Science.gov

Sample records for human somatosensory cortex

  1. Face representation in the human primary somatosensory cortex.

    PubMed

    Nguyen, Binh T; Tran, Tuan D; Hoshiyama, Minoru; Inui, Koji; Kakigi, Ryusuke

    2004-10-01

    To investigate the representation of facial skin areas in the primary somatosensory cortex (SI), we recorded magnetic fields evoked by air pressure-induced tactile stimulation applied to six points on the face, lower lip and thumb. The thumb area in the SI was located more medial and superior to the lip area, which was consistent with Penfield's homunculus. However, the representations of all skin-covered areas including forehead, cheek, nose and chin in the SI were located between the thumb and lower lip area. There was no significant difference in location among the six facial points. Our results imply that lips occupy a large area of the face representation in the SI, whereas only a small area located between the thumb and lip areas is devoted to skin-covered surfaces. This is the first study showing that the facial skin areas in the human SI are located between the thumb and lower lip areas and close together. PMID:15380330

  2. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    PubMed Central

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  3. Sensory gating, inhibition control and gamma oscillations in the human somatosensory cortex

    PubMed Central

    Cheng, Chia-Hsiung; Chan, Pei-Ying S.; Niddam, David M.; Tsai, Shang-Yueh; Hsu, Shih-Chieh; Liu, Chia-Yih

    2016-01-01

    Inhibiting the responses to irrelevant stimuli is an essential component of human cognitive function. Pre-attentive auditory sensory gating (SG), an attenuated neural activation to the second identical stimulus, has been found to be related to the performance of higher-hierarchical brain function. However, it remains unclear whether other cortical regions, such as somatosensory cortex, also possess similar characteristics, or if such a relationship is modality-specific. This study used magnetoencephalography to record neuromagnetic responses to paired-pulse electrical stimulation to median nerve in 22 healthy participants. Somatosensory SG ratio and cortical brain oscillations were obtained and compared with the behavioral performance of inhibition control, as evaluated by somatosensory and auditory Go-Nogo tasks. The results showed that somatosensory P35m SG ratio correlated with behavioral performance of inhibition control. Such relationship was also established in relation to the auditory Go-Nogo task. Finally, a higher frequency value of evoked gamma oscillations was found to relate to a better somatosensory SG ability. In conclusion, our data provided an empirical link between automatic cortical inhibition and behavioral performance of attentive inhibition control. This study invites further research on the relationships among gamma oscillations, neurophysiological indices, and behavioral performance in clinical populations in terms of SG or cortical inhibition. PMID:26843358

  4. Image-Guided Transcranial Focused Ultrasound Stimulates Human Primary Somatosensory Cortex

    NASA Astrophysics Data System (ADS)

    Lee, Wonhye; Kim, Hyungmin; Jung, Yujin; Song, In-Uk; Chung, Yong An; Yoo, Seung-Schik

    2015-03-01

    Focused ultrasound (FUS) has recently been investigated as a new mode of non-invasive brain stimulation, which offers exquisite spatial resolution and depth control. We report on the elicitation of explicit somatosensory sensations as well as accompanying evoked electroencephalographic (EEG) potentials induced by FUS stimulation of the human somatosensory cortex. As guided by individual-specific neuroimage data, FUS was transcranially delivered to the hand somatosensory cortex among healthy volunteers. The sonication elicited transient tactile sensations on the hand area contralateral to the sonicated hemisphere, with anatomical specificity of up to a finger, while EEG recordings revealed the elicitation of sonication-specific evoked potentials. Retrospective numerical simulation of the acoustic propagation through the skull showed that a threshold of acoustic intensity may exist for successful cortical stimulation. The neurological and neuroradiological assessment before and after the sonication, along with strict safety considerations through the individual-specific estimation of effective acoustic intensity in situ and thermal effects, showed promising initial safety profile; however, equal/more rigorous precautionary procedures are advised for future studies. The transient and localized stimulation of the brain using image-guided transcranial FUS may serve as a novel tool for the non-invasive assessment and modification of region-specific brain function.

  5. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex.

    PubMed

    Lee, Wonhye; Kim, Hyungmin; Jung, Yujin; Song, In-Uk; Chung, Yong An; Yoo, Seung-Schik

    2015-01-01

    Focused ultrasound (FUS) has recently been investigated as a new mode of non-invasive brain stimulation, which offers exquisite spatial resolution and depth control. We report on the elicitation of explicit somatosensory sensations as well as accompanying evoked electroencephalographic (EEG) potentials induced by FUS stimulation of the human somatosensory cortex. As guided by individual-specific neuroimage data, FUS was transcranially delivered to the hand somatosensory cortex among healthy volunteers. The sonication elicited transient tactile sensations on the hand area contralateral to the sonicated hemisphere, with anatomical specificity of up to a finger, while EEG recordings revealed the elicitation of sonication-specific evoked potentials. Retrospective numerical simulation of the acoustic propagation through the skull showed that a threshold of acoustic intensity may exist for successful cortical stimulation. The neurological and neuroradiological assessment before and after the sonication, along with strict safety considerations through the individual-specific estimation of effective acoustic intensity in situ and thermal effects, showed promising initial safety profile; however, equal/more rigorous precautionary procedures are advised for future studies. The transient and localized stimulation of the brain using image-guided transcranial FUS may serve as a novel tool for the non-invasive assessment and modification of region-specific brain function. PMID:25735418

  6. Image-Guided Transcranial Focused Ultrasound Stimulates Human Primary Somatosensory Cortex

    PubMed Central

    Lee, Wonhye; Kim, Hyungmin; Jung, Yujin; Song, In-Uk; Chung, Yong An; Yoo, Seung-Schik

    2015-01-01

    Focused ultrasound (FUS) has recently been investigated as a new mode of non-invasive brain stimulation, which offers exquisite spatial resolution and depth control. We report on the elicitation of explicit somatosensory sensations as well as accompanying evoked electroencephalographic (EEG) potentials induced by FUS stimulation of the human somatosensory cortex. As guided by individual-specific neuroimage data, FUS was transcranially delivered to the hand somatosensory cortex among healthy volunteers. The sonication elicited transient tactile sensations on the hand area contralateral to the sonicated hemisphere, with anatomical specificity of up to a finger, while EEG recordings revealed the elicitation of sonication-specific evoked potentials. Retrospective numerical simulation of the acoustic propagation through the skull showed that a threshold of acoustic intensity may exist for successful cortical stimulation. The neurological and neuroradiological assessment before and after the sonication, along with strict safety considerations through the individual-specific estimation of effective acoustic intensity in situ and thermal effects, showed promising initial safety profile; however, equal/more rigorous precautionary procedures are advised for future studies. The transient and localized stimulation of the brain using image-guided transcranial FUS may serve as a novel tool for the non-invasive assessment and modification of region-specific brain function. PMID:25735418

  7. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception.

    PubMed

    Jones, Christina B; Lulic, Tea; Bailey, Aaron Z; Mackenzie, Tanner N; Mi, Yi Qun; Tommerdahl, Mark; Nelson, Aimee J

    2016-05-01

    Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively. PMID:26984422

  8. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex.

    PubMed

    Muret, Dollyane; Daligault, Sébastien; Dinse, Hubert R; Delpuech, Claude; Mattout, Jérémie; Reilly, Karen T; Farnè, Alessandro

    2016-04-01

    It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs. PMID:26888099

  9. The representation of oral fat texture in the human somatosensory cortex.

    PubMed

    Grabenhorst, Fabian; Rolls, Edmund T

    2014-06-01

    How fat is sensed in the mouth and represented in the brain is important in relation to the pleasantness of food, appetite control, and the design of foods that reproduce the mouthfeel of fat yet have low energy content. We show that the human somatosensory cortex (SSC) is involved in oral fat processing via functional coupling to the orbitofrontal cortex (OFC), where the pleasantness of fat texture is represented. Using functional MRI, we found that activity in SSC was more strongly correlated with the OFC during the consumption of a high fat food with a pleasant (vanilla) flavor compared to a low fat food with the same flavor. This effect was not found in control analyses using high fat foods with a less pleasant flavor or pleasant-flavored low fat foods. SSC activity correlated with subjective ratings of fattiness, but not of texture pleasantness or flavor pleasantness, indicating a representation that is not involved in hedonic processing per se. Across subjects, the magnitude of OFC-SSC coupling explained inter-individual variation in texture pleasantness evaluations. These findings extend known SSC functions to a specific role in the processing of pleasant-flavored oral fat, and identify a neural mechanism potentially important in appetite, overeating, and obesity. PMID:24038614

  10. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.

    PubMed

    May, Travis; Ozden, Ilker; Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L; Nurmikko, Arto V

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  11. Segmentally arranged somatotopy within the face representation of human primary somatosensory cortex.

    PubMed

    Moulton, Eric A; Pendse, Gautam; Morris, Susie; Aiello-Lammens, Matthew; Becerra, Lino; Borsook, David

    2009-03-01

    Though somatotypic representation within the face in human primary somatosensory cortex (S1) to innocuous stimuli is controversial; previous work suggests that painful heat is represented based on an "onion-skin" or segmental pattern on the face. The aim of this study was to determine if face somatotopy for brush stimuli in S1 also follows this segmental representation model. Twelve healthy subjects (nine men: three women) underwent functional magnetic resonance imaging to measure blood oxygen level dependent signals during brush (1 Hz, 15 s) applied to their faces. Separate functional scans were collected for brush stimuli repetitively applied to each of five separate stimulation sites on the right side of the face. These sites were arranged in a vertical, horizontal, and circular manner encompassing the three divisions of the trigeminal nerve. To minimize inter-individual morphological differences in the post-central gyrus across subjects, cortical surface-based registration was implemented before group statistical image analysis. Based on activation foci, somatotopic activation in the post-central gyrus was detected for brush, consistent with the segmental face representation model. PMID:18266215

  12. Abnormal access of axial vibrotactile input to deafferented somatosensory cortex in human upper limb amputees.

    PubMed

    Kew, J J; Halligan, P W; Marshall, J C; Passingham, R E; Rothwell, J C; Ridding, M C; Marsden, C D; Brooks, D J

    1997-05-01

    We studied two human subjects with total deafferentation of one upper limb secondary to traumatic multiple cervical root avulsions. Both subjects developed a phantom limb and underwent elective amputation of the paralyzed, deafferentated limb. Psychophysical study revealed in each subject an area of skin in the pectoral region ipsilateral to the amputation where vibrotactile stimulation (VS) elicited referred sensations (RS) in the phantom limb. Positron emission tomography was then used to measure regional cerebral blood flow changes during VS of the pectoral region ipsilateral to the amputation with RS and during VS of a homologous part of the pectoral region adjacent to the intact arm without RS. A voxel-based correlation analysis was subsequently used to study functional connectivity. VS of the pectoral region adjacent to the intact arm was associated with activation of the dorsal part of the contralateral primary somatosensory cortex (S1) in a position consistent with the S1 trunk area. In contrast, VS of the pectoral region ipsilateral to the amputation with RS was associated with activation of the contralateral S1 that extended from the level of the trunk representation ventrally over distances of 20 and 12 mm, respectively, in the two subjects. The area of S1 activated during VS of the digits in a normal control subject was coextensive with the ventral S1 region abnormally activated during VS of the ectopic phantom representation in the two amputees, suggesting that the deafferented digit or hand/arm area had been activated by sensory input from the pectoral region. Correlation analysis showed an abnormal pattern of intrinsic connectivity within the deafferented S1 hand/arm area of both amputees. In one subject, the deafferented S1 was functionally connected with 3 times as many S1 voxels as the normally afferented S1. This abnormal functional connectivity extended in both the rostrocaudal and ventrodorsal dimensions. The results demonstrate that sensory

  13. Transcranial magnetic stimulation over human secondary somatosensory cortex disrupts perception of pain intensity

    PubMed Central

    Lockwood, Patricia L.; Iannetti, Gian Domenico; Haggard, Patrick

    2013-01-01

    Pain is a complex sensory experience resulting from the activity of a network of brain regions. However, the functional contribution of individual regions in this network remains poorly understood. We delivered single-pulse transcranial magnetic stimulation (TMS) to the contralateral primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and vertex (control site) 120 msec after selective stimulation of nociceptive afferents using neodymium:yttrium–aluminium–perovskite (Nd:YAP) laser pulses causing painful sensations. Participants were required to judge either the intensity (medium/high) or the spatial location (proximal/distal) of the stimulus in a two-alternative forced choice paradigm. When TMS pulses were delivered over S2, participants' ability to judge pain intensity was disrupted, as compared to S1 and vertex (control) stimulation. Signal-detection analysis demonstrated a loss of sensitivity to stimulation intensity, rather than a shift in perceived pain level or response bias. We did not find any effect of TMS on the ability to localise nociceptive stimuli on the skin. The novel finding that TMS over S2 can disrupt perception of pain intensity suggests a causal role for S2 in encoding of pain intensity. PMID:23290634

  14. Primary somatosensory cortex hand representation dynamically modulated by motor output.

    PubMed

    McGeoch, Paul D; Brang, David; Huang, Mingxiong; Ramachandran, V S

    2015-02-01

    The brain's primary motor and primary somatosensory cortices are generally viewed as functionally distinct entities. Here we show by means of magnetoencephalography with a phantom-limb patient, that movement of the phantom hand leads to a change in the response of the primary somatosensory cortex to tactile stimulation. This change correlates with the described conscious perception and suggests a greater degree of functional unification between the primary motor and somatosensory cortices than is currently realized. We suggest that this may reflect the evolution of this part of the human brain, which is thought to have occurred from an undifferentiated sensorimotor cortex. PMID:24433220

  15. Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex.

    PubMed

    Sánchez-Panchuelo, Rosa-María; Besle, Julien; Mougin, Olivier; Gowland, Penny; Bowtell, Richard; Schluppeck, Denis; Francis, Susan

    2014-06-01

    Ultra-high-field (UHF) MRI is ideally suited for structural and functional imaging of the brain. High-resolution structural MRI can be used to map the anatomical boundaries between functional domains of the brain by identifying changes related to the pattern of myelination within cortical gray matter, opening up the possibility to study the relationship between functional domains and underlying structure in vivo. In a recent study, we demonstrated the correspondence between functional (based on retinotopic mapping) and structural (based on changes in T2(⁎)-weighted images linked to myelination) parcellations of the primary visual cortex (V1) in vivo at 7T (Sanchez-Panchuelo et al., 2012b). Here, we take advantage of the improved BOLD CNR and high spatial resolution achievable at 7T to study regional structural variations across the functionally defined areas within the primary somatosensory cortex (S1) in individual subjects. Using a traveling wave fMRI paradigm to map the internal somatotopic representation of the index, middle, and ring fingers in S1, we were able to identify multiple map reversals at the tip and base, corresponding to the boundaries between Brodmann areas 3a, 3b, 1 and 2. Based on high resolution structural MRI data acquired in the same subjects, we inspected these functionally-parcellated Brodmann areas for differences in cortical thickness and MR contrast measures (magnetization transfer ratio (MTR) and signal intensity in phase sensitive inversion recovery (PSIR) images) that are sensitive to myelination. Consistent area-related differences in cortical thickness and MTR/PSIR measurements were found across subjects. However these measures did not have sufficient sensitivity to allow definition of areal boundaries. PMID:23558101

  16. Polarity-Specific Cortical Effects of Transcranial Direct Current Stimulation in Primary Somatosensory Cortex of Healthy Humans

    PubMed Central

    Rehmann, Robert; Sczesny-Kaiser, Matthias; Lenz, Melanie; Gucia, Tomasz; Schliesing, Annika; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1). We measured paired-pulse suppression (PPS) of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal, or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre–post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by PPS. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS. PMID:27242473

  17. Combined MRI-EEG techniques for correlation of anatomy and function in human somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Boyle, James P.; Kelly, Edward F.

    1994-05-01

    Recent advances in high-resolution EEG imaging methods have made it advantageous to decrease inter-electrode distance to approximately 1 - 2 cm. To take full advantage of this increased recording density, it has become imperative to consider inter-subject anatomical variability and even intra-subject anatomical asymmetry. The present study used anatomical information from MRI to augment functional data obtained through EEG. Specifically, acrylic helmets made for each subject and normally used during EEG were utilized to orient NMR sample tubes filled with a marker medium (H2O(DOT)Cu2SO4) radially from the scalp at selected EEG recording sites during MRI. Using the software package AVS, the MRI data could then be volumetrically 3-D rendered, 3-D isosurface rendered, or arbitrarily sliced. The tubes appeared in the 3-D renderings as pointers from recording sites to underlying cortical anatomy. Our task was simplified by our focus on a limited area of the cortex. The renderings provide subject-specific anatomical templates for mapping of EEG topographic patterns and clearly reveal individual variations of cortical surface topography that are usually unaccounted for in EEG analysis.

  18. Inter- and Intradigit Somatotopic Map of High-Frequency Vibration Stimulations in Human Primary Somatosensory Cortex.

    PubMed

    Choi, Mi-Hyun; Kim, Sung-Phil; Kim, Hyung-Sik; Chung, Soon-Cheol

    2016-05-01

    Although more about the somatotopic mapping of fingers continues to be uncovered, there is lack of mapping attempts regarding the integration of within-finger and across-finger somatotopic coordinates in Broadmann area (BA) 3. This study aimed to address the issue by finding an inter-/intradigit somatotopic map with high-frequency (250 Hz) vibrotactile stimulation. Functional magnetic resonance imaging (fMRI) data were acquired while stimulation was applied to 3 phalanxes (distal [p1], intermediate [p2], and proximal [p3] phalanx) of 4 fingers (index, middle, ring, and little finger) for a total of 12 finger-phalanx combinations for a human. Inter-, intra-, and inter-/intradigit distances were calculated from peak activation coordinates in BA 3 for each combination. With regard to interdigit dimensions, the somatotopic coordinates proceeded in the lateral-to-medial direction for the index, middle, ring, and little fingers consecutively. This trend is comparable to that generated from low-frequency stimulation modalities (flutter stimulation). The somatotopic distances between fingers were greatest when p1 was compared across fingers. From an intradigit perspective, stimulation on p1, p2, and p3 yielded BA 3 peak coordinates aligned along the anterior-to-posterior and inferior-to-superior directions for all fingers. An inter-/intradigit map exhibited a radially propagating trend of distances calculated with respect to index p1 as a reference point; this provided an integrated view of inter- and intradigit somatotopies, which are traditionally discussed separately. We expect such an inter-/intradigit somatotopic map approach to contribute in generating a comprehensive somatotopic model of fingers. PMID:27196488

  19. Inter- and Intradigit Somatotopic Map of High-Frequency Vibration Stimulations in Human Primary Somatosensory Cortex

    PubMed Central

    Choi, Mi-Hyun; Kim, Sung-Phil; Kim, Hyung-Sik; Chung, Soon-Cheol

    2016-01-01

    Abstract Although more about the somatotopic mapping of fingers continues to be uncovered, there is lack of mapping attempts regarding the integration of within-finger and across-finger somatotopic coordinates in Broadmann area (BA) 3. This study aimed to address the issue by finding an inter-/intradigit somatotopic map with high-frequency (250 Hz) vibrotactile stimulation. Functional magnetic resonance imaging (fMRI) data were acquired while stimulation was applied to 3 phalanxes (distal [p1], intermediate [p2], and proximal [p3] phalanx) of 4 fingers (index, middle, ring, and little finger) for a total of 12 finger–phalanx combinations for a human. Inter-, intra-, and inter-/intradigit distances were calculated from peak activation coordinates in BA 3 for each combination. With regard to interdigit dimensions, the somatotopic coordinates proceeded in the lateral-to-medial direction for the index, middle, ring, and little fingers consecutively. This trend is comparable to that generated from low-frequency stimulation modalities (flutter stimulation). The somatotopic distances between fingers were greatest when p1 was compared across fingers. From an intradigit perspective, stimulation on p1, p2, and p3 yielded BA 3 peak coordinates aligned along the anterior-to-posterior and inferior-to-superior directions for all fingers. An inter-/intradigit map exhibited a radially propagating trend of distances calculated with respect to index p1 as a reference point; this provided an integrated view of inter- and intradigit somatotopies, which are traditionally discussed separately. We expect such an inter-/intradigit somatotopic map approach to contribute in generating a comprehensive somatotopic model of fingers. PMID:27196488

  20. Depicting the inner and outer nose: the representation of the nose and the nasal mucosa on the human primary somatosensory cortex (SI).

    PubMed

    Gastl, Mareike; Brünner, Yvonne F; Wiesmann, Martin; Freiherr, Jessica

    2014-09-01

    The nose is important not only for breathing, filtering air, and perceiving olfactory stimuli. Although the face and hands have been mapped, the representation of the internal and external surface of the nose on the primary somatosensory cortex (SI) is still poorly understood. To fill this gap functional magnetic resonance imaging (fMRI) was used to localize the nose and the nasal mucosa in the Brodman areas (BAs) 3b, 1, and 2 of the human postcentral gyrus (PG). Tactile stimulation during fMRI was applied via a customized pneumatically driven device to six stimulation sites: the alar wing of the nose, the lateral nasal mucosa, and the hand (serving as a reference area) on the left and right side of the body. Individual representations could be discriminated for the left and right hand, for the left nasal mucosa and left alar wing of the nose in BA 3b and BA 1 by comparing mean activation maxima and Euclidean distances. Right-sided nasal conditions and conditions in BA 2 could further be separated by different Euclidean distances. Regarding the alar wing of the nose, the results concurred with the classic sensory homunculus proposed by Penfield and colleagues. The nasal mucosa was not only determined an individual and bilateral representation, its position on the somatosensory cortex is also situated closer to the caudal end of the PG compared to that of the alar wing of the nose and the hand. As SI is commonly activated during the perception of odors, these findings underscore the importance of the knowledge of the representation of the nasal mucosa on the primary somatosensory cortex, especially for interpretation of results of functional imaging studies about the sense of smell. PMID:24659451

  1. Effects on non-human primate mastication of reversible inactivation by cooling of the face primary somatosensory cortex.

    PubMed

    Lin, L D; Murray, G M; Sessle, B J

    1998-02-01

    Rhythmical jaw movements can be evoked by intracortical microstimulation within four physiologically defined regions, one of which is the primary face somatosensory cortex (face SI). It has been proposed that these regions may be involved in the selection and/or control of masticatory patterns generated at the brainstem level. The aim here was to determine if mastication is affected by reversible, cooling-induced inactivation of the face SI. Two cranial chambers were chronically implanted in two monkeys (Macaca fascicularis) to allow access bilaterally to the face SI. A thermode was placed on the dura or pia overlying each SI that had been shown with micro-electrode recordings to receive intraoral inputs. A hot or cold alcohol-water solution was pumped through the thermodes while the monkey chewed a small piece of apple or a sultana during precool (thermode temperature, 37 degree C), cool (2-4 degrees C), and postcool (37 degrees C) conditions. Electromyographic (EMG) activity was recorded intramuscularly from the masseter, genioglossus, and anterior digastric. Cooling of SI impaired rhythmical jaw and tongue movements and EMG activity associated with mastication in one monkey (H5), and modified the pattern of EMG activity in the other (H6). The total masticatory time (i.e., time taken for chewing and manipulation of the bolus before swallowing) was increased. This was due principally to an increase in the oral transport time (i.e., time taken for manipulation of bolus after chewing and before swallowing: monkey H6, control, 2.7 sec; cool, 5.2 sec, p < 0.05); the bolus was manipulated by the tongue during this period before swallowing. Within the chewing time (i.e., time during which chewing occurred), cooling resulted in a significant increase in anterior digastric muscle duration, a significant delay in the onset of masseter EMG activity, and a significant increase in the variance of genioglossus EMG duration. The data support the view that the face SI plays a

  2. Fine-grained nociceptive maps in primary somatosensory cortex

    PubMed Central

    Mancini, Flavia; Haggard, Patrick; Iannetti, Gian Domenico; Longo, Matthew R.; Sereno, Martin I.

    2012-01-01

    Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded fMRI analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the timecourse and the spatial pattern of plastic changes in cortical organization involved in chronic pain. PMID:23197708

  3. METAPHORICALLY FEELING: COMPREHENDING TEXTURAL METAPHORS ACTIVATES SOMATOSENSORY CORTEX

    PubMed Central

    Lacey, Simon; Stilla, Randall; Sathian, K.

    2012-01-01

    Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging (fMRI) we show that texture-selective somatosensory cortex in the parietal operculum is activated when processing sentences containing textural metaphors, compared to literal sentences matched for meaning. This finding supports the idea that comprehension of metaphors is perceptually grounded. PMID:22305051

  4. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. PMID:26972317

  5. Somatosensory Processing of the Tongue in Humans

    PubMed Central

    Sakamoto, Kiwako; Nakata, Hiroki; Yumoto, Masato; Kakigi, Ryusuke

    2010-01-01

    We review research on somatosensory (tactile) processing of the tongue based on data obtained using non-invasive neurophysiological and neuroimaging methods. Technical difficulties in stimulating the tongue, due to the noise elicited by the stimulator, the fixation of the stimulator, and the vomiting reflex, have necessitated the development of specialized devices. In this article, we show the brain activity relating to somatosensory processing of the tongue evoked by such devices. More recently, the postero-lateral part of the tongue has been stimulated, and the brain response compared with that on stimulation of the antero-lateral part of the tongue. It is likely that a difference existed in somatosensory processing of the tongue, particularly around primary somatosensory cortex, Brodmann area 40, and the anterior cingulate cortex. PMID:21423377

  6. Adult deafness induces somatosensory conversion of ferret auditory cortex

    PubMed Central

    Allman, Brian L.; Keniston, Leslie P.; Meredith, M. Alex

    2009-01-01

    In response to early or developmental lesions, responsiveness of sensory cortex can be converted from the deprived modality to that of the remaining sensory systems. However, little is known about capacity of the adult cortex for cross-modal reorganization. The present study examined the auditory cortices of animals deafened as adults, and observed an extensive somatosensory conversion within as little as 16 days after deafening. These results demonstrate that cortical cross-modal reorganization can occur after the period of sensory system maturation. PMID:19307553

  7. Illusory and veridical mapping of tactile objects in the primary somatosensory and posterior parietal cortex.

    PubMed

    Bufalari, Ilaria; Di Russo, Francesco; Aglioti, Salvatore Maria

    2014-07-01

    While several behavioral and neuroscience studies have explored visual, auditory, and cross-modal illusions, information about the phenomenology and neural correlates of somatosensory illusions is meager. By combining psychophysics and somatosensory evoked potentials, we explored in healthy humans the neural correlates of 2 compelling tactuo-proprioceptive illusions, namely Aristotle (1 object touching the contact area between 2 crossed fingers is perceived as 2 lateral objects) and Reverse illusions (2 lateral objects are perceived as 1 between crossed-fingers object). These illusions likely occur because of the tactuo-proprioceptive conflict induced by fingers being crossed in a non-natural posture. We found that different regions in the somatosensory stream exhibit different proneness to the illusions. Early electroencephalographic somatosensory activity (at 20 ms) originating in the primary somatosensory cortex (S1) reflects the phenomenal rather than the physical properties of the stimuli. Notably, later activity (around 200 ms) originating in the posterior parietal cortex is higher when subjects resist the illusions. Thus, while S1 activity is related to illusory perception, PPC acts as a conflict resolver that recodes tactile events from somatotopic to spatiotopic frames of reference and ultimately enables veridical perception. PMID:23438449

  8. Origins of choice-related activity in mouse somatosensory cortex

    PubMed Central

    Yang, Hongdian; Kwon, Sung E.; Severson, Kyle S.; O’Connor, Daniel H.

    2015-01-01

    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feedforward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons. PMID:26642088

  9. Origins of choice-related activity in mouse somatosensory cortex.

    PubMed

    Yang, Hongdian; Kwon, Sung E; Severson, Kyle S; O'Connor, Daniel H

    2016-01-01

    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied as a way to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feed-forward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons. PMID:26642088

  10. Neuronal correlates of tactile speed in primary somatosensory cortex.

    PubMed

    Dépeault, Alexandra; Meftah, El-Mehdi; Chapman, C Elaine

    2013-10-01

    Moving stimuli activate all of the mechanoreceptive afferents involved in discriminative touch, but their signals covary with several parameters, including texture. Despite this, the brain extracts precise information about tactile speed, and humans can scale the tangential speed of moving surfaces as long as they have some surface texture. Speed estimates, however, vary with texture: lower estimates for rougher surfaces (increased spatial period, SP). We hypothesized that the discharge of cortical neurons playing a role in scaling tactile speed should covary with speed and SP in the same manner. Single-cell recordings (n = 119) were made in the hand region of primary somatosensory cortex (S1) of awake monkeys while raised-dot surfaces (longitudinal SPs, 2-8 mm; periodic or nonperiodic) were displaced under their fingertips at speeds of 40-105 mm/s. Speed sensitivity was widely distributed (area 3b, 13/25; area 1, 32/51; area 2, 31/43) and almost invariably combined with texture sensitivity (82% of cells). A subset of cells (27/64 fully tested speed-sensitive cells) showed a graded increase in discharge with increasing speed for testing with both sets of surfaces (periodic, nonperiodic), consistent with a role in tactile speed scaling. These cells were almost entirely confined to caudal S1 (areas 1 and 2). None of the speed-sensitive cells, however, showed a pattern of decreased discharge with increased SP, as found for subjective speed estimates in humans. Thus further processing of tactile motion signals, presumably in higher-order areas, is required to explain human tactile speed scaling. PMID:23843433

  11. Visual Responses of Neurons in Somatosensory Cortex of Hamsters with Experimentally Induced Retinal Projections to Somatosensory Thalamus

    NASA Astrophysics Data System (ADS)

    Metin, Christine; Frost, Douglas O.

    1989-01-01

    These experiments investigate the capacity of thalamic and cortical structures in a sensory system to process information of a modality normally associated with another system. Retinal ganglion cells in newborn Syrian hamsters were made to project permanently to the main thalamic somatosensory (ventrobasal) nucleus. When the animals were adults, single unit recordings were made in the somatosensory cortices, the principal targets of the ventrobasal nucleus. The somatosensory neurons responded to visual stimulation of distinct receptive fields, and their response properties resembled, in several characteristic features, those of normal visual cortical neurons. In the visual cortex of normal animals and the somatosensory cortex of operated animals, the same functional categories of neurons occurred in similar proportions, and the neurons' selectivity for the orientation or direction of movement of visual stimuli was comparable. These results suggest that thalamic nuclei or cortical areas at corresponding levels in the visual and somatosensory pathways perform similar transformations on their inputs.

  12. The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex.

    PubMed

    Klingner, Carsten M; Brodoehl, Stefan; Witte, Otto W

    2015-01-01

    In recent years, multiple studies have shown task-induced negative blood-oxygenation-level-dependent responses (NBRs) in multiple brain regions in humans and animals. Converging evidence suggests that task-induced NBRs can be interpreted in terms of decreased neuronal activity. However, the vascular and metabolic dynamics and functional importance of the NBR are highly debated. Here, we review studies investigating the origin and functional importance of the NBR, with special attention to the somatosensory cortex. PMID:26057216

  13. Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes

    PubMed Central

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-01-01

    Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS) may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one vs. multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2–4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof) is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups. PMID:25914630

  14. Synaptic potentials evoked by convergent somatosensory and corticocortical inputs in raccoon somatosensory cortex: substrates for plasticity.

    PubMed

    Smits, E; Gordon, D C; Witte, S; Rasmusson, D D; Zarzecki, P

    1991-09-01

    1. "Unmasking" of weak synaptic connections has been suggested as a mechanism for the early changes in cortical topographic maps that follow alterations of sensory activity. For such a mechanism to operate, convergent sensory inputs must already exist in the normal cortex. 2. We tested for topographic and cross-modality convergence in primary somatosensory cortex of raccoon. The representation of glabrous skin of forepaw digits was chosen because, even though it is dominated by inputs from the glabrous skin of a single digit, it nevertheless comes to respond to stimulation of other digits when, e.g., a digit is removed. 3. Intracellular recordings were made from 109 neurons in the representation of glabrous skin of digit 4. Neurons were tested for somatosensory inputs with electrical and natural stimulation of digits. 4. Excitatory postsynaptic potentials (EPSPs) were evoked in 100% of the neurons (109/109) by electrical stimulation of glabrous skin of digit 4, and in 79% (31 of 39) by vibrotactile stimulation. 5. Glabrous skin of digit 4 was not the sole source of somatosensory inputs. A minority of neurons generated EPSPs after electrical stimulation of hairy skin of digit 4 (10 of 98 neurons, 10%). Electrical stimulation of digits 3 or 5 evoked EPSPs in 22 of 103 neurons (21%). Natural stimulation (vibrotactile or hair bending) was also effective in most of these latter cases (digit 3, 6/7; digit 5, 9/10). 6. Intracortical microstimulation of the "heterogeneous zone" was used to test for corticocortical connections to neurons in the glabrous zone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1753280

  15. Convergence of sensory inputs upon projection neurons of somatosensory cortex.

    PubMed

    Zarzecki, P; Wiggin, D M

    1982-01-01

    Cortico-cortical neurons and pyramidal tract neurons of the cat were tested for convergent inputs from forelimb afferents. Neurons were recorded in cortical areas 1, 2, and 3a. Consideration was given to both suprathreshold and subthreshold inputs evoked by electrical stimulation of forelimb nerves. Individual cortico-cortical neurons and also pyramidal tract neurons were characterized by convergence of multiple somatosensory inputs from different regions of skin, from several muscle groups, and between group I deep afferents and low threshold cutaneous afferents. Certain patterns of afferent input varied with cytoarchitectonic area. There was, however, no difference between area 3a and areas 1-2 in the incidence of cross-modality convergence in the form of input from cutaneous and also deep nerves. Many of the inputs were subthreshold. Arguments are presented that these inputs, though subthreshold, must be considered for a role in cortical information processing. The convergent nature of the sensory inputs is discussed in relation to the proposed specificities of cortical columns. The patterns of afferent inputs reaching cortico-cortical neurons seem to be appropriate for them to have a role in the formation of sensory fields of motor cortex neurons. PT neurons of somatosensory cortex have possible roles as modifiers of ascending sensory systems, however, the convergent input which these PT neurons receive argues against a simple relationship between the modality of peripheral stimuli influencing them and the modality of the ascending tract neurons under their descending control. PMID:7140889

  16. A Novel Method for Integrating MEG and BOLD fMRI Signals With the Linear Convolution Model in Human Primary Somatosensory Cortex

    PubMed Central

    Nangini, Cathy; Tam, Fred; Graham, Simon J.

    2016-01-01

    Characterizing the neurovascular coupling between hemodynamic signals and their neural origins is crucial to functional neuroimaging research, even more so as new methods become available for integrating results from different functional neuroimaging modalities. We present a novel method to relate magnetoencephalography (MEG) and BOLD fMRI data from primary somatosensory cortex within the context of the linear convolution model. This model, which relates neural activity to BOLD signal change, has been widely used to predict BOLD signals but typically lacks experimentally derived measurements of neural activity. In this study, an fMRI experiment is performed using variable-duration (≤1 s) vibrotactile stimuli applied at 22 Hz, analogous to a previously published MEG study (Nangini et al., [2006]: Neuroimage 33:252–262), testing whether MEG source waveforms from the previous study can inform the convolution model and improve BOLD signal estimates across all stimulus durations. The typical formulation of the convolution model in which the input is given by the stimulus profile is referred to as Model 1. Model 2 is based on an energy argument relating metabolic demand to the postsynaptic currents largely responsible for the MEG current dipoles, and uses the energy density of the estimated MEG source waveforms as input to the convolution model. It is shown that Model 2 improves the BOLD signal estimates compared to Model 1 under the experimental conditions implemented, suggesting that MEG energy density can be a useful index of hemodynamic activity. PMID:17290370

  17. Rapid functional plasticity of the somatosensory cortex after finger amputation.

    PubMed

    Weiss, T; Miltner, W H; Huonker, R; Friedel, R; Schmidt, I; Taub, E

    2000-09-01

    Recent research indicates that areas of the primary somatosensory (SI) and primary motor cortex show massive cortical reorganization after amputation of the upper arm, forearm or fingers. Most of these studies were carried out months or several years after amputation. In the present study, we describe cortical reorganization of areas in the SI of a patient who underwent amputation of the traumatized middle and ring fingers of his right hand 10 days before cortical magnetic source imaging data were obtained. Somatosensory-evoked magnetic fields (SEF) to mechanical stimuli to the finger tips were recorded and single moving dipoles were calculated using a realistic volume conductor model. Results reveal that the dipoles representing the second and fifth fingers of the affected hand were closer together than the comparable dipoles of the unaffected hand. Our findings demonstrate that neural cell assemblies in SI which formerly represented the right middle and ring fingers of this amputee became reorganized and invaded by neighbouring cell assemblies of the index and little finger of the same hand. These results indicate that functional plasticity occurs within a period of 10 days after amputation. PMID:11037286

  18. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

    PubMed

    Suzuki, Takashi; Ooi, Yasuhiro; Seki, Junji

    2012-04-01

    The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique. PMID:22282486

  19. Microglia contact induces synapse formation in developing somatosensory cortex.

    PubMed

    Miyamoto, Akiko; Wake, Hiroaki; Ishikawa, Ayako Wendy; Eto, Kei; Shibata, Keisuke; Murakoshi, Hideji; Koizumi, Schuichi; Moorhouse, Andrew J; Yoshimura, Yumiko; Nabekura, Junichi

    2016-01-01

    Microglia are the immune cells of the central nervous system that play important roles in brain pathologies. Microglia also help shape neuronal circuits during development, via phagocytosing weak synapses and regulating neurogenesis. Using in vivo multiphoton imaging of layer 2/3 pyramidal neurons in the developing somatosensory cortex, we demonstrate here that microglial contact with dendrites directly induces filopodia formation. This filopodia formation occurs only around postnatal day 8-10, a period of intense synaptogenesis and when microglia have an activated phenotype. Filopodia formation is preceded by contact-induced Ca(2+) transients and actin accumulation. Inhibition of microglia by genetic ablation decreases subsequent spine density, functional excitatory synapses and reduces the relative connectivity from layer 4 neurons. Our data provide the direct demonstration of microglial-induced spine formation and provide further insights into immune system regulation of neuronal circuit development, with potential implications for developmental disorders of immune and brain dysfunction. PMID:27558646

  20. Microglia contact induces synapse formation in developing somatosensory cortex

    PubMed Central

    Miyamoto, Akiko; Wake, Hiroaki; Ishikawa, Ayako Wendy; Eto, Kei; Shibata, Keisuke; Murakoshi, Hideji; Koizumi, Schuichi; Moorhouse, Andrew J.; Yoshimura, Yumiko; Nabekura, Junichi

    2016-01-01

    Microglia are the immune cells of the central nervous system that play important roles in brain pathologies. Microglia also help shape neuronal circuits during development, via phagocytosing weak synapses and regulating neurogenesis. Using in vivo multiphoton imaging of layer 2/3 pyramidal neurons in the developing somatosensory cortex, we demonstrate here that microglial contact with dendrites directly induces filopodia formation. This filopodia formation occurs only around postnatal day 8–10, a period of intense synaptogenesis and when microglia have an activated phenotype. Filopodia formation is preceded by contact-induced Ca2+ transients and actin accumulation. Inhibition of microglia by genetic ablation decreases subsequent spine density, functional excitatory synapses and reduces the relative connectivity from layer 4 neurons. Our data provide the direct demonstration of microglial-induced spine formation and provide further insights into immune system regulation of neuronal circuit development, with potential implications for developmental disorders of immune and brain dysfunction. PMID:27558646

  1. Sharing social touch in the primary somatosensory cortex.

    PubMed

    Bolognini, Nadia; Rossetti, Angela; Fusaro, Martina; Vallar, Giuseppe; Miniussi, Carlo

    2014-07-01

    Touch has an emotional and communicative meaning, and it plays a crucial role in social perception and empathy. The intuitive link between others' somatosensations and our sense of touch becomes ostensible in mirror-touch synesthesia, a condition in which the view of a touch on another person's body elicits conscious tactile sensations on the observer's own body [1]. This peculiar phenomenon may implicate normal social mirror mechanisms [2]. Here, we show that mirror-touch interference effects, synesthesia-like sensations, and even phantom touches can be induced in nonsynesthetes by priming the primary somatosensory cortex (SI) directly or indirectly via the posterior parietal cortex. These results were obtained by means of facilitatory paired-pulse transcranial magnetic stimulation (ppTMS) contingent upon the observation of touch. For these vicarious effects, the SI is engaged at 150 ms from the onset of the visual touch. Intriguingly, individual differences in empathic abilities, assessed with the Interpersonal Reactivity Index [3], drive the activity of the SI when nonsynesthetes witness others' tactile sensations. This evidence implies that, under normal conditions, touch observation activates the SI below the threshold for perceptual awareness [4]; through the visual-dependent tuning of SI activity by ppTMS, what is seen becomes felt, namely, mirror-touch synesthesia. On a broader perspective, the visual responsivity of the SI may allow an automatic and unconscious transference of the sensation that another person is experiencing onto oneself, and, in turn, the empathic sharing of somatosensations [2]. PMID:24954046

  2. Four-dimensional maps of the human somatosensory system

    PubMed Central

    Avanzini, Pietro; Abdollahi, Rouhollah O.; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A.

    2016-01-01

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579

  3. Four-dimensional maps of the human somatosensory system.

    PubMed

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579

  4. Regional hypoplasia of somatosensory cortex in growth-retarded mice (grt/grt).

    PubMed

    Sawada, Kazuhiko; Saito, Shigeyoshi; Sugasawa, Akari; Sato, Chika; Aoyama, Junya; Ohara, Naoko; Horiuchi-Hirose, Miwa; Kobayashi, Tetsuya

    2016-07-01

    Growth-retarded mouse (grt/grt) is a spontaneous mutant that is known as an animal model for primary congenital hypothyroidism caused by resistance to TSH signaling. The regional pattern of cerebral cortical hypoplasia was characterized in grt/grt mice. Ex vivo computed tomography (CT)-based volumetry was examined in four regions of the cerebral cortex, i.e., prefrontal, frontal, parietal and occipito-temporal regions, which were demarcated by structural landmarks on coronal CT images. A region-specific reduced volume of the parietal cortical region covering most of the somatosensory cortex was noted in grt/grt mice rather than in both heterozygous (grt/+) and wild-type (+/+) mice. We concluded that the cortical hypoplasia in grt/grt was seen in identical cortical regions corresponding to human congenital hypothyroidism. PMID:26915353

  5. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    PubMed Central

    Ioannides, Andreas A.; Liu, Lichan; Poghosyan, Vahe; Saridis, George A.; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45–70 Hz activity at latencies of 20–50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex. PMID:23935576

  6. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain.

    PubMed

    Karl, A; Birbaumer, N; Lutzenberger, W; Cohen, L G; Flor, H

    2001-05-15

    Phantom limb pain (PLP) in amputees is associated with reorganizational changes in the somatosensory system. To investigate the relationship between somatosensory and motor reorganization and phantom limb pain, we used focal transcranial magnetic stimulation (TMS) of the motor cortex and neuroelectric source imaging of the somatosensory cortex (SI) in patients with and without phantom limb pain. For transcranial magnetic stimulation, recordings were made bilaterally from the biceps brachii, zygomaticus, and depressor labii inferioris muscles. Neuroelectric source imaging of the EEG was obtained after somatosensory stimulation of the skin overlying face and hand. Patients with phantom limb pain had larger motor-evoked potentials from the biceps brachii, and the map of outputs was larger for muscles on the amputated side compared with the intact side. The optimal scalp positions for stimulation of the zygomaticus and depressor labii inferioris muscles were displaced significantly more medially (toward the missing hand representation) in patients with phantom limb pain only. Neuroelectric source imaging revealed a similar medial displacement of the dipole center for face stimulation in patients with phantom limb pain. There was a high correlation between the magnitude of the shift of the cortical representation of the mouth into the hand area in motor and somatosensory cortex and phantom limb pain. These results show enhanced plasticity in both the motor and somatosensory domains in amputees with phantom limb pain. PMID:11331390

  7. Distinct vestibular effects on early and late somatosensory cortical processing in humans.

    PubMed

    Pfeiffer, Christian; van Elk, Michiel; Bernasconi, Fosco; Blanke, Olaf

    2016-01-15

    In non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such vestibular-somatosensory interactions in the human brain. To address this issue, we recorded high-density electroencephalography during left median nerve electrical stimulation to obtain Somatosensory Evoked Potentials (SEPs). We analyzed SEPs during vestibular activation following sudden decelerations from constant-velocity (90°/s and 60°/s) earth-vertical axis yaw rotations and SEPs during a non-vestibular control period. SEP analysis revealed two distinct temporal effects of vestibular activation: An early effect (28-32ms post-stimulus) characterized by vestibular suppression of SEP response strength that depended on rotation velocity and a later effect (97-112ms post-stimulus) characterized by vestibular modulation of SEP topographical pattern that was rotation velocity-independent. Source estimation localized these vestibular effects, during both time periods, to activation differences in a distributed cortical network including the right postcentral gyrus, right insula, left precuneus, and bilateral secondary somatosensory cortex. These results suggest that vestibular-somatosensory interactions in humans depend on processing in specific time periods in somatosensory and vestibular cortical regions. PMID:26466979

  8. The assessment of somatosensory cortex plasticity during sleep deprivation by paired associative stimulation.

    PubMed

    Gorgoni, Maurizio; Ferlazzo, Fabio; D'Atri, Aurora; Lauri, Giulia; Ferrara, Michele; Rossini, Paolo Maria; De Gennaro, Luigi

    2015-01-01

    Many animal studies suggest that during sleep deprivation (SD) synaptic strength should progressively increase, leading to the saturation of the ability to induce long-term potentiation (LTP). Nevertheless, direct evidences about the effects of sustained wakefulness on cortical plasticity in humans are still lacking. The aim of the present study was to assess changes in the ability to induce LTP-like mechanism in humans during a period of SD by means of a paired associative stimulation (PAS) protocol, which combines median nerve stimulation with transcranial magnetic stimulation (TMS) applied over the contralateral somatosensory cortex. During a 41-h SD protocol, 16 healthy subjects, defined as responders to the PAS protocol after a pre-selection session, were involved in 4 experimental sessions (11.00 a.m. and 11.00 p.m. of first and second day) with: a) pre-PAS somatosensory evoked potentials (SEPs) recordings; b) PAS protocol; c) post-PAS SEPs recordings. The effect of PAS on SEPs early components (N20-P25 complex) was assessed. During the first experimental session (without SD) no significant PAS effects on SEPs components amplitude have been found, and large intra- and inter-individual variability have been observed. A lack of significant changes has been observed also in the subsequent sessions. Our results index a low intra- and inter-individual reliability of the PAS protocol, suggesting particular caution when longitudinally evaluating the effect of this technique on cortical plasticity. PMID:26742665

  9. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.

    PubMed

    Landers, M S; Sullivan, R M

    1999-06-15

    The following experiments determined that the somatosensory whisker system is functional and capable of experience-dependent behavioral plasticity in the neonate before functional maturation of the somatosensory whisker cortex. First, unilateral whisker stimulation caused increased behavioral activity in both postnatal day (P) 3-4 and P8 pups, whereas stimulation-evoked cortical activity (14C 2-deoxyglucose autoradiography) was detectable only in P8 pups. Second, neonatal rat pups are capable of forming associations between whisker stimulation and a reinforcer. A classical conditioning paradigm (P3-P4) showed that the learning groups (paired whisker stimulation-shock or paired whisker stimulation-warm air stream) exhibited significantly higher behavioral responsiveness to whisker stimulation than controls. Finally, stimulus-evoked somatosensory cortical activity during testing [P8; using 14C 2-deoxyglucose (2-DG) autoradiography] was assessed after somatosensory conditioning from P1-P8. No learning-associated differences in stimulus-evoked cortical activity were detected between learning and nonlearning control groups. Together, these experiments demonstrate that the whisker system is functional in neonates and capable of experience-dependent behavioral plasticity. Furthermore, in contrast to adult somatosensory classical conditioning, these data suggest that the cortex is not required for associative somatosensory learning in neonates. PMID:10366646

  10. Altered Cross-Modal Processing in the Primary Auditory Cortex of Congenitally Deaf Adults: A Visual-Somatosensory fMRI Study with a Double-Flash Illusion

    PubMed Central

    Dow, Mark W.; Neville, Helen J.

    2012-01-01

    The developing brain responds to the environment by using statistical correlations in input to guide functional and structural changes—that is, the brain displays neuroplasticity. Experience shapes brain development throughout life, but neuroplasticity is variable from one brain system to another. How does the early loss of a sensory modality affect this complex process? We examined cross-modal neuroplasticity in anatomically defined subregions of Heschl's gyrus, the site of human primary auditory cortex, in congenitally deaf humans by measuring the fMRI signal change in response to spatially coregistered visual, somatosensory, and bimodal stimuli. In the deaf Heschl's gyrus, signal change was greater for somatosensory and bimodal stimuli than that of hearing participants. Visual responses in Heschl's gyrus, larger in deaf than hearing, were smaller than those elicited by somatosensory stimulation. In contrast to Heschl's gyrus, in the superior-temporal cortex visual signal was comparable to somatosensory signal. In addition, deaf adults perceived bimodal stimuli differently; in contrast to hearing adults, they were susceptible to a double-flash visual illusion induced by two touches to the face. Somatosensory and bimodal signal change in rostrolateral Heschl's gyrus predicted the strength of the visual illusion in the deaf adults in line with the interpretation that the illusion is a functional consequence of the altered cross-modal organization observed in deaf auditory cortex. Our results demonstrate that congenital and profound deafness alters how vision and somatosensation are processed in primary auditory cortex. PMID:22787048

  11. Metaphorically Feeling: Comprehending Textural Metaphors Activates Somatosensory Cortex

    ERIC Educational Resources Information Center

    Lacey, Simon; Stilla, Randall; Sathian, K.

    2012-01-01

    Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging…

  12. Lesion-induced plasticity in the second somatosensory cortex of adult macaques.

    PubMed Central

    Pons, T P; Garraghty, P E; Mishkin, M

    1988-01-01

    We have reported that elimination of the representation of any body part in the primary (i.e., postcentral) somatosensory cortex of the adult macaque selectively eliminates the representation of that same body part in the second somatosensory area SII. We now report that, although removal of the entire postcentral hand representation does indeed leave the SII hand representation unresponsive to somatic stimulation initially, 6-8 weeks later this cortex is no longer silent. Instead, most or all of the region that had been vacated by the hand representation is now found to be occupied by an expanded foot representation. This massive somatotopic reorganization, involving more than half the areal extent of SII, exceeds that previously observed in the postcentral cortex after peripheral nerve damage and may reflect a greater capacity for reorganizational changes in higher order than in primary sensory cortical areas. PMID:3393538

  13. [Epileptiform activity in the somatosensory cortex of rats with trigeminal neuralgia].

    PubMed

    Kryzhanovskiĭ, G N; Reshetniak, V K; Igon'kina, S I; Zinkevich, V A

    1992-07-01

    It was shown in experiments on rats that penicillin 1 microliter microinjection (100 U) into the caudal nucleus of the spinal tract of the trigeminal nerve, accounting for formation of a generator of pathologically enhanced excitation (GREE), brings about in rats the pain syndrome with characteristic for trigeminal neuralgia behavioural manifestations and the emergence of epileptiform activity in the somatosensory cortex, especially pronounced in the contralateral hemisphere. The emergence of this activity reflects, on the one hand, the action of the GREE in the caudal nucleus of the trigeminal nerve and, on the other hand, the involvement of the somatosensory cortex taking over stimulation from the hyperactive caudal nucleus, into formation of a pathological algic system of this form of trigeminal neuralgia. PMID:1467469

  14. Asymmetric Multisensory Interactions of Visual and Somatosensory Responses in a Region of the Rat Parietal Cortex

    PubMed Central

    Lippert, Michael T.; Takagaki, Kentaroh

    2013-01-01

    Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD) responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level. PMID:23667650

  15. Population response characteristics of intrinsic signals in the cat somatosensory cortex following canine mechanical stimulation.

    PubMed

    Tao, Jianxiang; Wang, Jian; Li, Zhong; Meng, Jianjun; Yu, Hongbo

    2016-08-01

    Intrinsic signal optical imaging has been widely used to measure functional maps in various sensory cortices due to better spatial resolution and sensitivity for detecting cortical neuroplasticity. However, application of this technique in dentistry has not been reported. In this study, intrinsic signal optical imaging was used to investigate mechanically driven responses in the cat somatosensory cortex, when punctate mechanical stimuli were applied to maxillary canines. The global signal and its spatial organization pattern were obtained. Global signal strength gradually increased with stimulus strength. There was no significant difference in response strength between contralateral and ipsilateral mechanical stimulation. A slightly greater response was recorded in the sigmoidal gyrus than in the coronal gyrus. The cat somatosensory cortex activated by sensory inputs from mechanical stimulation of canines lacks both topographical and functional organization. It is not organized into columns that represent sensory input from each tooth or direction of stimulation. These results demonstrate that intrinsic signal optical imaging is a valid tool for investigating neural responses and neuroplasticity in the somatosensory cortex that represents teeth. PMID:27163378

  16. Somatosensory brainstem, thalamus, and cortex of the California sea lion (Zalophus californianus).

    PubMed

    Sawyer, Eva K; Turner, Emily C; Kaas, Jon H

    2016-06-15

    Pinnipeds (sea lions, seals, and walruses) are notable for many reasons, including their ape-sized brains, their adaptation to a coastal niche that combines mastery of the sea with strong ties to land, and the remarkable abilities of their trigeminal whisker system. However, little is known about the central nervous system of pinnipeds. Here we report on the somatosensory areas of the nervous system of the California sea lion (Zalophus californianus). Using stains for Nissl, cytochrome oxidase, and vesicular glutamate transporters, we investigated the primary somatosensory areas in the brainstem, thalamus, and cortex in one sea lion pup and the external anatomy of the brain in a second pup. We find that the sea lion's impressive array of whiskers is matched by a large trigeminal representation in the brainstem with well-defined parcellation that resembles the barrelettes found in rodents but scaled upward in size. The dorsal column nuclei are large and distinct. The ventral posterior nucleus of the thalamus has divisions, with a large area for the presumptive head representation. Primary somatosensory cortex is located in the neocortex just anterior to the main vertical fissure, and precisely locating it as we do here is useful for comparing the highly gyrified pinniped cortex with that of other carnivores. To our knowledge this work is the first comprehensive report on the central nervous system areas for any sensory system in a pinniped. The results may be useful both in the veterinary setting and for comparative studies related to brain evolution. PMID:26878587

  17. Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats.

