Science.gov

Sample records for human surfactant protein

  1. Surfactant protein D in human lung diseases.

    PubMed

    Hartl, D; Griese, M

    2006-06-01

    The lung is continuously exposed to inhaled pollutants, microbes and allergens. Therefore, the pulmonary immune system has to defend against harmful pathogens, while an inappropriate inflammatory response to harmless particles must be avoided. In the bronchoalveolar space this critical balance is maintained by innate immune proteins, termed surfactant proteins. Among these, surfactant protein D (SP-D) plays a central role in the pulmonary host defence and the modulation of allergic responses. Several human lung diseases are characterized by decreased levels of bronchoalveolar SP-D. Thus, recombinant SP-D has been proposed as a therapeutical option for cystic fibrosis, neonatal lung disease and smoking-induced emphysema. Furthermore, SP-D serum levels can be used as disease activity markers for interstitial lung diseases. This review illustrates the emerging role of SP-D translated from in vitro studies to human lung diseases. PMID:16684127

  2. Expression and Localization of Lung Surfactant Proteins in Human Testis

    PubMed Central

    Wagner, Walter; Matthies, Cord; Ruf, Christian; Hartmann, Arndt; Garreis, Fabian; Paulsen, Friedrich

    2015-01-01

    Background Surfactant proteins (SPs) have been described in various tissues and fluids including tissues of the nasolacrimal apparatus, airways and digestive tract. Human testis have a glandular function as a part of the reproductive and the endocrine system, but no data are available on SPs in human testis and prostate under healthy and pathologic conditions. Objective The aim of the study was the detection and characterization of the surfactant proteins A, B, C and D (SP-A, SP-B, SP-C, SP-D) in human testis. Additionally tissue samples affected by testicular cancer were investigated. Results Surfactant proteins A, B, C and D were detected using RT-PCR in healthy testis. By means of Western blot analysis, these SPs were detected at the protein level in normal testis, seminoma and seminal fluid, but not in spermatozoa. Expression of SPs was weaker in seminoma compared to normal testicular tissue. SPs were localized in combination with vimentin immunohistochemically in cells of Sertoli and Leydig. Conclusion Surfactant proteins seem to be inherent part of the human testis. By means of physicochemical properties the proteins appear to play a role during immunological and rheological process of the testicular tissue. The presence of SP-B and SP-C in cells of Sertoli correlates with their function of fluid secretion and may support transportation of spermatozoa. In seminoma the expression of all SP's was generally weaker compared to normal germ cells. This could lead to a reduction of immunomodulatory and rheology processes in the germ cell tumor. PMID:26599233

  3. Staphylococcus aureus and Pseudomonas aeruginosa express and secrete human surfactant proteins.

    PubMed

    Bräuer, Lars; Schicht, Martin; Worlitzsch, Dieter; Bensel, Tobias; Sawers, R Gary; Paulsen, Friedrich

    2013-01-01

    Surfactant proteins (SP), originally known from human lung surfactant, are essential to proper respiratory function in that they lower the surface tension of the alveoli. They are also important components of the innate immune system. The functional significance of these proteins is currently reflected by a very large and growing number of publications. The objective goal of this study was to elucidate whether Staphylococcus aureus and Pseudomonas aeruginosa is able to express surfactant proteins. 10 different strains of S. aureus and P. aeruginosa were analyzed by means of RT-PCR, Western blot analysis, ELISA, immunofluorescence microscopy and immunoelectron microscopy. The unexpected and surprising finding revealed in this study is that different strains of S. aureus and P. aeruginosa express and secrete proteins that react with currently commercially available antibodies to known human surfactant proteins. Our results strongly suggest that the bacteria are either able to express 'human-like' surfactant proteins on their own or that commercially available primers and antibodies to human surfactant proteins detect identical bacterial proteins and genes. The results may reflect the existence of a new group of bacterial surfactant proteins and DNA currently lacking in the relevant sequence and structure databases. At any rate, our knowledge of human surfactant proteins obtained from immunological and molecular biological studies may have been falsified by the presence of bacterial proteins and DNA and therefore requires critical reassessment. PMID:23349731

  4. Staphylococcus aureus and Pseudomonas aeruginosa Express and Secrete Human Surfactant Proteins

    PubMed Central

    Worlitzsch, Dieter; Bensel, Tobias; Sawers, R. Gary; Paulsen, Friedrich

    2013-01-01

    Surfactant proteins (SP), originally known from human lung surfactant, are essential to proper respiratory function in that they lower the surface tension of the alveoli. They are also important components of the innate immune system. The functional significance of these proteins is currently reflected by a very large and growing number of publications. The objective goal of this study was to elucidate whether Staphylococcus aureus and Pseudomonas aeruginosa is able to express surfactant proteins. 10 different strains of S. aureus and P. aeruginosa were analyzed by means of RT-PCR, Western blot analysis, ELISA, immunofluorescence microscopy and immunoelectron microscopy. The unexpected and surprising finding revealed in this study is that different strains of S. aureus and P. aeruginosa express and secrete proteins that react with currently commercially available antibodies to known human surfactant proteins. Our results strongly suggest that the bacteria are either able to express ‘human-like’ surfactant proteins on their own or that commercially available primers and antibodies to human surfactant proteins detect identical bacterial proteins and genes. The results may reflect the existence of a new group of bacterial surfactant proteins and DNA currently lacking in the relevant sequence and structure databases. At any rate, our knowledge of human surfactant proteins obtained from immunological and molecular biological studies may have been falsified by the presence of bacterial proteins and DNA and therefore requires critical reassessment. PMID:23349731

  5. Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films.

    PubMed

    Lopez-Rodriguez, Elena; Pascual, Alicia; Arroyo, Raquel; Floros, Joanna; Perez-Gil, Jesus

    2016-08-01

    Pulmonary surfactant is a lipoprotein complex that reduces surface tension to prevent alveolar collapse and contributes to the protection of the respiratory surface from the entry of pathogens. Surfactant protein A (SP-A) is a hydrophilic glycoprotein of the collectin family, and its main function is related to host defense. However, previous studies have shown that SP-A also aids in the formation and biophysical properties of pulmonary surfactant films at the air-water interface. Humans, unlike rodents, have two genes, SFTPA1 and SFTPA2. The encoded proteins, SP-A1 and SP-A2, differ quantitatively or qualitatively in function. It has been shown that both gene products are necessary for tubular myelin formation, an extracellular structural form of lung surfactant. The goal of this study was to investigate potential differences in the biophysical properties of surfactants containing human SP-A1, SP-A2, or both. For this purpose, we have studied for the first time, to our knowledge, the biophysical properties of pulmonary surfactant from individual humanized transgenic mice expressing human SP-A1, SP-A2, or both SP-A1 and SP-A2, in the captive bubble surfactometer. We observed that pulmonary surfactant containing SP-A1 reaches lower surface tension after postexpansion interfacial adsorption than surfactants containing no SP-A or only SP-A2. Under interfacial compression-expansion cycling conditions, surfactant films containing SP-A1 also performed better, particularly with respect to the reorganization of the films that takes place during compression. On the other hand, addition of recombinant SP-A1 to a surfactant preparation reconstituted from the hydrophobic fraction of a porcine surfactant made it more resistant to inhibition by serum than the addition of equivalent amounts of SP-A2. We conclude that the presence of SP-A1 allows pulmonary surfactant to adopt a particularly favorable structure with optimal biophysical properties. PMID:27508436

  6. Structural aspects of a protein-surfactant assembly: native and reduced States of human serum albumin.

    PubMed

    Anand, Uttam; Ray, Sutapa; Ghosh, Subhadip; Banerjee, Rajat; Mukherjee, Saptarshi

    2015-04-01

    The inherently present seventeen disulfide bonds of the circulatory protein, human serum albumin (HSA) provide the necessary structural stability. Various spectroscopic approaches were used to investigate the effect of reduction of these disulfide bonds and its binding with the anionic surfactant, sodium dodecyl sulfate (SDS). Based on several spectroscopic analyses, our investigations highlight the following interesting aspects: (1) HSA on reduction loses not only its tertiary structure but also a significant amount of secondary structure as well. However, the reduced state of the protein is not like the molten-globule, (2) this structural loss of the protein due to reduction is more prominent than that caused by higher SDS concentrations alone and can certainly be attributed to the role of disulfide bonds, (3) lower surfactant concentrations provide marginal structural rigidity to the native state of the protein, whereas, higher concentrations of SDS induces secondary structure to the reduced state of HSA, (4) the binding of SDS with both the native and reduced states of HSA, occurred in three distinct stages which was followed by a saturation stage. However, the nature of such binding is different for both the states as investigated by using the Stern-Volmer equations and estimating the thermodynamic parameters. Besides, in contrast to the native state, the reduced state of HSA shows that the lone tryptophan residue gets more buried. However, there occurs a sudden decrement in the lifetime of the tryptophan and the hydrodynamic diameter increases by twofold. PMID:25821118

  7. Human surfactant protein-C: Genetic homogeneity and expression in RDS; comparison with other species

    SciTech Connect

    Hatzis, D.; Deiter, G.; deMello, D.E.; Floros, J. Harvard Medical School, Boston, MA Cardinal Glennon Children's Hospital, St. Louis, MO )

    1994-01-01

    Human surfactant protein C (SP-C) mRNA is detected early during fetal lung development before the differentiation of the type II cell and the need for surfactant. Later in life SP-C contributes to the surface-lowering properties of surfactant, as shown by several investigators. In this study the authors sequenced both coding and noncoding regions of 12 genomic SP-C clones from several human groups including RDS (respiratory distress syndrome), whites, and black Nigerians, and examined the expression of SP-C in tissues from RDS and from non-RDS. The data showed that all clones had identical DNA sequences, not only within coding regions, consistent with previous observations, but also within intervening, 5[prime] flanking, and 3[prime] untranslated regions. Some differences from the previously published sequence were noted. The expression of SP-C in tissues from RDS and non-RDS as determined by tissue in situ hybridization was comparable between the two groups, suggesting that altered SP-C expression, the result of pretranslational regulatory abnormalities, is an unlikely contributor to the pathogenesis of RDS. In addition the results show, using genomic blot analysis, that a remarkable conservation within coding and 5[prime] flanking but not within 3[prime] untranslated sequences exists in all mammalian species examined. These data taken together suggest that strong evolutionary pressures have been exerted on SP-C to maintain conservation, not only among humans but also among species, which may underscore important roles of SP-C in as yet unknown developmental/functional lung processes. 38 refs., 5 figs., 2 tabs.

  8. An alternatively spliced surfactant protein B mRNA in normal human lung: disease implication.

    PubMed Central

    Lin, Z; Wang, G; Demello, D E; Floros, J

    1999-01-01

    We identified an alternatively-spliced surfactant protein B (SP-B) mRNA from normal human lung with a 12 nt deletion at the beginning of exon 8. This deletion causes a loss of four amino acids in the SP-B precursor protein. Sequence comparison of the 3' splice sites reveals only one difference in the frequency of U/C in the 11 predominantly-pyrimidine nucleotide tract, 73% for the normal and 45% for the alternatively-spliced SP-B mRNA (77-99% for the consensus sequence). Analysis of SP-B mRNA in lung indicates that the abundance of the alternatively-spliced form is very low and varies among individuals. Although the relative abundance of the deletion form of SP-B mRNA remains constant among normal lungs, it is found with relatively higher abundance in the lungs of some individuals with diseases such as congenital alveolar proteinosis, respiratory distress syndrome, bronchopulmonary dysplasia, alveolar capillary dysplasia and hypophosphatasia. This observation points to the possibility that the alternative splicing is a potential regulatory mechanism of SP-B and may play a role in the pathogenesis of disease under certain circumstances. PMID:10493923

  9. Structure binding relationship of human surfactant protein D and various lipopolysaccharide inner core structures.

    PubMed

    Reinhardt, Anika; Wehle, Marko; Geissner, Andreas; Crouch, Erika C; Kang, Yu; Yang, You; Anish, Chakkumkal; Santer, Mark; Seeberger, Peter H

    2016-09-01

    As a major player of the innate immune system, surfactant protein D (SP-D) recognizes and promotes elimination of various pathogens such as Gram-negative bacteria. SP-D binds to l-glycero-d-manno-heptose (Hep), a constituent of the partially conserved lipopolysaccharide (LPS) inner core of many Gram-negative bacteria. Binding and affinity of trimeric human SP-D to Hep in distinct LPS inner core glycans differing in linkages and adjacent residues was elucidated using glycan array and surface plasmon resonance measurements that were compared to in silico interaction studies. The combination of in vitro assays using defined glycans and molecular docking and dynamic simulation approaches provides insights into the interaction of trimeric SP-D with those glycan ligands. Trimeric SP-D wildtype recognized larger LPS inner core oligosaccharides with slightly enhanced affinity than smaller compounds suggesting the involvement of stabilizing secondary interactions. A trimeric human SP-D mutant D324N+D325N+R343K resembling rat SP-D bound to various LPS inner core structures in a similar pattern as observed for the wildtype but with higher affinity. The selective mutation of SP-D promotes targeting of LPS inner core oligosaccharides on Gram-negative bacteria to develop novel therapeutic agents. PMID:27350640

  10. Glucocorticoid regulation of human pulmonary surfactant protein-B mRNA stability involves the 3'-untranslated region.

    PubMed

    Huang, Helen W; Bi, Weizhen; Jenkins, Gaye N; Alcorn, Joseph L

    2008-04-01

    Expression of pulmonary surfactant, a complex mixture of lipids and proteins that acts to reduce alveolar surface tension, is developmentally regulated and restricted to lung alveolar type II cells. The hydrophobic protein surfactant protein-B (SP-B) is essential in surfactant function, and insufficient levels of SP-B result in severe respiratory dysfunction. Glucocorticoids accelerate fetal lung maturity and surfactant synthesis both experimentally and clinically. Glucocorticoids act transcriptionally and post-transcriptionally to increase steady-state levels of human SP-B mRNA; however, the mechanism(s) by which glucocorticoids act post-transcriptionally is unknown. We hypothesized that glucocorticoids act post-transcriptionally to increase SP-B mRNA stability via sequence-specific mRNA-protein interactions. We found that glucocorticoids increase SP-B mRNA stability in isolated human type II cells and in nonpulmonary cells, but do not alter mouse SP-B mRNA stability in a mouse type II cell line. Deletion analysis of an artificially-expressed SP-B mRNA indicates that the SP-B mRNA 3'-untranslated region (UTR) is necessary for stabilization, and the region involved can be restricted to a 126-nucleotide-long region near the SP-B coding sequence. RNA electrophoretic mobility shift assays indicate that cytosolic proteins bind to this region in the absence or presence of glucocorticoids. The formation of mRNA:protein complexes is not seen in other regions of the SP-B mRNA 3'-UTR. These results indicate that a specific 126-nucleotide region of human SP-B 3'-UTR is necessary for increased SP-B mRNA stability by glucocorticoids by a mechanism that is not lung cell specific and may involve mRNA-protein interactions. PMID:18006875

  11. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    SciTech Connect

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. )

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  12. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  13. Genetic complexity of the human surfactant-associated proteins SP-A1 and SP-A2

    PubMed Central

    Silveyra, Patricia; Floros, Joanna

    2012-01-01

    Pulmonary surfactant protein A (SP-A) plays a key role in innate lung host defense, in surfactant-related functions, and in parturition. In the course of evolution, the genetic complexity of SP-A has increased, particularly in the regulatory regions (i.e. promoter, untranslated regions). Although most species have a single SP-A gene, two genes encode SP-A in humans and primates (SFTPA1and SFTPA2). This may account for the multiple functions attributed to human SP-A, as well as the regulatory complexity of its expression by a relatively diverse set of protein and non-protein cellular factors. The interplay between enhancer cis-acting DNA sequences and trans-acting proteins that recognize these DNA elements is essential for gene regulation, primarily at the transcription initiation level. Furthermore, regulation at the mRNA level is essential to ensure proper physiological levels of SP-A under different conditions. To date, numerous studies have shown significant complexity of the regulation of SP-A expression at different levels, including transcription, splicing, mRNA decay, and translation. A number of trans-acting factors have also been described to play a role in the control of SP-A expression. The aim of this report is to describe the genetic complexity of the SFTPA1 and SFTPA2 genes, as well as to review regulatory mechanisms that control SP-A expression in humans and other animal species. PMID:23069847

  14. Protein recovery from surfactant precipitation.

    PubMed

    Cheng, Shu Ian; Stuckey, David C

    2011-01-01

    The recovery of lysozyme from an aqueous solution containing precipitated lysozyme-AOT complexes formed by the direct addition of sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) to a lysozyme solution was studied using both solvents, and a counterionic surfactant. Ethanol,methanol and solvent mixtures dissolved the surfactant precipitate and recovered lysozyme as a solid. Recovery efficiency and protein stability varied with the type of solvent used. An entirely different method of recovery was also evaluated using a counterionic surfactant: tri-octylmethylammonium chloride (TOMAC) which bound to AOT releasing lysozyme into solution.Complete recovery (100%) of lysozyme was achieved at a molar ratio of 2:1(TOMAC:AOT), and the original protein activity was maintained in the final aqueous phase.The recovered lysozyme retained its secondary structure as observed in circular dichroism(CD) spectra. Specific activity studies show that counterionic surfactant extraction does not alter the biological activity of the enzyme. PMID:22235487

