Science.gov

Sample records for human spatial navigation

  1. Lost in Virtual Space: Studies in Human and Ideal Spatial Navigation

    ERIC Educational Resources Information Center

    Stankiewicz, Brian J.; Legge, Gordon E.; Mansfield, J. Stephen; Schlicht, Erik J.

    2006-01-01

    The authors describe 3 human spatial navigation experiments that investigate how limitations of perception, memory, uncertainty, and decision strategy affect human spatial navigation performance. To better understand the effect of these variables on human navigation performance, the authors developed an ideal-navigator model for indoor navigation…

  2. Human hippocampal processing of environmental novelty during spatial navigation.

    PubMed

    Kaplan, Raphael; Horner, Aidan J; Bandettini, Peter A; Doeller, Christian F; Burgess, Neil

    2014-07-01

    The detection and processing of novel information encountered as we explore our environment is crucial for learning and adaptive behavior. The human hippocampus has been strongly implicated in laboratory tests of novelty detection and episodic memory, but has been less well studied during more ethological tasks such as spatial navigation, typically used in animals. We examined fMRI BOLD activity as a function of environmental and object novelty as humans performed an object-location virtual navigation task. We found greater BOLD response to novel relative to familiar environments in the hippocampus and adjacent parahippocampal gyrus. Object novelty was associated with increased activity in the posterior parahippocampal/fusiform gyrus and anterior hippocampus extending into the amygdala and superior temporal sulcus. Importantly, whilst mid-posterior hippocampus was more sensitive to environmental novelty than object novelty, the anterior hippocampus responded similarly to both forms of novelty. Amygdala activity showed an increase for novel objects that decreased linearly over the learning phase. By investigating how participants learn and use different forms of information during spatial navigation, we found that medial temporal lobe (MTL) activity reflects both the novelty of the environment and of the objects located within it. This novelty processing is likely supported by distinct, but partially overlapping, sets of regions within the MTL. PMID:24550152

  3. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on

  4. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  5. Sex differences in spatial navigation and perception in human adolescents and emerging adults

    PubMed Central

    Sneider, Jennifer Tropp; Hamilton, Derek A.; Cohen-Gilbert, Julia E.; Crowley, David J.; Rosso, Isabelle M.; Silveri, Marisa M.

    2014-01-01

    Males typically outperform females on spatial tasks, beginning early in life and continuing into adulthood. This study aimed to characterize age and sex differences in human spatial ability using a virtual Water Maze Task (vWMT), which is based on the classic Morris water maze spatial navigation task used in rodents. Performance on the vWMT and on a task assessing visuospatial perception, Mental Rotations Test (MRT), was examined in 33 adolescents and 39 emerging adults. For the vWMT, significant effects of age and sex were observed for path length in the target region (narrower spatial sampling), and heading error, with emerging adults performing better than adolescents, and an overall male advantage. For the MRT, males scored higher than females, but only in emerging adulthood. Overall, sex differences in visuospatial perception (MRT) emerge differently from those observed on a classic navigation task, with age and sex-specific superior vWMT performance likely related to the use of more efficient strategies. Importantly, these results extend the developmental timeline of spatial ability characterization to include adolescent males and females performing a virtual version of the classic vWMT. PMID:25464337

  6. Sex differences in spatial navigation and perception in human adolescents and emerging adults.

    PubMed

    Sneider, Jennifer T; Hamilton, Derek A; Cohen-Gilbert, Julia E; Crowley, David J; Rosso, Isabelle M; Silveri, Marisa M

    2015-02-01

    Males typically outperform females on spatial tasks, beginning early in life and continuing into adulthood. This study aimed to characterize age and sex differences in human spatial ability using a virtual Water Maze Task (vWMT), which is based on the classic Morris water maze spatial navigation task used in rodents. Performance on the vWMT and on a task assessing visuospatial perception, Mental Rotations Test (MRT), was examined in 33 adolescents and 39 emerging adults. For the vWMT, significant effects of age and sex were observed for path length in the target region (narrower spatial sampling), and heading error, with emerging adults performing better than adolescents, and an overall male advantage. For the MRT, males scored higher than females, but only in emerging adulthood. Overall, sex differences in visuospatial perception (MRT) emerge differently from those observed on a classic navigation task, with age and sex-specific superior vWMT performance likely related to the use of more efficient strategies. Importantly, these results extend the developmental timeline of spatial ability characterization to include adolescent males and females performing a virtual version of the classic vWMT. PMID:25464337

  7. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality.

    PubMed

    Kober, Silvia Erika; Neuper, Christa

    2011-03-01

    The present study examines theta oscillations (electroencephalographic (EEG) activity with a frequency of 4-8 Hz) in male and female young adults during spatial navigation in virtual environments. Twenty-seven participants (13 males and 14 females) performed a spatial navigation task in a virtual maze where they had to find the shortest ways between landmarks. Absolute theta band power and event-related desynchronisation/synchronisation (ERD/ERS) in the theta frequency band was used to analyze the EEG data. Processing of spatial cues or landmarks induced cortical theta activity compared to a baseline condition, confirming the hypothesis that theta oscillations reflect sensorimotor integration. The sensorimotor integration hypothesis proposes that theta oscillations coordinate sensory information with a motor plan to direct wayfinding behaviour to known goal locations. No sex differences were found in spatial performance. However, female participants showed a stronger increase in theta oscillations during processing of landmarks as navigational aids compared to a baseline condition than men. Additionally, a higher theta power was associated with an increased navigation performance in women, whereas an increase in theta power was associated with a decreased navigation performance in men. These results might indicate a stronger sensorimotor integration in females than in males. Possible explanations for the emerged sex differences in cortical theta activity are discussed. PMID:21146566

  8. A Spatial Cognitive Map and a Human-Like Memory Model Dedicated to Pedestrian Navigation in Virtual Urban Environments

    NASA Astrophysics Data System (ADS)

    Thomas, Romain; Donikian, Stéphane

    Many articles dealing with agent navigation in an urban environment involve the use of various heuristics. Among them, one is prevalent: the search of the shortest path between two points. This strategy impairs the realism of the resulting behaviour. Indeed, psychological studies state that such a navigation behaviour is conditioned by the knowledge the subject has of its environment. Furthermore, the path a city dweller can follow may be influenced by many factors like his daily habits, or the path simplicity in term of minimum of direction changes. It appeared interesting to us to investigate how to mimic human navigation behavior with an autonomous agent. The solution we propose relies on an architecture based on a generic model of informed environment, a spatial cognitive map model merged with a human-like memory model, representing the agent's temporal knowledge of the environment, it gained along its experiences of navigation.

  9. Spatial relations for tactical robot navigation

    NASA Astrophysics Data System (ADS)

    Skubic, Majorie A.; Chronis, George; Matsakis, Pascal; Keller, James M.

    2001-09-01

    In this paper, we provide an overview of our on-going work using spatial relations for mobile robot navigation. Using the histogram of forces, we show how linguistic expressions can be generated to describe a qualitative view of the robot with respect to its environment. The linguistic expressions provide a symbolic link between the robot and a human user, thus facilitating two-way, human-like communication. In this paper, we present two ways in which spatial relations can be used for robot navigation. First, egocentric spatial relations provide a robot-centered view of the environment (e.g., there is an object on the left). Navigation can be described in terms of spatial relations (e.g., move forward while there is an object on the left, then turn right), such that a complete navigation task is generated as a sequence of navigation states with corresponding behaviors. Second, spatial relations can be used to analyze maps and facilitate their use in communicating navigation tasks. For example, the user can draw an approximate map on a PDA and then draw the desired robot trajectory also on the PDA, relative to the map. Spatial relations can then be used to convert the relative trajectory to a corresponding navigation behavior sequence. Examples are included using a comparable scene from both a robot environment and a PDA-sketched trajectory showing the corresponding generated linguistic spatial expressions.

  10. Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation.

    PubMed

    Varga, Andrew W; Ducca, Emma L; Kishi, Akifumi; Fischer, Esther; Parekh, Ankit; Koushyk, Viachaslau; Yau, Po Lai; Gumb, Tyler; Leibert, David P; Wohlleber, Margaret E; Burschtin, Omar E; Convit, Antonio; Rapoport, David M; Osorio, Ricardo S; Ayappa, Indu

    2016-06-01

    The consolidation of spatial navigational memory during sleep is supported by electrophysiological and behavioral evidence. The features of sleep that mediate this ability may change with aging, as percentage of slow-wave sleep is canonically thought to decrease with age, and slow waves are thought to help orchestrate hippocampal-neocortical dialog that supports systems level consolidation. In this study, groups of younger and older subjects performed timed trials before and after polysomnographically recorded sleep on a 3D spatial maze navigational task. Although younger subjects performed better than older subjects at baseline, both groups showed similar improvement across presleep trials. However, younger subjects experienced significant improvement in maze performance during sleep that was not observed in older subjects, without differences in morning psychomotor vigilance between groups. Older subjects had sleep quality marked by decreased amount of slow-wave sleep and increased fragmentation of slow-wave sleep, resulting in decreased slow-wave activity. Across all subjects, frontal slow-wave activity was positively correlated with both overnight change in maze performance and medial prefrontal cortical volume, illuminating a potential neuroanatomical substrate for slow-wave activity changes with aging and underscoring the importance of slow-wave activity in sleep-dependent spatial navigational memory consolidation. PMID:27143431

  11. Human spatial navigation via a visuo-tactile sensory substitution system.

    PubMed

    Segond, Hervé; Weiss, Déborah; Sampaio, Eliana

    2005-01-01

    Spatial navigation within a real 3-D maze was investigated to study space perception on the sole basis of tactile information transmitted by means of a 'tactile vision substitution system' (TVSS) allowing the conversion of optical images-collected by a micro camera-into 'tactile images' via a matrix in contact with the skin. The development of such a device is based on concepts of cerebral and functional plasticity, enabling subjective reproduction of visual images from tactile data processing. Blindfolded sighted subjects had to remotely control the movements of a robot on which the TVSS camera was mounted. Once familiarised with the cues in the maze, the subjects were given two exploration sessions. Performance was analysed according to an objective point of view (exploration time, discrimination capacity), as well as a subjective one (speech). The task was successfully carried out from the very first session. As the subjects took a different path during each navigation, a gradual improvement in performance (discrimination and exploration time) was noted, generating a phenomenon of learning. Moreover, subjective analysis revealed an evolution of the spatialisation process towards distal attribution. Finally, some emotional expressions seemed to reflect the genesis of 'qualia' (emotional qualities of stimulation). PMID:16309117

  12. The Shape of Human Navigation: How Environmental Geometry Is Used in Maintenance of Spatial Orientation

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; McNamara, Timothy P.; Bodenheimer, Bobby; Carr, Thomas H.; Rieser, John J.

    2008-01-01

    The role of environmental geometry in maintaining spatial orientation was measured in immersive virtual reality using a spatial updating task (requiring maintenance of orientation during locomotion) within rooms varying in rotational symmetry (the number of room orientations providing the same perspective). Spatial updating was equally good in…

  13. Active and Passive Spatial Learning in Human Navigation: Acquisition of Survey Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2013-01-01

    It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to…

  14. Active and Passive Spatial Learning in Human Navigation: Acquisition of Graph Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2015-01-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge--the "exploration-specific learning hypothesis". Previously, we found that idiothetic…

  15. Role of low- and high-frequency oscillations in the human hippocampus for encoding environmental novelty during a spatial navigation task.

    PubMed

    Park, Jinsick; Lee, Hojong; Kim, Taekyung; Park, Ga Young; Lee, Eun Mi; Baek, Seunghee; Ku, Jeonghun; Kim, In Young; Kim, Sun I; Jang, Dong Pyo; Kang, Joong Koo

    2014-11-01

    The hippocampus plays a key role in the encoding and retrieval of information related to novel environments during spatial navigation. However, the neural basis for these processes in the human hippocampus remains unknown because it is difficult to directly measure neural signals in the human hippocampus. This study investigated hippocampal neural oscillations involved in encoding novel environments during spatial navigation in a virtual environment. Seven epileptic patients with implanted intracranial hippocampal depth electrodes performed three sessions of virtual environment navigation. Each session consisted of a navigation task and a location-recall task. The navigation task consisted of eight blocks, and in each block, the participant navigated to the location of four different objects and was instructed to remember the location of the objects. After the eight blocks were completed, a location-recall task was performed for each of the four objects. Intracranial electroencephalography data were monitored during the navigation tasks. Theta (5-8 Hz) and delta (1-4 Hz) oscillations were lower in the first block (novel environment) than in the eighth block (familiar environment) of the navigation task, and significantly increased from block one to block eight. By contrast, low-gamma (31-50 Hz) oscillations were higher in the first block than in the eighth block of the navigation task, and significantly decreased from block one to block eight. Comparison of sessions with high recall performance (low error between identified and actual object location) and low recall performance revealed that high-gamma (51-100 Hz) oscillations significantly decreased from block one to block eight only in sessions with high recall performance. These findings suggest that delta, theta, and low-gamma oscillations were associated with encoding of environmental novelty and high-gamma oscillations were important for the successful encoding of environmental novelty. PMID:24910318

  16. Active and passive spatial learning in human navigation: acquisition of graph knowledge.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2015-07-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. PMID:25419818

  17. Active and passive spatial learning in human navigation: acquisition of survey knowledge.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2013-09-01

    It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to metric survey knowledge: visual, vestibular, and podokinetic information and cognitive decision making. In the learning phase, 6 groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking, (b) being pushed in a wheelchair, or (c) watching a video, crossed with (1) making decisions about their path or (2) being guided through the maze. In the test phase, survey knowledge was assessed by having participants walk a novel shortcut from a starting object to the remembered location of a test object, with the maze removed. Performance was slightly better than chance in the passive video condition. The addition of vestibular information did not improve performance in the wheelchair condition, but the addition of podokinetic information significantly improved angular accuracy in the walking condition. In contrast, there was no effect of decision making in any condition. The results indicate that visual and podokinetic information significantly contribute to survey knowledge, whereas vestibular information and decision making do not. We conclude that podokinetic information is the primary component of active learning for the acquisition of metric survey knowledge. PMID:23565781

  18. Navigation in spatial networks: A survey

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Chen, Shengyong; Wang, Wanliang

    2014-01-01

    The study on the navigation process in spatial networks has attracted much attention in recent years due to the universal applications in real communication networks. This article surveys recent advances of the navigation problem in spatial networks. Due to the ability to overcome scaling limitations in utilizing geometric information for designing navigation algorithms in spatial networks, we summarize here several important navigation algorithms based on geometric information on both homogeneous and heterogeneous spatial networks. Due to the geometric distance employed, the cost associated with the lengths of additional long-range connections is also taken into account in this survey. Therefore, some contributions reporting how the distribution of long-range links’ lengths affects the average navigation time are summarized. We also briefly discuss two other related processes, i.e. the random walk process and the transportation process. Finally, a few open discussions are included at the end of this survey.

  19. Spatial Database Modeling for Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Gnat, Miłosz

    2013-12-01

    For many years, cartographers are involved in designing GIS and navigation systems. Most GIS applications use the outdoor data. Increasingly, similar applications are used inside buildings. Therefore it is important to find the proper model of indoor spatial database. The development of indoor navigation systems should utilize advanced teleinformation, geoinformatics, geodetic and cartographical knowledge. The authors present the fundamental requirements for the indoor data model for navigation purposes. Presenting some of the solutions adopted in the world they emphasize that navigation applications require specific data to present the navigation routes in the right way. There is presented original solution for indoor data model created by authors on the basis of BISDM model. Its purpose is to expand the opportunities for use in indoor navigation.

  20. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  1. Spatial navigation impairment is proportional to right hippocampal volume

    PubMed Central

    Nedelska, Zuzana; Andel, Ross; Laczó, Jan; Vlcek, Kamil; Horinek, Daniel; Lisy, Jiri; Sheardova, Katerina; Bureš, Jan; Hort, Jakub

    2012-01-01

    Cognitive deficits in older adults attributable to Alzheimer's disease (AD) pathology are featured early on by hippocampal impairment. Among these individuals, deterioration in spatial navigation, manifested by poor hippocampus-dependent allocentric navigation, may occur well before the clinical onset of dementia. Our aim was to determine whether allocentric spatial navigation impairment would be proportional to right hippocampal volume loss irrespective of general brain atrophy. We also contrasted the respective spatial navigation scores of the real-space human Morris water maze with its corresponding 2D computer version. We included 42 cognitively impaired patients with either amnestic mild cognitive impairment (n = 23) or mild and moderate AD (n = 19), and 14 cognitively intact older controls. All participants underwent 1.5T MRI brain scanning with subsequent automatic measurement of the total brain and hippocampal (right and left) volumes. Allocentric spatial navigation was tested in the real-space version of the human Morris water maze and in its corresponding computer version. Participants used two navigational cues to locate an invisible goal independent of the start position. We found that smaller right hippocampal volume was associated with poorer navigation performance in both the real-space (β = −0.62, P < 0.001) and virtual (β = −0.43, P = 0.026) versions, controlling for demographic variables, total brain and left hippocampal volumes. In subsequent analyses, the results were significant in cognitively impaired (P ≤ 0.05) but not in cognitively healthy (P > 0.59) subjects. The respective real-space and virtual scores strongly correlated with each other. Our findings indicate that the right hippocampus plays a critical role in allocentric navigation, particularly when cognitive impairment is present. PMID:22308496

  2. Robot navigation algorithms using learned spatial graphs

    SciTech Connect

    Iyengar, S.S.; Jorgensen, C.C.; Rao, S.V.N.; Weisbin, C.R.

    1985-01-01

    Finding optimal paths for robot navigation in known terrain has been studied for some time but, in many important situations, a robot would be required to navigate in completely new or partially explored terrain. We propose a method of robot navigation which requires no pre-learned model, makes maximal use of available information, records and synthesizes information from multiple journeys, and contains concepts of learning that allow for continuous transition from local to global path optimality. The model of the terrain consists of a spatial graph and a Voronoi diagram. Using acquired sensor data, polygonal boundaries containing perceived obstacles shrink to approximate the actual obstacles' surfaces, free space for transit is correspondingly enlarged, and additional nodes and edges are recorded based on path intersections and stop points. Navigation planning is gradually accelerated with experience since improved global map information minimizes the need for further sensor data acquisition. Our method currently assumes obstacle locations are unchanging, navigation can be successfully conducted using two-dimensional projections, and sensor information is precise.

  3. Spatial Navigation in Preclinical Alzheimer's Disease.

    PubMed

    Allison, Samantha L; Fagan, Anne M; Morris, John C; Head, Denise

    2016-02-01

    Although several previous studies have demonstrated navigational deficits in early-stage symptomatic Alzheimer's disease (AD), navigational abilities in preclinical AD have not been examined. The present investigation examined the effects of preclinical AD and early-stage symptomatic AD on spatial navigation performance. Performance on tasks of wayfinding and route learning in a virtual reality environment were examined. Comparisons were made across the following three groups: Clinically normal without preclinical AD (n = 42), clinically normal with preclinical AD (n = 13), and early-stage symptomatic AD (n = 16) groups. Preclinical AD was defined based on cerebrospinal fluid Aβ42 levels below 500 pg/ml. Preclinical AD was associated with deficits in the use of a wayfinding strategy, but not a route learning strategy. Moreover, post-hoc analyses indicated that wayfinding performance had moderate sensitivity and specificity. Results also confirmed early-stage symptomatic AD-related deficits in the use of both wayfinding and route learning strategies. The results of this study suggest that aspects of spatial navigation may be particularly sensitive at detecting the earliest cognitive deficits of AD. PMID:26967209

  4. PandaEPL: A library for programming spatial navigation experiments

    PubMed Central

    Solway, Alec; Miller, Jonathan F.

    2013-01-01

    Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment. PMID:23549683

  5. Olfactory Orientation and Navigation in Humans.

    PubMed

    Jacobs, Lucia F; Arter, Jennifer; Cook, Amy; Sulloway, Frank J

    2015-01-01

    Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans. PMID:26083337

  6. Olfactory Orientation and Navigation in Humans

    PubMed Central

    Jacobs, Lucia F.; Arter, Jennifer; Cook, Amy; Sulloway, Frank J.

    2015-01-01

    Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans. PMID:26083337

  7. Blocking spatial navigation across environments that have a different shape.

    PubMed

    Buckley, Matthew G; Smith, Alastair D; Haselgrove, Mark

    2016-01-01

    According to the geometric module hypothesis, organisms encode a global representation of the space in which they navigate, and this representation is not prone to interference from other cues. A number of studies, however, have shown that both human and non-human animals can navigate on the basis of local geometric cues provided by the shape of an environment. According to the model of spatial learning proposed by Miller and Shettleworth (2007, 2008), geometric cues compete for associative strength in the same manner as non-geometric cues do. The experiments reported here were designed to test if humans learn about local geometric cues in a manner consistent with the Miller-Shettleworth model. Experiment 1 replicated previous findings that humans transfer navigational behavior, based on local geometric cues, from a rectangle-shaped environment to a kite-shaped environment, and vice versa. In Experiments 2 and 3, it was observed that learning about non-geometric cues blocked, and were blocked by, learning about local geometric cues. The reciprocal blocking observed is consistent with associative theories of spatial learning; however, it is difficult to explain the observed effects with theories of global-shape encoding in their current form. PMID:26569017

  8. Blocking Spatial Navigation Across Environments That Have a Different Shape

    PubMed Central

    2015-01-01

    According to the geometric module hypothesis, organisms encode a global representation of the space in which they navigate, and this representation is not prone to interference from other cues. A number of studies, however, have shown that both human and non-human animals can navigate on the basis of local geometric cues provided by the shape of an environment. According to the model of spatial learning proposed by Miller and Shettleworth (2007, 2008), geometric cues compete for associative strength in the same manner as non-geometric cues do. The experiments reported here were designed to test if humans learn about local geometric cues in a manner consistent with the Miller-Shettleworth model. Experiment 1 replicated previous findings that humans transfer navigational behavior, based on local geometric cues, from a rectangle-shaped environment to a kite-shaped environment, and vice versa. In Experiments 2 and 3, it was observed that learning about non-geometric cues blocked, and were blocked by, learning about local geometric cues. The reciprocal blocking observed is consistent with associative theories of spatial learning; however, it is difficult to explain the observed effects with theories of global-shape encoding in their current form. PMID:26569017

  9. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  10. Spatial linear navigation: is vision necessary?

    PubMed

    Israël, I; Capelli, A; Priot, A-E; Giannopulu, I

    2013-10-25

    In order to analyze spatial linear navigation through a task of self-controlled reproduction, healthy participants were passively transported on a mobile robot at constant velocity, and then had to reproduce the imposed distance of 2-8m in two conditions: "with vision" and "without vision". Our hypothesis was that the reproduction of distances would be longer with than without visual information. Indeed, with visual information the reproduction of all distances was overshot. In the "without vision" condition the reproduced distances were quite close to the imposed ones, but only for the shortest distances (2 and 4m) as the longest ones were clearly undershot. With vision the reproduction error was less than 10% for all distances; however the error could be smaller without vision at short distances, and therefore vision was not necessary. PMID:24021798

  11. Navigational Spatial Displays: The Role of Metacognition as Cognitive Load

    ERIC Educational Resources Information Center

    Scott, Brianna M.; Schwartz, Neil H.

    2007-01-01

    One hundred and six undergraduates searched a hypermedia environment under three navigational conditions, wrote an essay measuring their comprehension, and completed a test of metacognition. The map conditions were spatial/semantic, spatial only, and none. Analyses revealed that a navigational map capable of incurring an integrative cognitive…

  12. Switching from Reaching to Navigation: Differential Cognitive Strategies for Spatial Memory in Children and Adults

    ERIC Educational Resources Information Center

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-01-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The…

  13. Four-Dimensional Spatial Reasoning in Humans

    ERIC Educational Resources Information Center

    Aflalo, T. N.; Graziano, M. S. A.

    2008-01-01

    Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding…

  14. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions.