    PubMed

    Fiáth, Richárd; Kerekes, Bálint Péter; Wittner, Lucia; Tóth, Kinga; Beregszászi, Patrícia; Horváth, Domonkos; Ulbert, István

    2016-08-01

    Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, whereas MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation. PMID:27177594

  18. Spontaneous Fluctuations of PO2 in the Rabbit Somatosensory Cortex.

    PubMed

    Linsenmeier, Robert A; Aksenov, Daniil P; Faber, Holden M; Makar, Peter; Wyrwicz, Alice M

    2016-01-01

    In many tissues, PO2 fluctuates spontaneously with amplitudes of a few mmHg. Here we further characterized these oscillations. PO2 recordings were made from the whisker barrel cortex of six rabbits with acutely or chronically placed polarographic electrodes. Measurements were made while rabbits were awake and while anesthetized with isoflurane, during air breathing, and during 100% oxygen inspiration. In awake rabbits, 90% of the power was between 0 and 20 cycles per minute (cpm), not uniformly distributed over this range, but with a peak frequently near 10 cpm. This was much slower than heart or respiratory rhythms and is similar to the frequency content observed in other tissues. During hyperoxia, total power was higher than during air-breathing, and the dominant frequencies tended to shift toward lower values (0-10 cpm). These observations suggest that at least the lower frequency fluctuations represent efforts by the circulation to regulate local PO2. There were no consistent changes in total power during 0.5 or 1.5% isoflurane anesthesia, but the power shifted to lower frequencies. Thus, both hyperoxia and anesthesia cause characteristic, but distinct, changes in spontaneous fluctuations. These PO2 fluctuations may be caused by vasomotion, but other factors cannot be ruled out. PMID:26782227

  19. Reorganization of the Intact Somatosensory Cortex Immediately after Spinal Cord Injury

    PubMed Central

    Humanes-Valera, Desire; Aguilar, Juan; Foffani, Guglielmo

    2013-01-01

    Sensory deafferentation produces extensive reorganization of the corresponding deafferented cortex. Little is known, however, about the role of the adjacent intact cortex in this reorganization. Here we show that a complete thoracic transection of the spinal cord immediately increases the responses of the intact forepaw cortex to forepaw stimuli (above the level of the lesion) in anesthetized rats. These increased forepaw responses were independent of the global changes in cortical state induced by the spinal cord transection described in our previous work (Aguilar et al., J Neurosci 2010), as the responses increased both when the cortex was in a silent state (down-state) or in an active state (up-state). The increased responses in the intact forepaw cortex correlated with increased responses in the deafferented hindpaw cortex, suggesting that they could represent different points of view of the same immediate state-independent functional reorganization of the primary somatosensory cortex after spinal cord injury. Collectively, the results of the present study and of our previous study suggest that both state-dependent and state-independent mechanisms can jointly contribute to cortical reorganization immediately after spinal cord injury. PMID:23922771

  20. Comparing the functional representations of central and border whiskers in rat primary somatosensory cortex.

    PubMed

    Brett-Green, B A; Chen-Bee, C H; Frostig, R D

    2001-12-15

    The anatomical representations of the large facial whiskers, termed barrels, are topographically organized and highly segregated in the posteromedial barrel subfield (PMBSF) of rat layer IV primary somatosensory cortex. Although the functional representations of single whiskers are aligned with their appropriate barrels, their areal extents are rather large, spreading outward from the appropriate barrel along the tangential plane and thereby spanning multiple neighboring and non-neighboring barrels and septal regions. To date, single-whisker functional representations have been characterized primarily for whiskers whose corresponding barrels are located centrally within the PMBSF (central whiskers). Using intrinsic signal imaging verified with post-imaging single-unit recording, we demonstrate that border whiskers, whose barrels are located at the borders of the PMBSF, also evoke large activity areas that are similar in size to those of central whiskers but spread beyond the PMBSF and sometimes beyond primary somatosensory cortex into the neighboring dysgranular zones. This study indicates that the large functional representation of a single whisker is a basic functional feature of the rat whisker-to-barrel system and, combined with results from other studies, suggest that a large functional representation of a small, point-like area on the sensory epithelium may be a functional feature of primary sensory cortex in general. PMID:11739601

  1. Single-unit Analysis of Somatosensory Processing in Core Auditory Cortex of Hearing Ferrets

    PubMed Central

    Meredith, M. Alex; Allman, Brian L.

    2014-01-01

    The recent findings in several species that primary auditory cortex processes non-auditory information have largely overlooked the possibility for somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior – AAF, and primary auditory-- A1, fields) for tactile responsivity. Multiple single-unit recordings from anesthetized ferret cortex yielded histologically verified neurons (n=311) tested with electronically controlled auditory, visual and tactile stimuli and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. PMID:25728185

  2. Structure of a Single Whisker Representation in Layer 2 of Mouse Somatosensory Cortex

    PubMed Central

    Clancy, Kelly B.; Schnepel, Philipp; Rao, Antara T.

    2015-01-01

    Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers. Single whisker deflection elicited low-probability spikes in highly distributed, shifting neural ensembles spanning multiple cortical columns. Whisker-evoked response probability correlated strongly with spontaneous firing rate, but weakly with tuning properties, indicating a spectrum of inherent responsiveness across pyramidal cells. L2 neurons projecting to motor and secondary somatosensory cortex differed in whisker tuning and responsiveness, and carried different amounts of information about columnar whisker deflection. From these data, we derive a quantitative, fine-scale picture of the distributed point representation in L2. PMID:25740523

  3. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Overstreet, C. K.; Klein, J. D.; Helms Tillery, S. I.

    2013-12-01

    Objective. Electrical stimulation of cortical tissue could be used to deliver sensory information as part of a neuroprosthetic device, but current control of the location, resolution, quality, and intensity of sensations elicited by intracortical microstimulation (ICMS) remains inadequate for this purpose. One major obstacle to resolving this problem is the poor understanding of the neural activity induced by ICMS. Even with new imaging methods, quantifying the activity of many individual neurons within cortex is difficult. Approach. We used computational modeling to examine the response of somatosensory cortex to ICMS. We modeled the axonal arbors of eight distinct morphologies of interneurons and seven types of pyramidal neurons found in somatosensory cortex and identified their responses to extracellular stimulation. We then combined these axonal elements to form a multi-layered slab of simulated cortex and investigated the patterns of neural activity directly induced by ICMS. Specifically we estimated the number, location, and variety of neurons directly recruited by stimulation on a single penetrating microelectrode. Main results. The population of neurons activated by ICMS was dependent on both stimulation strength and the depth of the electrode within cortex. Strikingly, stimulation recruited interneurons and pyramidal neurons in very different patterns. Interneurons are primarily recruited within a dense, continuous region around the electrode, while pyramidal neurons were recruited in a sparse fashion both near the electrode and up to several millimeters away. Thus ICMS can lead to an unexpectedly complex spatial distribution of firing neurons. Significance. These results lend new insights to the complexity and range of neural activity that can be induced by ICMS. This work also suggests mechanisms potentially responsible for the inconsistency and unnatural quality of sensations initiated by ICMS. Understanding these mechanisms will aid in the design of

  4. Neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat.

    PubMed

    Jeffrey-Gauthier, Renaud; Guillemot, Jean-Paul; Piché, Mathieu

    2013-08-01

    Neuroimaging methods such as functional magnetic resonance imaging (fMRI) have been used extensively to investigate pain-related cerebral mechanisms. However, these methods rely on a tight coupling of neuronal activity to hemodynamic changes. Because pain may be associated with hemodynamic changes unrelated to local neuronal activity (eg, increased mean arterial pressure [MAP]), it is essential to determine whether the neurovascular coupling is maintained during nociceptive processing. In this study, local field potentials (LFP) and cortical blood flow (CBF) changes evoked by electrical stimulation of the left hind paw were recorded concomitantly in the right primary somatosensory cortex (SI) in 15 rats. LFP, CBF, and MAP changes were examined in response to stimulus intensities ranging from 3 to 30 mA. In addition, LFP, CBF, and MAP changes evoked by a 10-mA stimulation were examined during immersion of the tail in non-nociceptive or nociceptive hot water (counter-stimulation). SI neurovascular coupling was altered for stimuli of nociceptive intensities (P<0.001). This alteration was intensity-dependent and was strongly associated with MAP changes (r=0.98, P<0.001). However, when the stimulus intensity was kept constant, SI neurovascular coupling was not significantly affected by nociceptive counter-stimulation (P=0.4), which similarly affected the amplitude of shock-evoked LFP and CBF changes. It remains to be determined whether such neurovascular uncoupling occurs in humans, and whether it also affects other regions usually activated by painful stimuli. These results should be taken into account for accurate interpretation of fMRI studies that involve nociceptive stimuli associated with MAP changes. PMID:23707276

  5. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris).

    PubMed

    Reyes, Laura D; Harland, Tessa; Reep, Roger L; Sherwood, Chet C; Jacobs, Bob

    2016-01-01

    The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche. PMID:27166161

  6. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury.

    PubMed

    Wrigley, P J; Press, S R; Gustin, S M; Macefield, V G; Gandevia, S C; Cousins, M J; Middleton, J W; Henderson, L A; Siddall, P J

    2009-01-01

    The most obvious impairments associated with spinal cord injury (SCI) are loss of sensation and motor control. However, many subjects with SCI also develop persistent neuropathic pain below the injury which is often severe, debilitating and refractory to treatment. The underlying mechanisms of persistent neuropathic SCI pain remain poorly understood. Reports in amputees describing phantom limb pain demonstrate a positive correlation between pain intensity and the amount of primary somatosensory cortex (S1) reorganization. Of note, this S1 reorganization has also been shown to reverse with pain reduction. It is unknown whether a similar association between S1 reorganization and pain intensity exists in subjects with SCI. The aim of this investigation was to determine whether the degree of S1 reorganization following SCI correlated with on-going neuropathic pain intensity. In 20 complete SCI subjects (10 with neuropathic pain, 10 without neuropathic pain) and 21 control subjects without SCI, the somatosensory cortex was mapped using functional magnetic resonance imaging during light brushing of the right little finger, thumb and lip. S1 reorganization was demonstrated in SCI subjects with the little finger activation point moving medially towards the S1 region that would normally innervate the legs. The amount of S1 reorganization in subjects with SCI significantly correlated with on-going pain intensity levels. This study provides evidence of a link between the degree of cortical reorganization and the intensity of persistent neuropathic pain following SCI. Strategies aimed at reversing somatosensory cortical reorganization may have therapeutic potential in central neuropathic pain. PMID:19027233

  7. Functional Reorganization of the Primary Somatosensory Cortex of a Phantom Limb Pain Patient.

    PubMed

    Zhao, Jia; Guo, Xiaoli; Xia, Xiaolei; Peng, Weiwei; Wang, Wuchao; Li, Shulin; Zhang, Ya; Hu, Li

    2016-07-01

    Functional reorganization of the somatosensory system was widely observed in phantom limb pain patients. Whereas some studies demonstrated that the primary somatosensory cortex (S1) of the amputated limb was engaged with the regions around it, others showed that phantom limb pain was associated with preserved structure and functional organization in the former brain region. However, according to the law of use and disuse, the sensitivity of S1 of the amputated limb to pain-related context should be enhanced due to the adaptation to the long-lasting phantom limb pain experience. Here, we collected neurophysiological data from a patient with 21-year phantom limb pain using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) techniques. EEG data showed that both laser-evoked potentials (LEPs) and tactile-evoked potentials (TEPs) were clearly presented only when radiant-heat laser pulses and electrical pulses were delivered to the shoulder of the healthy limb, but not of the amputated limb. This observation suggested the functional deficit of somatosensory pathways at the amputated side. FMRI data showed that significant larger brain activations by painful rather than non-painful stimuli in video clips were observed not only at visual-related brain areas and anterior/mid-cingulate cortex, but also at S1 contralateral to the amputated limb. This observation suggested the increased sensitivity of S1 of the amputated limb to the pain-related context. In addition, such increase of sensitivity was significantly larger if the context was associated with the amputated limb of the patient. In summary, our findings provided novel evidence for a possible neuroplasticity of S1 of the amputated limb: in an amputee with long-lasting phantom limb pain, the sensitivity of S1 to pain-related and amputated-limb-related context was greatly enhanced. PMID:27389122

  8. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    PubMed Central

    Qi, Hui-Xin; Kaas, Jon H.; Reed, Jamie L.

    2014-01-01

    In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b). However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord injury. PMID:24860443

  9. A Neural Field Model of the Somatosensory Cortex: Formation, Maintenance and Reorganization of Ordered Topographic Maps

    PubMed Central

    Detorakis, Georgios Is.; Rougier, Nicolas P.

    2012-01-01

    We investigate the formation and maintenance of ordered topographic maps in the primary somatosensory cortex as well as the reorganization of representations after sensory deprivation or cortical lesion. We consider both the critical period (postnatal) where representations are shaped and the post-critical period where representations are maintained and possibly reorganized. We hypothesize that feed-forward thalamocortical connections are an adequate site of plasticity while cortico-cortical connections are believed to drive a competitive mechanism that is critical for learning. We model a small skin patch located on the distal phalangeal surface of a digit as a set of 256 Merkel ending complexes (MEC) that feed a computational model of the primary somatosensory cortex (area 3b). This model is a two-dimensional neural field where spatially localized solutions (a.k.a. bumps) drive cortical plasticity through a Hebbian-like learning rule. Simulations explain the initial formation of ordered representations following repetitive and random stimulations of the skin patch. Skin lesions as well as cortical lesions are also studied and results confirm the possibility to reorganize representations using the same learning rule and depending on the type of the lesion. For severe lesions, the model suggests that cortico-cortical connections may play an important role in complete recovery. PMID:22808127

  10. Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex.

    PubMed

    Masamoto, Kazuto; Kim, Tae; Fukuda, Mitsuhiro; Wang, Ping; Kim, Seong-Gi

    2007-04-01

    Functional magnetic resonance imaging (fMRI) in anesthetized rodents has been commonly performed with alpha-chloralose, which can be used only for terminal experiments. To develop a survival fMRI protocol, an isoflurane (ISO) -anesthetized rat model was systematically evaluated by simultaneous measurements of field potential (FP) and cerebral blood flow (CBF) in the somatosensory cortex. A conventional forepaw stimulation paradigm with 0.3 ms pulse width, 1.2 mA current, and 3 Hz frequency induced 54% less evoked FP and 84% less CBF response under ISO than alpha-chloralose. To improve stimulation-induced responses under ISO, 10-pulse stimulations were performed with variations of width, current, and frequency. For widths of 0.1-5.0 ms and currents of 0.4-2.0 mA, evoked FP and CBF increased similarly and reached a plateau. The evoked FP increased monotonically for intervals from 50 to 500 ms, but the CBF peaked at an interval of 83 ms (approximately 12 Hz frequency). These data suggest that different anesthetics profoundly affect FP and CBF responses in different ways, which requires optimizing stimulation parameters for each anesthetic. With the refined stimulation parameters, fMRI consistently detected a well-localized activation focus at the primary somatosensory cortex in ISO-anesthetized rats. Thus, the ISO-anesthetized rat model can be used for cerebrovascular activation studies, allowing repeated noninvasive survival experiments. PMID:16731882

  11. Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats

    PubMed Central

    Aguilar, J; Pulecchi, F; Dilena, R; Oliviero, A; Priori, A; Foffani, G

    2011-01-01

    Abstract Afferent somatosensory activity from the spinal cord has a profound impact on the activity of the brain. Here we investigated the effects of spinal stimulation using direct current, delivered at the thoracic level, on the spontaneous activity and on the somatosensory evoked potentials of the gracile nucleus, which is the main entry point for hindpaw somatosensory signals reaching the brain from the dorsal columns, and of the primary somatosensory cortex in anaesthetized rats. Anodal spinal direct current stimulation (sDCS) increased the spontaneous activity and decreased the amplitude of evoked responses in the gracile nucleus, whereas cathodal sDCS produced the opposite effects. At the level of the primary somatosensory cortex, the changes in spontaneous activity induced by sDCS were consistent with the effects observed in the gracile nucleus, but the changes in cortical evoked responses were more variable and state dependent. Therefore, sDCS can modulate in a polarity-specific manner the supraspinal activity of the somatosensory system, offering a versatile bottom-up neuromodulation technique that could potentially be useful in a number of clinical applications. PMID:21825031

  12. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex.

    PubMed

    Wagener, Robin J; Witte, Mirko; Guy, Julien; Mingo-Moreno, Nieves; Kügler, Sebastian; Staiger, Jochen F

    2016-02-01

    Neuronal wiring is key to proper neural information processing. Tactile information from the rodent's whiskers reaches the cortex via distinct anatomical pathways. The lemniscal pathway relays whisking and touch information from the ventral posteromedial thalamic nucleus to layer IV of the primary somatosensory "barrel" cortex. The disorganized neocortex of the reeler mouse is a model system that should severely compromise the ingrowth of thalamocortical axons (TCAs) into the cortex. Moreover, it could disrupt intracortical wiring. We found that neuronal intermingling within the reeler barrel cortex substantially exceeded previous descriptions, leading to the loss of layers. However, viral tracing revealed that TCAs still specifically targeted transgenically labeled spiny layer IV neurons. Slice electrophysiology and optogenetics proved that these connections represent functional synapses. In addition, we assessed intracortical activation via immediate-early-gene expression resulting from a behavioral exploration task. The cellular composition of activated neuronal ensembles suggests extensive similarities in intracolumnar information processing in the wild-type and reeler brains. We conclude that extensive ectopic positioning of neuronal partners can be compensated for by cell-autonomous mechanisms that allow for the establishment of proper connectivity. Thus, genetic neuronal fate seems to be of greater importance for correct cortical wiring than radial neuronal position. PMID:26564256

  13. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex

    PubMed Central

    Wagener, Robin J.; Witte, Mirko; Guy, Julien; Mingo-Moreno, Nieves; Kügler, Sebastian; Staiger, Jochen F.

    2016-01-01

    Neuronal wiring is key to proper neural information processing. Tactile information from the rodent's whiskers reaches the cortex via distinct anatomical pathways. The lemniscal pathway relays whisking and touch information from the ventral posteromedial thalamic nucleus to layer IV of the primary somatosensory “barrel” cortex. The disorganized neocortex of the reeler mouse is a model system that should severely compromise the ingrowth of thalamocortical axons (TCAs) into the cortex. Moreover, it could disrupt intracortical wiring. We found that neuronal intermingling within the reeler barrel cortex substantially exceeded previous descriptions, leading to the loss of layers. However, viral tracing revealed that TCAs still specifically targeted transgenically labeled spiny layer IV neurons. Slice electrophysiology and optogenetics proved that these connections represent functional synapses. In addition, we assessed intracortical activation via immediate-early-gene expression resulting from a behavioral exploration task. The cellular composition of activated neuronal ensembles suggests extensive similarities in intracolumnar information processing in the wild-type and reeler brains. We conclude that extensive ectopic positioning of neuronal partners can be compensated for by cell-autonomous mechanisms that allow for the establishment of proper connectivity. Thus, genetic neuronal fate seems to be of greater importance for correct cortical wiring than radial neuronal position. PMID:26564256

  14. Distributed functions of detection and discrimination of vibrotactile stimuli in the hierarchical human somatosensory system

    PubMed Central

    Kim, Junsuk; Müller, Klaus-Robert; Chung, Yoon Gi; Chung, Soon-Cheol; Park, Jang-Yeon; Bülthoff, Heinrich H.; Kim, Sung-Phil

    2015-01-01

    According to the hierarchical view of human somatosensory network, somatic sensory information is relayed from the thalamus to primary somatosensory cortex (S1), and then distributed to adjacent cortical regions to perform further perceptual and cognitive functions. Although a number of neuroimaging studies have examined neuronal activity correlated with tactile stimuli, comparatively less attention has been devoted toward understanding how vibrotactile stimulus information is processed in the hierarchical somatosensory cortical network. To explore the hierarchical perspective of tactile information processing, we studied two cases: (a) discrimination between the locations of finger stimulation; and (b) detection of stimulation against no stimulation on individual fingers, using both standard general linear model (GLM) and searchlight multi-voxel pattern analysis (MVPA) techniques. These two cases were studied on the same data set resulting from a passive vibrotactile stimulation experiment. Our results showed that vibrotactile stimulus locations on fingers could be discriminated from measurements of human functional magnetic resonance imaging (fMRI). In particular, it was in case (a) we observed activity in contralateral posterior parietal cortex (PPC) and supramarginal gyrus (SMG) but not in S1, while in case; (b) we found significant cortical activations in S1 but not in PPC and SMG. These discrepant observations suggest the functional specialization with regard to vibrotactile stimulus locations, especially, the hierarchical information processing in the human somatosensory cortical areas. Our findings moreover support the general understanding that S1 is the main sensory receptive area for the sense of touch, and adjacent cortical regions (i.e., PPC and SMG) are in charge of a higher level of processing and may thus contribute most for the successful classification between stimulated finger locations. PMID:25653609

  15. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest

    PubMed Central

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J.; Avenanti, Alessio; Keysers, Christian

    2016-01-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of SI and several brain regions functionally associated with SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over SI. PMID:25882754

  16. Somatosensory areas of manatee cerebral cortex: histochemical characterization and functional implications.

    PubMed

    Sarko, D K; Reep, R L

    2007-01-01

    A histochemical and cytoarchitectural analysis was completed for the neocortex of the Florida manatee in order to localize primary sensory areas and particularly primary somatosensory cortex (SI). Based on the location of cytochrome oxidase-dense staining in flattened cortex preparations, preliminary functional divisions were assigned for SI with the face represented laterally followed by the flipper, body and tail representations proceeding medially. The neonate exhibited four distinct patches in the frontoparietal cortex (presumptive SI), whereas juvenile and adult specimens demonstrated a distinct pattern in which cytochrome oxidase-dense staining appeared to be blended into one large patch extending dorsomedially. This differential staining between younger versus older more developed animals was also seen on coronal sections stained for cytochrome oxidase, myelin, or Nissl bodies. These were systematically analyzed in order to accurately localize the laminar and cytoarchitectural extent of cytochrome oxidase staining. Overall, SI appears to span seven cytoarchitectural areas to which we have assigned presumptive functional representations based on the relative locations of cytochrome oxidase-dense staining. PMID:16912474

  17. Precision mapping of the vibrissa representation within murine primary somatosensory cortex.

    PubMed

    Knutsen, Per M; Mateo, Celine; Kleinfeld, David

    2016-10-01

    The ability to form an accurate map of sensory input to the brain is an essential aspect of interpreting functional brain signals. Here, we consider the somatotopic map of vibrissa-based touch in the primary somatosensory (vS1) cortex of mice. The vibrissae are represented by a Manhattan-like grid of columnar structures that are separated by inter-digitating septa. The development, dynamics and plasticity of this organization is widely used as a model system. Yet, the exact anatomical position of this organization within the vS1 cortex varies between individual mice. Targeting of a particular column in vivo therefore requires prior mapping of the activated cortical region, for instance by imaging the evoked intrinsic optical signal (eIOS) during vibrissa stimulation. Here, we describe a procedure for constructing a complete somatotopic map of the vibrissa representation in the vS1 cortex using eIOS. This enables precise targeting of individual cortical columns. We found, using C57BL/6 mice, that although the precise location of the columnar field varies between animals, the relative spatial arrangement of the columns is highly preserved. This finding enables us to construct a canonical somatotopic map of the vibrissae in the vS1 cortex. In particular, the position of any column, in absolute anatomical coordinates, can be established with near certainty when the functional representations in the vS1 cortex for as few as two vibrissae have been mapped with eIOS.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574305

  18. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850576

  19. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-01

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications. PMID:26504211

  20. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex

    PubMed Central

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A.; Gaunt, Robert A.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-01-01

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters—namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications. PMID:26504211

  1. Facilitation of neuronal activity in somatosensory and posterior parietal cortex during prehension.

    PubMed

    Gardner, E P; Ro, J Y; Debowy, D; Ghosh, S

    1999-08-01

    In order to study prehension in a reproducible manner, we trained monkeys to perform a task in which rectangular, spherical, and cylindrical objects were grasped, lifted, held, and lowered in response to visual cues. The animal's hand movements were monitored using digital video, together with simultaneously recorded spike trains of neurons in primary somatosensory cortex (S-I) and posterior parietal cortex (PPC). Statistically significant task-related modulation of activity occurred in 78% of neurons tested in the hand area; twice as many cells were facilitated during object acquisition as were depressed. Cortical neurons receiving inputs from tactile receptors in glabrous skin of the fingers and palm, hairy skin of the hand dorsum, or deep receptors in muscles and joints of the hand modulated their firing rates during prehension in consistent and reproducible patterns. Spike trains of individual neurons differed in duration and amplitude of firing, the particular hand behavior(s) monitored, and their sensitivity to the shape of the grasped object. Neurons were classified by statistical analysis into groups whose spike trains were tuned to single task stages, spanned two successive stages, or were multiaction. The classes were not uniformly distributed in specific cytoarchitectonic fields, nor among particular somatosensory modalities. Sequential deformation of parts of the hand as the task progressed was reflected in successive responses of different members of this population. The earliest activity occurred in PPC, where 28% of neurons increased firing prior to hand contact with objects; such neurons may participate in anticipatory motor control programs. Activity shifted rostrally to S-I as the hand contacted the object and manipulated it. The shape of the grasped object had the strongest influence on PPC cells. The results suggest that parietal neurons monitor hand actions during prehension, as well as the physical properties of the grasped object, by shifting

  2. Cortical Plasticity Induced by Spike-Triggered Microstimulation in Primate Somatosensory Cortex

    PubMed Central

    Song, Weiguo; Kerr, Cliff C.; Lytton, William W.; Francis, Joseph T.

    2013-01-01

    Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow. PMID:23472086

  3. Large-Scale Reorganization in the Somatosensory Cortex and Thalamus after Sensory Loss in Macaque Monkeys

    PubMed Central

    Jain, Neeraj; Qi, Hui-Xin; Collins, Christine E.; Kaas, Jon H.

    2008-01-01

    Adult brains undergo large-scale plastic changes following peripheral and central injuries. Although it has been shown that both the cortical and thalamic representations can reorganize, uncertainties exist regarding the extent, nature, and time course of changes at each level. We have determined how cortical representations in the somatosensory area 3b and the ventroposterior (VP) nucleus of thalamus are affected by long standing unilateral dorsal column lesions at cervical levels in macaque monkeys. In monkeys with recovery periods of 22-23 months, the intact face inputs expanded into the deafferented hand region of area 3b following complete or partial lesions of the dorsal columns. The expansion of the face region could extend all the way medially into the leg and foot representations. In the same monkeys, similar expansions of the face representation take place in the VP nucleus of the thalamus, indicating that both these processing levels undergo similar reorganizations. The receptive fields of the expanded representations were similar in somatosensory cortex and thalamus. In two monkeys, we determined the extent of the brain reorganization immediately after dorsal column lesions. In these monkeys, the deafferented regions of area 3b and the VP nucleus became unresponsive to the peripheral touch immediately after the lesion. No reorganization was seen in the cortex or the VP nucleus. A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation. PMID:18945912

  4. Quantitative analysis of somatosensory cortex development in metatherians and monotremes, with comparison to the laboratory rat.

    PubMed

    Ashwell, Ken W S

    2015-01-01

    Metatherians and monotremes are born in an immature state, followed by prolonged nurturing by maternal lactation. Quantitative analysis of isocortical sections held in the collections at the Museum für Naturkunde, Berlin was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness between metatherian groups, monotremes, and the laboratory rat. Analysis indicated that the pace of pallial growth in the monotremes is much lower than that in the metatherians or laboratory rat, with an estimated 8.6-fold increase in parietal cortex thickness between 10 and 100 mm body length, compared to a 10- to 20-fold increase among the metatherians and the rat. It was found that aggregation of cortical plate neurons occurs at similar embryo size in the mammals studied (around 8-14 mm body length) and a similar pallial thickness (around 200 µm), but that proliferative zone involution occurs at a much higher body size and pallial thickness in the monotremes compared to the metatherians and the laboratory rat. The observations suggest that cortical development in the monotremes is slower and subject to different regulatory signals to the therians studied. The slow pace may be related to either generally slower metabolism in monotremes or less efficient nutrient supply to the offspring due to the lack of teats. PMID:25393314

  5. Quantitative analysis of somatosensory cortex development in eutherians, with a comparison with metatherians and monotremes.

    PubMed

    Ashwell, Ken W S

    2015-01-01

    Extant eutherians exhibit a wide range of adult brain sizes and degree of cortical gyrification. Quantitative analysis of parietal isocortical sections held in museum collections was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness among diverse eutherian embryos, foetuses, and neonates. Analysis indicated that, for most eutherians, cortical plate aggregation begins at about 6-18 mm greatest length or about 120-320 µm pallial thickness. Expansion of the proliferative compartment occurs at a similar pace in most eutherians, but exceptionally rapidly in hominoids. Involution of the pallial proliferative zones occurs over a wide range of body sizes (42 mm to over 500 mm greatest length) or when the cerebral cortex reaches a thickness of 1.2-9.8 mm depending on the eutherian group. Many of these values overlap with those for metatherians. The findings suggest that there is less evolutionary flexibility in the timing of cortical plate aggregation than in the rate of expansion of the pallial proliferative compartment and the duration of proliferative zone activity. PMID:25884290

  6. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex.

    PubMed

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Iordanescu, Gheorghe; Wyrwicz, Alice M

    2015-11-01

    Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavior of LFP observed under isoflurane did not parallel the behavior of BOLD, SU, or MUA. These findings suggest that the relationship between these signals may not be straightforward. BOLD may scale more closely with the best measure of the excitatory subcomponents of the underlying neuronal activity, which may vary according to experimental conditions that alter the excitatory/inhibitory balance in the cortex. PMID:26104288

  7. Multi-electrode stimulation in somatosensory cortex increases probability of detection

    NASA Astrophysics Data System (ADS)

    Zaaimi, Boubker; Ruiz-Torres, Ricardo; Solla, Sara A.; Miller, Lee E.

    2013-10-01

    Objective. Brain machine interfaces (BMIs) that decode control signals from motor cortex have developed tremendously in the past decade, but virtually all rely exclusively on vision to provide feedback. There is now increasing interest in developing an afferent interface to replace natural somatosensation, much as the cochlear implant has done for the sense of hearing. Preliminary experiments toward a somatosensory neuroprosthesis have mostly addressed the sense of touch, but proprioception, the sense of limb position and movement, is also critical for the control of movement. However, proprioceptive areas of cortex lack the precise somatotopy of tactile areas. We showed previously that there is only a weak tendency for neighboring neurons in area 2 to signal similar directions of hand movement. Consequently, stimulation with the relatively large currents used in many studies is likely to activate a rather heterogeneous set of neurons. Approach. Here, we have compared the effect of single-electrode stimulation at subthreshold levels to the effect of stimulating as many as seven electrodes in combination. Main results. We found a mean enhancement in the sensitivity to the stimulus (d‧) of 0.17 for pairs compared to individual electrodes (an increase of roughly 30%), and an increase of 2.5 for groups of seven electrodes (260%). Significance. We propose that a proprioceptive interface made up of several hundred electrodes may yield safer, more effective sensation than a BMI using fewer electrodes and larger currents.

  8. Interhemispheric Plasticity Protects the Deafferented Somatosensory Cortex from Functional Takeover After Nerve Injury

    PubMed Central

    Koretsky, Alan P.

    2014-01-01

    Abstract Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC. PMID:25117691

  9. Wireless simultaneous stimulation-and-recording device to train cortical circuits in somatosensory cortex.

    PubMed

    Ramshur, John T; de Jongh Curry, Amy L; Waters, Robert S

    2014-01-01

    We describe for the first time the design, implementation, and testing of a telemetry controlled simultaneous stimulation and recording device (SRD) to deliver chronic intercortical microstimulation (ICMS) to physiologically identified sites in rat somatosensory cortex (SI) and test hypotheses that chronic ICMS strengthens interhemispheric pathways and leads to functional reorganization in the enhanced cortex. The SRD is a custom embedded device that uses the Cypress Semiconductor's programmable system on a chip (PSoC) that is remotely controlled via Bluetooth. The SRC can record single or multiunit responses from any two of 12 available inputs at 1-15 ksps per channel and simultaneously deliver stimulus pulses (0-255 μA; 10 V compliance) to two user selectable electrodes using monophasic, biphasic, or pseudophasic stimulation waveforms (duration: 0-5 ms, inter-phase interval: 0-5 ms, frequency: 0.1-5 s, delay: 0-10 ms). The SRD was bench tested and validated in vivo in a rat animal model. PMID:25569987

  10. Rapid-Rate Paired Associative Stimulation over the Primary Somatosensory Cortex

    PubMed Central

    Tsang, Philemon; Bailey, Aaron Z.; Nelson, Aimee J.

    2015-01-01

    Rapid-rate paired associative stimulation (rPAS) involves repeat pairing of peripheral nerve stimulation and Transcranial magnetic stimulation (TMS) pulses at a 5 Hz frequency. RPAS over primary motor cortex (M1) operates with spike-timing dependent plasticity such that increases in corticospinal excitability occur when the nerve and TMS pulse temporally coincide in cortex. The present study investigates the effects of rPAS over primary somatosensory cortex (SI) which has not been performed to date. In a series of experiments, rPAS was delivered over SI and M1 at varying timing intervals between the nerve and TMS pulse based on the latency of the N20 somatosensory evoked potential (SEP) component within each participant (intervals for SI-rPAS: N20, N20-2.5 ms, N20 + 2.5 ms, intervals for M1-rPAS: N20, N20+5 ms). Changes in SI physiology were measured via SEPs (N20, P25, N20-P25) and SEP paired-pulse inhibition, and changes in M1 physiology were measured with motor evoked potentials and short-latency afferent inhibition. Measures were obtained before rPAS and at 5, 25 and 45 minutes following stimulation. Results indicate that paired-pulse inhibition and short-latency afferent inhibition were reduced only when the SI-rPAS nerve-TMS timing interval was set to N20-2.5 ms. SI-rPAS over SI also led to remote effects on motor physiology over a wider range of nerve-TMS intervals (N20-2.5 ms – N20+2.5 ms) during which motor evoked potentials were increased. M1-rPAS increased motor evoked potentials and reduced short-latency afferent inhibition as previously reported. These data provide evidence that, similar to M1, rPAS over SI is spike-timing dependent and is capable of exerting changes in SI and M1 physiology. PMID:25799422

  11. Differential Effects of Aging on Fore– and Hindpaw Maps of Rat Somatosensory Cortex

    PubMed Central

    David-Jürgens, Marianne; Churs, Lydia; Berkefeld, Thomas; Zepka, Roberto F.; Dinse, Hubert R.

    2008-01-01

    Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation. PMID:18852896

  12. Activity of Somatosensory-Responsive Neurons in High Subdivisions of SI Cortex during Locomotion

    PubMed Central

    Favorov, Oleg V.; Nilaweera, Wijitha U.; Miasnikov, Alexandre A.

    2015-01-01

    Responses of neurons in the primary somatosensory cortex during movements are poorly understood, even during such simple tasks as walking on a flat surface. In this study, we analyzed spike discharges of neurons in the rostral bank of the ansate sulcus (areas 1–2) in 2 cats while the cats walked on a flat surface or on a horizontal ladder, a complex task requiring accurate stepping. All neurons (n = 82) that had receptive fields (RFs) on the contralateral forelimb exhibited frequency modulation of their activity that was phase locked to the stride cycle during simple locomotion. Neurons with proximal RFs (upper arm/shoulder) and pyramidal tract-projecting neurons (PTNs) with fast-conducting axons tended to fire at peak rates in the middle of the swing phase, whereas neurons with RFs on the distal limb (wrist/paw) and slow-conducting PTNs typically showed peak firing at the transition between swing and stance phases. Eleven of 12 neurons with tactile RFs on the volar forepaw began firing toward the end of swing, with peak activity occurring at the moment of foot contact with floor, thereby preceding the evoked sensory volley from touch receptors. Requirement to step accurately on the ladder affected 91% of the neurons, suggesting their involvement in control of accuracy of stepping. During both tasks, neurons exhibited a wide variety of spike distributions within the stride cycle, suggesting that, during either simple or ladder locomotion, they represent the cycling somatosensory events in their activity both predictively before and reflectively after these events take place. PMID:25995465

  13. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest.

    PubMed

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J; Avenanti, Alessio; Keysers, Christian; Gazzola, Valeria; Maurits, Natasha M

    2015-07-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although the SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over the SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over the SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of the SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of the SI and several brain regions functionally associated with the SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over the SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over the SI. PMID:25882754

  14. Somatosensory Contribution to the Initial Stages of Human Motor Learning

    PubMed Central

    Bernardi, Nicolò F.; Darainy, Mohammad

    2015-01-01

    The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. SIGNIFICANCE STATEMENT The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor

  15. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    PubMed Central

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  16. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  17. Effects of passive heat stress on human somatosensory processing.

    PubMed

    Nakata, Hiroki; Oshiro, Misaki; Namba, Mari; Shibasaki, Manabu

    2015-12-01

    Herein, we investigated the effects of passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs). Fifteen healthy subjects received a median nerve stimulation at the left wrist under two thermal conditions: Heat Stress and normothermic Time Control. The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Under the Heat Stress condition, SEPs were recorded at normothermic baseline (1st), early in heat stress (2nd), when esophageal temperature had increased by ~1.0°C (3rd) and ~2.0°C (4th), and after heat stress (5th). In the Time Control condition, SEPs were measured at the same time intervals as those in the Heat Stress condition. The peak latencies and amplitudes of SEPs did not change early in heat stress. However, the latencies of P14, N20, and N60 at C4' and P14, N18, and P22 at Fz were significantly shorter in the 4th session than in the 1st session. Furthermore, the peak amplitudes of P25 and N60 at C4', and P22 and N30 at Fz decreased with increases in body temperature. On the other hand, under the Time Control condition, no significant differences were observed in the amplitudes or latencies of any component of SEPs. These results suggested that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and hyperthermia impaired the neural activity of cortical somatosensory processing. PMID:26468258

  18. Exposure to Music and Noise During Pregnancy Influences Neurogenesis and Thickness in Motor and Somatosensory Cortex of Rat Pups

    PubMed Central

    Kim, Chang-Hee; Lee, Sang-Chul; Shin, Je Wook; Chung, Kyung-Jin; Lee, Shin-Ho; Shin, Mal-Soon; Baek, Sang-Bin; Sung, Yun-Hee; Kim, Chang-Ju

    2013-01-01

    Purpose Prenatal environmental conditions affect the development of the fetus. In the present study, we investigated the effects of exposure to music and noise during pregnancy on neurogenesis and thickness in the motor and somatosensory cortex of rat pups. Methods The pregnant rats in the music-applied group were exposed to 65 dB of comfortable music for 1 hour, once per day, from the 15th day of pregnancy until delivery. The pregnant rats in the noise-applied group were exposed to 95 dB of sound from a supersonic sound machine for 1 hour, once per day, from the 15th day of pregnancy until delivery. After birth, the offspring were left undisturbed together with their mother. The rat pups were sacrificed at 21 days after birth. Results Exposure to music during pregnancy increased neurogenesis in the motor and somatosensory cortex of rat pups. In contrast, rat pups exposed to noise during pregnancy showed decreased neurogenesis and thickness in the motor and somatosensory cortex. Conclusions Our study suggests that music and noise during the developmental period are important factors influencing brain development and urogenital disorders. PMID:24143288

  19. Adaptive changes in the neuromagnetic response of the primary and association somatosensory areas following repetitive tactile hand stimulation in humans

    PubMed Central

    Popescu, Anda; Barlow, Steven; Venkatesan, Lalit; Wang, Jingyan; Popescu, Mihai

    2014-01-01

    Cortical adaptation in the primary somatosensory cortex (SI) has been probed using different stimulation modalities and recording techniques, in both human and animal studies. In contrast, considerably less knowledge has been gained about the adaptation profiles in other areas of the cortical somatosensory network. Using magnetoencephalography, we examined the patterns of short-term adaptation for evoked responses in SI and somatosensory association areas during tactile stimulation applied to the glabrous skin of the right hand. Cutaneous stimuli were delivered as trains of serial pulses with a constant frequency of 2 Hz and 4 Hz in separate runs, and a constant inter-train interval of 5 s. The unilateral stimuli elicited transient responses to the serial pulses in the train, with several response components that were separated by Independent Component Analysis. Subsequent neuromagnetic source reconstruction identified regional generators in the contralateral SI and somatosensory association areas in the posterior parietal cortex (PPC). Activity in the bilateral secondary somatosensory cortex (i.e. SII/PV) was also identified, although less consistently across subjects. The dynamics of the evoked activity in each area and the frequency-dependent adaptation effects were assessed from the changes in the relative amplitude of serial responses in each train. We show that the adaptation profiles in SI and PPC can be quantitatively characterized from neuromagnetic recordings using tactile stimulation, with the sensitivity to repetitive stimulation increasing from SI to PPC. A similar approach for SII/PV has proven less straightforward, potentially due to the selective nature of these areas to respond predominantly to certain stimuli. PMID:22331631

  20. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris).

    PubMed

    Reyes, Laura D; Stimpson, Cheryl D; Gupta, Kanika; Raghanti, Mary Ann; Hof, Patrick R; Reep, Roger L; Sherwood, Chet C

    2015-01-01

    Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved

  1. Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo.

    PubMed

    Cayce, Jonathan M; Friedman, Robert M; Jansen, E Duco; Mahavaden-Jansen, Anita; Roe, Anna W

    2011-07-01

    Pulsed infrared light has shown promise as an alternative to electrical stimulation in applications where contact free or high spatial precision stimulation is desired. Infrared neural stimulation (INS) is well characterized in the peripheral nervous system; however, to date, research has been limited in the central nervous system. In this study, pulsed infrared light (λ=1.875 μm, pulse width=250 μs, radiant exposure=0.01-0.55 J/cm(2), fiber size=400 μm, repetition rate=50-200 Hz) was used to stimulate the somatosensory cortex of anesthetized rats, and its efficacy was assessed using intrinsic optical imaging and electrophysiology techniques. INS was found to evoke an intrinsic response of similar magnitude to that evoked by tactile stimulation (0.3-0.4% change in intrinsic signal magnitude). A maximum deflection in the intrinsic signal was measured to range from 0.05% to 0.4% in response to INS, and the activated region of cortex measured approximately 2mm in diameter. The intrinsic signal magnitude increased with faster laser repetition rates and increasing radiant exposures. Single unit recordings indicated a statistically significant decrease in neuronal firing that was observed at the onset of INS stimulation (0.5s stimulus) and continued up to 1s after stimulation onset. The pattern of neuronal firing differed from that observed during tactile stimulation, potentially due to a different spatial integration field of the pulsed infrared light compared to tactile stimulation. The results demonstrate that INS can be used safely and effectively to manipulate neuronal firing. PMID:21513806

  2. Distribution and morphology of nitrergic neurons across functional domains of the rat primary somatosensory cortex

    PubMed Central

    Nogueira-Campos, Anaelli A.; Finamore, Deborah M.; Imbiriba, Luis A.; Houzel, Jean C.; Franca, João G.

    2012-01-01

    The rat primary somatosensory cortex (S1) is remarkable for its conspicuous vertical compartmentalization in barrels and septal columns, which are additionally stratified in horizontal layers. Whereas excitatory neurons from each of these compartments perform different types of processing, the role of interneurons is much less clear. Among the numerous types of GABAergic interneurons, those producing nitric oxide (NO) are especially puzzling, since this gaseous messenger can modulate neural activity, synaptic plasticity, and neurovascular coupling. We used a quantitative morphological approach to investigate whether nitrergic interneurons, which might therefore be considered both as NO volume diffusers and as elements of local circuitry, display features that could relate to barrel cortex architecture. In fixed brain sections, nitrergic interneurons can be revealed by histochemical processing for NADPH-diaphorase (NADPHd). Here, the dendritic arbors of nitrergic neurons from different compartments of area S1 were 3D reconstructed from serial 200 μm thick sections, using 100x objective and the Neurolucida system. Standard morphological parameters were extracted for all individual arbors and compared across columns and layers. Wedge analysis was used to compute dendritic orientation indices. Supragranular (SG) layers displayed the highest density of nitrergic neurons, whereas layer IV contained nitrergic neurons with largest soma area. The highest nitrergic neuronal density was found in septa, where dendrites were previously characterized as more extense and ramified than in barrels. Dendritic arbors were not confined to the boundaries of the column nor layer of their respective soma, being mostly double-tufted and vertically oriented, except in SG layers. These data strongly suggest that nitrergic interneurons adapt their morphology to the dynamics of processing performed by cortical compartments. PMID:23133407

  3. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-06-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. PMID:26762857

  4. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex

    PubMed Central

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. PMID:26762857

  5. Retardation in somatosensory cortex development induced by postnatal BrdU treatment in mice.

    PubMed

    Béldi, Melinda; Takács, József; Bárdos, György; Világi, Ildikó

    2008-11-01

    Cerebral dysgeneses are in the background of several neurological and mental disturbances. The aim of the present study was to investigate structural and activity changes following disturbed postnatal neuronal development in mice. Newborn C57Bl6 mice were exposed to 5-bromo-2'-deoxyuridine (BrdU: daily 50 microg/g body weight) during a period between postnatal days P0-P5 or P0-P11, respectively, and neuronal malformation and malfunctioning of somatosensory (barrel field) cortex was analyzed in adolescent animals. Alterations in histological architecture of interneuronal and glial elements were studied and correlated with electrophysiological modifications. Between P30 and P35 days litters underwent ex vivo electrophysiological experiments to examine the changes in basic excitability and in synaptic efficacy. Parallel immunohistochemistry was performed to detect BrdU, GABA and GFAP. There were no BrdU immunopositive cell nuclei in control animals, but marked staining was observed in both BrdU treated groups. Lessening in the number of GABAergic neurons was observed in the treated groups. GFAP immunohistochemical analysis has shown an increased number of activated astroglial cells in treated animals. Reduction of the number of GABAergic neurons was observed in the treated groups. Electrophysiological recordings on cortical slices showed increased excitability in the treated groups. PMID:18678240

  6. Tactile texture signals in primate primary somatosensory cortex and their relation to subjective roughness intensity.

    PubMed

    Bourgeon, Stéphanie; Dépeault, Alexandra; Meftah, El-Mehdi; Chapman, C Elaine

    2016-04-01

    This study investigated the hypothesis that a simple intensive code, based on mean firing rate, could explain the cortical representation of subjective roughness intensity and its invariance with scanning speed. We examined the sensitivity of neurons in the cutaneous, finger representation of primary somatosensory cortex (S1) to a wide range of textures [1 mm high, raised-dot surfaces; spatial periods (SPs), 1.5-8.5 mm], scanned under the digit tips at different speeds (40-115 mm/s). Since subjective roughness estimates show a monotonic increase over this range and are independent of speed, we predicted that the mean firing rate of a subgroup of S1 neurons would share these properties. Single-unit recordings were made in four alert macaques (areas 3b, 1 and 2). Cells whose discharge rate showed a monotonic increase with SP, independent of speed, were particularly concentrated in area 3b. Area 2 was characterized by a high proportion of cells sensitive to speed, with or without texture sensitivity. Area 1 had intermediate properties. We suggest that area 3b and most likely area 1 play a key role in signaling roughness intensity, and that a mean rate code, signaled by both slowly and rapidly adapting neurons, is present at the level of area 3b. Finally, the substantial proportion of neurons that showed a monotonic change in discharge limited to a small range of SPs (often independent of response saturation) could play a role in discriminating smaller changes in SP. PMID:26763776

  7. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex

    PubMed Central

    Pourzia, Olivia; Feldman, Daniel E.

    2016-01-01

    Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1) during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation. PMID:26840956

  8. Effects of transcranial direct current stimulation of primary somatosensory cortex on vibrotactile detection and discrimination.

    PubMed

    Labbé, Sara; Meftah, El-Mehdi; Chapman, C Elaine

    2016-04-01

    Anodal transcranial direct current stimulation (a-tDCS) of primary somatosensory cortex (S1) has been shown to enhance tactile spatial acuity, but there is little information as to the underlying neuronal mechanisms. We examined vibrotactile perception on the distal phalanx of the middle finger before, during, and after contralateral S1 tDCS [a-, cathodal (c)-, and sham (s)-tDCS]. The experiments tested our shift-gain hypothesis, which predicted that a-tDCS would decrease vibrotactile detection and discrimination thresholds (leftward shift of the stimulus-response function with increased gain/slope) relative to s-tDCS, whereas c-tDCS would have the opposite effects (relative to s-tDCS). The results showed that weak a-tDCS (1 mA, 20 min) led to a reduction in both vibrotactile detection and discrimination thresholds to 73-76% of baseline during the application of the stimulation in subjects categorized as responders. These effects persisted after the end of a-tDCS but were absent 30 min later. Most, but not all, subjects showed a decrease in threshold (8/12 for detection; 9/12 for discrimination). Intersubject variability was explained by a ceiling effect in the discrimination task. c-tDCS had no significant effect on either detection or discrimination threshold. Taken together, our results supported our shift-gain hypothesis for a-tDCS but not c-tDCS. PMID:26864757

  9. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha

    2014-01-01

    The BOLD (blood-oxygen-level dependent) fMRI (functional Magnetic Resonance Imaging) signal is shaped, in part, by changes in red blood cell (RBC) content and flow across vascular compartments over time. These complex dynamics have been challenging to characterize directly due to a lack of appropriate imaging modalities. In this study, making use of infrared light scattering from RBCs, depth-resolved Optical Coherence Tomography (OCT) angiography was applied to image laminar functional hyperemia in the rat somatosensory cortex. After defining and validating depth-specific metrics for changes in RBC content and speed, laminar hemodynamic responses in microvasculature up to cortical depths of >1 mm were measured during a forepaw stimulus. The results provide a comprehensive picture of when and where changes in RBC content and speed occur during and immediately following cortical activation. In summary, the earliest and largest microvascular RBC content changes occurred in the middle cortical layers, while post-stimulus undershoots were most prominent superficially. These laminar variations in positive and negative responses paralleled known distributions of excitatory and inhibitory synapses, suggesting neuronal underpinnings. Additionally, the RBC speed response consistently returned to baseline more promptly than RBC content after the stimulus across cortical layers, supporting a “flow-volume mismatch” of hemodynamic origin. PMID:25111471

  10. Touch activates human auditory cortex.

    PubMed

    Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko; Hari, Riitta

    2006-05-01

    Vibrotactile stimuli can facilitate hearing, both in hearing-impaired and in normally hearing people. Accordingly, the sounds of hands exploring a surface contribute to the explorer's haptic percepts. As a possible brain basis of such phenomena, functional brain imaging has identified activations specific to audiotactile interaction in secondary somatosensory cortex, auditory belt area, and posterior parietal cortex, depending on the quality and relative salience of the stimuli. We studied 13 subjects with non-invasive functional magnetic resonance imaging (fMRI) to search for auditory brain areas that would be activated by touch. Vibration bursts of 200 Hz were delivered to the subjects' fingers and palm and tactile pressure pulses to their fingertips. Noise bursts served to identify auditory cortex. Vibrotactile-auditory co-activation, addressed with minimal smoothing to obtain a conservative estimate, was found in an 85-mm3 region in the posterior auditory belt area. This co-activation could be related to facilitated hearing at the behavioral level, reflecting the analysis of sound-like temporal patterns in vibration. However, even tactile pulses (without any vibration) activated parts of the posterior auditory belt area, which therefore might subserve processing of audiotactile events that arise during dynamic contact between hands and environment. PMID:16488157

  11. The Tactile Window to Consciousness is Characterized by Frequency-Specific Integration and Segregation of the Primary Somatosensory Cortex

    PubMed Central

    Frey, Julia Natascha; Ruhnau, Philipp; Leske, Sabine; Siegel, Markus; Braun, Christoph; Weisz, Nathan

    2016-01-01

    We recently proposed that besides levels of local cortical excitability, also distinct pre-stimulus network states (windows to consciousness) determine whether a near-threshold stimulus will be consciously perceived. In the present magnetoencephalography study, we scrutinised these pre-stimulus network states with a focus on the primary somatosensory cortex. For this purpose participants performed a simple near-threshold tactile detection task. Confirming previous studies, we found reduced alpha and beta power in the somatosensory region contralateral to stimulation prior to correct stimulus detection as compared to undetected stimuli, and stronger event-related responses following successful stimulus detection. As expected, using graph theoretical measures, we also observed modulated pre-stimulus network level integration. Specifically, the right primary somatosensory cortex contralateral to stimulation showed an increased integration in the theta band, and additionally, a decreased integration in the beta band. Overall, these results underline the importance of network states for enabling conscious perception. Moreover, they indicate that also a reduction of irrelevant functional connections contributes to the window to consciousness by tuning pre-stimulus pathways of information flow. PMID:26864304

  12. The Tactile Window to Consciousness is Characterized by Frequency-Specific Integration and Segregation of the Primary Somatosensory Cortex.