  15. Effect of cysteine 85 on biochemical properties and biological function of human surfactant protein A variants.

    PubMed

    Wang, Guirong; Myers, Catherine; Mikerov, Anatoly; Floros, Joanna

    2007-07-17

    Four "core" amino acid differences within the collagen-like domain distinguish the human surfactant protein A1 (SP-A1) variants from the SP-A2 variants. One of these, cysteine 85 that could form intermolecular disulfide bonds, is present in SP-A1 (Cys85) and absent in SP-A2 (Arg85). We hypothesized that residue 85 affects both the structure and function of SP-A1 and SP-A2 variants. To test this, wild-type (WT) variants, 6A2 of SP-A1 and 1A0 of SP-A2, and their mutants (6A2(C85R) and 1A0(R85C)) were generated and studied. We found the following: (1) Residue 85 affected the binding ability to mannose and the oligomerization pattern of SP-As. The 1A0(R85C) and 6A2(C85R) patterns were similar and/or resembled those of WT 6A2 and 1A0, respectively. (2) Both SP-A WT and mutants differentially induced rough LPS and Pseudomonas aeruginosa aggregation in the following order: 1A0 > 6A2 > 6A2(C85R) > 1A0(R85C) for Re-LPS aggregation and 1A0 > 6A2 = 6A2(C85R) = 1A0(R85C) for bacterial aggregation. (3) SP-A WT and mutants enhanced phagocytosis of P. aeruginosa by rat alveolar macrophages. Their phagocytic index order was 6A2(C85R) > 1A0 > 6A2 = 1A0(R85C). The activity of mutant 1A0(C85R) was significantly lower than WT 1A0 but similar to 6A2. Compared to WT 6A2, the 6A2(C85R) mutant exhibited a significantly higher activity. These results indicate that the SP-A variant/mutant with Arg85 exhibits a higher ability to enhance bacterial phagocytosis than that with Cys85. Residue 85 plays an important role in the structure and function of SP-A and is a major factor for the differences between SP-A1 and SP-A2 variants. PMID:17580966

  16. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  17. Human Surfactant Protein A2 Gene Mutations Impair Dimmer/Trimer Assembly Leading to Deficiency in Protein Sialylation and Secretion

    PubMed Central

    Shen, Haitao; Li, Hui; Yang, Wenbing; Pan, Bing; Huang, Guowei; Lin, Guangyu; Ma, Lian; Willard, Belinda; Gu, Jiang; Zheng, Lemin; Wang, Yongyu

    2012-01-01

    Surfactant protein A2 (SP-A2) plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA), a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2. PMID:23056344

  18. Effect of surfactant protein A (SP-A) on the production of cytokines by human pulmonary macrophages.

    PubMed

    Arias-Diaz, J; Garcia-Verdugo, I; Casals, C; Sanchez-Rico, N; Vara, E; Balibrea, J L

    2000-09-01

    Surfactant protein A (SP-A) is thought to play a role in the modulation of lung inflammation during acute respiratory distress syndrome (ARDS). However, SP-A has been reported both to stimulate and to inhibit the proinflammatory activity of pulmonary macrophages (Mphi). Because of the interspecies differences and heterogeneity of Mphi subpopulations used may have influenced previous controversial results, in this study, we investigated the effect of human SP-A on the production of cytokines and other inflammatory mediators by two well-defined subpopulations of human pulmonary Mphi. Surfactant and both alveolar (aMphi) and interstitial (iMphi) macrophages were obtained from multiple organ donor lungs by bronchoalveolar lavage and enzymatic digestion. Donors with either recent history of tobacco smoking, more than 72 h on mechanical ventilation, or any radiological pulmonary infiltrate were discarded. SP-A was purified from isolated surfactant using sequential butanol and octyl glucoside extractions. After 24-h preculture, purified Mphi were cultured for 24 h in the presence or absence of LPS (10 microg/mL), SP-A (50 microg/mL), and combinations. Nitric oxide and carbon monoxide (CO) generation (pmol/microg protein), cell cGMP content (pmol/microg protein), and tumor necrosis factor alpha (TNFalpha), interleukin (IL)-1, and IL-6 release to the medium (pg/microg protein) were determined. SP-A inhibited the lipopolysaccharide (LPS)-induced TNFalpha response of both interstitial and alveolar human Mphi, as well as the IL-1 response in iMphi. The SP-A effect on TNFalpha production could be mediated by a suppression in the LPS-induced increase in intracellular cGMP. In iMphi but not in aMphi, SP-A also inhibited the LPS-induced IL-1 secretion and CO generation. These data lend further credit to a physiological function of SP-A in regulating alveolar host defense and inflammation by suggesting a fundamental role of this apoprotein in limiting excessive proinflammatory

  19. Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A.

    PubMed

    Hiansen, Joshua Qua; Keating, Eleonora; Aspros, Alex; Yao, Li-Juan; Bosma, Karen J; Yamashita, Cory M; Lewis, James F; Veldhuizen, Ruud A W

    2015-03-01

    The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant. PMID:25522687

  20. Surfactant protein B deficiency: insights into surfactant function through clinical surfactant protein deficiency.

    PubMed

    Thompson, M W

    2001-01-01

    Surfactant protein B (SP-B) deficiency is a disorder of surfactant function with complete or transient absence of SP-B in term neonates. SP-B, 1 of 4 described surfactant-associated proteins, plays a key role in surfactant metabolism, particularly in intracellular packaging of surfactant components, formation of tubular myelin, and the presentation of the surfactant phospholipid monolayer to the air-fluid interface within the alveolus. Neonates with clinical SP-B deficiency best demonstrate the key role of SP-B in surfactant function. "Classic" deficiency results in severe respiratory failure in term infants and death unless lung transplantation is performed. Because the initial description of complete deficiency secondary to a homozygous frameshift mutation in codon 121 of the SP-B cDNA, partial deficiencies with differing genetic backgrounds and less severe clinical courses have been reported. These partial deficiency states may provide a clearer picture of genotype/phenotype relationships in SP-B function and surfactant metabolism. SP-B deficiency or dysfunction may be more common than once thought and may play a significant role in neonatal lung disease. PMID:11202476

  1. Differential susceptibility of transgenic mice expressing human surfactant protein B genetic variants to Pseudomonas aeruginosa induced pneumonia.

    PubMed

    Ge, Lin; Liu, Xinyu; Chen, Rimei; Xu, Yongan; Zuo, Yi Y; Cooney, Robert N; Wang, Guirong

    2016-01-01

    Surfactant protein B (SP-B) is essential for lung function. Previous studies have indicated that a SP-B 1580C/T polymorphism (SNP rs1130866) was associated with lung diseases including pneumonia. The SNP causes an altered N-linked glycosylation modification at Asn129 of proSP-B, e.g. the C allele with this glycosylation site but not in the T allele. This study aimed to generate humanized SP-B transgenic mice carrying either SP-B C or T allele without a mouse SP-B background and then examine functional susceptibility to bacterial pneumonia in vivo. A total of 18 transgenic mouse founders were generated by the DNA microinjection method. These founders were back-crossed with SP-B KO mice to eliminate mouse SP-B background. Four founder lines expressing similar SP-B levels to human lung were chosen for further investigation. After intratracheal infection with 50 μl of Pseudomonas aeruginosa solution (1 × 10(6) CFU/mouse) or saline in SP-B-C, SP-B-T mice the mice were sacrificed 24 h post-infection and tissues were harvested. Analysis of surfactant activity revealed differential susceptibility between SP-B-C and SP-B-T mice to bacterial infection, e.g. higher minimum surface tension in infected SP-B-C versus infected SP-B-T mice. These results demonstrate for the first time that human SP-B C allele is more susceptible to bacterial pneumonia than SP-B T allele in vivo. PMID:26620227

  2. Surfactant Protein A Prevents IFN-γ/IFN-γ Receptor Interaction and Attenuates Classical Activation of Human Alveolar Macrophages.

    PubMed

    Minutti, Carlos M; García-Fojeda, Belén; Sáenz, Alejandra; de Las Casas-Engel, Mateo; Guillamat-Prats, Raquel; de Lorenzo, Alba; Serrano-Mollar, Anna; Corbí, Ángel L; Casals, Cristina

    2016-07-15

    Lung surfactant protein A (SP-A) plays an important function in modulating inflammation in the lung. However, the exact role of SP-A and the mechanism by which SP-A affects IFN-γ-induced activation of alveolar macrophages (aMϕs) remains unknown. To address these questions, we studied the effect of human SP-A on rat and human aMϕs stimulated with IFN-γ, LPS, and combinations thereof and measured the induction of proinflammatory mediators as well as SP-A's ability to bind to IFN-γ or IFN-γR1. We found that SP-A inhibited (IFN-γ + LPS)-induced TNF-α, iNOS, and CXCL10 production by rat aMϕs. When rat macrophages were stimulated with LPS and IFN-γ separately, SP-A inhibited both LPS-induced signaling and IFN-γ-elicited STAT1 phosphorylation. SP-A also decreased TNF-α and CXCL10 secretion by ex vivo-cultured human aMϕs and M-CSF-derived macrophages stimulated by either LPS or IFN-γ or both. Hence, SP-A inhibited upregulation of IFN-γ-inducible genes (CXCL10, RARRES3, and ETV7) as well as STAT1 phosphorylation in human M-CSF-derived macrophages. In addition, we found that SP-A bound to human IFN-γ (KD = 11 ± 0.5 nM) in a Ca(2+)-dependent manner and prevented IFN-γ interaction with IFN-γR1 on human aMϕs. We conclude that SP-A inhibition of (IFN-γ + LPS) stimulation is due to SP-A attenuation of both inflammatory agents and that the binding of SP-A to IFN-γ abrogates IFN-γ effects on human macrophages, suppressing their classical activation and subsequent inflammatory response. PMID:27271568

  3. Hydrophobic surfactant proteins and their analogues.

    PubMed

    Walther, Frans J; Waring, Alan J; Sherman, Mark A; Zasadzinski, Joseph A; Gordon, Larry M

    2007-01-01

    Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments. PMID:17575474

  4. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice.

    PubMed

    Bridges, James P; Wert, Susan E; Nogee, Lawrence M; Weaver, Timothy E

    2003-12-26

    Surfactant Protein C (SP-C) is a secreted transmembrane protein that is exclusively expressed by alveolar type II epithelial cells of the lung. SP-C associates with surfactant lipids to reduce surface tension within the alveolus, maintaining lung volume at end expiration. Mutations in the gene encoding SP-C (SFTPC) have recently been linked to chronic lung disease in children and adults. The goal of this study was to determine whether a disease-linked mutation in SFTPC causes lung disease in transgenic mice. The SFTPC mutation, designated g.1728 G --> A, results in the deletion of exon4, generating a truncated form of SP-C (SP-C(Deltaexon4)). cDNA encoding SP-C(Deltaexon4) was constitutively expressed in type II epithelial cells of transgenic mice. Viable F0 transgene-positive mice were not generated after two separate rounds of pronuclear injections. Histological analysis of lung tissue harvested from embryonic day 17.5 F0 transgene-positive fetuses revealed that SP-C(Deltaexon4) caused a dose-dependent disruption in branching morphogenesis of the lung associated with epithelial cell cytotoxicity. Transient expression of SP-C(Deltaexon4) in isolated type II epithelial cells or HEK293 cells resulted in incomplete processing of the mutant proprotein, a dose-dependent increase in BiP transcription, trapping of the proprotein in the endoplasmic reticulum, and rapid degradation via a proteasome-dependent pathway. Taken together, these data suggest that the g.1728 G --> A mutation causes misfolding of the SP-C proprotein with subsequent induction of the unfolded protein response and endoplasmic reticulum-associated degradation pathways ultimately resulting in disrupted lung morphogenesis. PMID:14525980

  5. Surfactant protein A and surfactant protein D variation in pulmonary disease.

    PubMed

    Sorensen, Grith Lykke; Husby, Steffen; Holmskov, Uffe

    2007-01-01

    Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding preferentially to sugars on a broad spectrum of pathogen surfaces and thereby facilitating immune functions including viral neutralization, clearance of bacteria, fungi and apoptotic and necrotic cells, modulation of allergic reactions, and resolution of inflammation. SP-A and SP-D can interact with receptor molecules present on immune cells leading to enhanced microbial clearance and modulation of inflammation. SP-A and SP-D also modulate the functions of cells of the adaptive immune system including dendritic cells and T cells. Studies on SP-A and SP-D polymorphisms and protein levels in bronchoalveolar lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic polymorphisms, structural variants, and serum levels of human SP-A and SP-D and their associations with human pulmonary disease. PMID:17544823

  6. Probing nanoparticle effect in protein-surfactant complexes

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    SANS experiments have been carried to probe the role of anionic silica nanoparticles in the anionic BSA protein-cationic DTAB surfactant complexes. In protein-surfactant complex, surfactant molecules aggregate to form micelle-like clusters along the unfolded polypeptide chains of the protein. The nanoparticle aggregation mediated by oppositely charged protein-surfactant complex coexists with the free protein-surfactant complexes in the nanoparticle-protein-surfactant system. There is rearrangement of micelles in adsorbed protein-surfactant complex on nanoparticles in leading to their (nanoparticle) aggregation. On the other hand, the unfolding of protein in free protein-surfactant complex is found to be significantly enhanced in presence of nanoparticles.

  7. Hydrophobic surfactant proteins strongly induce negative curvature.

    PubMed

    Chavarha, Mariya; Loney, Ryan W; Rananavare, Shankar B; Hall, Stephen B

    2015-07-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  8. Sequences of a hairpin structure in the 3'-untranslated region mediate regulation of human pulmonary surfactant protein B mRNA stability.

    PubMed

    Huang, Helen W; Payne, David E; Bi, Weizhen; Pan, Su; Bruce, Shirley R; Alcorn, Joseph L

    2012-05-15

    The ability of pulmonary surfactant to reduce alveolar surface tension requires adequate expression of surfactant protein B (SP-B). Dexamethasone (DEX, 10(-7) M) increases human SP-B mRNA stability by a mechanism that requires a 126-nt-long segment (the 7.6S region) of the 3'-untranslated region (3'-UTR). The objective of this study was to identify sequences in the 7.6S region that mediate regulation of SP-B mRNA stability. The 7.6S region was found to be sufficient for DEX-mediated stabilization of mRNA. Sequential substitution mutagenesis of the 7.6S region indicates that a 90-nt region is required for DEX-mediated stabilization and maintenance of intrinsic stability. In this region, one 30-nt-long element (002), predicted to form a stem-loop structure, is sufficient for DEX-mediated stabilization of mRNA and intrinsic mRNA stability. Cytosolic proteins specifically bind element 002, and binding activity is unaffected whether proteins are isolated from cells incubated in the absence or presence of DEX. While loop sequences of element 002 have no role in regulation of SP-B mRNA stability, the proximal stem sequences are required for DEX-mediated stabilization and specific binding of proteins. Mutation of the sequences that comprise the proximal or distal arm of the stem negates the destabilizing activity of element 002 on intrinsic SP-B mRNA stability. These results indicate that cytosolic proteins bind a single hairpin structure that mediates intrinsic and hormonal regulation of SP-B mRNA stability via mechanisms that involve sequences of the stems of the hairpin structure. PMID:22367784

  9. Experimental Study on How Human Lung Surfactant Protein SP-B1-25 is Oxidized by Ozone in the Presence of Fe(II) and Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2014-12-01

    We will report the results of experiments on the chemical fate of the human lung surfactant protein SP-B1-25 upon exposure to gaseous ozone in realistic aqueous media simulating the conditions prevalent in epithelial lining fluids in polluted ambient air. Our experiments consist of exposing aqueous microjets containing SP-B1-25, the natural antioxidant ascorbic acid, and the Fe2+ carried by most atmospheric fine particulates, under mild acidic conditions, such as those created by the innate lung host defense response. Reactants and the products of such interactions are detected via online electrospray ionization mass spectrometry. We will show that ascorbic acid largely inhibits the ozonation of SP-B1-25 in the absence of Fe2+, leading to the formation of an ascorbic acid ozonide (Enami et al., PNAS 2008). In the presence of Fe2+, however, the ozonide decomposes into reactive intermediates that result in the partial oxidation of SP-B1-25, presumable affecting its function as surfactant. We infer that these experimental results establish a plausible causal link for the observed synergic adverse health effects of ambient ozone and fine particulates

  10. Human lung surfactant protein A exists in several different oligomeric states: oligomer size distribution varies between patient groups.

    PubMed Central

    Hickling, T. P.; Malhotra, R.; Sim, R. B.