    PubMed

    Chersi, Fabian; Burgess, Neil

    2015-10-01

    Spatial navigation can serve as a model system in cognitive neuroscience, in which specific neural representations, learning rules, and control strategies can be inferred from the vast experimental literature that exists across many species, including humans. Here, we review this literature, focusing on the contributions of hippocampal and striatal systems, and attempt to outline a minimal cognitive architecture that is consistent with the experimental literature and that synthesizes previous related computational modeling. The resulting architecture includes striatal reinforcement learning based on egocentric representations of sensory states and actions, incidental Hebbian association of sensory information with allocentric state representations in the hippocampus, and arbitration of the outputs of both systems based on confidence/uncertainty in medial prefrontal cortex. We discuss the relationship between this architecture and learning in model-free and model-based systems, episodic memory, imagery, and planning, including some open questions and directions for further experiments. PMID:26447573

  15. Partially segregated neural networks for spatial and contextual memory in virtual navigation.

    PubMed

    Rauchs, Géraldine; Orban, Pierre; Balteau, Evelyne; Schmidt, Christina; Degueldre, Christian; Luxen, André; Maquet, Pierre; Peigneux, Philippe

    2008-01-01

    Finding our way in a previously learned, ecologically valid environment concurrently involves spatial and contextual cognitive operations. The former process accesses a cognitive map representing the spatial interactions between all paths in the environment. The latter accesses stored associations between landmark objects and their milieu. Here, we aimed at dissociating their neural basis in the context of memory-based virtual navigation. To do so, subjects freely explored a virtual town for 1 h, then were scanned using fMRI while retrieving their way between two locations, under four navigation conditions designed to probe separately or jointly the spatial and contextual memory components. Besides prominent commonalities found in a large hippocampo-neocortical network classically involved in topographical navigation, results yield evidence for a partial dissociation between the brain areas supporting spatial and contextual components of memory-based navigation. Performance-related analyses indicate that hippocampal activity mostly supports the spatial component, whereas parahippocampal activity primarily supports the contextual component. Additionally, the recruitment of contextual memory during navigation was associated with higher frontal, posterior parietal and lateral temporal activity. These results provide evidence for a partial segregation of the neural substrates of two crucial memory components in human navigation, whose combined involvement eventually leads to efficient navigation behavior within a learned environment. PMID:18240326

  16. Visual Landmarks Facilitate Rodent Spatial Navigation in Virtual Reality Environments

    ERIC Educational Resources Information Center

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain…

  17. Cognitive adaptations for gathering-related navigation in humans

    PubMed Central

    Krasnow, Max M.; Truxaw, Danielle; Gaulin, Steven J.C.; New, Joshua; Ozono, Hiroki; Uono, Shota; Ueno, Taiji; Minemoto, Kazusa

    2013-01-01

    Current research increasingly suggests that spatial cognition in humans is accomplished by many specialized mechanisms, each designed to solve a particular adaptive problem. A major adaptive problem for our hominin ancestors, particularly females, was the need to efficiently gather immobile foods which could vary greatly in quality, quantity, spatial location and temporal availability. We propose a cognitive model of a navigational gathering adaptation in humans and test its predictions in samples from the US and Japan. Our results are uniformly supportive: the human mind appears equipped with a navigational gathering adaptation that encodes the location of gatherable foods into spatial memory. This mechanism appears to be chronically active in women and activated under explicit motivation in men. PMID:23833551

  18. Spatial navigation in autism spectrum disorders: a critical review

    PubMed Central

    Smith, Alastair D.

    2015-01-01

    On the basis of relative strengths that have been attributed to the autistic cognitive profile, it has been suggested by a number of theorists that people with autism spectrum disorders (ASD) excel at spatial navigational tasks. However, many of these claims have been made in the absence of a close inspection of extant data in the scientific literature, let alone anecdotal reports of daily navigational experiences. The present review gathers together published studies that have attempted to explicitly address functional components of navigation in ASD populations, including assays of wayfinding, large-scale search, and path integration. This inspection reveals a pattern of apparent strengths and weaknesses in navigational abilities, thus illustrating the necessity for a more measured and comprehensive approach to the understanding of spatial behavior in ASD. PMID:25667579

  19. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. PMID:27174311

  20. Persistent and stable biases in spatial learning mechanisms predict navigational style.

    PubMed

    Furman, Andrew J; Clements-Stephens, Amy M; Marchette, Steven A; Shelton, Amy L

    2014-12-01

    A wealth of evidence in rodents and humans supports the central roles of two learning systems--hippocampal place learning and striatal response learning--in the formation of spatial representations to support navigation. Individual differences in the ways that these mechanisms are engaged during initial encoding and subsequent navigation may provide a powerful framework for explaining the wide range of variability found in the strategies and solutions that make up human navigational styles. Previous work has revealed that activation in the hippocampal and striatal networks during learning could predict navigational style. Here, we used functional magnetic resonance imaging to investigate the relative activations in these systems during both initial encoding and the act of dynamic navigation in a learned environment. Participants learned a virtual environment and were tested on subsequent navigation to targets within the environment. We observed that a given individual had a consistent balance of memory system engagement across both initial encoding and subsequent navigation, a balance that successfully predicted the participants' tendencies to use novel shortcuts versus familiar paths during dynamic navigation. This was further supported by the observation that the activation during subsequent retrieval was not dependent on the type of solution used on a given trial. Taken together, our results suggest a model in which the place- and response-learning systems are present in parallel to support a variety of navigational behaviors, but stable biases in the engagement of these systems influence what solutions might be available for any given individual. PMID:24830787

  1. Impaired Spatial Navigation in Pediatric Anxiety

    ERIC Educational Resources Information Center

    Mueller, Sven C.; Temple, Veronica; Cornwell, Brian; Grillon, Christian; Pine, Daniel S.; Ernst, Monique

    2009-01-01

    Background: Previous theories implicate hippocampal dysfunction in anxiety disorders. Most of the data supporting these theories stem from animal research, particularly lesion studies. The generalization of findings from rodent models to human function is hampered by fundamental inter-species differences. The present work uses a task of spatial…

  2. Evidence of Separable Spatial Representations in a Virtual Navigation Task

    ERIC Educational Resources Information Center

    Gramann, Klaus; Muller, Hermann J.; Eick, Eva-Maria; Schonebeck, Bernd

    2005-01-01

    Three experiments investigated spatial orientation in a virtual navigation task. Subjects had to adjust a homing vector indicating their end position relative to the origin of the path. It was demonstrated that sparse visual flow was sufficient for accurate path integration. Moreover, subjects were found to prefer a distinct egocentric or…

  3. Does Spatial Locative Comprehension Predict Landmark-Based Navigation?

    PubMed Central

    Piccardi, Laura; Palermo, Liana; Bocchi, Alessia; Guariglia, Cecilia; D’Amico, Simonetta

    2015-01-01

    In the present study we investigated the role of spatial locative comprehension in learning and retrieving pathways when landmarks were available and when they were absent in a sample of typically developing 6- to 11-year-old children. Our results show that the more proficient children are in understanding spatial locatives the more they are able to learn pathways, retrieve them after a delay and represent them on a map when landmarks are present in the environment. These findings suggest that spatial language is crucial when individuals rely on sequences of landmarks to drive their navigation towards a given goal but that it is not involved when navigational representations based on the geometrical shape of the environment or the coding of body movements are sufficient for memorizing and recalling short pathways. PMID:25629814

  4. Prospective representation of navigational goals in the human hippocampus.

    PubMed

    Brown, Thackery I; Carr, Valerie A; LaRocque, Karen F; Favila, Serra E; Gordon, Alan M; Bowles, Ben; Bailenson, Jeremy N; Wagner, Anthony D

    2016-06-10

    Mental representation of the future is a fundamental component of goal-directed behavior. Computational and animal models highlight prospective spatial coding in the hippocampus, mediated by interactions with the prefrontal cortex, as a putative mechanism for simulating future events. Using whole-brain high-resolution functional magnetic resonance imaging and multi-voxel pattern classification, we tested whether the human hippocampus and interrelated cortical structures support prospective representation of navigational goals. Results demonstrated that hippocampal activity patterns code for future goals to which participants subsequently navigate, as well as for intervening locations along the route, consistent with trajectory-specific simulation. The strength of hippocampal goal representations covaried with goal-related coding in the prefrontal, medial temporal, and medial parietal cortex. Collectively, these data indicate that a hippocampal-cortical network supports prospective simulation of navigational events during goal-directed planning. PMID:27284194

  5. Spatial Navigation Strategies in Peromyscus: a Comparative Study

    PubMed Central

    Jašarević, Eldin; Williams, Scott A.; Roberts, R. Michael; Geary, David C.; Rosenfeld, Cheryl S.

    2012-01-01

    A male advantage in spatial abilities is predicted to evolve in species where males rely on expansion of home territory to locate dispersed mates during the breeding season. We sought to examine mechanistic underpinnings of this evolved trait by comparing spatial navigational abilities in two species of Peromyscus that employ widely different reproductive strategies. Males and females from outbred stocks of deer mice (P. maniculatus bairdii) in which males engage in territorial expansion and mate search and California mice (P. californicus insignis), in which males do not, were administered tasks that assessed spatial learning and memory, and activity and exploratory behaviours. The maze employed for these studies included four spatial cues that could be used to aid in locating 1 of 12 potential escape holes. As predicted, male deer mice outperformed conspecific females and California mice males in maze performance and memory, and this difference appeared to be due to extent to which animals used spatial cues to guide maze navigation. Consistent with territorial expansion as a component of competition for mates, male deer mice were more active and engaged in more exploratory and less anxiety-related behaviours than conspecific females and California mice males. The results have implications for understanding and studying the cognitive and behavioural mechanisms that have evolved through male-male competition that involves territorial expansion and mate search. PMID:23355748

  6. Spatial Navigation Strategies in Peromyscus: a Comparative Study.

    PubMed

    Jašarević, Eldin; Williams, Scott A; Roberts, R Michael; Geary, David C; Rosenfeld, Cheryl S

    2012-11-01

    A male advantage in spatial abilities is predicted to evolve in species where males rely on expansion of home territory to locate dispersed mates during the breeding season. We sought to examine mechanistic underpinnings of this evolved trait by comparing spatial navigational abilities in two species of Peromyscus that employ widely different reproductive strategies. Males and females from outbred stocks of deer mice (P. maniculatus bairdii) in which males engage in territorial expansion and mate search and California mice (P. californicus insignis), in which males do not, were administered tasks that assessed spatial learning and memory, and activity and exploratory behaviours. The maze employed for these studies included four spatial cues that could be used to aid in locating 1 of 12 potential escape holes. As predicted, male deer mice outperformed conspecific females and California mice males in maze performance and memory, and this difference appeared to be due to extent to which animals used spatial cues to guide maze navigation. Consistent with territorial expansion as a component of competition for mates, male deer mice were more active and engaged in more exploratory and less anxiety-related behaviours than conspecific females and California mice males. The results have implications for understanding and studying the cognitive and behavioural mechanisms that have evolved through male-male competition that involves territorial expansion and mate search. PMID:23355748

  7. Spatial filtering velocimeter for vehicle navigation with extended measurement range

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-05-01

    The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.

  8. Decoding the view expectation during learned maze navigation from human fronto-parietal network

    PubMed Central

    Shikauchi, Yumi; Ishii, Shin

    2015-01-01

    Humans use external cues and prior knowledge about the environment to monitor their positions during spatial navigation. View expectation is essential for correlating scene views with a cognitive map. To determine how the brain performs view expectation during spatial navigation, we applied a multiple parallel decoding technique to functional magnetic resonance imaging (fMRI) when human participants performed scene choice tasks in learned maze navigation environments. We decoded participants’ view expectation from fMRI signals in parietal and medial prefrontal cortices, whereas activity patterns in occipital cortex represented various types of external cues. The decoder’s output reflected participants’ expectations even when they were wrong, corresponding to subjective beliefs opposed to objective reality. Thus, view expectation is subjectively represented in human brain, and the fronto-parietal network is involved in integrating external cues and prior knowledge during spatial navigation. PMID:26631641

  9. Decoding the view expectation during learned maze navigation from human fronto-parietal network.

    PubMed

    Shikauchi, Yumi; Ishii, Shin

    2015-01-01

    Humans use external cues and prior knowledge about the environment to monitor their positions during spatial navigation. View expectation is essential for correlating scene views with a cognitive map. To determine how the brain performs view expectation during spatial navigation, we applied a multiple parallel decoding technique to functional magnetic resonance imaging (fMRI) when human participants performed scene choice tasks in learned maze navigation environments. We decoded participants' view expectation from fMRI signals in parietal and medial prefrontal cortices, whereas activity patterns in occipital cortex represented various types of external cues. The decoder's output reflected participants' expectations even when they were wrong, corresponding to subjective beliefs opposed to objective reality. Thus, view expectation is subjectively represented in human brain, and the fronto-parietal network is involved in integrating external cues and prior knowledge during spatial navigation. PMID:26631641

  10. Interpreting collective neural activity underlying spatial navigation in virtual reality

    NASA Astrophysics Data System (ADS)

    Meshulam, Leenoy; Gauthier, Jeff; Tank, David; Bialek, William

    2015-03-01

    Traditionally, cognitive- demanding processes like spatial navigation were studied by recording the activity of single neurons. However, recent technological progress allows imaging the simultaneous activity of large neuronal populations in awake behaving animals. This progress in experimental work calls for a similar adjustments of the modeling frameworks. To achieve a description of the ``real thermodynamics'' of the neural system, we construct maximum entropy models for optical imaging data taken in vivo, from the hippocampus of mice navigating in a virtual reality environment. This provides a natural extension of statistical mechanics applicable to brain activity, by focusing on the interactions between cells rather than on single cell's activity. We aim to determine how the topology of the energy landscape predicted by the model corresponds to the location of the animal in the environment. Since large subpopulations of the neurons in this area are spatially modulated, we expect the landscape to exhibit a large ``valley'' structure of local minima, corresponding to the animal's position along the environment. Such a finding is especially of interest because the location information emerges solely from the activity patterns that are accessible to the brain.

  11. Cognitive Effects of Language on Human Navigation

    ERIC Educational Resources Information Center

    Shusterman, Anna; Ah Lee, Sang; Spelke, Elizabeth S.

    2011-01-01

    Language has been linked to spatial representation and behavior in humans, but the nature of this effect is debated. Here, we test whether simple verbal expressions improve 4-year-old children's performance in a disoriented search task in a small rectangular room with a single red landmark wall. Disoriented children's landmark-guided search for a…

  12. A tesselated probabilistic representation for spatial robot perception and navigation

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto

    1989-01-01

    The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.

  13. Outside Looking In: Landmark Generalization in the Human Navigational System

    PubMed Central

    Vass, Lindsay K.; Ryan, Jack; Epstein, Russell A.

    2015-01-01

    The use of landmarks is central to many navigational strategies. Here we use multivoxel pattern analysis of fMRI data to understand how landmarks are coded in the human brain. Subjects were scanned while viewing the interiors and exteriors of campus buildings. Despite their visual dissimilarity, interiors and exteriors corresponding to the same building elicited similar activity patterns in the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA), three regions known to respond strongly to scenes and buildings. Generalization across stimuli depended on knowing the correspondences among them in the PPA but not in the other two regions, suggesting that the PPA is the key region involved in learning the different perceptual instantiations of a landmark. In contrast, generalization depended on the ability to freely retrieve information from memory in RSC, and it did not depend on familiarity or cognitive task in OPA. Together, these results suggest a tripartite division of labor, whereby PPA codes landmark identity, RSC retrieves spatial or conceptual information associated with landmarks, and OPA processes visual features that are important for landmark recognition. SIGNIFICANCE STATEMENT A central element of spatial navigation is the ability to recognize the landmarks that mark different places in the world. However, little is known about how the brain performs this function. Here we show that the parahippocampal place area (PPA), a region in human occipitotemporal cortex, exhibits key features of a landmark recognition mechanism. Specifically, the PPA treats different perceptual instantiations of the same landmark as representationally similar, but only when subjects have enough experience to know the correspondences among the stimuli. We also identify two other brain regions that exhibit landmark generalization, but with less sensitivity to familiarity. These results elucidate the brain networks involved in the learning and

  14. Human spatial representation: insights from animals.

    PubMed

    Wang, Ranxiao; Spelke, Elizabeth

    2002-09-01

    HUMAN NAVIGATION IS SPECIAL: we use geographic maps to capture a world far beyond our unaided locomotion. In consequence, human navigation is widely thought to depend on internalized versions of these maps - enduring, geocentric 'cognitive maps' capturing diverse information about the environment. Contrary to this view, we argue that human navigation is best studied in relation to research on navigating animals as humble as ants. This research provides evidence that animals, including humans, navigate primarily by representations that are momentary rather than enduring, egocentric rather than geocentric, and limited in the environmental information that they capture. Uniquely human forms of navigation build on these representations. PMID:12200179

  15. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.

    PubMed

    Wegman, Joost; Tyborowska, Anna; Janzen, Gabriele

    2014-07-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants actively navigated in an open-field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark-based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between-participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely

  16. Rats with lesions of the vestibular system require a visual landmark for spatial navigation.

    PubMed

    Stackman, Robert W; Herbert, Aaron M

    2002-01-01

    The role of the vestibular system in acquisition and performance of a spatial navigation task was examined in rats. Male Long-Evans rats received sham or bilateral sodium arsanilate-induced vestibular lesions. After postoperative recovery, under partial water-deprivation, rats were trained (16 trials/day) to find a water reward in one corner of a black square enclosure. A cue card fixed to one wall of the enclosure served as a stable landmark cue. The orientation of the rat at the start of each trial was pseudo-randomized such that the task could not be solved by an egocentric response strategy. Rats with vestibular lesions acquired the task in fewer trials than the sham treated control rats. Vestibular lesions did not influence the motivation or motor function necessary to perform the task. Performance of sham rats was maintained during probe trials in which the cue card was removed from the enclosure, while lesioned rats were markedly impaired. Rotation of the cue card (+/-90 degrees ) caused an equivalent shift in corner choice behavior of the lesioned rats. However, sham rats often disregarded the rotated cue card and made place responses. These results suggest that the vestibular lesions disrupt idiothetic navigation or path integration and render navigational behavior critically dependent upon external landmarks. These results are consistent with the navigational abilities of humans with bilateral vestibular dysfunction. PMID:11755687

  17. Design of a Virtual Reality Navigational (VRN) experiment for assessment of egocentric spatial cognition.

    PubMed

    Byagowi, Ahmad; Moussavi, Zahra

    2012-01-01

    Virtual reality (VR) experiments are commonly used to assess human brain functions. We orient ourselves in an environment by computing precise self-to-object spatial relations (egocentric orientation) as well as object-to-object spatial relations (allocentric orientation). Egocentric orientation involves cues that depend on the position of the observer (i.e. left-right, front-behind), whereas allocentric orientation is maintained through the use of environmental features such as landmarks. As such, allocentric orientation involves short-term memory, whereas egocentric orientation does not. This paper presents a Virtual Reality Navigational (VRN) experiment specifically designed to assess egocentric spatial cognition. The design aimed to minimize the effect of spatial cues or landmarks for human navigation in a naturalistic VR environment. The VRN experiment designed for this study, called the Virtual House, is a symmetric three story cubic building, with 3 windows on each side on every floor, and one entrance on each side of the building. In each trial, a window is marked by a pseudo-random sequence as the objective. The marked window is shown to the participant from an outdoor view. The task is to reach the objective window using the shortest path through the building. The experiment entails 2 sets of 8 trials to cover all possibilities. The participants' performance error is measured by the difference between their traversed distance trajectory and the shortest natural distance (calculated using the VR engine), normalized by the shortest distance, in each trial. Fifty-two cognitively healthy adults participated in the study. The results show no learning effect during the 16 trails, implying that the experiment does not rely on short-term memory. Furthermore, the subjects' normalized performance error showed an almost linear increase with age, implying that egocentric spatial cognition ability declines with age. PMID:23367004

  18. Autonomous Navigation for Mobile Robots with Human-Robot Interaction

    NASA Astrophysics Data System (ADS)

    Ballantyne, James; Johns, Edward; Valibeik, Salman; Wong, Charence; Yang, Guang-Zhong

    Dynamic and complex indoor environments present a challenge for mobile robot navigation. The robot must be able to simultaneously map the environment, which often has repetitive features, whilst keep track of its pose and location. This chapter introduces some of the key considerations for human guided navigation. Rather than letting the robot explore the environment fully autonomously, we consider the use of human guidance for progressively building up the environment map and establishing scene association, learning, as well as navigation and planning. After the guide has taken the robot through the environment and indicated the points of interest via hand gestures, the robot is then able to use the geometric map and scene descriptors captured during the tour to create a high-level plan for subsequent autonomous navigation within the environment. Issues related to gesture recognition, multi-cue integration, tracking, target pursuing, scene association and navigation planning are discussed.

  19. Human Factors Considerations for Performance-Based Navigation

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.

  20. Theta oscillations and human navigation: a magnetoencephalography study.

    PubMed

    de Araújo, Dráulio B; Baffa, Oswaldo; Wakai, Ronald T

    2002-01-01

    Magnetoencephalography (MEG) was used to study alpha and theta activity while subjects navigated through a computer-generated virtual reality town. The subjects were first allowed to explore the environment freely. They then had to navigate from a starting point to a destination, knowing that an obstruction would appear at one of several possible locations along the main route and force them to take a detour. Spatiotemporal analysis of the theta and alpha bands were performed (1) prior to the start of navigation, (2) from the start of navigation until the obstruction was encountered, (3) during the time subjects were contemplating a detour and were not navigating, and (4) from the resumption of navigation until the destination was reached. In all subjects, theta power was strongest during the two periods of navigation. The peak frequency of the oscillations was approximately 3.7 Hz. Control studies consisted of a motor task similar to that required for navigation, passive viewing of a tour through the same virtual reality town, and a mental concentration task. No consistent increases in theta power were seen in the MEG during any of the control tasks. The results suggest an association between theta rhythm and the performance of navigational tasks in humans. PMID:11798388

  1. Mechanisms for Human Spatial Competence

    NASA Astrophysics Data System (ADS)

    Gunzelmann, Glenn; Lyon, Don R.

    Research spanning decades has generated a long list of phenomena associated with human spatial information processing. Additionally, a number of theories have been proposed about the representation, organization and processing of spatial information by humans. This paper presents a broad account of human spatial competence, integrated with the ACT-R cognitive architecture. Using a cognitive architecture grounds the research in a validated theory of human cognition, enhancing the plausibility of the overall account. This work posits a close link of aspects of spatial information processing to vision and motor planning, and integrates theoretical perspectives that have been proposed over the history of research in this area. In addition, the account is supported by evidence from neuropsychological investigations of human spatial ability. The mechanisms provide a means of accounting for a broad range of phenomena described in the experimental literature.

  2. The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment.

    PubMed

    Laczó, Jan; Andel, Ross; Vyhnalek, Martin; Matoska, Vaclav; Kaplan, Vojtech; Nedelska, Zuzana; Lerch, Ondrej; Gazova, Ivana; Moffat, Scott D; Hort, Jakub

    2015-06-01

    The very long (VL) poly-T variant at rs10524523 ("523") of the TOMM40 gene may hasten the onset of late-onset Alzheimer's disease (LOAD) and induce more profound cognitive impairment compared with the short (S) poly-T variant. We examined the influence of TOMM40 "523" polymorphism on spatial navigation and its brain structural correlates. Participants were apolipoprotein E (APOE) ε3/ε3 homozygotes with amnestic mild cognitive impairment (aMCI). The homozygotes were chosen because APOE ε3/ε3 variant is considered "neutral" with respect to LOAD risk. The participants were stratified according to poly-T length polymorphisms at "523" into homozygous for S (S/S; n = 16), homozygous for VL (VL/VL; n = 15) TOMM40 poly-T variant, and heterozygous (S/VL; n = 28) groups. Neuropsychological examination and testing in real-space human analog of the Morris Water Maze were administered. Both self-centered (egocentric) and world-centered (allocentric) spatial navigation was assessed. Brain magnetic resonance imaging scans were analyzed using FreeSurfer software. The S/S group, although similar to S/VL and VL/VL groups in demographic and neuropsychological profiles, performed better on allocentric navigation (p ≤ 0.004) and allocentric delayed recall (p ≤ 0.014), but not on egocentric navigation. Both S/VL and VL/VL groups had thinner right entorhinal cortex (p ≤ 0.043) than the S/S group, whereas only the VL/VL group had thinner left entorhinal cortex (p = 0.043) and left posterior cingulate cortex (p = 0.024) than the S/S group. In conclusion, TOMM40 "523" VL variants are related to impairment in allocentric spatial navigation and reduced cortical thickness of specific brain regions among aMCI individuals with (LOAD neutral) APOE ε3/ε3 genotype. This may reflect a specific role of TOMM40 "523" in the pathogenesis of LOAD. PMID:25862420

  3. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  4. A navigational guidance system in the human brain.

    PubMed

    Spiers, Hugo J; Maguire, Eleanor A

    2007-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one's current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional magnetic resonance imaging as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analyzed in combination with metric measures of proximity and direction to goal destinations that were derived from each individual subject's coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behavior in general. PMID:17492693

  5. A navigational guidance system in the human brain

    PubMed Central

    Spiers, Hugo J.; Maguire, Eleanor A.