    PubMed

    Frey, Julia Natascha; Ruhnau, Philipp; Leske, Sabine; Siegel, Markus; Braun, Christoph; Weisz, Nathan

    2016-01-01

    We recently proposed that besides levels of local cortical excitability, also distinct pre-stimulus network states (windows to consciousness) determine whether a near-threshold stimulus will be consciously perceived. In the present magnetoencephalography study, we scrutinised these pre-stimulus network states with a focus on the primary somatosensory cortex. For this purpose participants performed a simple near-threshold tactile detection task. Confirming previous studies, we found reduced alpha and beta power in the somatosensory region contralateral to stimulation prior to correct stimulus detection as compared to undetected stimuli, and stronger event-related responses following successful stimulus detection. As expected, using graph theoretical measures, we also observed modulated pre-stimulus network level integration. Specifically, the right primary somatosensory cortex contralateral to stimulation showed an increased integration in the theta band, and additionally, a decreased integration in the beta band. Overall, these results underline the importance of network states for enabling conscious perception. Moreover, they indicate that also a reduction of irrelevant functional connections contributes to the window to consciousness by tuning pre-stimulus pathways of information flow. PMID:26864304

  13. Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex.

    PubMed

    Du, Congwu; Volkow, Nora D; Koretsky, Alan P; Pan, Yingtian

    2014-10-28

    Spontaneous low-frequency oscillations (LFOs) of blood-oxygen-level-dependent (BOLD) signals are used to map brain functional connectivity with functional MRI, but their source is not well understood. Here we used optical imaging to assess whether LFOs from vascular signals covary with oscillatory intracellular calcium (Ca(2+)i) and with local field potentials in the rat's somatosensory cortex. We observed that the frequency of Ca(2+)i oscillations in tissue (∼0.07 Hz) was similar to the LFOs of deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) in both large blood vessels and capillaries. The HbR and HbO2 fluctuations within tissue correlated with Ca(2+)i oscillations with a lag time of ∼5-6 s. The Ca(2+)i and hemoglobin oscillations were insensitive to hypercapnia. In contrast, cerebral-blood-flow velocity (CBFv) in arteries and veins fluctuated at a higher frequency (∼0.12 Hz) and was sensitive to hypercapnia. However, in parenchymal tissue, CBFv oscillated with peaks at both ∼0.06 Hz and ∼0.12 Hz. Although the higher-frequency CBFv oscillation (∼0.12 Hz) was decreased by hypercapnia, its lower-frequency component (∼0.06 Hz) was not. The sensitivity of the higher CBFV oscillations to hypercapnia, which triggers blood vessel vasodilation, suggests its dependence on vascular effects that are distinct from the LFOs detected in HbR, HbO2, Ca(2+)i, and the lower-frequency tissue CBFv, which were insensitive to hypercapnia. Hemodynamic LFOs correlated both with Ca(2+)i and neuronal firing (local field potentials), indicating that they directly reflect neuronal activity (perhaps also glial). These findings show that HbR fluctuations (basis of BOLD oscillations) are linked to oscillatory cellular activity and detectable throughout the vascular tree (arteries, capillaries, and veins). PMID:25313035

  14. Primary somatosensory cortex in chronic low back pain - a H-MRS study.

    PubMed

    Sharma, Neena K; McCarson, Kenneth; Van Dillen, Linda; Lentz, Angela; Khan, Talal; Cirstea, Carmen M

    2011-01-01

    The goal of this study was to investigate whether certain metabolites, specific to neurons, glial cells, and the neuronal-glial neurotransmission system, in the primary somatosensory cortex (SSC), are altered and correlated with clinical characteristics of pain in patients with chronic low back pain (LBP). Eleven LBP patients and eleven age-matched healthy controls were included. N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), and glutamine/glutamate (Glx) were measured with proton magnetic resonance spectroscopy ((1)H-MRS) in left and right SSC. Differences in metabolite concentrations relative to those of controls were evaluated as well as analyses of metabolite correlations within and between SSCs. Relationships between metabolite concentrations and pain characteristics were also evaluated. We found decreased NAA in the left SSC (P = 0.001) and decreased Cho (P = 0.04) along with lower correlations between all metabolites in right SSC (P = 0.007) in LBP compared to controls. In addition, we found higher and significant correlations between left and right mI (P < 0.001 in LBP vs P = 0.1 in controls) and between left mI and right Cho (P = 0.048 vs P = 0.6). Left and right NAA levels were negatively correlated with pain duration (P = 0.04 and P = 0.02 respectively) while right Glx was positively correlated with pain severity (P = 0.04). Our preliminary results demonstrated significant altered neuronal-glial interactions in SSC, with left neural alterations related to pain duration and right neuronal-glial alterations to pain severity. Thus, the (1)H-MRS approach proposed here can be used to quantify relevant cerebral metabolite changes in chronic pain, and consequently increase our knowledge of the factors leading from these changes to clinical outcomes. PMID:21647218

  15. Primary somatosensory cortex in chronic low back pain – a 1H-MRS study

    PubMed Central

    Sharma, Neena K; McCarson, Kenneth; Van Dillen, Linda; Lentz, Angela; Khan, Talal; Cirstea, Carmen M

    2011-01-01

    The goal of this study was to investigate whether certain metabolites, specific to neurons, glial cells, and the neuronal-glial neurotransmission system, in the primary somatosensory cortex (SSC), are altered and correlated with clinical characteristics of pain in patients with chronic low back pain (LBP). Eleven LBP patients and eleven age-matched healthy controls were included. N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), and glutamine/glutamate (Glx) were measured with proton magnetic resonance spectroscopy (1H-MRS) in left and right SSC. Differences in metabolite concentrations relative to those of controls were evaluated as well as analyses of metabolite correlations within and between SSCs. Relationships between metabolite concentrations and pain characteristics were also evaluated. We found decreased NAA in the left SSC (P = 0.001) and decreased Cho (P = 0.04) along with lower correlations between all metabolites in right SSC (P = 0.007) in LBP compared to controls. In addition, we found higher and significant correlations between left and right mI (P < 0.001 in LBP vs P = 0.1 in controls) and between left mI and right Cho (P = 0.048 vs P = 0.6). Left and right NAA levels were negatively correlated with pain duration (P = 0.04 and P = 0.02 respectively) while right Glx was positively correlated with pain severity (P = 0.04). Our preliminary results demonstrated significant altered neuronal-glial interactions in SSC, with left neural alterations related to pain duration and right neuronal-glial alterations to pain severity. Thus, the 1H-MRS approach proposed here can be used to quantify relevant cerebral metabolite changes in chronic pain, and consequently increase our knowledge of the factors leading from these changes to clinical outcomes. PMID:21647218

  16. Dissociating barrel development and lesion-induced plasticity in the mouse somatosensory cortex.

    PubMed

    Rebsam, Alexandra; Seif, Isabelle; Gaspar, Patricia

    2005-01-19

    In the mouse somatosensory cortex, thalamocortical axons (TCAs) corresponding to individual whiskers cluster into restricted barrel domains during the first days of life. If whiskers are lesioned before that time, the cortical space devoted to the afferents from the damaged whisker shrinks and becomes occupied by thalamocortical afferents from neighboring unlesioned whiskers. This plasticity ends by postnatal day 3 (P3) to P4 when barrels emerge. To test whether TCA development and lesion-induced plasticity are linked, we used monoamine oxidase A knock-out (MAOA-KO) mice in which normal TCA development is halted by an excess of serotonin. Normal TCA development can be restored when serotonin levels are lowered by parachlorophenylalanine (PCPA). By varying the time of PCPA administration, we found that barrel development can be reinitiated until P11, although the emergence of TCA clusters becomes gradually slower and less complete. In mice in which barrels emerge 3 d later than the normal schedule, at P6 instead of P3, we examined lesion-induced plasticity. We find a progressive decline of the lesion-induced plasticity and a closure at P3, similar to normal mice, showing that this plasticity is not influenced by an excess of serotonin levels. Thus, in MAOA-KO mice, the emergence of barrel patterning can be delayed without a concomitant delay in lesion-induced plasticity, and the cortical space devoted to one whisker representation cannot be modified by the periphery once patterning is imprinted in the subcortical relays. We conclude that the closure of the lesion-induced plasticity period in the barrelfield is probably not determined at the cortical level. PMID:15659608

  17. Astrocytes contribute to the effects of etomidate on synaptic transmission in rat primary somatosensory cortex.

    PubMed

    Yang, Hao; Wang, Yuan; Zhang, Yu; Zhang, You; Xu, Mao-Sheng; Yuan, Jie; Yu, Tian

    2016-07-01

    Little is known about the mechanisms of unconsciousness induced by general anesthetics. Previous studies have shown that the primary somatosensory cortex (S1) is a sensitive region to a variety of intravenous general anesthetics. Etomidate is a widely used intravenous anesthetic that can influence synaptic transmission. Recently, there are some evidences suggesting that astrocytes, a type of glia cell, also contribute to information transmission in the brain, and modulate synaptic function by releasing neuroactive substances. However, it is unknown whether astrocytes influence the effects of etomidate on information transmission in S1 pyramidal neurons. In the present study, the role of astrocytes in etomidate-induced unconsciousness was investigated by using the whole-cell patch clamp technique. We observed etomidate at clinically relevant concentrations inhibited the spontaneous postsynaptic currents (sPSCs) of rat S1 pyramidal neurons in a concentration-dependent manner, and the EC50 value of etomidate for inhibiting sPSCs from the concentration-effect curve was 6.9μM. Furthermore, in the presence of fluorocitrate, a glia-selective metabolism inhibitor that blocks the aconitase enzyme, both the amplitude and frequency of sPSCs in rat S1 pyramidal neurons were reduced, and the inhibitory effects of etomidate on sPSCs amplitude was strengthened without affecting the effects of etomidate on frequency. From these data, we deduce that etomidate suppresses synaptic activity via presynaptic and postsynaptic components. Furthermore, astrocytes participate in synaptic transmission and influence the effects of etomidate on postsynaptic receptors. This study provides new insight into the role of astrocytes in etomidate-induced unconsciousness. PMID:27045115

  18. Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex.

    PubMed

    Mordel, Jérôme; Sheikh, Aminah; Tsohataridis, Simeon; Kanold, Patrick O; Zehendner, Christoph M; Luhmann, Heiko J

    2016-04-01

    During the perinatal period, the brain is highly vulnerable to hypoxia and inflammation, which often cause white matter injury and long-term neuronal dysfunction such as motor and cognitive deficits or epileptic seizures. We studied the effects of moderate hypoxia (HYPO), mild systemic inflammation (INFL), or the combination of both (HYPO+INFL) in mouse somatosensory cortex induced during the first postnatal week on network activity and compared it to activity in SHAM control animals. By performing in vitro electrophysiological recordings with multi-electrode arrays from slices prepared directly after injury (P8-10), one week after injury (P13-16), or in young adults (P28-30), we investigated how the neocortical network developed following these insults. No significant difference was observed between the four groups in an extracellular solution close to physiological conditions. In extracellular 8mM potassium solution, slices from the HYPO, INFL, and HYPO+INFL group were more excitable than SHAM at P8-10 and P13-16. In these two age groups, the number and frequency of spontaneous epileptiform events were significantly increased compared to SHAM. The frequency of epileptiform events was significantly reduced by the NMDA antagonist D-APV in HYPO, INFL, and HYPO+INFL, but not in SHAM, indicating a contribution of NMDA receptors to this pathophysiological activity. In addition, the AMPA/kainate receptor antagonist CNQX suppressed the remaining epileptiform activity. Electrical stimulation evoked prominent epileptiform activity in slices from HYPO, INFL and HYPO+INFL animals. Stimulation threshold to elicit epileptiform events was lower in these groups than in SHAM. Evoked events spread over larger areas and lasted longer in treated animals than in SHAM. In addition, the evoked epileptiform activity was reduced in the older (P28-30) group indicating that cortical dysfunction induced by hypoxia and inflammation was transient and compensated during early development. PMID

  19. Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex

    PubMed Central

    Du, Congwu; Volkow, Nora D.; Koretsky, Alan P.; Pan, Yingtian

    2014-01-01

    Spontaneous low-frequency oscillations (LFOs) of blood-oxygen-level-dependent (BOLD) signals are used to map brain functional connectivity with functional MRI, but their source is not well understood. Here we used optical imaging to assess whether LFOs from vascular signals covary with oscillatory intracellular calcium (Ca2+i) and with local field potentials in the rat’s somatosensory cortex. We observed that the frequency of Ca2+i oscillations in tissue (∼0.07 Hz) was similar to the LFOs of deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) in both large blood vessels and capillaries. The HbR and HbO2 fluctuations within tissue correlated with Ca2+i oscillations with a lag time of ∼5–6 s. The Ca2+i and hemoglobin oscillations were insensitive to hypercapnia. In contrast, cerebral-blood-flow velocity (CBFv) in arteries and veins fluctuated at a higher frequency (∼0.12 Hz) and was sensitive to hypercapnia. However, in parenchymal tissue, CBFv oscillated with peaks at both ∼0.06 Hz and ∼0.12 Hz. Although the higher-frequency CBFv oscillation (∼0.12 Hz) was decreased by hypercapnia, its lower-frequency component (∼0.06 Hz) was not. The sensitivity of the higher CBFV oscillations to hypercapnia, which triggers blood vessel vasodilation, suggests its dependence on vascular effects that are distinct from the LFOs detected in HbR, HbO2, Ca2+i, and the lower-frequency tissue CBFv, which were insensitive to hypercapnia. Hemodynamic LFOs correlated both with Ca2+i and neuronal firing (local field potentials), indicating that they directly reflect neuronal activity (perhaps also glial). These findings show that HbR fluctuations (basis of BOLD oscillations) are linked to oscillatory cellular activity and detectable throughout the vascular tree (arteries, capillaries, and veins). PMID:25313035

  20. Beta rhythm modulation by speech sounds: somatotopic mapping in somatosensory cortex.

    PubMed

    Bartoli, Eleonora; Maffongelli, Laura; Campus, Claudio; D'Ausilio, Alessandro

    2016-01-01

    During speech listening motor regions are somatotopically activated, resembling the activity that subtends actual speech production, suggesting that motor commands can be retrieved from sensory inputs. Crucially, the efficient motor control of the articulators relies on the accurate anticipation of the somatosensory reafference. Nevertheless, evidence about somatosensory activities elicited by auditory speech processing is sparse. The present work looked for specific interactions between auditory speech presentation and somatosensory cortical information processing. We used an auditory speech identification task with sounds having different place of articulation (bilabials and dentals). We tested whether coupling the auditory task with a peripheral electrical stimulation of the lips would affect the pattern of sensorimotor electroencephalographic rhythms. Peripheral electrical stimulation elicits a series of spectral perturbations of which the beta rebound reflects the return-to-baseline stage of somatosensory processing. We show a left-lateralized and selective reduction in the beta rebound following lip somatosensory stimulation when listening to speech sounds produced with the lips (i.e. bilabials). Thus, the somatosensory processing could not return to baseline due to the recruitment of the same neural resources by speech stimuli. Our results are a clear demonstration that heard speech sounds are somatotopically mapped onto somatosensory cortices, according to place of articulation. PMID:27499204

  1. Beta rhythm modulation by speech sounds: somatotopic mapping in somatosensory cortex

    PubMed Central

    Bartoli, Eleonora; Maffongelli, Laura; Campus, Claudio; D’Ausilio, Alessandro

    2016-01-01

    During speech listening motor regions are somatotopically activated, resembling the activity that subtends actual speech production, suggesting that motor commands can be retrieved from sensory inputs. Crucially, the efficient motor control of the articulators relies on the accurate anticipation of the somatosensory reafference. Nevertheless, evidence about somatosensory activities elicited by auditory speech processing is sparse. The present work looked for specific interactions between auditory speech presentation and somatosensory cortical information processing. We used an auditory speech identification task with sounds having different place of articulation (bilabials and dentals). We tested whether coupling the auditory task with a peripheral electrical stimulation of the lips would affect the pattern of sensorimotor electroencephalographic rhythms. Peripheral electrical stimulation elicits a series of spectral perturbations of which the beta rebound reflects the return-to-baseline stage of somatosensory processing. We show a left-lateralized and selective reduction in the beta rebound following lip somatosensory stimulation when listening to speech sounds produced with the lips (i.e. bilabials). Thus, the somatosensory processing could not return to baseline due to the recruitment of the same neural resources by speech stimuli. Our results are a clear demonstration that heard speech sounds are somatotopically mapped onto somatosensory cortices, according to place of articulation. PMID:27499204

  2. Sensory nerve crush and regeneration and the receptive fields and response properties of neurons in the primary somatosensory cerebral cortex of cats.

    PubMed

    Brandenberg, G A; Mann, M D

    1989-03-01

    Extracellular recordings were made of activity evoked in neurons of the forepaw focus of somatosensory cerebral cortex by electrical stimulation of each paw in control cats and cats that had undergone crush injury of all cutaneous sensory nerves to the contralateral forepaw 31 to 63 days previously. Neurons responding only to stimulation of the contralateral forepaw were classified as sa; neurons responding to stimulation of both forepaws were classified as sb; neurons responding to stimulation of both contralateral paws were classified as sc; and neurons responding to stimulation of at least three paws were classified as m. The ratio sa:sb:sc:m neurons was 46:3:0:0 in control cats and 104:15:3:26 in cats that had undergone nerve crush 1-2 months prior to study. sa neurons from experimental cats had depth distributions similar to those in controls and responded to contralateral forepaw stimulation with more spikes per discharge, longer latency, and higher threshold than sa neurons in control cats. m neurons from experimental cats were distributed deeper in the cortex than sa neurons, and, when compared to experimental sa neurons, they responded with longer latency and poorer frequency-following ability; however, the number of spikes per discharge and threshold were not significantly different. The appearance of wide-field neurons in this tissue may be explained in terms of strengthening of previously sub-threshold inputs to neurons in the somatosensory system. If the neurons in sensory cortex play a requisite role in cutaneous sensations and if changes similar to those reported here occur and persist in human cortex after nerve crush, then "complete" recovery of sensation in such patients may occur against a background of changed cortical neuronal responsiveness. PMID:2920791

  3. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  4. Cortical Connections to Single Digit Representations in Area 3b of Somatosensory Cortex in Squirrel Monkeys and Prosimian Galagos

    PubMed Central

    Liao, Chia-Chi; Gharbawie, Omar A.; Qi, Huixin; Kaas, Jon H.

    2014-01-01

    The ventral posterior nucleus of thalamus sends highly segregated inputs into each digit representation in area 3b of primary somatosensory cortex. However, the spatial organization of the connections that link digit representations of areas 3b with other somatosensory areas is less understood. Here we examined the cortical inputs to individual digit representations of area 3b in four squirrel monkeys and one prosimian galago. Retrograde tracers were injected into neurophysiologically defined representations of individual digits of area 3b. Cortical tissues were cut parallel to the surface in some cases and showed that feedback projections to individual digits overlapped extensively in the hand representations of areas 3b, 1, and parietal ventral (PV) and second somatosensory (S2) areas. Other regions with overlapping populations of labeled cells included area 3a and primary motor cortex (M1). The results were confirmed in other cases in which the cortical tissues were cut in the coronal plane. The same cases also showed that cells were primarily labeled in the infragranular and supragranular layers. Thus, feedback projections to individual digit representations in area 3b mainly originate from multiple digits and other portions of hand representations of areas 3b, 1, PV, and S2. This organization is in stark contrast to the segregated thalamocortical inputs, which originate in single digit representations and terminate in the matching digit representation in the cortex. The organization of feedback connections could provide a substrate for the integration of information across the representations of adjacent digits in area 3b. PMID:23749740

  5. Baseline brain activity fluctuations predict somatosensory perception in humans

    PubMed Central

    Boly, M.; Balteau, E.; Schnakers, C.; Degueldre, C.; Moonen, G.; Luxen, A.; Phillips, C.; Peigneux, P.; Maquet, P.; Laureys, S.

    2007-01-01

    In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means of thulium–yttrium/aluminum–garnet laser and event-related functional MRI, we tested whether variability in perception of identical stimuli relates to differences in prestimulus, baseline brain activity. Results indicate a positive relationship between conscious perception of low-intensity somatosensory stimuli and immediately preceding levels of baseline activity in medial thalamus and the lateral frontoparietal network, respectively, which are thought to relate to vigilance and “external monitoring.” Conversely, there was a negative correlation between subsequent reporting of conscious perception and baseline activity in a set of regions encompassing posterior cingulate/precuneus and temporoparietal cortices, possibly relating to introspection and self-oriented processes. At nociceptive levels of stimulation, pain-intensity ratings positively correlated with baseline fluctuations in anterior cingulate cortex in an area known to be involved in the affective dimension of pain. These results suggest that baseline brain-activity fluctuations may profoundly modify our conscious perception of the external world. PMID:17616583

  6. Differentiating hemodynamic responses in rat primary somatosensory cortex during non-noxious and noxious electrical stimulation by optical imaging.

    PubMed

    Luo, Weihua; Li, Pengcheng; Chen, Shangbin; Zeng, Shaoqun; Luo, Qingming

    2007-02-16

    Nociception in the primary somatosensory (S1) cortex remains in need of further elucidation. The spatiotemporal comparison on changes of the cerebral blood volume evoked by graded peripheral electrical stimulation was performed in rat contralateral somatosensory cortex with optical intrinsic signal imaging (OISI, optical reflectance at 550 nm). Non-noxious electrical stimulus was applied with 5 Hz pulses (0.5 ms peak duration) for 2 s at the threshold current for muscle twitch, while noxious stimulus was delivered at currents of 10x and 20x amplitude of the predetermined threshold. Although the dimensions of peak response defined in the spatial domain (cerebral blood volume increase) in the S1 cortex presented no significant difference under non-/noxious stimuli, its early response component (about 1 s after stimulation onset) revealed by OISI technique was suggested to differentiate the loci of activated cortical region due to different stimulation in this study. The magnitude and duration of the optical intrinsic signal (OIS) response was found increasing with the varying stimulus intensity. Regions activated by the delivery of a noxious stimulus were surrounded by a ring of inverted optical intrinsic signal, the amplitude of that was inversely proportional to the strength of the optical signal attributable to activation. Intense stimuli significantly augmented the inverted optical signal in magnitude and spatial extent. These results indicated that noxious stimulation evoked different response patterns in the contralateral S1 cortex. The magnitude-dependent inverted optical signal might contribute to the differentiation of nociceptive input in the S1 cortex. PMID:17196176

  7. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Callier, Thierri; Schluter, Erik W.; Tabot, Gregg A.; Miller, Lee E.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-10-01

    Objective. The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. Approach. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. Main results. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Significance. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  8. Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster)

    PubMed Central

    Seelke, Adele M. H.; Perkeybile, Allison M.; Grunewald, Rebecca; Bales, Karen L.; Krubitzer, Leah A.

    2015-01-01

    Early life sensory experiences have a profound effect on brain organization, connectivity and subsequent behavior. In most mammals, the earliest sensory inputs are delivered to the developing brain through tactile contact with the parents, especially the mother. Prairie voles (Microtus ochrogaster) are monogamous and, like humans, are biparental. Within the normal prairie vole population, both the type and amount of interactions, particularly tactile contact, that parents have with their offspring varies. The question is whether these early and pervasive differences in tactile stimulation and social experience between parent and offspring are manifest in differences in cortical organization and connectivity. To address this question we examined the cortical and callosal connections of the primary somatosensory area (S1) in high contact (HC) and low contact (LC) offspring using neuroanatomical tracing techniques. Injection sites within S1 were matched so that direct comparisons between these two groups could be made. We observed several important differences between these groups. The first was that HC offspring had a greater density of intrinsic connections within S1 compared to LC offspring. The HC offspring had a more restricted pattern of ipsilateral connections while LC offspring had dense connections with areas of parietal and frontal cortex that were more widespread. Finally, LC offspring had a broader distribution of callosal connections than HC offspring and a significantly higher percentage of callosal labeled neurons. To date, this is the first study that examines individual differences in cortical connections and suggests that they may be related to natural differences in parental rearing styles associated with tactile contact. PMID:26101098

  9. Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster).

    PubMed

    Seelke, Adele M H; Perkeybile, Allison M; Grunewald, Rebecca; Bales, Karen L; Krubitzer, Leah A

    2016-02-15

    Early-life sensory experiences have a profound effect on brain organization, connectivity, and subsequent behavior. In most mammals, the earliest sensory inputs are delivered to the developing brain through tactile contact with the parents, especially the mother. Prairie voles (Microtus ochrogaster) are monogamous and, like humans, are biparental. Within the normal prairie vole population, both the type and the amount of interactions, particularly tactile contact, that parents have with their offspring vary. The question is whether these early and pervasive differences in tactile stimulation and social experience between parent and offspring are manifest in differences in cortical organization and connectivity. To address this question, we examined the cortical and callosal connections of the primary somatosensory area (S1) in high-contact (HC) and low-contact (LC) offspring using neuroanatomical tracing techniques. Injection sites within S1 were matched so that direct comparisons between these two groups could be made. We observed several important differences between these groups. The first was that HC offspring had a greater density of intrinsic connections within S1 compared with LC offspring. Additionally, HC offspring had a more restricted pattern of ipsilateral connections, whereas LC offspring had dense connections with areas of parietal and frontal cortex that were more widespread. Finally, LC offspring had a broader distribution of callosal connections than HC offspring and a significantly higher percentage of labeled callosal neurons. This study is the first to examine individual differences in cortical connections and suggests that individual differences in cortical connections may be related to natural differences in parental rearing styles associated with tactile contact. PMID:26101098

  10. Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex

    PubMed Central

    Muralidhar, Shruti; Wang, Yun; Markram, Henry

    2013-01-01

    Layer 1 of the neocortex is sparsely populated with neurons and heavily innervated by fibers from lower layers and proximal and distal brain regions. Understanding the potential functions of this layer requires a comprehensive understanding of its cellular and synaptic organization. We therefore performed a quantitative study of the microcircuitry of neocortical layer 1 (L1) in the somatosensory cortex in juvenile rats (P13–P16) using multi-neuron patch-clamp and 3D morphology reconstructions. Expert-based subjective classification of the morphologies of the recorded L1 neurons suggest 6 morphological classes: (1) the Neurogliaform cells with dense axonal arborizations (NGC-DA) and with sparse arborizations (NGC-SA), (2) the Horizontal Axon Cell (HAC), (3) those with descending axonal collaterals (DAC), (4) the large axon cell (LAC), and (5) the small axon cell (SAC). Objective, supervised and unsupervised cluster analyses confirmed DAC, HAC, LAC and NGC as distinct morphological classes. The neurons were also classified into 5 electrophysiological types based on the Petilla convention; classical non-adapting (cNAC), burst non-adapting (bNAC), classical adapting (cAC), classical stuttering (cSTUT), and classical irregular spiking (cIR). The most common electrophysiological type of neuron was the cNAC type (40%) and the most common morpho-electrical type was the NGC-DA—cNAC. Paired patch-clamp recordings revealed that the neurons were connected via GABAergic inhibitory synaptic connections with a 7.9% connection probability and via gap junctions with a 5.2% connection probability. Most synaptic connections were mediated by both GABAA and GABAB receptors (62.6%). A smaller fraction of synaptic connections were mediated exclusively by GABAA (15.4%) or GABAB (21.8%) receptors. Morphological 3D reconstruction of synaptic connected pairs of L1 neurons revealed multi-synapse connections with an average of 9 putative synapses per connection. These putative synapses

  11. Abnormal Population Responses in the Somatosensory Cortex of Alzheimer’s Disease Model Mice

    PubMed Central

    Maatuf, Yossi; Stern, Edward A.; Slovin, Hamutal

    2016-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. One of the neuropathological hallmarks of AD is the accumulation of amyloid-β plaques. Overexpression of human amyloid precursor protein in transgenic mice induces hippocampal and neocortical amyloid-β accumulation and plaque deposition that increases with age. The impact of these effects on neuronal population responses and network activity in sensory cortex is not well understood. We used Voltage Sensitive Dye Imaging, to investigate at high spatial and temporal resolution, the sensory evoked population responses in the barrel cortex of aged transgenic (Tg) mice and of age-matched non-transgenic littermate controls (Ctrl) mice. We found that a whisker deflection evoked abnormal sensory responses in the barrel cortex of Tg mice. The response amplitude and the spatial spread of the cortical responses were significantly larger in Tg than in Ctrl mice. At the network level, spontaneous activity was less synchronized over cortical space than in Ctrl mice, however synchronization during evoked responses induced by whisker deflection did not differ between the two groups. Thus, the presence of elevated Aβ and plaques may alter population responses and disrupts neural synchronization in large-scale networks, leading to abnormalities in sensory processing. PMID:27079783

  12. Abnormal Population Responses in the Somatosensory Cortex of Alzheimer's Disease Model Mice.

    PubMed

    Maatuf, Yossi; Stern, Edward A; Slovin, Hamutal

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia. One of the neuropathological hallmarks of AD is the accumulation of amyloid-β plaques. Overexpression of human amyloid precursor protein in transgenic mice induces hippocampal and neocortical amyloid-β accumulation and plaque deposition that increases with age. The impact of these effects on neuronal population responses and network activity in sensory cortex is not well understood. We used Voltage Sensitive Dye Imaging, to investigate at high spatial and temporal resolution, the sensory evoked population responses in the barrel cortex of aged transgenic (Tg) mice and of age-matched non-transgenic littermate controls (Ctrl) mice. We found that a whisker deflection evoked abnormal sensory responses in the barrel cortex of Tg mice. The response amplitude and the spatial spread of the cortical responses were significantly larger in Tg than in Ctrl mice. At the network level, spontaneous activity was less synchronized over cortical space than in Ctrl mice, however synchronization during evoked responses induced by whisker deflection did not differ between the two groups. Thus, the presence of elevated Aβ and plaques may alter population responses and disrupts neural synchronization in large-scale networks, leading to abnormalities in sensory processing. PMID:27079783

  13. Corticofugal axons from adjacent ‘barrel’ columns of rat somatosensory cortex: cortical and thalamic terminal patterns

    PubMed Central

    WRIGHT, A. K.; NORRIE, L.; ARBUTHNOTT, G. W.

    2000-01-01

    The cortical representations of the vibrissae of the rat form a matrix in which each whisker has its own area of cortex, called a ‘barrel’. The afferent pathways from the periphery travel first to the trigeminal nuclei and thence via the ventroposteromedial thalamus (VPM) to the cortical barrels have been described in detail. We have studied the output from barrels by filling adjacent areas of the primary somatosensory cortex (SI) with either Phaseolus vulgaris leucoagglutinin (PHA-L) or biotinylated dextran amine (BDA) and demonstrating the course and terminations of the axons that arise within the barrel fields. The method not only dramatically illustrates the previously described corticothalamic pathway to VPM but also demonstrates a strict topography in the cortical afferents to the thalamic reticular nucleus (RT). Cells supplying the RT projection are found below the barrels in layer IV. Connections to the posterior thalamus, on the other hand, have no discernible topography and are derived from cortical areas surrounding the barrels. Thus the outputs of these ‘septal’ areas return to the region from which they receive thalamic input. The corticocortical connections are also visible in the same material. Contralateral cortical connections arise from the cells of the septa between barrels. The projections to secondary somatosensory area (SII) are mirror images of the barrel pattern in SI with rather more overlap but nonetheless a recognisable topography. PMID:10853960

  14. Genetic analysis of posterior medial barrel subfield (PMBSF) size in somatosensory cortex (SI) in recombinant inbred strains of mice

    PubMed Central

    Jan, Taha A; Lu, Lu; Li, Cheng-Xiang; Williams, Robert W; Waters, Robert S

    2008-01-01

    Background Quantitative trait locus (QTL) mapping is an important tool for identifying potential candidate genes linked to complex traits. QTL mapping has been used to identify genes associated with cytoarchitecture, cell number, brain size, and brain volume. Previously, QTL mapping was utilized to examine variation of barrel field size in the somatosensory cortex in a limited number of recombinant inbred (RI) strains of mice. In order to further elucidate the underlying natural variation in mouse primary somatosensory cortex, we measured the size of the posterior medial barrel subfield (PMBSF), associated with the representation of the large mystacial vibrissae, in an expanded sample set that included 42 BXD RI strains, two parental strains (C57BL/6J and DBA/2J), and one F1 strain (B6D2F1). Cytochrome oxidase labeling was used to visualize barrels within the PMBSF. Results We observed a 33% difference between the largest and smallest BXD RI strains with continuous variation in-between. Using QTL linkage analysis from WebQTL, we generated linkage maps of raw total PMBSF and brain weight adjusted total PMBSF areas. After removing the effects of brain weight, we detected a suggestive QTL (likelihood ratio statistic [LRS]: 14.20) on the proximal arm of chromosome 4. Candidate genes under the suggestive QTL peak for PMBSF area were selected based on the number of single nucleotide polymorphisms (SNPs) present and the biological relevance of each gene. Among the candidate genes are Car8 and Rab2. More importantly, mRNA expression profiles obtained using GeneNetwork indicated a strong correlation between total PMBSF area and two genes (Adcy1 and Gap43) known to be important in mouse cortex development. GAP43 has been shown to be critical during neurodevelopment of the somatosensory cortex, while knockout Adcy1 mice have disrupted barrel field patterns. Conclusion We detected a novel suggestive QTL on chromosome 4 that is linked to PMBSF size. The present study is an

  15. A Somatosensory Latency between the Thalamus and Cortex also Correlates with Level of Intelligence.

    ERIC Educational Resources Information Center

    Reed, T. Edward; Jensen, Arthur R.

    1993-01-01

    Results for sensory thalamocortical latency (3 somatosensory evoked potentials) for 205 college students agree with data that correlate a more extensive visual evoked potential latency with intelligence quotient. Findings suggest that the correlation occurs because the latency indexes cortical nerve conduction velocity. (SLD)

  16. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination

    PubMed Central

    Pais-Vieira, Miguel; Kunicki, Carolina; Tseng, Po-He; Martin, Joel; Lebedev, Mikhail

    2015-01-01

    Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1. PMID:26180115

  17. Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis.

    PubMed Central

    Ahissar, E; Vaadia, E

    1990-01-01

    Neuronal activity was extracellularly recorded in the cortex of an awake monkey (Macaca fascicularis). Single units displaying oscillatory firing patterns were found in the upper bank of the lateral sulcus in a region where most of the neurons responded to somatosensory stimuli. The spectral energies of the oscillating activity were distributed in a trimodal fashion--0-15, 15-50, and 80-250 Hz--with the most common frequencies around 30 Hz. The oscillatory activity was not affected by anesthesia, but it was often reduced by tactile stimulation or self-initiated movements. Analysis of the spike trains suggests that the majority of oscillatory activity was intrinsically generated by the neurons. A neural model of texture analysis is offered based on a corticothalamic phase-locked loop. The newly identified oscillators play a key role in this model. The relevance of the model to physiological, anatomical, and psychophysical data, as well as testable predictions, are discussed. Images PMID:2247469

  18. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    PubMed Central

    Yuan, Chengdong; Zhang, Yajun; Zhang, Yu; Cao, Song; Wang, Yuan; Fu, Bao; Yu, Tian

    2016-01-01

    Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36) were used to obtain brain slices (300 μM). Spontaneous excitatory postsynaptic currents (data from 40 neurons) were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM) and strychnine (glycine receptor antagonist, 30 μM). Miniature excitatory postsynaptic currents (data from 40 neurons) were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors. PMID:27365548

  19. Decline in Age-dependent, MK801-induced Injury Coincides With Developmental Switch in Parvalbumin Expression: Somatosensory and Motor Cortex

    PubMed Central

    Tomé, Carla M Lema; Miller, Ryan; Bauer, Clayton; Smith, Chelsey; Blackstone, Kaitlin; Leigh, Adam; Busch, Jamie; Turner, Christopher P

    2009-01-01

    MK801-induced activation of caspase-3 is developmentally regulated, peaking at postnatal day (P) 7 and decreasing with increasing postnatal age thereafter. Further, at P7, cells displaying activation of caspase-3 lack expression of calcium binding proteins (CaBPs). To further explore this relationship, we investigated postnatal expression of calbindin (CB), calretinin (CR) and parvalbumin (PV) in two brain regions susceptible to MK801-induced injury, the somatosensory cortex (S1) and layer II/III of motor cortex (M1/M2). Expression of CB and especially PV was low to absent prior to P7 but substantially increased from P7 through to P21 and adulthood. In contrast, CR expression was more variable at early developmental ages, stabilized to lower levels after P7 and showed a marked decline by P21. The results suggest that not only does calcium buffering capacity increase developmentally but acquisition of enhanced buffering may be one mechanism by which neurons survive agent-induced alterations in calcium homeostasis. PMID:18688810

  20. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex

    PubMed Central

    Roopun, Anita K.; Middleton, Steven J.; Cunningham, Mark O.; LeBeau, Fiona E. N.; Bibbig, Andrea; Whittington, Miles A.; Traub, Roger D.

    2006-01-01

    Beta2 frequency (20–30 Hz) oscillations appear over somatosensory and motor cortices in vivo during motor preparation and can be coherent with muscle electrical activity. We describe a beta2 frequency oscillation occurring in vitro in networks of layer V pyramidal cells, the cells of origin of the corticospinal tract. This beta2 oscillation depends on gap junctional coupling, but it survives a cut through layer 4 and, hence, does not depend on apical dendritic electrogenesis. It also survives a blockade of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors or a blockade of GABAA receptors that is sufficient to suppress gamma (30–70 Hz) oscillations in superficial cortical layers. The oscillation period is determined by the M type of K+ current. PMID:17030821

  1. The corpus callosum modulates spindle-burst activity within homotopic regions of somatosensory cortex in newborn rats.

    PubMed

    Marcano-Reik, Amy Jo; Blumberg, Mark S

    2008-10-01

    The corpus callosum, a major interhemispheric fiber tract, mediates communication between homotopic regions within the primary somatosensory cortex (S1). Recently, in 1- to 6-day-old rats, brief bursts of oscillatory activity - called spindle-bursts (SBs) - were described in cortical somatosensory areas following sensory feedback from sleep-related myoclonic twitches or specific peripheral stimulation. To determine whether interhemispheric communication via the corpus callosum modulates the expression of SBs during this early period of development, we investigated the spontaneous expression of SBs in unanesthetized 1- to 6-day-old rats as well as SBs evoked by plantar surface stimulation of the forepaw. We hypothesized that surgically disrupting transcallosal communication (i.e. with callosotomy) or unilateral pharmacological manipulation of S1 activity (e.g. by blocking muscarinic receptors) would alter S1 activity in one or both hemispheres. First, callosotomy doubled the rate of spontaneous, twitch-related SBs in left and right S1s by reducing the interval between successive SBs. Second, unilateral infusion into the left S1 of the muscarinic receptor antagonist, scopolamine, inhibited SBs in response to right forepaw stimulation; importantly, SBs were now disinhibited in the right S1 to right forepaw stimulation, thus 'unmasking' an ipsilateral representation. Subsequent callosotomy reinstated contralateral SB responses in the left S1. Finally, tactile and proprioceptive stimulation produced dissociable neurophysiological S1 responses; specifically, SBs were produced in response to proprioceptive, but not tactile, stimulation. We conclude that the corpus callosum modulates functionally inhibitory interactions between homotopic regions in left and right S1s during the early developmental period when organized neurophysiological activity is first detected in the neocortex. PMID:18973571

  2. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli

    PubMed Central

    He, Ji-Wei; Liu, Hanli; Peng, Yuan Bo

    2015-01-01

    Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO) and deoxy-hemoglobin concentrations, oxygen saturation rates (SO2), and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI) in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities) as well as a long-lasting noxious stimulus (formalin injection) were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO2 were more reliably attributed to brief stimuli, whereas a sustained decrease in SO2 was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI) along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase) that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple-parameter strategy

  3. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli.

    PubMed

    He, Ji-Wei; Liu, Hanli; Peng, Yuan Bo

    2015-01-01

    Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO) and deoxy-hemoglobin concentrations, oxygen saturation rates (SO₂), and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI) in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities) as well as a long-lasting noxious stimulus (formalin injection) were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO₂ were more reliably attributed to brief stimuli, whereas a sustained decrease in SO₂ was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI) along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase) that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple-parameter strategy

  4. Increased Brain Gray Matter in the Primary Somatosensory Cortex is Associated with Increased Pain and Mood Disturbance in Interstitial Cystitis/Painful Bladder Syndrome Patients

    PubMed Central

    Kairys, Anson E.; Schmidt-Wilcke, Tobias; Puiu, Tudor; Ichesco, Eric; Labus, Jennifer S.; Martucci, Katherine; Farmer, Melissa A.; Ness, Timothy J.; Deutsch, Georg; Mayer, Emeran A.; Mackey, Sean; Apkarian, A. Vania; Maravilla, Kenneth; Clauw, Daniel J.; Harris, Richard E.

    2015-01-01

    Purpose Interstitial cystitis (IC) is a highly prevalent pain condition, estimated to affect 3-6% of women in the United States. Emerging data suggests there are central neurobiological components to the etiology of this disease. Here we report the first brain structural imaging findings from the Multidisciplinary Approach to Pelvic Pain (MAPP) network, with data on over 300 participants. Materials and Methods We used Voxel-Based Morphometry (VBM) to determine whether human patients with chronic IC display changes in brain morphology as compared to healthy controls (HCs). 33 female IC patients without comorbidities and 33 age- and sex-matched controls, taken from the larger sample, underwent structural magnetic resonance imaging at 5 different MAPP sites across the United States. Results When compared to controls, females with IC displayed significant increased gray matter (GM) volume in several regions of the brain including the right primary somatosensory cortex (S1), the superior parietal lobule bilaterally, and the right supplementary motor area. GM volume in the right S1 was associated with greater pain, mood (anxiety), and urological symptoms. We explored these correlations in a linear regression model and found independent effects of these three measures on S1 GM volume: clinical pain (McGill pain sensory total), a measure of “urgency,” and anxiety (HADS). Conclusions These data support the notion that changes in somatosensory GM may play an important role in pain sensitivity as well as affective and sensory aspects of IC. Further studies are needed to confirm the generalizability of these findings to other pain conditions. PMID:25132239

  5. Embedding a Panoramic Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis

    PubMed Central

    Hartmann, Konstantin; Thomson, Eric E.; Zea, Ivan; Yun, Richy; Mullen, Peter; Canarick, Jay; Huh, Albert

    2016-01-01

    Can the adult brain assimilate a novel, topographically organized, sensory modality into its perceptual repertoire? To test this, we implemented a microstimulation-based neuroprosthesis that rats used to discriminate among infrared (IR) light sources. This system continuously relayed information from four IR sensors that were distributed to provide a panoramic view of IR sources, into primary somatosensory cortex (S1). Rats learned to discriminate the location of IR sources in <4 d. Animals in which IR information was delivered in spatial register with whisker topography learned the task more quickly. Further, in animals that had learned to use the prosthesis, altering the topographic mapping from IR sensor to stimulating electrode had immediate deleterious effects on discrimination performance. Multielectrode recordings revealed that S1 neurons had multimodal (tactile/IR) receptive fields, with clear preferences for those stimuli most likely to be delivered during the task. Neuronal populations predicted, with high accuracy, which stimulation pattern was present in small (75 ms) time windows. Surprisingly, when identical microstimulation patterns were delivered during an unrelated task, cortical activity in S1 was strongly suppressed. Overall, these results show that the adult mammalian neocortex can readily absorb completely new information sources into its representational repertoire, and use this information in the production of adaptive behaviors. SIGNIFICANCE STATEMENT Understanding the potential for plasticity in the adult brain is a key goal for basic neuroscience and modern rehabilitative medicine. Our study examines one dimension of this challenge: how malleable is sensory processing in adult mammals? We implemented a panoramic infrared (IR) sensory prosthetic system in rats; it consisted of four IR sensors equally spaced around the circumference of the head of the rat. Each sensor was coupled to a microstimulating electrode placed in the somatosensory

  6. Connectivity of Mouse Somatosensory and Prefrontal Cortex Examined with Trans-synaptic Tracing

    PubMed Central

    DeLoach, Katherine; Luo, Liqun

    2015-01-01

    Information processing in neocortical circuits requires integrating inputs over a wide range of spatial scales, from local microcircuits to long-range cortical and subcortical connections. We used rabies virus-based trans-synaptic tracing to analyze the laminar distribution of local and long-range inputs to pyramidal neurons in the mouse barrel cortex and medial prefrontal cortex (mPFC). New findings in barrel cortex include substantial inputs from layer 3 (L3) to L6, prevalent translaminar inhibitory inputs, and long-range inputs to L2/3 or L5/6 preferentially from L2/3 or L5/6 of input cortical areas, respectively. These layer-specific input patterns are largely independent of NMDA receptor function in the recipient neurons. mPFC L5 receive proportionally more long-range inputs and more local inhibitory inputs than barrel cortex L5. These results provide new insight into the organization and development of neocortical networks and identify important differences in the circuit organization in sensory and association cortices. PMID:26457553

  7. Look but don't touch: Visual cues to surface structure drive somatosensory cortex.

    PubMed

    Sun, Hua-Chun; Welchman, Andrew E; Chang, Dorita H F; Di Luca, Massimiliano

    2016-03-01

    When planning interactions with nearby objects, our brain uses visual information to estimate shape, material composition, and surface structure before we come into contact with them. Here we analyse brain activations elicited by different types of visual appearance, measuring fMRI responses to objects that are glossy, matte, rough, or textured. In addition to activation in visual areas, we found that fMRI responses are evoked in the secondary somatosensory area (S2) when looking at glossy and rough surfaces. This activity could be reliably discriminated on the basis of tactile-related visual properties (gloss, rough, and matte), but importantly, other visual properties (i.e., coloured texture) did not substantially change fMRI activity. The activity could not be solely due to tactile imagination, as asking explicitly to imagine such surface properties did not lead to the same results. These findings suggest that visual cues to an object's surface properties evoke activity in neural circuits associated with tactile stimulation. This activation may reflect the a-priori probability of the physics of the interaction (i.e., the expectation of upcoming friction) that can be used to plan finger placement and grasp force. PMID:26778128

  8. Look but don't touch: Visual cues to surface structure drive somatosensory cortex

    PubMed Central

    Sun, Hua-Chun; Welchman, Andrew E.; Chang, Dorita H.F.; Di Luca, Massimiliano

    2016-01-01

    When planning interactions with nearby objects, our brain uses visual information to estimate shape, material composition, and surface structure before we come into contact with them. Here we analyse brain activations elicited by different types of visual appearance, measuring fMRI responses to objects that are glossy, matte, rough, or textured. In addition to activation in visual areas, we found that fMRI responses are evoked in the secondary somatosensory area (S2) when looking at glossy and rough surfaces. This activity could be reliably discriminated on the basis of tactile-related visual properties (gloss, rough, and matte), but importantly, other visual properties (i.e., coloured texture) did not substantially change fMRI activity. The activity could not be solely due to tactile imagination, as asking explicitly to imagine such surface properties did not lead to the same results. These findings suggest that visual cues to an object's surface properties evoke activity in neural circuits associated with tactile stimulation. This activation may reflect the a-priori probability of the physics of the interaction (i.e., the expectation of upcoming friction) that can be used to plan finger placement and grasp force. PMID:26778128

  9. Spatiotemporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shanbin; Cheng, Haiying; Zeng, Shaoqun

    2003-07-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%) 2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  10. Alpha calcium/calmodulin dependent protein kinase II in learning-dependent plasticity of mouse somatosensory cortex.

    PubMed

    Skibinska-Kijek, A; Radwanska, A; Kossut, M

    2008-02-01

    Calcium/calmodulin dependent protein kinase II (CaMKII), and more specifically its alpha subunit, is widely believed to be fundamental for hippocampal synaptic plasticity. In the cerebral cortex, deprivation-evoked plasticity was shown to depend on alphaCaMKII autophosphorylation abilities. Here we analyzed how learning-induced functional reorganization of cortical representations affected alphaCaMKII in adult Swiss mice. Mice were subjected to short-lasting sensory training in which stimulation of whiskers was paired with tail shock. The pairing results in enlargement of functional representation of vibrissae activated during the training. alphaCaMKII protein and its autophosphorylation level were determined by Western-blotting in somatosensory cortex crude synaptosomal fraction (P2) and postsynaptic protein-enriched, Triton X-100 insoluble fraction (TIF). The first training session resulted in an increase in alphaCaMKII autophosphorylation at autonomy site observed in TIF. A similar increase was also observed after the first session of just whiskers stimulation, which alone does not induce rearrangement of cortical representations. These data indicate that increased autophosphorylation of postsynaptic alphaCaMKII is not a correlate of induction phase of plasticity related reorganization of cortical representation of vibrissae. The increase observed in both experimental groups was transient and did not persist in the maintenance phase of the plastic change. Furthermore, we found that the training caused a delayed upregulation of alphaCaMKII protein level in crude synaptosomal fraction, but not in TIF, and the upregulation was not accompanied by an increase in autophosphorylation level of the kinase. The result indicates alphaCaMKII involvement in the late phase of plastic change and suggests the participation of a presynaptic pool of kinase rather than postsynaptic at this point. PMID:18164137

  11. Embedding a Panoramic Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis.

    PubMed

    Hartmann, Konstantin; Thomson, Eric E; Zea, Ivan; Yun, Richy; Mullen, Peter; Canarick, Jay; Huh, Albert; Nicolelis, Miguel A L

    2016-02-24

    Can the adult brain assimilate a novel, topographically organized, sensory modality into its perceptual repertoire? To test this, we implemented a microstimulation-based neuroprosthesis that rats used to discriminate among infrared (IR) light sources. This system continuously relayed information from four IR sensors that were distributed to provide a panoramic view of IR sources, into primary somatosensory cortex (S1). Rats learned to discriminate the location of IR sources in <4 d. Animals in which IR information was delivered in spatial register with whisker topography learned the task more quickly. Further, in animals that had learned to use the prosthesis, altering the topographic mapping from IR sensor to stimulating electrode had immediate deleterious effects on discrimination performance. Multielectrode recordings revealed that S1 neurons had multimodal (tactile/IR) receptive fields, with clear preferences for those stimuli most likely to be delivered during the task. Neuronal populations predicted, with high accuracy, which stimulation pattern was present in small (75 ms) time windows. Surprisingly, when identical microstimulation patterns were delivered during an unrelated task, cortical activity in S1 was strongly suppressed. Overall, these results show that the adult mammalian neocortex can readily absorb completely new information sources into its representational repertoire, and use this information in the production of adaptive behaviors. PMID:26911689

  12. The structure of somatosensory information for human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Ribeiro, P.; Oie, K.; Lackner, J. R.

    1998-01-01

    The goal of the present study was to determine the properties of the somatosensory stimulus that alter its temporal coupling to body sway. Six standing subjects were tested while touching a metal plate positioned either directly in front of or lateral to the subject. In each condition, the plate moved 4 mm at 0.2 Hz in either the medial-lateral (ML) or anterior-posterior direction (AP). The results showed that coupling between body sway and touch plate movement was strongest when the touch plate moved in a direction along the longitudinal axis of the arm. Coupling strength was weaker when the touch plate moved perpendicular to the longitudinal axis of the arm. The results consistently show that a radial expansion stimulus was more effective than a lamellar-type stimulus at the fingertip. Moreover, somatosensory information from a surface is interpreted in terms of the orientation of the contact limb and the potential degrees of freedom available through its movement.