    1998-01-01

    BACKGROUND: Lung surfactant protein A (SP-A) is a complex molecule composed of up to 18 polypeptide chains. In vivo, SP-A probably binds to a wide range of inhaled materials via the interaction of surface carbohydrates with the lectin domains of SP-A and mediates their interaction with cells as part of a natural defense system. Multiplicity of lectin domains gives high-affinity binding to carbohydrate-bearing surfaces. MATERIALS AND METHODS: Gel filtration analyses were performed on bronchoalveolar lavage (BAL) fluid samples from three patient groups: pulmonary alveolar proteinosis (n = 12), birch pollen allergy (n = 11), and healthy volunteers (n = 4). Sucrose density gradient centrifugation was employed to determine molecular weights of SP-A oligomers. SP-A was solubilized from the lipid phase to compare oligomeric state with that of water soluble SP-A. RESULTS: SP-A exists as fully assembled complexes with 18 polypeptide chains, but it is also consistently found in smaller oligomeric forms. This is true for both the water- and lipid-soluble fractions of SP-A. CONCLUSION: The three patient groups analyzed show a shift towards lower oligomeric forms of SP-A in the following sequence: healthy-pulmonary alveolar proteinosis-pollen allergy. Depolymerization would be expected to lead to loss of binding affinity for carbohydrate-rich surfaces, with loss or alteration of biological function. While there are many complex factors involved in the establishment of an allergy, it is possible that reduced participation of SP-A in clearing a potential allergen from the lungs could be an early step in the chain of events. Images Fig. 4 FIG. 6 Fig. 7 Fig. 8 PMID:9606179

  11. Therapeutic effects of recombinant forms of full-length and truncated human surfactant protein D in a murine model of invasive pulmonary aspergillosis.

    PubMed

    Singh, Mamta; Madan, Taruna; Waters, Patrick; Sonar, Sanchaita; Singh, Shiv K; Kamran, Mohammad F; Bernal, Andrés López; Sarma, P Usha; Singh, Vijay K; Crouch, Erika C; Kishore, Uday

    2009-07-01

    Aspergillus fumigatus (Afu) is an opportunistic fungal pathogen that can cause fatal invasive pulmonary aspergillosis (IPA) in immunocompromised individuals. Previously, surfactant protein D (SP-D), a surfactant-associated innate immune molecule, has been shown to enhance phagocytosis and killing of Afu conidia by phagocytic cells in vitro. An intranasal treatment of SP-D significantly increased survival in a murine model of IPA. Here we have examined mechanisms via which recombinant forms of full-length (hSP-D) or truncated human SP-D (rhSP-D) offer protection in a murine model of IPA that were immunosuppressed with hydrocortisone and challenged intranasally with Afu conidia prior to the treatment. SP-D or rhSP-D treatment increased the survival rate to 70% and 80%, respectively (100% mortality on day 7 in IPA mice), with concomitant reduction in the growth of fungal hyphae in the lungs, and increased levels of TNF-alpha and IFN-gamma in the lung suspension supernatants, as compared to untreated IPA mice. The level of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the lung cell suspension was also raised considerably following treatment with SP-D or rhSP-D. Our results appear to reaffirm the notion that under immunocompromised conditions, human SP-D or its truncated form can offer therapeutic protection against fatal challenge with Afu conidia challenge. Taken together, the SP-D-mediated protective mechanisms include enhanced phagocytosis by recruited macrophages and neutrophils and fungistatic properties, suppression of the levels of pathogenic Th2 cytokines (IL-4 and IL-5), enhanced local production of protective Th1 cytokines, TNF-alpha and IFN-gamma, and that of protective C-C chemokine, MIP-1 alpha. PMID:19403176

  12. Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor.

    PubMed

    Tillis, Ceá C; Huang, Helen W; Bi, Weizhen; Pan, Su; Bruce, Shirley R; Alcorn, Joseph L

    2011-06-01

    Adequate expression of surfactant protein-B (SP-B) is critical in the function of pulmonary surfactant to reduce alveolar surface tension. Expression of SP-B mRNA is restricted to specific lung-airway epithelial cells, and human SP-B mRNA stability is increased in the presence of the synthetic glucocorticoid dexamethasone (DEX). Although the mechanism of SP-B mRNA stabilization by DEX is unknown, studies suggest involvement of the glucocorticoid receptor (GR). We developed a dual-cistronic plasmid-based expression assay in which steady-state levels of SP-B mRNA, determined by Northern analysis, reproducibly reflect changes in SP-B mRNA stability. Using this assay, we found that steady-state levels of SP-B mRNA increased greater than twofold in transfected human-airway epithelial cells (A549) incubated with DEX (10(-7) M). DEX-mediated changes in SP-B mRNA levels required the presence of the SP-B mRNA 3'-untranslated region but did not require ongoing protein synthesis. The effect of DEX on SP-B mRNA levels was dose dependent, with maximal effect at 10(-7) M. DEX increased levels of SP-B mRNA in cells lacking GR, and the presence of the GR antagonist RU486 did not interfere with the effect of DEX. Surprisingly, other steroid hormones (progesterone, estradiol, and vitamin D; 10(-7) M) significantly increased SP-B mRNA levels, suggesting a common pathway of steroid hormone action on SP-B mRNA stability. These results indicate that the effect of DEX to increase SP-B mRNA stability is independent of activated GR and suggests that the mechanism is mediated by posttranscriptional or nongenomic effects of glucocorticoids. PMID:21398497

  13. Impact of C-reactive protein (CRP) on surfactant function

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Hales, C.A.; Thompson, B.T.; Gelfand, J.A.; Burke, J.F. )

    1989-12-01

    Plasma levels of the acute-phase reactant, C-reactive protein (CRP), increase up to one thousand-fold as a result of trauma or inflammation. CRP binds to phosphorylcholine (PC) in a calcium-ion dependent manner. The structural homology between PC and the major phospholipid component of surfactant, dipalmitoyl phosphatidylcholine (DPPC), led to the present study in which we examined if CRP levels might be increased in patients with adult respiratory distress syndrome (ARDS), and subsequently interfere with surfactant function. Our results showed that CRP levels in the bronchoalveolar fluid (BALF) was increased in patients with ARDS (97.8 +/- 84.2 micrograms/mg total protein vs. 4.04 +/- 2.2 micrograms/mg total protein in normals). Our results show that CRP binds to liposomes containing DPPC and phosphatidylglycerol (PG). As a result of this interaction, CRP inhibits the surface activity of a PG-DPPC mixture when tested with a Wilhelmy surfactometer or with the Enhorning pulsating bubble apparatus. Furthermore, the surface activity of a clinically used surfactant replacement, Surfactant TA (2 mg/ml), was also severely impaired by CRP in a dose-dependent manner (doses used ranging from 24.5 to 1,175 micrograms/ml). In contrast, human serum albumin (HSA) at 500 and 900 micrograms/ml had no inhibitory effect on Surfactant TA surface activity. These results suggest that CRP, although not an initiating insult in ARDS, may contribute to the subsequent abnormalities of surfactant function and thus the pathogenesis of the pulmonary dysfunction seen in ARDS.

  14. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  15. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size

    PubMed Central

    Marchetti, Magda; Shaffer, Milo S. P.; Zambianchi, Martina; Chen, Shu; Superti, Fabiana; Schwander, Stephan; Gow, Andrew; Zhang, Junfeng (Jim); Chung, Kian Fan; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    The alveolar respiratory unit constitutes one of the main targets of inhaled nanoparticles; the effect of engineered nanomaterials (NMs) on human health is largely unknown. Surfactant protein D (SP-D) is synthesized by alveolar type II epithelial cells and released into respiratory secretions; its main function is in immune defence, notably against inhaled microbes. SP-D also plays an important role in modulating an appropriate inflammatory response in the lung, and reduced SP-D is associated with a number of inflammatory lung diseases. Adsorption of SP-D to inhaled NMs may facilitate their removal via macrophage phagocytosis. This study addresses the hypothesis that the chemistry, size and surface modification of engineered NMs will impact on their interaction with, and adsorption of, SP-D. To this purpose, we have examined the interactions between SP-D in human lung lavage and two NMs, carbon nanotubes and polystyrene nanoparticles, with different surface functionalization. We have demonstrated that particle size, functionalization and concentration affect the adsorption of SP-D from human lung lavage. Functionalization with negatively charged groups enhanced the amount of SP-D binding. While SP-D binding would be expected to enhance macrophage phagocytosis, these results suggest that the degree of binding is markedly affected by the physicochemistry of the NM and that deposition of high levels of some nanoparticles within the alveolar unit might deplete SP-D levels and affect alveolar immune defence mechanisms. PMID:25533095

  16. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size.

    PubMed

    Marchetti, Magda; Shaffer, Milo S P; Zambianchi, Martina; Chen, Shu; Superti, Fabiana; Schwander, Stephan; Gow, Andrew; Zhang, Junfeng Jim; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2015-02-01

    The alveolar respiratory unit constitutes one of the main targets of inhaled nanoparticles; the effect of engineered nanomaterials (NMs) on human health is largely unknown. Surfactant protein D (SP-D) is synthesized by alveolar type II epithelial cells and released into respiratory secretions; its main function is in immune defence, notably against inhaled microbes. SP-D also plays an important role in modulating an appropriate inflammatory response in the lung, and reduced SP-D is associated with a number of inflammatory lung diseases. Adsorption of SP-D to inhaled NMs may facilitate their removal via macrophage phagocytosis. This study addresses the hypothesis that the chemistry, size and surface modification of engineered NMs will impact on their interaction with, and adsorption of, SP-D. To this purpose, we have examined the interactions between SP-D in human lung lavage and two NMs, carbon nanotubes and polystyrene nanoparticles, with different surface functionalization. We have demonstrated that particle size, functionalization and concentration affect the adsorption of SP-D from human lung lavage. Functionalization with negatively charged groups enhanced the amount of SP-D binding. While SP-D binding would be expected to enhance macrophage phagocytosis, these results suggest that the degree of binding is markedly affected by the physicochemistry of the NM and that deposition of high levels of some nanoparticles within the alveolar unit might deplete SP-D levels and affect alveolar immune defence mechanisms. PMID:25533095

  17. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    PubMed

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+) and Ig-Hepta(-/-) mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space. PMID:23922714

  18. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    PubMed

    Rausch, Felix; Schicht, Martin; Paulsen, Friedrich; Ngueya, Ivan; Bräuer, Lars; Brandt, Wolfgang

    2012-01-01

    Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class. PMID:23094088

  19. Recognition of Mannosylated Ligands and Influenza A Virus by Human Surfactant Protein D: Contributions of an Extended Site and Residue 343

    SciTech Connect

    Crouch, E.; Hartshorn, K; Horlacher, T; McDonald, B; Smith, K; Cafarella, T; Seaton, B; Seeberger, P; Head, J

    2009-01-01

    Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced binding to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.

  20. Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages.

    PubMed Central

    Madan, T; Eggleton, P; Kishore, U; Strong, P; Aggrawal, S S; Sarma, P U; Reid, K B

    1997-01-01

    To determine whether the lung surfactant proteins A (SP-A) and D (SP-D) are involved in the initial protective immunity against opportunistic pulmonary fungal infections caused by Aspergillus fumigatus, we performed a series of in vitro functional studies to see if SP-A and SP-D enhanced binding, phagocytosis, activation, and killing of A. fumigatus conidia by human alveolar macrophages and circulating neutrophils. Both SP-A and SP-D bound to carbohydrate structures on A. fumigatus conidia in a calcium-dependent manner. SP-A and SP-D were also chemoattractant and significantly enhanced agglutination and binding of conidia to alveolar macrophages and neutrophils. Furthermore, in the presence of SP-A and SP-D, the phagocytosis, oxidative burst, and killing of A. fumigatus conidia by neutrophils were significantly increased. These findings indicate that SP-A and SP-D may have an important immunological role in the early antifungal defense responses in the lung, through inhibiting infectivity of conidia by agglutination and by enhancing uptake and killing of A. fumigatus by phagocytic cells. PMID:9234771

  1. Protective effects of a recombinant fragment of human surfactant protein D in a murine model of pulmonary hypersensitivity induced by dust mite allergens.

    PubMed

    Singh, Mamta; Madan, Taruna; Waters, Patrick; Parida, Shreemanta K; Sarma, P Usha; Kishore, Uday

    2003-05-01

    Lung surfactant protein D (SP-D) is a carbohydrate pattern recognition immune molecule. It can interact with a range of pathogens, stimulate immune cells and manipulate cytokine profiles during host's immune response. SP-D has also been shown to interact, via its carbohydrate recognition domains, with glycoprotein allergens of house dust mite (Dermatophagoides pteronyssinus, Derp), inhibiting specific IgE isolated from mite-sensitive asthmatic patients from binding these allergens, and blocking subsequent histamine release from sensitized basophils. In the present study, we have examined the protection offered by various doses of intranasal administration of a recombinant fragment of human SP-D (rhSP-D) in a murine model of pulmonary hypersensitivity to Derp allergens which showed characteristic high levels of specific IgE antibodies, peripheral blood eosinophilia, pulmonary infiltrates and a Th2 cytokine response. Treatment of Derp mice with rhSP-D led to significant reduction in Derp-specific IgE levels, blood eosinophilia and pulmonary cellular infiltration. The levels of IL-4 and IL-5 were decreased, while those of IL-12 and IFN-gamma were raised in the supernatant of the cultured splenocytes, indicating a Th2 to Th1 polarization. These results suggest that SP-D has a protective role in the modulation of allergic sensitization and in the development of allergic reactions to Derp allergens and highlight potential of the rhSP-D as a therapeutic for pulmonary hypersensitivity. PMID:12706535

  2. Surfactant Proteins in Smoking-Related Lung Disease.

    PubMed

    Papaioannou, Andriana I; Papiris, Spyridon; Papadaki, Georgia; Manali, Effrosyni D; Roussou, Aneza; Spathis, Aris; Karakitsos, Petros; Kostikas, Konstantinos

    2016-01-01

    Pulmonary surfactant is a highly surface-active mixture of proteins and lipids that is synthesized and secreted in the alveoli by type II epithelial cells and is found in the fluid lining the alveolar surface. The protein part of surfactant constitutes two hydrophilic proteins (SP-A and SP-D) that regulate surfactant metabolism and have immunologic functions, and two hydrophobic proteins (SP-B and SP-C), which play a direct role in the organization of the surfactant structure in the interphase and in the stabilization of the lipid layers during the respiratory cycle. Several studies have shown that cigarette smoke seems to affect, in several ways, both surfactant homeostasis and function. The alterations in surfactants' biophysical properties caused by cigarette smoking, contribute to the development of several smoking related lung diseases. In this review we provide information on biochemical and physiological aspects of the pulmonary surfactant and on its possible association with the development of two major chronic diseases of the lung known to be related to smoking, i.e. chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Additional information on the possible role of surfactant protein alterations and/or dysfunction in the combination of these two conditions, recently described as combined pulmonary fibrosis and emphysema (CPFE) are also provided. PMID:26420367

  3. 14-3-3 isoforms bind directly exon B of the 5′-UTR of human surfactant protein A2 mRNA

    PubMed Central

    Noutsios, Georgios T.; Ghattas, Paul; Bennett, Stephanie

    2015-01-01

    Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5′-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722–L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5′-UTR mRNA. PMID:26001776

  4. Key interactions of surfactants in therapeutic protein formulations: A review.

    PubMed

    Khan, Tarik A; Mahler, Hanns-Christian; Kishore, Ravuri S K

    2015-11-01

    Proteins as amphiphilic, surface-active macromolecules, demonstrate substantial interfacial activity, which causes considerable impact on their multifarious applications. A commonly adapted measure to prevent interfacial damage to proteins is the use of nonionic surfactants. Particularly in biotherapeutic formulations, the use of nonionic surfactants is ubiquitous in order to prevent the impact of interfacial stress on drug product stability. The scope of this review is to convey the current understanding of interactions of nonionic surfactants with proteins both at the interface and in solution, with specific focus to their effects on biotherapeutic formulations. PMID:26435336

  5. Pulmonary surfactant proteins and polymer combinations reduce surfactant inhibition by serum.

    PubMed

    Lu, Karen W; Pérez-Gil, Jesús; Echaide, Mercedes; Taeusch, H William

    2011-10-01

    Acute respiratory distress syndrome (ARDS) is an inflammatory condition that can be associated with capillary leak of serum into alveoli causing inactivation of surfactant. Resistance to inactivation is affected by types and concentrations of surfactant proteins, lipids, and polymers. Our aim was to investigate the effects of different combinations of these three components. A simple lipid mixture (DPPC/POPG) or a more complex lipid mixture (DPPC/POPC/POPG/cholesterol) was used. Native surfactant proteins SP-B and SP-C obtained from pig lung lavage were added either singly or combined at two concentrations. Also, non-ionic polymers polyethylene glycol and dextran and the anionic polymer hyaluronan were added either singly or in pairs with hyaluronan included. Non-ionic polymers work by different mechanisms than anionic polymers, thus the purpose of placing them together in the same surfactant mixture was to evaluate if the combination would show enhanced beneficial effects. The resulting surfactant mixtures were studied in the presence or absence of serum. A modified bubble surfactometer was used to evaluate surface activities. Mixtures that included both SP-B and SP-C plus hyaluronan and either dextran or polyethylene glycol were found to be the most resistant to inhibition by serum. These mixtures, as well as some with either SP-B or SP-C with combined polymers were as or more resistant to inactivation than native surfactant. These results suggest that improved formulations of lung surfactants are possible and may be useful in reducing some types of surfactant inactivation in treating lung injuries. PMID:21741354

  6. Magnetic Surfactants and Polymers with Gadolinium Counterions for Protein Separations.

    PubMed

    Brown, Paul; Bromberg, Lev; Rial-Hermida, M Isabel; Wasbrough, Matthew; Hatton, T Alan; Alvarez-Lorenzo, Carmen

    2016-01-26

    New magnetic surfactants, (cationic hexadecyltrimethlyammonium bromotrichlorogadolinate (CTAG), decyltrimethylammonium bromotrichlorogadolinate (DTAG), and a magnetic polymer (poly(3-acrylamidopropyl)trimethylammonium tetrachlorogadolinate (APTAG)) have been synthesized by the simple mixing of the corresponding surfactants and polymer with gadolinium metal ions. A magnetic anionic surfactant, gadolinium tri(1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) (Gd(AOT)3), was synthesized via metathesis. Both routes enable facile preparation of magnetically responsive magnetic polymers and surfactants without the need to rely on nanocomposites or organic frameworks with polyradicals. Electrical conductivity, surface tensiometry, SQUID magnetometry, and small-angle neutron scattering (SANS) demonstrate surface activity and self-aggregation behavior of the magnetic surfactants similar to their magnetically inert parent analogues but with added magnetic properties. The binding of the magnetic surfactants to proteins enables efficient separations under low-strength (0.33 T) magnetic fields in a new, nanoparticle-free approach to magnetophoretic protein separations and extractions. Importantly, the toxicity of the magnetic surfactants and polymers is, in some cases, lower than that of their halide analogues. PMID:26725503

  7. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    PubMed

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression. PMID:15694461

  8. Cell-specific modulation of surfactant proteins by ambroxol treatment

    SciTech Connect

    Seifart, Carola . E-mail: zwiebel@mailer.uni-marburg.de; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  9. Deduced amino acid sequence of human pulmonary surfactant proteolipid: SPL(pVal)

    SciTech Connect

    Whitsett, J.A.; Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.