    2008-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one’s current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional MRI (fMRI) as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analysed in combination with metric measures of proximity and direction to goal destinations which were derived from each individual subject’s coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behaviour in general. PMID:17492693

  6. Interactive virtual navigation in human organs

    NASA Astrophysics Data System (ADS)

    Li, Guangming; Tian, Jie; Zhao, Mingchang; He, Huiguang

    2003-09-01

    Virtual endoscopy is meaningful for medical diagnosis and surgery. In this paper, a system framework for virtual endoscopy is proposed including automatic centerline extraction and view-dependent level-of-detail rendering techniques. Combining Hessian Matrix with distance mapping, our path planning method can generate accurate skeleton for virtual navigation. Furthermore real tim rendering can be achieved with our new view-dependent subdivision algorithm. The experimental results show the efficiency of our methods.

  7. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation.

    PubMed

    Geva-Sagiv, Maya; Las, Liora; Yovel, Yossi; Ulanovsky, Nachum

    2015-02-01

    Spatial orientation and navigation rely on the acquisition of several types of sensory information. This information is then transformed into a neural code for space in the hippocampal formation through the activity of place cells, grid cells and head-direction cells. These spatial representations, in turn, are thought to guide long-range navigation. But how the representations encoded by these different cell types are integrated in the brain to form a neural 'map and compass' is largely unknown. Here, we discuss this problem in the context of spatial navigation by bats and rats. We review the experimental findings and theoretical models that provide insight into the mechanisms that link sensory systems to spatial representations and to large-scale natural navigation. PMID:25601780

  8. Environmental layout complexity affects neural activity during navigation in humans.

    PubMed

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. PMID:26990572

  9. Assessment of spatial attention and neglect with a virtual wheelchair navigation task.

    PubMed

    Buxbaum, Laurel J; Palermo, Mary Ann; Mastrogiovanni, Dina; Read, Mary Schmidt; Rosenberg-Pitonyak, Ellen; Rizzo, Albert A; Coslett, H Branch

    2008-08-01

    A total of 9 participants with right-hemisphere stroke performed a new virtual reality (VR) wheelchair navigation test of lateralized spatial attention and neglect. The test consists of a virtual path along which participants navigate (or are navigated) as they name virtual objects encountered. There are 4 VR conditions, obtained by crossing the factors array complexity and driver. Participants performed the VR task, a real-life wheelchair navigation task, and a battery of attention and neglect tests. The VR test showed sensitivity to both array complexity and driver, exhibited strong correlations with the wheelchair navigation test, and detected lateralized attention deficits in mild patients. The VR task thus shows promise as a sensitive, efficient measure of real-life navigation. PMID:18608643

  10. Slime mold uses an externalized spatial "memory" to navigate in complex environments.

    PubMed

    Reid, Chris R; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine

    2012-10-23

    Spatial memory enhances an organism's navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem--a classic test of autonomous navigational ability commonly used in robotics--requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism's ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms. PMID:23045640

  11. a Framework of Cognitive Indoor Navigation Based on Characteristics of Indoor Spatial Environment

    NASA Astrophysics Data System (ADS)

    Si, R.; Arikawa, M.

    2015-05-01

    People are easy to get confused in indoor spatial environment. Thus, indoor navigation systems on mobile devices are expected in a wide variety of application domains. Limited by the accuracy of indoor positioning, indoor navigating systems are not common in our society. However, automatic positioning is not all about location-based services (LBS), other factors, such as good map design and user interfaces, are also important to satisfy users of LBS. Indoor spatial environment and people's indoor spatial cognition are different than those in outdoor environment, which asks for different design of LBS. This paper introduces our design methods of indoor navigation system based on the characteristics of indoor spatial environment and indoor spatial cognition.

  12. Wayfinding in the Blind: Larger Hippocampal Volume and Supranormal Spatial Navigation

    ERIC Educational Resources Information Center

    Fortin, Madeleine; Voss, Patrice; Lord, Catherine; Lassonde, Maryse; Pruessner, Jens; Saint-Amour, Dave; Rainville, Constant; Lepore, Franco

    2008-01-01

    In the absence of visual input, the question arises as to how complex spatial abilities develop and how the brain adapts to the absence of this modality. We explored navigational skills in both early and late blind individuals and structural differences in the hippocampus, a brain region well known to be involved in spatial processing.…

  13. Way-marking behaviour: an aid to spatial navigation in the wood mouse (Apodemus sylvaticus)

    PubMed Central

    Stopka, Pavel; Macdonald, David W

    2003-01-01

    Background During their movements in the wild, wood mice (Apodemus sylvaticus) distribute small objects, such as leaves or twigs, which are often visually conspicuous. Our experiments demonstrate that these marks serve as points of reference during exploration. Way-marking, as we call it, may diminish the likelihood of losing an "interesting" location, perhaps following disturbance by, for example, a predator or conspecific. Way-marks, being readily portable, may be a less confusing method of marking ephemeral sites than scent marks. They may also be a safer option for local navigation insofar as scent marks can easily be detected by a predator. Results In an experiment, conspicuous natural candidate way-marks were removed from a simple arena and wood mice were given white plastic discs instead. The wood mice picked up these discs and re-distributed them about their arena; as the mice moved, they repeatedly re-positioned the discs and usually spent a considerable time near recently repositioned discs. Analysis revealed a statistically significant association between the location of places in which the mice had positioned way-marks and the subsequent pattern of their movements. In a separate analysis, based on the context in which each behaviour occurred, we used the components and sequences of wood mouse behaviour to deduce the motivation behind each activity. One set of behaviour patterns, the elements of which were closely linked by the high transition probabilities amongst them, were interpreted as linked elements of exploration; whenever the mice transported a disc it was in association with these exploratory behaviours. This evidence that transporting discs is set in the motivational context of exploratory behaviour supports the conclusion that way-marking is part of the wood mouse's system of spatial orientation. Conclusion We conclude that way-marking – a behaviour not previously described in mammals other than humans – serves solely as an aid to spatial

  14. Human hippocampal theta activity during virtual navigation.

    PubMed

    Ekstrom, Arne D; Caplan, Jeremy B; Ho, Emily; Shattuck, Kirk; Fried, Itzhak; Kahana, Michael J

    2005-01-01

    This study examines whether 4-8-Hz theta oscillations can be seen in the human hippocampus, and whether these oscillations increase during virtual movement and searching, as they do in rodents. Recordings from both hippocampal and neocortical depth electrodes were analyzed while six epileptic patients played a virtual taxi-driver game. During the game, the patients alternated between searching for passengers, whose locations were random, and delivering them to stores, whose locations remained constant. In both hippocampus and neocortex, theta increased during virtual movement in all phases of the game. Hippocampal and neocortical theta activity were also significantly correlated with each other, but this correlation did not differ between neocortex and hippocampus and within disparate neocortical electrodes. Our findings demonstrate the existence of movement-related theta oscillations in human hippocampus, and suggest that both cortical and hippocampal oscillations play a role in attention and sensorimotor integration. PMID:16114040

  15. Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms.

    PubMed

    Arleo, Angelo; Rondi-Reig, Laure

    2007-09-01

    Flexible spatial behavior requires the ability to orchestrate the interaction of multiple parallel processes. At the sensory level, multimodal inputs must be combined to produce a robust description of the spatiotemporal properties of the environment. At the action-selection level, multiple concurrent navigation policies must be dynamically weighted in order to adopt the strategy that is the most adapted to the complexity of the task. Different neural substrates mediate the processing of spatial information. Elucidating their anatomo-functional interrelations is fundamental to unravel the overall spatial memory function. Here we first address the multisensory integration issue and we review a series of experimental findings (both behavioral and electrophysiological) concerning the neural bases of spatial learning and the way the brain builds unambiguous spatial representations from incoming multisensory streams. Second, we move at the navigation strategy level and present an overview of experimental data that begin to explain the cooperation-competition between the brain areas involved in spatial navigation. Third, we introduce the spatial cognition function from a computational neuroscience and neuro-robotics viewpoint. We provide an example of neuro-computational model that focuses on the importance of combining multisensory percepts to enable a robot to acquire coherent (spatial) memories of its interaction with the environment. PMID:17933016

  16. Can Active Navigation Be as Good as Driving? A Comparison of Spatial Memory in Drivers and Backseat Drivers

    ERIC Educational Resources Information Center

    von Stulpnagel, Rul; Steffens, Melanie C.

    2012-01-01

    When driving a vehicle, either the driver or a passenger (henceforth: backseat driver) may be responsible for navigation. Research on active navigation, primarily addressed in virtual environments, suggests that controlling navigation is more central for spatial learning than controlling movement. To test this assumption in a real-world scenario,…

  17. The Brown-Roberts-Wells (BRW) arc: its concept as a spatial navigation system.

    PubMed

    Wells, T H; Cosman, E R; Ball, R E

    1987-01-01

    The Brown-Roberts-Wells (BRW) Arc System can be compared to spatial navigation because both utilize the concept of direction to and spatial location of a point in space by referencing to a horizontal angle (azimuth) and a vertical angle (declination) relative to the horizon. The BRW system also permits the determination of the distance from a reference surface of the arc system to the point (target). The methods of determining these parameters are explained in detail with illustrations. PMID:3329834

  18. The developmental origins of spatial navigation: are we headed in the right direction?

    PubMed

    Blumberg, Mark S

    2015-02-01

    Navigation depends upon neural systems that monitor spatial location and head orientation. Recent developmental findings have led some to conclude that these systems are innate. Such claims are premature. But also, there are more meaningful ways to arrive at answers about developmental origins than by invoking the outdated nature-nurture dichotomy. PMID:25600500

  19. Effectiveness of maritime safety control in different navigation zones using a spatial sequential DEA model: Yangtze River case.

    PubMed

    Wu, Bing; Wang, Yang; Zhang, Jinfen; Savan, Emanuel Emil; Yan, Xinping

    2015-08-01

    This paper aims to analyze the effectiveness of maritime safety control from the perspective of safety level along the Yangtze River with special considerations for navigational environments. The influencing variables of maritime safety are reviewed, including ship condition, maritime regulatory system, human reliability and navigational environment. Because the former three variables are generally assumed to be of the same level of safety, this paper focuses on studying the impact of navigational environments on the level of safety in different waterways. An improved data envelopment analysis (DEA) model is proposed by treating the navigational environment factors as inputs and ship accident data as outputs. Moreover, because the traditional DEA model cannot provide an overall ranking of different decision making units (DMUs), the spatial sequential frontiers and grey relational analysis are incorporated into the DEA model to facilitate a refined assessment. Based on the empirical study results, the proposed model is able to solve the problem of information missing in the prior models and evaluate the level of safety with a better accuracy. The results of the proposed DEA model are further compared with an evidential reasoning (ER) method, which has been widely used for level of safety evaluations. A sensitivity analysis is also conducted to better understand the relationship between the variation of navigational environments and level of safety. The sensitivity analysis shows that the level of safety varies in terms of traffic flow. It indicates that appropriate traffic control measures should be adopted for different waterways to improve their safety. This paper presents a practical method of conducting maritime level of safety assessments under dynamic navigational environment. PMID:25591393

  20. Visual cortical prosthesis with a geomagnetic compass restores spatial navigation in blind rats.

    PubMed

    Norimoto, Hiroaki; Ikegaya, Yuji

    2015-04-20

    Allocentric sense is one of the major components that underlie spatial navigation. In blind patients, the difficulty in spatial exploration is attributed, at least partly, to the deficit of absolute direction perception. In support of this notion, we announce that blind adult rats can perform spatial tasks normally when externally provided with real-time feedback of their head directions. Head-mountable microstimulators coupled with a digital geomagnetic compass were bilaterally implanted in the primary visual cortex of adult rats whose eyelids had been sutured. These "blind" rats were trained to seek food pellets in a T-shaped maze or a more complicated maze. Within tens of trials, they learned to manage the geomagnetic information source to solve the mazes. Their performance levels and navigation strategies were similar to those of normal sighted, intact rats. Thus, blind rats can recognize self-location through extrinsically provided stereotactic cues. PMID:25843028

  1. An investigation of the validity of the virtual spatial navigation assessment

    PubMed Central

    Ventura, Matthew; Shute, Valerie; Wright, Tim; Zhao, Weinan

    2013-01-01

    This correlational study investigated a new measure of environmental spatial ability (i.e., large scale spatial ability) called the virtual spatial navigation assessment (VSNA). In the VSNA, participants must find a set of gems in a virtual 3D environment using a first person avatar on a computer. The VSNA runs in a web browser and automatically collects the time taken to find each gem. The time taken to collect gems in the VSNA was significantly correlated to three other spatial ability measures, math standardized test scores, and choice to be in a STEM (science, technology, engineering, or math) career. These findings support the validity of the VSNA as a measure of environmental spatial ability. Finally, self-report video game experience was also significantly correlated to the VSNA suggesting that video game may improve environmental spatial ability. Recommendations are made for how the VSNA can be used to help guide individuals toward STEM career paths and identify weaknesses that might be addressed with large scale spatial navigation training. PMID:24379790

  2. Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring

    PubMed Central

    Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.

    2015-01-01

    The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766

  3. Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring.

    PubMed

    Rand, Kristina M; Creem-Regehr, Sarah H; Thompson, William B

    2015-06-01

    The ability to navigate without getting lost is an important aspect of quality of life. In 5 studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2, participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared with degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared with degraded vision. With degraded vision, auditory task performance was better when guided compared with unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766

  4. Object Persistence Enhances Spatial Navigation: A Case Study in Smartphone Vision Science.

    PubMed

    Liverence, Brandon M; Scholl, Brian J

    2015-07-01

    Violations of spatiotemporal continuity disrupt performance in many tasks involving attention and working memory, but experiments on this topic have been limited to the study of moment-by-moment on-line perception, typically assessed by passive monitoring tasks. We tested whether persisting object representations also serve as underlying units of longer-term memory and active spatial navigation, using a novel paradigm inspired by the visual interfaces common to many smartphones. Participants used key presses to navigate through simple visual environments consisting of grids of icons (depicting real-world objects), only one of which was visible at a time through a static virtual window. Participants found target icons faster when navigation involved persistence cues (via sliding animations) than when persistence was disrupted (e.g., via temporally matched fading animations), with all transitions inspired by smartphone interfaces. Moreover, this difference occurred even after explicit memorization of the relevant information, which demonstrates that object persistence enhances spatial navigation in an automatic and irresistible fashion. PMID:26048889

  5. Human Factors Considerations for Area Navigation Departure and Arrival Procedures

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    Area navigation (RNAV) procedures are being implemented in the United States and around the world as part of a transition to a performance-based navigation system. These procedures are providing significant benefits and have also caused some human factors issues to emerge. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document RNAV-related human factors issues and propose areas for further consideration. The component focusing on RNAV Departure and Arrival Procedures involved discussions with expert users, a literature review, and a focused review of the NASA Aviation Safety Reporting System (ASRS) database. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for specific instrument procedure design guidelines that consider the effects of human performance. Ongoing industry and government activities to address air-ground communication terminology, design improvements, and chart-database commonality are strongly encouraged. A review of factors contributing to RNAV in-service errors would likely lead to improved system design and operational performance.

  6. Anticipatory control and spatial cognition in locomotion and navigation through typical development and in cerebral palsy.

    PubMed

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2016-03-01

    Behavioural evidence, summarized in this narrative review, supports a developmental model of locomotor control based on increasing neural integration of spatial reference frames. Two consistent adult locomotor behaviours are head stabilization and head anticipation: the head is stabilized to gravity and leads walking direction. This cephalocaudal orienting organization aligns gaze and vestibula with a reference frame centred on the upcoming walking direction, allowing anticipatory control on body kinematics, but is not fully developed until adolescence. Walking trajectories and those of hand movements share many aspects, including power laws coupling velocity to curvature, and minimized spatial variability. In fact, the adult brain can code trajectory geometry in an allocentric reference frame, irrespective of the end effector, regulating body kinematics thereafter. Locomotor trajectory formation, like head anticipation, matures in early adolescence, indicating common neurocomputational substrates. These late-developing control mechanisms can be distinguished from biomechanical problems in children with cerebral palsy (CP). Children's performance on a novel navigation test, the Magic Carpet, indicates that typical navigation development consists of the increasing integration of egocentric and allocentric reference frames. In CP, right-brain impairment seems to reduce navigation performance due to a maladaptive left-brain sequential egocentric strategy. Spatial integration should be considered more in rehabilitation. PMID:27027604

  7. Where did it come from, where do you go? Direction sources influence navigation decisions during spatial uncertainty.

    PubMed

    Brunyé, Tad T; Gagnon, Stephanie A; Gardony, Aaron L; Gopal, Nikhil; Holmes, Amanda; Taylor, Holly A; Tenbrink, Thora

    2015-01-01

    Previous research on route directions largely considers the case when a knowledgeable route-giver conveys accurate information. In the real world, however, route information is sometimes inaccurate, and directions can lead navigators astray. We explored how participants respond to route directions containing ambiguities between landmarks and turn directions, forcing reliance on one or the other. In three experiments, participants read route directions (e.g., To get to the metro station, take a right at the pharmacy) and then selected from destinations on a map. Critically, in half of the trials the landmark (pharmacy) and turn (right) directions were conflicting, such that the participant had to make a decision under conditions of uncertainty; under these conditions, we measured whether participants preferentially relied upon landmark- versus direction-based strategies. Across the three experiments, participants were either provided no information regarding the source of directions (Experiment 1), or told that the source of directions was a GPS device (Experiment 2), or a human (Experiment 3). Without information regarding the source of directions, participants generally relied on landmarks or turn information under conditions of ambiguity; in contrast, with a GPS source participants relied primarily on turn information, and with a human source on landmark information. Results were robust across gender and individual differences in spatial preference. We discuss these results within the context of spatial decision-making theory and consider implications for the design and development of landmark-inclusive navigation systems. PMID:25285995

  8. Beyond Dizziness: Virtual Navigation, Spatial Anxiety and Hippocampal Volume in Bilateral Vestibulopathy.

    PubMed

    Kremmyda, Olympia; Hüfner, Katharina; Flanagin, Virginia L; Hamilton, Derek A; Linn, Jennifer; Strupp, Michael; Jahn, Klaus; Brandt, Thomas

    2016-01-01

    Bilateral vestibulopathy (BVP) is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63) and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87) compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional changes in the hippocampal formation and objective and subjective behavioral deficits. PMID:27065838

  9. Beyond Dizziness: Virtual Navigation, Spatial Anxiety and Hippocampal Volume in Bilateral Vestibulopathy

    PubMed Central

    Kremmyda, Olympia; Hüfner, Katharina; Flanagin, Virginia L.; Hamilton, Derek A.; Linn, Jennifer; Strupp, Michael; Jahn, Klaus; Brandt, Thomas

    2016-01-01

    Bilateral vestibulopathy (BVP) is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63) and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87) compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional changes in the hippocampal formation and objective and subjective behavioral deficits. PMID:27065838

  10. Dopamine modulation of spatial navigation memory in Parkinson's disease.

    PubMed

    Thurm, Franka; Schuck, Nicolas W; Fauser, Mareike; Doeller, Christian F; Stankevich, Yuliya; Evens, Ricarda; Riedel, Oliver; Storch, Alexander; Lueken, Ulrike; Li, Shu-Chen

    2016-02-01

    Striatal dopamine depletion is a key pathophysiological feature of Parkinson's disease (PD) causing motor and nonmotor symptoms. Research on nonmotor symptoms has mainly focused on frontostriatal functions. However, dopamine pathways ascending from the ventral tegmental area also innervate hippocampal structures and modulate hippocampal-dependent functions, such as spatial memory. Using a virtual spatial navigation task, we investigated dopaminergic modulation of spatial memory in PD patients in a crossover medication ON/OFF design. We examined medication effects on striatal- and hippocampal-dependent spatial memory by either replacing a location cue in the environment or enlarging its spatial boundary. Key results indicate that in contrast to prior evidence for younger adults, PD patients, like their age-matched controls, rely more on striatal cue-based than hippocampal spatial learning. Medication facilitated striatal-dependent cue-location learning, whereas medication benefit in hippocampal boundary-related spatial memory depended on prior experience with the task. Medication effects on spatial memory were comparable to and independent of benefits on motor symptoms. These findings shed new light on dopaminergic modulation of hippocampal-striatal functions in PD. PMID:26827647

  11. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    PubMed Central

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  12. The Developmental Trajectory of Intramaze and Extramaze Landmark Biases in Spatial Navigation: An Unexpected Journey

    PubMed Central

    2015-01-01

    Adults learning to navigate to a hidden goal within an enclosed space have been found to prefer information provided by the distal cues of an environment, as opposed to proximal landmarks within the environment. Studies with children, however, have shown that 5- or 7-year-olds do not display any preference toward distal or proximal cues during navigation. This suggests that a bias toward learning about distal cues occurs somewhere between the age of 7 years and adulthood. We recruited 5- to 11-year-old children and an adult sample to explore the developmental profile of this putative change. Across a series of 3 experiments, participants were required to navigate to a hidden goal in a virtual environment, the location of which was signaled by both extramaze and intramaze landmark cues. During testing, these cues were placed into conflict to assess the search preferences of participants. Consistent with previously reported findings, adults were biased toward using extramaze information. However, analysis of the data from children, which incorporated age as a continuous variable, suggested that older children in our sample were, in fact, biased toward using the intramaze landmark in our task. These findings suggest the bias toward using distal cues in spatial navigation, frequently displayed by adults, may be a comparatively late developing trait, and one that could supersede an initial developmental preference for proximal landmarks. PMID:25844850

  13. The developmental trajectory of intramaze and extramaze landmark biases in spatial navigation: An unexpected journey.

    PubMed

    Buckley, Matthew G; Haselgrove, Mark; Smith, Alastair D

    2015-06-01

    Adults learning to navigate to a hidden goal within an enclosed space have been found to prefer information provided by the distal cues of an environment, as opposed to proximal landmarks within the environment. Studies with children, however, have shown that 5- or 7-year-olds do not display any preference toward distal or proximal cues during navigation. This suggests that a bias toward learning about distal cues occurs somewhere between the age of 7 years and adulthood. We recruited 5- to 11-year-old children and an adult sample to explore the developmental profile of this putative change. Across a series of 3 experiments, participants were required to navigate to a hidden goal in a virtual environment, the location of which was signaled by both extramaze and intramaze landmark cues. During testing, these cues were placed into conflict to assess the search preferences of participants. Consistent with previously reported findings, adults were biased toward using extramaze information. However, analysis of the data from children, which incorporated age as a continuous variable, suggested that older children in our sample were, in fact, biased toward using the intramaze landmark in our task. These findings suggest the bias toward using distal cues in spatial navigation, frequently displayed by adults, may be a comparatively late developing trait, and one that could supersede an initial developmental preference for proximal landmarks. PMID:25844850

  14. Seeking Information Online: The Influence of Menu Type, Navigation Path Complexity and Spatial Ability on Information Gathering Tasks

    ERIC Educational Resources Information Center

    Puerta Melguizo, Mari Carmen; Vidya, Uti; van Oostendorp, Herre

    2012-01-01

    We studied the effects of menu type, navigation path complexity and spatial ability on information retrieval performance and web disorientation or lostness. Two innovative aspects were included: (a) navigation path relevance and (b) information gathering tasks. As expected we found that, when measuring aspects directly related to navigation…

  15. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind

    PubMed Central

    Connors, Erin C.; Chrastil, Elizabeth R.; Sánchez, Jaime; Merabet, Lotfi B.

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments. PMID:24653690

  16. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind.

    PubMed

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments. PMID:24653690

  17. Tactile Cueing as a Gravitational Substitute for Spatial Navigation During Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Montgomery, K. L.; Beaton, K. H.; Barba, J. M.; Cackler, J. M.; Son, J. H.; Horsfield, S. P.; Wood, S. J.

    2010-01-01

    INTRODUCTION: Spatial navigation requires an accurate awareness of orientation in your environment. The purpose of this experiment was to examine how spatial awareness was impaired with changing gravitational cues during parabolic flight, and the extent to which vibrotactile feedback of orientation could be used to help improve performance. METHODS: Six subjects were restrained in a chair tilted relative to the plane floor, and placed at random positions during the start of the microgravity phase. Subjects reported their orientation using verbal reports, and used a hand-held controller to point to a desired target location presented using a virtual reality video mask. This task was repeated with and without constant tactile cueing of "down" direction using a belt of 8 tactors placed around the mid-torso. Control measures were obtained during ground testing using both upright and tilted conditions. RESULTS: Perceptual estimates of orientation and pointing accuracy were impaired during microgravity or during rotation about an upright axis in 1g. The amount of error was proportional to the amount of chair displacement. Perceptual errors were reduced during movement about a tilted axis on earth. CONCLUSIONS: Reduced perceptual errors during tilts in 1g indicate the importance of otolith and somatosensory cues for maintaining spatial awareness. Tactile cueing may improve navigation in operational environments or clinical populations, providing a non-visual non-auditory feedback of orientation or desired direction heading.