  13. La3+ Alters the Response Properties of Neurons in the Mouse Primary Somatosensory Cortex to Low-Temperature Noxious Stimulation of the Dental Pulp

    PubMed Central

    Jin, Yanjiao

    2015-01-01

    Although dental pain is a serious health issue with high incidence among the human population, its cellular and molecular mechanisms are still unclear. Transient receptor potential (TRP) channels are assumed to be involved in the generation of dental pain. However, most of the studies were conducted with molecular biological or histological methods. In vivo functional studies on the role of TRP channels in the mechanisms of dental pain are lacking. This study uses in vivo cellular electrophysiological and neuropharmacological method to directly disclose the effect of LaCl3, a broad spectrum TRP channel blocker, on the response properties of neurons in the mouse primary somatosensory cortex to low-temperature noxious stimulation of the dental pulp. It was found that LaCl3 suppresses the high-firing-rate responses of all nociceptive neurons to noxious low-temperature stimulation and also inhibits the spontaneous activities in some nonnociceptive neurons. The effect of LaCl3 is reversible. Furthermore, this effect is persistent and stable unless LaCl3 is washed out. Washout of LaCl3 quickly revitalized the responsiveness of neurons to low-temperature noxious stimulation. This study adds direct evidence for the hypothesis that TRP channels are involved in the generation of dental pain and sensation. Blockade of TRP channels may provide a novel therapeutic treatment for dental pain. PMID:26604777

  14. Low-noise encoding of active touch by layer 4 in the somatosensory cortex.

    PubMed

    Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. PMID:26245232

  15. The somatosensory representation of the human clitoris: an fMRI study.

    PubMed

    Michels, Lars; Mehnert, Ulrich; Boy, Sönke; Schurch, Brigitte; Kollias, Spyros

    2010-01-01

    We studied the central representation of pudendal afferents arising from the clitoral nerves in 15 healthy adult female subjects using electrical dorsal clitoral nerve stimulation and fMRI. As a control body region, we electrically stimulated the right hallux in eight subjects. In a block design experiment, we applied bilateral clitoral stimulation and unilateral (right) hallux stimulation. Activation maps were calculated for the contrasts 'electrical dorsal clitoral nerve stimulation versus rest' and 'electrical hallux stimulation versus rest'. A random-effect group analysis for the clitoral stimulation showed significant activations bilateral in the superior and inferior frontal gyri, insulae and putamen and in the postcentral, precentral and inferior parietal gyri (including the primary and secondary somatosensory cortices). No activation was found on the mesial surface of the postcentral gyrus. For the hallux, activations occurred in a similar neuronal network but the activation in the primary somatosensory cortex was localized in the inter-hemispheric fissure. The results of this study demonstrate that the central representation of pudendal afferents arising from the clitoral nerves and sensory inputs from the hallux can be studied and distinguished from each other by fMRI. From the somatotopic order described in the somatosensory homunculus one would expect for electrical clitoral nerve stimulation activation of the mesial wall of the postcentral gyrus. In contrast, we found activations on the lateral surface of the postcentral gyrus. PMID:19631756

  16. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex

    PubMed Central

    Chuquet, Julien; Quilichini, Pascale; Nimchinsky, Esther A.; Buzsáki, György

    2010-01-01

    Glucose is the primary energetic substrate of the brain and measurements of its metabolism are the basis of major functional cerebral imaging methods. Contrary to the general view that neurons are fueled solely by glucose in proportion to their energetic needs, recent in vitro and ex vivo analyses suggest that glucose preferentially feeds astrocytes. However, the cellular fate of glucose in the intact brain has not yet been directly observed. We have used a real-time method for measuring glucose uptake in astrocytes and neurons in vivo in male rats by imaging the trafficking of the non-metabolizable glucose analog 6-NBDG using two-photon microscopy. During resting conditions we found that astrocytes and neurons both uptake 6-NBDG at the same rate in the barrel cortex of the rat. However, during intense neuronal activity triggered by whisker stimulation, astrocytes rapidly accelerated their uptake whereas neuronal uptake remained almost unchanged. Following the stimulation period, astrocytes returned to their pre-activation rates of uptake paralleling the neuronal rate of uptake. These observations suggest that glucose is primarily taken-up by astrocytes, supporting the view that functional imaging experiments based on glucose analogs extraction may predominantly reflect the metabolic activity of the astrocytic network. PMID:21068334

  17. Low-noise encoding of active touch by layer 4 in the somatosensory cortex

    PubMed Central

    Andrew Hires, Samuel; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. DOI: http://dx.doi.org/10.7554/eLife.06619.001 PMID:26245232

  18. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Benolken, M. S.

    1995-01-01

    The purpose of this study was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full-field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena were observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal subjects and subjects experiencing vestibular loss were nearly identical, implying (1) that normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) that subjects with vestibular loss did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system "gain" was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost 3 times greater than the amplitude of the visual stimulus in normal subjects and subjects with vestibular loss. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about 4 in tests where somatosensory cues provided

  19. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1993-01-01

    The purpose was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena was observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal and vestibular loss subjects were nearly identical implying that (1) normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) vestibular loss subjects did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system 'gain' was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost three times greater than the amplitude of the visual stimulus in normals and vestibular loss subjects. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about four in tests where somatosensory cues provided accurate versus inaccurate orientation information. This

  20. Altered intrinsic properties and bursting activities of neurons in layer IV of somatosensory cortex from Fmr-1 knockout mice.

    PubMed

    Zhang, Linming; Liang, Zhanrong; Zhu, Pingping; Li, Meng; Yi, Yong-Hong; Liao, Wei-Ping; Su, Tao

    2016-06-01

    Neuroadaptations and alterations in neuronal excitability are critical in brain maturation and many neurological diseases. Fragile X syndrome (FXS) is a pervasive neurodevelopmental disorder characterized by extensive synaptic and circuit dysfunction. It is still unclear about the alterations in intrinsic excitability of individual neurons and their link to hyperexcitable circuitry. In this study, whole cell patch-clamp recordings were employed to characterize the membrane and firing properties of layer IV cells in slices of the somatosensory cortex of Fmr-1 knockout (KO) mice. These cells generally exhibited a regular spiking (RS) pattern, while there were significant increases in the number of cells that adopted intrinsic bursting (IB) compared with age-matched wild type (WT) cells. The cells subgrouped according to their firing patterns and maturation differed significantly in membrane and discharge properties between KO and WT. The changes in the intrinsic properties were consistent with highly facilitated discharges in KO cells induced by current injection. Spontaneous activities of RS neurons driven by local network were also increased in the KO cells, especially in neonate groups. Under an epileptiform condition mimicked by omission of Mg(2+) in extracellular solution, these RS neurons from KO mice were more likely to switch to burst discharges. Analysis on bursts revealed that the KO cells tended to form burst discharges and even severe events manifested as seizure-like ictal discharges. These results suggest that alterations in intrinsic properties in individual neurons are involved in the abnormal excitability of cortical circuitry and possibly account for the pathogenesis of epilepsy in FXS. PMID:27048919

  1. Shifts in Developmental Timing, and Not Increased Levels of Experience-Dependent Neuronal Activity, Promote Barrel Expansion in the Primary Somatosensory Cortex of Rats Enucleated at Birth

    PubMed Central

    Fetter-Pruneda, Ingrid; Ibarrarán-Viniegra, Ana Sofía; Martínez-Martínez, Eduardo; Sandoval-Velasco, Marcela; Uribe-Figueroa, Laura; Padilla-Cortés, Patricia; Mercado-Célis, Gabriela; Gutiérrez-Ospina, Gabriel

    2013-01-01

    Birth-enucleated rodents display enlarged representations of whiskers (i.e., barrels of the posteromedial subfield) in the primary somatosensory cortex. Although the historical view maintains that barrel expansion is due to incremental increases in neuronal activity along the trigeminal pathway during postnatal development, recent evidence obtained in experimental models of intramodal plasticity challenges this view. Here, we re-evaluate the role of experience-dependent neuronal activity on barrel expansion in birth-enucleated rats by combining various anatomical methods and sensory deprivation paradigms. We show that barrels in birth-enucleated rats were already enlarged by the end of the first week of life and had levels of metabolic activity comparable to those in control rats at different ages. Dewhiskering after the postnatal period of barrel formation did not prevent barrel expansion in adult, birth-enucleated rats. Further, dark rearing and enucleation after barrel formation did not lead to expanded barrels in adult brains. Because incremental increases of somatosensory experience did not promote barrel expansion in birth-enucleated rats, we explored whether shifts of the developmental timing could better explain barrel expansion during the first week of life. Accordingly, birth-enucleated rats show earlier formation of barrels, accelerated growth of somatosensory thalamocortical afferents, and an earlier H4 deacetylation. Interestingly, when H4 deacetylation was prevented with a histone deacetylases inhibitor (valproic acid), barrel specification timing returned to normal and barrel expansion did not occur. Thus, we provide evidence supporting that shifts in developmental timing modulated through epigenetic mechanisms, and not increased levels of experience dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth. PMID:23372796

  2. Pain facilitates tactile processing in human somatosensory cortices.

    PubMed

    Ploner, Markus; Pollok, Bettina; Schnitzler, Alfons

    2004-09-01

    Touch and pain are intimately related modalities. Despite a substantial overlap in their cortical representations interactions between both modalities are largely unknown at the cortical level. We therefore used magnetoencephalography and selective nociceptive cutaneous laser stimulation to investigate the effects of brief painful stimuli on cortical processing of touch. Using a conditioning test stimulus paradigm, our results show that painful conditioning stimuli facilitate processing of tactile test stimuli applied 500 ms later. This facilitation applies to cortical responses later than 40 ms originating from primary (S1) and secondary (S2) somatosensory cortices but not to earlier S1 responses. By contrast, tactile conditioning stimuli yield a decrease of early as well as late responses to tactile test stimuli. Control experiments show that pain-induced facilitation of tactile processing is not restricted to the site of the painful conditioning stimulus, whereas auditory conditioning does not yield a comparable facilitation. Apart from a lack of spatial specificity, the facilitating effect of pain closely resembles attentional effects on cortical processing of tactile stimuli. Thus these findings may represent a physiological correlate of an alerting function of pain as a change in the internal state to prepare for processing signals of particular relevance. PMID:15115788

  3. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  4. Organization of tectopontine terminals within the pontine nuclei of the rat and their spatial relationship to terminals from the visual and somatosensory cortex.

    PubMed

    Schwarz, Cornelius; Horowski, Anja; Möck, Martin; Thier, Peter

    2005-04-11

    We investigated the spatial relationship of axonal and dendritic structures in the rat pontine nuclei (PN), which transfer visual signals from the superior colliculus (SC) and visual cortex (A17) to the cerebellum. Double anterograde tracing (DiI and DiAsp) from different sites in the SC showed that the tectal retinotopy of visual signals is largely lost in the PN. Whereas axon terminals from lateral sites in the SC were confined to a single terminal field close to the cerebral peduncle, medial sites in the SC projected to an additional dorsolateral one. On the other hand, axon terminals originating from the two structures occupy close but, nevertheless, totally nonoverlapping terminal fields within the PN. Furthermore, a quantitative analysis of the dendritic trees of intracellularly filled identified pontine projection neurons showed that the dendritic fields were confined to either the SC or the A17 terminal fields and never extended into both. We also investigated the projections carrying cortical somatosensory inputs to the PN as these signals are known to converge with tectal ones in the cerebellum. However, terminals originating in the whisker representation of the primary somatosensory cortex and in the SC were located in segregated pontine compartments as well. Our results, therefore, point to a possible pontocerebellar mapping rule: Functionally related signals, commonly destined for common cerebellar target zones but residing in different afferent locations, may be kept segregated on the level of the PN and converge only later at specific sites in the granular layer of cerebellar cortex. PMID:15739237

  5. Loss and Spontaneous Recovery of Forelimb Evoked Potentials in both the Adult Rat Cuneate Nucleus and Somatosensory Cortex following Contusive Cervical Spinal Cord Injury

    PubMed Central

    Onifer, Stephen M.; Nunn, Christine D.; Decker, Julie A.; Payne, Beth N.; Wagoner, Michelle R.; Puckett, Aaron H.; Massey, James M.; Armstrong, James; Kaddumi, Ezidin G.; Fentress, Kimberly G.; Wells, Michael J.; West, Robert M.; Calloway, Charles C.; Schnell, Jeffrey T.; Whitaker, Christopher M.; Burke, Darlene A.; Hubscher, Charles H.

    2007-01-01

    Varying degrees of neurologic function spontaneously recovers in humans and animals during the days and months after spinal cord injury (SCI). For example, abolished upper limb somatosensory potentials (SSEPS) and cutaneous sensations can recover in persons post-contusive cervical SCI. To maximize recovery and the development/evaluation of repair strategies, a better understanding of the anatomical locations and physiological processes underlying spontaneous recovery after SCI is needed. As an initial step, the present study examined whether recovery of upper limb SSEPs after contusive cervical SCI was due to the integrity of some spared dorsal column primary afferents that terminate within the cuneate nucleus and not one of several alternate routes. C5-C6 contusions were performed on male adult rats. Electrophysiological techniques were used in the same rat to determine forelimb evoked neuronal responses in both cortex (SSEPS) and the cuneate nucleus (terminal extracellular recordings). SSEPs were not evoked 2 days post-SCI but were found at 7 days and beyond, with an observed change in latencies between 7 and 14 days (suggestive of spared axon remyelination). Forelimb evoked activity in the cuneate nucleus at 15 but not 3 days post-injury occurred despite dorsal column damage throughout the cervical injury (as seen histologically). Neuroanatomical tracing (using 1% unconjugated cholera toxin B subunit) confirmed that upper limb primary afferent terminals remained within the cuneate nuclei. Taken together, these results indicate that neural transmission between dorsal column primary afferents and cuneate nuclei neurons is likely involved in the recovery of upper limb SSEPs after contusive cervical SCI. PMID:17678895

  6. The mode of synaptic activation of pyramidal neurons in the cat primary somatosensory cortex: an intracellular HRP study.

    PubMed

    Yamamoto, T; Samejima, A; Oka, H

    1990-01-01

    A total of 141 pyramidal neurons in the cat primary somatosensory cortex (SI) were recorded intracellularly under Nembutal anesthesia (7 in layer II, 43 in layer III, 8 in layer IV, 58 in layer V and 25 in layer VI). Most neurons were identified by intracellular staining with HRP, though some layer V pyramidal neurons were identified only electrophysiologically with antidromic activation of medullary pyramid (PT) or pontine nuclear (PN) stimulation. Excitatory synaptic potentials (EPSPs) were analyzed with stimulation of the superficial radial nerve (SR), the ventral posterolateral nucleus (VPL) in the thalamus and the thalamic radiation (WM). The pyramidal neurons in layers III and IV received EPSPs at the shortest latency: 9.1 +/- 2.1 ms (Mean +/- S.D.) for SR and 1.6 +/- 0.7 ms for VPL stimulation. Layer II pyramidal neurons also responded at a short latency to VPL stimulation (1.7 +/- 0.5 ms), though their mean latencies for SR-induced EPSPs were relatively longer (10.6 +/- 1.9 ms). The mean latencies were much longer in layers V and VI pyramidal neurons (10.2 +/- 2.4 ms and 2.9 +/- 1.5 ms in layer V pyramidal neurons and 9.9 +/- 2.5 ms and 2.8 +/- 1.6 ms in layer VI pyramidal ones, respectively for SR and VPL stimulation). The comparison of the latencies between VPL and WM stimulation indicates that most layer III-IV pyramidal neurons and some pyramidal cells in layers II, V and VI received monosynaptic inputs from VPL. These findings are consistent with morphological data on the laminar distribution of thalamocortical fibers, i.e., thalamocortical fibers terminate mainly in the deeper part of layers III and IV with some collaterals in layers V, VI and II-I. The time-sequences of the latencies of VPL-EPSPs indicate that corticocortical and/or transcallosal neurons (pyramidal neurons in layers II and III) fire first and are followed by firing of the output neurons projecting to the subcortical structures (pyramidal neurons in layers V and VI). PMID:2358022

  7. The chronometry of risk processing in the human cortex

    PubMed Central

    Symmonds, Mkael; Moran, Rosalyn J.; Wright, Nicholas D.; Bossaerts, Peter; Barnes, Gareth; Dolan, Raymond J.

    2013-01-01

    The neuroscience of human decision-making has focused on localizing brain activity correlating with decision variables and choice, most commonly using functional MRI (fMRI). Poor temporal resolution means these studies are agnostic in relation to how decisions unfold in time. Consequently, here we address the temporal evolution of neural activity related to encoding of risk using magnetoencephalography (MEG), and show modulations of electromagnetic power in posterior parietal and dorsomedial prefrontal cortex (DMPFC) which scale with both variance and skewness in a lottery, detectable within 500 ms following stimulus presentation. Electromagnetic responses in somatosensory cortex following this risk encoding predict subsequent choices. Furthermore, within anterior insula we observed early and late effects of subject-specific risk preferences, suggestive of a role in both risk assessment and risk anticipation during choice. The observation that cortical activity tracks specific and independent components of risk from early time-points in a decision-making task supports the hypothesis that specialized brain circuitry underpins risk perception. PMID:23970849

  8. Activity in the primary somatosensory cortex induced by reflexological stimulation is unaffected by pseudo-information: a functional magnetic resonance imaging study

    PubMed Central

    2013-01-01

    Background Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Methods Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Results Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information

  9. Responsiveness of the somatosensory system after nerve injury and amputation in the human hand.

    PubMed

    Schady, W; Braune, S; Watson, S; Torebjörk, H E; Schmidt, R

    1994-07-01

    We studied the responsiveness of the somatosensory system in humans after prolonged deprivation of peripheral input. Eight patients with traumatic transection of the median or ulnar nerve and 6 patients with amputation of a finger or hand underwent microneurography and intraneural stimulation. Bundles of nerve fibers were electrically stimulated through a microelectrode placed in the affected nerve proximally to the site of damage or in the case of amputees, in a nerve fascicle supplying the stump. During intraneural stimulation the subjects with nerve injuries reported distinct percepts in the hypoesthetic skin. Their projections were usually confined to the territory of a single or two adjacent palmar digital nerves, similar to the fascicular territories of healthy nerves in control subjects, but there was much less microneurographically recordable afferent activity than in normal subjects. In amputees intraneural stimulation evoked sensations in a phantom digit or digits in over three fourths of the fascicles studied. We conclude that (1) the somatosensory system remains able to process information from a nerve fascicle that has lost its cutaneous territory, and (2) somatosensory localization remains accurate despite the presumed central reorganization that takes place after nerve division or amputation. This lack of functional adaptation has important implications with regard to our understanding of human central nervous system plasticity. PMID:8024265

  10. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    PubMed

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex

  11. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex

    PubMed Central

    Herrera-Rincon, Celia; Panetsos, Fivos

    2014-01-01

    Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex “on demand” by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing. PMID:25452715

  12. The human entorhinal cortex: a cytoarchitectonic analysis.

    PubMed

    Insausti, R; Tuñón, T; Sobreviela, T; Insausti, A M; Gonzalo, L M

    1995-05-01

    The entorhinal cortex of man is in the medial aspect of the temporal lobe. As in other mammalian species, it constitutes an essential component of the hippocampal formation and the route through which the neocortex interacts with the hippocampus. The importance of knowing its architecture in detail arises from the possibility of extrapolating it to experimental findings, notably in the nonhuman primate. We have investigated the cytoarchitectonic features of the human entorhinal cortex by using as a base our previous study (D.G. Amaral, R. Insausti, and W.M. Cowan [1987] J. Comp. Neurol. 264:326-355) of the nonhuman primate entorhinal cortex. We prepared serial sections of the temporal lobe from 35 normal brains. Thionin- and myelin-stained series were made of all cases. Sections spaced 500 microns apart through the full rostrocaudal extent of the entorhinal cortex were analyzed. The human entorhinal cortex is made up of six layers, of which layer IV does not appear throughout all subfields of the entorhinal cortex. The overall appearance resembles that of the adjacent neocortex in lateral and caudal portions. In harmony with general structural principles in the nonhuman primate entorhinal cortex, our analysis supports the partitioning of the human entorhinal cortex into eight different subfields. (1) The olfactory subfield (EO), the rostralmost field, is little laminated. (2) The lateral rostral subfield (ELr), laterally located, merges with the laterally adjacent perirhinal cortex. (3) The rostral subfield (ER) is between EO and ELr, with better differentiation of layers II and III than EO. (4) The medial intermediate subfield (EMI) is located at the medial border. (5) The intermediate field (EI) is a lateral continuation of EMI; lamina dissecans (layer IV) can be best appreciated in this field. (6) The lateral caudal subfield (ELc) laterally borders on EI as a continuation of ELr. (7) The caudal subfield (EC) lies caudal to the beginning of the hippocampal

  13. The Age of Human Cerebral Cortex Neurons

    SciTech Connect

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  14. Functional MR imaging of the human sensorimotor cortex during haptic discrimination.

    PubMed

    Anton, J L; Benali, H; Guigon, E; Di Paola, M; Bittoun, J; Jolivet, O; Burnod, Y

    1996-11-25

    This study attempted to determine whether haptic discriminations of shape (haptic task) activate the same tissue in the central cortical region of normal human subjects as do finger movements (opposition task). Opposition and haptic tasks both activated the central sulcus, as expected from previous imaging studies. The haptic task activated about 50% of the cortical territory activated by the opposition task. The results suggest that exploratory digital movements performed to collect precise somatosensory information and automatic movements performed during finger positioning activate partially overlapping parts of the sensorimotor cortex. PMID:9116195

  15. Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience123

    PubMed Central

    2016-01-01

    Abstract Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them. PMID:27280154

  16. Spatial updating in human parietal cortex

    NASA Technical Reports Server (NTRS)

    Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.

    2003-01-01

    Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.

  17. Alpha stimulation of the human parietal cortex attunes tactile perception to external space.

    PubMed

    Ruzzoli, Manuela; Soto-Faraco, Salvador

    2014-02-01

    An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information. PMID:24440394

  18. Spatiotemporal Changes of Neuronal Responses in the Primary Somatosensory Cortex to Noxious Tail Stimulation in Awake and Pentobarbital-Anesthetized Rats.

    PubMed

    Kuo, Chung-Chih; Lee, Jye-Chang; Chiou, Ruei-Jen; Tsai, Meng-Li; Yen, Chen-Tung

    2015-10-31

    Primary somatosensory cortex (SI) is a key area in the processing of nociceptor inputs to our consciousness. To clarify the columnar and laminar organization of SI for pain processing, we compared spatiotemporal changes in neuronal activities of the primary sensorimotor cortex (SmI) of the rat in response to noxious laser heat stimulation applied to the mid-tail. Longitudinal and vertical array microelectrodes were chronically implanted in the cerebral cortex. Evoked neuronal activities, including intracortical local field potentials (LFP) and ensemble single-unit activity (SU) around SmI were simultaneously recorded. The effect of pentobarbital on the neuronal responses was evaluated in comparison with the neuronal responses in conscious animals to explore the potential substrate of nociceptive processing in the conscious state. The results from the experiment with longitudinal microelectrode arrays indicated that noxious stimulation induced a neuronal response which was spread widely around the SmI of the conscious rat, and the range of neuronal responses was limited to the tail region of the SmI under anesthesia. The results from the experiment with vertical microelectrode arrays showed the universal neuronal responses through all cortical layers of the SmI in conscious rats, and sodium pentobarbital suppressed these neuronal responses in the supragranular layers significantly relative to the deeper layers and basal activity. These results imply that a wider range of cortical activation, both in the horizontal or vertical dimension, might be important for nociceptive processing in the conscious state. PMID:26387657

  19. The Piriform Cortex and Human Focal Epilepsy

    PubMed Central

    Vaughan, David N.; Jackson, Graeme D.

    2014-01-01

    It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability. PMID:25538678

  20. Tonotopic mapping of human auditory cortex.

    PubMed

    Saenz, Melissa; Langers, Dave R M

    2014-01-01

    Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging. PMID:23916753

  1. Augmented Pain Processing in Primary and Secondary Somatosensory Cortex in Fibromyalgia: A Magnetoencephalography Study Using Intra-Epidermal Electrical Stimulation

    PubMed Central

    Lim, Manyoel; Roosink, Meyke; Kim, June Sic; Kim, Hye Won; Lee, Eun Bong; Son, Kyeong Min; Kim, Hyun Ah; Chung, Chun Kee

    2016-01-01

    The aim of this study was to investigate augmented pain processing in the cortical somatosensory system in patients with fibromyalgia (FM). Cortical evoked responses were recorded in FM (n = 19) and healthy subjects (n = 21) using magnetoencephalography after noxious intra-epidermal electrical stimulation (IES) of the hand dorsum (pain rating 6 on a numeric rating scale, perceptually-equivalent). In addition, healthy subjects were stimulated using the amplitude corresponding to the average stimulus intensity rated 6 in patients with FM (intensity-equivalent). Quantitative sensory testing was performed on the hand dorsum or thenar muscle (neutral site) and over the trapezius muscle (tender point), using IES (thresholds, ratings, temporal summation of pain, stimulus-response curve) and mechanical stimuli (threshold, ratings). Increased amplitude of cortical responses was found in patients with FM as compared to healthy subjects. These included the contralateral primary (S1) and bilateral secondary somatosensory cortices (S2) in response to intensity-equivalent stimuli and the contralateral S1 and S2 in response to perceptually-equivalent stimuli. The amplitude of the contralateral S2 response in patients with FM was positively correlated with average pain intensity over the last week. Quantitative sensory testing results showed that patients with FM were more sensitive to painful IES as well as to mechanical stimulation, regardless of whether the stimulation site was the hand or the trapezius muscle. Interestingly, the slope of the stimulus-response relationship as well as temporal summation of pain in response to IES was not different between groups. Together, these results suggest that the observed pain augmentation in response to IES in patients with FM could be due to sensitization or disinhibition of the cortical somatosensory system. Since the S2 has been shown to play a role in higher-order functions, further studies are needed to clarify the role of augmented

  2. Minicolumn size and human cortex.

    PubMed

    Buxhoeveden, Daniel P

    2012-01-01

    Minicolumns in primates are small when compared with those of other mammals, both in absolute and relative terms. The data suggest that minicolumns in the earliest primates were especially narrow and increased in accordance with encephalization so that the largest minicolumns in this mammalian order are found in apes and humans. Among the evolutionary strategies that led to the successful human brain was a combination of enhanced cortical volume based on increases in the number of ontogenetic units, along with enlargement of the individual minicolumns. However, continued encephalization of the large human brain presents serious problems that may limit future growth. When further increases in brain size can no longer be sustained, the alternative for further adaptations will have to be done at the level of brain organization. A downsizing of minicolumns may be among those responses. This has the advantage of permitting increases in the number of processing units without adding surface area. However, it is argued that narrow minicolumns process information differently, which raises questions about the relation between minicolumn size and behavior. There is evidence that minicolumns may be smaller in extant humans within selected populations, and the implications of this are briefly considered. PMID:22230629

  3. Reconstructing speech from human auditory cortex.

    PubMed

    Pasley, Brian N; David, Stephen V; Mesgarani, Nima; Flinker, Adeen; Shamma, Shihab A; Crone, Nathan E; Knight, Robert T; Chang, Edward F

    2012-01-01

    How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex. PMID:22303281

  4. Reconstructing Speech from Human Auditory Cortex

    PubMed Central

    Pasley, Brian N.; David, Stephen V.; Mesgarani, Nima; Flinker, Adeen; Shamma, Shihab A.; Crone, Nathan E.; Knight, Robert T.; Chang, Edward F.

    2012-01-01

    How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex. PMID:22303281

  5. Human high frequency somatosensory evoked potential components are refractory to circadian modulations of tonic alertness.

    PubMed

    Gobbelé, René; Waberski, Till D; Thyerlei, Dinah; Thissen, Melanie; Fimm, Bruno; Klostermann, Fabian; Curio, Gabriel; Buchner, Helmut

    2007-02-01

    The impact of vigilance states, such as sleep or arousal changes, on the high-frequency (600 Hz) components (HFOs) of somatosensory evoked potentials (SEPs) is known. The present study sought to characterize the effects of circadian fluctuations of tonic alertness on HFOs in awake humans. Median nerve SEPs were recorded at four times during a 24-hour waking period. In parallel to the SEP recordings, a reaction-time (RT) task was performed to assess tonic alertness. Additionally, the spontaneous EEG was monitored. The low-frequency SEP component N20 and the early and late HFO parts did not change across the measurement sessions. In contrast, RTs were clearly prolonged at night and on the second morning. EEG also showed increased delta power at night. HFOs are sensitive to pronounced vigilance changes, such as sleep, but are refractory to fluctuations of tonic alertness. Tonic alertness is regarded to be the top-down cognitive control mechanism of wakefulness, whereas sleep is mediated by overwhelming bottom-up regulation, which seems apparently more relevant for, at least in part, subcortically triggered high-frequency burst generation in the ascending somatosensory system. PMID:17277574

  6. Cortical EEG alpha rhythms reflect task-specific somatosensory and motor interactions in humans.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Arendt-Nielsen, Lars; Soricelli, Andrea; Romani, Gian Luca; Rossini, Paolo Maria; Capotosto, Paolo

    2014-10-01

    Anticipating sensorimotor events allows adaptive reactions to environment with crucial implications for self-protection and survival. Here we review several studies of our group that aimed to test the hypothesis that the cortical processes preparing the elaboration of sensorimotor interaction is reflected by the reduction of anticipatory electroencephalographic alpha power (about 8-12Hz; event-related desynchronization, ERD), as an index that regulate task-specific sensorimotor processes, accounted by high-alpha sub-band (10-12Hz), rather than a general tonic alertness, accounted by low-alpha sub-band (8-10Hz). In this line, we propose a model for human cortical processes anticipating warned sensorimotor interactions. Overall, we reported a stronger high-alpha ERD before painful than non-painful somatosensory stimuli that is also predictive of the subjective evaluation of pain intensity. Furthermore, we showed that anticipatory high-alpha ERD increased before sensorimotor interactions between non-painful or painful stimuli and motor demands involving opposite hands. In contrast, sensorimotor interactions between painful somatosensory and sensorimotor demands involving the same hand decreased anticipatory high-alpha ERD, due to a sort of sensorimotor "gating" effect. In conclusion, we suggest that anticipatory cortical high-alpha rhythms reflect the central interference and/or integration of ascending (sensory) and descending (motor) signals relative to one or two hands before non-painful and painful sensorimotor interactions. PMID:24929901

  7. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.

    1996-01-01

    The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  8. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex

    PubMed Central

    Li, Nan; van Zijl, Peter; Thakor, Nitish; Pelled, Galit

    2014-01-01

    In this work we combined optogenetics tools with high-resolution blood oxygenation level dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency - dependency and distinct laminar activation profiles. We the found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation were greater than 3 mm. These results suggest that due to the complex neurovascular coupling it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals. PMID:24443233

  9. Acupuncture-induced changes in functional connectivity of the primary somatosensory cortex varied with pathological stages of Bell's palsy.

    PubMed

    He, Xiaoxuan; Zhu, Yifang; Li, Chuanfu; Park, Kyungmo; Mohamed, Abdalla Z; Wu, Hongli; Xu, Chunsheng; Zhang, Wei; Wang, Linying; Yang, Jun; Qiu, Bensheng

    2014-10-01

    Bell's palsy is the most common cause of acute facial nerve paralysis. In China, Bell's palsy is frequently treated with acupuncture. However, its efficacy and underlying mechanism are still controversial. In this study, we used functional MRI to investigate the effect of acupuncture on the functional connectivity of the brain in Bell's palsy patients and healthy individuals. The patients were further grouped according to disease duration and facial motor performance. The results of resting-state functional MRI connectivity show that acupuncture induces significant connectivity changes in the primary somatosensory region of both early and late recovery groups, but no significant changes in either the healthy control group or the recovered group. In the recovery group, the changes also varied with regions and disease duration. Therefore, we propose that the effect of acupuncture stimulation may depend on the functional connectivity status of patients with Bell's palsy. PMID:25121624

  10. Corticothalamic and corticotectal somatosensory projections from the anterior ectosylvian sulcus (SIV cortex) in neonatal cats: an anatomical demonstration with HRP and /sup 3/H-leucine

    SciTech Connect

    McHaffie, J.G.; Kruger, L.; Clemo, H.R.; Stein, B.E.

    1988-08-01

    Corticothalamic and corticotectal projections from the anterior ectosylvian sulcus (AES) in neonatal cats were studied with anterograde and retrograde neuroanatomical techniques. When the injection site was relatively restricted to the sulcal walls and fundus of the rostral AES (i.e., the SIV cortex), heavy ipsilateral thalamic label was observed in the medial subdivision of the posterior group, in the suprageniculate nucleus, and in the external medullary lamina. No terminal label was seen in the contralateral thalamus although the contralateral homotopic cortex was heavily labeled. Within the ventrobasal complex (VB), dense axonal label was observed in fascicles that traversed VB, but only light terminal label was observed within VB itself. However, in cases where the tracer spread into adjacent SII, terminal label in VB was pronounced. Similarly, when the injection site extended into auditory cortex, terminal label was observed in the lateral and intermediate subdivisions of the posterior group. Rostral AES injections produced distinct, predominantly ipsilateral, terminal label in the superior colliculus that was distributed in two tiers: a discontinuous band in the stratum griseum intermedium and a more diffuse band in stratum griseum profundum. Caudally, dense terminal label was seen in the intercollicular zone and dorsolateral periaqueductal gray. When the injection site did not include rostral AES, no label was observed in the superior colliculus. Horseradish peroxidase injections into the superior colliculus of neonates produced retrogradely labeled neurons throughout the AES, but none was found on the crown of the gyrus where SII is located. Thus, the neonatal corticotectal somatosensory projection arises exclusively from AES and parallels that found in adults.

  11. The human cerebral cortex flattens during adolescence.

    PubMed

    Alemán-Gómez, Yasser; Janssen, Joost; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Immaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2013-09-18

    The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter. PMID:24048830

  12. Functional subregions of the human entorhinal cortex

    PubMed Central

    Maass, Anne; Berron, David; Libby, Laura A; Ranganath, Charan; Düzel, Emrah

    2015-01-01

    The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC. DOI: http://dx.doi.org/10.7554/eLife.06426.001 PMID:26052749

  13. Functional topography of the human entorhinal cortex

    PubMed Central

    Zaragoza Jimenez, Nestor I

    2015-01-01

    Despite extensive research on the role of the rodent medial and lateral entorhinal cortex (MEC/LEC) in spatial navigation, memory and related disease, their human homologues remain elusive. Here, we combine high-field functional magnetic resonance imaging at 7 T with novel data-driven and model-based analyses to identify corresponding subregions in humans based on the well-known global connectivity fingerprints in rodents and sensitivity to spatial and non-spatial information. We provide evidence for a functional division primarily along the anteroposterior axis. Localising the human homologue of the rodent MEC and LEC has important implications for translating studies on the hippocampo-entorhinal memory system from rodents to humans. DOI: http://dx.doi.org/10.7554/eLife.06738.001 PMID:26052748

  14. Receptive Field Properties of the Macaque Second Somatosensory Cortex: Nonlinear Mechanisms Underlying the Representation of Orientation Within a Finger Pad

    PubMed Central

    Thakur, Pramodsingh H.; Fitzgerald, Paul J.; Lane, John W.; Hsiao, Steven S.

    2007-01-01

    We investigate the position invariant receptive field properties of neurons in the macaque second somatosensory (SII) cortical region. Previously we reported that many SII region neurons show orientation tuning in the center of multiple finger pads of the hand and further that the tuning is similar on different pads, which can be interpreted as position invariance. Here we study the receptive field properties of a single finger pad for a subset (n = 61) of those 928 neurons, using a motorized oriented bar that we positioned at multiple locations across the pad. We calculate both vector fields and linear receptive fields of the finger pad to characterize the receptive field properties that give rise to the tuning, and we perform an additional regression analysis to quantify linearity, invariance, or both in individual neurons. We show that orientation tuning of SII region neurons is based on a variety of mechanisms. For some neurons, the tuning is explained by simple excitatory regions, simple inhibitory regions, or some combination of these structures. However, a large fraction of the neurons (n = 20 of 61, 33%) show position invariance that is not explained well by their linear receptive fields. Finding invariance within a finger pad, coupled with the previous result of similar tuning on different pads, indicates that some SII region neurons may exhibit similar tuning throughout large regions of the hand. We hypothesize that invariant neurons play an important role in tactile form recognition. PMID:17192440

  15. Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex.

    PubMed

    Egger, Veronica; Nevian, Thomas; Bruno, Randy M

    2008-04-01

    Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input. PMID:17656622

  16. Spatio-temporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shangbin; Chen, Haiying; Zeng, Shaoqun

    2003-10-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%)2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50%+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  17. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  18. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex.

    PubMed

    Toth, Peter; Tarantini, Stefano; Davila, Antonio; Valcarcel-Ares, M Noa; Tucsek, Zsuzsanna; Varamini, Behzad; Ballabh, Praveen; Sonntag, William E; Baur, Joseph A; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of cognitive impairment associated with aging and pathological conditions associated with accelerated cerebromicrovascular aging (e.g., hypertension, obesity). Although previous studies demonstrate that endothelial dysfunction plays a critical role in neurovascular uncoupling in these conditions, the role of endothelial NO mediation in neurovascular coupling responses is not well understood. To establish the link between endothelial function and functional hyperemia, neurovascular coupling responses were studied in mutant mice overexpressing or deficient in endothelial NO synthase (eNOS), and the role of P2Y1 receptors in purinergic glioendothelial coupling was assessed. We found that genetic depletion of eNOS (eNOS(-/-)) and pharmacological inhibition of NO synthesis significantly decreased the CBF responses in the somatosensory cortex evoked by whisker stimulation and by administration of ATP. Overexpression of eNOS enhanced NO mediation of functional hyperemia. In control mice, the selective and potent P2Y1 receptor antagonist MRS2179 attenuated both whisker stimulation-induced and ATP-mediated CBF responses, whereas, in eNOS(-/-) mice, the inhibitory effects of MRS2179 were blunted. Collectively, our findings provide additional evidence for purinergic glio-endothelial coupling during neuronal activity, highlighting the role of ATP-mediated activation of eNOS via P2Y1 receptors in functional hyperemia. PMID:26453330

  19. Mapping tonotopy in human auditory cortex.

    PubMed

    van Dijk, Pim; Langers, Dave R M

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier publications, tonotopic gradients were not found to be collinearly aligned along Heschl's gyrus; instead, two tonotopic maps ran diagonally across the anterior and posterior banks of Heschl's gyrus, set at a pronounced angle. On the basis of the direction of the tonotopic gradient, distinct subdivisions of the auditory cortex could be clearly demarcated that suggest homologies with the tonotopic organization in other primates. Finally, we applied our method to tinnitus patients to show that - contradictory to some pathophysiological models - tinnitus does not necessarily involve large-scale tonotopic reorganization. Overall, we expect that tonotopic mapping techniques will significantly enhance our ability to study the hierarchical functional organization of distinct auditory processing centers in the healthy and diseased human brain. PMID:23716248

  20. Probabilistic functional tractography of the human cortex.

    PubMed

    David, Olivier; Job, Anne-Sophie; De Palma, Luca; Hoffmann, Dominique; Minotti, Lorella; Kahane, Philippe

    2013-10-15

    Single-pulse direct electrical stimulation of cortical regions in patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes induces cortico-cortical potentials that can be used to infer functional and anatomical connectivity. Here, we describe a neuroimaging framework that allows development of a new probabilistic atlas of functional tractography of the human cortex from those responses. This atlas is unique because it allows inference in vivo of the directionality and latency of cortico-cortical connectivity, which are still largely unknown at the human brain level. In this technical note, we include 1535 stimulation runs performed in 35 adult patients. We use a case of frontal lobe epilepsy to illustrate the asymmetrical connectivity between the posterior hippocampal gyrus and the orbitofrontal cortex. In addition, as a proof of concept for group studies, we study the probabilistic functional tractography between the posterior superior temporal gyrus and the inferior frontal gyrus. In the near future, the atlas database will be continuously increased, and the methods will be improved in parallel, for more accurate estimation of features of interest. Generated probabilistic maps will be freely distributed to the community because they provide critical information for further understanding and modelling of large-scale brain networks. PMID:23707583

  1. Evaluation of somatosensory cortical differences between flutter and vibration tactile stimuli.

    PubMed

    Han, Sang Woo; Chung, Yoon Gi; Kim, Hyung-Sik; Chung, Soon-Cheol; Park, Jang-Yeon; Kim, Sung-Phil

    2013-01-01

    In parallel with advances in haptic-based mobile computing systems, understanding of the neural processing of vibrotactile information becomes of great importance. In the human nervous system, two types of vibrotactile information, flutter and vibration, are delivered from mechanoreceptors to the somatosensory cortex through segregated neural afferents. To investigate how the somatosensory cortex differentiates flutter and vibration, we analyzed the cortical responses to vibrotactile stimuli with a wide range of frequencies. Specifically, we examined whether cortical activity changed most around 50 Hz, which is known as a boundary between flutter and vibration. We explored various measures to evaluate separability of cortical activity across frequency and found that the hypothesis margin method resulted in the greatest separability between flutter and vibration. This result suggests that flutter and vibration information may be processed by different neural processes in the somatosensory cortex. PMID:24110709

  2. Individual Differences in Anticipatory Somatosensory Cortex Activity for Shock is Positively Related with Trait Anxiety and Multisensory Integration

    PubMed Central

    Greening, Steven G.; Lee, Tae-Ho; Mather, Mara

    2016-01-01

    Anxiety is associated with an exaggerated expectancy of harm, including overestimation of how likely a conditioned stimulus (CS+) predicts a harmful unconditioned stimulus (US). In the current study we tested whether anxiety-associated expectancy of harm increases primary sensory cortex (S1) activity on non-reinforced (i.e., no shock) CS+ trials. Twenty healthy volunteers completed a differential-tone trace conditioning task while undergoing fMRI, with shock delivered to the left hand. We found a positive correlation between trait anxiety and activity in right, but not left, S1 during CS+ versus CS− conditions. Right S1 activity also correlated with individual differences in both primary auditory cortices (A1) and amygdala activity. Lastly, a seed-based functional connectivity analysis demonstrated that trial-wise S1 activity was positively correlated with regions of dorsolateral prefrontal cortex (dlPFC), suggesting that higher-order cognitive processes contribute to the anticipatory sensory reactivity. Our findings indicate that individual differences in trait anxiety relate to anticipatory reactivity for the US during associative learning. This anticipatory reactivity is also integrated along with emotion-related sensory signals into a brain network implicated in fear-conditioned responding. PMID:26751483

  3. A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity.

    PubMed

    Koelbl, Christian; Helmstaedter, Moritz; Lübke, Joachim; Feldmeyer, Dirk

    2015-03-01

    Synaptic connections between identified fast-spiking (FS), parvalbumin (PV)-positive interneurons, and excitatory spiny neurons in layer 4 (L4) of the barrel cortex were investigated using patch-clamp recordings and simultaneous biocytin fillings. Three distinct clusters of FS L4 interneurons were identified based on their axonal morphology relative to the barrel column suggesting that these neurons do not constitute a homogeneous interneuron population. One L4 FS interneuron type had an axonal domain strictly confined to a L4 barrel and was therefore named "barrel-confined inhibitory interneuron" (BIn). BIns established reliable inhibitory synaptic connections with L4 spiny neurons at a high connectivity rate of 67%, of which 69% were reciprocal. Unitary IPSPs at these connections had a mean amplitude of 0.9 ± 0.8 mV with little amplitude variation and weak short-term synaptic depression. We found on average 3.7 ± 1.3 putative inhibitory synaptic contacts that were not restricted to perisomatic areas. In conclusion, we characterized a novel type of barrel cortex interneuron in the major thalamo-recipient layer 4 forming dense synaptic networks with L4 spiny neurons. These networks constitute an efficient and powerful inhibitory feedback system, which may serve to rapidly reset the barrel microcircuitry following sensory activation. PMID:24076498

  4. [Influence of GABA(C)-Receptor Antagonist on Formation of Evoked Potentials in Columns of the Rat Somatosensory Cortex].

    PubMed

    Matukhno, A E; Lysenko, L V; Andreeva, Y V; Sukhov, A G

    2015-01-01

    Microelectrode studies of evoked potentials (EP) in neuronal column of rats barrel cortex show activating action of selective GABA(C)-receptor antagonist 1,2,5,6-tetrahydropyridin-4-yl-methylphosphinic acid (TPMPA) mainly on secondary components of EP of supragranular afferent layers of column compared to the efferent infragranular layers. These data suggest localization of GABA(C)-receptors on pre- synaptic terminals of thalamo-cortical glutamatergic afferents and ascending apical dendrites of pyramidal cells. A blockade of GABA(C)-receptors with the selective antagonist TPM PA leads to dose-dependent afferent depolarization with development of presynaptic inhibition and suppression of primary components of EP GABA(C)-receptors blocker produces different effects on secondary components of EP in supragranular layers of the cortex caused by the development of neuronal after hyperpolarization followed by high-amplitude primary response and afterdepolarization followed by low-amplitude primary responses with subsequent activation of different voltage-gated channels and formation of different level of cortical direct current potential gradients. PMID:26841661

  5. The most sensitive inputs to cutaneous representing regions of primary somatosensory cortex do not change with behavioral training.

    PubMed

    Blake, David T; Spingath, Elsie

    2015-12-01

    Learning a sensory detection task leads to an increased primary sensory cortex response to the detected stimulus, while learning a sensory discrimination task additionally leads to a decreased sensory cortex response to the distractor stimulus. Neural responses are scaled up, and down, in strength, along with concomitant changes in receptive field size. The present work considers neural response properties that are invariant to learning. Data are drawn from two animals that were trained to detect and discriminate spatially separate taps delivered to positions on the skin of their fingers. Each animal was implanted with electrodes positioned in area 3b, and responses were derived on a near daily basis over 84 days in animal 1 and 202 days in animal 2. Responses to taps delivered in the receptive field were quantitatively measured each day, and receptive fields were audiomanually mapped each day. In the subset of responses that had light cutaneous receptive fields, a preponderance of the days, the most sensitive region of the field was invariant to training. This skin region was present in the receptive field on all, or nearly all, occasions in which the receptive field was mapped, and this region constituted roughly half of the most sensitive region. These results suggest that maintaining the most sensitive inputs as dominant in cortical receptive fields provide a measure of stability that may be transformationally useful for minimizing reconstruction errors and perceptual constancy. PMID:26634900

  6. Retinotopic Organization of Human Ventral Visual Cortex

    PubMed Central

    Arcaro, Michael J.; McMains, Stephanie A.; Singer, Benjamin D.; Kastner, Sabine

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that human ventral visual cortex anterior to area hV4 contains two visual field maps, VO-1 and VO-2, that together form the VO-cluster (Brewer et al., 2005). This cluster is characterized by common functional response properties and responds preferentially to color and object stimuli. Here, we confirm the topographic and functional characteristics of the VO-cluster and describe two new visual field maps that are located anterior to VO-2 extending across the collateral sulcus into the posterior parahippocampal cortex (PHC). We refer to these visual field maps as parahippocampal areas PHC-1 and PHC-2. Each PHC map contains a topographic representation of contralateral visual space. The polar angle representation in PHC-1 extends from regions near the lower vertical meridian (that is the shared border with VO-2) to those close to the upper vertical meridian (that is the shared border with PHC-2). The polar angle representation in PHC-2 is a mirror-reversal of the PHC-1 representation. PHC-1 and PHC-2 share a foveal representation and show a strong bias towards representations of peripheral eccentricities. Both the foveal and peripheral representations of PHC-1 and PHC-2 respond more strongly to scenes than to objects or faces, with greater scene preference in PHC-2 than PHC-1. Importantly, both areas heavily overlap with the functionally defined parahippocampal place area (PPA). Our results suggest that ventral visual cortex can be subdivided on the basis of topographic criteria into a greater number of discrete maps than previously thought. PMID:19710316

  7. Visual Working Memory in Human Cortex

    PubMed Central

    Barton, Brian; Brewer, Alyssa A.

    2016-01-01

    Visual working memory (VWM) is the ability to maintain visual information in a readily available and easily updated state. Converging evidence has revealed that VWM capacity is limited by the number of maintained objects, which is about 3 - 4 for the average human. Recent work suggests that VWM capacity is also limited by the resolution required to maintain objects, which is tied to the objects' inherent complexity. Electroencephalogram (EEG) studies using the Contralateral Delay Activity (CDA) paradigm have revealed that cortical representations of VWM are at a minimum loosely organized like the primary visual system, such that the left side of space is represented in the right hemisphere, and vice versa. Recent functional magnetic resonance imaging (fMRI) work shows that the number of objects is maintained by representations in the inferior intraparietal sulcus (IPS) along dorsal parietal cortex, whereas the resolution of these maintained objects is subserved by the superior IPS and the lateral occipital complex (LOC). These areas overlap with recently-discovered, retinotopically-organized visual field maps (VFMs) spanning the IPS (IPS-0/1/2/3/4/5), and potentially maps in lateral occipital cortex, such as LO-1/2, and/or TO-1/2 (hMT+). Other fMRI studies have implicated early VFMs in posterior occipital cortex, suggesting that visual areas V1-hV4 are recruited to represent information in VWM. Insight into whether and how these VFMs subserve VWM may illuminate the nature of VWM. In addition, understanding the nature of these maps may allow a greater investigation into individual differences among subjects and even between hemispheres within subjects. PMID:26881188

  8. EVOKED POTENTIALS AS INDICES OF ADAPTATION IN THE SOMATOSENSORY SYSTEM IN HUMANS: A REVIEW AND PROSPECTUS

    EPA Science Inventory

    Population-level behavior of large neural aggregates can be efficiently monitored by corresponding population-level indices such as somatosensory evoked potentials (SEPs). The literature reviewed clearly indicates that SEPs undergo systematic and often marked changes under condit...

  9. Beta oscillations define discrete perceptual cycles in the somatosensory domain.

    PubMed

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2015-09-29

    Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8-20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain. PMID:26324922

  10. Beta oscillations define discrete perceptual cycles in the somatosensory domain

    PubMed Central

    Baumgarten, Thomas J.; Schnitzler, Alfons; Lange, Joachim

    2015-01-01

    Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8–20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain. PMID:26324922

  11. Time-sensitive reorganization of the somatosensory cortex poststroke depends on interaction between Hebbian and homeoplasticity: a simulation study.

    PubMed

    Bains, Amarpreet Singh; Schweighofer, Nicolas

    2014-12-15

    Together with Hebbian plasticity, homeoplasticity presumably plays a significant, yet unclear, role in recovery postlesion. Here, we undertake a simulation study addressing the role of homeoplasticity and rehabilitation timing poststroke. We first hypothesize that homeoplasticity is essential for recovery and second that rehabilitation training delivered too early, before homeoplasticity has compensated for activity disturbances postlesion, is less effective for recovery than training delivered after a delay. We developed a neural network model of the sensory cortex driven by muscle spindle inputs arising from a six-muscle arm. All synapses underwent Hebbian plasticity, while homeoplasticity adjusted cell excitability to maintain a desired firing distribution. After initial training, the network was lesioned, leading to areas of hyper- and hypoactivity due to the loss of lateral synaptic connections. The network was then retrained through rehabilitative arm movements. We found that network recovery was unsuccessful in the absence of homeoplasticity, as measured by reestablishment of lesion-affected inputs. We also found that a delay preceding rehabilitation led to faster network recovery during the rehabilitation training than no delay. Our simulation results thus suggest that homeoplastic restoration of prelesion activity patterns is essential to functional network recovery via Hebbian plasticity. PMID:25274347

  12. Dirty deeds and dirty bodies: Embodiment of the Macbeth effect is mapped topographically onto the somatosensory cortex.

    PubMed

    Schaefer, Michael; Rotte, Michael; Heinze, Hans-Jochen; Denke, Claudia

    2015-01-01

    The theory of embodied cognition claims that knowledge is represented in modal systems derived from perception. Recent behavioral studies found evidence for this hypothesis, for example, by linking moral purity with physical cleansing (the Macbeth effect). Neurophysiological approaches provided further support by showing an involvement of sensorimotor cortices for embodied metaphors. However, the exact role of this brain region for embodied cognitions remains to be cleared. Here we demonstrate that the involvement of the sensorimotor cortex for the embodied metaphor of moral-purity is somatotopically organized. Participants enacted in scenarios where they had to perform immoral or moral acts either with their mouths or their hands. Results showed that mouthwash products were particularly desirable after lying in a voice mail and hand wash products were particularly desirable after writing a lie, thus demonstrating that the moral-purity metaphor is specific to the sensorimotor modality involved in earlier immoral behavior. FMRI results of this interaction showed activation in sensorimotor cortices during the evaluation phase that was somatotopically organized with respect to preceding lying in a voice mail (mouth-area) or in a written note (hand-area). Thus, the results provide evidence for a central role of the sensorimotor cortices for embodied metaphors. PMID:26686599

  13. Dirty deeds and dirty bodies: Embodiment of the Macbeth effect is mapped topographically onto the somatosensory cortex

    PubMed Central

    Schaefer, Michael; Rotte, Michael; Heinze, Hans-Jochen; Denke, Claudia

    2015-01-01

    The theory of embodied cognition claims that knowledge is represented in modal systems derived from perception. Recent behavioral studies found evidence for this hypothesis, for example, by linking moral purity with physical cleansing (the Macbeth effect). Neurophysiological approaches provided further support by showing an involvement of sensorimotor cortices for embodied metaphors. However, the exact role of this brain region for embodied cognitions remains to be cleared. Here we demonstrate that the involvement of the sensorimotor cortex for the embodied metaphor of moral-purity is somatotopically organized. Participants enacted in scenarios where they had to perform immoral or moral acts either with their mouths or their hands. Results showed that mouthwash products were particularly desirable after lying in a voice mail and hand wash products were particularly desirable after writing a lie, thus demonstrating that the moral-purity metaphor is specific to the sensorimotor modality involved in earlier immoral behavior. FMRI results of this interaction showed activation in sensorimotor cortices during the evaluation phase that was somatotopically organized with respect to preceding lying in a voice mail (mouth-area) or in a written note (hand-area). Thus, the results provide evidence for a central role of the sensorimotor cortices for embodied metaphors. PMID:26686599

  14. Cellular and Circuit Mechanisms Maintain Low Spike Co-Variability and Enhance Population Coding in Somatosensory Cortex

    PubMed Central

    Ly, Cheng; Middleton, Jason W.; Doiron, Brent

    2012-01-01

    The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E) cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold non-linearities dilute E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The prevalence of spiking non-linearities and feedforward inhibition in the nervous system suggests that the mechanisms for low network variability presented in our study may generalize throughout the brain. PMID:22408615

  15. Layer-specific interhemispheric functional connectivity in the somatosensory cortex of rats: resting state electrophysiology and fMRI studies.