    1987-05-01

    Hydrophobic, proteolipid-like protein of Mr 6500 was isolated from ether/ethanol extracts of human, canine and bovine pulmonary surfactant. Amino acid composition of the protein demonstrated a remarkable abundance of hydrophobic residues, particularly valine and leucine. The N-terminal amino acid sequence of the human protein was determined: N-Leu-Ile-Pro-Cys-Cys-Pro-Val-Asn-Leu-Lys-Arg-Leu-Leu-Ile-Val4... An oligonucleotide probe was used to screen an adult human lung cDNA library and resulted in detection of cDNA clones with predicted amino acid sequence with close identity to the N-terminal amino acid sequence of the human peptide. SPL(pVal) was found within the reading frame of a larger peptide. SPL(pVal) results from proteolytic processing of a larger preprotein. Northern blot analysis detected in a single 1.0 kilobase SPL(pVal) RNA which was less abundant in fetal than in adult lung. Mixtures of purified canine and bovine SPL(pVal) and synthetic phospholipids display properties of rapid adsorption and surface tension lowering activity characteristic of surfactant. Human SPL(pVal) is a pulmonary surfactant proteolipid which may therefore be useful in combination with phospholipids and/or other surfactant proteins for the treatment of surfactant deficiency such as hyaline membrane disease in newborn infants.

  10. NMR spectroscopy of proteins encapsulated in a positively charged surfactant.

    PubMed

    Lefebvre, Brian G; Liu, Weixia; Peterson, Ronald W; Valentine, Kathleen G; Wand, A Joshua

    2005-07-01

    Traditionally, large proteins, aggregation-prone proteins, and membrane proteins have been difficult to examine by modern multinuclear and multidimensional solution NMR spectroscopy. A major limitation presented by these protein systems is that their slow molecular reorientation compromises many aspects of the more powerful solution NMR methods. Several approaches have emerged to deal with the various spectroscopic difficulties arising from slow molecular reorientation. One of these takes the approach of actively seeking to increase the effective rate of molecular reorientation by encapsulating the protein of interest within the protective shell of a reverse micelle and dissolving the resulting particle in a low viscosity fluid. Since the encapsulation is largely driven by electrostatic interactions, the preparation of samples of acidic proteins suitable for NMR spectroscopy has been problematic owing to the paucity of suitable cationic surfactants. Here, it is shown that the cationic surfactant CTAB may be used to prepare samples of encapsulated anionic proteins dissolved in low viscosity solvents. In a more subtle application, it is further shown that this surfactant can be employed to encapsulate a highly basic protein, which is completely denatured upon encapsulation using an anionic surfactant. PMID:15949753

  11. A Function of Lung Surfactant Protein SP-B

    NASA Astrophysics Data System (ADS)

    Longo, M. L.; Bisagno, A. M.; Zasadzinski, J. A. N.; Bruni, R.; Waring, A. J.

    1993-07-01

    The primary function of lung surfactant is to form monolayers at the alveolar interface capable of lowering the normal surface tension to near zero. To accomplish this process, the surfactant must be capable of maintaining a coherent, tightly packed monolayer that avoids collapse during expiration. The positively charged amino-terminal peptide SP-B1-25 of lung surfactant-specific protein SP-B increases the collapse pressure of an important component of lung surfactant, palmitic acid (PA), to nearly 70 millinewtons per meter. This alteration of the PA isotherms removes the driving force for "squeeze-out" of the fatty acids from the primarily dipalmitoylphosphatidylcholine monolayers of lung surfactant. An uncharged mutant of SP-B1-25 induced little change in the isotherms, suggesting that a specific charge interaction between the cationic peptide and the anionic lipid is responsible for the stabilization. The effect of SP-B1-25 on fatty acid isotherms is remarkably similar to that of simple poly-cations, suggesting that such polymers might be useful as components of replacement surfactants for the treatment of respiratory distress syndrome.

  12. cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL(Phe)

    SciTech Connect

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.; Pilot-Matias, T.; Fox, J.L.; Whitsett, J.A.

    1987-06-01

    Hydrophobic surfactant-associated protein of M/sub r/ 6000-14,000 was isolated from either/ethanol or chloroform/methanol extracts of mammalian pulmonary surfactant. Automated Edman degradation in a gas-phase sequencer showed the major N-terminus of the human low molecular weight protein to be Phe-Pro-Ile-Pro-Leu-Pro-Try-Cys-Trp-Leu-Cys-Arg-Ala-Leu-. Because of the N-terminal phenylalanine, the surfactant protein was designated SPL(Phe). Antiserum generated against hydrophobic surfactant protein(s) from bovine pulmonary surfactant recognized protein of M/sub r/ 6000-14,000 in immunoblot analysis and was used to screen a lambdagt11 expression library constructed from adult human lung poly(A)/sup +/ RNA. This resulted in identification of a 1.4-kilobase cDNA clone that was shown to encode the N-terminus of the surfactant polypeptide SPL(Phe) (Phe-Pro-Ile-Pro-Leu-Pro-) within an open reading frame for a larger protein. Expression of a fused ..beta..-galactosidase-SPL (Phe) gene in Escherichia coli yielded an immunoreactive M/sub r/ 34,000 fusion peptide. Hybrid-arrested translation with the cDNA and immunoprecipitation of (/sup 35/S)methionine-labeled in vitro translation products of human poly(A)/sup +/ RNA with a surfactant polyclonal antibody resulted in identification of a M/sub r/ 40,000 precursor protein. Blot hybridization analysis of electrophoretically fractionated RNA from human lung detected a 2.0-kilobase RNA that was more abundant in adult lung than in fetal lung. These proteins, and specifically SPL(Phe), may therefore be useful for synthesis of replacement surfactants for treatment of hyaline membrane disease in newborn infants or of other surfactant-deficient states.

  13. Discrimination of Proteins Using an Array of Surfactant-Stabilized Gold Nanoparticles.

    PubMed

    Rogowski, Jacob L; Verma, Mohit S; Gu, Frank X

    2016-08-01

    Protein analysis is a fundamental aspect of biochemical research. Gold nanoparticles are an emerging platform for various biological applications given their high surface area, biocompatibility, and unique optical properties. The colorimetric properties of gold nanoparticles make them ideal for point-of-care diagnostics. Different aspects of gold nanoparticle-protein interactions have been investigated to predict the effect of protein adsorption on colloidal stability, but the role of surfactants is often overlooked, despite their potential to alter both protein and nanoparticle properties. Herein we present a method by which gold nanoparticles can be prepared in various surfactants and used for array-based quantification and identification of proteins. The exchange of surfactant not only changed the zeta potential of those gold nanoparticles but also drastically altered their aggregation response to five different proteins (bovine serum albumin, human serum albumin, immunoglobulin G, lysozyme, and hemoglobin) in a concentration-dependent manner. Finally, we demonstrate that varying surfactant concentration can be used to control assay sensitivity. PMID:27399345

  14. Establishment of LC-MS methods for the analysis of palmitoylated surfactant proteins.

    PubMed

    Harayama, Takeshi; Shindou, Hideo; Kita, Yoshihiro; Otsubo, Eiji; Ikeda, Kazushige; Chida, Shoichi; Weaver, Timothy E; Shimizu, Takao

    2015-07-01

    The surfactant proteins (SPs), SP-B and SP-C, are important components of pulmonary surfactant involved in the reduction of alveolar surface tension. Quantification of SP-B and SP-C in surfactant drugs is informative for their quality control and the evaluation of their biological activity. Western blot analysis enabled the quantification of SP-B, but not SP-C, in surfactant drugs. Here, we report a new procedure involving chemical treatments and LC-MS to analyze SP-C peptides. The procedure enabled qualitative analysis of SP-C from different species with discrimination of the palmitoylation status and the artificial modifications that occur during handling and/or storage. In addition, the method can be used to estimate the total amount of SP-C in pulmonary surfactant drugs. The strategy described here might serve as a prototype to establish analytical methods for peptides that are extremely hydrophobic and behave like lipids. The new method provides an easy measurement of SP-C from various biological samples, which will help the characterization of various experimental animal models and the quality control of surfactant drugs, as well as diagnostics of human samples. PMID:26022805

  15. Stabilizing and destabilizing protein surfactant-based foams in the presence of a chemical surfactant: Effect of adsorption kinetics.

    PubMed

    Li, Huazhen; Le Brun, Anton P; Agyei, Dominic; Shen, Wei; Middelberg, Anton P J; He, Lizhong

    2016-01-15

    Stimuli-responsive protein surfactants promise alternative foaming materials that can be made from renewable sources. However, the cost of protein surfactants is still higher than their chemical counterparts. In order to reduce the required amount of protein surfactant for foaming, we investigated the foaming and adsorption properties of the protein surfactant, DAMP4, with addition of low concentrations of the chemical surfactant sodium dodecylsulfate (SDS). The results show that the small addition of SDS can enhance foaming functions of DAMP4 at a lowered protein concentration. Dynamic surface tension measurements suggest that there is a synergy between DAMP4 and SDS which enhances adsorption kinetics of DAMP4 at the initial stage of adsorption (first 60s), which in turn stabilizes protein foams. Further interfacial properties were revealed by X-ray reflectometry measurements, showing that there is a re-arrangement of adsorbed protein-surfactant layer over a long period of 1h. Importantly, the foaming switchability of DAMP4 by metal ions is not affected by the presence of SDS, and foams can be switched off by the addition of zinc ions at permissive pH. This work provides fundamental knowledge to guide formulation using a mixture of protein and chemical surfactants towards a high performance of foaming at a low cost. PMID:26433478

  16. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  17. Hydrophobic Surfactant Proteins Induce a Phosphatidylethanolamine to Form Cubic Phases

    PubMed Central

    Chavarha, Mariya; Khoojinian, Hamed; Schulwitz, Leonard E.; Biswas, Samares C.; Rananavare, Shankar B.; Hall, Stephen B.

    2010-01-01

    Abstract The hydrophobic surfactant proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface. Previous evidence suggests that they achieve this effect by facilitating the formation of a rate-limiting negatively curved stalk between the vesicular bilayer and the interface. To determine whether the proteins can alter the curvature of lipid leaflets, we used x-ray diffraction to investigate how the physiological mixture of these proteins affects structures formed by 1-palmitoyl-2-oleoyl phosphatidylethanolamine, which by itself undergoes the lamellar-to-inverse hexagonal phase transition at 71°C. In amounts as low as 0.03% (w:w) and at temperatures as low as 57°C, the proteins induce formation of bicontinuous inverse cubic phases. The proteins produce a dose-related shift of diffracted intensity to the cubic phases, with minimal evidence of other structures above 0.1% and 62°C, but no change in the lattice-constants of the lamellar or cubic phases. The induction of the bicontinuous cubic phases, in which the individual lipid leaflets have the same saddle-shaped curvature as the hypothetical stalk-intermediate, supports the proposed model of how the surfactant proteins promote adsorption. PMID:20409474

  18. Spectroscopic probing of the microenvironment in a protein-surfactant assembly.

    PubMed

    Anand, Uttam; Jash, Chandrima; Mukherjee, Saptarshi

    2010-12-01

    The effect of the anionic surfactant sodium dodecyl sulfate (SDS) on the protein human serum albumin (HSA) was studied using steady-state spectroscopy, time-resolved measurements, and circular dichroism spectroscopy. The binding of SDS to the domain IIA of HSA, housing the single tryptophan amino acid residue (Trp214), was monitored, and it was found that this addition of the surfactant takes place in a sequential manner depending upon the concentration of the added surfactant. Both fluorescence intensity and lifetimes of HSA decreased with the increasing concentration of SDS, and the surfactant molecules serve the role of a quencher for the fluorescence of Trp214. Circular dichroism data also support the structural changes induced by SDS. The 17 disulfide bridges present in HSA provide the necessary structural rigidity to the protein. Stern-Volmer plots and thermodynamic parameters have been used to characterize the sequential binding of SDS to HSA, and these parameters not only confirm that the binding is spontaneous in nature but also is quite strong, depending on the concentration of the added surfactant. PMID:21077590

  19. Structural model for an AxxxG-mediated dimer of surfactant-associated protein C.

    PubMed

    Kairys, Visvaldas; Gilson, Michael K; Luy, Burkhard

    2004-06-01

    The pulmonary surfactant prevents alveolar collapse and is required for normal pulmonary function. One of the important components of the surfactant besides phospholipids is surfactant-associated protein C (SP-C). SP-C shows complex oligomerization behavior and a transition to beta-amyloid-like fibril structures, which are not yet fully understood. Besides this nonspecific oligomerization, MS and chemical cross-linking data combined with CD spectra provide evidence of a specific, mainly alpha-helical, dimer at low to neutral pH. Furthermore, resistance to CNBr cleavage and dual NMR resonances of porcine and human recombinant SP-C with Met32 replaced by isoleucine point to a dimerization site located at the C-terminus of the hydrophobic alpha-helix of SP-C, where a strictly conserved heptapeptide sequence is found. Computational docking of two SP-C helices, described here, reveals a dimer with a helix-helix interface that strikingly resembles that of glycophorin A and is mediated by an AxxxG motif similar to the experimentally determined GxxxG pattern of glycophorin A. It is highly likely that mature SP-C adopts such a dimeric structure in the lamellar bilayer systems found in the surfactant. Dimerization has been shown in previous studies to have a role in sorting and trafficking of SP-C and may also be important to the surfactant function of this protein. PMID:15153098

  20. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers.