  18. APOE2 Is Associated with Spatial Navigational Strategies and Increased Gray Matter in the Hippocampus.

    PubMed

    Konishi, Kyoko; Bhat, Venkat; Banner, Harrison; Poirier, Judes; Joober, Ridha; Bohbot, Véronique D

    2016-01-01

    The Apolipoprotein E (APOE) gene has a strong association with Alzheimer's disease (AD). The ε4 allele is a well-documented genetic risk factor of AD. In contrast, the ε2 allele of the APOE gene is known to be protective against AD. Much of the focus on the APOE gene has been on the ε4 allele in both young and older adults and few studies have looked into the cognitive and brain structure correlates of the ε2 allele, especially in young adults. In the current study, we investigated the relationship between APOE genotype, navigation behavior, and hippocampal gray matter in healthy young adults. One-hundred and twenty-four healthy young adults were genotyped and tested on the 4on8 virtual maze, a task that allows for the assessment of navigation strategy. The task assesses the spontaneous use of either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy. Of the 124 participants, 37 underwent structural magnetic resonance imaging (MRI). We found that ε2 carriers use a hippocampus-dependent spatial strategy to a greater extent than ε3 homozygous individuals and ε4 carriers. We also found that APOE ε2 allele carriers have more gray matter in the hippocampus compared to ε3 homozygous individuals and ε4 carriers. Our findings suggest that the protective effects of the ε2 allele may, in part, be expressed through increased hippocampus gray matter and increased use of hippocampus-dependent spatial strategies. The current article demonstrates the relationship between brain structure, navigation behavior, and APOE genotypes in healthy young adults. PMID:27468260

  19. APOE2 Is Associated with Spatial Navigational Strategies and Increased Gray Matter in the Hippocampus

    PubMed Central

    Konishi, Kyoko; Bhat, Venkat; Banner, Harrison; Poirier, Judes; Joober, Ridha; Bohbot, Véronique D.

    2016-01-01

    The Apolipoprotein E (APOE) gene has a strong association with Alzheimer’s disease (AD). The ε4 allele is a well-documented genetic risk factor of AD. In contrast, the ε2 allele of the APOE gene is known to be protective against AD. Much of the focus on the APOE gene has been on the ε4 allele in both young and older adults and few studies have looked into the cognitive and brain structure correlates of the ε2 allele, especially in young adults. In the current study, we investigated the relationship between APOE genotype, navigation behavior, and hippocampal gray matter in healthy young adults. One-hundred and twenty-four healthy young adults were genotyped and tested on the 4on8 virtual maze, a task that allows for the assessment of navigation strategy. The task assesses the spontaneous use of either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy. Of the 124 participants, 37 underwent structural magnetic resonance imaging (MRI). We found that ε2 carriers use a hippocampus-dependent spatial strategy to a greater extent than ε3 homozygous individuals and ε4 carriers. We also found that APOE ε2 allele carriers have more gray matter in the hippocampus compared to ε3 homozygous individuals and ε4 carriers. Our findings suggest that the protective effects of the ε2 allele may, in part, be expressed through increased hippocampus gray matter and increased use of hippocampus-dependent spatial strategies. The current article demonstrates the relationship between brain structure, navigation behavior, and APOE genotypes in healthy young adults. PMID:27468260

  20. The traveling salesrat: insights into the dynamics of efficient spatial navigation in the rodent.

    PubMed

    de Jong, Laurel Watkins; Gereke, Brian; Martin, Gerard M; Fellous, Jean-Marc

    2011-12-01

    Rodent spatial navigation requires the dynamic evaluation of multiple sources of information, including visual cues, self-motion signals and reward signals. The nature of the evaluation, its dynamics and the relative weighting of the multiple information streams are largely unknown and have generated many hypotheses in the field of robotics. We use the framework of the traveling salesperson problem (TSP) to study how this evaluation may be achieved. The TSP is a classical artificial intelligence NP-hard problem that requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. We show that after a few trials, rats converge on a short route between rewarded food cups. We propose that this route emerges from a series of local decisions that are derived from weighing information embedded in the context of the task. We study the relative weighting of spatial and reward information and establish that, in the conditions of this experiment, when the contingencies are not in conflict, rats choose the spatial or reward optimal solution. There was a trend toward a preference for space when the contingencies were in conflict. We also show that the spatial decision about which cup to go to next is biased by the orientation of the animal. Reward contingencies are also shown to significantly and dynamically modulate the decision-making process. This paradigm will allow for further neurophysiological studies aimed at understanding the synergistic role of brain areas involved in planning, reward processing and spatial navigation. These insights will in turn suggest new neural-like architectures for the control of mobile autonomous robots. PMID:22056477

  1. The traveling salesrat: insights into the dynamics of efficient spatial navigation in the rodent

    NASA Astrophysics Data System (ADS)

    Watkins de Jong, Laurel; Gereke, Brian; Martin, Gerard M.; Fellous, Jean-Marc

    2011-10-01

    Rodent spatial navigation requires the dynamic evaluation of multiple sources of information, including visual cues, self-motion signals and reward signals. The nature of the evaluation, its dynamics and the relative weighting of the multiple information streams are largely unknown and have generated many hypotheses in the field of robotics. We use the framework of the traveling salesperson problem (TSP) to study how this evaluation may be achieved. The TSP is a classical artificial intelligence NP-hard problem that requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. We show that after a few trials, rats converge on a short route between rewarded food cups. We propose that this route emerges from a series of local decisions that are derived from weighing information embedded in the context of the task. We study the relative weighting of spatial and reward information and establish that, in the conditions of this experiment, when the contingencies are not in conflict, rats choose the spatial or reward optimal solution. There was a trend toward a preference for space when the contingencies were in conflict. We also show that the spatial decision about which cup to go to next is biased by the orientation of the animal. Reward contingencies are also shown to significantly and dynamically modulate the decision-making process. This paradigm will allow for further neurophysiological studies aimed at understanding the synergistic role of brain areas involved in planning, reward processing and spatial navigation. These insights will in turn suggest new neural-like architectures for the control of mobile autonomous robots.

  2. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  3. Human sex differences in solving a virtual navigation problem.

    PubMed

    Astur, Robert S; Purton, Andrea J; Zaniewski, Melanie J; Cimadevilla, Jose; Markus, Etan J

    2016-07-15

    The current study examined sex differences in initial and subsequent strategies in solving a navigational problem within a virtual reality environment. We tested 163 undergraduates on a virtual T-maze task that included probe trials designed to assess whether participants were responding using either a place or response strategy. Participants were also tested on a mental rotation task and memory of the details of the virtual room. There were no differences between the sexes in copying or recalling a map of the room or on first trial performance of the T-maze. However, at trial two, males show a significant advantage in solving the task, and approximately 80% of the males adopt a place strategy to solve the T-maze whereas females at that point showed no strategy preference. Across all testing, both males and females preferentially used a place strategy. We discuss how factors such as spatial priming affect strategy preferences and how such factors may differentially affect males and females. PMID:27108050

  4. Mental "Space" Travel: Damage to Posterior Parietal Cortex Prevents Egocentric Navigation and Reexperiencing of Remote Spatial Memories

    ERIC Educational Resources Information Center

    Ciaramelli, Elisa; Rosenbaum, R. Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-01-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the…

  5. Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice

    PubMed Central

    Bensalem, Julien; Servant, Laure; Alfos, Serge; Gaudout, David; Layé, Sophie; Pallet, Véronique; Lafenetre, Pauline

    2016-01-01

    Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to their navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal calmodulin kinase II (CaMKII) mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of nerve growth neurotrophic factor (NGF) mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline. PMID:26903826

  6. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia

    PubMed Central

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F.; Musen, Mark A.

    2015-01-01

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks. PMID:26568745

  7. Principles of goal-directed spatial robot navigation in biomimetic models.

    PubMed

    Milford, Michael; Schulz, Ruth

    2014-11-01

    Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in 'real-world' environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why. PMID:25267826

  8. Principles of goal-directed spatial robot navigation in biomimetic models

    PubMed Central

    Milford, Michael; Schulz, Ruth

    2014-01-01

    Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why. PMID:25267826

  9. Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study.

    PubMed

    Johnson, Sarah A; Javurek, Angela B; Painter, Michele S; Ellersieck, Mark R; Welsh, Thomas H; Camacho, Luísa; Lewis, Sherry M; Vanlandingham, Michelle M; Ferguson, Sherry A; Rosenfeld, Cheryl S

    2016-04-01

    Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of a wide variety of items. Previous studies suggest BPA exposure may result in neuro-disruptive effects; however, data are inconsistent across animal and human studies. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether female and male rats developmentally exposed to BPA demonstrated later spatial navigational learning and memory deficits. Pregnant NCTR Sprague-Dawley rats were orally dosed from gestational day 6 to parturition, and offspring were directly orally dosed until weaning (postnatal day 21). Treatment groups included a vehicle control, three BPA doses (2.5μg/kg body weight (bw)/day-[2.5], 25μg/kg bw/day-[25], and 2500μg/kg bw/day-[2500]) and a 0.5μg/kg/day ethinyl estradiol (EE)-reference estrogen dose. At adulthood, 1/sex/litter was tested for seven days in the Barnes maze. The 2500 BPA group sniffed more incorrect holes on day 7 than those in the control, 2.5 BPA, and EE groups. The 2500 BPA females were less likely than control females to locate the escape box in the allotted time (p value=0.04). Although 2.5 BPA females exhibited a prolonged latency, the effect did not reach significance (p value=0.06), whereas 2.5 BPA males showed improved latency compared to control males (p value=0.04), although the significance of this result is uncertain. No differences in serum testosterone concentration were detected in any male or female treatment groups. Current findings suggest developmental exposure of rats to BPA may disrupt aspects of spatial navigational learning and memory. PMID:26436835

  10. Navigation of Pedicle Screws in the Thoracic Spine with a New Electromagnetic Navigation System: A Human Cadaver Study

    PubMed Central

    Hahn, Patrick; Oezdemir, Semih; Komp, Martin; Giannakopoulos, Athanasios; Kasch, Richard; Merk, Harry; Liermann, Dieter; Godolias, Georgios; Ruetten, Sebastian

    2015-01-01

    Introduction. Posterior stabilization of the spine is a standard procedure in spinal surgery. In addition to the standard techniques, several new techniques have been developed. The objective of this cadaveric study was to examine the accuracy of a new electromagnetic navigation system for instrumentation of pedicle screws in the spine. Material and Method. Forty-eight pedicle screws were inserted in the thoracic spine of human cadavers using EMF navigation and instruments developed especially for electromagnetic navigation. The screw position was assessed postoperatively by a CT scan. Results. The screws were classified into 3 groups: grade 1 = ideal position; grade 2 = cortical penetration <2 mm; grade 3 = cortical penetration ≥2 mm. The initial evaluation of the system showed satisfied positioning for the thoracic spine; 37 of 48 screws (77.1%, 95% confidence interval [62.7%, 88%]) were classified as group 1 or 2. Discussion. The screw placement was satisfactory. The initial results show that there is room for improvement with some changes needed. The ease of use and short setup times should be pointed out. Instrumentation is achieved without restricting the operator's mobility during navigation. Conclusion. The results indicate a good placement technique for pedicle screws. Big advantages are the easy handling of the system. PMID:25759814

  11. Spatial habit competes with effort to determine human spatial organization.

    PubMed

    Zhu, Mona J H; Risko, Evan F

    2016-07-01

    Despite the important role that the physical environment plays in shaping human cognition, few studies have endeavoured to experimentally examine the principles underlying how individuals organize objects in their space. The current investigation examines the idea that humans organize objects in their space in order to minimize effort or maximize performance. We devised a novel spatial organization task whereby participants freely arranged objects in the context of a writing task. Critically, we manipulated the frequency with which each object was used and assessed participants' spontaneous placements. In the first set of experiments, participants showed a counterintuitive tendency to match pen pairs with their initial placements rather than placing pens in the less effortful configuration. However, in Experiment 2, where the difference in physical effort between different locations was increased, participants were more likely to reorganize the pens into the less effortful configuration. We begin developing a theory of human spatial organization wherein the observed initial bias may represent a kind of spatial habit formation that competes with effort/performance considerations to shape future spatial organization. PMID:26912422

  12. The use and validation of the spatial navigation Memory Island test in primary school children.

    PubMed

    Piper, Brian J; Acevedo, Summer F; Craytor, Michael J; Murray, Patrick W; Raber, Jacob

    2010-07-11

    Memory Island (MI) is a human spatial memory assessment, modeled after the Morris water maze, which has been used in adults and the elderly. In this study, we examined whether MI can be used with children and validate the procedure. The objectives of this study were to: (1) examine spatial function with MI in children and (2) determine the associations between MI and other cognitive measures. Seven to 10-year-old children (N=50) completed MI and a battery of tests of attention, visual-spatial memory, and executive function. Spatial memory, as indicated by the percent time in the target quadrant on MI, was better at age ten relative to ages seven or eight. Target preference also correlated with performance on the Conners' Continuous Performance Test and Backwards Spatial Span. These findings indicate there is rapid increase in spatial memory between ages nine and ten and that MI is a translational neuroscience paradigm which provides information that complements and extends upon that obtained using other neuropsychological paradigms in children. PMID:20219554

  13. Enhancing fuzzy robot navigation systems by mimicking human visual perception of natural terrain traversibility

    NASA Technical Reports Server (NTRS)

    Tunstel, E.; Howard, A.; Edwards, D.; Carlson, A.

    2001-01-01

    This paper presents a technique for learning to assess terrain traversability for outdoor mobile robot navigation using human-embedded logic and real-time perception of terrain features extracted from image data.

  14. Effects of head-slaved navigation and the use of teleports on spatial orientation in virtual environments.

    PubMed

    Bakker, Niels H; Passenier, Peter O; Werkhoven, Peter J

    2003-01-01

    The type of navigation interface in a virtual environment (VE)--head slaved or indirect--determines whether or not proprioceptive feedback stimuli are present during movement. In addition, teleports can be used, which do not provide continuous movement but, rather, discontinuously displace the viewpoint over large distances. A two-part experiment was performed. The first part investigated whether head-slaved navigation provides an advantage for spatial learning in a VE. The second part investigated the role of anticipation when using teleports. The results showed that head-slaved navigation has an advantage over indirect navigation for the acquisition of spatial knowledge in a VE. Anticipating the destination of the teleport prevented disorientation after the displacement to a great extent but not completely. The time that was needed for anticipation increased if the teleport involved a rotation of the viewing direction. This research shows the potential added value of using a head-slaved navigation interface--for example, when using VE for training purposes--and provides practical guidelines for the use of teleports in VE applications. PMID:12916588

  15. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation

    PubMed Central

    Jankowski, Maciej M.; Ronnqvist, Kim C.; Tsanov, Marian; Vann, Seralynne D.; Wright, Nicholas F.; Erichsen, Jonathan T.; Aggleton, John P.; O'Mara, Shane M.

    2013-01-01

    The anterior thalamic nuclei (ATN), a central component of Papez' circuit, are generally assumed to be key constituents of the neural circuits responsible for certain categories of learning and memory. Supporting evidence for this contention is that damage to either of two brain regions, the medial temporal lobe and the medial diencephalon, is most consistently associated with anterograde amnesia. Within these respective regions, the hippocampal formation and the ATN (anteromedial, anteroventral, and anterodorsal) are the particular structures of interest. The extensive direct and indirect hippocampal-anterior thalamic interconnections and the presence of theta-modulated cells in both sites further support the hypothesis that these structures constitute a neuronal network crucial for memory and cognition. The major tool in understanding how the brain processes information is the analysis of neuronal output at each hierarchical level along the pathway of signal propagation coupled with neuroanatomical studies. Here, we discuss the electrophysiological properties of cells in the ATN with an emphasis on their role in spatial navigation. In addition, we describe neuroanatomical and functional relationships between the ATN and hippocampal formation. PMID:24009563

  16. Optimal estimator model for human spatial orientation

    NASA Technical Reports Server (NTRS)

    Borah, J.; Young, L. R.; Curry, R. E.

    1979-01-01

    A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.

  17. Geometric Determinants of Human Spatial Memory

    ERIC Educational Resources Information Center

    Hartley, Tom; Trinkler, Iris; Burgess, Neil

    2004-01-01

    Geometric alterations to the boundaries of a virtual environment were used to investigate the representations underlying human spatial memory. Subjects encountered a cue object in a simple rectangular enclosure, with distant landmarks for orientation. After a brief delay, during which they were removed from the arena, subjects were returned to it…

  18. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe.

    PubMed

    Marchette, Steven A; Vass, Lindsay K; Ryan, Jack; Epstein, Russell A

    2014-11-01

    The neural systems that code for location and facing direction during spatial navigation have been investigated extensively; however, the mechanisms by which these quantities are referenced to external features of the world are not well understood. To address this issue, we examined behavioral priming and functional magnetic resonance imaging activity patterns while human subjects recalled spatial views from a recently learned virtual environment. Behavioral results indicated that imagined location and facing direction were represented during this task, and multivoxel pattern analyses indicated that the retrosplenial complex (RSC) was the anatomical locus of these spatial codes. Critically, in both cases, location and direction were defined on the basis of fixed elements of the local environment and generalized across geometrically similar local environments. These results suggest that RSC anchors internal spatial representations to local topographical features, thus allowing us to stay oriented while we navigate and retrieve from memory the experience of being in a particular place. PMID:25282616

  19. Anchoring the neural compass: Coding of local spatial reference frames in human medial parietal lobe

    PubMed Central

    Marchette, Steven A.; Vass, Lindsay K.; Ryan, Jack; Epstein, Russell A.

    2015-01-01

    The neural systems that code for location and facing direction during spatial navigation have been extensively investigated; however, the mechanisms by which these quantities are referenced to external features of the world are not well understood. To address this issue, we examined behavioral priming and fMRI activity patterns while human subjects re-instantiated spatial views from a recently learned virtual environment. Behavioral results indicated that imagined location and facing direction were represented during this task, and multi-voxel pattern analyses indicated the retrosplenial complex (RSC) was the anatomical locus of these spatial codes. Critically, in both cases, location and direction were defined based on fixed elements of the local environment and generalized across geometrically-similar local environments. These results suggest that RSC anchors internal spatial representations to local topographical features, thus allowing us to stay oriented while we navigate and to retrieve from memory the experience of being in a particular place. PMID:25282616

  20. Dynamic visual information plays a critical role for spatial navigation in water but not on solid ground.

    PubMed

    Sautter, Chiara Sajidha; Cocchi, Luca; Schenk, Françoise

    2008-12-12

    In the Morris water maze (MWM) task, proprioceptive information is likely to have a poor accuracy due to movement inertia. Hence, in this condition, dynamic visual information providing information on linear and angular acceleration would play a critical role in spatial navigation. To investigate this assumption we compared rat's spatial performance in the MWM and in the homing hole board (HB) tasks using a 1.5 Hz stroboscopic illumination. In the MWM, rats trained in the stroboscopic condition needed more time than those trained in a continuous light condition to reach the hidden platform. They expressed also little accuracy during the probe trial. In the HB task, in contrast, place learning remained unaffected by the stroboscopic light condition. The deficit in the MWM was thus complete, affecting both escape latency and discrimination of the reinforced area, and was thus task specific. This dissociation confirms that dynamic visual information is crucial to spatial navigation in the MWM whereas spatial navigation on solid ground is mediated by a multisensory integration, and thus less dependent on visual information. PMID:18682262

  1. Computerized spatial navigation training during 14 days of bed rest in healthy older adult men: Effect on gait performance.

    PubMed

    Marusic, Uros; Kavcic, Voyko; Giordani, Bruno; Gerževič, Mitja; Meeusen, Romain; Pišot, Rado

    2015-06-01

    Prolonged physical inactivity or bed rest (BR) due to illness or other factors can result in significant declines in physical health and even cognitive functions. Based on random selection, 7 healthy older adult men received computerized spatial navigation training, while 8 served as active controls during 14-day BR. Greater post-BR declines were seen in normal and complex (dual-task) walking for the control as compared to intervention group, suggesting that computerized spatial navigation training can successfully moderate detrimental BR effects. Findings underline the generalization of cognitive-based intervention to the motor domain and potentially support their use to supplement BR interventions (e.g., exercise and nutrition). PMID:25938245

  2. The acquisition of passive avoidance, active avoidance, and spatial navigation tasks by animals prenatally exposed to cocaine.

    PubMed

    Riley, E P; Foss, J A

    1991-01-01

    Pregnant Long-Evans rats were administered cocaine orally (60 mg/kg) on gestational days 14-21. One control group was administered the vehicle and another left untreated. Cocaine treatment produced some maternal lethality, and the weight gain of the surviving dams was reduced approximately 15%. Offspring of mothers treated with cocaine did not differ from those of untreated mothers in their numbers, birth weight, or growth. Weanling offspring were tested in a passive avoidance task, and adult offspring were tested for two-way active avoidance and in a spatial navigation task. Although a few animals in the cocaine group showed poor retention of passive avoidance, the group differences were not statistically significant. The adult animals showed normal performance in both the active avoidance and spatial navigation tasks. PMID:1758412

  3. EEG correlates of spatial orientation in the human retrosplenial complex.

    PubMed

    Lin, C-T; Chiu, T-C; Gramann, K

    2015-10-15

    Studies on spatial navigation reliably demonstrate that the retrosplenial complex (RSC) plays a pivotal role for allocentric spatial information processing by transforming egocentric and allocentric spatial information into the respective other spatial reference frame (SRF). While more and more imaging studies investigate the role of the RSC in spatial tasks, high temporal resolution measures such as electroencephalography (EEG) are missing. To investigate the function of the RSC in spatial navigation with high temporal resolution we used EEG to analyze spectral perturbations during navigation based on allocentric and egocentric SRF. Participants performed a path integration task in a clearly structured virtual environment providing allothetic information. Continuous EEG recordings were decomposed by independent component analysis (ICA) with subsequent source reconstruction of independent time source series using equivalent dipole modeling. Time-frequency transformation was used to investigate reference frame-specific orientation processes during navigation as compared to a control condition with identical visual input but no orientation task. Our results demonstrate that navigation based on an egocentric reference frame recruited a network including the parietal, motor, and occipital cortices with dominant perturbations in the alpha band and theta modulation in frontal cortex. Allocentric navigation was accompanied by performance-related desynchronization of the 8-13 Hz frequency band and synchronization in the 12-14 Hz band in the RSC. The results support the claim that the retrosplenial complex is central to translating egocentric spatial information into allocentric reference frames. Modulations in different frequencies with different time courses in the RSC further provide first evidence of two distinct neural processes reflecting translation of spatial information based on distinct reference frames and the computation of heading changes. PMID:26163801

  4. The quantitative modelling of human spatial habitability

    NASA Technical Reports Server (NTRS)

    Wise, J. A.

    1985-01-01

    A model for the quantitative assessment of human spatial habitability is presented in the space station context. The visual aspect assesses how interior spaces appear to the inhabitants. This aspect concerns criteria such as sensed spaciousness and the affective (emotional) connotations of settings' appearances. The kinesthetic aspect evaluates the available space in terms of its suitability to accommodate human movement patterns, as well as the postural and anthrometric changes due to microgravity. Finally, social logic concerns how the volume and geometry of available space either affirms or contravenes established social and organizational expectations for spatial arrangements. Here, the criteria include privacy, status, social power, and proxemics (the uses of space as a medium of social communication).

  5. A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults.

    PubMed

    Sneider, Jennifer Tropp; Sava, Simona; Rogowska, Jadwiga; Yurgelun-Todd, Deborah A

    2011-10-01

    The hippocampus plays a significant role in spatial memory processing, with sex differences being prominent on various spatial tasks. This study examined sex differences in healthy adults, using functional magnetic resonance imaging (fMRI) in areas implicated in spatial processing during navigation of a virtual analogue of the Morris water-maze. There were three conditions: learning, hidden, and visible control. There were no significant differences in performance measures. However, sex differences were found in regional brain activation during learning in the right hippocampus, right parahippocampal gyrus, and the cingulate cortex. During the hidden condition, the hippocampus, parahippocampal gyrus, and cingulate cortex were activated in both men and women. Additional brain areas involved in spatial processing may be recruited in women when learning information about the environment, by utilizing external cues (landmarks) more than do men, contributing to the observed sex differences in brain activation. PMID:22185061

  6. Human Plague Risk: Spatial-Temporal Models

    NASA Technical Reports Server (NTRS)

    Pinzon, Jorge E.

    2010-01-01

    This chpater reviews the use of spatial-temporal models in identifying potential risks of plague outbreaks into the human population. Using earth observations by satellites remote sensing there has been a systematic analysis and mapping of the close coupling between the vectors of the disease and climate variability. The overall result is that incidence of plague is correlated to positive El Nino/Southem Oscillation (ENSO).

