Manminder; Johnson, Malcolm; Siderovski, David P; Leigh, Richard; Giembycz, Mark A; Newton, Robert

    2014-01-01

    In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the