    PubMed Central

    Nag, K; Perez-Gil, J; Cruz, A; Keough, K M

    1996-01-01

    Pulmonary surfactant, a lipid-protein complex, secreted into the fluid lining of lungs prevents alveolar collapse at low lung volumes. Pulmonary surfactant protein C (SP-C), an acylated, hydrophobic, alpha-helical peptide, enhances the surface activity of pulmonary surfactant lipids. Fluorescein-labeled SP-C (F-SP-C) (3, 6, 12 wt%) in dipalmitoylphosphatidylcholine (DPPC), and DPPC:dipalmitoylphosphatidylglycerol (DPPG) [DPPC:DPPG 7:3 mol/mol] in spread monolayers was studied by epifluorescence microscopy. Mass spectometry of F-SP-C indicated that the protein is partially deacylated and labeled with 1 mol fluorescein/1 mol protein. The protein partitioned into the fluid, or liquid expanded, phase. Increasing amounts of F-SP-C in DPPC or DPPC:DPPG monolayers decreased the size and total amounts of the condensed phase at all surface pressures. Calcium (1.6 mM) increased the amount of the condensed phase in monolayers of DPPC:DPPG but not of DPPC alone, and such monolayers were also perturbed by F-SP-C. The study indicates that SP-C perturbs the packing of neutral and anionic phospholipid monolayers even when the latter systems are condensed by calcium, indicating that interactions between SP-C and the lipids are predominantly hydrophobic in nature. Images FIGURE 2 FIGURE 4 FIGURE 7 PMID:8804608

  1. Impact of a surfactant on the electroactivity of proteins at an aqueous-organogel microinterface array.

    PubMed

    O'Sullivan, Shane; Arrigan, Damien W M

    2013-02-01

    The impact of surfactant addition to the organic phase on the electroactivity of proteins at the aqueous-organogel interface was examined by voltammetry. The presence of bis(2-ethylhexyl)sulfosuccinate (AOT) in the organogel phase, as the sodium salt, caused marked changes in the peak currents for myoglobin detection. The protein desorption voltammetric peak exhibited a 6-fold increase in the current compared to the corresponding experiment without surfactant. Interfacial coverage showed a 17-fold increase in the adsorbed protein at the interface, from 50 pmol cm(-2), in the absence of surfactant, to 850 pmol cm(-2), in the presence of 10 mM surfactant. Additionally, the presence of the surfactant resulted in a second pair of adsorption/desorption peaks at lower potentials and in a change in the capacitance of the system. The formation of surfactant-protein and surfactant-protein-organic anion deposits is proposed on the basis of these features, leading to increased voltammetric signals for myoglobin, hemoglobin, and cytochrome c. The mechanism of protein-surfactant interaction was probed by using the surfactant as the anion in the organic phase electrolyte salt. Repetitive cyclic voltammetry of cytochrome c showed that in the presence of surfactant there was an enhancement of the signal, caused by a buildup of the protein-surfactant-electrolyte anion assembly at the interface. These findings provide the basis for surfactant-modified interfaces to enhance the electroanalytical performance for protein detection. PMID:23259491

  2. Infant formula alters surfactant protein A (SP-A) and SP-B expression in pulmonary epithelial cells.

    PubMed

    Chen, Maurice G; Atkins, Constance L; Bruce, Shirley R; Khan, Amir M; Liu, Yuying; Alcorn, Joseph L

    2011-09-01

    Surfactant proteins A (SP-A) and SP-B are critical in the ability of pulmonary surfactant to reduce alveolar surface tension and provide innate immunity. Aspiration of infant milk formula can lead to lung dysfunction, but direct effects of aspirated formula on surfactant protein expression in pulmonary cells have not been described. The hypothesis that infant formula alters surfactant protein homeostasis was tested in vitro by assessing surfactant protein gene expression in cultured pulmonary epithelial cell lines expressing SP-A and SP-B that were transiently exposed (6 hr) to infant formula. Steady-state levels of SP-A protein and mRNA and SP-B mRNA in human bronchiolar (NCI-H441) and mouse alveolar (MLE15) epithelial cells were reduced in a dose-dependent manner 18 hr after exposure to infant formula. SP-A mRNA levels remained reduced 42 hr after exposure, but SP-B mRNA levels increased 10-fold. Neither soy formula nor non-fat dry milk affected steady-state SP-A and SP-B mRNA levels; suggesting a role of a component of infant formula derived from cow milk. These results indicate that infant formula has a direct, dose-dependent effect to reduce surfactant protein gene expression. Ultimately, milk aspiration may potentially result in a reduced capacity of the lung to defend against environmental insults. PMID:21520433

  3. PLUNC Is a Novel Airway Surfactant Protein with Anti-Biofilm Activity

    PubMed Central

    Penterman, Jon; Mizrachi, Dario; Singh, Pradeep K.; Mallampalli, Rama K.; Ramaswamy, S.; McCray, Paul B.

    2010-01-01

    Background The PLUNC (“Palate, lung, nasal epithelium clone”) protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family - the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP) - are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways. Methodology/Principal Findings Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model. Conclusions/Significance Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen. PMID:20161732

  4. Is treatment with hydroxychloroquine effective in surfactant protein C deficiency?

    PubMed

    Rabach, Ingrid; Poli, Furio; Zennaro, Floriana; Germani, Claudio; Ventura, Alessandro; Barbi, Egidio

    2013-05-01

    We present the case of two twin brothers with surfactant protein C deficiency who were treated with hydroxychloroquine for three years, with apparent success. The exact physiopathology of this disease is not known and there is no specific treatment for it. There is merely news from a few previous descriptions in the literature about the use of hydroxychloroquine for surfactant protein C deficiency with satisfactory results. Two years after the treatment was withdrawn, the twins were evaluated once again: they presented no new infections, growth and general state were normal and chest CT showed a notable additional reduction in the interstitial pneumopathy. These data seem to cast some doubt on the efficacy of hydroxychloroquine, and they suggest that the clinical improvement was simply the natural evolution of the disease. PMID:23137777

  5. Tuning of protein-surfactant interaction to modify the resultant structure.

    PubMed

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes. PMID:26465504

  6. Tuning of protein-surfactant interaction to modify the resultant structure

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (p H 7 ) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  7. Solvation dynamics in a protein surfactant complex

    NASA Astrophysics Data System (ADS)

    Dutta, Partha; Sen, Pratik; Halder, Arnab; Mukherjee, Saptarshi; Sen, Sobhan; Bhattacharyya, Kankan

    2003-08-01

    Solvation dynamics in the denatured state of a protein, lysozyme (denatured by sodium dodecyl sulfate, SDS) is markedly slower than that in the native state. For coumarin 153 bound to lysozyme, the average solvation time, < τs> is 330 ps. In the lysozyme-SDS complex, the solvation dynamics is markedly slower with < τs>=7250 ps. On addition of dithiothreitol (DTT) to the lysozyme-SDS complex, when the di-sulfide bonds are destroyed, < τs> is found to be 1140 ps. The slow dynamics in the denatured protein is attributed to the polymer chain dynamics and the exchange of bound and free water molecules.

  8. The Diverse Structures and Functions of Surfactant Proteins.

    PubMed

    Schor, Marieke; Reid, Jack L; MacPhee, Cait E; Stanley-Wall, Nicola R

    2016-07-01

    Surface tension at liquid-air interfaces is a major barrier that needs to be surmounted by a wide range of organisms; surfactant and interfacially active proteins have evolved for this purpose. Although these proteins are essential for a variety of biological processes, our understanding of how they elicit their function has been limited. However, with the recent determination of high-resolution 3D structures of several examples, we have gained insight into the distinct shapes and mechanisms that have evolved to confer interfacial activity. It is now a matter of harnessing this information, and these systems, for biotechnological purposes. PMID:27242193

  9. SANS and DLS Studies of Protein Unfolding in Presence of Urea and Surfactant

    SciTech Connect

    Aswal, V. K.; Chodankar, S. N.; Wagh, A. G.; Kohlbrecher, J.; Vavrin, R.

    2008-03-17

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to study conformational changes in protein bovine serum albumin (BSA) during its unfolding in presence of protein denaturating agents urea and surfactant. On addition of urea, the BSA protein unfolds for urea concentrations greater than 4 M and acquires a random coil configuration with its radius of gyration increasing with urea concentration. The addition of surfactant unfolds the protein by the formation of micelle-like aggregates of surfactants along the unfolded polypeptide chains of the protein. The fractal dimension of such a protein-surfactant complex decreases and the overall size of the complex increases on increasing the surfactant concentration. The conformation of the unfolded protein in the complex has been determined directly using contrast variation SANS measurements by contrast matching the surfactant to the medium. Results of DLS measurements are found to be in good agreement with those obtained using SANS.

  10. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure

    PubMed Central

    Noutsios, Georgios T.; Silveyra, Patricia; Bhatti, Faizah

    2013-01-01

    Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5′ untranslated (5′UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5′UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA. PMID:23525782

  11. Partitioning lung and plasma proteins: circulating surfactant proteins as biomarkers of alveolocapillary permeability.

    PubMed

    Doyle, I R; Nicholas, T E; Bersten, A D

    1999-03-01

    1. The alveolocapillary membrane faces an extraordinary task in partitioning the plasma and lung hypophase proteins, with a surface area approximately 50-fold that of the body and only 0.1-0.2 micron thick. 2. Lung permeability is compromised under a variety of circumstances and the delineation between physiological and pathological changes in permeability is not always clear. Although the tight junctions of the epithelium, rather than the endothelium, are regarded as the major barrier to fluid and protein flux, it is becoming apparent that the permeability of both are dynamically regulated. 3. Whereas increased permeability and the flux of plasma proteins into the alveolar compartment has dire consequences, fortuitously the flux of surfactant proteins from the airspaces into the circulation may provide a sensitive means of non-invasively monitoring the lung, with important implications for treatment modalities. 4. Surfactant proteins are unique in that they are present in the alveolar hypophase in high concentrations. They diffuse down their vast concentration gradients (approximately 1:1500-7000) into the circulation in a manner that reflects lung function and injury score. Surfactant proteins vary markedly in size (approximately 20-650 kDa) and changes in the relative amounts appear particularly diagnostic with regard to disease severity. Alveolar levels of surfactant proteins remain remarkably constant despite respiratory disease and, unlike the flux of plasma proteins into the alveolus, which may reach equilibrium in acute lung injury, the flux of surfactant proteins is unidirectional because of the concentration gradient and because they are rapidly cleared from the circulation. 5. Ultimately, the diagnostic usefulness of surfactant proteins as markers of alveolocapillary permeability will demand a sound understanding of their kinetics through the vascular compartment. PMID:10081613

  12. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  13. Lung surfactant proteins A and D can inhibit specific IgE binding to the allergens of Aspergillus fumigatus and block allergen-induced histamine release from human basophils

    PubMed Central

    MADAN, T; KISHORE, U; SHAH, A; EGGLETON, P; STRONG, P; WANG, J Y; AGGRAWAL, S S; SARMA, P U; REID, K B M

    1997-01-01

    Aspergillus fumigatus is an opportunistic fungal pathogen which, in the immunocompetent host, causes allergic disorders such as allergic rhinitis, allergic sinusitis, hypersensitivity pneumonitis, and allergic bronchopulmonary Aspergillosis (ABPA). In the present study, the interaction of 3-week culture filtrate (3wcf) allergens and various purified glycosylated and non-glycosylated allergens of A. fumigatus with lung surfactant proteins, SP-A and SP-D, was investigated. Purified SP-A and SP-D, isolated from human bronchoalveolar lavage fluid, bound to the 3wcf allergens and purified allergens, gp55 and gp45, in a carbohydrate-specific and calcium-dependent manner. Both SP-A and SP-D did not bind to deglycosylated allergens, suggesting that the ability of SP-A and SP-D to bind certain allergens is mediated through their carbohydrate recognition domains, interacting with the carbohydrate residues on the allergen. Both SP-A and SP-D could inhibit the ability of allergen-specific IgE from Aspergillosis patients to bind these allergens, suggesting that SP-A and SP-D may be involved in the modulation of allergic sensitization and/or development of allergic reactions. The view that SP-A and SP-D play a protective role against airborne allergens is further supported by the demonstration of their ability to inhibit A. fumigatus allergen-induced histamine release from allergic patients' basophils. PMID:9367408

  14. Lung surfactant proteins A and D can inhibit specific IgE binding to the allergens of Aspergillus fumigatus and block allergen-induced histamine release from human basophils.

    PubMed

    Madan, T; Kishore, U; Shah, A; Eggleton, P; Strong, P; Wang, J Y; Aggrawal, S S; Sarma, P U; Reid, K B

    1997-11-01

    Aspergillus fumigatus is an opportunistic fungal pathogen which, in the immunocompetent host, causes allergic disorders such as allergic rhinitis, allergic sinusitis, hypersensitivity pneumonitis, and allergic bronchopulmonary Aspergillosis (ABPA). In the present study, the interaction of 3-week culture filtrate (3wcf) allergens and various purified glycosylated and non-glycosylated allergens of A. fumigatus with lung surfactant proteins, SP-A and SP-D, was investigated. Purified SP-A and SP-D, isolated from human bronchoalveolar lavage fluid, bound to the 3wcf allergens and purified allergens, gp55 and gp45, in a carbohydrate-specific and calcium-dependent manner. Both SP-A and SP-D did not bind to deglycosylated allergens, suggesting that the ability of SP-A and SP-D to bind certain allergens is mediated through their carbohydrate recognition domains, interacting with the carbohydrate residues on the allergen. Both SP-A and SP-D could inhibit the ability of allergen-specific IgE from Aspergillosis patients to bind these allergens, suggesting that SP-A and SP-D may be involved in the modulation of allergic sensitization and/or development of allergic reactions. The view that SP-A and SP-D play a protective role against airborne allergens is further supported by the demonstration of their ability to inhibit A. fumigatus allergen-induced histamine release from allergic patients' basophils. PMID:9367408

  15. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    SciTech Connect

    Mehan, Sumit Kumar, Sugam Aswal, V. K.

    2014-04-24

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  16. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, Sugam; Aswal, V. K.

    2014-04-01

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  17. Domains of surfactant protein A that affect protein oligomerization, lipid structure and surface tension.

    PubMed

    Palaniyar, N; Ikegami, M; Korfhagen, T; Whitsett, J; McCormack, F X

    2001-05-01

    Surfactant protein A (SP-A) is an abundant protein found in pulmonary surfactant which has been reported to have multiple functions. In this review, we focus on the structural importance of each domain of SP-A in the functions of protein oligomerization, the structural organization of lipids and the surface-active properties of surfactant, with an emphasis on ultrastructural analyses. The N-terminal domain of SP-A is required for disulfide-dependent protein oligomerization, and for binding and aggregation of phospholipids, but there is no evidence that this domain directly interacts with lipid membranes. The collagen-like domain is important for the stability and oligomerization of SP-A. It also contributes shape and dimension to the molecule, and appears to determine membrane spacing in lipid aggregates such as common myelin and tubular myelin. The neck domain of SP-A is primarily involved in protein trimerization, which is critical for many protein functions, but it does not appear to be directly involved in lipid interactions. The globular C-terminal domain of SP-A clearly plays a central role in lipid binding, and in more complex functions such as the formation and/or stabilization of curved membranes. In recent work, we have determined that the maintenance of low surface tension of surfactant in the presence of serum protein inhibitors requires cooperative interactions between the C-terminal and N-terminal domains of the molecule. This effect of SP-A requires a high degree of oligomeric assembly of the protein, and may be mediated by the activity of the protein to alter the form or physical state of surfactant lipid aggregates. PMID:11369537

  18. Binding of Alkyl Polyglucoside Surfactants to Bacteriorhodopsin and its Relation to Protein Stability

    PubMed Central

    Santonicola, M. Gabriella; Lenhoff, Abraham M.; Kaler, Eric W.

    2008-01-01

    The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell. PMID:18234822

  19. DECREASED PRODUCTION OF SURFACTANT PROTEINS AFTER DIESEL EXHAUST EXPOSURE INCREASES SUSCEPTIBILITY TO INFLUENZA INFECTION

    EPA Science Inventory

    Pulmonary surfactant proteins A and D (SP-A and SP-D), termed collectins, enhance the opsonization of foreign particles and pathogens by phagocytic cells. Inhaled pollutants such as diesel exhaust (DE) have a possible role in suppressing the production of surfactant proteins whic...

  20. Surfactant Protein A Expression in Chronic Rhinosinusitis and Atrophic Rhinitis

    PubMed Central

    El-Anwar, Mohammad Waheed; Hamed, Atef A.; Mohamed, Abd ElRaof Said; Nofal, Ahmad Abdel-Fattah; Mohamed, Maha A.; Abdel-Aziz, Hesham R.