  7. Ecological validity of virtual environments to assess human navigation ability

    PubMed Central

    van der Ham, Ineke J. M.; Faber, Annemarie M. E.; Venselaar, Matthijs; van Kreveld, Marc J.; Löffler, Maarten

    2015-01-01

    Route memory is frequently assessed in virtual environments. These environments can be presented in a fully controlled manner and are easy to use. Yet they lack the physical involvement that participants have when navigating real environments. For some aspects of route memory this may result in reduced performance in virtual environments. We assessed route memory performance in four different environments: real, virtual, virtual with directional information (compass), and hybrid. In the hybrid environment, participants walked the route outside on an open field, while all route information (i.e., path, landmarks) was shown simultaneously on a handheld tablet computer. Results indicate that performance in the real life environment was better than in the virtual conditions for tasks relying on survey knowledge, like pointing to start and end point, and map drawing. Performance in the hybrid condition however, hardly differed from real life performance. Performance in the virtual environment did not benefit from directional information. Given these findings, the hybrid condition may offer the best of both worlds: the performance level is comparable to that of real life for route memory, yet it offers full control of visual input during route learning. PMID:26074831

  8. The quantitative modelling of human spatial habitability

    NASA Technical Reports Server (NTRS)

    Wise, James A.

    1988-01-01

    A theoretical model for evaluating human spatial habitability (HuSH) in the proposed U.S. Space Station is developed. Optimizing the fitness of the space station environment for human occupancy will help reduce environmental stress due to long-term isolation and confinement in its small habitable volume. The development of tools that operationalize the behavioral bases of spatial volume for visual kinesthetic, and social logic considerations is suggested. This report further calls for systematic scientific investigations of how much real and how much perceived volume people need in order to function normally and with minimal stress in space-based settings. The theoretical model presented in this report can be applied to any size or shape interior, at any scale of consideration, for the Space Station as a whole to an individual enclosure or work station. Using as a point of departure the Isovist model developed by Dr. Michael Benedikt of the U. of Texas, the report suggests that spatial habitability can become as amenable to careful assessment as engineering and life support concerns.

  9. Modulation of spatial and response strategies by phase of the menstrual cycle in women tested in a virtual navigation task.

    PubMed

    Hussain, Dema; Hanafi, Sarah; Konishi, Kyoko; Brake, Wayne G; Bohbot, Véronique D

    2016-08-01

    Different memory systems are employed to navigate an environment. It has been consistently shown in rodents that estrogen impacts multiple memory system bias such that low estradiol (E2) is associated with increased use of a striatal-mediated response strategy whereas high E2 increases use of a hippocampal-dependent spatial memory. Low E2 also enhances performance on a response-based task whereas high E2 levels improve learning on a spatial task. The purpose of the present cross-sectional study was to investigate navigational strategies in young, healthy, naturally cycling women. Participants were split into either an early follicular (i.e., when E2 levels are low), ovulatory (i.e., when E2 levels are high) or mid/late luteal (i.e., end of the cycle, when E2 levels decrease and progesterone levels rise) phase group, using self-reported date of the menstrual cycle. Serum hormone level measurements (E2, progesterone, testosterone) were used to confirm cycle phase assignment. Participants were administered a verbal memory task as well as a virtual navigation task that can be solved by using either a response or spatial strategy. Women tested in the ovulatory phase, under high E2 conditions, performed better on a verbal memory task than women tested during the other phases of the cycle. Interestingly, women tested in the mid/late luteal phase, when progesterone is high, predominantly used a spatial strategy, whereas the opposite pattern was observed in the early follicular and ovulatory groups. Our data suggest that the specific memory system engaged differs depending on the phase of the menstrual cycle and may be mediated by both E2 and progesterone, rather than E2 alone. PMID:27213559

  10. The spatial structure of transnational human activity.

    PubMed

    Deutschmann, Emanuel

    2016-09-01

    Starting from conflictive predictions of hitherto disconnected debates in the natural and social sciences, this article examines the spatial structure of transnational human activity (THA) worldwide (a) across eight types of mobility and communication and (b) in its development over time. It is shown that the spatial structure of THA is similar to that of animal displacements and local-scale human motion in that it can be approximated by Lévy flights with heavy tails that obey power laws. Scaling exponent and power-law fit differ by type of THA, being highest in refuge-seeking and tourism and lowest in student exchange. Variance in the availability of resources and opportunities for satisfying associated needs appears to explain these differences. Over time (1960-2010), the Lévy-flight pattern remains intact and remarkably stable, contradicting the popular notion that socio-technological trends lead to a "death of distance." Humans have not become more "global" over time, they rather became more mobile in general, i.e. they move and communicate more at all distances. Hence, it would be more adequate to speak of "mobilization" than of "globalization." Longitudinal change occurs only in some types of THA and predominantly at short distances, indicating regional rather than global shifts. PMID:27480376

  11. Spatial updating in human parietal cortex

    NASA Technical Reports Server (NTRS)

    Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.

    2003-01-01

    Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.

  12. A Map for Social Navigation in the Human Brain.

    PubMed

    Tavares, Rita Morais; Mendelsohn, Avi; Grossman, Yael; Williams, Christian Hamilton; Shapiro, Matthew; Trope, Yaacov; Schiller, Daniela

    2015-07-01

    Deciphering the neural mechanisms of social behavior has propelled the growth of social neuroscience. The exact computations of the social brain, however, remain elusive. Here we investigated how the human brain tracks ongoing changes in social relationships using functional neuroimaging. Participants were lead characters in a role-playing game in which they were to find a new home and a job through interactions with virtual cartoon characters. We found that a two-dimensional geometric model of social relationships, a "social space" framed by power and affiliation, predicted hippocampal activity. Moreover, participants who reported better social skills showed stronger covariance between hippocampal activity and "movement" through "social space." The results suggest that the hippocampus is crucial for social cognition, and imply that beyond framing physical locations, the hippocampus computes a more general, inclusive, abstract, and multidimensional cognitive map consistent with its role in episodic memory. PMID:26139376

  13. Using Virtual Reality to Investigate Comparative Spatial Cognitive Abilities in Chimpanzees and Humans

    PubMed Central

    Dolins, Francine L.; Klimowicz, Christopher; Kelley, John; Menzel, Charles R.

    2016-01-01

    The purpose of the present study was to determine the efficacy of investigating spatial cognitive abilities across two primate species using virtual reality. In this study, we presented four captive adult chimpanzees and sixteen humans (twelve children and four adults) with simulated environments of increasing complexity and size to compare species’ attention to visuo-spatial features during navigation. The specific task required participants to attend to landmarks in navigating along routes in order to localize the goal site. Both species were found to discriminate effectively between positive and negative landmarks. Assessing path efficiency revealed that both species and all age groups used relatively efficient, distance reducing routes during navigation. Compared to the chimpanzees and adult humans however, younger children’s performance decreased as maze complexity and size increased. Surprisingly, in the most complex maze category the humans’ performance was less accurate compared to one female chimpanzee. These results suggest that the method of using virtual reality to test captive primates, and in particular, chimpanzees, affords significant cross-species investigations of spatial cognitive and developmental comparisons. PMID:24390812

  14. Human vs. robot operator error in a needle-based navigation system for percutaneous liver interventions

    NASA Astrophysics Data System (ADS)

    Maier-Hein, Lena; Walsh, Conor J.; Seitel, Alexander; Hanumara, Nevan C.; Shepard, Jo-Anne; Franz, A. M.; Pianka, F.; Müller, Sascha A.; Schmied, Bruno; Slocum, Alexander H.; Gupta, Rajiv; Meinzer, Hans-Peter

    2009-02-01

    Computed tomography (CT) guided percutaneous punctures of the liver for cancer diagnosis and therapy (e.g. tumor biopsy, radiofrequency ablation) are well-established procedures in clinical routine. One of the main challenges related to these interventions is the accurate placement of the needle within the lesion. Several navigation concepts have been introduced to compensate for organ shift and deformation in real-time, yet, the operator error remains an important factor influencing the overall accuracy of the developed systems. The aim of this study was to investigate whether the operator error and, thus, the overall insertion error of an existing navigation system could be further reduced by replacing the user with the medical robot Robopsy. For this purpose, we performed navigated needle insertions in a static abdominal phantom as well as in a respiratory liver motion simulator and compared the human operator error with the targeting error performed by the robot. According to the results, the Robopsy driven needle insertion system is able to more accurately align the needle and insert it along its axis compared to a human operator. Integration of the robot into the current navigation system could thus improve targeting accuracy in clinical use.

  15. Mining Missing Hyperlinks from Human Navigation Traces: A Case Study of Wikipedia

    PubMed Central

    West, Robert; Paranjape, Ashwin; Leskovec, Jure

    2015-01-01

    Hyperlinks are an essential feature of the World Wide Web. They are especially important for online encyclopedias such as Wikipedia: an article can often only be understood in the context of related articles, and hyperlinks make it easy to explore this context. But important links are often missing, and several methods have been proposed to alleviate this problem by learning a linking model based on the structure of the existing links. Here we propose a novel approach to identifying missing links in Wikipedia. We build on the fact that the ultimate purpose of Wikipedia links is to aid navigation. Rather than merely suggesting new links that are in tune with the structure of existing links, our method finds missing links that would immediately enhance Wikipedia's navigability. We leverage data sets of navigation paths collected through a Wikipedia-based human-computation game in which users must find a short path from a start to a target article by only clicking links encountered along the way. We harness human navigational traces to identify a set of candidates for missing links and then rank these candidates. Experiments show that our procedure identifies missing links of high quality. PMID:26634229

  16. Developmental Changes in Structural and Functional Properties of Hippocampal AMPARs Parallels the Emergence of Deliberative Spatial Navigation in Juvenile Rats

    PubMed Central

    Blair, Margaret G.; Nguyen, Nhu N.-Q.; Albani, Sarah H.; L'Etoile, Matthew M.; Andrawis, Marina M.; Owen, Leanna M.; Oliveira, Rodrigo F.; Johnson, Matthew W.; Purvis, Dianna L.; Sanders, Erin M.; Stoneham, Emily T.; Xu, Huaying

    2013-01-01

    The neural mechanisms that support the late postnatal development of spatial navigation are currently unknown. We investigated this in rats and found that an increase in the duration of AMPAR-mediated synaptic responses in the hippocampus was related to the emergence of spatial navigation. More specifically, spontaneous alternation rate, a behavioral indicator of hippocampal integrity, increased at the end of the third postnatal week in association with increases in AMPAR response duration at SC-CA1 synapses and synaptically driven postsynaptic discharge of CA1 pyramidal neurons. Pharmacological prolongation of glutamatergic synaptic transmission in juveniles increased the spontaneous alternation rate and CA1 postsynaptic discharge and reduced the threshold for the induction of activity-dependent synaptic plasticity at SC-CA1 synapses. A decrease in GluA1 and increases in GluA3 subunit and transmembrane AMPAR regulatory protein (TARP) expression at the end of the third postnatal week provide a molecular explanation for the increase in AMPAR response duration and reduced efficacy of AMPAR modulators with increasing age. A shift in the composition of AMPARs and increased association with AMPAR protein complex accessory proteins at the end of the third postnatal week likely “turns on” the hippocampus by increasing AMPAR response duration and postsynaptic excitability and reducing the threshold for activity-dependent synaptic potentiation. PMID:23884930

  17. Spatial cyberinfrastructures, ontologies, and the humanities

    PubMed Central

    Sieber, Renee E.; Wellen, Christopher C.; Jin, Yuan

    2011-01-01

    We report on research into building a cyberinfrastructure for Chinese biographical and geographic data. Our cyberinfrastructure contains (i) the McGill-Harvard-Yenching Library Ming Qing Women's Writings database (MQWW), the only online database on historical Chinese women's writings, (ii) the China Biographical Database, the authority for Chinese historical people, and (iii) the China Historical Geographical Information System, one of the first historical geographic information systems. Key to this integration is that linked databases retain separate identities as bases of knowledge, while they possess sufficient semantic interoperability to allow for multidatabase concepts and to support cross-database queries on an ad hoc basis. Computational ontologies create underlying semantics for database access. This paper focuses on the spatial component in a humanities cyberinfrastructure, which includes issues of conflicting data, heterogeneous data models, disambiguation, and geographic scale. First, we describe the methodology for integrating the databases. Then we detail the system architecture, which includes a tier of ontologies and schema. We describe the user interface and applications that allow for cross-database queries. For instance, users should be able to analyze the data, examine hypotheses on spatial and temporal relationships, and generate historical maps with datasets from MQWW for research, teaching, and publication on Chinese women writers, their familial relations, publishing venues, and the literary and social communities. Last, we discuss the social side of cyberinfrastructure development, as people are considered to be as critical as the technical components for its success. PMID:21444819

  18. A Goal-Directed Spatial Navigation Model Using Forward Trajectory Planning Based on Grid Cells

    PubMed Central

    Erdem, Uğur Murat; Hasselmo, Michael E.

    2012-01-01

    A goal-directed navigation model is proposed based on forward linear look-ahead probe of trajectories in a network of head direction cells, grid cells, place cells, and prefrontal cortex (PFC) cells. The model allows selection of new goal-directed trajectories. In a novel environment, the virtual rat incrementally creates a map composed of place cells and PFC cells by random exploration. After exploration, the rat retrieves memory of the goal location, picks its next movement direction by forward linear look-ahead probe of trajectories in several candidate directions while stationary in one location, and finds the one activating PFC cells with the highest reward signal. Each probe direction involves activation of a static pattern of head direction cells to drive an interference model of grid cells to update their phases in a specific direction. The updating of grid cell spiking drives place cells along the probed look-ahead trajectory similar to the forward replay during waking seen in place cell recordings. Directions are probed until the look-ahead trajectory activates the reward signal and the corresponding direction is used to guide goal-finding behavior. We report simulation results in several mazes with and without barriers. Navigation with barriers requires a PFC map topology based on the temporal vicinity of visited place cells and a reward signal diffusion process. The interaction of the forward linear look-ahead trajectory probes with the reward diffusion allows discovery of never before experienced shortcuts towards a goal location. PMID:22393918

  19. Cognitive Load of Navigating without Vision when Guided by Virtual Sound versus Spatial Language

    ERIC Educational Resources Information Center

    Klatzky, Roberta L.; Marston, James R.; Giudice, Nicholas A.; Golledge, Reginald G.; Loomis, Jack M.

    2006-01-01

    A vibrotactile N-back task was used to generate cognitive load while participants were guided along virtual paths without vision. As participants stepped in place, they moved along a virtual path of linear segments. Information was provided en route about the direction of the next turning point, by spatial language ("left," "right," or "straight")…

  20. Is There a Geometric Module for Spatial Orientation? Insights from a Rodent Navigation Model

    ERIC Educational Resources Information Center

    Sheynikhovich, Denis; Chavarriaga, Ricardo; Strosslin, Thomas; Arleo, Angelo; Gerstner, Wulfram

    2009-01-01

    Modern psychological theories of spatial cognition postulate the existence of a geometric module for reorientation. This concept is derived from experimental data showing that in rectangular arenas with distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference for the geometric (arena shape) over…

  1. Incidental Learning of Links during Navigation: The Role of Visuo-Spatial Capacity

    ERIC Educational Resources Information Center

    Rouet, Jean-Francois; Voros, Zsofia; Pleh, Csaba

    2012-01-01

    We investigated the impact of readers' visuo-spatial (VS) capacity on their incidental learning of page links during the exploration of simple hierarchical hypertextual documents. Forty-three university students were asked to explore a series of hypertexts for a limited period of time. Then the participants were asked to recall the layout and the…

  2. Spatial navigation, episodic memory, episodic future thinking, and theory of mind in children with autism spectrum disorder: evidence for impairments in mental simulation?

    PubMed Central

    Lind, Sophie E.; Bowler, Dermot M.; Raber, Jacob

    2014-01-01

    This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the “memory island” task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the “animations” task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed. PMID:25538661

  3. Spatial memory and navigation by honeybees on the scale of the foraging range

    PubMed

    Dyer

    1996-01-01

    Honeybees and other nesting animals face the problem of finding their way between their nest and distant feeding sites. Many studies have shown that insects can learn foraging routes in reference to both landmarks and celestial cues, but it is a major puzzle how spatial information obtained from these environmental features is encoded in memory. This paper reviews recent progress by my colleagues and me towards understanding three specific aspects of this problem in honeybees: (1) how bees learn the spatial relationships among widely separated locations in a familiar terrain; (2) how bees learn the pattern of movement of the sun over the day; and (3) whether, and if so how, bees learn the relationships between celestial cues and landmarks. PMID:9317523

  4. Spatial navigation impairments among intellectually high-functioning adults with autism spectrum disorder: exploring relations with theory of mind, episodic memory, and episodic future thinking.

    PubMed

    Lind, Sophie E; Williams, David M; Raber, Jacob; Peel, Anna; Bowler, Dermot M

    2013-11-01

    Research suggests that spatial navigation relies on the same neural network as episodic memory, episodic future thinking, and theory of mind (ToM). Such findings have stimulated theories (e.g., the scene construction and self-projection hypotheses) concerning possible common underlying cognitive capacities. Consistent with such theories, autism spectrum disorder (ASD) is characterized by concurrent impairments in episodic memory, episodic future thinking, and ToM. However, it is currently unclear whether spatial navigation is also impaired. Hence, ASD provides a test case for the scene construction and self-projection theories. The study of spatial navigation in ASD also provides a test of the extreme male brain theory of ASD, which predicts intact or superior navigation (purportedly a systemizing skill) performance among individuals with ASD. Thus, the aim of the current study was to establish whether spatial navigation in ASD is impaired, intact, or superior. Twenty-seven intellectually high-functioning adults with ASD and 28 sex-, age-, and IQ-matched neurotypical comparison adults completed the memory island virtual navigation task. Tests of episodic memory, episodic future thinking, and ToM were also completed. Participants with ASD showed significantly diminished performance on the memory island task, and performance was positively related to ToM and episodic memory, but not episodic future thinking. These results suggest that (contra the extreme male brain theory) individuals with ASD have impaired survey-based navigation skills--that is, difficulties generating cognitive maps of the environment--and adds weight to the idea that scene construction/self-projection are impaired in ASD. The theoretical and clinical implications of these results are discussed. PMID:24364620

  5. Spatial Navigation Impairments Among Intellectually High-Functioning Adults With Autism Spectrum Disorder: Exploring Relations With Theory of Mind, Episodic Memory, and Episodic Future Thinking

    PubMed Central

    2013-01-01

    Research suggests that spatial navigation relies on the same neural network as episodic memory, episodic future thinking, and theory of mind (ToM). Such findings have stimulated theories (e.g., the scene construction and self-projection hypotheses) concerning possible common underlying cognitive capacities. Consistent with such theories, autism spectrum disorder (ASD) is characterized by concurrent impairments in episodic memory, episodic future thinking, and ToM. However, it is currently unclear whether spatial navigation is also impaired. Hence, ASD provides a test case for the scene construction and self-projection theories. The study of spatial navigation in ASD also provides a test of the extreme male brain theory of ASD, which predicts intact or superior navigation (purportedly a systemizing skill) performance among individuals with ASD. Thus, the aim of the current study was to establish whether spatial navigation in ASD is impaired, intact, or superior. Twenty-seven intellectually high-functioning adults with ASD and 28 sex-, age-, and IQ-matched neurotypical comparison adults completed the memory island virtual navigation task. Tests of episodic memory, episodic future thinking, and ToM were also completed. Participants with ASD showed significantly diminished performance on the memory island task, and performance was positively related to ToM and episodic memory, but not episodic future thinking. These results suggest that (contra the extreme male brain theory) individuals with ASD have impaired survey-based navigation skills—that is, difficulties generating cognitive maps of the environment—and adds weight to the idea that scene construction/self-projection are impaired in ASD. The theoretical and clinical implications of these results are discussed. PMID:24364620

  6. Is there a pilot in the brain? Contribution of the self-positioning system to spatial navigation

    PubMed Central

    Poucet, Bruno; Chaillan, Franck; Truchet, Bruno; Save, Etienne; Sargolini, Francesca; Hok, Vincent

    2015-01-01

    Since the discovery of place cells, the hippocampus is thought to be the neural substrate of a cognitive map. The later discovery of head direction cells, grid cells and border cells, as well as of cells with more complex spatial signals, has led to the idea that there is a brain system devoted to providing the animal with the information required to achieve efficient navigation. Current questioning is focused on how these signals are integrated in the brain. In this review, we focus on the issue of how self-localization is performed in the hippocampal place cell map. To do so, we first shortly review the sensory information used by place cells and then explain how this sensory information can lead to two coding modes, respectively based on external landmarks (allothetic information) and self-motion cues (idiothetic information). We hypothesize that these two modes can be used concomitantly with the rat shifting from one mode to the other during its spatial displacements. We then speculate that sequential reactivation of place cells could participate in the resetting of self-localization under specific circumstances and in learning a new environment. Finally, we provide some predictions aimed at testing specific aspects of the proposed ideas. PMID:26578920

  7. Is there a pilot in the brain? Contribution of the self-positioning system to spatial navigation.

    PubMed

    Poucet, Bruno; Chaillan, Franck; Truchet, Bruno; Save, Etienne; Sargolini, Francesca; Hok, Vincent

    2015-01-01

    Since the discovery of place cells, the hippocampus is thought to be the neural substrate of a cognitive map. The later discovery of head direction cells, grid cells and border cells, as well as of cells with more complex spatial signals, has led to the idea that there is a brain system devoted to providing the animal with the information required to achieve efficient navigation. Current questioning is focused on how these signals are integrated in the brain. In this review, we focus on the issue of how self-localization is performed in the hippocampal place cell map. To do so, we first shortly review the sensory information used by place cells and then explain how this sensory information can lead to two coding modes, respectively based on external landmarks (allothetic information) and self-motion cues (idiothetic information). We hypothesize that these two modes can be used concomitantly with the rat shifting from one mode to the other during its spatial displacements. We then speculate that sequential reactivation of place cells could participate in the resetting of self-localization under specific circumstances and in learning a new environment. Finally, we provide some predictions aimed at testing specific aspects of the proposed ideas. PMID:26578920

  8. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. PMID

  9. The Temporal Context Model in Spatial Navigation and Relational Learning: Toward a Common Explanation of Medial Temporal Lobe Function Across Domains

    ERIC Educational Resources Information Center

    Howard, Marc W.; Fotedar, Mrigankka S.; Datey, Aditya V.; Hasselmo, Michael E.

    2005-01-01

    The medial temporal lobe (MTL) has been studied extensively at all levels of analysis, yet its function remains unclear. Theory regarding the cognitive function of the MTL has centered along 3 themes. Different authors have emphasized the role of the MTL in episodic recall, spatial navigation, or relational memory. Starting with the temporal…

  10. Plasticity of human spatial cognition: spatial language and cognition covary across cultures.

    PubMed

    Haun, Daniel B M; Rapold, Christian J; Janzen, Gabriele; Levinson, Stephen C

    2011-04-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of task-complexity and instruction. Data show a correlation between dominant linguistic spatial frames of reference and performance patterns in non-linguistic spatial memory tasks. This correlation is shown to be stable across an increase of complexity in the spatial array. When instructed to use their respective non-habitual cognitive strategy, participants were not easily able to switch between strategies and their attempts to do so impaired their performance. These results indicate a difference not only in preference but also in competence and suggest that spatial language and non-linguistic preferences and competences in spatial cognition are systematically aligned across human populations. PMID:21238953

  11. Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1.

    PubMed

    Danielson, Nathan B; Zaremba, Jeffrey D; Kaifosh, Patrick; Bowler, John; Ladow, Max; Losonczy, Attila

    2016-08-01

    The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment, while their counterparts in the deep sublayer provide a more flexible representation that is shaped by learning about salient features in the environment. VIDEO ABSTRACT. PMID:27397517

  12. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  13. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented. PMID:21095885

  14. Auditory spatial attention representations in the human cerebral cortex.

    PubMed

    Kong, Lingqiang; Michalka, Samantha W; Rosen, Maya L; Sheremata, Summer L; Swisher, Jascha D; Shinn-Cunningham, Barbara G; Somers, David C

    2014-03-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  15. Predictability in orbital reconstruction. A human cadaver study, part III: Implant-oriented navigation for optimized reconstruction.