    PubMed

    Baek, Kwangyeol; Shim, Woo Hyun; Jeong, Jaeseung; Radhakrishnan, Harsha; Rosen, Bruce R; Boas, David; Franceschini, Maria; Biswal, Bharat B; Kim, Young R

    2016-06-01

    The spontaneous cerebral hemodynamic fluctuations observed during the resting state have been frequently visualized using functional magnetic resonance imaging (rsfMRI). However, the neuronal populations and neuroelectric characteristics underlying the functional connectivity of cerebrohemodynamic activities are poorly understood. We investigated the characteristics of bi-hemispheric functional connectivity via electrophysiology and rsfMRI in the primary sensory cortex of rats anesthetized by α-chloralose. Unlike the evoked responses, the spontaneous electrophysiological activity was concentrated in the infragranular layers and could be classified into subtypes with distinctive current sources and sinks. Both neuroelectric and rsfMRI signals were interhemispherically correlated in a layer-specific manner, suggesting that there are independent neural inputs to infragranular and granular/supragranular layers. The majority of spontaneous electrophysiological activities were bilaterally paired with delays of up to ~50 ms between each pair. The variable interhemispheric delay implies the involvement of indirect, multi-neural pathways. Our findings demonstrated the diverse activity patterns of layer-specific electrophysiological substrates and suggest the recruitment of multiple, non-specific brain regions in construction of interhemispheric functional connectivity. PMID:26077581

  16. Cortical effect of oxaliplatin associated with sustained neuropathic pain: exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex.

    PubMed

    Thibault, Karine; Calvino, Bernard; Dubacq, Sophie; Roualle-de-Rouville, Marie; Sordoillet, Vallier; Rivals, Isabelle; Pezet, Sophie

    2012-08-01

    Oxaliplatin is a third-generation platinum-based chemotherapy drug that has gained importance in the treatment of advanced metastatic colorectal cancer. Its dose-limiting side effect is the production of chronic peripheral neuropathy. Using a modified model of oxaliplatin-induced sensory neuropathy, we investigated plastic changes at the cortical level as possible mechanisms underlying the chronicity of pain sensation in this model. Changes in gene expression were studied using DNA microarray which revealed that when oxaliplatin-treated animals displayed clinical neuropathic pain symptoms, including mechanical and thermal hypersensitivity, approximately 900 were down-regulated in the somatosensory cortex. Because of the known role of potassium channels in neuronal excitability, the study further focussed on the down-regulation of these channels as the possible molecular origin of cortical hyperexcitability. Quantification of the magnitude of neuronal extracellular signal-regulated kinase (ERK) phosphorylation in cortical neurons as a marker of neuronal activity revealed a 10-fold increase induced by oxaliplatin treatment, suggesting that neurons of cortical areas involved in transmission of painful stimuli undergo a chronic cortical excitability. We further demonstrated, using cortical injection of lentiviral vector shRNA against Kv2.2, that down-regulation of this potassium channel in naive animals induced a sustained thermal and mechanical hypersensitivity. In conclusion, although the detailed mechanisms leading to this cortical excitability are still unknown, our study demonstrated that a cortical down regulation of potassium channels could underlie pain chronicity in this model of chemotherapy-induced neuropathic pain. PMID:22652385

  17. Reduced density of neuropeptide Y neurons in the somatosensory cortex of old male and female rats: relation to cholinergic depletion and recovery after nerve growth factor treatment.

    PubMed

    Cardoso, A; Paula-Barbosa, M M; Lukoyanov, N V

    2006-02-01

    Synthesis of neuropeptide Y in the neocortex and activity of the basalocortical cholinergic system are both reduced in the aging brain. We hypothesized that, by stimulating the activity of the basal forebrain cholinergic neurons, nerve growth factor might also be capable of restoring the synthesis of neuropeptide Y in cortical neurons. Old male and female rats were intraventricularly infused with nerve growth factor for 14 days and their brains were analyzed in order to quantify the densities of neuropeptide Y-immunoreactive neurons and of fiber varicosities stained for vesicular acetylcholine transporter protein in layers II/III, V and VI of the primary somatosensory barrel-field cortex. The areal densities of neuropeptide Y neurons and of vesicular acetylcholine transporter protein varicosities in all cortical laminae were found to be dramatically decreased in old rats when compared with young rats. However, infusions of nerve growth factor, known to exert a powerful trophic effect upon cortically projecting cholinergic neurons, have led to considerable recovery of vesicular acetylcholine transporter protein-positive terminal fields, which was paralleled by complete restoration of function in neuropeptide Y-producing neurons. With respect to the gender differences, although the density of cortical neuropeptide Y neurons was found to be significantly higher in young females than in young males and the opposite was true for vesicular acetylcholine transporter protein-positive varicosities, the general pattern of age- and treatment-related changes in these neurochemical markers was similar in both sexes. Overall, the age- and treatment-related variations in the density of cortical neuropeptide Y cells were found to correlate with those observed in the density of vesicular acetylcholine transporter protein varicosities. These results lend support to the idea that there is a causal relationship between age-related changes in cortical cholinergic and neuropeptide Y

  18. Quantitative activity-induced manganese-dependent MRI for characterizing cortical layers in the primary somatosensory cortex of the rat.

    PubMed

    Auffret, Matthieu; Samim, Idrees; Lepore, Mario; Gruetter, Rolf; Just, Nathalie

    2016-03-01

    The ability of Mn(2+) to follow Ca(2+) pathways upon stimulation transform them into remarkable surrogate markers of neuronal activity using activity-induced manganese-dependent MRI (AIM-MRI). In the present study, a precise follow-up of physiological parameters during MnCl2 and mannitol infusions improved the reproducibility of AIM-MRI allowing in-depth evaluation of the technique. Pixel-by-pixel T1 data were investigated using histogram distributions in the barrel cortex (BC) and the thalamus before and after Mn(2+) infusion, after blood brain barrier opening and after BC activation. Mean BC T1 values dropped significantly upon trigeminal nerve (TGN) stimulation (-38 %, P = 0.02) in accordance with previous literature findings. T1 histogram distributions showed that 34 % of T1s in the range 600-1500 ms after Mn(2+ )+ mannitol infusions shifted to 50-350 ms after TGN stimulation corresponding to a twofold increase of the percentage of pixels with the lowest T1s in BC. Moreover, T1 changes in response to stimulation increased significantly from superficial cortical layers (I-III) to deeper layers (V-VI). Cortical cytoarchitecture detection during a functional paradigm was performed extending the potential of AIM-MRI. Quantitative AIM-MRI could thus offer a means to interpret local neural activity across cortical layers while identification of the role of calcium dynamics in vivo during brain activation could play a key role in resolving neurovascular coupling mechanisms. PMID:25366973

  19. Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1

    PubMed Central

    Vinck, Martin; Bos, Jeroen J.; Van Mourik-Donga, Laura A.; Oplaat, Krista T.; Klein, Gerbrand A.; Jackson, Jadin C.; Gentet, Luc J.; Pennartz, Cyriel M. A.

    2016-01-01

    Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1–LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions. PMID:26834582

  20. Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1.

    PubMed

    Vinck, Martin; Bos, Jeroen J; Van Mourik-Donga, Laura A; Oplaat, Krista T; Klein, Gerbrand A; Jackson, Jadin C; Gentet, Luc J; Pennartz, Cyriel M A

    2015-01-01

    Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1-LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions. PMID:26834582

  1. Doing it … wild? On the role of the cerebral cortex in human sexual activity

    PubMed Central

    Georgiadis, Janniko R.

    2012-01-01

    Background We like to think about sexual activity as something fixed, basic and primal. However, this does not seem to fully capture reality. Even when we relish sex, we may be capable of mentalizing, talking, voluntarily postponing orgasm, and much more. This might indicate that the central control mechanisms of sexual activity are quite flexible and susceptible to learning mechanisms, and that cortical brain areas play a critical part. Objective This study aimed to identify those cortical areas and mechanisms most consistently implicated in sexual activity. Design A comprehensive review of the human functional neuroimaging literature on sexual activity, i.e. genital stimulation and orgasm, is made. Results Genital stimulation recruits the classical somatosensory matrix, but also areas far beyond that. The posterior insula may be particularly important for processing input from the engorged penis and coordinating penile responses. Extrastriate visual cortex tracks sexual arousal and responds to genital stimulation even when subjects have their eyes closed. The ventromedial prefrontal cortex is also tightly coupled to sexual arousal, but low activity in this area predicts high sexual arousal. Conclusion This review has indicated cortical sites where activity is moderated by tactile genital inflow and high sexual arousal. Behavioral implications are discussed and where possible the relevance for learning mechanisms is indicated. Overall, it is clear that the cerebral cortex has something to say about sexual activity. PMID:24693348

  2. Inhibition in the Human Auditory Cortex

    PubMed Central

    Inui, Koji; Nakagawa, Kei; Nishihara, Makoto; Motomura, Eishi; Kakigi, Ryusuke

    2016-01-01

    Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI) in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms) prepulse. The time course of the inhibition evaluated by prepulses presented at 10–800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20–60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful. PMID:27219470

  3. Subspecialization in the human posterior medial cortex

    PubMed Central

    Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.

    2014-01-01

    The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801

  4. Mapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording.

    PubMed

    Verriotis, Madeleine; Fabrizi, Lorenzo; Lee, Amy; Cooper, Robert J; Fitzgerald, Maria; Meek, Judith

    2016-01-01

    Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in the study of touch and pain processing in the newborn. To address this, we have recorded NIRS and EEG responses simultaneously for the first time in the human infant following noxious (time-locked clinically required heel lances) and innocuous tactile cutaneous stimulation in 30 newborn infants. The results show that both techniques can be used to record quantifiable and distinct innocuous and noxious evoked activity at a group level in the newborn cortex. Noxious stimulation elicits a peak hemodynamic response that is 10-fold larger than that elicited by an innocuous stimulus (HbO2: 2.0 vs 0.3 µM) and a distinct nociceptive-specific N3P3 waveform in electrophysiological recordings. However, a novel single-trial analysis revealed that hemodynamic and electrophysiological responses do not always co-occur at an individual level, although when they do (64% of noxious test occasions), they are significantly correlated in magnitude. These data show that, while hemodynamic and electrophysiological touch and pain brain activity in newborn infants are comparable in group analyses, important individual differences remain. These data indicate that integrated and multimodal brain monitoring is required to understand central touch and pain processing in the newborn. PMID:27200413

  5. Mapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording123

    PubMed Central

    Fabrizi, Lorenzo; Lee, Amy; Cooper, Robert J.; Fitzgerald, Maria; Meek, Judith

    2016-01-01

    Abstract Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in the study of touch and pain processing in the newborn. To address this, we have recorded NIRS and EEG responses simultaneously for the first time in the human infant following noxious (time-locked clinically required heel lances) and innocuous tactile cutaneous stimulation in 30 newborn infants. The results show that both techniques can be used to record quantifiable and distinct innocuous and noxious evoked activity at a group level in the newborn cortex. Noxious stimulation elicits a peak hemodynamic response that is 10-fold larger than that elicited by an innocuous stimulus (HbO2: 2.0 vs 0.3 µm) and a distinct nociceptive-specific N3P3 waveform in electrophysiological recordings. However, a novel single-trial analysis revealed that hemodynamic and electrophysiological responses do not always co-occur at an individual level, although when they do (64% of noxious test occasions), they are significantly correlated in magnitude. These data show that, while hemodynamic and electrophysiological touch and pain brain activity in newborn infants are comparable in group analyses, important individual differences remain. These data indicate that integrated and multimodal brain monitoring is required to understand central touch and pain processing in the newborn. PMID:27200413

  6. Persistent Neuronal Firing in Primary Somatosensory Cortex in the Absence of Working Memory of Trial-Specific Features of the Sample Stimuli in a Haptic Working Memory Task

    ERIC Educational Resources Information Center

    Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di

    2012-01-01

    Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…

  7. The auditory representation of speech sounds in human motor cortex

    PubMed Central

    Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F

    2016-01-01

    In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778

  8. The multisensory function of the human primary visual cortex.

    PubMed

    Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J

    2016-03-01

    It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. PMID:26275965

  9. Social Distance Evaluation in Human Parietal Cortex

    PubMed Central

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791

  10. The Organization of Dorsal Frontal Cortex in Humans and Macaques

    PubMed Central

    Mars, Rogier B.; Noonan, MaryAnn P.; Neubert, Franz-Xaver; Jbabdi, Saad; O'Reilly, Jill X.; Filippini, Nicola; Thomas, Adam G.; Rushworth, Matthew F.

    2013-01-01

    The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed. PMID:23884933

  11. Architectonic mapping of somatosensory areas involved in skilled forelimb movements and tool use.

    PubMed

    Mayer, Andrei; Nascimento-Silva, Márcio L; Keher, Natalia B; Bittencourt-Navarrete, Ruben Ernesto; Gattass, Ricardo; Franca, João G

    2016-05-01

    Cebus monkeys stand out from other New World monkeys by their ability to perform fine hand movements, and by their spontaneous use of tools in the wild. Those behaviors rely on the integration of somatosensory information, which occurs in different areas of the parietal cortex. Although a few studies have examined and parceled the somatosensory areas of the cebus monkey, mainly using electrophysiological criteria, very little is known about its anatomical organization. In this study we used SMI-32 immunohistochemistry, myelin, and Nissl stains to characterize the architecture of the parietal cortical areas of cebus monkeys. Seven cortical areas were identified between the precentral gyrus and the anterior bank of the intraparietal sulcus. Except for areas 3a and 3b, distinction between different somatosensory areas was more evident in myelin-stained sections and SMI-32 immunohistochemistry than in Nissl stain, especially for area 2 and subdivisions of area 5. Our results show that cebus monkeys have a relatively complex somatosensory cortex, similar to that of macaques and humans. This suggests that, during primate evolution, the emergence of new somatosensory areas underpinned complex manual behaviors in most Old World simians and in the New World cebus monkey. J. Comp. Neurol. 524:1399-1423, 2016. © 2015 Wiley Periodicals, Inc. PMID:26477782

  12. Neural mechanisms of selective attention in the somatosensory system.

    PubMed

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. PMID:27334956

  13. Mapping the Structural Core of Human Cerebral Cortex

    PubMed Central

    Hagmann, Patric; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Honey, Christopher J; Wedeen, Van J; Sporns, Olaf

    2008-01-01

    Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration. PMID:18597554

  14. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  15. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  16. The Role of the Orbitofrontal Cortex in Human Discrimination Learning

    ERIC Educational Resources Information Center

    Chase, Henry W.; Clark, Luke; Myers, Catherine E.; Gluck, Mark A.; Sahakian, Barbara J.; Bullmore, Edward T.; Robbins, Trevor W.

    2008-01-01

    Several lines of evidence implicate the prefrontal cortex in learning but there is little evidence from studies of human lesion patients to demonstrate the critical role of this structure. To this end, we tested patients with lesions of the frontal lobe (n = 36) and healthy controls (n = 35) on two learning tasks: the weather prediction task…

  17. Perception and Action Selection Dissociate Human Ventral and Dorsal Cortex

    ERIC Educational Resources Information Center

    Ikkai, Akiko; Jerde, Trenton A.; Curtis, Clayton E.

    2011-01-01

    We test theories about the functional organization of the human cortex by correlating brain activity with demands on perception versus action selection. Subjects covertly searched for a target among an array of 4, 8, or 12 items (perceptual manipulation) and then, depending on the color of the array, made a saccade toward, away from, or at a right…

  18. How phonetically selective is the human auditory cortex?

    PubMed

    Shamma, Shihab

    2014-08-01

    Responses in the human auditory cortex to natural speech reveal a dual character. Often they are categorically selective to phonetic elements, serving as a gateway to abstract linguistic representations. But at other times they reflect a distributed generalized spectrotemporal analysis of the acoustic features, as seen in early mammalian auditory cortices. PMID:24751358

  19. Motor Skill Acquisition and Retention after Somatosensory Electrical Stimulation in Healthy Humans

    PubMed Central

    Veldman, Menno P.; Zijdewind, Inge; Maffiuletti, Nicola A.; Hortobágyi, Tibor

    2016-01-01

    Somatosensory electrical stimulation (SES) can increase motor performance, presumably through a modulation of neuronal excitability. Because the effects of SES can outlast the period of stimulation, we examined the possibility that SES can also enhance the retention of motor performance, motor memory consolidation, after 24 h (Day 2) and 7 days (Day 7), that such effects would be scaled by SES duration, and that such effects were mediated by changes in aspects of corticospinal excitability, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Healthy young adults (n = 40) received either 20 (SES-20), 40 (SES-40), or 60 min (SES-60) of real SES, or sham SES (SES-0). The results showed SES-20 increased visuomotor performance on Day 2 (15%) and Day 7 (17%) and SES-60 increased visuomotor performance on Day 7 (11%; all p < 0.05) compared with SES-0. Specific responses to transcranial magnetic stimulation (TMS) increased immediately after SES (p < 0.05) but not on Days 2 and 7. In addition, changes in behavioral and neurophysiological parameters did not correlate, suggesting that paths and structures other than the ones TMS can assay must be (also) involved in the increases in visuomotor performance after SES. As examined in the present study, low-intensity peripheral electrical nerve stimulation did not have acute effects on healthy adults' visuomotor performance but SES had delayed effects in the form of enhanced motor memory consolidation that were not scaled by the duration of SES. PMID:27014043

  20. Functional reorganization and stability of somatosensory-motor cortical topography in a tetraplegic subject with late recovery

    PubMed Central

    Corbetta, Maurizio; Burton, Harold; Sinclair, Robert J.; Conturo, Thomas E.; Akbudak, Erbil; McDonald, John W.

    2002-01-01

    The functional organization of somatosensory and motor cortex was investigated in an individual with a high cervical spinal cord injury, a 5-year absence of nearly all sensory/motor function at and below the shoulders, and rare recovery of some function in years 6–8 after intense and sustained rehabilitation therapies. We used functional magnetic resonance imaging to study brain activity to vibratory stimulation and voluntary movements of body parts above and below the lesion. No response to vibratory stimulation of the hand was observed in the primary somatosensory cortex (SI) hand area, which was conversely recruited during tongue movements that normally evoke responses only in the more lateral face area. This result suggests SI reorganization analogous to previously reported neuroplasticity changes after peripheral lesions in animals and humans. In striking contradistinction, vibratory stimulation of the foot evoked topographically appropriate responses in SI and second somatosensory cortex (SII). Motor cortex responses, tied to a visuomotor tracking task, displayed a near-typical topography, although they were more widespread in premotor regions. These findings suggest possible preservation of motor and some somatosensory cortical representations in the absence of overt movements or conscious sensations for several years after spinal cord injury and have implications for future rehabilitation and neural-repair therapies. PMID:12477938

  1. Spindle neurons of the human anterior cingulate cortex

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  2. Stimulus Dependence of Gamma Oscillations in Human Visual Cortex.

    PubMed

    Hermes, D; Miller, K J; Wandell, B A; Winawer, J

    2015-09-01

    A striking feature of some field potential recordings in visual cortex is a rhythmic oscillation within the gamma band (30-80 Hz). These oscillations have been proposed to underlie computations in perception, attention, and information transmission. Recent studies of cortical field potentials, including human electrocorticography (ECoG), have emphasized another signal within the gamma band, a nonoscillatory, broadband signal, spanning 80-200 Hz. It remains unclear under what conditions gamma oscillations are elicited in visual cortex, whether they are necessary and ubiquitous in visual encoding, and what relationship they have to nonoscillatory, broadband field potentials. We demonstrate that ECoG responses in human visual cortex (V1/V2/V3) can include robust narrowband gamma oscillations, and that these oscillations are reliably elicited by some spatial contrast patterns (luminance gratings) but not by others (noise patterns and many natural images). The gamma oscillations can be conspicuous and robust, but because they are absent for many stimuli, which observers can see and recognize, the oscillations are not necessary for seeing. In contrast, all visual stimuli induced broadband spectral changes in ECoG responses. Asynchronous neural signals in visual cortex, reflected in the broadband ECoG response, can support transmission of information for perception and recognition in the absence of pronounced gamma oscillations. PMID:24855114

  3. Auditory modulation of visual stimulus encoding in human retinotopic cortex

    PubMed Central

    de Haas, Benjamin; Schwarzkopf, D. Samuel; Urner, Maren; Rees, Geraint

    2013-01-01

    Sounds can modulate visual perception as well as neural activity in retinotopic cortex. Most studies in this context investigated how sounds change neural amplitude and oscillatory phase reset in visual cortex. However, recent studies in macaque monkeys show that congruence of audio-visual stimuli also modulates the amount of stimulus information carried by spiking activity of primary auditory and visual neurons. Here, we used naturalistic video stimuli and recorded the spatial patterns of functional MRI signals in human retinotopic cortex to test whether the discriminability of such patterns varied with the presence and congruence of co-occurring sounds. We found that incongruent sounds significantly impaired stimulus decoding from area V2 and there was a similar trend for V3. This effect was associated with reduced inter-trial reliability of patterns (i.e. higher levels of noise), but was not accompanied by any detectable modulation of overall signal amplitude. We conclude that sounds modulate naturalistic stimulus encoding in early human retinotopic cortex without affecting overall signal amplitude. Subthreshold modulation, oscillatory phase reset and dynamic attentional modulation are candidate neural and cognitive mechanisms mediating these effects. PMID:23296187

  4. Point-light biological motion perception activates human premotor cortex.

    PubMed

    Saygin, Ayse Pinar; Wilson, Stephen M; Hagler, Donald J; Bates, Elizabeth; Sereno, Martin I

    2004-07-01

    Motion cues can be surprisingly powerful in defining objects and events. Specifically, a handful of point-lights attached to the joints of a human actor will evoke a vivid percept of action when the body is in motion. The perception of point-light biological motion activates posterior cortical areas of the brain. On the other hand, observation of others' actions is known to also evoke activity in motor and premotor areas in frontal cortex. In the present study, we investigated whether point-light biological motion animations would lead to activity in frontal cortex as well. We performed a human functional magnetic resonance imaging study on a high-field-strength magnet and used a number of methods to increase signal, as well as cortical surface-based analysis methods. Areas that responded selectively to point-light biological motion were found in lateral and inferior temporal cortex and in inferior frontal cortex. The robust responses we observed in frontal areas indicate that these stimuli can also recruit action observation networks, although they are very simplified and characterize actions by motion cues alone. The finding that even point-light animations evoke activity in frontal regions suggests that the motor system of the observer may be recruited to "fill in" these simplified displays. PMID:15240810

  5. A motion area in human visual cortex.

    PubMed Central

    Orban, G A; Dupont, P; De Bruyn, B; Vogels, R; Vandenberghe, R; Mortelmans, L

    1995-01-01

    We have localized an area in the human brain involved in the processing of contours defined by motion differences (kinetic contours) by comparing with positron emission tomography the regional cerebral blood flow in tasks performed with kinetic and luminance-defined gratings. These tasks included passive viewing, counting the total number of grating stimuli, and counting the number of gratings of a given orientation. Comparison between the counting tasks and passive viewing with a given type of contour revealed a set of active areas that were similar for both luminance-defined and kinetic contours. Comparisons between these two types of contours revealed a single focus in the right hemisphere that did not overlap with the many regions activated by uniform motion. In particular this "kinetic focus" was clearly separated from the area previously defined as the human homologue of V5/middle temporal. Activity in this kinetic focus was stronger when orientation had to be processed than in the other two tasks. These results and control experiments with uniformly moving random dot patterns suggest the existence of an area in the human visual system that is activated much more by kinetic contours than by luminance contours or uniformly moving random dots. Up to now, such an area has not been described in the monkey visual system. Images Fig. 1 Fig. 2 Fig. 4 PMID:7862680

  6. Partial blockade of skeletal muscle somatosensory afferents attenuates baroreflex resetting during exercise in humans.

    PubMed

    Smith, Scott A; Querry, Ross G; Fadel, Paul J; Gallagher, Kevin M; Strømstad, Morten; Ide, Kojiro; Raven, Peter B; Secher, Niels H

    2003-09-15

    During exercise, the carotid baroreflex is reset to operate around the higher arterial pressures evoked by physical exertion. The purpose of this investigation was to evaluate the contribution of somatosensory input from the exercise pressor reflex to this resetting during exercise. Nine subjects performed seven minutes of dynamic cycling at 30% of maximal work load and three minutes of static one-legged contraction at 25% maximal voluntary contraction before (control) and after partial blockade of skeletal muscle afferents with epidural anaesthesia. Carotid baroreflex function was assessed by applying rapid pulses of hyper- and hypotensive stimuli to the neck via a customised collar. Using a logistic model, heart rate (HR) and mean arterial pressure (MAP) responses to carotid sinus stimulation were used to develop reflex function stimulus-response curves. Compared with rest, control dynamic and static exercise reset carotid baroreflex-HR and carotid baroreflex-MAP curves vertically upward on the response arm and laterally rightward to higher operating pressures. Inhibition of exercise pressor reflex input by epidural anaesthesia attenuated the bi-directional resetting of the carotid baroreflex-MAP curve during both exercise protocols. In contrast, the effect of epidural anaesthesia on the resetting of the carotid baroreflex-HR curve was negligible during dynamic cycling whereas it relocated the curve in a laterally leftward direction during static contraction. The data suggest that afferent input from skeletal muscle is requisite for the complete resetting of the carotid baroreflex during exercise. However, this neural input appears to modify baroreflex control of blood pressure to a greater extent than heart rate. PMID:12819303

  7. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  8. Transcranial static magnetic field stimulation of the human motor cortex.

    PubMed

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  9. Intrinsic Functional Relations Between Human Cerebral Cortex and Thalamus

    PubMed Central

    Zhang, Dongyang; Snyder, Abraham Z.; Fox, Michael D.; Sansbury, Mark W.; Shimony, Joshua S.; Raichle, Marcus E.

    2008-01-01

    The brain is active even in the absence of explicit stimuli or overt responses. This activity is highly correlated within specific networks of the cerebral cortex when assessed with resting-state functional magnetic resonance imaging (fMRI) blood oxygen level–dependent (BOLD) imaging. The role of the thalamus in this intrinsic activity is unknown despite its critical role in the function of the cerebral cortex. Here we mapped correlations in resting-state activity between the human thalamus and the cerebral cortex in adult humans using fMRI BOLD imaging. Based on this functional measure of intrinsic brain activity we partitioned the thalamus into nuclear groups that correspond well with postmortem human histology and connectional anatomy inferred from nonhuman primates. This structure/function correspondence in resting-state activity was strongest between each cerebral hemisphere and its ipsilateral thalamus. However, each hemisphere was also strongly correlated with the contralateral thalamus, a pattern that is not attributable to known thalamocortical monosynaptic connections. These results extend our understanding of the intrinsic network organization of the human brain to the thalamus and highlight the potential of resting-state fMRI BOLD imaging to elucidate thalamocortical relationships. PMID:18701759

  10. Representation of speech in human auditory cortex: Is it special?

    PubMed Central

    Steinschneider, Mitchell; Nourski, Kirill V.; Fishman, Yonatan I.

    2013-01-01

    Successful categorization of phonemes in speech requires that the brain analyze the acoustic signal along both spectral and temporal dimensions. Neural encoding of the stimulus amplitude envelope is critical for parsing the speech stream into syllabic units. Encoding of voice onset time (VOT) and place of articulation (POA), cues necessary for determining phonemic identity, occurs within shorter time frames. An unresolved question is whether the neural representation of speech is based on processing mechanisms that are unique to humans and shaped by learning and experience, or is based on rules governing general auditory processing that are also present in non-human animals. This question was examined by comparing the neural activity elicited by speech and other complex vocalizations in primary auditory cortex of macaques, who are limited vocal learners, with that in Heschl’s gyrus, the putative location of primary auditory cortex in humans. Entrainment to the amplitude envelope is neither specific to humans nor to human speech. VOT is represented by responses time-locked to consonant release and voicing onset in both humans and monkeys. Temporal representation of VOT is observed both for isolated syllables and for syllables embedded in the more naturalistic context of running speech. The fundamental frequency of male speakers is represented by more rapid neural activity phase-locked to the glottal pulsation rate in both humans and monkeys. In both species, the differential representation of stop consonants varying in their POA can be predicted by the relationship between the frequency selectivity of neurons and the onset spectra of the speech sounds. These findings indicate that the neurophysiology of primary auditory cortex is similar in monkeys and humans despite their vastly different experience with human speech, and that Heschl’s gyrus is engaged in general auditory, and not language-specific, processing. PMID:23792076

  11. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  12. Random Positions of Dendritic Spines in Human Cerebral Cortex

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  13. Noninvasive studies of human visual cortex using neuromagnetic techniques

    SciTech Connect

    Aine, C.J.; George, J.S.; Supek, S. ); Maclin, E.L. . Center for Magnetoencephalography)

    1990-01-01

    The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterize the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs.

  14. Short-term plasticity of the human auditory cortex.

    PubMed

    Pantev, C; Wollbrink, A; Roberts, L E; Engelien, A; Lütkenhöner, B

    1999-09-18

    Magnetoencephalographic measurements (MEG) were used to examine the effect on the human auditory cortex of removing specific frequencies from the acoustic environment. Subjects listened for 3 h on three consecutive days to music "notched" by removal of a narrow frequency band centered on 1 kHz. Immediately after listening to the notched music, the neural representation for a 1-kHz test stimulus centered on the notch was found to be significantly diminished compared to the neural representation for a 0.5-kHz control stimulus centered one octave below the region of notching. The diminished neural representation for 1 kHz reversed to baseline between the successive listening sessions. These results suggest that rapid changes can occur in the tuning of neurons in the adult human auditory cortex following manipulation of the acoustic environment. A dynamic form of neural plasticity may underlie the phenomenon observed here. PMID:10526109

  15. Cortical representation area of human dental pulp.

    PubMed

    Kubo, K; Shibukawa, Y; Shintani, M; Suzuki, T; Ichinohe, T; Kaneko, Y

    2008-04-01

    To elucidate the dental pulp-representing area in the human primary somatosensory cortex and the presence of A-beta fibers in dental pulp, we recorded somatosensory-evoked magnetic fields from the cortex in seven healthy persons using magnetoencephalography. Following non-painful electrical stimulation of the right maxillary first premolar dental pulp, short latency (27 ms) cortical responses on the magnetic waveforms were observed. However, no response was seen when stimulation was applied to pulpless teeth, such as devitalized teeth. The current source generating the early component of the magnetic fields was located anterior-inferiorly compared with the locations for the hand area in the primary somatosensory cortex. These results demonstrate the dental pulp representation area in the primary somatosensory cortex, and that it receives input from intradental A-beta neurons, providing a detailed organizational map of the orofacial area, by adding dental pulp to the classic "sensory homunculus". PMID:18362319

  16. Intrahemispheric cortico-cortical connections of the human auditory cortex.

    PubMed

    Cammoun, Leila; Thiran, Jean Philippe; Griffa, Alessandra; Meuli, Reto; Hagmann, Patric; Clarke, Stephanie

    2015-11-01

    The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions. PMID:25173473

  17. Reduced cadmium levels in human kidney cortex in sweden.

    PubMed Central

    Friis, L; Petersson, L; Edling, C

    1998-01-01

    Environmental pollution with the nephrotoxic metal cadmium is considered a potential health risk for the general population. In 1976 it was reported that the cadmium concentration in human kidney cortex in Sweden had increased in parallel with increasing levels in soil and grain during the twentieth century. Since the cadmium concentration in farming lands is still increasing, the present study was undertaken to further elucidate whether the cadmium concentration in the kidney is still increasing. Kidney cortex biopsies were collected at 171 autopsies of victims to sudden and accidental death during 1995 and 1996, and the cadmium concentrations were determined and compared with previously published Swedish data obtained from forensic autopsies. The geometric mean cadmium concentration in kidney cortex in subjects 40 years of age and younger was about 40% of the concentration found in the 1970s, while the reduction was less pronounced among older people. The highest individual concentration of cadmium was 41.5 microg/g wet weight (ww). The geometric mean concentration was less than 14 microg/g ww at ages around 50 years of age, when the cadmium concentration in kidney cortex is highest, as compared with approximately 20 microg/g ww in the 1970s. There was also a reduction in cadmium concentrations among nonsmokers; thus, a decrease in tobacco smoking in Sweden during the last decades is not the only explanation for the reduction of cadmium in the kidney cortex. Other reasons for this reduction could be changes in dietary habits and reduced cadmium contamination from Swedish industries. Images Figure 1 PMID:9485480

  18. Texture discriminability in monkey inferotemporal cortex predicts human texture perception

    PubMed Central

    Zhivago, Kalathupiriyan A.

    2014-01-01

    Shape and texture are both important properties of visual objects, but texture is relatively less understood. Here, we characterized neuronal responses to discrete textures in monkey inferotemporal (IT) cortex and asked whether they can explain classic findings in human texture perception. We focused on three classic findings on texture discrimination: 1) it can be easy or hard depending on the constituent elements; 2) it can have asymmetries, and 3) it is reduced for textures with randomly oriented elements. We recorded neuronal activity from monkey inferotemporal (IT) cortex and measured texture perception in humans for a variety of textures. Our main findings are as follows: 1) IT neurons show congruent selectivity for textures across array size; 2) textures that were easy for humans to discriminate also elicited distinct patterns of neuronal activity in monkey IT; 3) texture pairs with asymmetries in humans also exhibited asymmetric variation in firing rate across monkey IT; and 4) neuronal responses to randomly oriented textures were explained by an average of responses to homogeneous textures, which rendered them less discriminable. The reduction in discriminability of monkey IT neurons predicted the reduced discriminability in humans during texture discrimination. Taken together, our results suggest that texture perception in humans is likely based on neuronal representations similar to those in monkey IT. PMID:25210165

  19. A Model of Representational Spaces in Human Cortex.

    PubMed

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. PMID:26980615

  20. Mapping striate and extrastriate visual areas in human cerebral cortex.

    PubMed Central

    DeYoe, E A; Carman, G J; Bandettini, P; Glickman, S; Wieser, J; Cox, R; Miller, D; Neitz, J

    1996-01-01

    Functional magnetic resonance imaging (fMRI) was used to identify and map the representation of the visual field in seven areas of human cerebral cortex and to identify at least two additional visually responsive regions. The cortical locations of neurons responding to stimulation along the vertical or horizontal visual field meridia were charted on three-dimensional models of the cortex and on unfolded maps of the cortical surface. These maps were used to identify the borders among areas that would be topographically homologous to areas V1, V2, V3, VP, and parts of V3A and V4 of the macaque monkey. Visually responsive areas homologous to the middle temporal/medial superior temporal area complex and unidentified parietal visual areas were also observed. The topography of the visual areas identified thus far is consistent with the organization in macaque monkeys. However, these and other findings suggest that human and simian cortical organization may begin to differ in extrastriate cortex at, or beyond, V3A and V4. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8637882

  1. Brightness–Color Interactions in Human Early Visual Cortex

    PubMed Central

    Ouni, Ahmed; Chen, Stephanie; Sahmoud, Hinde; Gordon, James; Shapley, Robert

    2015-01-01

    The interaction between brightness and color causes there to be different color appearance when one and the same object is viewed against surroundings of different brightness. Brightness contrast causes color to be desaturated, as has been found in perceptual experiments on color induction and color-gamut expansion in human vision. However, it is not clear yet where in the cerebral cortex the brightness–color interaction that causes these major perceptual effects is located. One hypothesis is that brightness and color signals are processed separately and in parallel within the primary visual cortex V1 and only interact in extrastriate cortex. Another hypothesis is that color and brightness contrast interact strongly already within V1. We localized the brightness–color interaction in human V1 by means of recording the chromatic visual-evoked potential. The chromatic visual-evoked potential measurements decisively support the idea that brightness–color interaction arises in a recurrent inhibitory network in V1. Furthermore, our results show that the inhibitory signal for brightness–color interaction is generated by local brightness contrast at the boundary between target and surround, instead of by the luminance difference between the interior of the color target and its large background. PMID:25653377

  2. A Model of Representational Spaces in Human Cortex

    PubMed Central

    Guntupalli, J. Swaroop; Hanke, Michael; Halchenko, Yaroslav O.; Connolly, Andrew C.; Ramadge, Peter J.; Haxby, James V.

    2016-01-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. PMID:26980615

  3. Stimulation of the cerebral cortex in the intact human subject

    NASA Astrophysics Data System (ADS)

    Merton, P. A.; Morton, H. B.

    1980-05-01

    One of the most fertile methods of investigating the brain is to stimulate a part of it electrically and observe the results. So far, however, use of the method in man has been restricted by the necessity of opening the skull surgically to apply the electrodes. Much could be done, both with healthy subjects and with neurological patients, if it were feasible to stimulate through electrodes on the scalp, although the localization of the stimulus on the cortex will always be much less sharp than with electrodes on the brain surface. In an intact man, however, the brain is protected from electricity by the skull and by the scalp, both of which normally offer considerable resistance. Furthermore, the cerebral cortex does not have a particularly low electrical threshold. It is probably for these reasons (despite an occasional contrary claim1) that attempts to stimulate the brain by applying stimuli from conventional stimulators to the scalp have been stopped by pain or have otherwise failed. These obstacles have now begun to yield. Recently, it was found that, on stimulating muscles in the human hand2 without any special preparation of the skin, the effective resistance fell to low values if brief but very high voltage shocks were used. Applying the same technique to the head, it has now proved possible at the first attempt to stimulate two areas of the human cortex, without undue discomfort.

  4. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo.

    PubMed

    Jessen, Sanne Barsballe; Brazhe, Alexey; Lind, Barbara Lykke; Mathiesen, Claus; Thomsen, Kirsten; Jensen, Kimmo; Lauritzen, Martin

    2015-09-01

    Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent cytosolic Ca(2+) transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca(2+) activities in neurons and astrocytes. Intermediate and high concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might selectively gate and amplify transient low-frequency somatosensory inputs, filter out high-frequency inputs, and enhance vascular and metabolic responses that are likely to be reflected in BOLD functional neuroimaging signals. PMID:24692513

  5. Population receptive field estimates of human auditory cortex

    PubMed Central

    Thomas, Jessica M.; Huber, Elizabeth; Stecker, G. Christopher; Boynton, Geoffrey M.; Saenz, Melissa; Fine, Ione

    2014-01-01

    Here we describe a method for measuring tonotopic maps and estimating bandwidth for voxels in human primary auditory cortex (PAC) using a modification of the population Receptive Field (pRF) model, developed for retinotopic mapping in visual cortex by Dumoulin and Wandell (2008). The pRF method reliably estimates tonotopic maps in the presence of acoustic scanner noise, and has two advantages over phase-encoding techniques. First, the stimulus design is flexible and need not be a frequency progression, thereby reducing biases due to habituation, expectation, and estimation artifacts, as well as reducing the effects of spatio-temporal BOLD nonlinearities. Second, the pRF method can provide estimates of bandwidth as a function of frequency. We find that bandwidth estimates are narrower for voxels within the PAC than in surrounding auditory responsive regions (non-PAC). PMID:25449742

  6. Population receptive field estimates of human auditory cortex.

    PubMed

    Thomas, Jessica M; Huber, Elizabeth; Stecker, G Christopher; Boynton, Geoffrey M; Saenz, Melissa; Fine, Ione

    2015-01-15

    Here we describe a method for measuring tonotopic maps and estimating bandwidth for voxels in human primary auditory cortex (PAC) using a modification of the population Receptive Field (pRF) model, developed for retinotopic mapping in visual cortex by Dumoulin and Wandell (2008). The pRF method reliably estimates tonotopic maps in the presence of acoustic scanner noise, and has two advantages over phase-encoding techniques. First, the stimulus design is flexible and need not be a frequency progression, thereby reducing biases due to habituation, expectation, and estimation artifacts, as well as reducing the effects of spatio-temporal BOLD nonlinearities. Second, the pRF method can provide estimates of bandwidth as a function of frequency. We find that bandwidth estimates are narrower for voxels within the PAC than in surrounding auditory responsive regions (non-PAC). PMID:25449742

  7. Infant cortex responds to other humans from shortly after birth

    PubMed Central

    Farroni, Teresa; Chiarelli, Antonio M.; Lloyd-Fox, Sarah; Massaccesi, Stefano; Merla, Arcangelo; Di Gangi, Valentina; Mattarello, Tania; Faraguna, Dino; Johnson, Mark H.

    2013-01-01

    A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1–5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions. PMID:24092239

  8. Odor quality coding and categorization in human posterior piriform cortex

    PubMed Central

    Howard, James D; Plailly, Jane; Grueschow, Marcus; Haynes, John-Dylan; Gottfried, Jay A

    2010-01-01

    Efficient recognition of odorous objects universally shapes animal behavior and is crucial for survival. To distinguish kin from non-kin, mate from non-mate, food from non-food, organisms must be able to create meaningful perceptual representations of odor qualities and categories. It is currently unknown where, and in what form, the brain encodes information about odor quality. By combining functional magnetic resonance imaging (fMRI) with multivariate (pattern-based) techniques, we show that spatially distributed ensemble activity in human posterior piriform cortex (PPC) coincides with perceptual ratings of odor quality, such that odorants with more (or less) similar fMRI patterns were perceived as more (or less) alike. Critically, these effects were not observed in anterior piriform cortex, amygdala, or orbitofrontal cortex, demonstrating that ensemble coding of odor categorical perception is regionally specific for PPC. These findings substantiate theoretical models emphasizing the importance of distributed piriform templates for the perceptual reconstruction of odor object quality. PMID:19483688

  9. Orientation anisotropies in human primary visual cortex depend on contrast.

    PubMed

    Maloney, Ryan T; Clifford, Colin W G

    2015-10-01

    Orientation processing in visual cortex appears matched to the environment, such that larger neural populations are tuned to cardinal (horizontal/vertical) than oblique orientations. This may be manifested perceptually as a cardinal bias: poorer sensitivity to oblique compared to cardinal orientations (the "oblique effect"). However, a growing body of psychophysical data reveals the opposite pattern of anisotropy: a bias towards the oblique over the cardinal orientations (the "horizontal effect"), something matched by recent functional magnetic resonance imaging (fMRI) studies that have found an increased response to the oblique over the cardinal orientations in early visual cortex. This may reveal the operation of an efficient coding strategy optimised to the diet of orientations encountered during natural viewing. From consideration of coding efficiency, it might be expected that the anisotropies would change as the quality/strength of the oriented stimulus changes. In two experiments, fMRI response modulations were measured in retinotopically-defined human early visual cortex as a function of the contrast and orientation of sinusoidal gratings. Both experiments revealed a marked change in the V1 response from a cardinal (vertical) bias at low contrast to an oblique bias at high contrast. In Experiment 2, this was also apparent in areas V2 and V3. On average, there was no systematic "radial bias" (a preference for orientations aligned with the visual field meridian) in V1, although it was present in some individual subjects. The change in orientation anisotropies with contrast is consistent with an adaptive stimulus coding strategy in cortex that shifts according to the strength of the sensory inputs. PMID:26093331

  10. The Role of Human Parietal Cortex in Attention Networks

    ERIC Educational Resources Information Center

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  11. A multi-modal parcellation of human cerebral cortex.

    PubMed

    Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M; Van Essen, David C

    2016-08-11

    Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease. PMID:27437579

  12. Probabilistic Maps of Visual Topography in Human Cortex.

    PubMed

    Wang, Liang; Mruczek, Ryan E B; Arcaro, Michael J; Kastner, Sabine

    2015-10-01

    The human visual system contains an array of topographically organized regions. Identifying these regions in individual subjects is a powerful approach to group-level statistical analysis, but this is not always feasible. We addressed this limitation by generating probabilistic maps of visual topographic areas in 2 standardized spaces suitable for use with adult human brains. Using standard fMRI paradigms, we identified 25 topographic maps in a large population of individual subjects (N = 53) and transformed them into either a surface- or volume-based standardized space. Here, we provide a quantitative characterization of the inter-subject variability within and across visual regions, including the likelihood that a given point would be classified as a part of any region (full probability map) and the most probable region for any given point (maximum probability map). By evaluating the topographic organization across the whole of visual cortex, we provide new information about the organization of individual visual field maps and large-scale biases in visual field coverage. Finally, we validate each atlas for use with independent subjects. Overall, the probabilistic atlases quantify the variability of topographic representations in human cortex and provide a useful reference for comparing data across studies that can be transformed into these standard spaces. PMID:25452571

  13. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation.

    PubMed

    Cash, Robin F H; Murakami, Takenobu; Chen, Robert; Thickbroom, Gary W; Ziemann, Ulf

    2016-01-01

    Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS). PMID:25100853

  14. Functional Imaging of the Human Brainstem during Somatosensory Input and Autonomic Output

    PubMed Central

    Henderson, Luke A.; Macefield, Vaughan G.

    2013-01-01

    Over the past half a century, many investigations in experimental animal have explored the functional roles of specific regions in the brainstem. Despite the accumulation of a considerable body of knowledge in, primarily, anesthetized preparations, relatively few studies have explored brainstem function in awake humans. It is important that human brainstem function is explored given that many neurological conditions, from obstructive sleep apnea, chronic pain, and hypertension, likely involve significant changes in the processing of information within the brainstem. Recent advances in the collection and processing of magnetic resonance images have resulted in the possibility of exploring brainstem activity changes in awake healthy individuals and in those with various clinical conditions. We and others have begun to explore changes in brainstem activity in humans during a number of challenges, including cutaneous and muscle pain, as well as during maneuvers that evoke increases in sympathetic nerve activity. More recently we have successfully recorded sympathetic nerve activity concurrently with functional magnetic resonance imaging of the brainstem, which will allow us, for the first time to explore brainstem sites directly responsible for conditions such as hypertension. Since many pathophysiological conditions no doubt involve changes in brainstem function and structure, defining these changes will likely result in a greater ability to develop more effective treatment regimens. PMID:24062670

  15. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    PubMed Central

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  16. Multilevel Cortical Processing of Somatosensory Novelty: A Magnetoencephalography Study

    PubMed Central

    Naeije, Gilles; Vaulet, Thibaut; Wens, Vincent; Marty, Brice; Goldman, Serge; De Tiège, Xavier

    2016-01-01

    Using magnetoencephalography (MEG), this study investigates the spatio-temporal dynamics of the multilevel cortical processing of somatosensory change detection. Neuromagnetic signals of 16 healthy adult subjects (7 females and 9 males, mean age 29 ± 3 years) were recorded using whole-scalp-covering MEG while they underwent an oddball paradigm based on simple standard (right index fingertip tactile stimulation) and deviant (simultaneous right index fingertip and middle phalanx tactile stimulation) stimuli gathered into sequences to create and then deviate from stimulus patterns at multiple (local vs. global) levels of complexity. Five healthy adult subjects (3 females and 2 males, mean age 31, 6 ± 2 years) also underwent a similar oddball paradigm in which standard and deviant stimuli were flipped. Local deviations led to a somatosensory mismatch response peaking at 55–130 ms post-stimulus onset with a cortical generator located at the contralateral secondary somatosensory (cSII) cortex. The mismatch response was independent of the deviant stimuli physical characteristics. Global deviants led to a P300 response with cortical sources located bilaterally at temporo-parietal junction (TPJ) and supplementary motor area (SMA). The posterior parietal cortex (PPC) and the SMA were found to generate a contingent magnetic variation (CMV) attributed to top-down expectations. Amplitude of mismatch responses were modulated by top-down expectations and correlated with both the magnitude of the CMV and the P300 amplitude at the right TPJ. These results provide novel empirical evidence for a unified sensory novelty detection system in the human brain by linking detection of salient sensory stimuli in personal and extra-personal spaces to a common framework of multilevel cortical processing. PMID:27313523

  17. Multilevel Cortical Processing of Somatosensory Novelty: A Magnetoencephalography Study.

    PubMed

    Naeije, Gilles; Vaulet, Thibaut; Wens, Vincent; Marty, Brice; Goldman, Serge; De Tiège, Xavier

    2016-01-01

    Using magnetoencephalography (MEG), this study investigates the spatio-temporal dynamics of the multilevel cortical processing of somatosensory change detection. Neuromagnetic signals of 16 healthy adult subjects (7 females and 9 males, mean age 29 ± 3 years) were recorded using whole-scalp-covering MEG while they underwent an oddball paradigm based on simple standard (right index fingertip tactile stimulation) and deviant (simultaneous right index fingertip and middle phalanx tactile stimulation) stimuli gathered into sequences to create and then deviate from stimulus patterns at multiple (local vs. global) levels of complexity. Five healthy adult subjects (3 females and 2 males, mean age 31, 6 ± 2 years) also underwent a similar oddball paradigm in which standard and deviant stimuli were flipped. Local deviations led to a somatosensory mismatch response peaking at 55-130 ms post-stimulus onset with a cortical generator located at the contralateral secondary somatosensory (cSII) cortex. The mismatch response was independent of the deviant stimuli physical characteristics. Global deviants led to a P300 response with cortical sources located bilaterally at temporo-parietal junction (TPJ) and supplementary motor area (SMA). The posterior parietal cortex (PPC) and the SMA were found to generate a contingent magnetic variation (CMV) attributed to top-down expectations. Amplitude of mismatch responses were modulated by top-down expectations and correlated with both the magnitude of the CMV and the P300 amplitude at the right TPJ. These results provide novel empirical evidence for a unified sensory novelty detection system in the human brain by linking detection of salient sensory stimuli in personal and extra-personal spaces to a common framework of multilevel cortical processing. PMID:27313523

  18. Insights into Human Behavior from Lesions to the Prefrontal Cortex

    PubMed Central

    Szczepanski, Sara M.; Knight, Robert T.

    2014-01-01

    SUMMARY The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have lead to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient, conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based upon behavioral and neural changes resulting from damage to PFC in both human patients and non-human primates. PMID:25175878

  19. Representation of orientation in the somatosensory system.

    PubMed

    Hsiao, Steven S; Lane, John; Fitzgerald, Paul

    2002-09-20

    In this paper we discuss how orientation is represented and transformed in the somatosensory system. Information about stimulus orientation plays an important role in sensory processing. In touch it provides critical information about how stimuli are positioned on the hand, which is important for grasping and lifting objects. It also provides important information about tactile shape. Psychophysical studies show that humans have a high capacity to discriminate the orientation of shapes and gratings indented into the finger pad. Further, these studies demonstrate that orientation discrimination is a reliable and stable method for assessing tactile spatial acuity. Neurophysiological studies suggest that orientation information is processed by the slowly adapting type 1 (SA1) afferent system. While orientation is poorly represented in the responses of individual afferent fibers, it is well represented in the population response properties of peripheral SA1 afferents and in the responses of central neurons in the primary (S1) and secondary (S2) somatosensory cortex. In S2, neurons with orientation selective and orientation non-selective responses tend to have large receptive fields that span multiple pads on multiple digits. Neurons in S2 that are orientation selective have similar tuning functions on different finger pads. These neurons may provide position-invariant responses or may be responsible for integrating features across hands, which is important for haptic object recognition of large shapes from the hand. Neurophysiological studies in trained animals show that the responses of about 85% of the neurons in S2 are affected by the animals focus of attention and that attention to the orientation of a bar modifies both the mean firing rate (i.e. gain) of neurons encoding orientation information and the degree of synchronous firing between pairs of neurons. PMID:12356439

  20. Influence of Dopaminergically Mediated Reward on Somatosensory Decision-Making

    PubMed Central

    Pleger, Burkhard; Ruff, Christian C.; Blankenburg, Felix; Klöppel, Stefan; Driver, Jon; Dolan, Raymond J.

    2009-01-01

    Reward-related dopaminergic influences on learning and overt behaviour are well established, but any influence on sensory decision-making is largely unknown. We used functional magnetic resonance imaging (fMRI) while participants judged electric somatosensory stimuli on one hand or other, before being rewarded for correct performance at trial end via a visual signal, at one of four anticipated financial levels. Prior to the procedure, participants received either placebo (saline), a dopamine agonist (levodopa), or an antagonist (haloperidol). Principal findings: higher anticipated reward improved tactile decisions. Visually signalled reward reactivated primary somatosensory cortex for the judged hand, more strongly for higher reward. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next trial. These behavioural and neural effects were all enhanced by levodopa and attenuated by haloperidol, indicating dopaminergic dependency. Dopaminergic reward-related influences extend even to early somatosensory cortex and sensory decision-making. PMID:19636360

  1. Cascade of neural processing orchestrates cognitive control in human frontal cortex

    PubMed Central

    Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel

    2016-01-01

    Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12352.001 PMID:26888070

  2. Visual task enhances spatial selectivity in the human auditory cortex.

    PubMed

    Salminen, Nelli H; Aho, Joanna; Sams, Mikko

    2013-01-01

    The auditory cortex represents spatial locations differently from other sensory modalities. While visual and tactile cortices utilize topographical space maps, for audition no such cortical map has been found. Instead, auditory cortical neurons have wide spatial receptive fields and together they form a population rate code of sound source location. Recent studies have shown that this code is modulated by task conditions so that during auditory tasks it provides better selectivity to sound source location than during idle listening. The goal of this study was to establish whether the neural representation of auditory space can also be influenced by task conditions involving other sensory modalities than hearing. Therefore, we conducted magnetoencephalography (MEG) recordings in which auditory spatial selectivity of the human cortex was probed with an adaptation paradigm while subjects performed a visual task. Engaging in the task led to an increase in neural selectivity to sound source location compared to when no task was performed. This suggests that an enhancement in the population rate code of auditory space took place during task performance. This enhancement in auditory spatial selectivity was independent of the direction of visual orientation. Together with previous studies, these findings suggest that performing any demanding task, even one in which sounds and their source locations are irrelevant, can lead to enhancements in the neural representation of auditory space. Such mechanisms may have great survival value as sounds are capable of producing location information on potentially relevant events in all directions and over long distances. PMID:23543781

  3. Optical coherence tomography visualizes neurons in human entorhinal cortex

    PubMed Central

    Magnain, Caroline; Augustinack, Jean C.; Konukoglu, Ender; Frosch, Matthew P.; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J.; Boas, David A.; Fischl, Bruce

    2015-01-01

    Abstract. The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50  μm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future. PMID:25741528

  4. Cross-orientation suppression in human visual cortex

    PubMed Central

    Heeger, David J.