    2015-01-01

    Introduction Surfactant protein A (SP-A) exhibits antimicrobial properties and interacts with a variety of respiratory tract pathogens. Objective The objective of this study was to detect the presence of SP-A and measure its alterations in chronic rhinosinusitis (CRS) and primary atrophic rhinitis (PAR) versus healthy controls. Methods Inferior turbinate and sinus mucosal biopsies were taken from 30 patients with CRS, 30 patients with PAR, and 20 healthy controls. Immunohistochemical staining for SP-A and polymerase chain reaction (PCR) amplification of SP-A messenger RNA were performed on nasal tissue samples. Results Immunostaining localized SP-A to the mucosa and submucosal glands in CRS specimens but failed to localize it in PAR specimens. Quantitative PCR showed a high, statistically significant increase in the SP-A levels of patients with CRS when compared with controls (p < 0.0001) and also demonstrated a significant reduction of SP-A in patients with PAR compared with controls (p < 0.005). Conclusion SP-A is significantly increased in CRS and decreased significantly in PAR and appears to be expressed by respiratory epithelial cells and submucosal glandular elements of the sinonasal mucosa. The potential therapeutic applications of surfactant in the enhancement of mucociliary clearance need to be studied. PMID:25992168

  1. Novel surfactant mixtures for NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    PubMed Central

    Peterson, Ronald W.; Pometun, Maxim S.; Shi, Zhengshuang; Wand, A. Joshua

    2005-01-01

    NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids is emerging as a tool for biophysical studies of proteins in atomic detail in a variety of otherwise inaccessible contexts. The central element of the approach is the encapsulation of the protein of interest within the aqueous core of a reverse micelle with high structural fidelity. The process of encapsulation is highly dependent upon the nature of the surfactant(s) employed. Here we describe novel mixtures of surfactants that are capable of successfully encapsulating a range of types of proteins under a variety of conditions. PMID:16199658

  2. Structural and functional differences among human surfactant proteins SP-A1, SP-A2 and co-expressed SP-A1/SP-A2: role of supratrimeric oligomerization

    PubMed Central

    Sánchez-Barbero, Fernando; Rivas, Germán; Steinhilber, Wolfram; Casals, Cristina

    2007-01-01

    SP-A (surfactant protein A) is a membrane-associated SP that helps to maintain the lung in a sterile and non-inflamed state. Unlike SP-As from other mammalian species, human SP-A consists of two functional gene products: SP-A1 and SP-A2. In all the functions examined, recombinant human SP-A1 invariably exhibits lower biological activity than SP-A2. The objective of the present study was to investigate why SP-A2 possesses greater biological activity than SP-A1 and what advantage accrues to having two polypeptide chains instead of one. We analysed structural and functional characteristics of recombinant baculovirus-derived SP-A1, SP-A2 and co-expressed SP-A1/SP-A2 using a wide array of experimental approaches such as analytical ultracentrifugation, DSC (differential scanning calorimetry) and fluorescence. We found that the extent of supratrimeric assembly is much lower in SP-A1 than SP-A2. However, the resistance to proteolysis is greater for SP-A1 than for SP-A2. Co-expressed SP-A1/SP-A2 had greater thermal stability than SP-A1 and SP-A2 and exhibited properties of each protein. On the one hand, SP-A1/SP-A2, like SP-A2, had a higher degree of oligomerization than SP-A1, and consequently had lower Kd for binding to bacterial Re-LPS (rough lipopolysaccharide), higher self-association in the presence of calcium and greater capability to aggregate Re-LPS and phospholipids than SP-A1. On the other hand, SP-A1/SP-A2, like SP-A1, was more resistant to trypsin degradation than SP-A2. Finally, the importance of the supratrimeric assembly for SP-A immunomodulatory function is discussed. PMID:17542781

  3. Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4+ Lymphocytes

    PubMed Central

    Fehrholz, Markus; Glaser, Kirsten; Seidenspinner, Silvia; Ottensmeier, Barbara; Curstedt, Tore; Speer, Christian P.; Kunzmann, Steffen

    2016-01-01

    Background Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown. Aim The aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4+ lymphocytes. Methods Purified human CD4+ T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®). Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry. Results Neither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4+ lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 m

  4. Interaction of surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity.

    PubMed

    Wu, Yong-Zheng; Manevich, Yefim; Baldwin, James L; Dodia, Chandra; Yu, Kevin; Feinstein, Sheldon I; Fisher, Aron B

    2006-03-17

    Peroxiredoxin 6 (Prdx6) is a "moonlighting" protein with both GSH peroxidase and phospholipase A(2) (PLA(2)) activities. This protein is responsible for degradation of internalized dipalmitoylphosphatidylcholine, the major phospholipid component of lung surfactant. The PLA(2) activity is inhibited by surfactant protein A (SP-A). We postulate that SP-A regulates the PLA(2) activity of Prdx6 through direct protein-protein interaction. Recombinant human Prdx6 and SP-A isolated from human alveolar proteinosis fluid were studied. Measurement of kinetic constants at pH 4.0 (maximal PLA(2) activity) showed K(m)0.35 mm and V(max) 138 nmol/min/mg of protein. SP-A inhibited PLA(2) activity non-competitively with K(i) 10 mug/ml and was Ca(2+) -independent. Activity at pH 7.4 was approximately 50% less, and inhibition by SP-A was partially dependent on Ca(2+). Interaction of SP-A and Prdx6 at pH 7.4 was shown by Prdx6-mediated inhibition of SP-A binding to agarose beads, a pull-down assay using His-tagged Prdx6 and Ni(2) -chelating beads, co-immunoprecipitation from lung epithelial cells and from a binary mixture of the two proteins, binding after treatment with a trifunctional cross-linker, and size-exclusion chromatography. Analysis by static light scattering and surface plasmon resonance showed calcium-independent SP-A binding to Prdx6 at pH 4.0 and partial Ca(2+) dependence of binding at pH 7.4. These results indicate a direct interaction between SP-A and Prdx6, which provides a mechanism for regulation of the PLA(2) activity of Prdx6 by SP-A. PMID:16330552

  5. A nonionic surfactant-decorated liquid crystal sensor for sensitive and selective detection of proteins.

    PubMed

    Wang, Yi; Hu, Qiongzheng; Tian, Tongtong; Gao, Yan'an; Yu, Li

    2016-09-21

    Proteins are responsible for most biochemical events in human body. It is essential to develop sensitive and selective methods for the detection of proteins. In this study, liquid crystal (LC)-based sensor for highly selective and sensitive detection of lysozyme, concanavalin A (Con A), and bovine serum albumin (BSA) was constructed by utilizing the LC interface decorated with a nonionic surfactant, dodecyl β-d-glucopyranoside. A change of the LC optical images from bright to dark appearance was observed after transferring dodecyl β-d-glucopyranoside onto the aqueous/LC interface due to the formation of stable self-assembled surfactant monolayer, regardless of pH and ion concentrations studied in a wide range. The optical images turned back from dark to bright appearance after addition of lysozyme, Con A and BSA, respectively. Noteworthy is that these proteins can be further distinguished by adding enzyme inhibitors and controlling incubation temperature of the protein solutions based on three different interaction mechanisms between proteins and dodecyl β-d-glucopyranoside, viz. enzymatic hydrolysis, specific saccharide binding, and physical absorption. The LC-based sensor decorated with dodecyl β-d-glucopyranoside shows high sensitivity for protein detection. The limit of detection (LOD) for lysozyme, Con A and BSA reaches around 0.1 μg/mL, 0.01 μg/mL and 0.001 μg/mL, respectively. These results might provide new insights into increasing selectivity and sensitivity of LC-based sensors for the detection of proteins. PMID:27590553

  6. Binding of cationic surfactants to DNA, protein and DNA-protein mixtures.

    PubMed

    Gani, S A; Chattoraj, D K; Mukherjee, D C

    1999-06-01

    Extent of binding (gamma 2(1)) of cationic surfactants cetyltrimethyl ammonium bromide (CTAB), myristyltrimethyl ammonium bromide (MTAB) and dodecyl trimethyl ammonium bromide (DTAB) to calf-thymus DNA, bovine serum albumin (BSA) and to their binary mixture respectively have been measured as function of bulk concentration of the surfactant by using equilibrium dialysis technique. Binding of CTAB has been studied at different pH, ionic strength (mu), temperature and biopolymer composition and with native and denatured states of the biopolymers. The chain-length of different long chain amines plays a significant role in the extent of binding under identical solution condition. The binding ratios for CTAB to collagen, gelatin, DNA-collagen and DNA-gelatin mixtures respectively have also been determined. The conformational structures of different biopolymers are observed to play significant role in macromolecular interactions between protein and DNA in the presence of CTAB. From the experimental values of the maximum binding ratio (gamma 2m) at the saturation level for each individual biopolymer, ideal values (gamma 2m)id have been theoretically calculated for binary mixtures of biopolymers using additivity rule. The protein-DNA-CTAB interaction in mixture has been explained in terms of the deviation (delta) of (gamma 2m) from (gamma 2m)id in the presence of a surfactant in bulk. The binding of surfactants to biopolymers and to their binary mixtures are compared more precisely in terms of the Gibbs' free energy decrease (-delta G degree) for the saturation of the binding sites in the biopolymers or biopolymer mixtures with the change of the bulk surfactant activity from zero to unity in the rational mole fraction scale. PMID:10650715

  7. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. PMID:26198014

  8. Intratracheal Recombinant Surfactant Protein D Prevents Endotoxin Shock in the Newborn Preterm Lamb

    PubMed Central

    Ikegami, Machiko; Carter, Karen; Bishop, Kimberly; Yadav, Annuradha; Masterjohn, Elizabeth; Brondyk, William; Scheule, Ronald K.; Whitsett, Jeffrey A.

    2006-01-01

    Rationale: The susceptibility of neonates to pulmonary and systemic infection has been associated with the immaturity of both lung structure and the immune system. Surfactant protein (SP) D is a member of the collectin family of innate immune molecules that plays an important role in innate host defense of the lung. Objectives: We tested whether treatment with recombinant human SP-D influenced the response of the lung and systemic circulation to intratracheally administered Escherichia coli lipopolysaccharides. Methods: After intratracheal lipopolysaccharide instillation, preterm newborn lambs were treated with surfactant and ventilated for 5 h. Measurement: Survival rate, physiologic lung function, lung and systemic inflammation, and endotoxin level in plasma were evaluated. Main Results: In control lambs, intratracheal lipopolysaccharides caused septic shock and death associated with increased endotoxin in plasma. In contrast, all lambs treated with recombinant human SP-D were physiologically stable and survived. Leakage of lipopolysaccharides from the lungs to the systemic circulation was prevented by intratracheal recombinant human SP-D. Recombinant human SP-D prevented systemic inflammation and decreased the expression of IL-1β, IL-8, and IL-6 in the spleen and liver. Likewise, recombinant human SP-D decreased IL-1β and IL-6 in the lung and IL-8 in the plasma. Recombinant human SP-D did not alter pulmonary mechanics following endotoxin exposure. Recombinant human SP-D was readily detected in the lung 5 h after intratracheal instillation. Conclusions: Intratracheal recombinant human SP-D prevented shock caused by endotoxin released from the lung during ventilation in the premature newborn. PMID:16556693

  9. Characterization of a human surfactant protein A1 (SP-A1) gene-specific antibody; SP-A1 content variation among individuals of varying age and pulmonary health.

    PubMed

    Tagaram, Hephzibah Rani S; Wang, Guirong; Umstead, Todd M; Mikerov, Anatoly N; Thomas, Neal J; Graff, Gavin R; Hess, Joseph C; Thomassen, Mary Jane; Kavuru, Mani S; Phelps, David S; Floros, Joanna

    2007-05-01

    The human surfactant protein A (SP-A) locus consists of two functional genes (SP-A1, SP-A2) with gene-specific products exhibiting qualitative and quantitative differences. The aim here was twofold: 1) generate SP-A1 gene-specific antibody, and 2) use this to assess gene-specific SP-A content in the bronchoalveolar lavage fluid (BALF). An SP-A1-specific polyclonal antibody (hSP-A1_Ab(68-88)_Col) was raised in chicken, and its specificity was determined by immunoblot and ELISA using mammalian Chinese hamster ovary (CHO) cell-expressed SP-A1 and SP-A2 variants and by immunofluorescence with stably transfected CHO cell lines expressing SP-A1 or SP-A2 variants. SP-A1 content was evaluated according to age and lung status. A gradual decrease (P < 0.05) in SP-A1/SP-A ratio was observed in healthy subjects (HS) with increased age, although no significant change was observed in total SP-A content among age groups. Total SP-A and SP-A1 content differed significantly between alveolar proteinosis (AP) patients and HS, with no significant difference observed in SP-A1/SP-A ratio between AP and HS. The cystic fibrosis (CF) ratio was significantly higher compared with AP, HS, and noncystic fibrosis (NCF), even though SP-A1 and total SP-A were decreased in CF compared with most of the other groups. The ratio was higher in culture-positive vs. culture-negative samples from CF and NCF (P = 0.031). A trend of an increased ratio was observed in culture-positive CF (0.590 +/- 0.10) compared with culture-positive NCF (0.368 +/- 0.085). In summary, we developed and characterized an SP-A1 gene-specific antibody and used it to identify gene-specific SP-A content in BALFs as a function of age and lung health. PMID:17189324

  10. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-01

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting. PMID:26389817

  11. Overcoming inactivation of the lung surfactant by serum proteins: a potential role for fluorocarbons?

    PubMed

    Krafft, Marie Pierre

    2015-08-14

    In many pulmonary conditions serum proteins interfere with the normal adsorption of components of the lung surfactant to the surface of the alveoli, resulting in lung surfactant inactivation, with potentially serious untoward consequences. Here, we review the strategies that have recently been designed in order to counteract the biophysical mechanisms of inactivation of the surfactant. One approach includes protein analogues or peptides that mimic the native proteins responsible for innate resistance to inactivation. Another perspective uses water-soluble additives, such as electrolytes and hydrophilic polymers that are prone to enhance adsorption of phospholipids. An alternative, more recent approach consists of using fluorocarbons, that is, highly hydrophobic inert compounds that were investigated for partial liquid ventilation, that modify interfacial properties and can act as carriers of exogenous lung surfactant. The latter approach that allows fluidisation of phospholipid monolayers while maintaining capacity to reach near-zero surface tension definitely warrants further investigation. PMID:26110877

  12. Keeping lung surfactant where it belongs: protein regulation of two-dimensional viscosity.

    PubMed

    Alonso, Coralie; Waring, Alan; Zasadzinski, Joseph A

    2005-07-01

    Lung surfactant causes the surface tension, gamma, in the alveoli to drop to nearly zero on exhalation; in the upper airways gamma is approximately 30 mN/m and constant. Hence, a surface tension gradient exists between alveoli and airways that should lead to surfactant flow out of the alveoli and elimination of the surface tension gradient. However, the lung surfactant specific protein SP-C enhances the resistance to surfactant flow by regulating the ratio of solid to fluid phase in the monolayer, leading to a jamming transition at which the monolayer transforms from fluidlike to solidlike. The accompanying three orders of magnitude increase in surface viscosity helps minimize surfactant flow to the airways and likely stabilizes the alveoli against collapse. PMID:15833995

  13. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    PubMed Central

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara; Briner, David; Linders, Bruce; McDonald, Joseph; Holmskov, Uffe; Head, James; Hartshorn, Kevan

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each with identical N-terminal tags remote from the ligand-binding surface. Although rat and mouse showed similar affinities for saccharide competitors, both differed markedly from the human protein. The human neck+CRD preferentially recognized N-acetyl-mannosamine, whereas the rat and mouse proteins showed greater affinity for myoinositol, maltose, and glucose. Although human neck+CRDs bound to maltosyl-agarose and fungal mannan, only rat and mouse neck+CRDs showed significant binding to maltosyl-Toyopearl beads, solid-phase maltosyl-albumin neo-glycoprotein, or the Phil82 strain of influenza A virus. Likewise, human SP-D dodecamers and trimeric subunits of full-length rat, but not full-length human SP-D trimers, bound to maltosyl-Toyopearl. Site-directed mutagenesis of the human neck+CRD demonstrated an important role of Asp324-Asp325 in the recognition of N-acetyl-mannosamine, and substitution of the corresponding murine sequence (Asn324-Asn325) conferred a capacity to interact with immobilized maltose. Thus, ligand recognition by human SP-D involves a complex interplay between saccharide presentation, the valency of trimeric subunits, and species-specific residues that flank the primary carbohydrate binding site. PMID:16514117

  14. Exposure of surfactant protein A to ozone in vitro and in vivo impairs its interactions with alveolar cells

    SciTech Connect

    Oosting, R.S.; Van Iwaarden, J.F.; Van Bree, L.; Verhoef, J.; Van Golde, L.M.; Haagsman, H.P. )

    1992-01-01

    This study focused on the question of whether exposure of surfactant protein A (SP-A) to ozone affected properties of this protein that may be involved in regulating alveolar type II cell and alveolar macrophage functions. In vitro exposure of human or canine SP-A to ozone reduced the ability of this protein to inhibit phorbol-ester induced secretion of (3H)phosphatidylcholine by alveolar type II cells in culture. Ozone-exposed human SP-A showed a decreased ability to enhance phagocytosis of herpes simplex virus and to stimulate superoxide anion production by alveolar macrophages. Experiments with elastase showed that ozone-exposed canine SP-A was more susceptible to proteolysis. A conformational change of the protein could underlie this phenomenon. Surfactant isolated from ozone-exposed rats (0.4 ppm ozone for 12 h) was also less able to stimulate superoxide anion production by alveolar macrophages than surfactant from control rats, which suggested that SP-A in vivo was also susceptible to ozone. The results of this study suggest that SP-A-alveolar cell interactions can be inhibited by ozone exposure, which may contribute to the toxicity of ozone in the lungs.

  15. Critical Role of Arg/Lys343 in the Species-Dependent Recognition of Phosphatidylinositol by Plumonary Surfactant Protein D

    SciTech Connect

    Crouch,E.; McDonald, B.; Smith, K.; Roberts, M.; Mealy, T.; Seaton, B.; Head, J.