    PubMed

    Dubois, Leander; Essig, Harald; Schreurs, Ruud; Jansen, Jesper; Maal, Thomas J J; Gooris, Peter J J; Becking, Alfred G

    2015-12-01

    Navigation-assisted orbital reconstruction remains a challenge, because the surgeon focuses on a two-dimensional multiplanar view in relation to the preoperative planning. This study explored the addition of navigation markers in the implant design for three-dimensional (3D) orientation of the actual implant position relative to the preoperative planning for more fail-safe and consistent results. Pre-injury computed tomography (CT) was performed for 10 orbits in human cadavers, and complex orbital fractures (Class III/IV) were created. The orbits were reconstructed using preformed orbital mesh through a transconjunctival approach under image-guided navigation and navigation by referencing orientating markers in the implant design. Ideal implant positions were planned using preoperative CT scans. Implant placement accuracy was evaluated by comparing the planned and realized implant positions. Significantly better translation (3.53 mm vs. 1.44 mm, p = 0.001) and rotation (pitch: -1.7° vs. -2.2°, P = 0.52; yaw: 10.9° vs. 5.9°, P = 0.02; roll: -2.2° vs. -0.5°, P = 0.16) of the placed implant relative to the planned position were obtained by implant-oriented navigation. Navigation-assisted surgery can be improved by using navigational markers on the orbital implant for orientation, resulting in fail-safe reconstruction of complex orbital defects and consistent implant positioning. PMID:26454321

  16. A New Electromagnetic Navigation System for Pedicle Screws Placement: A Human Cadaver Study at the Lumbar Spine

    PubMed Central

    Hahn, Patrick; Oezdemir, Semih; Komp, Martin; Giannakopoulos, Athanasios; Heikenfeld, Roderich; Kasch, Richard; Merk, Harry; Godolias, Georgios; Ruetten, Sebastian

    2015-01-01

    Introduction Technical developments for improving the safety and accuracy of pedicle screw placement play an increasingly important role in spine surgery. In addition to the standard techniques of free-hand placement and fluoroscopic navigation, the rate of complications is reduced by 3D fluoroscopy, cone-beam CT, intraoperative CT/MRI, and various other navigation techniques. Another important aspect that should be emphasized is the reduction of intraoperative radiation exposure for personnel and patient. The aim of this study was to investigate the accuracy of a new navigation system for the spine based on an electromagnetic field. Material and Method Twenty pedicle screws were placed in the lumbar spine of human cadavers using EMF navigation. Navigation was based on data from a preoperative thin-slice CT scan. The cadavers were positioned on a special field generator and the system was matched using a patient tracker on the spinous process. Navigation was conducted using especially developed instruments that can be tracked in the electromagnetic field. Another thin-slice CT scan was made postoperatively to assess the result. The evaluation included the position of the screws in the direction of trajectory and any injury to the surrounding cortical bone. The results were classified in 5 groups: grade 1: ideal screw position in the center of the pedicle with no cortical bone injury; grade 2: acceptable screw position, cortical bone injury with cortical penetration ≤ 2 mm; grade 3: cortical bone injury with cortical penetration 2,1-4 mm, grad 4: cortical bone injury with cortical penetration 4,1-6 mm, grade 5: cortical bone injury with cortical penetration >6 mm. Results The initial evaluation of the system showed good accuracy for the lumbar spine (65% grade 1, 20% grade 2, 15% grade 3, 0% grade 4, 0% grade 5). A comparison of the initial results with other navigation techniques in literature (CT navigation, 2D fluoroscopic navigation) shows that the accuracy of

  17. Age and gender-related differences in a spatial memory task in humans.

    PubMed

    León, Irene; Tascón, Laura; Cimadevilla, José Manuel

    2016-06-01

    Cognitive skills decline with age. Our ability to keep oriented in our surrounding environment was demonstrated to be influenced by factors like age and gender. Introduction of virtual reality based tasks improved assessment of spatial memory in humans. In this study, spatial orientation was assessed in a virtual memory task in order to determine the effect of aging and gender on navigational skills. Subjects from 45 to 74 years of age were organized in three groups (45-54, 55-64, 65-74 years old). Two levels of difficulty were considered. Results showed that males outperformed females in 65-74 years-old group. In addition to this, females showed a more noticeable poor performance in spatial memory than males, since memory differences appeared between all age groups. On the other hand, 65-74 year-old males showed an impaired performance in comparison with 45-54 year-old group. These results support that spatial memory becomes less accurate as we age and gender is an important factor influencing spatial orientation skills. PMID:26965569

  18. Coexistence between wildlife and humans at fine spatial scales.

    PubMed

    Carter, Neil H; Shrestha, Binoj K; Karki, Jhamak B; Pradhan, Narendra Man Babu; Liu, Jianguo

    2012-09-18

    Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal's Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger-human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge-meeting human needs while sustaining wildlife. PMID:22949642

  19. Coexistence between wildlife and humans at fine spatial scales

    PubMed Central

    Carter, Neil H.; Shrestha, Binoj K.; Karki, Jhamak B.; Pradhan, Narendra Man Babu; Liu, Jianguo

    2012-01-01

    Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal’s Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger–human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge—meeting human needs while sustaining wildlife. PMID:22949642

  20. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image.

    PubMed

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  1. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    PubMed Central

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  2. Navigating the human gastrointestinal tract for oral drug delivery: Uncharted waters and new frontiers.

    PubMed

    Koziolek, Mirko; Grimm, Michael; Schneider, Felix; Jedamzik, Philipp; Sager, Maximilian; Kühn, Jens-Peter; Siegmund, Werner; Weitschies, Werner

    2016-06-01

    Many concepts of oral drug delivery are based on our comprehension of human gastrointestinal physiology. Unfortunately, we tend to oversimplify the complex interplay between the various physiological factors in the human gut and, in particular, the dynamics of these transit conditions to which oral dosage forms are exposed. Recent advances in spatial and temporal resolution of medical instrumentation as well as improved access to these technologies have facilitated clinical trials to characterize the dynamic processes within the human gastrointestinal tract. These studies have shown that highly relevant parameters such as fluid volumes, dosage form movement, and pH values in the lumen of the upper GI tract are very dynamic. As a result of these new insights into the human gastrointestinal environment, some common concepts and ideas of oral drug delivery are no longer valid and have to be reviewed in order to ensure efficacy and safety of oral drug therapy. PMID:27037063

  3. Do Humans Integrate Routes Into a Cognitive Map? Map- Versus Landmark-Based Navigation of Novel Shortcuts

    ERIC Educational Resources Information Center

    Foo, Patrick; Warren, William H.; Duchon, Andrew; Tarr, Michael J.

    2005-01-01

    Do humans integrate experience on specific routes into metric survey knowledge of the environment, or do they depend on a simpler strategy of landmark navigation? The authors tested this question using a novel shortcut paradigm during walking in a virtual environment. The authors find that participants could not take successful shortcuts in a…

  4. Role of human moving on city spatial evolution

    NASA Astrophysics Data System (ADS)

    Zhao, F. X.; Wu, J. J.; Sun, H. J.; Gao, Z. Y.

    2015-02-01

    Human migration plays an important role in the city spatial evolution. This paper presents a new simulation model of city spatial evolution that explicitly considers preference and exploration in the migration choice decision process. In the model, the preference means that human prefer to move to the communities which have more people, while the exploration implies that human wish to explore the unknown communities randomly. By introducing the carrying capacity (CC), maximum movement distance (MMD), migration rate (MR) and random migration parameter (RMP), we investigate the effects of them on the city spatial distribution. All of the parameters can govern how many people can live in each community, how far people can explore and how many people move per time step, etc. A numerical simulation experiment is presented to illustrate that the form of the city is centralized with the increase of CC, MMD and MR, while it will be decentralized as the RMP grows.

  5. "Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.

    PubMed

    Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan

    2015-01-01

    Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927

  6. “Taller and Shorter”: Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings

    PubMed Central

    Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan

    2015-01-01

    Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927

  7. Reference frames in learning from maps and navigation.

    PubMed

    Meilinger, Tobias; Frankenstein, Julia; Watanabe, Katsumi; Bülthoff, Heinrich H; Hölscher, Christoph

    2015-11-01

    In everyday life, navigators often consult a map before they navigate to a destination (e.g., a hotel, a room, etc.). However, not much is known about how humans gain spatial knowledge from seeing a map and direct navigation together. In the present experiments, participants learned a simple multiple corridor space either from a map only, only from walking through the virtual environment, first from the map and then from navigation, or first from navigation and then from the map. Afterwards, they conducted a pointing task from multiple body orientations to infer the underlying reference frames. We constructed the learning experiences in a way such that map-only learning and navigation-only learning triggered spatial memory organized along different reference frame orientations. When learning from maps before and during navigation, participants employed a map- rather than a navigation-based reference frame in the subsequent pointing task. Consequently, maps caused the employment of a map-oriented reference frame found in memory for highly familiar urban environments ruling out explanations from environmental structure or north preference. When learning from navigation first and then from the map, the pattern of results reversed and participants employed a navigation-based reference frame. The priority of learning order suggests that despite considerable difference between map and navigation learning participants did not use the more salient or in general more useful information, but relied on the reference frame established first. PMID:25416007

  8. BALTIMORE-WASHINGTON SPATIAL DYNAMICS AND HUMAN IMPACTS DATABASE

    EPA Science Inventory

    The Baltimore-Washington Spatial Dynamics and Human Impacts data set is an integrated and flexible temporal urban land characteristics database for the Baltimore-Washington metropolitan area. The compilation of this data is a collaborative effort between the U.S. Geological Surv...

  9. Understanding hippocampal activity by using purposeful behavior: Place navigation induces place cell discharge in both task-relevant and task-irrelevant spatial reference frames

    PubMed Central

    Zinyuk, L.; Kubik, S.; Kaminsky, Yu.; Fenton, A. A.; Bures, J.

    2000-01-01

    Continuous rotation of an arena in a cue-rich room dissociates the stationary room-bound information from the rotating arena-bound information. This disrupted spatial discharge in the majority of place cells from rats trained to collect randomly scattered food. In contrast, most place cell firing patterns recorded from rats trained to solve a navigation task on the rotating arena were preserved during the rotation. Spatial discharge was preserved in both the task-relevant stationary and the task-irrelevant rotating reference frames, but firing was more organized in the task-relevant frame. It is concluded that, (i) the effects of environmental manipulations can be understood with confidence only when the rat's purposeful behavior is used to formulate interpretations of the data, and (ii) hippocampal place cell activity is organized in multiple overlapping spatial reference frames. PMID:10716713

  10. Spatial patterns of variation due to natural selection in humans

    PubMed Central

    Novembre, John; Di Rienzo, Anna

    2013-01-01

    Empowered by technology and sampling efforts designed to facilitate genome-wide association mapping, human geneticists are now studying the geography of genetic variation with unprecedented detail. With high genomic coverage and geographic resolution, these studies are identifying loci with spatial signatures of selection, such as extreme levels of differentiation and correlations with environmental variables. Collectively, patterns at these loci are beginning to provide novel insights into the process of human adaptation. Here we review the challenges of these studies and emerging results, including how human population structure has influenced the response to novel selective pressures. PMID:19823195

  11. Natural auditory scene statistics shapes human spatial hearing

    PubMed Central

    Parise, Cesare V.; Knorre, Katharina; Ernst, Marc O.

    2014-01-01

    Human perception, cognition, and action are laced with seemingly arbitrary mappings. In particular, sound has a strong spatial connotation: Sounds are high and low, melodies rise and fall, and pitch systematically biases perceived sound elevation. The origins of such mappings are unknown. Are they the result of physiological constraints, do they reflect natural environmental statistics, or are they truly arbitrary? We recorded natural sounds from the environment, analyzed the elevation-dependent filtering of the outer ear, and measured frequency-dependent biases in human sound localization. We find that auditory scene statistics reveals a clear mapping between frequency and elevation. Perhaps more interestingly, this natural statistical mapping is tightly mirrored in both ear-filtering properties and in perceived sound location. This suggests that both sound localization behavior and ear anatomy are fine-tuned to the statistics of natural auditory scenes, likely providing the basis for the spatial connotation of human hearing. PMID:24711409

  12. Fast Sequences of Non-spatial State Representations in Humans.

    PubMed

    Kurth-Nelson, Zeb; Economides, Marcos; Dolan, Raymond J; Dayan, Peter

    2016-07-01

    Fast internally generated sequences of neural representations are suggested to support learning and online planning. However, these sequences have only been studied in the context of spatial tasks and never in humans. Here, we recorded magnetoencephalography (MEG) while human subjects performed a novel non-spatial reasoning task. The task required selecting paths through a set of six visual objects. We trained pattern classifiers on the MEG activity elicited by direct presentation of the visual objects alone and tested these classifiers on activity recorded during periods when no object was presented. During these object-free periods, the brain spontaneously visited representations of approximately four objects in fast sequences lasting on the order of 120 ms. These sequences followed backward trajectories along the permissible paths in the task. Thus, spontaneous fast sequential representation of states can be measured non-invasively in humans, and these sequences may be a fundamental feature of neural computation across tasks. PMID:27321922

  13. Natural auditory scene statistics shapes human spatial hearing.

    PubMed

    Parise, Cesare V; Knorre, Katharina; Ernst, Marc O

    2014-04-22

    Human perception, cognition, and action are laced with seemingly arbitrary mappings. In particular, sound has a strong spatial connotation: Sounds are high and low, melodies rise and fall, and pitch systematically biases perceived sound elevation. The origins of such mappings are unknown. Are they the result of physiological constraints, do they reflect natural environmental statistics, or are they truly arbitrary? We recorded natural sounds from the environment, analyzed the elevation-dependent filtering of the outer ear, and measured frequency-dependent biases in human sound localization. We find that auditory scene statistics reveals a clear mapping between frequency and elevation. Perhaps more interestingly, this natural statistical mapping is tightly mirrored in both ear-filtering properties and in perceived sound location. This suggests that both sound localization behavior and ear anatomy are fine-tuned to the statistics of natural auditory scenes, likely providing the basis for the spatial connotation of human hearing. PMID:24711409

  14. Structural and functional neuroplasticity in human learning of spatial routes.

    PubMed

    Keller, Timothy A; Just, Marcel Adam

    2016-01-15

    Recent findings with both animals and humans suggest that decreases in microscopic movements of water in the hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other regions involved in learning. We collected both diffusion-weighted images and fMRI data before and after humans performed a 45min spatial route-learning task. Relative to a control group with equal practice time, there was decreased diffusivity in the posterior-dorsal dentate gyrus of the left hippocampus in the route-learning group accompanied by increased synchronization of fMRI-measured BOLD signal between this region and cortical areas, and by changes in behavioral performance. These concurrent changes characterize the multidimensionality of neuroplasticity as it enables human spatial learning. PMID:26477660

  15. Memory consolidation of landmarks in good navigators.

    PubMed

    Janzen, Gabriele; Jansen, Clemens; van Turennout, Miranda

    2008-01-01

    Landmarks play an important role in successful navigation. To successfully find your way around an environment, navigationally relevant information needs to be stored and become available at later moments in time. Evidence from functional magnetic resonance imaging (fMRI) studies shows that the human parahippocampal gyrus encodes the navigational relevance of landmarks. In the present event-related fMRI experiment, we investigated memory consolidation of navigationally relevant landmarks in the medial temporal lobe after route learning. Sixteen right-handed volunteers viewed two film sequences through a virtual museum with objects placed at locations relevant (decision points) or irrelevant (nondecision points) for navigation. To investigate consolidation effects, one film sequence was seen in the evening before scanning, the other one was seen the following morning, directly before scanning. Event-related fMRI data were acquired during an object recognition task. Participants decided whether they had seen the objects in the previously shown films. After scanning, participants answered standardized questions about their navigational skills, and were divided into groups of good and bad navigators, based on their scores. An effect of memory consolidation was obtained in the hippocampus: Objects that were seen the evening before scanning (remote objects) elicited more activity than objects seen directly before scanning (recent objects). This increase in activity in bilateral hippocampus for remote objects was observed in good navigators only. In addition, a spatial-specific effect of memory consolidation for navigationally relevant objects was observed in the parahippocampal gyrus. Remote decision point objects induced increased activity as compared with recent decision point objects, again in good navigators only. The results provide initial evidence for a connection between memory consolidation and navigational ability that can provide a basis for successful

  16. The Effects of Spatial Visualization Ability and Graphical Navigational Aids on Cognitive Load and Learning from Web-Based Instruction

    ERIC Educational Resources Information Center

    Morozov, Andrew

    2009-01-01

    This study contributes to research investigating the effects of individual differences and online instructional design on learning. Learning performance was compared across three hypertext formats incorporating different navigational aids. The hierarchical map represented the physical structure of the hypertext in one condition, while the network…

  17. Functional cross-hemispheric shift between object-place paired associate memory and spatial memory in the human hippocampus.

    PubMed

    Lee, Choong-Hee; Ryu, Jungwon; Lee, Sang-Hun; Kim, Hakjin; Lee, Inah

    2016-08-01

    The hippocampus plays critical roles in both object-based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object-based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object-place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object-cueing period) to searching for its paired-associate place (object-cued place recognition period). Furthermore, the efficient retrieval of object-place paired associate memory (object-cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679

  18. The Effects of Terrain and Navigation on Human Extravehicular Activity Walkback Performance on the Moon

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Stroud, Leah C.; Schaffner, Grant; Glass, Brian J.; Lee, Pascal C.; Jones, Jeff A.; Gernhardt, Michael L.

    2008-01-01

    Results of the EVA Walkback Test showed that 6 male astronauts were able to ambulate 10 km on a level treadmill while wearing a prototype EVA suit in simulated lunar gravity. However, the effects of lunar terrain, topography, and real-time navigation on ambulation performance are unknown. Primary objective: To characterize the effect of lunar-like terrain and navigation on VO2 and distance traveled during an unsuited 10 km (straight-line distance) ambulatory return in earth gravity.

  19. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging.

    PubMed

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer. PMID:26822943

  20. Control algorithms for autonomous robot navigation

    SciTech Connect

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  1. Spatial augmented reality based high accuracy human face projection

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  2. Strategies for navigating large areas: a GIS spatial ecology analysis of the bearded saki monkey, Chiropotes sagulatus, in Suriname.

    PubMed

    Gregory, Tremaine; Mullett, Amanda; Norconk, Marilyn A

    2014-06-01

    Animals with long day paths and large home ranges expend a considerable amount of energy on travel. Studies have shown that in the interest of reducing energy expenditure, animals selectively navigate the landscape using a variety of strategies. However, these studies have generally focused on terrestrial animals. Here we present data on an exceedingly mobile arboreal animal, bearded saki monkeys, in a topographically variable landscape in Suriname. Using ArcMap and Google Earth, we explore two potential navigation strategies: the nonrandom use of travel areas and the use of ridges in slope navigation. Over a year of data collection, bearded sakis were found to use relatively long travel paths daily, use some areas more intensely than others for travel, and when travel paths were converted to strings of points, 40.3% and 63.9% of the points were located on (50 m from the main ridgeline) or near (100 m from the main ridgeline) ridge tops, respectively. Thus in a habitat of high relief we found support for intensive use of ridge tops or slopes close to ridge tops by bearded sakis. Selective habitat use may be related to surveying tree crowns for fruit by large, fast moving groups of bearded sakis or monitoring the presence of potential predators. PMID:24375420

  3. Toward critical spatial thinking in the social sciences and humanities

    PubMed Central

    Goodchild, Michael F.; Janelle, Donald G.

    2010-01-01

    The integration of geographically referenced information into the conceptual frameworks and applied uses of the social sciences and humanities has been an ongoing process over the past few centuries. It has gained momentum in recent decades with advances in technologies for computation and visualization and with the arrival of new data sources. This article begins with an overview of this transition, and argues that the spatial integration of information resources and the cross-disciplinary sharing of analysis and representation methodologies are important forces for the integration of scientific and artistic expression, and that they draw on core concepts in spatial (and spatio-temporal) thinking. We do not suggest that this is akin to prior concepts of unified knowledge systems, but we do maintain that the boundaries to knowledge transfer are disintegrating and that our abilities in problem solving for purposes of artistic expression and scientific development are enhanced through spatial perspectives. Moreover, approaches to education at all levels must recognize the need to impart proficiency in the critical and efficient application of these fundamental spatial concepts, if students and researchers are to make use of expanding access to a broadening range of spatialized information and data processing technologies. PMID:20454588

  4. Spatial cognition in humans: possible modulation by androgens and estrogens.

    PubMed Central

    Hampson, E

    1995-01-01

    Many studies in nonhuman species have shown that gonadal steroid hormones can influence the regional structure and physiology of the central nervous system, and can bring about both short- and long-term effects on behavior. The extent to which human behavior and thought processes are subtly influenced by the hormonal milieu is unclear. There is preliminary evidence from a number of clinical endocrine syndromes, and from studies of normal human subjects, that sex steroids may modulate the expression of certain specific cognitive abilities. This paper will briefly review some recent evidence suggesting that visual-spatial abilities are among the cognitive functions that may be affected. PMID:8527425

  5. Dissociated deficits of visuo-spatial memory in near space and navigational space: evidence from brain-damaged patients and healthy older participants.

    PubMed

    Piccardi, L; Iaria, G; Bianchini, F; Zompanti, L; Guariglia, C

    2011-05-01

    Defects confined to spatial memory can severely affect a variety of daily life activities, such as remembering the location of objects or navigating the environment, until now the skills involved have been mostly assessed with regard to the visual domain using traditional pencil and paper tests. Our aim was to test the efficacy of a recently developed psychometric instrument (Walking Corsi Test: WalCT) to assess the specific contribution of spatial memory to the complex task of retrieving route knowledge. The WalCT is a 3 × 2.5-m version of the well-known Corsi Block-tapping Test (CBT), in which patients are required to memorize (and replicate) a sequence of body displacements. We assessed the ability of left and right brain-damaged patients, as well as healthy young and senior controls, to perform both the CBT and the WalCT. Results showed differences related to age in the healthy individuals and specific functional dissociations in the brain-damaged patients. The double dissociations found in this study demonstrate the importance of having a task able to detect navigational disorders, because virtual reality tasks are often much too difficult for aged brain-damaged patients to perform. PMID:21557118

  6. Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation

    PubMed Central

    Knierim, James J.; Hamilton, Derek A.

    2011-01-01

    The most common behavioral test of hippocampus-dependent, spatial learning and memory is the Morris water task, and the most commonly studied behavioral correlate of hippocampal neurons is the spatial specificity of place cells. Despite decades of intensive research, it is not completely understood how animals solve the water task and how place cells generate their spatially specific firing fields. Based on early work, it has become the accepted wisdom in the general neuroscience community that distal spatial cues are the primary sources of information used by animals to solve the water task (and similar spatial tasks) and by place cells to generate their spatial specificity. More recent research, along with earlier studies that were overshadowed by the emphasis on distal cues, put this common view into question by demonstrating primary influences of local cues and local boundaries on spatial behavior and place-cell firing. This paper first reviews the historical underpinnings of the “standard” view from a behavioral perspective, and then reviews newer results demonstrating that an animal's behavior in such spatial tasks is more strongly controlled by a local-apparatus frame of reference than by distal landmarks. The paper then reviews similar findings from the literature on the neurophysiological correlates of place cells and other spatially-correlated cells from related brain areas. A model is proposed by which distal cues primarily set the orientation of the animal's internal spatial coordinate system, via the head direction cell system, whereas local cues and apparatus boundaries primarily set the translation and scale of that coordinate system. PMID:22013211

  7. Indoor magnetic navigation for the blind.

    PubMed

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Giudice, Nicholas A; Sheikh, Suneel I; Knuesel, Robert J; Kollmann, Daniel T; Hedin, Daniel S

    2012-01-01

    Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction of and evaluation of a navigation system that infers the users' location using only magnetic sensing. It is well known that the environments within steel frame structures are subject to significant magnetic distortions. Many of these distortions are persistent and have sufficient strength and spatial characteristics to allow their use as the basis for a location technology. This paper describes the development and evaluation of a prototype magnetic navigation system consisting of a wireless magnetometer placed at the users' hip streaming magnetic readings to a smartphone processing location algorithms. Human trials were conducted to assess the efficacy of the system by studying route-following performance with blind and sighted subjects using the navigation system for real-time guidance. PMID:23366303

  8. Implementation of a socio-ecological system navigation approach to human development in sub-saharan african communities.

    PubMed

    Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R; Baumgärtner, Johann

    2014-03-26

    This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of

  9. Implementation of a Socio-Ecological System Navigation Approach to Human Development in Sub-Saharan African Communities

    PubMed Central

    Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R.; Baumgärtner, Johann

    2014-01-01

    This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of

  10. Finding the way: a critical discussion of anthropological theories of human spatial orientation with reference to reindeer herders of northeastern Europe and western Siberia.