    2011-01-01

    Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720

  5. Age-dependent modulation of the somatosensory network upon eye closure.

    PubMed

    Brodoehl, Stefan; Klingner, Carsten; Witte, Otto W

    2016-02-01

    Eye closure even in complete darkness can improve somatosensory perception by switching the brain to a uni-sensory processing mode. This causes an increased information flow between the thalamus and the somatosensory cortex while decreasing modulation by the visual cortex. Previous work suggests that these modulations are age-dependent and that the benefit in somatosensory performance due to eye closing diminishes with age. The cause of this age-dependency and to what extent somatosensory processing is involved remains unclear. Therefore, we intended to characterize the underlying age-dependent modifications in the interaction and connectivity of different sensory networks caused by eye closure. We performed functional MR-imaging with tactile stimulation of the right hand under the conditions of opened and closed eyes in healthy young and elderly participants. Conditional Granger causality analysis was performed to assess the somatosensory and visual networks, including the thalamus. Independent of age, eye closure improved the information transfer from the thalamus to and within the somatosensory cortex. However, beyond that, we found an age-dependent recruitment strategy. Whereas young participants were characterized by an optimized information flow within the relays of the somatosensory network, elderly participants revealed a stronger modulatory influence of the visual network upon the somatosensory cortex. Our results demonstrate that the modulation of the somatosensory and visual networks by eye closure diminishes with age and that the dominance of the visual system is more pronounced in the aging brain. PMID:26546882

  6. Brief hind paw stimulation is sufficient to induce delayed somatosensory discrimination learning in C57BL/6 mice.

    PubMed

    Hirasawa, Naoto; Yamada, Kazuyuki; Murayama, Masanori

    2016-03-15

    Somatosensory learning and memory studies in rodents have primarily focused on the role of whiskers and the barrel structure of the sensory cortex, characteristics unique to rodents. In contrast, whether associative learning can occur in animals (and humans) via foot stimulation remains unclear. The sensory cortex corresponding to the plantar foot surface is localized in the centroparietal area, providing relatively easy access for studying somatosensory learning and memory. To assess the contribution of sole stimulation to somatosensory learning and memory, we developed a novel operant-lever-pressing task. In Experiment 1, head-fixed mice were trained to press a lever to receive a water reward upon presentation of an associated stimulus (S+). Following training, they were administered a reversal-learning protocol, in which "S+ " and "S-" (a stimulus not associated with reward) were switched. Mice were then submitted to training with a progressively extended delay period between stimulation and lever presentation. In Experiment 2, the delayed discrimination training was replicated with longer delay periods and restricted training days, to further explore the results of Experiment 1. When the stimuli were presented to a single left hind paw, we found that male C57BL/6J mice were capable of learning to discriminate between different foot stimuli (electrical or mechanical), and of retaining this information for 10s. This novel task has potential applications for electrophysiological and optogenetic studies to clarify the neural circuits underlying somatosensory learning and behavior. PMID:26711909

  7. The Behavioral Relevance of Task Information in Human Prefrontal Cortex.

    PubMed

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2016-06-01

    Human lateral prefrontal cortex (LPFC) is thought to play a critical role in enabling cognitive flexibility, particularly when performing novel tasks. However, it remains to be established whether LPFC representation of task-relevant information in such situations actually contributes to successful performance. We utilized pattern classification analyses of functional MRI activity to identify novelty-sensitive brain regions as participants rapidly switched between performance of 64 complex tasks, 60 of which were novel. In three of these novelty-sensitive regions-located within distinct areas of left anterior LPFC-trial-evoked activity patterns discriminated correct from error trials. Further, these regions also contained information regarding the task-relevant decision rule, but only for successfully performed trials. This suggests that left anterior LPFC may be particularly important for representing task information that contributes to the cognitive flexibility needed to perform successfully in novel task situations. PMID:25870233

  8. Representation of visual gravitational motion in the human vestibular cortex.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Bosco, Gianfranco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2005-04-15

    How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain. PMID:15831760

  9. Structural and functional dichotomy of human midcingulate cortex.

    PubMed

    Vogt, Brent A; Berger, Gail R; Derbyshire, Stuart W G

    2003-12-01

    Anterior cingulate cortex is comprised of perigenual and midcingulate regions based on cytology, imaging and connections. Its anterior (aMCC) and posterior (pMCC) parts and transition to posterior area 23 were evaluated in six human cingulate gyri with Nissl staining and immunoreactions for neuron-specific nuclear binding protein and intermediate neurofilament proteins (NFP), and their pain and emotion functions evaluated in standard coordinates. Morphological differences included a poorly differentiated layer III with few NFP-expressing neurons in aMCC and a very dense layer Va with small and large pyramids intermingled in pMCC. The density of NFP-positive, layer Vb neurons was higher in pMCC than in aMCC. The junction of pMCC with area 23 had a dysgranular area 23d with clumps of layer IV neurons and a very dense layer Va. Each case was co-registered to standard coordinates and the regional borders identified and measured. Although both regions had overall equivalent activations during noxious cutaneous thermal stimulation, the posterior two-thirds of pMCC was relatively inactive. About 60% of fear-induced activity was in aMCC, sadness and happiness activated perigenual cortex, and neither were activated with non-emotion tasks. Thus, pain activity is coupled to fear in aMCC, while other MCC processing is not related to affect. Beyond midcingulate duality, this is the first report of a very dense layer Va for areas p24' and 23 and the features of transitional area 23d. The MCC dichotomy suggests that two circuits differentially regulate the two cingulate motor areas, and involvement of aMCC in pain and fear make it selectively vulnerable to chronic pain and stress syndromes. PMID:14656310

  10. Hand Shape Representations in the Human Posterior Parietal Cortex

    PubMed Central

    Klaes, Christian; Kellis, Spencer; Aflalo, Tyson; Lee, Brian; Pejsa, Kelsie; Shanfield, Kathleen; Hayes-Jackson, Stephanie; Aisen, Mindy; Heck, Christi; Liu, Charles

    2015-01-01

    Humans shape their hands to grasp, manipulate objects, and to communicate. From nonhuman primate studies, we know that visual and motor properties for grasps can be derived from cells in the posterior parietal cortex (PPC). Are non-grasp-related hand shapes in humans represented similarly? Here we show for the first time how single neurons in the PPC of humans are selective for particular imagined hand shapes independent of graspable objects. We find that motor imagery to shape the hand can be successfully decoded from the PPC by implementing a version of the popular Rock-Paper-Scissors game and its extension Rock-Paper-Scissors-Lizard-Spock. By simultaneous presentation of visual and auditory cues, we can discriminate motor imagery from visual information and show differences in auditory and visual information processing in the PPC. These results also demonstrate that neural signals from human PPC can be used to drive a dexterous cortical neuroprosthesis. SIGNIFICANCE STATEMENT This study shows for the first time hand-shape decoding from human PPC. Unlike nonhuman primate studies in which the visual stimuli are the objects to be grasped, the visually cued hand shapes that we use are independent of the stimuli. Furthermore, we can show that distinct neuronal populations are activated for the visual cue and the imagined hand shape. Additionally we found that auditory and visual stimuli that cue the same hand shape are processed differently in PPC. Early on in a trial, only the visual stimuli and not the auditory stimuli can be decoded. During the later stages of a trial, the motor imagery for a particular hand shape can be decoded for both modalities. PMID:26586832

  11. A computational model of the human visual cortex

    NASA Astrophysics Data System (ADS)

    Albus, James S.

    2008-04-01

    The brain is first and foremost a control system that is capable of building an internal representation of the external world, and using this representation to make decisions, set goals and priorities, formulate plans, and control behavior with intent to achieve its goals. The computational model proposed here assumes that this internal representation resides in arrays of cortical columns. More specifically, it models each cortical hypercolumn together with its underlying thalamic nuclei as a Fundamental Computational Unit (FCU) consisting of a frame-like data structure (containing attributes and pointers) plus the computational processes and mechanisms required to maintain it. In sensory-processing areas of the brain, FCUs enable segmentation, grouping, and classification. Pointers stored in FCU frames link pixels and signals to objects and events in situations and episodes that are overlaid with meaning and emotional values. In behavior-generating areas of the brain, FCUs make decisions, set goals and priorities, generate plans, and control behavior. Pointers are used to define rules, grammars, procedures, plans, and behaviors. It is suggested that it may be possible to reverse engineer the human brain at the FCU level of fidelity using nextgeneration massively parallel computer hardware and software. Key Words: computational modeling, human cortex, brain modeling, reverse engineering the brain, image processing, perception, segmentation, knowledge representation

  12. Architecture of Explanatory Inference in the Human Prefrontal Cortex

    PubMed Central

    Barbey, Aron K.; Patterson, Richard

    2011-01-01

    Causal reasoning is a ubiquitous feature of human cognition. We continuously seek to understand, at least implicitly and often explicitly, the causal scenarios in which we live, so that we may anticipate what will come next, plan a potential response and envision its outcome, decide among possible courses of action in light of their probable outcomes, make midstream adjustments in our goal-related activities as our situation changes, and so on. A considerable body of research shows that the lateral prefrontal cortex (PFC) is crucial for causal reasoning, but also that there are significant differences in the manner in which ventrolateral PFC, dorsolateral PFC, and anterolateral PFC support causal reasoning. We propose, on the basis of research on the evolution, architecture, and functional organization of the lateral PFC, a general framework for understanding its roles in the many and varied sorts of causal reasoning carried out by human beings. Specifically, the ventrolateral PFC supports the generation of basic causal explanations and inferences; dorsolateral PFC supports the evaluation of these scenarios in light of some given normative standard (e.g., of plausibility or correctness in light of real or imagined causal interventions); and anterolateral PFC supports explanation and inference at an even higher level of complexity, coordinating the processes of generation and evaluation with further cognitive processes, and especially with computations of hedonic value and emotional implications of possible behavioral scenarios – considerations that are often critical both for understanding situations causally and for deciding about our own courses of action. PMID:21845182

  13. Aversive learning shapes neuronal orientation tuning in human visual cortex

    PubMed Central

    McTeague, Lisa M.; Gruss, L. Forest; Keil, Andreas

    2015-01-01

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top–down projections as well as local inhibitory interactions. PMID:26215466

  14. Integrated processing of spatial cues in human auditory cortex.

    PubMed

    Salminen, Nelli H; Takanen, Marko; Santala, Olli; Lamminsalo, Jarkko; Altoè, Alessandro; Pulkki, Ville

    2015-09-01

    Human sound source localization relies on acoustical cues, most importantly, the interaural differences in time and level (ITD and ILD). For reaching a unified representation of auditory space the auditory nervous system needs to combine the information provided by these two cues. In search for such a unified representation, we conducted a magnetoencephalography (MEG) experiment that took advantage of the location-specific adaptation of the auditory cortical N1 response. In general, the attenuation caused by a preceding adaptor sound to the response elicited by a probe depends on their spatial arrangement: if the two sounds coincide, adaptation is stronger than when the locations differ. Here, we presented adaptor-probe pairs that contained different localization cues, for instance, adaptors with ITD and probes with ILD. We found that the adaptation of the N1 amplitude was location-specific across localization cues. This result can be explained by the existence of auditory cortical neurons that are sensitive to sound source location independent on which cue, ITD or ILD, provides the location information. Such neurons would form a cue-independent, unified representation of auditory space in human auditory cortex. PMID:26074304

  15. Architecture of explanatory inference in the human prefrontal cortex.

    PubMed

    Barbey, Aron K; Patterson, Richard

    2011-01-01

    Causal reasoning is a ubiquitous feature of human cognition. We continuously seek to understand, at least implicitly and often explicitly, the causal scenarios in which we live, so that we may anticipate what will come next, plan a potential response and envision its outcome, decide among possible courses of action in light of their probable outcomes, make midstream adjustments in our goal-related activities as our situation changes, and so on. A considerable body of research shows that the lateral prefrontal cortex (PFC) is crucial for causal reasoning, but also that there are significant differences in the manner in which ventrolateral PFC, dorsolateral PFC, and anterolateral PFC support causal reasoning. We propose, on the basis of research on the evolution, architecture, and functional organization of the lateral PFC, a general framework for understanding its roles in the many and varied sorts of causal reasoning carried out by human beings. Specifically, the ventrolateral PFC supports the generation of basic causal explanations and inferences; dorsolateral PFC supports the evaluation of these scenarios in light of some given normative standard (e.g., of plausibility or correctness in light of real or imagined causal interventions); and anterolateral PFC supports explanation and inference at an even higher level of complexity, coordinating the processes of generation and evaluation with further cognitive processes, and especially with computations of hedonic value and emotional implications of possible behavioral scenarios - considerations that are often critical both for understanding situations causally and for deciding about our own courses of action. PMID:21845182

  16. Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR

    NASA Astrophysics Data System (ADS)

    Zhao, Huijuan; Tanikawa, Yukari; Gao, Feng; Onodera, Yoichi; Sassaroli, Angelo; Tanaka, Kenji; Yamada, Yukio

    2002-06-01

    The optical differential pathlength factor (DPF) is an important parameter for physiological measurement using near infrared spectroscopy, but for the human adult head it has been available only for the forehead. Here we report measured DPF results for the forehead, somatosensory motor and occipital regions from measurements on 11 adult volunteers using a time-resolved optical imaging system. The optode separation was about 30 mm and the wavelengths used were 759 nm, 799 nm and 834 nm. Measured DPFs were 7.25 for the central forehead and 6.25 for the temple region at 799 nm. For the central somatosensory and occipital areas (10 mm above the inion), DPFs at 799 nm are 7.5 and 8.75, respectively. Less than 10% decreases of DPF for all these regions were observed when the wavelength increased from 759 nm to 834 nm. To compare these DPF maps with the anatomical structure of the head, a Monte Carlo simulation was carried out to calculate DPF for these regions by using a two-layered semi-infinite model and assuming the thickness of the upper layer to be the sum of the thicknesses of scalp and skull, which was measured from MRI images of a subject's head. The DPF data will be useful for quantitative monitoring of the haemodynamic changes occurring in adult heads.

  17. Mapping visual cortex in monkeys and humans using surface-based atlases

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  18. Visual Responsiveness of Neurons in the Secondary Somatosensory Area and its Surrounding Parietal Operculum Regions in Awake Macaque Monkeys

    PubMed Central

    Hihara, Sayaka; Taoka, Miki; Tanaka, Michio; Iriki, Atsushi

    2015-01-01

    Previous neurophysiological studies performed in macaque monkeys have shown that the secondary somatosensory cortex (SII) is essentially engaged in the processing of somatosensory information and no other sensory input has been reported. In contrast, recent human brain-imaging studies have revealed the effects of visual and auditory stimuli on SII activity, which suggest multisensory integration in the human SII. To determine whether multisensory responses of the SII also exist in nonhuman primates, we recorded single-unit activity in response to visual and auditory stimuli from the SII and surrounding regions in 8 hemispheres from 6 awake monkeys. Among 1157 recorded neurons, 306 neurons responded to visual stimuli. These visual neurons usually responded to rather complex stimuli, such as stimulation of the peripersonal space (40.5%), observation of human action (29.1%), and moving-object stimulation outside the monkey's reach (23.9%). We occasionally applied auditory stimuli to visual neurons and found 10 auditory-responsive neurons that exhibited somatosensory responses. The visual neurons were distributed continuously along the lateral sulcus covering the entire SII, along with other somatosensory neurons. These results highlight the need to investigate novel functional roles—other than somesthetic sensory processing—of the SII. PMID:25962920

  19. Representation of Maximally Regular Textures in Human Visual Cortex.

    PubMed

    Kohler, Peter J; Clarke, Alasdair; Yakovleva, Alexandra; Liu, Yanxi; Norcia, Anthony M

    2016-01-20

    Naturalistic textures with an intermediate degree of statistical regularity can capture key structural features of natural images (Freeman and Simoncelli, 2011). V2 and later visual areas are sensitive to these features, while primary visual cortex is not (Freeman et al., 2013). Here we expand on this work by investigating a class of textures that have maximal formal regularity, the 17 crystallographic wallpaper groups (Fedorov, 1891). We used texture stimuli from four of the groups that differ in the maximum order of rotation symmetry they contain, and measured neural responses in human participants using functional MRI and high-density EEG. We found that cortical area V3 has a parametric representation of the rotation symmetries in the textures that is not present in either V1 or V2, the first discovery of a stimulus property that differentiates processing in V3 from that of lower-level areas. Parametric responses were also seen in higher-order ventral stream areas V4, VO1, and lateral occipital complex (LOC), but not in dorsal stream areas. The parametric response pattern was replicated in the EEG data, and source localization indicated that responses in V3 and V4 lead responses in LOC, which is consistent with a feedforward mechanism. Finally, we presented our stimuli to four well developed feedforward models and found that none of them were able to account for our results. Our results highlight structural regularity as an important stimulus dimension for distinguishing the early stages of visual processing, and suggest a previously unrecognized role for V3 in the visual form-processing hierarchy. Significance statement: Hierarchical processing is a fundamental organizing principle in visual neuroscience, with each successive processing stage being sensitive to increasingly complex stimulus properties. Here, we probe the encoding hierarchy in human visual cortex using a class of visual textures--wallpaper patterns--that are maximally regular. Through a

  20. Relating tribological stimuli to somatosensory electroencephalographic responses.

    PubMed

    Oezguen, Novaf; Schubert, Kristof J; Bergmann, Ronny; Bennewitz, Roland; Strauss, Daniel J

    2015-08-01

    The present study deals with the extraction of neural correlates evoked by tactile stimulation of the human fingertip. A reciprocal sliding procedure was performed using a home-built tribometer while simultaneously electroencephalographic (EEG) data from the somatosensory cortex was recorded. The tactile stimuli were delivered by a sliding block with equidistant, perpendicular ridges. The experiments were designed and performed in a fully passive way to prevent attentional locked influences from the subjects. In order to improve the signal-to-noise ratio (SNR) of event related single-trials (ERPs), nonlocal means in addition to 2D-anisotropic denoising schemes based on tight Gabor frames were applied. This novel approach allowed for an easier extraction of ERP alternations. A negative correlation between the latency of the P100 component of the resulting brain responses and the intensity of the underlying lateral forces was found. These findings lead to the conclusion that an increasing stimulus intensity results in a decreasing latency of the brain responses. PMID:26738177

  1. Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex

    PubMed Central

    Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire

    2015-01-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269

  2. Microstimulation: Principles, Techniques, and Approaches to Somatosensory Neuroprosthesis.

    PubMed

    Semework, Mulugeta

    2015-01-01

    The power of movement of electrically charged particles has been used to alleviate an array of illnesses and help control some human body parts. Microstimulation, the electrical current-driven excitation of neural elements, is now being aimed at brain-machine interfaces (BMIs), brain-controlled external devices that improve quality of life for people such as those who have lost the ability to use their limbs. This effort is motivated by behavioral experiments that indicate a direct link between microstimulation-induced sensory experience and behavior, pointing to the possibility of optimizing and controlling the outputs of BMIs. Several laboratories have focused on using electrical stimulation to return somatosensory feedback from prosthetic limbs directly to the user's central nervous system. However, the difficulty of the problem has led to limited success thus far, and there is a need for a better understanding of the basic principles of neural microstimulation. This article provides a review of the available literature and some recent work at Downstate Medical Center and Columbia University on microstimulation of the primate and rodent somatosensory (S1) cortex and the ventral posterolateral thalamus. It is aimed at contributing to the existing knowledge base to generate good behavioral responses and effective, BMI-appropriate somatosensory feedback. In general, the threshold for the particular brain tissue in response to current-amplitude has to be determined by rigorous experimentation. For consistently reproducible results, hardware and thresholds for microstimulation have to be specified. In addition, effects on motor functions, including unwanted side effects in response to the microstimulation of brain tissue, must be examined to take the field from bench to bedside. PMID:26351023

  3. Multidimensional representation of odors in the human olfactory cortex.

    PubMed

    Fournel, A; Ferdenzi, C; Sezille, C; Rouby, C; Bensafi, M

    2016-06-01

    What is known as an odor object is an integrated representation constructed from physical features, and perceptual attributes mainly mediated by the olfactory and trigeminal systems. The aim of the present study was to comprehend how this multidimensional representation is organized, by deciphering how similarities in the physical, olfactory and trigeminal perceptual spaces of odors are represented in the human brain. To achieve this aim, we combined psychophysics, functional MRI and multivariate representational similarity analysis. Participants were asked to smell odors diffused by an fMRI-compatible olfactometer and to rate each smell along olfactory dimensions (pleasantness, intensity, familiarity and edibility) and trigeminal dimensions (irritation, coolness, warmth and pain). An event-related design was implemented, presenting different odorants. Results revealed that (i) pairwise odorant similarities in anterior piriform cortex (PC) activity correlated with pairwise odorant similarities in chemical properties (P < 0.005), (ii) similarities in posterior PC activity correlated with similarities in olfactory perceptual properties (P <0.01), and (iii) similarities in amygdala activity correlated with similarities in trigeminal perceptual properties (P < 0.01). These findings provide new evidence that extraction of physical, olfactory and trigeminal features is based on specific fine processing of similarities between odorous stimuli in a distributed manner in the olfactory system. Hum Brain Mapp 37:2161-2172, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991044

  4. The evolution of a disparity decision in human visual cortex

    PubMed Central

    Cottereau, Benoit R.; Ales, Justin M.; Norcia, Anthony M.

    2015-01-01

    We used fMRI-informed EEG source-imaging in humans to characterize the dynamics of cortical responses during a disparity-discrimination task. After the onset of a disparity-defined target, decision-related activity was found within an extended cortical network that included several occipital regions of interest (ROIs): V4, V3A, hMT+ and the Lateral Occipital Complex (LOC). By using a response-locked analysis, we were able to determine the timing relationships in this network of ROIs relative to the subject's behavioral response. Choice-related activity appeared first in the V4 ROI almost 200 ms before the button press and then subsequently in the V3A ROI. Modeling of the responses in the V4 ROI suggests that this area provides an early contribution to disparity discrimination. Choice-related responses were also found after the button-press in ROIs V4, V3A, LOC and hMT+. Outside the visual cortex, choice-related activity was found in the frontal and temporal pole before the button-press. By combining the spatial resolution of fMRI-informed EEG source imaging with the ability to sort out neural activity occurring before, during and after the behavioral manifestation of the decision, our study is the first to assign distinct functional roles to the extra-striate ROIs involved in perceptual decisions based on disparity, the primary cue for depth. PMID:24513152

  5. Creating Concepts from Converging Features in Human Cortex.

    PubMed

    Coutanche, Marc N; Thompson-Schill, Sharon L

    2015-09-01

    To make sense of the world around us, our brain must remember the overlapping features of millions of objects. Crucially, it must also represent each object's unique feature-convergence. Some theories propose that an integration area (or "convergence zone") binds together separate features. We report an investigation of our knowledge of objects' features and identity, and the link between them. We used functional magnetic resonance imaging to record neural activity, as humans attempted to detect a cued fruit or vegetable in visual noise. Crucially, we analyzed brain activity before a fruit or vegetable was present, allowing us to interrogate top-down activity. We found that pattern-classification algorithms could be used to decode the detection target's identity in the left anterior temporal lobe (ATL), its shape in lateral occipital cortex, and its color in right V4. A novel decoding-dependency analysis revealed that identity information in left ATL was specifically predicted by the temporal convergence of shape and color codes in early visual regions. People with stronger feature-and-identity dependencies had more similar top-down and bottom-up activity patterns. These results fulfill three key requirements for a neural convergence zone: a convergence result (object identity), ingredients (color and shape), and the link between them. PMID:24692512

  6. Topologically Dissociable Patterns of Development of the Human Cerebral Cortex

    PubMed Central

    Vandekar, Simon N.; Shinohara, Russell T.; Raznahan, Armin; Roalf, David R.; Ross, Michelle; DeLeo, Nicholas; Ruparel, Kosha; Verma, Ragini; Wolf, Daniel H.; Gur, Ruben C.; Gur, Raquel E.

    2015-01-01

    Over 90 years ago, anatomists noted the cortex is thinner in sulci than gyri, suggesting that development may occur on a fine scale driven by local topology. However, studies of brain development in youth have focused on describing how cortical thickness varies over large-scale functional and anatomic regions. How the relationship between thickness and local sulcal topology arises in development is still not well understood. Here, we investigated the spatial relationships between cortical thickness, folding, and underlying white matter organization to elucidate the influence of local topology on human brain development. Our approach included using both T1-weighted imaging and diffusion tensor imaging (DTI) in a cross-sectional sample of 932 youths ages 8–21 studied as part of the Philadelphia Neurodevelopmental Cohort. Principal components analysis revealed separable development-related processes of regionally specific nonlinear cortical thickening (from ages 8–14) and widespread linear cortical thinning that have dissociable relationships with cortical topology. Whereas cortical thinning was most prominent in the depths of the sulci, early cortical thickening was present on the gyri. Furthermore, decline in mean diffusivity calculated from DTI in underlying white matter was correlated with cortical thinning, suggesting that cortical thinning is spatially associated with white matter development. Spatial permutation tests were used to assess the significance of these relationships. Together, these data demonstrate that cortical remodeling during youth occurs on a local topological scale and is associated with changes in white matter beneath the cortical surface. PMID:25589754

  7. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    ERIC Educational Resources Information Center

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  8. Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention

    PubMed Central

    Bressler, Steven L.; Tang, Wei; Sylvester, Chad M.; Shulman, Gordon L.; Corbetta, Maurizio

    2008-01-01

    Advance information about an impending stimulus facilitates its subsequent identification and ensuing behavioral responses. This facilitation is thought to be mediated by top-down control signals from frontal and parietal cortex that modulate sensory cortical activity. Here we show, using Granger Causality measures on blood oxygen-level-dependent time series, that frontal eye field (FEF) and intraparietal sulcus (IPS) activity predicts visual occipital activity prior to an expected visual stimulus. Top-down levels of Granger Causality from FEF and IPS to visual occipital cortex were significantly greater than both bottom-up and mean cortex-wide levels in all individual subjects and the group. In the group and most individual subjects, Granger Causality was significantly greater from FEF to IPS than from IPS to FEF, and significantly greater from both FEF and IPS to intermediate-tier than lower-tier ventral visual areas. Moreover, top-down Granger Causality from right IPS to intermediate-tier areas was predictive of correct behavioral performance. These results suggest that FEF and IPS modulate visual occipital cortex, and FEF modulates IPS, in relation to visual attention. The current approach may prove advantageous for the investigation of interregional directed influences in other human brain functions. PMID:18829963

  9. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    NASA Astrophysics Data System (ADS)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  10. Reappraisal of the somatosensory homunculus and its discontinuities.

    PubMed

    Parpia, Pasha

    2011-12-01

    Neuroscience folklore has it that somatotopy in human primary somatosensory cortex (SI) has two significant discontinuities: the hands and face map onto adjacent regions in SI, as do the feet and genitalia. It has been proposed that these conjunctions in SI result from coincident sources of stimulation in the fetal position, where the hands frequently touch the face, and the feet the genitalia. Computer modeling using a Hebbian variant of the self-organizing Kohonen net is consistent with this proposal. However, recent work reveals that the genital representation in SI for cutaneous sensations (as opposed to tumescence) is continuous with that of the lower trunk and thigh. This result, in conjunction with reports of separate face innervation and its earlier onset of sensory function, compared to that of the rest of the body, allows a reappraisal of homuncular organization. It is proposed that the somatosensory homunculus comprises two distinct somatotopic regions: the face representation and that of the rest of the body. Principles of self-organization do not account satisfactorily for the overall homuncular map. These results may serve to alert computational modelers that intrinsic developmental factors can override simple rules of plasticity. PMID:21732862

  11. Congruency of body-related information induces somatosensory reorganization.

    PubMed

    Cardini, Flavia; Longo, Matthew R

    2016-04-01

    Chronic pain and impaired tactile sensitivity are frequently associated with "blurred" representations in the somatosensory cortex. The factors that produce such somatosensory blurring, however, remain poorly understood. We manipulated visuo-tactile congruence to investigate its role in promoting somatosensory reorganization. To this aim we used the mirror box illusion that produced in participants the subjective feeling of looking directly at their left hand, though they were seeing the reflection of their right hand. Simultaneous touches were applied to the middle or ring finger of each hand. In one session, the same fingers were touched (for example both middle fingers), producing a congruent percept; in the other session different fingers were touched, producing an incongruent percept. In the somatosensory system, suppressive interactions between adjacent stimuli are an index of intracortical inhibitory function. After each congruent and incongruent session, we recorded somatosensory evoked potential (SEPs) elicited by electrocutaneous stimulation of the left ring and middle fingers, either individually or simultaneously. A somatosensory suppression index (SSI) was calculated as the difference in amplitude between the sum of potentials evoked by the two individually stimulated fingers and the potentials evoked by simultaneous stimulation of both fingers. This SSI can be taken as an index of the strength of inhibitory interactions and consequently can provide a measure of how distinct the representations of the two fingers are. Results showed stronger SSI in the P100 component after congruent than incongruent stimulation, suggesting the key role of congruent sensory information about the body in inducing somatosensory reorganization. PMID:26902158

  12. Somatosensory evoked potentials and blood lactate levels.

    PubMed

    Perciavalle, Valentina; Alagona, Giovanna; De Maria, Giulia; Rapisarda, Giuseppe; Costanzo, Erminio; Perciavalle, Vincenzo; Coco, Marinella

    2015-09-01

    We compared, in 20 subjects, the effects of high blood lactate levels on amplitude and latency of P1, N1, P2 and N2 components of lower limb somatosensory evoked potential (SEP), an useful, noninvasive tool for assessing the transmission of the afferent volley from periphery up to the cortex. SEPs were recorded from CPz located over the somatosensory vertex and referenced to FPz with a clavicle ground. Measurements were carried out before, at the end as well as 10 and 20 min after the conclusion of a maximal exercise carried out on a mechanically braked cycloergometer. After the exercise, P2-N2 amplitudes as well as latency of P1 and N1 components showed small but significant reductions. On the contrary, latency of N2 component exhibited a significant increase after the exercise's conclusion. These results suggest that blood lactate appears to have a protective effect against fatigue, at least at level of primary somatosensory cortex, although at the expense of efficiency of adjacent areas. PMID:25876852

  13. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex

    PubMed Central

    Bancroft, Tyler D.; Hogeveen, Jeremy; Hockley, William E.; Servos, Philip

    2014-01-01

    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature. PMID:24634653

  14. Subjective Somatosensory Experiences Disclosed by Focused Attention: Cortical-Hippocampal-Insular and Amygdala Contributions

    PubMed Central

    Bauer, Clemens C. C.; Barrios, Fernando A.; Díaz, José-Luis

    2014-01-01

    In order to explore the neurobiological foundations of qualitative subjective experiences, the present study was designed to correlate objective third-person brain fMRI measures with subjective first-person identification and scaling of local, subtle, and specific somatosensory sensations, obtained directly after the imaging procedure. Thus, thirty-four volunteers were instructed to focus and sustain their attention to either provoked or spontaneous sensations of each thumb during the fMRI procedure. By means of a Likert scale applied immediately afterwards, the participants recalled and evaluated the intensity of their attention and identified specific somatosensory sensations (e.g. pulsation, vibration, heat). Using the subject's subjective scores as covariates to model both attention intensity and general somatosensory experiences regressors, the whole-brain random effect analyses revealed activations in the frontopolar prefrontal cortex (BA10), primary somatosensory cortex (BA1), premotor cortex (BA 6), precuneus (BA 7), temporopolar cortex (BA 38), inferior parietal lobe (BA 39), hippocampus, insula and amygdala. Furthermore, BA10 showed differential activity, with ventral BA10 correlating exclusively with attention (r(32) = 0.54, p = 0.0013) and dorsal BA10 correlating exclusively with somatosensory sensation (r(32) = 0.46, p = 0.007). All other reported brain areas showed significant positive correlations solely with subjective somatosensory experiences reports. These results provide evidence that the frontopolar prefrontal cortex has dissociable functions depending on specific cognitive demands; i.e. the dorsal portion of the frontopolar prefrontal cortex in conjunction with primary somatosensory cortex, temporopolar cortex, inferior parietal lobe, hippocampus, insula and amygdala are involved in the processing of spontaneous general subjective somatosensory experiences disclosed by focused and sustained attention. PMID:25166875

  15. Relative valuation of pain in human orbitofrontal cortex.

    PubMed

    Winston, Joel S; Vlaev, Ivo; Seymour, Ben; Chater, Nick; Dolan, Raymond J

    2014-10-29

    The valuation of health-related states, including pain, is a critical issue in clinical practice, health economics, and pain neuroscience. Surprisingly the monetary value people associate with pain is highly context-dependent, with participants willing to pay more to avoid medium-level pain when presented in a context of low-intensity, rather than high-intensity, pain. Here, we ask whether context impacts upon the neural representation of pain itself, or alternatively the transformation of pain into valuation-driven behavior. While undergoing fMRI, human participants declared how much money they would be willing to pay to avoid repeated instances of painful cutaneous electrical stimuli delivered to the foot. We also implemented a contextual manipulation that involved presenting medium-level painful stimuli in blocks with either low- or high-level stimuli. We found no evidence of context-dependent activity within a conventional "pain matrix," where pain-evoked activity reflected absolute stimulus intensity. By contrast, in right lateral orbitofrontal cortex, a strong contextual dependency was evident, and here activity tracked the contextual rank of the pain. The findings are in keeping with an architecture where an absolute pain valuation system and a rank-dependent system interact to influence willing to pay to avoid pain, with context impacting value-based behavior high in a processing hierarchy. This segregated processing hints that distinct neural representations reflect sensory aspects of pain and components that are less directly nociceptive whose integration also guides pain-related actions. A dominance of the latter might account for puzzling phenomena seen in somatization disorders where perceived pain is a dominant driver of behavior. PMID:25355207

  16. Relative Valuation of Pain in Human Orbitofrontal Cortex

    PubMed Central

    Vlaev, Ivo; Seymour, Ben; Chater, Nick; Dolan, Raymond J.

    2014-01-01

    The valuation of health-related states, including pain, is a critical issue in clinical practice, health economics, and pain neuroscience. Surprisingly the monetary value people associate with pain is highly context-dependent, with participants willing to pay more to avoid medium-level pain when presented in a context of low-intensity, rather than high-intensity, pain. Here, we ask whether context impacts upon the neural representation of pain itself, or alternatively the transformation of pain into valuation-driven behavior. While undergoing fMRI, human participants declared how much money they would be willing to pay to avoid repeated instances of painful cutaneous electrical stimuli delivered to the foot. We also implemented a contextual manipulation that involved presenting medium-level painful stimuli in blocks with either low- or high-level stimuli. We found no evidence of context-dependent activity within a conventional “pain matrix,” where pain-evoked activity reflected absolute stimulus intensity. By contrast, in right lateral orbitofrontal cortex, a strong contextual dependency was evident, and here activity tracked the contextual rank of the pain. The findings are in keeping with an architecture where an absolute pain valuation system and a rank-dependent system interact to influence willing to pay to avoid pain, with context impacting value-based behavior high in a processing hierarchy. This segregated processing hints that distinct neural representations reflect sensory aspects of pain and components that are less directly nociceptive whose integration also guides pain-related actions. A dominance of the latter might account for puzzling phenomena seen in somatization disorders where perceived pain is a dominant driver of behavior. PMID:25355207

  17. Heterogeneous and nonlinear development of human posterior parietal cortex function.

    PubMed

    Chang, Ting-Ting; Metcalfe, Arron W S; Padmanabhan, Aarthi; Chen, Tianwen; Menon, Vinod

    2016-02-01

    Human cognitive problem solving skills undergo complex experience-dependent changes from childhood to adulthood, yet most neurodevelopmental research has focused on linear changes with age. Here we challenge this limited view, and investigate spatially heterogeneous and nonlinear neurodevelopmental profiles between childhood, adolescence, and young adulthood, focusing on three cytoarchitectonically distinct posterior parietal cortex (PPC) regions implicated in numerical problem solving: intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SMG). Adolescents demonstrated better behavioral performance relative to children, but their performance was equivalent to that of adults. However, all three groups differed significantly in their profile of activation and connectivity across the PPC subdivisions. Activation in bilateral ventral IPS subdivision IPS-hIP1, along with adjoining anterior AG subdivision, AG-PGa, and the posterior SMG subdivision, SMG-PFm, increased linearly with age, whereas the posterior AG subdivision, AG-PGp, was equally deactivated in all three groups. In contrast, the left anterior SMG subdivision, SMG-PF, showed an inverted U-shaped profile across age groups such that adolescents exhibited greater activation than both children and young adults. Critically, greater SMG-PF activation was correlated with task performance only in adolescents. Furthermore, adolescents showed greater task-related functional connectivity of the SMG-PF with ventro-temporal, anterior temporal and prefrontal cortices, relative to both children and adults. These results suggest that nonlinear up-regulation of SMG-PF and its interconnected functional circuits facilitate adult-level performance in adolescents. Our study provides novel insights into heterogeneous age-related maturation of the PPC underlying cognitive skill acquisition, and further demonstrates how anatomically precise analysis of both linear and nonlinear neurofunctional changes with age is

  18. Neural population dynamics in human motor cortex during movements in people with ALS.

    PubMed

    Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad N; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V

    2015-01-01

    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation. PMID:26099302

  19. SOMATOSENSORY EVOKED POTENTIALS

    EPA Science Inventory

    Somatosensory evoked potentials (SEPs) have been used by neuroscientists for many years. The versatility of the method is attested to be the differing purposes to which it has been applied. Initially, SEPs were used to uncover basic principles of sensory processing. A casual glan...

  20. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component. PMID:27075772

  1. Somatosensory Event-related Potentials from Orofacial Skin Stretch Stimulation.

    PubMed

    Ito, Takayuki; Ostry, David J; Gracco, Vincent L

    2015-01-01

    Cortical processing associated with orofacial somatosensory function in speech has received limited experimental attention due to the difficulty of providing precise and controlled stimulation. This article introduces a technique for recording somatosensory event-related potentials (ERP) that uses a novel mechanical stimulation method involving skin deformation using a robotic device. Controlled deformation of the facial skin is used to modulate kinesthetic inputs through excitation of cutaneous mechanoreceptors. By combining somatosensory stimulation with electroencephalographic recording, somatosensory evoked responses can be successfully measured at the level of the cortex. Somatosensory stimulation can be combined with the stimulation of other sensory modalities to assess multisensory interactions. For speech, orofacial stimulation is combined with speech sound stimulation to assess the contribution of multi-sensory processing including the effects of timing differences. The ability to precisely control orofacial somatosensory stimulation during speech perception and speech production with ERP recording is an important tool that provides new insight into the neural organization and neural representations for speech. PMID:26709504

  2. A parametric relief signal in human ventrolateral prefrontal cortex.

    PubMed

    Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2009-02-01

    People experience relief whenever outcomes are better than they would have been, had an alternative course of action been chosen. Here we investigated the neuronal basis of relief with functional resonance imaging in a choice task in which the outcome of the chosen option and that of the unchosen option were revealed sequentially. We found parametric activation increases in anterior ventrolateral prefrontal cortex with increasing relief (chosen outcomes better than unchosen outcomes). Conversely, anterior ventrolateral prefrontal activation was unrelated to the opposite of relief, increasing regret (chosen outcomes worse than unchosen outcomes). Furthermore, the anterior ventrolateral prefrontal activation was unrelated to primary gains and increased with relief irrespective of whether the chosen outcome was a loss or a gain. These results suggest that the anterior ventrolateral prefrontal cortex encodes a higher-order reward signal that lies at the core of current theories of emotion. PMID:18992349

  3. Functional Changes in the Human Auditory Cortex in Ageing

    PubMed Central

    Profant, Oliver; Tintěra, Jaroslav; Balogová, Zuzana; Ibrahim, Ibrahim; Jilek, Milan; Syka, Josef

    2015-01-01

    Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years) and compared the results with young subjects (cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC) leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing. PMID:25734519

  4. Specification of somatosensory area identity in cortical explants.

    PubMed

    Gitton, Y; Cohen-Tannoudji, M; Wassef, M

    1999-06-15

    The H-2Z1 transgene is restricted to a subset of layer IV neurons in the postnatal mouse cortex and delineates exactly the somatosensory area. Expression of the H-2Z1 transgene was used as an areal marker to determine when the parietal cortex becomes committed to a somatosensory identity. We have shown previously that grafts dissected from embryonic day 13.5 (E13.5) H-2Z1 cortex and transplanted into the cortex of nontransgenic newborns express H-2Z1 according to their site of origin. Expression was not modified on heterotopic transplantation (). In the present study, whole cortical explants were isolated at E12.5 from noncortical tissues. The explants developed a regionalized expression of H-2Z1, indicating that regionalization takes place and is maintained in vitro. We used this property and confronted embryonic H-2Z1 cortex with presumptive embryonic sources of regionalizing signals in an in vitro grafting procedure. A great majority of E11.5-E13.5 grafts maintained their presumptive expression of H-2Z1 when grafted heterotopically on nontransgenic E13.5-E15.5 explants. However, a significantly lower proportion of E11.5 parietal grafts expressed H-2Z1 in occipital compared with parietal cortex, indicating that somatosensory identity may be partially plastic at E11.5. Earlier stages could not be tested because the E10.5 grafts failed to develop in vitro. The data suggest that commitment to the expression of a somatosensory area-specific marker coincides with the onset of neurogenesis and occurs well before the birth of the non-GABAergic neurons that express H-2Z1 in vivo. PMID:10366623

  5. The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

    PubMed

    Li, Yansong; Vanni-Mercier, Giovanna; Isnard, Jean; Mauguière, François; Dreher, Jean-Claude

    2016-04-01

    The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment. PMID:26811252

  6. Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness.

    PubMed

    Hirvonen, Jonni; Palva, Satu

    2016-01-01

    Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept. PMID:26485310

  7. Experience-dependent modulation of tonotopic neural responses in human auditory cortex.

    PubMed Central

    Morris, J S; Friston, K J; Dolan, R J

    1998-01-01

    Experience-dependent plasticity of receptive fields in the auditory cortex has been demonstrated by electrophysiological experiments in animals. In the present study we used PET neuroimaging to measure regional brain activity in volunteer human subjects during discriminatory classical conditioning of high (8000 Hz) or low (200 Hz) frequency tones by an aversive 100 dB white noise burst. Conditioning-related, frequency-specific modulation of tonotopic neural responses in the auditory cortex was observed. The modulated regions of the auditory cortex positively covaried with activity in the amygdala, basal forebrain and orbitofrontal cortex, and showed context-specific functional interactions with the medial geniculate nucleus. These results accord with animal single-unit data and support neurobiological models of auditory conditioning and value-dependent neural selection. PMID:9608726

  8. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.

    PubMed

    Fedele, T; Scheer, H J; Burghoff, M; Curio, G; Körber, R

    2015-02-01

    Non-invasive EEG detection of very high frequency somatosensory evoked potentials featuring frequencies up to and above 1 kHz has been recently reported. Here, we establish the detectability of such components by combined low-noise EEG/MEG. We recorded SEP/SEF simultaneously using median nerve stimulation in five healthy human subjects inside an electromagnetically shielded room, combining a low-noise EEG custom-made amplifier (4.7 nV/√Hz) and a custom-made single-channel low-noise MEG (0.5 fT/√Hz @ 1 kHz). Both, low-noise EEG and MEG revealed three spectrally distinct and temporally overlapping evoked components: N20 (<100 Hz), sigma-burst (450-750 Hz), and kappa-burst (850-1200 Hz). The two recording modalities showed similar relative scaling of signal amplitude in all three frequencies domains (EEG [10 nV] ≅ MEG [1 fT]). Pronounced waveform (peak-by-peak) overlap of EEG and MEG signals is observed in the sigma band, whereas in the kappa band overlap was only partial. A decreasing signal-to-noise ratio (SNR; calculated for n = 12.000 averages) from sigma to kappa components characterizes both, electric and magnetic field recordings: Sigma-band SNR was 12.9  ±  5.5/19.8  ±  12.6 for EEG/MEG, and kappa-band SNR at 3.77  ±  0.8/4.5  ±  2.9. High-frequency performance of a tailor-made MEG matches closely with simultaneously recorded low-noise EEG for the non-invasive detection of somatosensory evoked activity at and above 1 kHz. Thus, future multi-channel dual-mode low-noise technology could offer complementary views for source reconstruction of the neural generators underlying such high-frequency responses, and render neural high-frequency processes related to multi-unit spike discharges accessible in non-invasive recordings. PMID:25612926

  9. Sustained attention to spontaneous thumb sensations activates brain somatosensory and other proprioceptive areas.

    PubMed

    Bauer, Clemens C C; Díaz, José-Luis; Concha, Luis; Barrios, Fernando A

    2014-06-01

    The present experiment was designed to test if sustained attention directed to the spontaneous sensations of the right or left thumb in the absence of any external stimuli is able to activate corresponding somatosensory brain areas. After verifying in 34 healthy volunteers that external touch stimuli to either thumb effectively activate brain contralateral somatosensory areas, and after subtracting attention mechanisms employed in both touch and spontaneous-sensation conditions, fMRI evidence was obtained that the primary somatosensory cortex (specifically left BA 3a/3b) becomes active when an individual is required to attend to the spontaneous sensations of either thumb in the absence of external stimuli. In addition, the left superior parietal cortex, anterior cingulate gyrus, insula, motor and premotor cortex, left dorsolateral prefrontal cortex, Broca's area, and occipital cortices were activated. Moreover, attention to spontaneous-sensations revealed an increased connectivity between BA 3a/3b, superior frontal gyrus (BA 9) and anterior cingulate cortex (BA 32), probably allowing top-down activations of primary somatosensory cortex. We conclude that specific primary somatosensory areas in conjunction with other left parieto-frontal areas are involved in processing proprioceptive and interoceptive bodily information that underlies own body-representations and that these networks and cognitive functions can be modulated by top-down attentional processes. PMID:24727703

  10. Self-touch modulates the somatosensory evoked P100.

    PubMed

    Hogendoorn, Hinze; Kammers, Marjolein; Haggard, Patrick; Verstraten, Frans

    2015-10-01

    It has recently been shown that contact between one's own limbs (self-touch) reduces the perceived intensity of pain, over and above the well-known modulation of pain by simultaneous colocalized tactile input Kammers et al. (Curr Biol 20:1819-1822, 2010). Here, we investigate how self-touch modulates somatosensory evoked potentials (SEPs) evoked by afferent somatosensory input. We show that the P100 SEP component, which has previously been implicated in the conscious perception of a tactile stimulus, is enhanced during self-touch, as compared to when one is touching nothing, an inanimate object, or another person. A follow-up experiment showed that there was no effect of self-touch on SEPs when the body parts in contact were not symmetric. Altogether, our findings suggest the interpretation that the secondary somatosensory cortex might underlie the specific analgesic effect of self-touch. PMID:26105753

  11. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  12. Dissociation of object and spatial visual processing pathways in human extrastriate cortex.

    PubMed Central

    Haxby, J V; Grady, C L; Horwitz, B; Ungerleider, L G; Mishkin, M; Carson, R E; Herscovitch, P; Schapiro, M B; Rapoport, S I

    1991-01-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas. Images PMID:2000370

  13. Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex.

    PubMed

    Eger, E; Pinel, P; Dehaene, S; Kleinschmidt, A

    2015-05-01

    Macaque electrophysiology has revealed neurons responsive to number in lateral (LIP) and ventral (VIP) intraparietal areas. Recently, fMRI pattern recognition revealed information discriminative of individual numbers in human parietal cortex but without precisely localizing the relevant sites or testing for subregions with different response profiles. Here, we defined the human functional equivalents of LIP (feLIP) and VIP (feVIP) using neurophysiologically motivated localizers. We applied multivariate pattern recognition to investigate whether both regions represent numerical information and whether number codes are position specific or invariant. In a delayed number comparison paradigm with laterally presented numerosities, parietal cortex discriminated between numerosities better than early visual cortex, and discrimination generalized across hemifields in parietal, but not early visual cortex. Activation patterns in the 2 parietal regions of interest did not differ in the coding of position-specific or position-independent number information, but in the expression of a numerical distance effect which was more pronounced in feLIP. Thus, the representation of number in parietal cortex is at least partially position invariant. Both feLIP and feVIP contain information about individual numerosities in humans, but feLIP hosts a coarser representation of numerosity than feVIP, compatible with either broader tuning or a summation code. PMID:24293562

  14. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain

    PubMed Central

    Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757

  15. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    PubMed

    Andoh, Jamila; Zatorre, Robert J

    2012-01-01

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this

  16. Pain-related modulation of the human motor cortex.

    PubMed

    Farina, Simona; Tinazzi, Michele; Le Pera, Domenica; Valeriani, Massimiliano

    2003-03-01

    Pain is a complex multi-dimensional phenomenon that influences a wide variety of nervous system functions, including sensory--discriminative, affective--motivational and cognitive--evaluative components. So far, these components have been studied in both patients with chronic pain and in normal subjects in whom pain was induced experimentally. The interaction between pain and motor function is not fully understood, although from everyday life it is known that pain affects movements. The effects of pain on motor control are typically seen as a limited or impaired ability to perform movements. Most studies have dealt with the effects of pain on the spinal cord reflexes, but in recent years, several lines of evidence suggest that the interaction between motor and pain systems in conditions of pain induced experimentally, rather than a simple spinal reflex, is a more complex process that involves also supraspinal brain areas. Although pain-motor interaction shows different features and time course depending on different pain variables, such as duration (tonic versus phasic pain), submodalities (deep versus superficial pain) and location (distal versus proximal pain), a common finding is that pain is able to inhibit the motor cortex. This motor cortex inhibition may act as a sort of motor 'decerebration' so as to allow the spinal motor system to freely develop protective responses to noxious stimulation. Further studies are required to assess the effects of pain on the motor system in patients suffering from chronic pain, in order to develop innovative rational therapeutic strategies to reduce both pain and motor disability. PMID:12635511

  17. Flexible information coding in human auditory cortex during perception, imagery, and STM of complex sounds.

    PubMed

    Linke, Annika C; Cusack, Rhodri

    2015-07-01

    Auditory cortex is the first cortical region of the human brain to process sounds. However, it has recently been shown that its neurons also fire in the absence of direct sensory input, during memory maintenance and imagery. This has commonly been taken to reflect neural coding of the same acoustic information as during the perception of sound. However, the results of the current study suggest that the type of information encoded in auditory cortex is highly flexible. During perception and memory maintenance, neural activity patterns are stimulus specific, reflecting individual sound properties. Auditory imagery of the same sounds evokes similar overall activity in auditory cortex as perception. However, during imagery abstracted, categorical information is encoded in the neural patterns, particularly when individuals are experiencing more vivid imagery. This highlights the necessity to move beyond traditional "brain mapping" inference in human neuroimaging, which assumes common regional activation implies similar mental representations. PMID:25603030

  18. A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex.

    PubMed

    Takemura, Hiromasa; Rokem, Ariel; Winawer, Jonathan; Yeatman, Jason D; Wandell, Brian A; Pestilli, Franco

    2016-05-01

    Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information. PMID:25828567

  19. Human Topological Task Adapted for Rats: Spatial Information Processes of the Parietal Cortex

    PubMed Central

    Goodrich-Hunsaker, Naomi J.; Howard, Brian P.; Hunsaker, Michael R.; Kesner, Raymond P.