    2007-01-01

    Surfactant protein D (SP-D) plays important roles in lung host defense. However, it can also recognize specific host molecules and contributes to surfactant homeostasis. The major known surfactant-associated ligand is phosphatidylinositol (PI). Trimeric neck-carbohydrate recognition domains (NCRDs) of rat and human SP-D exhibited dose-dependent, calcium-dependent, and inositol-sensitive binding to solid-phase PI and to multilamellar PI liposomes. However, the rat protein exhibited a >5-fold higher affinity for solid-phase PI than the human NCRD. In addition, human dodecamers, but not full-length human trimers, efficiently coprecipitated with multilamellar PI liposomes in the presence of calcium. A human NCRD mutant resembling the rat and mouse proteins at position 343 (hR343K) showed much stronger binding to PI. A reciprocal rat mutant with arginine at the position of lysine 343 (rK343R) showed weak binding to PI, even weaker than that of the wild-type human protein. Crystal complexes of the human trimeric NCRD with myoinositol and inositol 1-phosphate showed binding of the equatorial OH groups of the cyclitol ring of the inositol to calcium at the carbohydrate binding site. Myoinositol binding occurred in two major orientations, while inositol 1-phosphate appeared primarily constrained to a single, different orientation. Our studies directly implicate the CRD in PI binding and reveal unexpected species differences in PI recognition that can be largely attributed to the side chain of residue 343. In addition, the studies indicate that oligomerization of trimeric subunits is an important determinant of recognition of PI by human SP-D.

  16. Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants

    PubMed Central

    Tsotakos, Nikolaos; Silveyra, Patricia; Lin, Zhenwu; Thomas, Neal; Vaid, Mudit

    2014-01-01

    Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5′-untranslated regions (5′-UTR) due to differential splicing. The 5′-UTR variant ACD′ is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication. PMID:25326576

  17. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  18. Altered surfactant protein A gene expression and protein metabolism associated with repeat exposure to inhaled endotoxin.

    PubMed

    George, Caroline L S; White, Misty L; O'Neill, Marsha E; Thorne, Peter S; Schwartz, David A; Snyder, Jeanne M

    2003-12-01

    Chronically inhaled endotoxin, which is ubiquitous in many occupational and domestic environments, can adversely affect the respiratory system resulting in an inflammatory response and decreased lung function. Surfactant-associated protein A (SP-A) is part of the lung innate immune system and may attenuate the inflammatory response in various types of lung injury. Using a murine model to mimic occupational exposures to endotoxin, we hypothesized that SP-A gene expression and protein would be elevated in response to repeat exposure to inhaled grain dust and to purified lipopolysaccharide (LPS). Our results demonstrate that repeat exposure to inhaled endotoxin, either in the form of grain dust or purified LPS, results in increased whole lung SP-A gene expression and type II alveolar epithelial cell hyperplasia, whereas SP-A protein levels in lung lavage fluid are decreased. Furthermore, these alterations in SP-A gene activity and protein metabolism are dependent on an intact endotoxin signaling system. PMID:12922979

  19. Comparative Evaluation of Heterologous Production Systems for Recombinant Pulmonary Surfactant Protein D

    PubMed Central

    Salgado, Daniela; Fischer, Rainer; Schillberg, Stefan; Twyman, Richard M.; Rasche, Stefan

    2014-01-01

    Commercial surfactant products derived from animal lungs are used for the treatment of respiratory diseases in premature neonates. These products contain lipids and the hydrophobic surfactant proteins B and C, which help to lower the surface tension in the lungs. Surfactant products are less effective when pulmonary diseases involve inflammatory complications because two hydrophilic surfactant proteins (A and D) are lost during the extraction process, yet surfactant protein D (SP-D) is a component of the innate immune system that helps to reduce lung inflammation. The performance of surfactant products could, therefore, be improved by supplementing them with an additional source of SP-D. Recombinant SP-D (rSP-D) is produced in mammalian cells and bacteria (Escherichia coli), and also experimentally in the yeast Pichia pastoris. Mammalian cells produce full-size SP-D, but the yields are low and the cost of production is high. In contrast, bacteria produce a truncated form of SP-D, which is active in vitro and in vivo, and higher yields can be achieved at a lower cost. We compare the efficiency of production of rSP-D in terms of the total yields achieved in each system and the amount of SP-D needed to meet the global demand for the treatment of pulmonary diseases, using respiratory distress syndrome as a case study. PMID:25538707

  20. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    SciTech Connect

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A. )

    1989-12-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of (35S)methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression.

  1. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size.

    PubMed

    Bridges, James P; Ludwig, Marie-Gabrielle; Mueller, Matthias; Kinzel, Bernd; Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A; Ikegami, Machiko

    2013-09-01

    Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion. PMID:23590306

  2. Sputum and BAL Clara cell secretory protein and surfactant protein D levels in asthma.

    PubMed

    Emmanouil, P; Loukides, S; Kostikas, K; Papatheodorou, G; Papaporfyriou, A; Hillas, G; Vamvakaris, I; Triggidou, R; Katafigiotis, P; Kokkini, A; Papiris, S; Koulouris, N; Bakakos, P

    2015-06-01

    Clara cell secretory protein (CC16) is associated with Th2 modulation. Surfactant protein D (SPD) plays an important role in surfactant homeostasis and eosinophil chemotaxis. We measured CC16 and SPD in sputum supernatants of 84 asthmatic patients and 12 healthy controls. In 22 asthmatics, we additionally measured CC16 and SPD levels in BAL and assessed smooth muscle area (SMA), reticular basement membrane (RBM) thickness, and epithelial detachment (ED) in bronchial biopsies. Induced sputum CC16 and SPD were significantly higher in patients with severe asthma (SRA) compared to mild-moderate and healthy controls. BAL CC16 and SPD levels were also higher in SRA compared to mild-moderate asthma. CC16 BAL levels correlated with ED, while SPD BAL levels correlated with SMA and RBM. Severity represented a significant covariate for these associations. CC16 and SPD levels are upregulated in SRA and correlate with remodeling indices, suggesting a possible role of these biomarkers in the remodeling process. PMID:25728058

  3. The structure of latherin, a surfactant allergen protein from horse sweat and saliva

    PubMed Central

    Vance, Steven J.; McDonald, Rhona E.; Cooper, Alan; Smith, Brian O.; Kennedy, Malcolm W.

    2013-01-01

    Latherin is a highly surface-active allergen protein found in the sweat and saliva of horses and other equids. Its surfactant activity is intrinsic to the protein in its native form, and is manifest without associated lipids or glycosylation. Latherin probably functions as a wetting agent in evaporative cooling in horses, but it may also assist in mastication of fibrous food as well as inhibition of microbial biofilms. It is a member of the PLUNC family of proteins abundant in the oral cavity and saliva of mammals, one of which has also been shown to be a surfactant and capable of disrupting microbial biofilms. How these proteins work as surfactants while remaining soluble and cell membrane-compatible is not known. Nor have their structures previously been reported. We have used protein nuclear magnetic resonance spectroscopy to determine the conformation and dynamics of latherin in aqueous solution. The protein is a monomer in solution with a slightly curved cylindrical structure exhibiting a ‘super-roll’ motif comprising a four-stranded anti-parallel β-sheet and two opposing α-helices which twist along the long axis of the cylinder. One end of the molecule has prominent, flexible loops that contain a number of apolar amino acid side chains. This, together with previous biophysical observations, leads us to a plausible mechanism for surfactant activity in which the molecule is first localized to the non-polar interface via these loops, and then unfolds and flattens to expose its hydrophobic interior to the air or non-polar surface. Intrinsically surface-active proteins are relatively rare in nature, and this is the first structure of such a protein from mammals to be reported. Both its conformation and proposed method of action are different from other, non-mammalian surfactant proteins investigated so far. PMID:23782536

  4. Combine and Conquer: Surfactants, Solvents, and Chaotropes for Robust Mass Spectrometry Based Analyses of Membrane Proteins

    PubMed Central

    2015-01-01

    Mass spectrometry (MS) based proteomic technologies enable the identification and quantification of membrane proteins as well as their post-translational modifications. A prerequisite for their quantitative and reliable MS-based bottom-up analysis is the efficient digestion into peptides by proteases, though digestion of membrane proteins is typically challenging due to their inherent properties such as hydrophobicity. Here, we investigated the effect of eight commercially available MS-compatible surfactants, two organic solvents, and two chaotropes on the enzymatic digestion efficiency of membrane protein-enriched complex mixtures in a multiphase study using a gelfree approach. Multiple parameters, including the number of peptides and proteins identified, total protein sequence coverage, and digestion specificity were used to evaluate transmembrane protein digestion performance. A new open-source software tool was developed to allow for the specific assessment of transmembrane domain sequence coverage. Results demonstrate that while Progenta anionic surfactants outperform other surfactants when tested alone, combinations of guanidine and acetonitrile improve performance of all surfactants to near similar levels as well as enhance trypsin specificity to >90%, which has critical implications for future quantitative and qualitative proteomic studies. PMID:24392666

  5. Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs.

    PubMed

    Brogan, Alex P S; Hallett, Jason P

    2016-04-01

    Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems. PMID:26976718

  6. Capillary electromigration separation of proteins and microorganisms dynamically modified by chromophoric nonionogenic surfactant.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Kahle, Vladislav; Moravcová, Dana; Slais, Karel

    2009-08-15

    A chromophoric nonionogenic surfactant poly(ethylene glycol) 3-(2-hydroxy-5-n-octylphenylazo)-benzoate, HOPAB, has been prepared and used as a buffer additive for a dynamic modification of proteins and/or microorganisms including Escherichia coli , Staphylococcus epidermidis (biofilm-positive and biofilm-negative), and the strains of yeast cells Candida albicans and Candida parapsilosis (biofilm-positive and biofilm-negative) during a capillary electrophoresis and a capillary isoelectric focusing (CIEF) with UV detection at 326 nm. Values of isoelectric points of labeled proteins and microorganisms have been calculated using UV-detectable pI markers and have been found comparable with pI of the native compounds. Minimum detectable amount has been assessed lower than picograms of proteins and lower than a hundred cells injected into a separation capillary. The introduced labeling method facilitates CIEF separation of microorganisms from the clinical sample of the infected urine at their clinically important levels in the pH gradient pH range of 2-5 and their subsequent cultivation. At the same time, it has enabled the determination of albumin in human urine as a major clinical marker of urinary tract infections and kidney diseases. PMID:19627124

  7. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin.

    PubMed

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E

    2011-05-01

    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. PMID:21440683

  8. Surfactant protein A modulates the inflammatory response in macrophages during tuberculosis.

    PubMed

    Gold, Jeffrey A; Hoshino, Yoshihiko; Tanaka, Naohiko; Rom, William N; Raju, Bindu; Condos, Rany; Weiden, Michael D

    2004-02-01

    Tuberculosis leads to immune activation and increased human immunodeficiency virus type 1 (HIV-1) replication in the lung. However, in vitro models of mycobacterial infection of human macrophages do not fully reproduce these in vivo observations, suggesting that there are additional host factors. Surfactant protein A (SP-A) is an important mediator of innate immunity in the lung. SP-A levels were assayed in the human lung by using bronchoalveolar lavage (BAL). There was a threefold reduction in SP-A levels during tuberculosis only in the radiographically involved lung segments, and the levels returned to normal after 1 month of treatment. The SP-A levels were inversely correlated with the percentage of neutrophils in BAL fluid, suggesting that low SP-A levels were associated with increased inflammation in the lung. Differentiated THP-1 macrophages were used to test the effect of decreasing SP-A levels on immune function. In the absence of infection with Mycobacterium tuberculosis, SP-A at doses ranging from 5 to 0.01 micro g/ml inhibited both interleukin-6 (IL-6) production and HIV-1 long terminal repeat (LTR) activity. In macrophages infected with M. tuberculosis, SP-A augmented both IL-6 production and HIV-1 LTR activity. To better understand the effect of SP-A, we measured expression of CAAT/enhancer binding protein beta (C/EBPbeta), a transcription factor central to the regulation of IL-6 and the HIV-1 LTR. In macrophages infected with M. tuberculosis, SP-A reduced expression of a dominant negative isoform of C/EBPbeta. These data suggest that SP-A has pleiotropic effects even at the low concentrations found in tuberculosis patients. This protein augments inflammation in the presence of infection and inhibits inflammation in uninfected macrophages, protecting uninvolved lung segments from the deleterious effects of inflammation. PMID:14742504

  9. Evaluation of sucrose esters as alternative surfactants in microencapsulation of proteins by the solvent evaporation method.

    PubMed

    Youan, Bi-Botti C; Hussain, Alamdar; Nguyen, Nga T

    2003-01-01

    Sucrose esters (SE) are surfactants with potential pharmaceutical applications because of their low toxicity, biocompatibility, and excellent biodegradability. The objective of the study was to investigate SE as alternative surfactants in stabilizing emulsions for the preparation of protein-loaded microparticles. To achieve this goal, using bovine serum albumin as model protein and 75/25 poly(d,l-lactide-co-glycolide) as polymer carrier, we have investigated the influence of the following formulation variables on particle characteristics: (1) SE concentration from 0.01% to 1% (wt/vol), (2) hydrophile-lipophile balance (HLB) value of SE from 6 to 15, and (3) the nature of emulsion stabilizer. The formulations were characterized using ATR-FTIR spectroscopy, bicinchoninic acid protein assay, optical microscopy and SDS-PAGE. Results showed that at 0.05% (wt/vol) surfactant concentration, SE with HLB of 6 to 15 provided discrete and spherical microparticles with the highest encapsulation efficiency compared with controls polyvinyl alcohol (PVA) and poloxamer 188. These results may be explained by the difference in critical micelle concentration, diffusion, and partition coefficient among the tested surfactants. HLB values were consistent with SE spectral data. The protein molecular weight was preserved after the encapsulation process. The effective SE concentration was far less (20- to 200-fold) than that is usually required for PVA in microencapsulation of proteins. However, the encapsulation efficiency was relatively lower (approximately 13.5%). These preliminary results suggest that it may be desirable to optimize such formulations in vitro and in vivo for SE to be eventually used as alternative surfactants in the development of microparticulate systems for parenteral delivery of protein and gene medicines. PMID:12866947

  10. Binding sites for interaction of peroxiredoxin 6 with surfactant protein A.

    PubMed

    Krishnaiah, Saikumari Y; Dodia, Chandra; Sorokina, Elena M; Li, Haitao; Feinstein, Sheldon I; Fisher, Aron B

    2016-04-01

    Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase and phospholipase A2 (PLA2) activities. This protein participates in the degradation and remodeling of internalized dipalmitoylphosphatidylcholine (DPPC), the major phospholipid component of lung surfactant. We have shown previously that the PLA2 activity of Prdx6 is inhibited by the lung surfactant-associated protein called surfactant protein A (SP-A) through direct protein-protein interaction. Docking of SPA and Prdx6 was modeled using the ZDOCK (zlab.bu.edu) program in order to predict molecular sites for binding of the two proteins. The predicted peptide sequences were evaluated for binding to the opposite protein using isothermal titration calorimetry and circular dichroism measurement followed by determination of the effect of the SP-A peptide on the PLA2 activity of Prdx6. The sequences 195EEEAKKLFPK204.in the Prdx6 helix and 83DEELQTELYEIKHQIL99 in SP-A were identified as the sites for hydrophobic interaction and H(+)-bonding between the 2 proteins. Treatment of mouse endothelial cells with the SP-A peptide inhibited their recovery from lipid peroxidation associated with oxidative stress indicating inhibition of Prdx6 activity by the peptide in the intact cell. PMID:26723227

  11. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation.

    PubMed

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2012-02-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  12. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice.

    PubMed

    Glasser, Stephan W; Maxfield, Melissa D; Ruetschilling, Teah L; Akinbi, Henry T; Baatz, John E; Kitzmiller, Joseph A; Page, Kristen; Xu, Yan; Bao, Erik L; Korfhagen, Thomas R

    2013-11-01

    Pulmonary surfactant protein-C (SP-C) gene-targeted mice (Sftpc(-/-)) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc(+/+) and Sftpc(-/-) mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc(-/-) mice at 3 and 5 days after the final dose. Compared with Sftpc(+/+)mice, inflammatory injury persisted in the lungs of Sftpc(-/-) mice 30 days after the final LPS challenge. Sftpc(-/-) mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc(-/-) type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc(+/+) cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C-containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation. PMID:23795648

  13. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus

    PubMed Central

    Kebaabetswe, Lemme P.; Haick, Anoria K.; Gritsenko, Marina A.; Fillmore, Thomas L.; Chu, Rosalie K.; Purvine, Samuel O.; Webb-Robertson, Bobbie-Jo; Matzke, Melissa M.; Smith, Richard D.; Waters, Katrina M.; Metz, Thomas O.; Miura, Tanya A.