    PubMed

    Istomin, Kirill V; Dwyer, Mark J

    2009-02-01

    In anthropology, research on human spatial orientation (wayfinding) has centered on two conflicting theories: the "mental map," whereby humans build abstract cognitive representations of the spatial relations between objects, and "practical mastery," which rejects the idea that such abstract representations exist and, in its most developed form, suggests that wayfinding is a process of moving from one recognized visual perspective (vista) to another (transitions between vistas). In this paper we reveal, on the basis of existing psychology and geography research, that both wayfinding theories are in fact complementary: humans rely on mental maps but also memorize vistas while navigating, and an individual's navigation method, ability, and the form of the mental map is likely to depend on a situation as well as on factors such as age, sex, familiarity with the environment, and life history. We demonstrate (using research material obtained during fieldwork carried out among Komi and Nenets reindeer herders) that anthropology can contribute to human spatial cognitive research, which has traditionally been an interdisciplinary endeavor, by identifying differences in spatial representation between different people and peoples. However, future contributions can be achieved only if anthropologists accept that mental maps and route knowledge (as advocated by practical mastery) are part and parcel of spatial cognition. PMID:19579354

  11. Visual task enhances spatial selectivity in the human auditory cortex.

    PubMed

    Salminen, Nelli H; Aho, Joanna; Sams, Mikko

    2013-01-01

    The auditory cortex represents spatial locations differently from other sensory modalities. While visual and tactile cortices utilize topographical space maps, for audition no such cortical map has been found. Instead, auditory cortical neurons have wide spatial receptive fields and together they form a population rate code of sound source location. Recent studies have shown that this code is modulated by task conditions so that during auditory tasks it provides better selectivity to sound source location than during idle listening. The goal of this study was to establish whether the neural representation of auditory space can also be influenced by task conditions involving other sensory modalities than hearing. Therefore, we conducted magnetoencephalography (MEG) recordings in which auditory spatial selectivity of the human cortex was probed with an adaptation paradigm while subjects performed a visual task. Engaging in the task led to an increase in neural selectivity to sound source location compared to when no task was performed. This suggests that an enhancement in the population rate code of auditory space took place during task performance. This enhancement in auditory spatial selectivity was independent of the direction of visual orientation. Together with previous studies, these findings suggest that performing any demanding task, even one in which sounds and their source locations are irrelevant, can lead to enhancements in the neural representation of auditory space. Such mechanisms may have great survival value as sounds are capable of producing location information on potentially relevant events in all directions and over long distances. PMID:23543781

  12. Diagnostic spatial frequencies and human efficiency for discriminating actions.

    PubMed

    Thurman, Steven M; Grossman, Emily D

    2011-02-01

    Humans extract visual information from the world through spatial frequency (SF) channels that are sensitive to different scales of light-dark fluctuations across visual space. Using two methods, we measured human SF tuning for discriminating videos of human actions (walking, running, skipping and jumping). The first, more traditional, approach measured signal-to-noise ratio (s/n) thresholds for videos filtered by one of six Gaussian band-pass filters ranging from 4 to 128 cycles/image. The second approach used SF "bubbles", Willenbockel et al. (Journal of Experimental Psychology. Human Perception and Performance, 36(1), 122-135, 2010), which randomly filters the entire SF domain on each trial and uses reverse correlation to estimate SF tuning. Results from both methods were consistent and revealed a diagnostic SF band centered between 12-16 cycles/image (about 1-1.25 cycles/body width). Efficiency on this task was estimated by comparing s/n thresholds for humans to an ideal observer, and was estimated to be quite low (>.04%) for both experiments. PMID:21264736

  13. Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Belik, Vitaly; Geisel, Theo; Brockmann, Dirk

    2011-08-01

    We investigate a model for spatial epidemics explicitly taking into account bidirectional movements between base and destination locations on individual mobility networks. We provide a systematic analysis of generic dynamical features of the model on regular and complex metapopulation network topologies and show that significant dynamical differences exist to ordinary reaction-diffusion and effective force of infection models. On a lattice we calculate an expression for the velocity of the propagating epidemic front and find that, in contrast to the diffusive systems, our model predicts a saturation of the velocity with an increasing traveling rate. Furthermore, we show that a fully stochastic system exhibits a novel threshold for the attack ratio of an outbreak that is absent in diffusion and force of infection models. These insights not only capture natural features of human mobility relevant for the geographical epidemic spread, they may serve as a starting point for modeling important dynamical processes in human and animal epidemiology, population ecology, biology, and evolution.

  14. Dorsolateral Striatal Lesions Impair Navigation Based on Landmark-Goal Vectors but Facilitate Spatial Learning Based on a "Cognitive Map"

    ERIC Educational Resources Information Center

    Kosaki, Yutaka; Poulter, Steven L.; Austen, Joe M.; McGregor, Anthony

    2015-01-01

    In three experiments, the nature of the interaction between multiple memory systems in rats solving a variation of a spatial task in the water maze was investigated. Throughout training rats were able to find a submerged platform at a fixed distance and direction from an intramaze landmark by learning a landmark-goal vector. Extramaze cues were…

  15. Allocentric spatial memory in humans with hippocampal lesions.

    PubMed

    Parslow, David M; Morris, Robin G; Fleminger, Simon; Rahman, Qazi; Abrahams, Sharon; Recce, Michael

    2005-01-01

    An immersive virtual reality (IVR) system was used to investigate allocentric spatial memory in a patient (PR) who had selective hippocampal damage, and also in patients who had undergone unilateral temporal lobectomies (17 right TL and 19 left TL), their performance compared against normal control groups. A human analogue of the Olton [Olton (1979). Hippocampus, space, and memory. Behavioural Brain Science, 2, 315] spatial maze was developed, consisting of a virtual room, a central virtual circular table and an array of radially arranged up-turned 'shells.' The participant had to search these shells in turn in order to find a blue 'cube' that would then 'move' to another location and so on, until all the shells had been target locations. Within-search errors could be made when the participants returned to a previously visited location during a search, and between-search errors when they revisited previously successful, but now incorrect locations. PR made significantly more between-search errors than his control group, but showed no increase in within-search errors. The right TL group showed a similar pattern of impairment, but the left TL group showed no impairment. This finding implicates the right hippocampal formation in spatial memory functioning in a scenario in which the visual environment was controlled so as to eliminate extraneous visual cues. PMID:15627413

  16. The Temporal Context Model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains

    PubMed Central

    Howard, Marc W.; Fotedar, Mrigankka S.; Datey, Aditya V.; Hasselmo, Michael E.

    2005-01-01

    The medial temporal lobe (MTL) has been studied extensively at all levels of analysis, yet its function remains unclear. Theory regarding the cognitive function of the MTL has centered along 3 themes. Different authors have emphasized the role of the MTL in episodic recall, spatial navigation, or relational memory. Starting with the temporal context model (M. W. Howard and M. J. Kahana, 2002), a distributed memory model that has been applied to benchmark data from episodic recall tasks, the authors propose that the entorhinal cortex supports a gradually changing representation of temporal context and the hippocampus proper enables retrieval of these contextual states. Simulation studies show this hypothesis explains the firing of place cells in the entorhinal cortex and the behavioral effects of hippocampal lesion in relational memory tasks. These results constitute a first step towards a unified computational theory of MTL function that integrates neurophysiological, neuropsychological and cognitive findings. PMID:15631589

  17. Human four-dimensional spatial intuition in virtual reality.

    PubMed

    Ambinder, Michael S; Wang, Ranxiao Frances; Crowell, James A; Francis, George K; Brinkmann, Peter

    2009-10-01

    It is a long-lasting question whether human beings, who evolved in a physical world of three dimensions, are capable of overcoming this fundamental limitation to develop an intuitive understanding of four-dimensional space. Techniques of analogy and graphical illustration have been developed with some subjective reports of success. However, there has been no objective evaluation of such achievements. Here, we show evidence that people with basic geometric knowledge can learn to make spatial judgments on the length of, and angle between, line segments embedded in four-dimensional space viewed in virtual reality with minimal exposure to the task and no feedback to their responses. Their judgments incorporated information from both the three-dimensional (3-D) projection and the fourth dimension, and the underlying representations were not algebraic in nature but based on visual imagery, although primitive and short lived. These results suggest that human spatial representations are not completely constrained by our evolution and development in a 3-D world. Illustration of the stimuli and experimental procedure (as video clips) and the instruction to participants (as a PDF file) may be downloaded from http://pbr.psychonomic-journals.org/content/supplemental. PMID:19815783

  18. Adult learning deficits after neonatal exposure to D-methamphetamine: selective effects on spatial navigation and memory.

    PubMed

    Vorhees, C V; Inman-Wood, S L; Morford, L L; Broening, H W; Fukumura, M; Moran, M S

    2000-06-15

    The effects of neonatal d-methamphetamine (MA) treatment on cued and spatial learning and memory were investigated. MA was administered to neonatal rats on postnatal days 11-20. All groups received four subcutaneous injections per day. Group MA40-4 received 40 mg. kg(-1). d(-1) of MA in four divided doses (10 mg/kg per injection). Group MA40-2 received 40 mg. kg(-1). d(-1) of MA in two divided (20 mg/kg/injection) and saline for the other two injections per day. Controls received saline for four injections per day. As adults, both MA groups showed no differences in swimming ability in a straight swimming channel. The MA40-4 group showed no differences in cued learning, but was impaired in hidden platform learning in the Morris water maze on acquisition. They also showed reduced memory performance on probe trials. Similar trends were seen on reversal learning and reversal probe trials. Reduced platform-size learning trials caused spatial learning impairments to re-emerge in the MA40-4 group. The MA40-2 group showed no differences in straight channel swimming, but was slower at finding the visible platform during cued learning. They were also impaired during acquisition and memory trials in the Morris hidden platform maze. They showed a similar trend on reversal learning and memory trials, but were not different during reduced platform-size learning trials. When the MA40-2 group's performance on hidden platform learning and memory trials was adjusted for cued trial performance, the spatial learning deficits remained. Deficits of spatial learning and memory are a selective effect of neonatal methamphetamine treatment irrespective of other learning and performance variables. PMID:10844042

  19. Spatial Navigation in Complex and Radial Mazes in APP23 Animals and Neurotrophin Signaling as a Biological Marker of Early Impairment

    ERIC Educational Resources Information Center

    Hellweg, Rainer; Huber, Roman; Kuhl, Alexander; Riepe, Matthias W.; Lohmann, Peter

    2006-01-01

    Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease(AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse…

  20. An assisted navigation training framework based on judgment theory using sparse and discrete human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano

    2009-01-01

    This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented. PMID:19963849

  1. Human factors evaluation of a dynamic channel depiction of navigation procedures in SVS displays

    NASA Astrophysics Data System (ADS)

    Pschierer, C.; Schiefele, J.; Howland, D.; Barraci, N.; Sindlinger, A.; Klingauf, U.

    2007-04-01

    Synthetic vision systems (SVS) are studied for some time to improve pilot's situational awareness and lower their workload. Early systems just displayed a virtual outside view of terrain, obstacles or airport elements as it could also be perceived through the cockpit windows in absence of haze, fog or any other factors impairing visibility. Required digital terrain, obstacle and airport databases have been developed and standardized by Jeppesen as part of the NASA Aviation Safety Program. Newer SVS displays also introduced different kinds of flight guidance symbology to help pilots to improve the overall flight precision. The method studied in this paper is to display navigation procedures in the form of guidance channels. First releases of the described system used static channels, generated once at the startup at the system or even offline. While this approach is very resource friendly for the avionics hardware, it does not consider the users, which want the system to respond to the current flight conditions dynamically. Therefore, a new application has been developed which generates both the general channel trajectory as well as the channel depiction in a fully dynamic way while the pilot flies a navigation procedure.

  2. Spatial variability of nutrients (N, P) in a deep, temperate lake with a low trophic level supported by global navigation satellite systems, geographic information system and geostatistics.

    PubMed

    Łopata, Michał; Popielarczyk, Dariusz; Templin, Tomasz; Dunalska, Julita; Wiśniewski, Grzegorz; Bigaj, Izabela; Szymański, Daniel

    2014-01-01

    We investigated changes in the spatial distribution of phosphorus (P) and nitrogen (N) in the deep, mesotrophic Lake Hańcza. The raw data collection, supported by global navigation satellite system (GNSS) positioning, was conducted on 79 sampling points. A geostatistical method (kriging) was applied in spatial interpolation. Despite the relatively small area of the lake (3.04 km(2)), compact shape (shore development index of 2.04) and low horizontal exchange of water (retention time 11.4 years), chemical gradients in the surface waters were found. The largest variation concerns the main biogenic element - phosphorus. The average value was 0.032 at the extreme values of 0.019 to 0.265 mg L(-1) (coefficient of variation 87%). Smaller differences are related to nitrogen compounds (0.452-1.424 mg L(-1) with an average value of 0.583 mg L(-1), the coefficient of variation 20%). The parts of the lake which are fed with tributaries are the richest in phosphorus. The water quality of the oligo-mesotrophic Lake Hańcza has been deteriorating in recent years. Our results indicate that inferences about trends in the evolution of examined lake trophic status should be based on an analysis of the data, taking into account the local variation in water chemistry. PMID:24804657

  3. Object-centered reference systems and human spatial memory.

    PubMed

    Chen, Xiaoli; McNamara, Timothy

    2011-10-01

    The present study investigated the role of object-centered reference systems in memories of objects' locations. Participants committed to memory the locations and orientations of either 11 human avatars (Experiment 1) or 11 animal models (Experiment 2) displayed in a desktop virtual environment and then completed judgments of relative directions, in which they pointed to objects from imagined vantage points corresponding to the locations of the objects. Results showed that, with avatars, performance was better when the imagined heading was congruent with the facing direction of the avatar located at the imagined vantage point. With animal models, no such facilitation was found. For both types of stimuli, performance was better for the learning view than for the novel 135° view. Results demonstrate that memories of the locations of objects are affected by object-centered reference systems and are consistent with conjectures that spatial memories are hierarchies of spatial reference systems, with higher levels corresponding to larger scales of space. PMID:21786070

  4. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  5. Developing Spatial Orientation and Spatial Memory with a Treasure Hunting Game

    ERIC Educational Resources Information Center

    Lin, Chien-Heng; Chen, Chien-Min; Lou, Yu-Chiung

    2014-01-01

    The abilities of both spatial orientation and spatial memory play very important roles in human navigation and spatial cognition. Since such abilities are difficult to strengthen through books or classroom instruction, there are no particular curricula or methods to assist in their development. Therefore, this study develops a spatial…

  6. Dynamic Spatial Hearing by Human and Robot Listeners

    NASA Astrophysics Data System (ADS)

    Zhong, Xuan

    This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.

  7. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    PubMed

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian. PMID:26946752

  8. Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: A pilot study

    PubMed Central

    Goswami, Nandu; Kavcic, Voyko; Marusic, Uros; Simunic, Bostjan; Rössler, Andreas; Hinghofer-Szalkay, Helmut; Pisot, Rado

    2015-01-01

    We investigated the effects of bed rest (BR) immobilization, with and without computerized cognitive training with virtual spatial navigation task (CCT), on vascular endothelium on older subjects. The effects of 14-day BR immobilization in healthy older males (n=16) of ages 53–65 years on endothelial function were studied using EndoPAT®, a noninvasive and user-independent method. From the group of 16 older men, 8 randomly received CCT during the BR, using virtual navigation tasks in a virtual environment with joystick device. In all the cases, EndoPAT assessments were done at pre- and post-BR immobilization as well as following 28 days of ambulatory recovery. The EndoPAT index increased from 1.53±0.09 (mean ± standard error of the mean) at baseline to 1.61±0.16 following immobilization (P=0.62) in the group with CCT. The EndoPAT index decreased from 2.06±0.13 (mean ± standard error of the mean) at baseline to 1.70±0.09 at the last day of BR study, day 14 (BR14) (P=0.09) in the control group. Additionally, there were no statistically significant differences between BR14 and at 28 days of follow-up (rehabilitation program) (R28). Our results show a trend of immobilization in older persons affecting the vasoconstrictory endothelial response. As the control subjects had a greater increase in EndoPAT index after R28 (+0.018) compared to subjects who had cognitive training (+0.11) (calculated from the first day of BR study), it is possible that cognitive training during BR does not improve endothelial function but rather contributes to slowing down the impairment of endothelial function. Finally, our results also show that EndoPAT may be a useful noninvasive tool to assess the vascular reactivity. PMID:25709419

  9. Spatial distribution of metabolites in the human lens.

    PubMed

    Tamara, Semen O; Yanshole, Lyudmila V; Yanshole, Vadim V; Fursova, Anjella Zh; Stepakov, Denis A; Novoselov, Vladimir P; Tsentalovich, Yuri P

    2016-02-01

    Spatial distribution of 34 metabolites along the optical and equatorial axes of the human lens has been determined. For the majority of metabolites, the homogeneous distribution has been observed. That suggests that the rate of the metabolite transformation in the lens is low due to the general metabolic passivity of the lens fiber cells. However, the redox processes are active in the lens; as a result, some metabolites, including antioxidants, demonstrate the "nucleus-depleted" type of distribution, whereas secondary UV filters show the "nucleus-enriched" type. The metabolite concentrations at the lens poles and equator are similar for all metabolites under study. The concentric pattern of the "nucleus-depleted" and "nucleus-enriched" distributions testifies that the metabolite distribution inside the lens is mostly governed by a passive diffusion, relatively free along the fiber cells and retarded in the radial direction across the cells. No significant difference in the metabolite distribution between the normal and cataractous human lenses was found. PMID:26500196

  10. Integrated processing of spatial cues in human auditory cortex.

    PubMed

    Salminen, Nelli H; Takanen, Marko; Santala, Olli; Lamminsalo, Jarkko; Altoè, Alessandro; Pulkki, Ville

    2015-09-01

    Human sound source localization relies on acoustical cues, most importantly, the interaural differences in time and level (ITD and ILD). For reaching a unified representation of auditory space the auditory nervous system needs to combine the information provided by these two cues. In search for such a unified representation, we conducted a magnetoencephalography (MEG) experiment that took advantage of the location-specific adaptation of the auditory cortical N1 response. In general, the attenuation caused by a preceding adaptor sound to the response elicited by a probe depends on their spatial arrangement: if the two sounds coincide, adaptation is stronger than when the locations differ. Here, we presented adaptor-probe pairs that contained different localization cues, for instance, adaptors with ITD and probes with ILD. We found that the adaptation of the N1 amplitude was location-specific across localization cues. This result can be explained by the existence of auditory cortical neurons that are sensitive to sound source location independent on which cue, ITD or ILD, provides the location information. Such neurons would form a cue-independent, unified representation of auditory space in human auditory cortex. PMID:26074304

  11. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  12. Plasticity of Human Spatial Cognition: Spatial Language and Cognition Covary across Cultures

    ERIC Educational Resources Information Center

    Haun, Daniel B. M.; Rapold, Christian J.; Janzen, Gabriele; Levinson, Stephen C.

    2011-01-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of…

  13. Transillumination spatially modulated illumination microscopy for human chromosome imaging

    NASA Astrophysics Data System (ADS)

    Pitris, Costas; Heracleous, Peter; Patsalis, Philippos

    2005-03-01

    Human chromosome analysis is an essential task in cytogenetics, especially in prenatal screening, genetic syndrome diagnosis, cancer pathology research and mutagen dosimetry. Chromosomal analysis begins with the creation of a karyotype, which is a layout of chromosome images organized by decreasing size in pairs. Both manual and automatic classification of chromosomes are limited by the resolution of the microscope and imaging system used. One way to improve the results of classification and even detect subtleties now remaining undetected, is to enhance the resolution of the images. It is possible to achieve lateral resolution beyond the classical limit, by using spatially modulated illumination (SMI) in a wide-field, non-confocal microscope. In this case, the sample is illuminated with spatially modulated light, which makes normally inaccessible high-resolution information visible in the observed image by shifting higher frequencies within the OTF limits of the microscope. Although, SMI microscopes have been reported in the past, this manuscript reports the development of a transillumination microscope for opaque, non-fluorescent samples. The illumination path consisted of a light source illuminating a ruled grating which was subsequently imaged on the sample. The grating was mounted on a rotating and translating stage so that the magnification and rotation of the pattern could be adjusted. The imaging lens was a 1.25 NA oil immersion objective. Test samples showed resolution improvement, as judged from a comparison of the experimentally obtained FWHM. Further studies using smaller fringe distance or laser interference pattern illumination will be evaluated to further optimize the SMI results.

  14. Grid-like Processing of Imagined Navigation.

    PubMed

    Horner, Aidan J; Bisby, James A; Zotow, Ewa; Bush, Daniel; Burgess, Neil

    2016-03-21

    Grid cells in the entorhinal cortex (EC) of rodents [1] and humans [2] fire in a hexagonally distributed spatially periodic manner. In concert with other spatial cells in the medial temporal lobe (MTL) [3-6], they provide a representation of our location within an environment [7, 8] and are specifically thought to allow the represented location to be updated by self-motion [9]. Grid-like signals have been seen throughout the autobiographical memory system [10], suggesting a much more general role in memory [11, 12]. Grid cells may allow us to move our viewpoint in imagination [13], a useful function for goal-directed navigation and planning [12, 14-16], and episodic future thinking more generally [17, 18]. We used fMRI to provide evidence for similar grid-like signals in human entorhinal cortex during both virtual navigation and imagined navigation of the same paths. We show that this signal is present in periods of active navigation and imagination, with a similar orientation in both and with the specifically 6-fold rotational symmetry characteristic of grid cell firing. We therefore provide the first evidence suggesting that grid cells are utilized during movement of viewpoint within imagery, potentially underpinning our more general ability to mentally traverse possible routes in the service of planning and episodic future thinking. PMID:26972318

  15. Grid-like Processing of Imagined Navigation

    PubMed Central

    Horner, Aidan J.; Bisby, James A.; Zotow, Ewa; Bush, Daniel; Burgess, Neil

    2016-01-01

    Summary Grid cells in the entorhinal cortex (EC) of rodents [1] and humans [2] fire in a hexagonally distributed spatially periodic manner. In concert with other spatial cells in the medial temporal lobe (MTL) [3, 4, 5, 6], they provide a representation of our location within an environment [7, 8] and are specifically thought to allow the represented location to be updated by self-motion [9]. Grid-like signals have been seen throughout the autobiographical memory system [10], suggesting a much more general role in memory [11, 12]. Grid cells may allow us to move our viewpoint in imagination [13], a useful function for goal-directed navigation and planning [12, 14, 15, 16], and episodic future thinking more generally [17, 18]. We used fMRI to provide evidence for similar grid-like signals in human entorhinal cortex during both virtual navigation and imagined navigation of the same paths. We show that this signal is present in periods of active navigation and imagination, with a similar orientation in both and with the specifically 6-fold rotational symmetry characteristic of grid cell firing. We therefore provide the first evidence suggesting that grid cells are utilized during movement of viewpoint within imagery, potentially underpinning our more general ability to mentally traverse possible routes in the service of planning and episodic future thinking. PMID:26972318

  16. Experimental quantification of the tactile spatial responsivity of human cornea.

    PubMed

    Beiderman, Yevgeny; Belkin, Michael; Rotenstreich, Ygal; Zalevsky, Zeev

    2015-01-01

    We present the first experimental quantification of the tactile spatial responsivity of the cornea and we teach a subject to recognize spatial tactile shapes that are stimulated on their cornea. PMID:26158088

  17. A technique for simulating visual field losses in virtual environments to study human navigation.

    PubMed

    Fortenbaugh, Francesca C; Hicks, John C; Hao, Lei; Turano, Kathleen A

    2007-08-01

    The following paper describes a new technique for simulating peripheral field losses in virtual environments to study the roles of the central and peripheral visual fields during navigation. Based on Geisler and Perry's (2002) gaze-contingent multiresolution display concept, the technique extends their methodology to work with three-dimensional images that are both transformed and rendered in real time by a computer graphics system. In order to assess the usefulness of this method for studying visual field losses, an experiment was run in which seven participants were required to walk to a target tree in a virtual forest as quickly and efficiently as possible while artificial head and eye-based delays were systematically introduced. Bilinear fits were applied to the mean trial times in order to assess at what delay lengths breaks in performance could be observed. Results suggest that breaks occur beyond the current delays inherent in the system. Increases in trial times across all delays tested were also observed when simulated peripheral field losses were applied compared to full FOV conditions. Possible applications and limitations of the system are discussed. The source code needed to program visual field losses can be found at lions.med.jhu.edu/archive/turanolab/Simulated_Visual_Field_Loss_Code.html. PMID:17958167

  18. Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task

    PubMed Central

    Rice, James P.; Wallace, Douglas G.; Hamilton, Derek A.

    2015-01-01

    The hippocampus and dorsolateral striatum are critically involved in spatial navigation based on extra-maze and intra-maze cues, respectively. Previous reports from our laboratory suggest that behavior in the Morris water task may be guided by both cue types, and rats appear to switch from extra-pool to intra-pool cues to guide navigation in a sequential manner within a given trial. In two experiments, rats with hippocampal or dorsolateral striatal lesions were trained and tested in water task paradigms that involved translation and removal of a cued platform within the pool and translations of the pool itself with respect to the extra-pool cue reference frame. In the first experiment, moment-to-moment analyses of swim behavior indicate that hippocampal lesions disrupt initial trajectories based on extra-pool cues at the beginning of the trial, while dorsolateral striatal lesions disrupt subsequent swim trajectories based on the location of the cued platform at the end of the trial. In the second experiment lesions of the hippocampus, but not the dorsolateral striatum, impaired directional responding in situations where the pool was shifted within the extra-pool cue array. These results are important for understanding the cooperative interactions between the hippocampus and dorsolateral striatum in spatial learning and memory, and establish that these brain areas are continuously involved in goal-directed spatial navigation. These results also highlight the importance of the hippocampus in directional responding in addition to place navigation. PMID:25907746

  19. Dorsolateral striatal lesions impair navigation based on landmark-goal vectors but facilitate spatial learning based on a “cognitive map”

    PubMed Central

    Poulter, Steven L.; Austen, Joe M.