    2008-01-01

    Human research has shown that lesions of the parietal cortex disrupt spatial information processing, specifically topological information. Similar findings have been found in nonhumans. It has been difficult to determine homologies between human and non-human mnemonic mechanisms for spatial information processing because methodologies and neuropathology differ. The first objective of the present study was to adapt a previously established human task for rats. The second objective was to better characterize the role of parietal cortex (PC) and dorsal hippocampus (dHPC) for topological spatial information processing. Rats had to distinguish whether a ball inside a ring or a ball outside a ring was the correct, rewarded object. After rats reached criterion on the task (>95%) they were randomly assigned to a lesion group (control, PC, dHPC). Animals were then re-tested. Post-surgery data show that controls were 94% correct on average, dHPC rats were 89% correct on average, and PC rats were 56% correct on average. The results from the present study suggest that the parietal cortex, but not the dHPC processes topological spatial information. The present data are the first to support comparable topological spatial information processes of the parietal cortex in humans and rats. PMID:18571941

  20. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    PubMed

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  1. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    PubMed Central

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  2. Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex

    PubMed Central

    Jeong, Su Keun

    2016-01-01

    The representation of object identity is fundamental to human vision. Using fMRI and multivoxel pattern analysis, here we report the representation of highly abstract object identity information in human parietal cortex. Specifically, in superior intraparietal sulcus (IPS), a region previously shown to track visual short-term memory capacity, we found object identity representations for famous faces varying freely in viewpoint, hairstyle, facial expression, and age; and for well known cars embedded in different scenes, and shown from different viewpoints and sizes. Critically, these parietal identity representations were behaviorally relevant as they closely tracked the perceived face-identity similarity obtained in a behavioral task. Meanwhile, the task-activated regions in prefrontal and parietal cortices (excluding superior IPS) did not exhibit such abstract object identity representations. Unlike previous studies, we also failed to observe identity representations in posterior ventral and lateral visual object-processing regions, likely due to the greater amount of identity abstraction demanded by our stimulus manipulation here. Our MRI slice coverage precluded us from examining identity representation in anterior temporal lobe, a likely region for the computing of identity information in the ventral region. Overall, we show that human parietal cortex, part of the dorsal visual processing pathway, is capable of holding abstract and complex visual representations that are behaviorally relevant. These results argue against a “content-poor” view of the role of parietal cortex in attention. Instead, the human parietal cortex seems to be “content rich” and capable of directly participating in goal-driven visual information representation in the brain. SIGNIFICANCE STATEMENT The representation of object identity (including faces) is fundamental to human vision and shapes how we interact with the world. Although object representation has traditionally been

  3. Widespread differences in cortex DNA methylation of the "language gene" CNTNAP2 between humans and chimpanzees.

    PubMed

    Schneider, Eberhard; El Hajj, Nady; Richter, Steven; Roche-Santiago, Justin; Nanda, Indrajit; Schempp, Werner; Riederer, Peter; Navarro, Bianca; Bontrop, Ronald E; Kondova, Ivanela; Scholz, Claus Jürgen; Haaf, Thomas

    2014-04-01

    CNTNAP2, one of the largest genes in the human genome, has been linked to human-specific language abilities and neurodevelopmental disorders. Our hypothesis is that epigenetic rather than genetic changes have accelerated the evolution of the human brain. To compare the cortex DNA methylation patterns of human and chimpanzee CNTNAP2 at ultra-high resolution, we combined methylated DNA immunoprecipitation (MeDIP) with NimbleGen tiling arrays for the orthologous gene and flanking sequences. Approximately 1.59 Mb of the 2.51 Mb target region could be aligned and analyzed with a customized algorithm in both species. More than one fifth (0.34 Mb) of the analyzed sequence throughout the entire gene displayed significant methylation differences between six human and five chimpanzee cortices. One of the most striking interspecies differences with 28% methylation in human and 59% in chimpanzee cortex (by bisulfite pyrosequencing) lies in a region 300 bp upstream of human SNP rs7794745 which has been associated with autism and parent-of-origin effects. Quantitative real-time RT PCR revealed that the protein-coding splice variant CNTNAP2-201 is 1.6-fold upregulated in human cortex, compared with the chimpanzee. Transcripts CNTNAP2-001, -002, and -003 did not show skewed allelic expression, which argues against CNTNAP2 imprinting, at least in adult human brain. Collectively, our results suggest widespread cortex DNA methylation changes in CNTNAP2 since the human-chimpanzee split, supporting a role for CNTNAP2 fine-regulation in human-specific language and communication traits. PMID:24434791

  4. Evaluation of the synuclein-γ (SNCG) gene as a PPARγ target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue.

    PubMed

    Dunn, Tamara N; Akiyama, Tasuku; Lee, Hyun Woo; Kim, Jae Bum; Knotts, Trina A; Smith, Steven R; Sears, Dorothy D; Carstens, Earl; Adams, Sean H

    2015-01-01

    Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets. PMID:25756178

  5. Evaluation of the Synuclein-γ (SNCG) Gene as a PPARγ Target in Murine Adipocytes, Dorsal Root Ganglia Somatosensory Neurons, and Human Adipose Tissue

    PubMed Central

    Dunn, Tamara N.; Akiyama, Tasuku; Lee, Hyun Woo; Kim, Jae Bum; Knotts, Trina A.; Smith, Steven R.; Sears, Dorothy D.; Carstens, Earl; Adams, Sean H.

    2015-01-01

    Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets. PMID:25756178

  6. The representation of the ipsilateral visual field in human cerebral cortex

    PubMed Central

    Tootell, Roger B. H.; Mendola, Janine D.; Hadjikhani, Nouchine K.; Liu, Arthur K.; Dale, Anders M.

    1998-01-01

    Previous studies of cortical retinotopy focused on influences from the contralateral visual field, because ascending inputs to cortex are known to be crossed. Here, functional magnetic resonance imaging was used to demonstrate and analyze an ipsilateral representation in human visual cortex. Moving stimuli, in a range of ipsilateral visual field locations, revealed activity: (i) along the vertical meridian in retinotopic (presumably lower-tier) areas; and (ii) in two large branches anterior to that, in presumptive higher-tier areas. One branch shares the anterior vertical meridian representation in human V3A, extending superiorly toward parietal cortex. The second branch runs antero-posteriorly along lateral visual cortex, overlying motion-selective area MT. Ipsilateral stimuli sparing the region around the vertical meridian representation also produced signal reductions (perhaps reflecting neural inhibition) in areas showing contralaterally driven retinotopy. Systematic sampling across a range of ipsilateral visual field extents revealed significant increases in ipsilateral activation in V3A and V4v, compared with immediately posterior areas V3 and VP. Finally, comparisons between ipsilateral stimuli of different types but equal retinotopic extent showed clear stimulus specificity, consistent with earlier suggestions of a functional segregation of motion vs. form processing in parietal vs. temporal cortex, respectively. PMID:9448246

  7. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    PubMed Central

    Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2015-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565

  8. Human Medial Frontal Cortex Mediates Unconscious Inhibition of Voluntary Action

    PubMed Central

    Sumner, Petroc; Nachev, Parashkev; Morris, Peter; Peters, Andrew M.; Jackson, Stephen R.; Kennard, Christopher; Husain, Masud

    2007-01-01

    Summary Within the medial frontal cortex, the supplementary eye field (SEF), supplementary motor area (SMA), and pre-SMA have been implicated in the control of voluntary action, especially during motor sequences or tasks involving rapid choices between competing response plans. However, the precise roles of these areas remain controversial. Here, we study two extremely rare patients with microlesions of the SEF and SMA to demonstrate that these areas are critically involved in unconscious and involuntary motor control. We employed masked-prime stimuli that evoked automatic inhibition in healthy people and control patients with lateral premotor or pre-SMA damage. In contrast, our SEF/SMA patients showed a complete reversal of the normal inhibitory effect—ocular or manual—corresponding to the functional subregion lesioned. These findings imply that the SEF and SMA mediate automatic effector-specific suppression of motor plans. This automatic mechanism may contribute to the participation of these areas in the voluntary control of action. PMID:17553420

  9. Flexible neural mechanisms of cognitive control within human prefrontal cortex.

    PubMed

    Braver, Todd S; Paxton, Jessica L; Locke, Hannah S; Barch, Deanna M

    2009-05-01

    A major challenge in research on executive control is to reveal its functional decomposition into underlying neural mechanisms. A typical assumption is that this decomposition occurs solely through anatomically based dissociations. Here we tested an alternative hypothesis that different cognitive control processes may be implemented within the same brain regions, with fractionation and dissociation occurring on the basis of temporal dynamics. Regions within lateral prefrontal cortex (PFC) were examined that, in a prior study, exhibited contrasting temporal dynamics between older and younger adults during performance of the AX-CPT cognitive control task. The temporal dynamics in younger adults fit a proactive control pattern (primarily cue-based activation), whereas in older adults a reactive control pattern was found (primarily probe-based activation). In the current study, we found that following a period of task-strategy training, these older adults exhibited a proactive shift within a subset of the PFC regions, normalizing their activity dynamics toward young adult patterns. Conversely, under conditions of penalty-based monetary incentives, the younger adults exhibited a reactive shift some of the same regions, altering their temporal dynamics toward the older adult baseline pattern. These experimentally induced crossover patterns of temporal dynamics provide strong support for dual modes of cognitive control that can be flexibly shifted within PFC regions, via modulation of neural responses to changing task conditions or behavioral goals. PMID:19380750

  10. Decoding and reconstructing color from responses in human visual cortex

    PubMed Central

    Brouwer, Gijs Joost; Heeger, David J.

    2009-01-01

    How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging (fMRI) responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, VO1 but not LO1, LO2, V3A/B or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color-selectivity of cortical neurons. In a complementary PCA analysis, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, even though decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1. PMID:19890009

  11. The role of human ventral visual cortex in motion perception

    PubMed Central

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  12. Development of the Human Cortex and the Concept of "Critical" or "Sensitive" Periods

    ERIC Educational Resources Information Center

    Uylings, H. B. M.

    2006-01-01

    This review describes the prenatal and postnatal development of the human cortex. Neurogenesis, neuronal migration, dendrite maturation, synaptogenesis, and white matter development are discussed. In addition, the concept of "critical" or "sensitive" periods is discussed as well as genetic and environmental influences (Nature-Nurture). The effects…

  13. Representation of the Speech Effectors in the Human Motor Cortex: Somatotopy or Overlap?

    ERIC Educational Resources Information Center

    Takai, Osamu; Brown, Steven; Liotti, Mario

    2010-01-01

    Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this…

  14. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    ERIC Educational Resources Information Center

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  15. Frequency Selectivity of Voxel-by-Voxel Functional Connectivity in Human Auditory Cortex.

    PubMed

    Cha, Kuwook; Zatorre, Robert J; Schönwiesner, Marc

    2016-01-01

    While functional connectivity in the human cortex has been increasingly studied, its relationship to cortical representation of sensory features has not been documented as much. We used functional magnetic resonance imaging to demonstrate that voxel-by-voxel intrinsic functional connectivity (FC) is selective to frequency preference of voxels in the human auditory cortex. Thus, FC was significantly higher for voxels with similar frequency tuning than for voxels with dissimilar tuning functions. Frequency-selective FC, measured via the correlation of residual hemodynamic activity, was not explained by generic FC that is dependent on spatial distance over the cortex. This pattern remained even when FC was computed using residual activity taken from resting epochs. Further analysis showed that voxels in the core fields in the right hemisphere have a higher frequency selectivity in within-area FC than their counterpart in the left hemisphere, or than in the noncore-fields in the same hemisphere. Frequency-selective FC is consistent with previous findings of topographically organized FC in the human visual and motor cortices. The high degree of frequency selectivity in the right core area is in line with findings and theoretical proposals regarding the asymmetry of human auditory cortex for spectral processing. PMID:25183885

  16. The emotional homunculus: ERP evidence for independent somatosensory responses during facial emotional processing.

    PubMed

    Sel, Alejandra; Forster, Bettina; Calvo-Merino, Beatriz

    2014-02-26

    Current models of face perception propose that initial visual processing is followed by activation of nonvisual somatosensory areas that contributes to emotion recognition. To test whether there is a pure and independent involvement of somatosensory cortex (SCx) during face processing over and above visual responses, we directly measured participants' somatosensory-evoked activity by tactually probing (105 ms postvisual facial stimuli) the state of SCx during an emotion discrimination task while controlling for visual effects. Discrimination of emotional versus neutral expressions enhanced early somatosensory-evoked activity between 40 and 80 ms after stimulus onset, suggesting visual emotion processing in SCx. This effect was source localized within primary, secondary, and associative somatosensory cortex. Emotional face processing influenced somatosensory responses to both face (congruent body part) and finger (control site) tactile stimulation, suggesting a general process that includes nonfacial cortical representations. Gender discrimination of the same facial expressions did not modulate somatosensory-evoked activity. We provide novel evidence that SCx activation is not a byproduct of visual processing but is independently shaped by face emotion processing. PMID:24573285

  17. Mechanisms underlying optical spectroscopic changes in primate and human cortex

    NASA Astrophysics Data System (ADS)

    Hochman, Daryl

    2003-03-01

    The optical scattering and absorption properties of brain tissue are correlated with changes in the level of neuronal activity. These activity-evoked optical changes are known as 'intrinsic optical signals' (IOS). Such changes are thought to be generated by a combination of least three physiological mechanisms: i) changes in blood volume, ii) changes in blood oxygenation, and iii) blood-independent light scattering changes resulting from ion fluxes associated with neuronal activity. The usefulness of IOS depends upon knowledge of the spatial and temporal relationships between neuronal activity and changes in brain metabolism and cerebral hemodynamics. Our studies focus on better understanding these relationships. The two major hemodynamic changes evoked by increases in neuronal activity are i) increases in blood volume mediated by dilation of microscopic pial arterioles, and ii) increases in blood oxygenation in the veins draining regions of activated cortex. Our experimental strategy has been to acquire high-magnification data sufficient to resolve the dynamics occurring within the distinct microvascular compartments. At specific wavelengths, contributions of blood oxygenation and volume to the IOS can be directly determined by observing the optical changes occurring within the distinct microvascular compartments. In this way, we have directly identified wavelengths that are either highly 'volume-selective' or 'oxygenation-selective'. Blood volume maps correlate closely with the spatial locations of neuronal activity, while blood oxygenation maps are often maximal in the larger draining veins at sites distant to neuronal activity. We have characterized novel spatio-temporal phenomena including propagating circular waves of activity evoked by epileptic activity.

  18. Inter-ocular contrast normalization in human visual cortex

    PubMed Central

    Moradi, Farshad; Heeger, David J.

    2009-01-01

    The brain combines visual information from the two eyes and forms a coherent percept, even when inputs to the eyes are different. However, it is not clear how inputs from the two eyes are combined in visual cortex. We measured fMRI responses to single gratings presented monocularly, or pairs of gratings presented monocularly or dichoptically with several combinations of contrasts. Gratings had either the same orientation or orthogonal orientations (i.e., plaids). Observers performed a demanding task at fixation to minimize top-down modulation of the stimulus-evoked responses. Dichoptic presentation of compatible gratings (same orientation) evoked greater activity than monocular presentation of a single grating only when contrast was low (<10%). A model that assumes linear summation of activity from each eye failed to explain binocular responses at 10% contrast or higher. However, a model with binocular contrast normalization, such that activity from each eye reduced the gain for the other eye, fitted the results very well. Dichoptic presentation of orthogonal gratings evoked greater activity than monocular presentation of a single grating for all contrasts. However, activity evoked by dichoptic plaids was equal to that evoked by monocular plaids. Introducing an onset asynchrony (stimulating one eye 500 ms before the other, which under attentive vision results in flash suppression) had no impact on the results; the responses to dichoptic and monocular plaids were again equal. We conclude that when attention is diverted, inter-ocular suppression in V1 can be explained by a normalization model in which the mutual suppression between orthogonal orientations does not depend on the eye of origin, nor on the onset times, and cross-orientation suppression is weaker than inter-ocular (same orientation) suppression. PMID:19757952

  19. Eye muscle proprioception is represented bilaterally in the sensorimotor cortex

    PubMed Central

    Balslev, Daniela; Albert, Neil B.; Miall, Chris

    2016-01-01

    The cortical representation of eye position is still uncertain. In the monkey a proprioceptive representation of the extraocular muscles (EOM) of an eye were recently found within the contralateral central sulcus. In humans, we have previously shown a change in the perceived position of the right eye after a virtual lesion with rTMS over the left somatosensory area. However, it is possible that the proprioceptive representation of the EOM extends to other brain sites, which were not examined in these previous studies. The aim of this fMRI study was to sample the whole brain to identify the proprioceptive representation for the left and the right eye separately. Data were acquired while passive eye movement was used to stimulate EOM proprioceptors in the absence of a motor command. We also controlled for the tactile stimulation of the eyelid by removing from the analysis voxels activated by eyelid touch alone. For either eye, the brain area commonly activated by passive and active eye movement was located bilaterally in the somatosensory area extending into the motor and premotor cytoarchitectonic areas. We suggest this is where EOM proprioception is processed. The bilateral representation for either eye contrasts with the contralateral representation of hand proprioception. We suggest that the proprioceptive representation of the two eyes next to each other in either somatosensory cortex and extending into the premotor cortex reflects the integrative nature of the eye position sense, which combines proprioceptive information across the two eyes with the efference copy of the oculomotor command. PMID:21391252

  20. Neural Consequences of Increasing Body Weight: Evidence from Somatosensory Evoked Potentials and the Frequency-Specificity of Brain Oscillations

    PubMed Central

    Lhomond, Olivia; Teasdale, Normand; Simoneau, Martin; Mouchnino, Laurence

    2016-01-01

    Previous studies on the control of human balance suggested that increased pressure under the feet, leading to reduced plantar sole mechanoreceptors sensitivity, increases body sway. Although this suggestion is attracting, it is unclear whether increased plantar sole pressure simply reduces the transmission of plantar sole afferent to the cortex or also alters the sensorimotor integrative mechanisms. Here we used electrical stimulation applied under the sole of the foot to probe the sensorimotor mechanisms processing foot mechanoreceptors. Balance control of healthy individuals was assessed either when wearing a loaded vest or in normal-weight condition. In the Loaded condition, we observed decreased cortical activity over the primary somatosensory cortex (SI) for both an early P50-N90 somatosensory evoked potential (SEP) and for oscillatory brain activity within the gamma band (30–80 Hz). These reductions were interpreted as a disrupted early sensory transmission (i.e., decreased early SEP) leading to a decreased perception of plantar sole sensory information (i.e., decreased gamma band power). These early sensory mechanisms for the Loaded condition were associated with an increase in the late P170-N210 SEP and oscillatory brain activity within the beta band (19–24 Hz). These neural signatures involved areas which are engaged in sensorimotor integrative processes (secondary somatosensory cortex (SII) and right temporoparietal junction). Altered early and late sensory processes may result from the increase pressure on the mechanoreceptors of the foot sole and not from postural instability per se. Indeed, postural instability with normal weight condition did not lead to SEP changes. PMID:27445758

  1. Identity-specific coding of future rewards in the human orbitofrontal cortex

    PubMed Central

    Howard, James D.; Gottfried, Jay A.; Tobler, Philippe N.

    2015-01-01

    Nervous systems must encode information about the identity of expected outcomes to make adaptive decisions. However, the neural mechanisms underlying identity-specific value signaling remain poorly understood. By manipulating the value and identity of appetizing food odors in a pattern-based imaging paradigm of human classical conditioning, we were able to identify dissociable predictive representations of identity-specific reward in orbitofrontal cortex (OFC) and identity-general reward in ventromedial prefrontal cortex (vmPFC). Reward-related functional coupling between OFC and olfactory (piriform) cortex and between vmPFC and amygdala revealed parallel pathways that support identity-specific and -general predictive signaling. The demonstration of identity-specific value representations in OFC highlights a role for this region in model-based behavior and reveals mechanisms by which appetitive behavior can go awry. PMID:25848032

  2. Frequency preference and attention effects across cortical depths in the human primary auditory cortex

    PubMed Central

    De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2015-01-01

    Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that—in this highly columnar cortex—task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds. PMID:26668397

  3. The role of the human orbitofrontal cortex in taste and flavor processing.

    PubMed

    Small, Dana M; Bender, Genevieve; Veldhuizen, Maria G; Rudenga, Kristin; Nachtigal, Danielle; Felsted, Jennifer

    2007-12-01

    The human orbitofrontal cortex (OFC) plays an important role in representing taste, flavor, and food reward. The primary role of the OFC in taste is thought to be the encoding of affective value and the computation of perceived pleasantness. The OFC also encodes retronasal olfaction and oral somatosensation. During eating, distinct sensory inputs fuse into a unitary flavor percept, and there is evidence that this percept is encoded in the orbital cortex. Studies examining the effect of internal state on neural representation of food and drink further suggest that processing in the OFC is critical for representing the reward value of foods. Thus, it is likely that, in addition to serving as higher-order gustatory cortex, the OFC integrates multiple sensory inputs and computes reward value to guide feeding behavior. PMID:17846155

  4. Effective Connectivity within Human Primary Visual Cortex Predicts Interindividual Diversity in Illusory Perception

    PubMed Central

    Schwarzkopf, D. Samuel; Lutti, Antoine; Li, Baojuan; Kanai, Ryota; Rees, Geraint

    2013-01-01

    Visual perception depends strongly on spatial context. A classic example is the tilt illusion where the perceived orientation of a central stimulus differs from its physical orientation when surrounded by tilted spatial contexts. Here we show that such contextual modulation of orientation perception exhibits trait-like interindividual diversity that correlates with interindividual differences in effective connectivity within human primary visual cortex. We found that the degree to which spatial contexts induced illusory orientation perception, namely, the magnitude of the tilt illusion, varied across healthy human adults in a trait-like fashion independent of stimulus size or contrast. Parallel to contextual modulation of orientation perception, the presence of spatial contexts affected effective connectivity within human primary visual cortex between peripheral and foveal representations that responded to spatial context and central stimulus, respectively. Importantly, this effective connectivity from peripheral to foveal primary visual cortex correlated with interindividual differences in the magnitude of the tilt illusion. Moreover, this correlation with illusion perception was observed for effective connectivity under tilted contextual stimulation but not for that under iso-oriented contextual stimulation, suggesting that it reflected the impact of orientation-dependent intra-areal connections. Our findings revealed an interindividual correlation between intra-areal connectivity within primary visual cortex and contextual influence on orientation perception. This neurophysiological-perceptual link provides empirical evidence for theoretical proposals that intra-areal connections in early visual cortices are involved in contextual modulation of visual perception. PMID:24285885

  5. Human posterior parietal cortex plans where to reach and what to avoid.

    PubMed

    Lindner, Axel; Iyer, Asha; Kagan, Igor; Andersen, Richard A

    2010-09-01

    In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual memory and attention. Although various electrophysiological studies in monkeys have demonstrated such motor planning at the level of parietal neurons, comparatively little support is provided by recent human imaging experiments. Rather, a majority of experiments highlights a role of human posterior parietal cortex in visual working memory and attention. We thus sought to establish a clear separation of visual memory and attention from processes related to the planning of goal-directed motor behaviors. To this end, we compared delayed-response tasks with identical mnemonic and attentional demands but varying degrees of motor planning. Subjects memorized multiple target locations, and in a random subset of trials targets additionally instructed (1) desired goals or (2) undesired goals for upcoming finger reaches. Compared with the memory/attention-only conditions, both latter situations led to a specific increase of preparatory fMRI activity in posterior parietal and dorsal premotor cortex. Thus, posterior parietal cortex has prospective plans for upcoming behaviors while considering both types of targets relevant for action: those to be acquired and those to be avoided. PMID:20810892

  6. Intrinsic and Task-Dependent Coupling of Neuronal Population Activity in Human Parietal Cortex

    PubMed Central

    Foster, Brett L.; Rangarajan, Vinitha; Shirer, William R.; Parvizi, Josef

    2015-01-01

    Summary Human neuroimaging studies have suggested that subregions of the medial and lateral parietal cortex form key nodes of a larger brain network supporting episodic memory retrieval. To explore the electrophysiological correlates of functional connectivity between these subregions, we recorded simultaneously from medial and lateral parietal cortex using intracranial electrodes in three human subjects. We observed electrophysiological co-activation of retrosplenial/posterior cingulate cortex (RSC/PCC) and angular gyrus (AG) in the high frequency broadband (HFB, or high-gamma) range, for conditions that required episodic retrieval. During resting and sleeping states, slow fluctuations (< 1 Hz) of HFB activity were highly correlated between these task-co-activated neuronal populations. Furthermore, intrinsic electrophysiological connectivity patterns matched those obtained with resting state functional magnetic resonance imaging (fMRI) from the same subjects. Our findings quantify the spatiotemporal dynamics of parietal cortex during episodic memory retrieval and provide clear neurophysiological correlates of intrinsic and task-dependent functional connectivity in the human brain. PMID:25863718

  7. Left Lateralized Enhancement of Orofacial Somatosensory Processing Due to Speech Sounds

    PubMed Central

    Ito, Takayuki; Johns, Alexis R.; Ostry, David J.

    2014-01-01

    Purpose Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory inputs. The authors examined whether speech sounds modify orofacial somatosensory cortical potentials that were elicited using facial skin perturbations. Method Somatosensory event-related potentials in EEG were recorded in 3 background sound conditions (pink noise, speech sounds, and nonspeech sounds) and also in a silent condition. Facial skin deformations that are similar in timing and duration to those experienced in speech production were used for somatosensory stimulation. Results The authors found that speech sounds reliably enhanced the first negative peak of the somatosensory event-related potential when compared with the other 3 sound conditions. The enhancement was evident at electrode locations above the left motor and premotor area of the orofacial system. The result indicates that speech sounds interact with somatosensory cortical processes that are produced by speech-production-like patterns of facial skin stretch. Conclusion Neural circuits in the left hemisphere, presumably in left motor and premotor cortex, may play a prominent role in the interaction between auditory inputs and speech-relevant somatosensory processing. PMID:24687443

  8. Plasticity of the human auditory cortex related to musical training.

    PubMed

    Pantev, Christo; Herholz, Sibylle C

    2011-11-01

    During the last decades music neuroscience has become a rapidly growing field within the area of neuroscience. Music is particularly well suited for studying neuronal plasticity in the human brain because musical training is more complex and multimodal than most other daily life activities, and because prospective and professional musicians usually pursue the training with high and long-lasting commitment. Therefore, music has increasingly been used as a tool for the investigation of human cognition and its underlying brain mechanisms. Music relates to many brain functions like perception, action, cognition, emotion, learning and memory and therefore music is an ideal tool to investigate how the human brain is working and how different brain functions interact. Novel findings have been obtained in the field of induced cortical plasticity by musical training. The positive effects, which music in its various forms has in the healthy human brain are not only important in the framework of basic neuroscience, but they also will strongly affect the practices in neuro-rehabilitation. PMID:21763342

  9. Somatosensory basis of speech production.

    PubMed

    Tremblay, Stéphanie; Shiller, Douglas M; Ostry, David J

    2003-06-19

    The hypothesis that speech goals are defined acoustically and maintained by auditory feedback is a central idea in speech production research. An alternative proposal is that speech production is organized in terms of control signals that subserve movements and associated vocal-tract configurations. Indeed, the capacity for intelligible speech by deaf speakers suggests that somatosensory inputs related to movement play a role in speech production-but studies that might have documented a somatosensory component have been equivocal. For example, mechanical perturbations that have altered somatosensory feedback have simultaneously altered acoustics. Hence, any adaptation observed under these conditions may have been a consequence of acoustic change. Here we show that somatosensory information on its own is fundamental to the achievement of speech movements. This demonstration involves a dissociation of somatosensory and auditory feedback during speech production. Over time, subjects correct for the effects of a complex mechanical load that alters jaw movements (and hence somatosensory feedback), but which has no measurable or perceptible effect on acoustic output. The findings indicate that the positions of speech articulators and associated somatosensory inputs constitute a goal of speech movements that is wholly separate from the sounds produced. PMID:12815431

  10. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  11. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    NASA Technical Reports Server (NTRS)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  12. Dysregulation of cell death machinery in the prefrontal cortex of human alcoholics

    PubMed Central

    Johansson, Sofia; Ekström, Tomas J.; Marinova, Zoya; Ökvist, Anna; Sheedy, Donna; Garrick, Therese; Harper, Clive; Kuzmin, Alexander; Yakovleva, Tatjana; Bakalkin, Georgy

    2012-01-01

    In human alcoholics, the cell density is decreased in the prefrontal cortex (PFC) and other brain areas. This may be due to persistent activation of cell death pathways. To address this hypothesis, we examined the status of cell death machinery in the dorsolateral PFC in alcoholics. Protein and mRNA expression levels of several key pro- and anti-apoptotic genes were compared in post-mortem samples of 14 male human alcoholics and 14 male controls. The findings do not support the hypothesis. On the contrary, they show that several components of intrinsic apoptotic pathway are decreased in alcoholics. No differences were evident in the motor cortex, which is less damaged in alcoholics and was analysed for comparison. Thus, cell death mechanisms may be dysregulated by inhibition of intrinsic apoptotic pathway in the PFC in human alcoholics. This inhibition may reflect molecular adaptations that counteract alcohol neurotoxicity in cells that survive after many years of alcohol exposure and withdrawal. PMID:18937880

  13. Observational learning computations in neurons of the human anterior cingulate cortex.

    PubMed

    Hill, Michael R; Boorman, Erie D; Fried, Itzhak

    2016-01-01

    When learning from direct experience, neurons in the primate brain have been shown to encode a teaching signal used by algorithms in artificial intelligence: the reward prediction error (PE)-the difference between how rewarding an event is, and how rewarding it was expected to be. However, in humans and other species learning often takes place by observing other individuals. Here, we show that, when humans observe other players in a card game, neurons in their rostral anterior cingulate cortex (rACC) encode both the expected value of an observed choice, and the PE after the outcome was revealed. Notably, during the same task neurons recorded in the amygdala (AMY) and the rostromedial prefrontal cortex (rmPFC) do not exhibit this type of encoding. Our results suggest that humans learn by observing others, at least in part through the encoding of observational PEs in single neurons in the rACC. PMID:27598687

  14. Stimulus Complexity and Categorical Effects in Human Auditory Cortex: An Activation Likelihood Estimation Meta-Analysis

    PubMed Central

    Samson, Fabienne; Zeffiro, Thomas A.; Toussaint, Alain; Belin, Pascal

    2011-01-01

    Investigations of the functional organization of human auditory cortex typically examine responses to different sound categories. An alternative approach is to characterize sounds with respect to their amount of variation in the time and frequency domains (i.e., spectral and temporal complexity). Although the vast majority of published studies examine contrasts between discrete sound categories, an alternative complexity-based taxonomy can be evaluated through meta-analysis. In a quantitative meta-analysis of 58 auditory neuroimaging studies, we examined the evidence supporting current models of functional specialization for auditory processing using grouping criteria based on either categories or spectro-temporal complexity. Consistent with current models, analyses based on typical sound categories revealed hierarchical auditory organization and left-lateralized responses to speech sounds, with high speech sensitivity in the left anterior superior temporal cortex. Classification of contrasts based on spectro-temporal complexity, on the other hand, revealed a striking within-hemisphere dissociation in which caudo-lateral temporal regions in auditory cortex showed greater sensitivity to spectral changes, while anterior superior temporal cortical areas were more sensitive to temporal variation, consistent with recent findings in animal models. The meta-analysis thus suggests that spectro-temporal acoustic complexity represents a useful alternative taxonomy to investigate the functional organization of human auditory cortex. PMID:21833294

  15. Spatial representations of temporal and spectral sound cues in human auditory cortex.

    PubMed

    Herdener, Marcus; Esposito, Fabrizio; Scheffler, Klaus; Schneider, Peter; Logothetis, Nikos K; Uludag, Kamil; Kayser, Christoph

    2013-01-01

    Natural and behaviorally relevant sounds are characterized by temporal modulations of their waveforms, which carry important cues for sound segmentation and communication. Still, there is little consensus as to how this temporal information is represented in auditory cortex. Here, by using functional magnetic resonance imaging (fMRI) optimized for studying the auditory system, we report the existence of a topographically ordered spatial representation of temporal sound modulation rates in human auditory cortex. We found a topographically organized sensitivity within auditory cortex to sounds with varying modulation rates, with enhanced responses to lower modulation rates (2 and 4 Hz) on lateral parts of Heschl's gyrus (HG) and faster modulation rates (16 and 32 Hz) on medial HG. The representation of temporal modulation rates was distinct from the representation of sound frequencies (tonotopy) that was orientated roughly orthogonal. Moreover, the combination of probabilistic anatomical maps with a previously proposed functional delineation of auditory fields revealed that the distinct maps of temporal and spectral sound features both prevail within two presumed primary auditory fields hA1 and hR. Our results reveal a topographically ordered representation of temporal sound cues in human primary auditory cortex that is complementary to maps of spectral cues. They thereby enhance our understanding of the functional parcellation and organization of auditory cortical processing. PMID:23706955

  16. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  17. Developmental neuroimaging of the human ventral visual cortex

    PubMed Central

    Grill-Spector, Kalanit; Golarai, Golijeh; Gabrieli, John

    2013-01-01

    Here, we review recent results that investigate the development of the human ventral stream from childhood, through adolescence and into adulthood. Converging evidence suggests a differential developmental trajectory across ventral stream regions, in which face-selective regions show a particularly long developmental time course, taking more than a decade to become adult-like. We discuss the implications of these recent findings, how they relate to age-dependent improvements in recognition memory performance and propose possible neural mechanisms that might underlie this development. These results have important implications regarding the role of experience in shaping the ventral stream and the nature of the underlying representations. PMID:18359267

  18. Behavioral demonstration of a somatosensory neuroprosthesis.

    PubMed

    Berg, J A; Dammann, J F; Tenore, F V; Tabot, G A; Boback, J L; Manfredi, L R; Peterson, M L; Katyal, K D; Johannes, M S; Makhlin, A; Wilcox, R; Franklin, R K; Vogelstein, R J; Hatsopoulos, N G; Bensmaia, S J

    2013-05-01

    Tactile sensation is critical for effective object manipulation, but current prosthetic upper limbs make no provision for delivering somesthetic feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. In light of this, we describe the implementation of a somatosensory prosthesis with which we elicit, through intracortical microstimulation (ICMS), percepts whose magnitude is graded according to the force exerted on the prosthetic finger. Specifically, the prosthesis consists of a sensorized finger, the force output of which is converted into a regime of ICMS delivered to primary somatosensory cortex through chronically implanted multi-electrode arrays. We show that the performance of animals (Rhesus macaques) on a tactile task is equivalent whether stimuli are delivered to the native finger or to the prosthetic finger. PMID:23475375

  19. Distinct Fine-Scale fMRI Activation Patterns of Contra- and Ipsilateral Somatosensory Areas 3b and 1 in Humans

    PubMed Central

    Stringer, Elizabeth Ann; Qiao, Peng-Gang; Friedman, Robert M.; Holroyd, Lauren; Newton, Allen T; Gore, John C; Chen, Li Min

    2014-01-01

    Inter-areal and ipsilateral cortical responses to tactile stimulation have not been well described in humans S1 cortex. By taking advantage of high signal-to-noise ratio at 7 T, we quantified blood oxygenation level dependent (BOLD) response patterns and time courses to tactile stimuli on individual distal finger pads at a fine spatial scale, and examined whether there are inter-areal (area 3b versus area 1) and inter-hemispheric response differences to unilateral tactile stimulation in healthy human subjects. We found that 2-Hz tactile stimulation of individual fingertips evoked detectable BOLD signal changes in both contralateral and ipsilateral area 3b and area 1. Contralateral digit activations were organized in an orderly somatotopic manner, and BOLD responses in area 3b were more digit selective than those in area 1. However, the area of cortex that was responsive to stimulation of a single digit (stimulus-response field) was similar across areas. In the ipsilateral hemisphere, response magnitudes in both area 3b and area 1 were significantly weaker than those of the contralateral hemisphere. Digit activations exhibited no clear somatotopic organizational pattern in either area 3b or area 1, yet digit-selectivity was retained in area 1 but not in area 3b. The observation of distinct digit-selective responses of contralateral area 3b versus area 1 supports a higher order function of contralateral area 1 in spatial integration. In contrast, ipsilateral cortices may play a less discriminative role in the perception of unilateral tactile sensation in humans. PMID:24692215

  20. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  1. Global Image Dissimilarity in Macaque Inferotemporal Cortex Predicts Human Visual Search Efficiency

    PubMed Central

    Sripati, Arun P.; Olson, Carl R.

    2010-01-01

    Finding a target in a visual scene can be easy or difficult depending on the nature of the distractors. Research in humans has suggested that search is more difficult the more similar the target and distractors are to each other. However, it has not yielded an objective definition of similarity. We hypothesized that visual search performance depends on similarity as determined by the degree to which two images elicit overlapping patterns of neuronal activity in visual cortex. To test this idea, we recorded from neurons in monkey inferotemporal cortex (IT) and assessed visual search performance in humans using pairs of images formed from the same local features in different global arrangements. The ability of IT neurons to discriminate between two images was strongly predictive of the ability of humans to discriminate between them during visual search, accounting overall for 90% of the variance in human performance. A simple physical measure of global similarity – the degree of overlap between the coarse footprints of a pair of images – largely explains both the neuronal and the behavioral results. To explain the relation between population activity and search behavior, we propose a model in which the efficiency of global oddball search depends on contrast-enhancing lateral interactions in high-order visual cortex. PMID:20107054

  2. Exemplar selectivity reflects perceptual similarities in the human fusiform cortex.

    PubMed

    Davidesco, Ido; Zion-Golumbic, Elana; Bickel, Stephan; Harel, Michal; Groppe, David M; Keller, Corey J; Schevon, Catherine A; McKhann, Guy M; Goodman, Robert R; Goelman, Gadi; Schroeder, Charles E; Mehta, Ashesh D; Malach, Rafael

    2014-07-01

    While brain imaging studies emphasized the category selectivity of face-related areas, the underlying mechanisms of our remarkable ability to discriminate between different faces are less understood. Here, we recorded intracranial local field potentials from face-related areas in patients presented with images of faces and objects. A highly significant exemplar tuning within the category of faces was observed in high-Gamma (80-150 Hz) responses. The robustness of this effect was supported by single-trial decoding of face exemplars using a minimal (n = 5) training set. Importantly, exemplar tuning reflected the psychophysical distance between faces but not their low-level features. Our results reveal a neuronal substrate for the establishment of perceptual distance among faces in the human brain. They further imply that face neurons are anatomically grouped according to well-defined functional principles, such as perceptual similarity. PMID:23438448

  3. The bilingual brain: Flexibility and control in the human cortex

    NASA Astrophysics Data System (ADS)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  4. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    PubMed

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-01

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. PMID:25921538

  5. A Rapid Sound-Action Association Effect in Human Insular Cortex

    PubMed Central

    Schulze-Bonhage, Andreas; Glauche, Volkmar; Demandt, Evariste; Speck, Oliver

    2007-01-01

    Background Learning to play a musical piece is a prime example of complex sensorimotor learning in humans. Recent studies using electroencephalography (EEG) and transcranial magnetic stimulation (TMS) indicate that passive listening to melodies previously rehearsed by subjects on a musical instrument evokes differential brain activation as compared with unrehearsed melodies. These changes were already evident after 20–30 minutes of training. The exact brain regions involved in these differential brain responses have not yet been delineated. Methodology/Principal Finding Using functional MRI (fMRI), we investigated subjects who passively listened to simple piano melodies from two conditions: In the ‘actively learned melodies’ condition subjects learned to play a piece on the piano during a short training session of a maximum of 30 minutes before the fMRI experiment, and in the ‘passively learned melodies’ condition subjects listened passively to and were thus familiarized with the piece. We found increased fMRI responses to actively compared with passively learned melodies in the left anterior insula, extending to the left fronto-opercular cortex. The area of significant activation overlapped the insular sensorimotor hand area as determined by our meta-analysis of previous functional imaging studies. Conclusions/Significance Our results provide evidence for differential brain responses to action-related sounds after short periods of learning in the human insular cortex. As the hand sensorimotor area of the insular cortex appears to be involved in these responses, re-activation of movement representations stored in the insular sensorimotor cortex may have contributed to the observed effect. The insular cortex may therefore play a role in the initial learning phase of action-perception associations. PMID:17327919

  6. Somatosensory function in speech perception

    PubMed Central

    Ito, Takayuki; Tiede, Mark; Ostry, David J.

    2009-01-01

    Somatosensory signals from the facial skin and muscles of the vocal tract provide a rich source of sensory input in speech production. We show here that the somatosensory system is also involved in the perception of speech. We use a robotic device to create patterns of facial skin deformation that would normally accompany speech production. We find that when we stretch the facial skin while people listen to words, it alters the sounds they hear. The systematic perceptual variation we observe in conjunction with speech-like patterns of skin stretch indicates that somatosensory inputs affect the neural processing of speech sounds and shows the involvement of the somatosensory system in the perceptual processing in speech. PMID:19164569

  7. Perceived intensity of somatosensory cortical electrical stimulation

    PubMed Central

    Blair, Hugh T.; Blaisdell, Aaron P.; Judy, Jack W.

    2010-01-01

    Artificial sensations can be produced by direct brain stimulation of sensory areas through implanted microelectrodes, but the perceptual psychophysics of such artificial sensations are not well understood. Based on prior work in cortical stimulation, we hypothesized that perceived intensity of electrical stimulation may be explained by the population response of the neurons affected by the stimulus train. To explore this hypothesis, we modeled perceived intensity of a stimulation pulse train with a leaky neural integrator. We then conducted a series of two-alternative forced choice behavioral experiments in which we systematically tested the ability of rats to discriminate frequency, amplitude, and duration of electrical pulse trains delivered to the whisker barrel somatosensory cortex. We found that the model was able to predict the performance of the animals, supporting the notion that perceived intensity can be largely accounted for by spatiotemporal integration of the action potentials evoked by the stimulus train. PMID:20440610

  8. Multisensory Part-based Representations of Objects in Human Lateral Occipital Cortex.

    PubMed

    Erdogan, Goker; Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z; Jacobs, Robert A

    2016-06-01

    The format of high-level object representations in temporal-occipital cortex is a fundamental and as yet unresolved issue. Here we use fMRI to show that human lateral occipital cortex (LOC) encodes novel 3-D objects in a multisensory and part-based format. We show that visual and haptic exploration of objects leads to similar patterns of neural activity in human LOC and that the shared variance between visually and haptically induced patterns of BOLD contrast in LOC reflects the part structure of the objects. We also show that linear classifiers trained on neural data from LOC on a subset of the objects successfully predict a novel object based on its component part structure. These data demonstrate a multisensory code for object representations in LOC that specifies the part structure of objects. PMID:26918587

  9. Cortical and medullary somatosensory projections to the cochlear nuclear complex in the hedgehog tenrec.

    PubMed

    Wolff, A; Künzle, H

    1997-01-17

    Various tracer substances were injected into the spinal cord, the dorsal column nuclei, the trigeminal nuclear complex and the somatosensory cortex in Madagascan hedgehog tenrecs. With the exception of the cases injected exclusively into the spinal cord all injections gave rise to sparse, but distinct anterograde projections to the cochlear nuclear complex, particularly the granular cell domain within and outside of the dorsal cochlear nucleus. Among these cochlear afferents the projection from the primary somatosensory cortex is the most remarkable because the hedgehog tenrec has one of the lowest encephalisation indices among mammals and a similar cortico-cochlear connection has not been demonstrated so far in other species. PMID:9121680

  10. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    PubMed Central

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  11. Auditory spatial attention representations in the human cerebral cortex.

    PubMed

    Kong, Lingqiang; Michalka, Samantha W; Rosen, Maya L; Sheremata, Summer L; Swisher, Jascha D; Shinn-Cunningham, Barbara G; Somers, David C

    2014-03-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  12. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex

    PubMed Central

    Hayashi, Masamichi J.; Ditye, Thomas; Harada, Tokiko; Hashiguchi, Maho; Sadato, Norihiro; Carlson, Synnöve; Walsh, Vincent; Kanai, Ryota

    2015-01-01

    Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adaptation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supramarginal gyrus) exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject’s attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain. PMID:26378440

  13. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study

    PubMed Central

    Conner, Christopher Richard; Whaley, Meagan Lee; Baboyan, Vatche George; Tandon, Nitin

    2016-01-01

    Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli—faces, animate non-face (animals/body-parts), places, tools, and words—using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex. PMID:27272936

  14. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex.

    PubMed

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-02-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS- was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS- in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  15. Temporal envelope of time-compressed speech represented in the human auditory cortex

    PubMed Central

    Nourski, Kirill V.; Reale, Richard A.; Oya, Hiroyuki; Kawasaki, Hiroto; Kovach, Christopher K.; Chen, Haiming; Howard, Matthew A.; Brugge, John F.

    2010-01-01

    Speech comprehension relies on temporal cues contained in the speech envelope, and the auditory cortex has been implicated as playing a critical role in encoding this temporal information. We investigated auditory cortical responses to speech stimuli in subjects undergoing invasive electrophysiological monitoring for pharmacologically refractory epilepsy. Recordings were made from multi-contact electrodes implanted in Heschl’s gyrus (HG). Speech sentences, time-compressed from 0.75 to 0.20 of natural speaking rate, elicited average evoked potentials (AEPs) and increases in event-related band power (ERBP) of cortical high frequency (70–250 Hz) activity. Cortex of posteromedial HG, the presumed core of human auditory cortex, represented the envelope of speech stimuli in the AEP and ERBP. Envelope-following in ERBP, but not in AEP, was evident in both language dominant and non-dominant hemispheres for relatively high degrees of compression where speech was not comprehensible. Compared to posteromedial HG, responses from anterolateral HG — an auditory belt field — exhibited longer latencies, lower amplitudes and little or no time locking to the speech envelope. The ability of the core auditory cortex to follow the temporal speech envelope over a wide range of speaking rates leads us to conclude that such capacity in itself is not a limiting factor for speech comprehension. PMID:20007480

  16. Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex.

    PubMed

    Kirsch, V; Keeser, D; Hergenroeder, T; Erat, O; Ertl-Wagner, B; Brandt, T; Dieterich, M

    2016-04-01

    Structural and functional interconnections of the bilateral central vestibular network have not yet been completely delineated. This includes both ipsilateral and contralateral pathways and crossing sites on the way from the vestibular nuclei via the thalamic relay stations to multiple "vestibular cortex" areas. This study investigated "vestibular" connectivity in the living human brain in between the vestibular nuclei and the parieto-insular vestibular cortex (PIVC) by combined structural and functional connectivity mapping using diffusion tensor imaging and functional connectivity magnetic resonance imaging in 24 healthy right-handed volunteers. We observed a congruent functional and structural link between the vestibular nuclei and the ipsilateral and contralateral PIVC. Five separate and distinct vestibular pathways were identified: three run ipsilaterally, while the two others cross either in the pons or the midbrain. Two of the ipsilateral projections run through the posterolateral or paramedian thalamic subnuclei, while the third bypasses the thalamus to reach the inferior part of the insular cortex directly. Both contralateral pathways travel through the posterolateral thalamus. At the cortical level, the PIVC regions of both hemispheres with a right hemispherical dominance are interconnected transcallosally through the antero-caudal splenium. The above-described bilateral vestibular circuitry in its entirety takes the form of a structure of a rope ladder extending from the brainstem to the cortex with three crossings in the brainstem (vestibular nuclei, pons, midbrain), none at thalamic level and a fourth cortical crossing through the splenium of the corpus callosum. PMID:25552315

  17. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    PubMed Central

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  18. Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaillon, Franck; Li, Jun; Dietsche, Gregor; Elbert, Thomas; Gisler, Thomas

    2007-05-01

    Activity of the human visual cortex, elicited by steady-state flickering at 8Hz, is non-invasively probed by multi-speckle diffusingwave spectroscopy (DWS). Parallel detection of the intensity fluctuations of statistically equivalent, but independent speckles allows to resolve stimulation-induced changes in the field autocorrelation of multiply scattered light of less than 2%. In a group of 9 healthy subjects we find a faster decay of the field autocorrelation function during the stimulation periods for data measured with a long-distance probe (30mm source-receiver distance) at 2 positions over the occipital cortex (t-test: t(8) = -2.672, p = 0.028 < 0.05 for position 1, t(8) = -2.874, p = 0.021 < 0.05 for position 2). In contrast, no statistically significant change is seen when a short-distance probe (16mm source-receiver distance) is used (t-test: t(8) = -2.043, p = 0.075 > 0.05 for position 1, t(8) = -2.146, p = 0.064 > 0.05 for position 2). The enhanced dynamics observed with DWS is positively correlated with the functional increase of blood volume in the visual cortex, while the heartbeat rate is not affected by stimulation. Our results indicate that the DWS signal from the visual cortex is governed by the regional cerebral blood flow velocity.

  19. 3-D Cytoarchitectonic parcellation of human orbitofrontal cortex. Correlation with postmortem MRI

    PubMed Central

    Uylings, Harry B.M.; Sanz-Arigita, Ernesto J.; de Vos, Koos; Pool, Chris W.; Evers, Paul; Rajkowska, Grazyna

    2010-01-01

    The orbitofrontal cortex (OFC) is located on the basal surface of the frontal lobe and is distinguished by its unique anatomical and functional features. Clinical and postmortem studies suggest the involvement of the orbitofrontal cortex in psychiatric disorders. However, the exact parcellation of this cortical region is still a matter of debate. Therefore, the goal of this study is to provide a detailed description of the extent of borders of individual orbitofrontal cortical areas using cytoarchitectonic criteria in a large sample of human brains, which could be applied by independent neuroanatomists. To make this microscopic parcellation useful to neuroimaging studies, magnetic resonance images of postmortem brains in the coronal plane were collected prior to the preparation of coronal histological sections from the same brains. A complete series of coronal sections from 6 normal human brains and partial sections from the frontal cortex of 21 normal human brains were stained with general histological and immunohistochemical methods specific for different cell-types, These sections were examined microscopically by two independent neuroanatomists (HBMU and GR) to achieve reproducible delineations. After the borders were determined, the tissue sections were superimposed on corresponding MR images. Based on our cytoarchitectonical criteria, Brodmann's areas 47 and 11 were included in the human orbitofrontal cortex. Area 47 was further subdivided into three medial (located on the medial, anterior and posterior orbital gyri) and two lateral (located on the lateral orbital gyrus) subareas. In addition, we observed an anterior-posterior gradient in the cytoarchitecture of areas 11 and 47. The transverse orbital sulcus corresponds roughly to the transition between the subregions of the anterior and posterior OFC. Finally, the present delineation is contrasted with an overview of the different published nomenclatures for the OFC parcellation. PMID:20538437

  20. Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex.

    PubMed

    Bridge, Holly; Clare, Stuart; Jenkinson, Mark; Jezzard, Peter; Parker, Andrew J; Matthews, Paul M

    2005-01-01

    The cerebral cortex has both anatomical and functional specialization, but the level of correspondence between the two in the human brain has remained largely elusive. Recent successes in high-resolution magnetic resonance imaging of myeloarchitecture patterns in the cortex suggest that it may now be possible to compare directly human anatomy and function in vivo. We independently investigated the anatomical and functional borders between primary and secondary human visual areas (V1 and V2) in vivo. Functional borders were mapped with functional magnetic resonance imaging (fMRI) using a narrow, vertical black and white contrast-reversing wedge. In three separate scanning sessions, anatomical images were collected at three different slice orientations (300 microm x 300 microm, slice thickness, 1.5 mm). The anatomical signature of V1 was determined by the presence of a hypointense band in the middle of the cortical gray matter. The band was identified in between 81% and 33% (mean 57%) of V1 defined using fMRI, and less than 5% of the identified band was in cortex outside V1. Intensity profiles taken through the gray matter on the V1 and V2 sides of the functional border indicate a measurable difference in the size of the hypointense band for all subjects. This is the first demonstration that the definition of V1 by fMRI closely matches the anatomically defined striate cortex in the human brain. The development of very high-resolution structural MRI may permit the definition of cortical areas based on myeloarchitecture when functional definition is not possible. PMID:15831070

  1. Immobilization impairs tactile perception and shrinks somatosensory cortical maps.

    PubMed

    Lissek, Silke; Wilimzig, Claudia; Stude, Philipp; Pleger, Burkhard; Kalisch, Tobias; Maier, Christoph; Peters, Sören A; Nicolas, Volkmar; Tegenthoff, Martin; Dinse, Hubert R

    2009-05-26

    Use is a major factor driving plasticity of cortical processing and cortical maps. As demonstrated of blind Braille readers and musicians, long-lasting and exceptional usage of the fingers results in the development of outstanding sensorimotor skills and in expansions of the cortical finger representations. However, how periods of disuse affect cortical representations and perception in humans remains elusive. Here, we report that a few weeks of hand and arm immobilization by cast wearing significantly reduced hand use and impaired tactile acuity, associated with reduced activation of the respective finger representations in the somatosensory cortex (SI), measured by functional magnetic resonance imaging. Hemodynamic responses in the SI correlated positively with hand-use frequency and negatively with discrimination thresholds, indicating that reduced activation was most prominent in subjects with severe perceptual impairment. We found, strikingly, compensatory effects on the contralateral, healthy hand consisting of improved perceptual performance compared to healthy controls. Two to three weeks after cast removal, perceptual and cortical changes recovered, whereas tactile acuity on the healthy side remained superior to that on the formerly immobilized side. These findings suggest that brief periods of reduced use of a limb have overt consequences and thus constitute a significant driving force of brain organization equivalent to enhanced use. PMID:19398335

  2. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex

    PubMed Central

    Kheradmand Kia, Sima; Verbeek, Elly; Engelen, Erik; Schot, Rachel; Poot, Raymond A.; de Coo, Irenaeus F.M.; Lequin, Maarten H.; Poulton, Cathryn J.; Pourfarzad, Farzin; Grosveld, Frank G.; Brehm, António; de Wit, Marie Claire Y.; Oegema, Renske; Dobyns, William B.; Verheijen, Frans W.; Mancini, Grazia M.S.

    2012-01-01

    Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals. PMID:22939636

  3. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury.

    PubMed

    Wrigley, P J; Gustin, S M; Macey, P M; Nash, P G; Gandevia, S C; Macefield, V G; Siddall, P J; Henderson, L A

    2009-01-01

    A debilitating consequence of complete spinal cord injury (SCI) is the loss of motor control. Although the goal of most SCI treatments is to re-establish neural connections, a potential complication in restoring motor function is that SCI may result in anatomical and functional changes in brain areas controlling motor output. Some animal investigations show cell death in the primary motor cortex following SCI, but similar anatomical changes in humans are not yet established. The aim of this investigation was to use voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) to determine if SCI in humans results in anatomical changes within motor cortices and descending motor pathways. Using VBM, we found significantly lower gray matter volume in complete SCI subjects compared with controls in the primary motor cortex, the medial prefrontal, and adjacent anterior cingulate cortices. DTI analysis revealed structural abnormalities in the same areas with reduced gray matter volume and in the superior cerebellar cortex. In addition, tractography revealed structural abnormalities in the corticospinal and corticopontine tracts of the SCI subjects. In conclusion, human subjects with complete SCI show structural changes in cortical motor regions and descending motor tracts, and these brain anatomical changes may limit motor recovery following SCI. PMID:18483004

  4. Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex.