    2015-01-01

    In three experiments, the nature of the interaction between multiple memory systems in rats solving a variation of a spatial task in the water maze was investigated. Throughout training rats were able to find a submerged platform at a fixed distance and direction from an intramaze landmark by learning a landmark-goal vector. Extramaze cues were also available for standard place learning, or “cognitive mapping,” but these cues were valid only within each session, as the position of the platform moved around the pool between sessions together with the intramaze landmark. Animals could therefore learn the position of the platform by taking the consistent vector from the landmark across sessions or by rapidly encoding the new platform position on each session with reference to the extramaze cues. Excitotoxic lesions of the dorsolateral striatum impaired vector-based learning but facilitated cognitive map-based rapid place learning when the extramaze cues were relatively poor (Experiment 1) but not when they were more salient (Experiments 2 and 3). The way the lesion effects interacted with cue availability is consistent with the idea that the memory systems involved in the current navigation task are functionally cooperative yet associatively competitive in nature. PMID:25691518

  20. Maze Suite 1.0: a complete set of tools to prepare, present, and analyze navigational and spatial cognitive neuroscience experiments.

    PubMed

    Ayaz, Hasan; Allen, Sarah L; Platek, Steven M; Onaral, Banu

    2008-02-01

    Maze Suite is a complete set of tools that enables researchers to perform spatial and navigational behavioral experiments within interactive, easy-to-create, and extendable (e.g., multiple rooms) 3-D virtual environments. Maze Suite can be used to design and edit adapted 3-D environments, as well as to track subjects' behavioral performance. Maze Suite consists of three main applications: an editing program for constructing maze environments (MazeMaker), a visualization/rendering module (MazeWalker), and an analysis and mapping tool (MazeViewer). Each of these tools is run and used from a graphical user interface, thus making editing, execution, and analysis user friendly. MazeMaker is a .NET architecture application that can easily be used to create new 3-D environments and to edit objects (e.g., geometric shapes, pictures, landscapes, etc.) or add them to the environment effortlessly. In addition, Maze Suite has the capability of sending signal-out pulses to physiological recording devices, using standard computer ports. Maze Suite, with all three applications, is a unique and complete toolset for researchers who want to easily and rapidly deploy interactive 3-D environments. PMID:18411560

  1. The Navigation Guide—Evidence-Based Medicine Meets Environmental Health: Systematic Review of Human Evidence for PFOA Effects on Fetal Growth

    PubMed Central

    Sutton, Patrice; Atchley, Dylan S.; Koustas, Erica; Lam, Juleen; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.

    2014-01-01

    Background: The Navigation Guide methodology was developed to meet the need for a robust method of systematic and transparent research synthesis in environmental health science. We conducted a case study systematic review to support proof of concept of the method. Objective: We applied the Navigation Guide systematic review methodology to determine whether developmental exposure to perfluorooctanoic acid (PFOA) affects fetal growth in humans. Methods: We applied the first 3 steps of the Navigation Guide methodology to human epidemiological data: 1) specify the study question, 2) select the evidence, and 3) rate the quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using prespecified criteria. We evaluated each study for risk of bias and conducted meta-analyses on a subset of studies. We rated quality and strength of the entire body of human evidence. Results: We identified 18 human studies that met our inclusion criteria, and 9 of these were combined through meta-analysis. Through meta-analysis, we estimated that a 1-ng/mL increase in serum or plasma PFOA was associated with a –18.9 g (95% CI: –29.8, –7.9) difference in birth weight. We concluded that the risk of bias across studies was low, and we assigned a “moderate” quality rating to the overall body of human evidence. Conclusion: On the basis of this first application of the Navigation Guide systematic review methodology, we concluded that there is “sufficient” human evidence that developmental exposure to PFOA reduces fetal growth. Citation: Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1028–1039; http://dx.doi.org/10.1289/ehp.1307893 PMID:24968388

  2. Spatial Construction Skills of Chimpanzees ("Pan Troglodytes") and Young Human Children ("Homo Sapiens Sapiens")

    ERIC Educational Resources Information Center

    Poti, Patrizia; Hayashi, Misato; Matsuzawa, Tetsuro

    2009-01-01

    Spatial construction tasks are basic tests of visual-spatial processing. Two studies have assessed spatial construction skills in chimpanzees (Pan troglodytes) and young children (Homo sapiens sapiens) with a block modelling task. Study 1a subjects were three young chimpanzees and five adult chimpanzees. Study 1b subjects were 30 human children…

  3. Temporal and Spatial Categorization in Human and Non-Human Primates

    PubMed Central

    Mendez, Juan Carlos; Prado, Luis; Mendoza, German; Merchant, Hugo

    2011-01-01

    It has been proposed that a functional overlap exists in the brain for temporal and spatial information processing. To test this, we designed two relative categorization tasks in which human subjects and a Rhesus monkey had to assign time intervals or distances to a “short” or “long” category according to varying prototypes. The performance of both species was analyzed using psychometric techniques that showed that they may have similar perceptual, memory, and/or decision mechanisms, specially for the estimation of time intervals. We also did a correlation analysis with human subjects’ psychometric thresholds and the results imply that indeed, temporal and spatial information categorization share neural substrates. However, not all of the tested distances and intervals correlated with each other, suggesting the existence of sub-circuits that process restricted ranges of distances and intervals. A different analysis was done on the monkey data, in which the influence of the previous categorical prototypes was measured on the task currently being performed. Again, we found a significant interaction between previous and current interval and distance categorization. Overall, the present paper points toward common or at least partially overlapped neural circuits for temporal and spatial categorization in primates. PMID:21927599

  4. Micro Navigator

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  5. Using an Empirical Model of Human Turning Motion to Aid Heading Estimation in a Personal Navigation System

    NASA Astrophysics Data System (ADS)

    Jakel, Thomas

    With the adoption of Global Navigation Satellite Systems in smart phones, soldier equipment, and emergency responder navigation systems users have realized the usefulness of low cost Personal Navigation Systems. The state-of-the-art Personal Navigation System is a unit that fuses information based on external references with a low cost IMU. Due to the size, weight, power, and cost constraints imposed on a pedestrian navigation systems as well as current IMU performance limitations, the gyroscopes used to determine heading exhibit significant drift limiting the performance of the navigation system. In this thesis biomechanical signals are used to predict the onset of pedestrian turning motion. Experimental data from eight subjects captured in a gait laboratory using a Vicon motion tracking unit is used for validation. The analysis of experimental data shows the heading computed by turn prediction augmented integration is more accurate than open loop gyro integration alone.

  6. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  7. Navigating uncharted water: research ethics and emotional engagement in human inquiry.

    PubMed

    Kidd, J; Finlayson, M

    2006-08-01

    Sensitive research necessitates routine ethical practices of confidentiality, anonymity and worthiness. However, when co-constructing narratives with participants, the nurse researcher also faces unexplored ethical issues that arise out of the emotional intensity and professional responsibility inherent in the relationship. Such issues may be recognized and managed using clinical supervision in addition to academic supervision. Researcher vulnerability adds depth and complexity to human inquiry. PMID:16867126

  8. Navigation lights color study

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.; Alberg, Matthew T.

    2015-05-01

    The chromaticity of navigation lights are defined by areas on the International Commission on Illumination (CIE) 1931 chromaticity diagram. The corner coordinates for these areas are specified in the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). The navigation light's color of white, red, green, and yellow are bounded by these areas. The chromaticity values specified by the COLREGS for navigation lights were intended for the human visual system (HVS). The HVS can determine the colors of these lights easily under various conditions. For digital color camera imaging systems the colors of these lights are dependent on the camera's color spectral sensitivity, settings, and color correction. At night the color of these lights are used to quickly determine the relative course of vessels. If these lights are incorrectly identified or there is a delay in identifying them this could be a potential safety of ship concern. Vessels that use camera imaging systems exclusively for sight, at night, need to detect, identify, and discriminate navigation lights for navigation and collision avoidance. The introduction of light emitting diode (LED) lights and lights with different spectral signatures have the potential to be imaged very differently with an RGB color filter array (CFA) color camera than with the human eye. It has been found that some green navigation lights' images appear blue verse green. This has an impact on vessels that use camera imaging systems exclusively for navigation. This paper will characterize color cameras ability to properly reproducing navigation lights' color and survey a set of navigation light to determine if they conform to the COLREGS.

  9. Impairment of auditory spatial localization in congenitally blind human subjects.

    PubMed

    Gori, Monica; Sandini, Giulio; Martinoli, Cristina; Burr, David C

    2014-01-01

    Several studies have demonstrated enhanced auditory processing in the blind, suggesting that they compensate their visual impairment in part with greater sensitivity of the other senses. However, several physiological studies show that early visual deprivation can impact negatively on auditory spatial localization. Here we report for the first time severely impaired auditory localization in the congenitally blind: thresholds for spatially bisecting three consecutive, spatially-distributed sound sources were seriously compromised, on average 4.2-fold typical thresholds, and half performing at random. In agreement with previous studies, these subjects showed no deficits on simpler auditory spatial tasks or with auditory temporal bisection, suggesting that the encoding of Euclidean auditory relationships is specifically compromised in the congenitally blind. It points to the importance of visual experience in the construction and calibration of auditory spatial maps, with implications for rehabilitation strategies for the congenitally blind. PMID:24271326

  10. Impairment of auditory spatial localization in congenitally blind human subjects

    PubMed Central

    Gori, Monica; Sandini, Giulio; Martinoli, Cristina

    2014-01-01

    Several studies have demonstrated enhanced auditory processing in the blind, suggesting that they compensate their visual impairment in part with greater sensitivity of the other senses. However, several physiological studies show that early visual deprivation can impact negatively on auditory spatial localization. Here we report for the first time severely impaired auditory localization in the congenitally blind: thresholds for spatially bisecting three consecutive, spatially-distributed sound sources were seriously compromised, on average 4.2-fold typical thresholds, and half performing at random. In agreement with previous studies, these subjects showed no deficits on simpler auditory spatial tasks or with auditory temporal bisection, suggesting that the encoding of Euclidean auditory relationships is specifically compromised in the congenitally blind. It points to the importance of visual experience in the construction and calibration of auditory spatial maps, with implications for rehabilitation strategies for the congenitally blind. PMID:24271326

  11. The memory structure of navigation in honeybees.

    PubMed

    Menzel, Randolf; Greggers, Uwe

    2015-06-01

    The analytical approach to navigation studies aims to identify elementary sensory motor processes that guide an animal to a remote site. This approach will be used here to characterize components of navigation in a flying insect, the honeybee. However, navigation studies need to go beyond an analysis of behavioral routines to come up with a synthesis. We will defend the concept of an active memory structure guiding navigation in bees that is best described as a mental or cognitive map. In our opinion, spatial/temporal relations of landmarks are stored in a mental map in such a way that behavioral routines such as expectation and planning, as indicated by shortcutting, are possible. We view the mental map of animals including the honeybee as an "action memory of spatial relations" rather than as a sensory representation as we humans experience it by introspection. Two components characterize the mental map, the relational representation of landmarks and the meaning of locations to the animal. As yet, there is little data to suggest that bees assign meaning to the experienced locations. To explore this possibility, further studies will be needed, whereby honeybees provide a unique model to address this question. PMID:25707351

  12. Guidance, Navigation and Control (GN&C): Best Practices for Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lebsock, Ken; West, John

    2008-01-01

    In 2007 the NESC completed an in-depth assessment to identify, define and document engineering considerations for the Design Development Test and Evaluation (DDT&E) of human-rated spacecraft systems. This study had been requested by the Astronaut Office at JSC to help them to better understand what is required to ensure safe, robust, and reliable human-rated spacecraft systems. The 22 GN&C engineering Best Practices described in this paper are a condensed version of what appears in the NESC Technical Report. These Best Practices cover a broad range from fundamental system architectural considerations to more specific aspects (e.g., stability margin recommendations) of GN&C system design and development. 15 of the Best Practices address the early phases of a GN&C System development project and the remaining 7 deal with the later phases. Some of these Best Practices will cross-over between both phases. We recognize that this set of GN&C Best Practices will not be universally applicable to all projects and mission applications.

  13. Cognitive Navigation: Toward a Biological Basis for Instructional Design.

    ERIC Educational Resources Information Center

    Tripp, Steven

    2001-01-01

    Discusses cognitive navigation, cognitive maps and online learning, and the role of the hippocampus in navigation. Topics include brain research in animal and human studies; types of memory; human navigation, including land navigation and information navigation; instructional strategies; tree maps of curriculum structure; cognitive complexity; and…

  14. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  15. Visual sensitivity to spatially sampled modulation in human observers

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Macleod, Donald I. A.

    1991-01-01

    Thresholds were measured for detecting spatial luminance modulation in regular lattices of visually discrete dots. Thresholds for modulation of a lattice are generally higher than the corresponding threshold for modulation of a continuous field, and the size of the threshold elevation, which depends on the spacing of the lattice elements, can be as large as a one log unit. The largest threshold elevations are seen when the sample spacing is 12 min arc or greater. Theories based on response compression cannot explain the further observation that the threshold elevations due to spatial sampling are also dependent on modulation frequency: the greatest elevations occur with higher modulation frequencies. The idea that this is due to masking of the modulation frequency by the spatial frequencies in the sampling lattice is considered.

  16. Cardiovascular Fitness and Cognitive Spatial Learning in Rodents and in Humans

    PubMed Central

    Barak, Boaz; Feldman, Noa

    2015-01-01

    The association between cardiovascular fitness and cognitive functions in both animals and humans is intensely studied. Research in rodents shows that a higher cardiovascular fitness has beneficial effects on hippocampus-dependent spatial abilities, and the underlying mechanisms were largely teased out. Research into the impact of cardiovascular fitness on spatial learning in humans, however, is more limited, and involves mostly behavioral and imaging studies. Herein, we point out the state of the art in the field of spatial learning and cardiovascular fitness. The differences between the methodologies utilized to study spatial learning in humans and rodents are emphasized along with the neuronal basis of these tasks. Critical gaps in the study of spatial learning in the context of cardiovascular fitness between the two species are discussed. PMID:25227128

  17. Development of Multisensory Spatial Integration and Perception in Humans

    ERIC Educational Resources Information Center

    Neil, Patricia A.; Chee-Ruiter, Christine; Scheier, Christian; Lewkowicz, David J.; Shimojo, Shinsuke

    2006-01-01

    Previous studies have shown that adults respond faster and more reliably to bimodal compared to unimodal localization cues. The current study investigated for the first time the development of audiovisual (A-V) integration in spatial localization behavior in infants between 1 and 10 months of age. We observed infants' head and eye movements in…

  18. Spontaneous Recovery of Human Spatial Memory in a Virtual Water Maze

    ERIC Educational Resources Information Center

    Luna, David; Martínez, Héctor

    2015-01-01

    The occurrence of spontaneous recovery in human spatial memory was assessed using a virtual environment. In Experiment 1, spatial memory was established by training participants to locate a hidden platform in a virtual water maze using a set of four distal landmarks. In Experiment 2, after learning about the location of a hidden platform, the…

  19. Effects of spatial training on transitive inference performance in humans and rhesus monkeys

    PubMed Central

    Gazes, Regina Paxton; Lazareva, Olga F.; Bergene, Clara N.; Hampton, Robert R.

    2015-01-01

    It is often suggested that transitive inference (TI; if A>B and B>C then A>C) involves mentally representing overlapping pairs of stimuli in a spatial series. However, there is little direct evidence to unequivocally determine the role of spatial representation in TI. We tested whether humans and rhesus monkeys use spatial representations in TI by training them to organize seven images in a vertical spatial array. Then, we presented subjects with a TI task using these same images. The implied TI order was either congruent or incongruent with the order of the trained spatial array. Humans in the congruent condition learned premise pairs more quickly, and were faster and more accurate in critical probe tests, suggesting that the spatial arrangement of images learned during spatial training influenced subsequent TI performance. Monkeys first trained in the congruent condition also showed higher test trial accuracy when the spatial and inferred orders were congruent. These results directly support the hypothesis that humans solve TI problems by spatial organization, and suggest that this cognitive mechanism for inference may have ancient evolutionary roots. PMID:25546105

  20. Spatial Techniques

    NASA Astrophysics Data System (ADS)

    Jabeur, Nafaa; Sahli, Nabil

    The environment, including the Earth and the immense space, is recognized to be the main source of useful information for human beings. During several decades, the acquisition of data from this environment was constrained by tools and techniques with limited capabilities. However, thanks to continuous technological advances,spatial data are available in huge quantities for different applications. The technological advances have been achieved in terms of hardware and software as well. They are allowing for better accuracy and availability, which in turn improves the quality and quantity of useful knowledge that can be extracted from the environment. They have been applied to geography, resulting in geospatial techniques. Applied to both science and technology, geospatial techniques resulted in areas of expertise, such as land surveying, cartography, navigation, remote sensing, Geographic Infor-mation Systems (GISs), and Global Positioning Systems (GPSs). They had evolved quickly with advances in computing, satellite technology and a growing demand to understand our global environment. In this chapter, we will discuss three important techniques that are widely used in spatial data acquisition and analysis: GPS and remote sensing techniques that are used to collect spatial data and a GIS that is used to store, manipulate, analyze, and visualize spatial data. Later in this book, we will discuss the techniques that are currently available for spatial knowledge discovery.

  1. Rethinking human visual attention: Spatial cueing effects and optimality of decisions by honeybees, monkeys and humans

    PubMed Central

    Eckstein, Miguel P.; Mack, Stephen C.; Liston, Dorion B.; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J.

    2014-01-01

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can

  2. Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans.

    PubMed

    Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J

    2013-06-01

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can

  3. Spatial analysis on human brucellosis incidence in mainland China: 2004–2010

    PubMed Central

    Zhang, Junhui; Yin, Fei; Zhang, Tao; Yang, Chao; Zhang, Xingyu; Feng, Zijian; Li, Xiaosong

    2014-01-01

    Objectives China has experienced a sharply increasing rate of human brucellosis in recent years. Effective spatial monitoring of human brucellosis incidence is very important for successful implementation of control and prevention programmes. The purpose of this paper is to apply exploratory spatial data analysis (ESDA) methods and the empirical Bayes (EB) smoothing technique to monitor county-level incidence rates for human brucellosis in mainland China from 2004 to 2010 by examining spatial patterns. Methods ESDA methods were used to characterise spatial patterns of EB smoothed incidence rates for human brucellosis based on county-level data obtained from the China Information System for Disease Control and Prevention (CISDCP) in mainland China from 2004 to 2010. Results EB smoothed incidence rates for human brucellosis were spatially dependent during 2004–2010. The local Moran test identified significantly high-risk clusters of human brucellosis (all p values <0.01), which persisted during the 7-year study period. High-risk counties were centred in the Inner Mongolia Autonomous Region and other Northern provinces (ie, Hebei, Shanxi, Jilin and Heilongjiang provinces) around the border with the Inner Mongolia Autonomous Region where animal husbandry was highly developed. The number of high-risk counties increased from 25 in 2004 to 54 in 2010. Conclusions ESDA methods and the EB smoothing technique can assist public health officials in identifying high-risk areas. Allocating more resources to high-risk areas is an effective way to reduce human brucellosis incidence. PMID:24713215

  4. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  5. Celestial Navigation

    ERIC Educational Resources Information Center

    Rosenkrantz, Kurt

    2005-01-01

    In the unit described in this article, students discover the main principles of navigation, build tools to observe celestial bodies, and apply their new skills to finding their position on Earth. Along the way students see how science, mathematics, technology, and history are intertwined.

  6. Spatially distributed encoding of covert attentional shifts in human thalamus.

    PubMed

    Hulme, Oliver J; Whiteley, Louise; Shipp, Stewart

    2010-12-01

    Spatial attention modulates signal processing within visual nuclei of the thalamus--but do other nuclei govern the locus of attention in top-down mode? We examined functional MRI (fMRI) data from three subjects performing a task requiring covert attention to 1 of 16 positions in a circular array. Target position was cued after stimulus offset, requiring subjects to perform target detection from iconic visual memory. We found positionally specific responses at multiple thalamic sites, with individual voxels activating at more than one direction of attentional shift. Voxel clusters at anatomically equivalent sites across subjects revealed a broad range of directional tuning at each site, with little sign of contralateral bias. By reference to a thalamic atlas, we identified the nuclear correspondence of the four most reliably activated sites across subjects: mediodorsal/central-intralaminar (oculomotor thalamus), caudal intralaminar/parafascicular, suprageniculate/limitans, and medial pulvinar/lateral posterior. Hence, the cortical network generating a top-down control signal for relocating attention acts in concert with a spatially selective thalamic apparatus-the set of active nuclei mirroring the thalamic territory of cortical "eye-field" areas, thus supporting theories which propose the visuomotor origins of covert attentional selection. PMID:20844113

  7. Interaction between Locale and Taxon Strategies in Human Spatial Learning

    ERIC Educational Resources Information Center

    Redhead, Edward S.; Hamilton, Derek A.

    2007-01-01

    Three computer-based experiments which tested human participants in a non-immersive virtual watermaze task sought to determine factors which dictate whether the presence of a visual platform disrupts locale learning and taxon learning. In Experiment 1, the visible platform disrupted locale but not taxon learning based on viewpoint-independent and…

  8. Human Timeline: A Spatial-Kinesthetic Exercise in Biblical History

    ERIC Educational Resources Information Center

    Wolfe, Lisa M.

    2009-01-01

    The Human Timeline invites students to physically re-create biblical history. Each student holds a card that denotes an event randomly selected from the biblical timeline. They then arrange themselves chronologically to learn the correct flow of biblical history. Because of the movement involved and the arbitrary layout of the cards among their…

  9. Sleep deprivation impairs spatial retrieval but not spatial learning in the non-human primate grey mouse lemur.

    PubMed

    Rahman, Anisur; Languille, Solène; Lamberty, Yves; Babiloni, Claudio; Perret, Martine; Bordet, Regis; Blin, Olivier J; Jacob, Tom; Auffret, Alexandra; Schenker, Esther; Richardson, Jill; Pifferi, Fabien; Aujard, Fabienne

    2013-01-01

    A bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD) impairs these processes. Here we tested the hypothesis that SD could alter spatial learning and memory processing in a non-human primate, the grey mouse lemur (Microcebus murinus), which is an interesting model of aging and Alzheimer's disease (AD). Two sets of experiments were performed. In a first set of experiments, we investigated the effects of SD on spatial learning and memory retrieval after one day of training in a circular platform task. Eleven male mouse lemurs aged between 2 to 3 years were tested in three different conditions: without SD as a baseline reference, 8 h of SD before the training and 8 h of SD before the testing. The SD was confirmed by electroencephalographic recordings. Results showed no effect of SD on learning when SD was applied before the training. When the SD was applied before the testing, it induced an increase of the amount of errors and of the latency prior to reach the target. In a second set of experiments, we tested the effect of 8 h of SD on spatial memory retrieval after 3 days of training. Twenty male mouse lemurs aged between 2 to 3 years were tested in this set of experiments. In this condition, the SD did not affect memory retrieval. This is the first study that documents the disruptive effects of the SD on spatial memory retrieval in this primate which may serve as a new validated challenge to investigate the effects of new compounds along physiological and pathological aging. PMID:23717620

  10. On the identification and establishment of topological spatial relations by autonomous systems

    NASA Astrophysics Data System (ADS)

    Miguel-Tomé, Sergio; Fernández-Caballero, Antonio

    2014-07-01

    Human beings use spatial relations to describe many daily tasks in their language. For a mobile robot to be useful in daily life, it is necessary to have navigation algorithms capable of identifying and establishing spatial relations. To date in robotics, the navigation problem has been thoroughly researched as a task of guiding a robot from one spatial coordinate to another. Therefore, there is a difference in degree of abstraction between the language of human beings and the algorithms used in robot navigation. This article introduces a piece of research performed on the use of topological relations for the formalisation of spatial relations and navigation. So far, topological relations have been applied widely in geographical information systems and also in spatial logics. There are some proposals in robot navigation which use them for planning but there is no research about making decision in robot navigation. Our research focuses on decision-making methods to establish spatial relations. The main result is a new heuristic, called the Heuristic of Topological Qualitative Semantics (HTQS), which allows the identification and establishment of spatial relations decision-making from a set of actions. To demonstrate its effectiveness, HTQS has been implemented in the form of agents that can move in a two-dimensional virtual environment. HTQS opens a new door to designing algorithms for navigation based on the identification and establishment of spatial relations.