    PubMed

    Bhatt, Mrudul B; Bowen, Stephanie; Rossiter, Holly E; Dupont-Hadwen, Joshua; Moran, Rosalyn J; Friston, Karl J; Ward, Nick S

    2016-06-01

    Oscillatory activity in the beta range, in human primary motor cortex (M1), shows interesting dynamics that are tied to behaviour and change systematically in disease. To investigate the pathophysiology underlying these changes, we must first understand how changes in beta activity are caused in healthy subjects. We therefore adapted a canonical (repeatable) microcircuit model used in dynamic causal modelling (DCM) previously used to model induced responses in visual cortex. We adapted this model to accommodate cytoarchitectural differences between visual and motor cortex. Using biologically plausible connections, we used Bayesian model selection to identify the best model of measured MEG data from 11 young healthy participants, performing a simple handgrip task. We found that the canonical M1 model had substantially more model evidence than the generic canonical microcircuit model when explaining measured MEG data. The canonical M1 model reproduced measured dynamics in humans at rest, in a manner consistent with equivalent studies performed in mice. Furthermore, the changes in excitability (self-inhibition) necessary to explain beta suppression during handgrip were consistent with the attenuation of sensory precision implied by predictive coding. These results establish the face validity of a model that can be used to explore the laminar interactions that underlie beta-oscillatory dynamics in humans in vivo. Our canonical M1 model may be useful for characterising the synaptic mechanisms that mediate pathophysiological beta dynamics associated with movement disorders, such as stroke or Parkinson's disease. PMID:26956910

  5. Evolution of increased glia–neuron ratios in the human frontal cortex

    PubMed Central

    Sherwood, Chet C.; Stimpson, Cheryl D.; Raghanti, Mary Ann; Wildman, Derek E.; Uddin, Monica; Grossman, Lawrence I.; Goodman, Morris; Redmond, John C.; Bonar, Christopher J.; Erwin, Joseph M.; Hof, Patrick R.

    2006-01-01

    Evidence from comparative studies of gene expression and evolution suggest that human neocortical neurons may be characterized by unusually high levels of energy metabolism. The current study examined whether there is a disproportionate increase in glial cell density in the human frontal cortex in comparison with other anthropoid primate species (New World monkeys, Old World monkeys, and hominoids) to support greater metabolic demands. Among 18 species of anthropoids, humans displayed the greatest departure from allometric scaling expectations for the density of glia relative to neurons in layer II/III of dorsolateral prefrontal cortex (area 9L). However, the human glia–neuron ratio in this prefrontal region did not differ significantly from allometric predictions based on brain size. Further analyses of glia–neuron ratios across frontal areas 4, 9L, 32, and 44 in a sample of humans, chimpanzees, and macaque monkeys showed that regions involved in specialized human cognitive functions, such as “theory of mind” (area 32) and language (area 44) have not evolved differentially higher requirements for metabolic support. Taken together, these findings suggest that greater metabolic consumption of human neocortical neurons relates to the energetic costs of maintaining expansive dendritic arbors and long-range projecting axons in the context of an enlarged brain. PMID:16938869

  6. A Trade-Off between Somatosensory and Auditory Related Brain Activity during Object Naming But Not Reading

    PubMed Central

    Hope, Thomas M.H.; Prejawa, Susan; Parker Jones, ‘Ōiwi; Vitkovitch, Melanie; Price, Cathy J.

    2015-01-01

    The parietal operculum, particularly the cytoarchitectonic area OP1 of the secondary somatosensory area (SII), is involved in somatosensory feedback. Using fMRI with 58 human subjects, we investigated task-dependent differences in SII/OP1 activity during three familiar speech production tasks: object naming, reading and repeatedly saying “1-2-3.” Bilateral SII/OP1 was significantly suppressed (relative to rest) during object naming, to a lesser extent when repeatedly saying “1-2-3” and not at all during reading. These results cannot be explained by task difficulty but the contrasting difference between naming and reading illustrates how the demands on somatosensory activity change with task, even when motor output (i.e., production of object names) is matched. To investigate what determined SII/OP1 deactivation during object naming, we searched the whole brain for areas where activity increased as that in SII/OP1 decreased. This across subject covariance analysis revealed a region in the right superior temporal sulcus (STS) that lies within the auditory cortex, and is activated by auditory feedback during speech production. The tradeoff between activity in SII/OP1 and STS was not observed during reading, which showed significantly more activation than naming in both SII/OP1 and STS bilaterally. These findings suggest that, although object naming is more error prone than reading, subjects can afford to rely more or less on somatosensory or auditory feedback during naming. In contrast, fast and efficient error-free reading places more consistent demands on both types of feedback, perhaps because of the potential for increased competition between lexical and sublexical codes at the articulatory level. PMID:25788691

  7. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans.

    PubMed

    Wilson, Benjamin; Kikuchi, Yukiko; Sun, Li; Hunter, David; Dick, Frederic; Smith, Kenny; Thiele, Alexander; Griffiths, Timothy D; Marslen-Wilson, William D; Petkov, Christopher I

    2015-01-01

    An evolutionary account of human language as a neurobiological system must distinguish between human-unique neurocognitive processes supporting language and evolutionarily conserved, domain-general processes that can be traced back to our primate ancestors. Neuroimaging studies across species may determine whether candidate neural processes are supported by homologous, functionally conserved brain areas or by different neurobiological substrates. Here we use functional magnetic resonance imaging in Rhesus macaques and humans to examine the brain regions involved in processing the ordering relationships between auditory nonsense words in rule-based sequences. We find that key regions in the human ventral frontal and opercular cortex have functional counterparts in the monkey brain. These regions are also known to be associated with initial stages of human syntactic processing. This study raises the possibility that certain ventral frontal neural systems, which play a significant role in language function in modern humans, originally evolved to support domain-general abilities involved in sequence processing. PMID:26573340

  8. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans

    PubMed Central

    Wilson, Benjamin; Kikuchi, Yukiko; Sun, Li; Hunter, David; Dick, Frederic; Smith, Kenny; Thiele, Alexander; Griffiths, Timothy D.; Marslen-Wilson, William D.; Petkov, Christopher I.

    2015-01-01

    An evolutionary account of human language as a neurobiological system must distinguish between human-unique neurocognitive processes supporting language and evolutionarily conserved, domain-general processes that can be traced back to our primate ancestors. Neuroimaging studies across species may determine whether candidate neural processes are supported by homologous, functionally conserved brain areas or by different neurobiological substrates. Here we use functional magnetic resonance imaging in Rhesus macaques and humans to examine the brain regions involved in processing the ordering relationships between auditory nonsense words in rule-based sequences. We find that key regions in the human ventral frontal and opercular cortex have functional counterparts in the monkey brain. These regions are also known to be associated with initial stages of human syntactic processing. This study raises the possibility that certain ventral frontal neural systems, which play a significant role in language function in modern humans, originally evolved to support domain-general abilities involved in sequence processing. PMID:26573340

  9. Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract.

    PubMed

    Gerloff, C; Cohen, L G; Floeter, M K; Chen, R; Corwell, B; Hallett, M

    1998-07-01

    1. The ability of the primary motor cortex (M1) to modulate motor responses in ipsilateral hand muscles seems to be important for normal motor control and potentially also for recovery after brain lesions. It is not clear which pathways mediate this ipsilateral modulation. Transcallosal connections have been proposed, but are known to be sparse between cortical hand motor representations in primates. The present study was performed to determine whether descending ipsilateral modulation of motor responses might also be mediated below the cortical level in humans. 2. A paired-pulse protocol was used, in which motor-evoked potentials (MEPs) were produced by cortical transcranial magnetic stimulation (cTMS) or by electrical stimulation of the pyramidal tract at the level of the pyramidal decussation (pdTES), in both preactivated and relaxed hand muscles. Paired stimuli were applied at various interstimulus intervals (ISIs) between 2 and 100 ms. The conditioning stimulus (CS) was always magnetic, and delivered to the M1 ipsilateral to the target hand, prior to the test stimulus (TS). The magnetic TS was delivered to the M1 contralateral to the target hand; the electrical TS was applied through electrodes placed over the mastoid process bilaterally. Further experiments included cortical electrical stimulation and H-reflexes. The MEP amplitudes were averaged separately for each ISI and the control condition (no CS), and expressed as a percentage of the unconditioned response. 3. Conditioning stimulation of the ipsilateral M1 resulted in significant inhibition of magnetically evoked MEPs, and also of MEPs produced by pdTES. Inhibition occurred at ISIs between 6 and 50 ms, and was observed in preactivated and relaxed muscles. Higher CS intensities caused greater inhibition of both cTMS- and pdTES-evoked MEPs. 4. While the conditioning effects on magnetically evoked muscle responses could be explained by a transcallosal mechanism, the effects on pdTES-evoked MEPs cannot

  10. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex

    NASA Technical Reports Server (NTRS)

    Chen, W. R.; Lee, S.; Kato, K.; Spencer, D. D.; Shepherd, G. M.; Williamson, A.

    1996-01-01

    The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.

  11. Cocaine cue–induced dopamine release in the human prefrontal cortex

    PubMed Central

    Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-01-01

    Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792

  12. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex.

    PubMed

    Moodley, Kogie; Botha, Julia; Raidoo, Deshandra Munsamy; Naidoo, Strinivasen

    2011-03-15

    Expression of thyroid-stimulating hormone receptor (TSH-R) has been demonstrated in adipocytes, lymphocytes, bone, kidney, heart, intestine and rat brain. Immuno-reactive TSH-R has been localised in rat brain and human embryonic cerebral cortex but not in adult human brain. We designed a pilot study to determine whether anti-thyroid auto-antibodies immuno-localise in normal adult human cerebral cortex. Forensic samples from the frontal, motor, sensory, occipital, cingulate and parieto-occipito-temporal association cortices were obtained from five individuals who had died of trauma. Although there were no head injuries, the prior psychiatric history of patients was unknown. The tissues were probed with commercial antibodies against both human TSH-R and human thyroglobulin (TG). Anti-TSH-R IgG immuno-localised to cell bodies and axons of large neurones in all 6 regions of all 5 brains. The intensity and percentage of neurones labelled were similar in all tissue sections. TSH-R immuno-label was also observed in vascular endothelial cells in the cingulate gyrus. Although also found in all 5 brains and all six cortical regions, TG localised exclusively in vascular smooth muscle cells and not on neurones. Although limited by the small sample size and number of brain areas examined, this is the first study describing the presence of antigenic targets for anti-TSH-R IgG on human cortical neurons, and anti-TG IgG in cerebral vasculature. PMID:21196016

  13. Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex

    PubMed Central

    Oláh, Szabolcs; Komlósi, Gergely; Szabadics, János; Varga, Csaba; Tóth, Éva; Barzó, Pál; Tamás, Gábor

    2007-01-01

    Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the postsynaptic effects of neurogliaform cells in vitro applying simultaneous whole-cell recordings in human and rat cortex. Single action potentials of human neurogliaform cells evoked unitary IPSPs composed of GABAA and GABAB receptor-mediated components in various types of inteneuron and in pyramidal cells. Slow IPSPs were combined with homologous and heterologous electrical coupling between neurogliaform cells and several human interneuron types. In the rat, single action potentials in neurogliaform cells elicited GABAB receptor-mediated component in responses of neurogliaform, regular spiking, and fast spiking interneurons following the GABAA receptor-mediated component in postsynaptic responses. In conclusion, human and rat neurogliaform cells elicit slow IPSPs and reach GABAA and GABAB receptors on several interneuron types with a connection-specific involvement of GABAB receptors. The electrical synapses recorded between human neurogliaform cells and various interneuron types represent the first electrical synapses recorded in the human cortex. PMID:18946546

  14. Near-optimal Integration of Magnitude in the Human Parietal Cortex.

    PubMed

    Tickle, Hannah; Speekenbrink, Maarten; Tsetsos, Konstantinos; Michael, Elizabeth; Summerfield, Christopher

    2016-04-01

    Humans are often observed to make optimal sensorimotor decisions but to be poor judges of situations involving explicit estimation of magnitudes or numerical quantities. For example, when drawing conclusions from data, humans tend to neglect the size of the sample from which it was collected. Here, we asked whether this sample size neglect is a general property of human decisions and investigated its neural implementation. Participants viewed eight discrete visual arrays (samples) depicting variable numbers of blue and pink balls. They then judged whether the samples were being drawn from an urn in which blue or pink predominated. A participant who neglects the sample size will integrate the ratio of balls on each array, giving equal weight to each sample. However, we found that human behavior resembled that of an optimal observer, giving more credence to larger sample sizes. Recording scalp EEG signals while participants performed the task allowed us to assess the decision information that was computed during integration. We found that neural signals over the posterior cortex after each sample correlated first with the sample size and then with the difference in the number of balls in either category. Moreover, lateralized beta-band activity over motor cortex was predicted by the cumulative difference in number of balls in each category. Together, these findings suggest that humans achieve statistically near-optimal decisions by adding up the difference in evidence on each sample, and imply that sample size neglect may not be a general feature of human decision-making. PMID:26741801

  15. Neuronal mechanisms mediating the variability of somatosensory evoked potentials during sleep oscillations in cats

    PubMed Central

    Rosanova, Mario; Timofeev, Igor

    2005-01-01

    The slow oscillation (SO) generated within the corticothalamic system is composed of active and silent states. The studies of response variability during active versus silent network states within thalamocortical system of human and animals provided inconsistent results. To investigate this inconsistency, we used electrophysiological recordings from the main structures of the somatosensory system in anaesthetized cats. Stimulation of the median nerve (MN) elicited cortical responses during all phases of SO. Cortical responses to stimulation of the medial lemniscus (ML) were virtually absent during silent periods. At the ventral-posterior lateral (VPL) level, ML stimuli elicited either EPSPs in isolation or EPSPs crowned by spikes, as a function of membrane potential. Response to MN stimuli elicited compound synaptic responses and spiked at any physiological level of membrane potential. The responses of dorsal column nuclei neurones to MN stimuli were of similar latency, but the latencies of antidromic responses to ML stimuli were variable. Thus, the variable conductance velocity of ascending prethalamic axons was the most likely cause of the barrages of synaptic events in VPL neurones mediating their firing at different level of the membrane potential. We conclude that the preserved ability of the somatosensory system to transmit the peripheral stimuli to the cerebral cortex during all the phases of sleep slow oscillation is based on the functional properties of the medial lemniscus and on the intrinsic properties of the thalamocortical cells. However the reduced firing ability of the cortical neurones during the silent state may contribute to impair sensory processing during sleep. PMID:15528249

  16. Human Dorsolateral Prefrontal Cortex Is Not Necessary for Spatial Working Memory

    PubMed Central

    Mackey, Wayne E.; Devinsky, Orrin; Doyle, Werner K.; Meager, Michael R.

    2016-01-01

    A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised. SIGNIFICANCE STATEMENT High-level cognition depends on working memory (WM) as a critical building block, and many symptoms of psychiatric disorders may be the direct result of impaired WM. Canonical theory posits a critical role for the dorsolateral prefrontal cortex (dlPFC) in WM based on studies of nonhuman primates. However, we find that spatial WM in humans is intact after dlPFC damage unless it impacts the more caudal PCS. Therefore, the human dlPFC is not necessary for spatial WM and highlights the need for careful translation of animal models of human cognition. PMID:26961941

  17. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    PubMed Central

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  18. Altered temporal dynamics of neural adaptation in the aging human auditory cortex.

    PubMed

    Herrmann, Björn; Henry, Molly J; Johnsrude, Ingrid S; Obleser, Jonas

    2016-09-01

    Neural response adaptation plays an important role in perception and cognition. Here, we used electroencephalography to investigate how aging affects the temporal dynamics of neural adaptation in human auditory cortex. Younger (18-31 years) and older (51-70 years) normal hearing adults listened to tone sequences with varying onset-to-onset intervals. Our results show long-lasting neural adaptation such that the response to a particular tone is a nonlinear function of the extended temporal history of sound events. Most important, aging is associated with multiple changes in auditory cortex; older adults exhibit larger and less variable response magnitudes, a larger dynamic response range, and a reduced sensitivity to temporal context. Computational modeling suggests that reduced adaptation recovery times underlie these changes in the aging auditory cortex and that the extended temporal stimulation has less influence on the neural response to the current sound in older compared with younger individuals. Our human electroencephalography results critically narrow the gap to animal electrophysiology work suggesting a compensatory release from cortical inhibition accompanying hearing loss and aging. PMID:27459921

  19. Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human.

    PubMed

    Garell, P C; Bakken, H; Greenlee, J D W; Volkov, I; Reale, R A; Oya, H; Kawasaki, H; Howard, M A; Brugge, J F

    2013-10-01

    The connection between auditory fields of the temporal lobe and prefrontal cortex has been well characterized in nonhuman primates. Little is known of temporofrontal connectivity in humans, however, due largely to the fact that invasive experimental approaches used so successfully to trace anatomical pathways in laboratory animals cannot be used in humans. Instead, we used a functional tract-tracing method in 12 neurosurgical patients with multicontact electrode arrays chronically implanted over the left (n = 7) or right (n = 5) perisylvian temporal auditory cortex (area PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior frontal gyrus (IFG) for diagnosis and treatment of medically intractable epilepsy. Area PLST was identified by the distribution of average auditory-evoked potentials obtained in response to simple and complex sounds. The same sounds evoked little if there is any activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-balanced) applied between contacts within physiologically identified PLST resulted in polyphasic evoked potentials clustered in VLPFC, with greatest activation being in pars triangularis of the IFG. The average peak latency of the earliest negative deflection of the evoked potential on VLPFC was 13.48 ms (range: 9.0-18.5 ms), providing evidence for a rapidly conducting pathway between area PLST and VLPFC. PMID:22879355

  20. Mapping tonotopic organization in human temporal cortex: representational similarity analysis in EMEG source space.

    PubMed

    Su, Li; Zulfiqar, Isma; Jamshed, Fawad; Fonteneau, Elisabeth; Marslen-Wilson, William

    2014-01-01

    A wide variety of evidence, from neurophysiology, neuroanatomy, and imaging studies in humans and animals, suggests that human auditory cortex is in part tonotopically organized. Here we present a new means of resolving this spatial organization using a combination of non-invasive observables (EEG, MEG, and MRI), model-based estimates of spectrotemporal patterns of neural activation, and multivariate pattern analysis. The method exploits both the fine-grained temporal patterning of auditory cortical responses and the millisecond scale temporal resolution of EEG and MEG. Participants listened to 400 English words while MEG and scalp EEG were measured simultaneously. We estimated the location of cortical sources using the MRI anatomically constrained minimum norm estimate (MNE) procedure. We then combined a form of multivariate pattern analysis (representational similarity analysis) with a spatiotemporal searchlight approach to successfully decode information about patterns of neuronal frequency preference and selectivity in bilateral superior temporal cortex. Observed frequency preferences in and around Heschl's gyrus matched current proposals for the organization of tonotopic gradients in primary acoustic cortex, while the distribution of narrow frequency selectivity similarly matched results from the fMRI literature. The spatial maps generated by this novel combination of techniques seem comparable to those that have emerged from fMRI or ECOG studies, and a considerable advance over earlier MEG results. PMID:25429257

  1. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    PubMed

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144

  2. Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans

    PubMed Central

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294

  3. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro

    PubMed Central

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.

    2015-01-01

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144

  4. Fusion and Fission of Cognitive Functions in the Human Parietal Cortex

    PubMed Central

    Humphreys, Gina F.; Lambon Ralph, Matthew A.

    2015-01-01

    How is higher cognitive function organized in the human parietal cortex? A century of neuropsychology and 30 years of functional neuroimaging has implicated the parietal lobe in many different verbal and nonverbal cognitive domains. There is little clarity, however, on how these functions are organized, that is, where do these functions coalesce (implying a shared, underpinning neurocomputation) and where do they divide (indicating different underlying neural functions). Until now, there has been no multi-domain synthesis in order to reveal where there is fusion or fission of functions in the parietal cortex. This aim was achieved through a large-scale activation likelihood estimation (ALE) analysis of 386 studies (3952 activation peaks) covering 8 cognitive domains. A tripartite, domain-general neuroanatomical division and 5 principles of cognitive organization were established, and these are discussed with respect to a unified theory of parietal functional organization. PMID:25205661

  5. Representation of the speech effectors in the human motor cortex: somatotopy or overlap?

    PubMed

    Takai, Osamu; Brown, Steven; Liotti, Mario

    2010-04-01

    Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this dichotomy, we performed four voxel-based meta-analyses of 54 functional neuroimaging studies of non-speech tasks involving respiration, lip movement, tongue movement, and swallowing, respectively. While the centers of mass of the clusters supported the classic homuncular view of the motor cortex, there was significant variability in the locations of the activation-coordinates among studies, resulting in an overlapping arrangement. This "somatotopy with overlap" might reflect the intrinsic functional interconnectedness of the oral effectors for speech production. PMID:20171727

  6. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration.

    PubMed

    Baseler, Heidi A; Gouws, André; Haak, Koen V; Racey, Christopher; Crossland, Michael D; Tufail, Adnan; Rubin, Gary S; Cornelissen, Frans W; Morland, Antony B

    2011-05-01

    The occipital lobe contains retinotopic representations of the visual field. The representation of the central retina in early visual areas (V1-3) is found at the occipital pole. When the central retina is lesioned in both eyes by macular degeneration, this region of visual cortex at the occipital pole is accordingly deprived of input. However, even when such lesions occur in adulthood, some visually driven activity in and around the occipital pole can be observed. It has been suggested that this activity is a result of remapping of this area so that it now responds to inputs from intact, peripheral retina. We evaluated whether or not remapping of visual cortex underlies this activity. Our functional magnetic resonance imaging results provide no evidence of remapping, questioning the contemporary view that early visual areas of the adult human brain have the capacity to reorganize extensively. PMID:21441924

  7. Limbic areas are functionally decoupled and visual cortex takes a more central role during fear conditioning in humans.

    PubMed

    Lithari, Chrysa; Moratti, Stephan; Weisz, Nathan

    2016-01-01

    Going beyond the focus on isolated brain regions (e.g. amygdala), recent neuroimaging studies on fear conditioning point to the relevance of a network of mutually interacting brain regions. In the present MEG study we used Graph Theory to uncover changes in the architecture of the brain functional network shaped by fear conditioning. Firstly, induced power analysis revealed differences in local cortical excitability (lower alpha and beta power) between CS+ and CS- localized to somatosensory cortex and insula. What is more striking however is that the graph theoretical measures unveiled a re-organization of brain functional connections, not evident using conventional power analysis. Subcortical fear-related structures exhibited reduced connectivity with temporal and frontal areas rendering the overall brain functional network more sparse during fear conditioning. At the same time, the calcarine took on a more central role in the network. Interestingly, the more the connectivity of limbic areas is reduced, the more central the role of the occipital cortex becomes. We speculated that both, the reduced coupling in some regions and the emerging centrality of others, contribute to the efficient processing of fear-relevant information during fear learning. PMID:27381479

  8. Limbic areas are functionally decoupled and visual cortex takes a more central role during fear conditioning in humans

    PubMed Central

    Lithari, Chrysa; Moratti, Stephan; Weisz, Nathan

    2016-01-01

    Going beyond the focus on isolated brain regions (e.g. amygdala), recent neuroimaging studies on fear conditioning point to the relevance of a network of mutually interacting brain regions. In the present MEG study we used Graph Theory to uncover changes in the architecture of the brain functional network shaped by fear conditioning. Firstly, induced power analysis revealed differences in local cortical excitability (lower alpha and beta power) between CS+ and CS− localized to somatosensory cortex and insula. What is more striking however is that the graph theoretical measures unveiled a re-organization of brain functional connections, not evident using conventional power analysis. Subcortical fear-related structures exhibited reduced connectivity with temporal and frontal areas rendering the overall brain functional network more sparse during fear conditioning. At the same time, the calcarine took on a more central role in the network. Interestingly, the more the connectivity of limbic areas is reduced, the more central the role of the occipital cortex becomes. We speculated that both, the reduced coupling in some regions and the emerging centrality of others, contribute to the efficient processing of fear-relevant information during fear learning. PMID:27381479

  9. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    PubMed

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks. PMID:26038159

  10. Abnormal visual field maps in human cortex: a mini-review and a case report.

    PubMed

    Haak, Koen V; Langers, Dave R M; Renken, Remco; van Dijk, Pim; Borgstein, Johannes; Cornelissen, Frans W

    2014-07-01

    Human visual cortex contains maps of the visual field. Much research has been dedicated to answering whether and when these visual field maps change if critical components of the visual circuitry are damaged. Here, we first provide a focused mini-review of the functional magnetic resonance imaging (fMRI) studies that have evaluated the human cortical visual field maps in the face of retinal lesions, brain injury, and atypical retinocortical projections. We find that there is a fair body of research that has found abnormal fMRI activity, but also that this abnormal activity does not necessarily stem from cortical remapping. The abnormal fMRI activity can often be explained in terms of task effects and/or the uncovering of normally hidden system dynamics. We then present the case of a 16-year-old patient who lost the entire left cerebral hemisphere at age three for treatment of chronic focal encephalitis (Rasmussen syndrome) and intractable epilepsy. Using an fMRI retinotopic mapping procedure and population receptive field (pRF) modeling, we found that (1) despite the long period since the hemispherectomy, the retinotopic organization of early visual cortex remained unaffected by the removal of an entire cerebral hemisphere, and (2) the intact lateral occipital cortex contained an exceptionally large representation of the center of the visual field. The same method also indicates that the neuronal receptive fields in these lateral occipital brain regions are extraordinarily small. These features are clearly abnormal, but again they do not necessarily stem from cortical remapping. For example, the abnormal features can also be explained by the notion that the hemispherectomy took place during a critical period in the development of the lateral occipital cortex and therefore arrested its normal development. Thus, caution should be exercised when interpreting abnormal fMRI activity as a marker of cortical remapping; there are often other explanations. PMID:23347557

  11. Developmental changes in the transcriptome of human cerebral cortex tissue: long noncoding RNA transcripts.

    PubMed

    Lipovich, Leonard; Tarca, Adi L; Cai, Juan; Jia, Hui; Chugani, Harry T; Sterner, Kirstin N; Grossman, Lawrence I; Uddin, Monica; Hof, Patrick R; Sherwood, Chet C; Kuzawa, Christopher W; Goodman, Morris; Wildman, Derek E

    2014-06-01

    The human neocortex is characterized by protracted developmental intervals of synaptogenesis and myelination, which allow for an extended period of learning. The molecular basis of these and other postnatal developmental changes in the human cerebral cortex remain incompletely understood. Recently, a new large class of mammalian genes, encoding nonmessenger, long nonprotein-coding ribonucleic acid (lncRNA) molecules has been discovered. Although their function remains uncertain, numerous lncRNAs have primate-specific sequences and/or show evidence of rapid, lineage-specific evolution, making them potentially relevant to the evolution of unique human neural properties. To examine the hypothesis that lncRNA expression varies with age, potentially paralleling known developmental trends in synaptogenesis, myelination, and energetics, we quantified levels of nearly 6000 lncRNAs in 36 surgically resected human neocortical samples (primarily derived from temporal cortex) spanning infancy to adulthood. Our analysis identified 8 lncRNA genes with distinct developmental expression patterns. These lncRNA genes contained anthropoid-specific exons, as well as splice sites and polyadenylation signals that resided in primate-specific sequences. To our knowledge, our study is the first to describe developmental expression profiles of lncRNA in surgically resected in vivo human brain tissue. Future analysis of the functional relevance of these transcripts to neural development and energy metabolism is warranted. PMID:23377288

  12. Dynamic expression of calretinin in embryonic and early fetal human cortex

    PubMed Central

    González-Gómez, Miriam; Meyer, Gundela

    2014-01-01

    Calretinin (CR) is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS) 17 to 23, calbindin (CB) and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem). By contrast, CR is confined to the subventricular zone (SVZ) of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem), from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the “monolayer” of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the “pioneer cortical plate” appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW). At CS 21–23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial

  13. Intracortical inhibition and facilitation in different representations of the human motor cortex.

    PubMed

    Chen, R; Tam, A; Bütefisch, C; Corwell, B; Ziemann, U; Rothwell, J C; Cohen, L G

    1998-12-01

    Intracortical inhibition and facilitation in different representations of the human motor cortex. J. Neurophysiol. 80: 2870-2881, 1998. Intracortical inhibition (ICI) and intracortical facilitation (ICF) of the human motor cortex can be studied with paired transcranial magnetic stimulation (TMS). Plastic changes and some neurological disorders in humans are associated with changes in ICI and ICF. Although well characterized in the hand representation, it is not known if ICI and ICF vary across different body part representations. Therefore we studied ICI and ICF in different motor representations of the human motor cortex. The target muscles were rectus abdominus (RA), biceps brachii (BB), abductor pollicis brevis (APB), quadriceps femoris (QF), and abductor hallucis (AH). For each muscle, we measured the rest and active motor thresholds (MTs), the motor-evoked potential (MEP) stimulus-response curve (MEP recruitment), ICI, and ICF. The effects of different interstimulus intervals (ISIs) were studied with a conditioning stimulus (CS) intensity of 80% active MT. The effects of different CS intensities were studied at ISI of 2 ms for ICI and ISI of 15 ms for ICF. MT was lowest for APB, followed by BB, AH, and QF, and was highest for RA. Except for BB, MEP recruitment was generally steeper for muscles with lower MT. ICI and ICF were present in all the motor representations tested. The stimulus intensity necessary to elicit ICI was consistently lower than that required to elicit ICF, suggesting that they are mediated by separate mechanisms. Despite wide differences in MT and MEP recruitment, the absolute CS intensities (expressed as percentage of the stimulator's output) required to elicit ICI and ICF appear unrelated to MT and MEP recruitment in the different muscles tested. These findings suggest that the intracortical mechanisms for inhibition and facilitation in different motor representations are not related to the strength of corticospinal projections. PMID

  14. The auditory cortex and tinnitus – a review of animal and human studies.

    PubMed

    Eggermont, Jos J

    2015-03-01

    Tinnitus is the sound heard in the absence of physical sound sources external or internal to the body. Tinnitus never occurs in isolation; it typically develops after hearing loss, and not infrequently for losses at the higher frequencies not tested in clinical audiology. Furthermore, tinnitus is often accompanied by hyperacusis, i.e. increased loudness sensitivity, which may reflect the central gain change in the auditory system that occurs after hearing loss. I will first review the electrophysiological findings in the thalamus and cortex pertaining to animal research into tinnitus. This will comprise the changes in tonotopic maps, spontaneous firing rates and changes in pairwise neural cross-correlation induced by tinnitus-inducing agents that are commonly used in animal experiments. These are systemic application of sodium salicylate, and noise exposure at levels ranging from those that do not cause a hearing loss, to those that only cause a temporary threshold shift, to those that cause a permanent hearing loss. Following this, I will review neuroimaging and electrophysiological findings in the auditory cortex in humans with tinnitus. The neural substrates of tinnitus derived from animal data do not apply universally, as neither hearing loss nor hyperacusis appear to be necessary conditions for tinnitus to occur in humans. Finally, I will relate the findings in humans to the predictions from animal models of tinnitus. These comparisons indicate that neural correlates of tinnitus can be studied successfully both at the level of animal models and in humans. PMID:25728183

  15. Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex

    PubMed Central

    Komlósi, Gergely; Füle, Miklós; Szabadics, János; Varga, Csaba; Barzó, Pál; Tamás, Gábor

    2008-01-01

    Synaptic interactions between neurons of the human cerebral cortex were not directly studied to date. We recorded the first dataset, to our knowledge, on the synaptic effect of identified human pyramidal cells on various types of postsynaptic neurons and reveal complex events triggered by individual action potentials in the human neocortical network. Brain slices were prepared from nonpathological samples of cortex that had to be removed for the surgical treatment of brain areas beneath association cortices of 58 patients aged 18 to 73 y. Simultaneous triple and quadruple whole-cell patch clamp recordings were performed testing mono- and polysynaptic potentials in target neurons following a single action potential fired by layer 2/3 pyramidal cells, and the temporal structure of events and underlying mechanisms were analyzed. In addition to monosynaptic postsynaptic potentials, individual action potentials in presynaptic pyramidal cells initiated long-lasting (37 ± 17 ms) sequences of events in the network lasting an order of magnitude longer than detected previously in other species. These event series were composed of specifically alternating glutamatergic and GABAergic postsynaptic potentials and required selective spike-to-spike coupling from pyramidal cells to GABAergic interneurons producing concomitant inhibitory as well as excitatory feed-forward action of GABA. Single action potentials of human neurons are sufficient to recruit Hebbian-like neuronal assemblies that are proposed to participate in cognitive processes. PMID:18767905

  16. FUNCTIONAL RECOVERY FOLLOWING MOTOR CORTEX LESIONS IN NON-HUMAN PRIMATES: EXPERIMENTAL IMPLICATIONS FOR HUMAN STROKE PATIENTS

    PubMed Central

    Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.

    2013-01-01

    This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in recent work where considerable quantification of fine digit function associated with grasping and manipulating small objects has been observed, very favorable recovery is possible with minimal forced use of the contralesional limb. Studies of the mechanisms underlying recovery have shown that following small lesions of the digit areas of primary motor cortex (M1), there is expansion of the digit motor representations into areas of M1 that did not produce digit movements prior to the lesion. However, after larger lesions involving the elbow, wrist and digit areas of M1, no such expansion of the motor representation was observed, suggesting that recovery was due to other cortical or subcortical areas taking over control of hand/digit movements. Recently, we showed that one possible mechanism of recovery after lesion to the arm areas of M1 and lateral premotor cortex is enhancement of corticospinal projections from the medially located supplementary motor area (M2) to spinal cord laminae containing neurons which have lost substantial input from the lateral motor areas and play a critical role in reaching and digit movements. Because human stroke and brain injury patients show variable, and usually poorer, recovery of hand motor function than that of nonhuman primates after motor cortex damage, we conclude with a discussion of implications of this work for further experimentation to improve recovery of hand function in human stroke patients. PMID:21960307

  17. Hierarchy of prediction errors for auditory events in human temporal and frontal cortex.

    PubMed

    Dürschmid, Stefan; Edwards, Erik; Reichert, Christoph; Dewar, Callum; Hinrichs, Hermann; Heinze, Hans-Jochen; Kirsch, Heidi E; Dalal, Sarang S; Deouell, Leon Y; Knight, Robert T

    2016-06-14

    Predictive coding theories posit that neural networks learn statistical regularities in the environment for comparison with actual outcomes, signaling a prediction error (PE) when sensory deviation occurs. PE studies in audition have capitalized on low-frequency event-related potentials (LF-ERPs), such as the mismatch negativity. However, local cortical activity is well-indexed by higher-frequency bands [high-γ band (Hγ): 80-150 Hz]. We compared patterns of human Hγ and LF-ERPs in deviance detection using electrocorticographic recordings from subdural electrodes over frontal and temporal cortices. Patients listened to trains of task-irrelevant tones in two conditions differing in the predictability of a deviation from repetitive background stimuli (fully predictable vs. unpredictable deviants). We found deviance-related responses in both frequency bands over lateral temporal and inferior frontal cortex, with an earlier latency for Hγ than for LF-ERPs. Critically, frontal Hγ activity but not LF-ERPs discriminated between fully predictable and unpredictable changes, with frontal cortex sensitive to unpredictable events. The results highlight the role of frontal cortex and Hγ activity in deviance detection and PE generation. PMID:27247381

  18. Neural mechanisms of economic commitment in the human medial prefrontal cortex

    PubMed Central

    Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher

    2014-01-01

    Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases–to defer commitments to later, and to weight potential losses more heavily than gains–that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex. DOI: http://dx.doi.org/10.7554/eLife.03701.001 PMID:25333687

  19. Distributed representations of rule identity and rule order in human frontal cortex and striatum.

    PubMed

    Reverberi, Carlo; Görgen, Kai; Haynes, John-Dylan

    2012-11-28

    Humans are able to flexibly devise and implement rules to reach their desired goals. For simple situations, we can use single rules, such as "if traffic light is green then cross the street." In most cases, however, more complex rule sets are required, involving the integration of multiple layers of control. Although it has been shown that prefrontal cortex is important for rule representation, it has remained unclear how the brain encodes more complex rule sets. Here, we investigate how the brain represents the order in which different parts of a rule set are evaluated. Participants had to follow compound rule sets that involved the concurrent application of two single rules in a specific order, where one of the rules always had to be evaluated first. The rules and their assigned order were independently manipulated. By applying multivariate decoding to fMRI data, we found that the identity of the current rule was encoded in a frontostriatal network involving right ventrolateral prefrontal cortex, right superior frontal gyrus, and dorsal striatum. In contrast, rule order could be decoded in the dorsal striatum and in the right premotor cortex. The nonhomogeneous distribution of information across brain areas was confirmed by follow-up analyses focused on relevant regions of interest. We argue that the brain encodes complex rule sets by "decomposing" them in their constituent features, which are represented in different brain areas, according to the aspect of information to be maintained. PMID:23197733

  20. Localizing the human primary auditory cortex in vivo using structural MRI.

    PubMed

    Wasserthal, Christian; Brechmann, André; Stadler, Jörg; Fischl, Bruce; Engel, Karin

    2014-06-01

    Currently there are no routine methods to delineate the primary auditory cortex (PAC) of humans in vivo. Due to the large differences in the location of the PAC between subjects, labels derived from post-mortem brains may be inaccurate when applied to different samples of in vivo brains. Recent magnetic resonance (MR) imaging studies suggested that MR-tissue properties can be used to define the location of the PAC region in vivo. The basis for such an approach is that the PAC region is more strongly myelinated than the secondary areas. We developed a fully automatic method to identify the PAC in conventional anatomical data using a combination of two complementary MR contrasts, i.e., T1 and T2, at 3T with 0.7mm isotropic resolution. Our algorithm maps the anatomical MR data to reconstructed cortical surfaces and uses a classification approach to create an artificial contrast that is highly sensitive to the effects of an increased myelination of the cortex. Consistent with the location of the PAC defined in post-mortem brains, we found a compact region on the medial two thirds of Heschl's gyrus in both hemispheres of all 39 subjects. With further improvements in signal-to-noise ratio of the anatomical data and manual correction of segmentation errors, the results suggest that the primary auditory cortex can be defined in the living brain of single subjects. PMID:23891882

  1. The parietal cortex and saccade planning: lessons from human lesion studies

    PubMed Central

    Ptak, Radek; Müri, René M.

    2013-01-01

    The parietal cortex is a critical interface for attention and integration of multiple sensory signals that can be used for the implementation of motor plans. Many neurons in this region exhibit strong attention-, reach-, grasp- or saccade-related activity. Here, we review human lesion studies supporting the critical role of the parietal cortex in saccade planning. Studies of patients with unilateral parietal damage and spatial neglect reveal characteristic spatially lateralized deficits of saccade programming when multiple stimuli compete for attention. However, these patients also show bilateral impairments of saccade initiation and control that are difficult to explain in the context of their lateralized deficits of visual attention. These findings are reminiscent of the deficits of oculomotor control observed in patients with Bálint's syndrome consecutive to bilateral parietal damage. We propose that some oculomotor deficits following parietal damage are compatible with a decisive role of the parietal cortex in saccade planning under conditions of sensory competition, while other deficits reflect disinhibition of low-level structures of the oculomotor network in the absence of top-down parietal modulation. PMID:23759723

  2. Dissimilar processing of emotional facial expressions in human and monkey temporal cortex.

    PubMed

    Zhu, Qi; Nelissen, Koen; Van den Stock, Jan; De Winter, François-Laurent; Pauwels, Karl; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2013-02-01

    Emotional facial expressions play an important role in social communication across primates. Despite major progress made in our understanding of categorical information processing such as for objects and faces, little is known, however, about how the primate brain evolved to process emotional cues. In this study, we used functional magnetic resonance imaging (fMRI) to compare the processing of emotional facial expressions between monkeys and humans. We used a 2×2×2 factorial design with species (human and monkey), expression (fear and chewing) and configuration (intact versus scrambled) as factors. At the whole brain level, neural responses to conspecific emotional expressions were anatomically confined to the superior temporal sulcus (STS) in humans. Within the human STS, we found functional subdivisions with a face-selective right posterior STS area that also responded to emotional expressions of other species and a more anterior area in the right middle STS that responded specifically to human emotions. Hence, we argue that the latter region does not show a mere emotion-dependent modulation of activity but is primarily driven by human emotional facial expressions. Conversely, in monkeys, emotional responses appeared in earlier visual cortex and outside face-selective regions in inferior temporal cortex that responded also to multiple visual categories. Within monkey IT, we also found areas that were more responsive to conspecific than to non-conspecific emotional expressions but these responses were not as specific as in human middle STS. Overall, our results indicate that human STS may have developed unique properties to deal with social cues such as emotional expressions. PMID:23142071

  3. Investigation of human frontal cortex under noxious thermal stimulation of temporo-mandibular joint using functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yennu, Amarnath; Rawat, Rohit; Manry, Michael T.; Gatchel, Robert; Liu, Hanli

    2013-03-01

    According to American Academy of Orofacial Pain, 75% of the U.S. population experiences painful symptoms of temporo-mandibular joint and muscle disorder (TMJMD) during their lifetime. Thus, objective assessment of pain is crucial for efficient pain management. We used near infrared spectroscopy (NIRS) as a tool to explore hemodynamic responses in the frontal cortex to noxious thermal stimulation of temporomadibular joint (TMJ). NIRS experiments were performed on 9 healthy volunteers under both low pain stimulation (LPS) and high pain stimulation (HPS), using a temperature-controlled thermal stimulator. To induce thermal pain, a 16X16 mm2 thermode was strapped onto the right TMJ of each subject. Initially, subjects were asked to rate perceived pain on a scale of 0 to 10 for the temperatures from 41°C to 47°C. For the NIRS measurement, two magnitudes of temperatures, one rated as 3 and another rated as 7, were chosen as LPS and HPS, respectively. By analyzing the temporal profiles of changes in oxy-hemoglobin concentration (HbO) using cluster-based statistical tests, we were able to identify several regions of interest (ROI), (e.g., secondary somatosensory cortex and prefrontal cortex), where significant differences (p<0.05) between HbO responses to LPS and HPS are shown. In order to classify these two levels of pain, a neural-network-based classification algorithm was used. With leave-one-out cross validation from 9 subjects, the two levels of pain were identified with 100% mean sensitivity, 98% mean specificity and 99% mean accuracy to high pain. From the receiver operating characteristics curve, 0.99 mean area under curve was observed.

  4. Differential distribution of aggrecan isoforms in perineuronal nets of the human cerebral cortex

    PubMed Central

    Virgintino, Daniela; Perissinotto, Daniela; Girolamo, Francesco; Mucignat, Maria T; Montanini, Luisa; Errede, Mariella; Kaneiwa, Tomoyuki; Yamada, Shushei; Sugahara, Kazuyuki; Roncali, Luisa; Perris, Roberto

    2009-01-01

    Aggrecan is a component of the CNS extracellular matrix (ECM) and we show here that the three primary alternative spliced transcripts of the aggrecan gene found in cartilage are also present in the adult CNS. Using a unique panel of core protein-directed antibodies against human aggrecan we further show that different aggrecan isoforms are deposited in perineuronal nets (PNNs) and neuropil ECM of Brodmann’s area 6 of the human adult cerebral cortex. According to their distribution pattern, the identified cortical aggrecan isoforms were subdivided into five clusters spanning from cluster 1, comprised isoforms that appeared widespread throughout the cortex, to cluster 5, which was an aggrecan-free subset. Comparison of brain and cartilage tissues showed a different relative abundance of aggrecan isoforms, with cartilage-specific isoforms characterizing cluster 5, and PNN-associated isoforms lacking keratan sulphate chains. In the brain, isoforms of cluster 1 were disclosed in PNNs surrounding small-medium interneurons of layers II–V, small-medium pyramidal neurons of layers III and V and large interneurons of layer VI. Aggrecan PNNs enveloped both neuron bodies and neuronal processes, encompassing pre-terminal nerve fibres, synaptic boutons and terminal processes of glial cells and aggrecan was also observed in continuous ‘coats’ associated with satellite, neuron-associated cells of a putative glial nature. Immunolabelling for calcium-binding proteins and glutamate demonstrated that aggrecan PNNs were linked to defined subsets of cortical interneurons and pyramidal cells. We suggest that in the human cerebral cortex, discrete, layer-specific PNNs are assembled through the participation of selected aggrecan isoforms that characterize defined subsets of cortical neurons. PMID:19220578

  5. Multiple subpial cortical transections for the control of intractable epilepsy in exquisite cortex.

    PubMed

    Dogali, M; Devinsky, O; Luciano, D; Perrine, K; Beric, A

    1993-01-01

    In 5 cases suffering from intractable seizures and ictal onset in exquisite (primary somatosensory or language related) cortex, surgical therapy has been done consisting wholly or in part of multiple subpial transections. In two cases with involvement of the primary somatosensory cortex, good seizure control without detectable neurological deficit was achieved. In the other three cases with involvement of the language cortex, deficits were minimal and cleared with time. Patients became seizure-free. PMID:8109292

  6. Branching patterns for arterioles and venules of the human cerebral cortex.

    PubMed

    Cassot, Francis; Lauwers, Frederic; Lorthois, Sylvie; Puwanarajah, Prasanna; Cances-Lauwers, Valérie; Duvernoy, Henri

    2010-02-01

    Branching patterns of microvascular networks influence vascular resistance and allow control of peripheral flow distribution. The aim of this paper was to analyze these branching patterns in human cerebral cortex. Digital three-dimensional images of the microvascular network were obtained from thick sections of India ink-injected human brain by confocal laser microscopy covering a large zone of secondary cortex. A novel segmentation method was used to extract the skeletons of 228 vascular trees (152 arterioles and 76 venules) and measure the diameter at every vertex. The branching patterns (area ratios and angles of bifurcations) of nearly 10,000 bifurcations of cortical vascular trees were analyzed, establishing their statistical properties and structural variations as a function of the vessel nature (arterioles versus venules), the parent vessel topological order or the bifurcation type. We also describe their connectivity and discuss the relevance of the assumed optimal design of vascular branching to account for the complex nature of microvascular architecture. The functional implications of some of these structural variations are considered. The branching patterns established from a large database of a human organ contributes to a better understanding of the bifurcation design and provides an essential reference both for diagnosis and for a future large reconstruction of cerebral microvascular network. PMID:20005216

  7. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    PubMed

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions. PMID:27118087

  8. Human Dorsolateral Prefrontal Cortex Is Not Necessary for Spatial Working Memory.

    PubMed

    Mackey, Wayne E; Devinsky, Orrin; Doyle, Werner K; Meager, Michael R; Curtis, Clayton E

    2016-03-01

    A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised. PMID:26961941

  9. Source analysis of magnetic field responses from the human auditory cortex elicited by short speech sounds.

    PubMed

    Kuriki, S; Okita, Y; Hirata, Y

    1995-01-01

    We made a detailed source analysis of the magnetic field responses that were elicited in the human brain by different monosyllabic speech sounds, including vowel, plosive, fricative, and nasal speech. Recordings of the magnetic field responses from a lateral area of the left hemisphere of human subjects were made using a multichannel SQUID magnetometer, having 37 field-sensing coils. A single source of the equivalent current dipole of the field was estimated from the spatial distribution of the evoked responses. The estimated sources of an N1m wave occurring at about 100 ms after the stimulus onset of different monosyllables were located close to each other within a 10-mm-sided cube in the three-dimensional space of the brain. Those sources registered on the magnetic resonance images indicated a restricted area in the auditory cortex, including Heschl's gyri in the superior temporal plane. In the spatiotemporal domain the sources exhibited apparent movements, among which anterior shift with latency increase on the anteroposterior axis and inferior shift on the inferosuperior axis were common in the responses to all monosyllables. However, selective movements that depended on the type of consonants were observed on the mediolateral axis; the sources of plosive and fricative responses shifted laterally with latency increase, but the source of the vowel response shifted medially. These spatiotemporal movements of the sources are discussed in terms of dynamic excitation of the cortical neurons in multiple areas of the human auditory cortex. PMID:7621933

  10. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human

    PubMed Central

    Aflalo, Tyson; Kellis, Spencer; Klaes, Christian; Lee, Brian; Shi, Ying; Pejsa, Kelsie; Shanfield, Kathleen; Hayes-Jackson, Stephanie; Aisen, Mindy; Heck, Christi; Liu, Charles; Andersen, Richard A.

    2016-01-01

    Nonhuman primate and human studies have suggested that populations of neurons in the posterior parietal cortex (PPC) may represent high-level aspects of action planning that can be used to control external devices as part of a brain-machine interface. However, there is no direct neuron-recording evidence that human PPC is involved in action planning, and the suitability of these signals for neuroprosthetic control has not been tested. We recorded neural population activity with arrays of microelectrodes implanted in the PPC of a tetraplegic subject. Motor imagery could be decoded from these neural populations, including imagined goals, trajectories, and types of movement. These findings indicate that the PPC of humans represents high-level, cognitive aspects of action and that the PPC can be a rich source for cognitive control signals for neural prosthetics that assist paralyzed patients. PMID:25999506

  11. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex.

    PubMed

    Di Lazzaro, Vincenzo; Rothwell, John C

    2014-10-01

    A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans. PMID:25172954

  12. The organization of the human cerebral cortex estimated by intrinsic functional connectivity

    PubMed Central

    Thomas Yeo, B. T.; Krienen, Fenna M.; Sepulcre, Jorge; Sabuncu, Mert R.; Lashkari, Danial; Hollinshead, Marisa; Roffman, Joshua L.; Smoller, Jordan W.; Zöllei, Lilla; Polimeni, Jonathan R.; Fischl, Bruce; Liu, Hesheng

    2011-01-01

    Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary

  13. Interictal high-frequency oscillations (80-500 Hz) in the human epileptic brain: entorhinal cortex.

    PubMed

    Bragin, Anatol; Wilson, Charles L; Staba, Richard J; Reddick, Mark; Fried, Itzhak; Engel, Jerome

    2002-10-01

    Unique high-frequency oscillations of 250 to 500 Hz, termed fast ripples, have been identified in seizure-generating limbic areas in rats made epileptic by intrahippocampal injection of kainic acid, and in patients with mesial temporal lobe epilepsy. In the rat, fast ripples clearly are generated by a different neuronal population than normally occurring endogenous ripple oscillations (100-200 Hz), but this distinction has not been previously evaluated in humans. The characteristics of oscillations in the ripple and fast ripple frequency bands were compared in the entorhinal cortex of patients with mesial temporal lobe epilepsy using local field potential and unit recordings from chronically implanted bundles of eight microelectrodes with tips spaced 500 microm apart. The results showed that ripple oscillations possessed different voltage versus depth profiles compared with fast ripple oscillations. Fast ripple oscillations usually demonstrated a reversal of polarity in the middle layers of entorhinal cortex, whereas ripple oscillations rarely showed reversals across entorhinal cortex layers. There was no significant difference in the amplitude distributions of ripple and fast ripple oscillations. Furthermore, multiunit synchronization was significantly increased during fast ripple oscillations compared with ripple oscillations (p < 0.001). These data recorded from the mesial temporal lobe of epileptic patients suggest that the cellular networks underlying fast ripple generation are more localized than those involved in the generation of normally occurring ripple oscillations. Results from this study are consistent with previous studies in the intrahippocampal kainic acid rat model of chronic epilepsy that provide evidence supporting the view that fast ripples in the human brain reflect localized pathological events related to epileptogenesis. PMID:12325068

  14. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory

    PubMed Central

    Milad, Mohammed R.; Quinn, Brian T.; Pitman, Roger K.; Orr, Scott P.; Fischl, Bruce; Rauch, Scott L.

    2005-01-01

    The ventromedial prefrontal cortex (vmPFC) has been implicated in fear extinction [Phelps, E. A., Delgado, M. R., Nearing, K. I. & Ledoux, J. E. (2004) Neuron 43, 897-905; Herry, C. & Garcia, R. (2003) Behav. Brain Res. 146, 89-96]. Here, we test the hypothesis that the cortical thickness of vmPFC regions is associated with how well healthy humans retain their extinction memory a day after having been conditioned and then extinguished. Fourteen participants underwent a 2-day fear conditioning and extinction protocol. The conditioned stimuli (CSs) were pictures of virtual lights, and the unconditioned stimulus (US) was an electric shock. On day 1, participants received 5 CS+US pairings (conditioning), followed by 10 CS trials with no US (extinction). On day 2, the CS was presented alone to test for extinction memory. Skin conductance response (SCR) was the behavioral index of conditioning and extinction. Participants underwent MRI scans to obtain structural images, from which cortical thickness was measured. We performed a vertex-based analysis across the entire cortical surface and a region-of-interest analysis of a priori hypothesized territories to measure cortical thickness and map correlations between this measure and SCR. We found significant, direct correlation between thickness of the vmPFC, specifically medial orbitofrontal cortex, and extinction retention. That is, thicker medial orbitofrontal cortex was associated with lower SCR to the conditioned stimulus during extinction recall (i.e., greater extinction memory). These results suggest that the size of the vmPFC might explain individual differences in the ability to modulate fear among humans. PMID:16024728

  15. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  16. Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography

    PubMed Central

    Cloutman, Lauren L.; Lambon Ralph, Matthew A.

    2012-01-01

    The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation of the human cerebral cortex, discussing the strengths and limitations of the current approaches. Cortical parcellation via white matter connectivity is based on the premise that, as connectional anatomy determines functional organization, it should be possible to segregate functionally-distinct cortical regions by identifying similarities and differences in connectivity profiles. Recent studies have provided initial evidence in support of the efficacy of this connectional parcellation methodology. Such investigations have identified distinct cortical subregions which correlate strongly with functional regions identified via fMRI and meta-analyses. Furthermore, a strong parallel between the cortical regions defined via tractographic and m