    2015-01-01

    Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity. PMID:25965799

  14. Surfactant Protein A Enhances Constitutive Immune Functions of Clathrin Heavy Chain and Clathrin Adaptor Protein 2.

    PubMed

    Moulakakis, Christina; Steinhäuser, Christine; Biedziak, Dominika; Freundt, Katja; Reiling, Norbert; Stamme, Cordula

    2016-07-01

    NF-κB transcription factors are key regulators of pulmonary inflammatory disorders and repair. Constitutive lung cell type- and microenvironment-specific NF-κB/inhibitor κBα (IκB-α) regulation, however, is poorly understood. Surfactant protein (SP)-A provides both a critical homeostatic and lung defense control, in part by immune instruction of alveolar macrophages (AMs) via clathrin-mediated endocytosis. The central endocytic proteins, clathrin heavy chain (CHC) and the clathrin adaptor protein (AP) complex AP2, have pivotal alternative roles in cellular homeostasis that are endocytosis independent. Here, we dissect endocytic from alternative functions of CHC, the α-subunit of AP2, and dynamin in basal and SP-A-modified LPS signaling of macrophages. As revealed by pharmacological inhibition and RNA interference in primary AMs and RAW264.7 macrophages, respectively, CHC and α-adaptin, but not dynamin, prevent IκB-α degradation and TNF-α release, independent of their canonical role in membrane trafficking. Kinetics studies employing confocal microscopy, Western analysis, and immunomagnetic sorting revealed that SP-A transiently enhances the basal protein expression of CHC and α-adaptin, depending on early activation of protein kinase CK2 (former casein kinase II) and Akt1 in primary AMs from rats, SP-A(+/+), and SP-A(-/-) mice, as well as in vivo when intratracheally administered to SP-A(+/+) mice. Constitutive immunomodulation by SP-A, but not SP-A-mediated inhibition of LPS-induced NF-κB activity and TNF-α release, requires CHC, α-adaptin, and dynamin. Our data demonstrate that endocytic proteins constitutively restrict NF-κB activity in macrophages and provide evidence that SP-A enhances the immune regulatory capacity of these proteins, revealing a previously unknown pathway of microenvironment-specific NF-κB regulation in the lung. PMID:26771574

  15. Protein-nanoparticle interactions evaluation by immunomethods: Surfactants can disturb quantitative determinations.

    PubMed

    Fornaguera, Cristina; Calderó, Gabriela; Solans, Conxita; Vauthier, Christine

    2015-08-01

    The adsorption of proteins on nanoparticle surface is one of the first events that occur when nanoparticles enter in the blood stream, which influences nanoparticles lifetime and further biodistribution. Albumin, which is the most abundant protein in serum and which has been deeply characterized, is an interesting model protein to investigate nanoparticle-protein interactions. Therefore, the interaction of nanoparticles with serum albumin has been widely studied. Immunomethods were suggested for the investigation of adsorption isotherms because of their ease to quantify the non-adsorbed bovine serum albumin without the need of applying separation methods that could modify the balance between the adsorbed and non-adsorbed proteins. The present work revealed that this method should be applied with caution. Artifacts in the determination of free protein can be generated by the presence of surfactants such as polysorbate 80, widely used in the pharmaceutical and biomedical field, that are needed to preserve the stability of nanoparticle dispersions. It was shown that the presence of traces of polysorbate 80 in the dispersion leads to an overestimation of the amount of bovine serum albumin remaining free in the dispersion medium when determined by both radial immunodiffusion and rocket immunoelectrophoresis. However, traces of poloxamer 188 did not result in clear perturbed migrations. These methods are not appropriate to perform adsorption isotherms of proteins on nanoparticle dispersions containing traces of remaining free surfactant. They should only be applied on dispersions that are free of surfactant that is not associated with nanoparticles. PMID:26070388

  16. Interaction of Moringa oleifera seed protein with a mineral surface and the influence of surfactants.

    PubMed

    Kwaambwa, Habauka M; Hellsing, Maja S; Rennie, Adrian R; Barker, Robert

    2015-06-15

    The paper describes the adsorption of purified protein from seeds of Moringa oleifera to a sapphire interface and the effects of addition of the anionic surfactant sodium dodecylsulfate (SDS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB). Neutron reflection was used to determine the structure and composition of interfacial layers adsorbed at the solid/solution interface. The maximum surface excess of protein was found to be about 5.3 mg m(-2). The protein does not desorb from the solid/liquid interface when rinsed with water. Addition of SDS increases the reflectivity indicating co-adsorption. It was observed that CTAB is able to remove the protein from the interface. The distinct differences to the behavior observed previously for the protein at the silica/water interface are identified. The adsorption of the protein to alumina in addition to other surfaces has shown why it is an effective flocculating agent for the range of impurities found in water supplies. The ability to tailor different surface layers in combination with various surfactants also offers the potential for adsorbed protein to be used in separation technologies. PMID:25746187

  17. Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Siddiq, Mohammad

    2013-09-01

    This manuscript reports physicochemical behavior of an antimalarial drug Quinacrine 2HCl (QUN) drug as well as its interaction with surfactant and Human Serum Albumin (HSA). Surface tension and specific conductivity were employed to detect the critical micelle concentration (CMC) and thus its surface and thermodynamic parameters were calculated. Solublization of this drug within micelles of anionic surfactant sodium dodecyl sulfate (SDS) has also been studied. UV/Visible spectroscopy was used to calculate partition coefficient (Kx), free energy of partition and number of drug molecules per micelle. The complexation of drug with HSA at physiological conditions (pH 7.4) has been analyzed by using UV/Visible and fluorescence spectroscopy. In this way the values of drug-protein binding constant, number of binding sites and free energy of binding were calculated.

  18. Separation of proteins and peptides by capillary electrophoresis in acid buffers containing high concentrations of surfactants.

    PubMed

    Miksík, I; Deyl, Z

    1999-08-01

    Separations of proteins at acid pH in the presence of a high concentration of surfactant [sodium laurylsulfate (SDS), 50 mmol/l] was investigated. The purpose of using high concentrations of SDS as background electrolyte modifier was threefold: First, the surfactant exerts a washing effect upon the capillary wall thus preventing binding of analytes and possible clogging of the capillary. Second, it was revealed that even under very acid conditions (below pH 3) the surfactant is capable of forming associates with protein analytes which still bear considerable negative charge and can be separated on this basis. Third, the system can be applied not only for protein mixtures sufficiently soluble in neutral to alkaline media (leukocyte lysates, standard proteins), but it can be used also with proteins, that are under such conditions virtually insoluble and their solubilization is possible in acid buffers only (eggshell proteins or collagen CNBr fragments). The result was that adsorption to the capillary wall was minimized and the analytes were separated as negatively charged associates with high efficiency. With collagen fragments partition was possible on the affinity differences of the peptides to the surfactant micelles and inner wall of the capillary. Theoretical plate counts approaching 100,000 were easily achieved even with proteins which under the more conventional operation conditions exhibit considerable sticking to the capillary wall. The other feature of this system is that the associates move very rapidly to the anode. Owing to the low pH, endoosmotic flow is negligible, and therefore the system has to be operated at reversed polarity. PMID:10480258

  19. Crystal Structure of Trimeric Carbohydrate Recognition and Neck Domains of Surfactant Protein A

    SciTech Connect

    Head,J.; Mealy, T.; McCormack, F.; Seaton, B.

    2003-01-01

    Surfactant protein A (SP-A), one of four proteins associated with pulmonary surfactant, binds with high affinity to alveolar phospholipid membranes, positioning the protein at the first line of defense against inhaled pathogens. SP-A exhibits both calcium-dependent carbohydrate binding, a characteristic of the collectin family, and specific interactions with lipid membrane components. The crystal structure of the trimeric carbohydrate recognition domain and neck domain of SP-A was solved to 2.1-{angstrom} resolution with multiwavelength anomalous dispersion phasing from samarium. Two metalbinding sites were identified, one in the highly conserved lectin site and the other 8.5 {angstrom} away. The interdomain carbohydrate recognition domain-neck angle is significantly less in SP-A than in the homologous collectins, surfactant protein D, and mannose-binding protein. This conformational difference may endow the SP-A trimer with a more extensive hydrophobic surface capable of binding lipophilic membrane components. The appearance of this surface suggests a putative binding region for membrane-derived SP-A ligands such as phosphatidylcholine and lipid A, the endotoxic lipid component of bacterial lipopolysaccharide that mediates the potentially lethal effects of Gram-negative bacterial infection.

  20. Mutant surfactant A2 proteins associated with familial pulmonary fibrosis and lung cancer induce TGF-β1 secretion

    PubMed Central

    Maitra, Meenakshi; Cano, Christopher A.; Garcia, Christine Kim

    2012-01-01

    Mutations in the genes encoding the lung surfactant proteins are found in patients with interstitial lung disease and lung cancer, but their pathologic mechanism is poorly understood. Here we show that bronchoalveolar lavage fluid from humans heterozygous for a missense mutation in the gene encoding surfactant protein (SP)-A2 (SFTPA2) contains more TGF-β1 than control samples. Expression of mutant SP-A2 in lung epithelial cells leads to secretion of latent TGF-β1, which is capable of autocrine and paracrine signaling. TGF-β1 secretion is not observed in lung epithelial cells expressing the common SP-A2 variants or other misfolded proteins capable of increasing cellular endoplasmic reticulum stress. Activation of the unfolded protein response is necessary for maximal TGF-β1 secretion because gene silencing of the unfolded protein response transducers leads to an ∼50% decrease in mutant SP-A2–mediated TGF-β1 secretion. Expression of the mutant SP-A2 proteins leads to the coordinated increase in gene expression of TGF-β1 and two TGF-β1–binding proteins, LTBP-1 and LTBP-4; expression of the latter is necessary for secretion of this cytokine. Inhibition of the TGF-β autocrine positive feedback loop by a pan–TGF-β–neutralizing antibody, a TGF-β receptor antagonist, or LTBP gene silencing results in the reversal of TGF-β–mediated epithelial-to-mesenchymal transition and cell death. Because secretion of latent TGF-β1 is induced specifically by mutant SP-A2 proteins, therapeutics targeted to block this pathway may be especially beneficial for this molecularly defined subgroup of patients. PMID:23223528

  1. Capillary electrophoretic focusing of covalently derivatized protein induced by surfactant.

    PubMed

    Oukacine, Farid; Quirino, Joselito P; Mesbah, Kiarach; Taverna, Myriam

    2016-05-01

    In this communication, we present a very simple strategy to focus covalently derivatized proteins for high sensitivity CE analysis by LIF detection. We demonstrated that the covalently tagged protein can be focused just by adding SDS at a concentration above the CMC in the derivatized sample. Under specific injection conditions, SDS concentration below the CMC is also sufficient to induce the focusing of the tagged protein. This method allows the quantification and detection of the covalently tagged protein in a narrow zone with an efficiency approaching 220 000 plates/m. Very good linearity was obtained for the ubiquitin in a concentration range of 2-25 μM. PMID:26940436

  2. Recognition of Heptoses and the Inner Core of Bacterial Lipopolysaccharides by Surfactant Protein D

    SciTech Connect

    Wang,H.; Head, J.; Kosma, P.; Brade, H.; Muller-Loennies, S.; Sheikh, S.; McDonald, B.; Smith, K.; Cafarella, T.; et al

    2008-01-01

    Lipopolysaccharides (LPS) of Gram-negative bacteria are important mediators of bacterial virulence that can elicit potent endotoxic effects. Surfactant protein D (SP-D) shows specific interactions with LPS, both in vitro and in vivo. These interactions involve binding of the carbohydrate recognition domain (CRD) to LPS oligosaccharides (OS); however, little is known about the mechanisms of LPS recognition. Recombinant neck+CRDs (NCRDs) provide an opportunity to directly correlate binding interactions with a crystallographic analysis of the binding mechanism. In these studies, we examined the interactions of wild-type and mutant trimeric NCRDs with rough LPS (R-LPS). Although rat NCRDs bound more efficiently than human NCRDs to Escherichia coli J-5 LPS, both proteins exhibited efficient binding to solid-phase Rd2-LPS and to Rd2-LPS aggregates presented in the solution phase. Involvement of residues flanking calcium at the sugar binding site was demonstrated by reciprocal exchange of lysine and arginine at position 343 of rat and human CRDs. The lectin activity of hNCRDs was inhibited by specific heptoses, including l-glycero-{alpha}-d-manno-heptose (l, d-heptose), but not by 3-deoxy-{alpha}-d-manno-oct-2-ulosonic acid (Kdo). Crystallographic analysis of the hNCRD demonstrated a novel binding orientation for l, d-heptose, involving the hydroxyl groups of the side chain. Similar binding was observed for a synthetic {alpha}1{yields}3-linked heptose disaccharide corresponding to heptoses I and II of the inner core region in many LPS. 7-O-Carbamoyl-l, d-heptose and d-glycero-{alpha}-d-manno-heptose were bound via ring hydroxyl groups. Interactions with the side chain of inner core heptoses provide a potential mechanism for the recognition of diverse types of LPS by SP-D.

  3. DNA Methylation Profile and Expression of Surfactant Protein A2 gene in Lung Cancer

    PubMed Central

    Grageda, Melissa; Silveyra, Patricia; Thomas, Neal J.; DiAngelo, Susan L.; Floros, Joanna

    2014-01-01

    Knowledge of the methylation profile of genes allow for the identification of biomarkers that may guide diagnosis and effective treatment of disease. Human surfactant protein A (SP-A) plays an important role in lung homeostasis and immunity, and is encoded by two genes (SFTPA1 and SFTPA2). The goal of this study was to identify differentially methylated CpG sites in the promoter region of the SFTPA2 gene in lung cancer tissue, and to determine the correlation between the promoter’s methylation profile and gene expression. For this, we collected 28 pairs of cancerous human lung tissue and adjacent non-cancerous (NC) lung tissue: 17 adenocarcinoma (AC), 9 squamous cell carcinoma (SCC), and 2 AC with SCC features, and we evaluated DNA methylation of the SFTPA2 promoter region by bisulfite conversion. Our results identified a higher methylation ratio in one CpG site of the SFTPA2 gene in cancerous tissue vs. NC tissue (0.36 vs. 0.11, p=0.001). When assessing AC samples, we also found cancerous tissues associated with a higher methylation ratio (0.43 vs. 0.10, p=0.02). In the SCC group, although cancerous tissue showed a higher methylation ratio (0.22 vs. 0.11), this difference was not statistically significant (p=0.35). Expression of SFTPA2 mRNA and total SP-A protein was significantly lower in cancer tissue when compared to adjacent NC tissue (p<0.001), and correlated with the hypermethylated status of a SFTPA2 CpG site in AC samples. The findings of this pilot study may hold promise for future use of SFTPA2 as a biomarker for the diagnosis of lung cancer. PMID:25514367

  4. A ToF-SIMS study of the lateral organization of lipids and proteins in pulmonary surfactant systems.

    PubMed

    Keating, Eleonora; Waring, Alan J; Walther, Frans J; Possmayer, Fred; Veldhuizen, Ruud A W; Petersen, Nils O

    2011-03-01

    Pulmonary surfactant is a complex lipid-protein mixture whose main function is to reduce the surface tension at the air-liquid interface of alveoli to minimize the work of breathing. The exact mechanism by which surfactant monolayers and multilayers are formed and how they lower surface tension to very low values during lateral compression remains uncertain. We used time-of-flight secondary ion mass spectrometry to study the lateral organization of lipids and peptide in surfactant preparations ranging in complexity. We show that we can successfully determine the location of phospholipids, cholesterol and a peptide in surfactant Langmuir-Blodgett films and we can determine the effect of cholesterol and peptide addition. A thorough understanding of the lateral organization of PS interfacial films will aid in our understanding of the role of each component as well as different lipid-lipid and lipid-protein interactions. This may further our understanding of pulmonary surfactant function. PMID:21110942

  5. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs. PMID:27182651

  6. Photoreversible conformational changes in membrane proteins using light-responsive surfactants.

    PubMed

    Zhang, Jing; Wang, Shao-Chun; Lee, C Ted

    2009-06-25

    Photoreversible control of the conformation of bacteriorhodopsin in the presence of a light-responsive surfactant is demonstrated through combined UV-vis, FT-IR, and (31)P NMR spectroscopy and dynamic light scattering (DLS) measurements. The azobenzene-based surfactant photoisomerizes upon 434 nm visible (trans, relatively hydrophobic) and 350 nm UV (cis, relatively hydrophilic) illumination, allowing surfactant micellization to be reversibly controlled. This leads to partitioning of the membrane protein into micelles in the unfolded state under visible light, while UV light leads to solubilization of the protein within purple membrane bilayers in the folded state. A three-stage model of purple membrane-photosurfactant interactions is examined through NMR and DLS measurements. Phototriggered unfolding of bacteriorhodopsin, occurring through alpha(II) --> alpha(I) and reverse beta-turn --> extended beta-strand transitions, requires approximately 20 s for completion, while light-induced refolding requires a somewhat longer 80 s as the membrane protein repartitions into the reformed bilayer membrane. Each of these conformational changes can be precisely and reversibly controlled with simple light illumination, providing a novel technique to probe membrane protein folding. PMID:19485396

  7. Lipid Specificity of Surfactant Protein B Studied by Time-of-Flight Secondary Ion Mass Spectrometry

    PubMed Central

    Breitenstein, D.; Batenburg, J. J.; Hagenhoff, B.; Galla, H.-J.

    2006-01-01

    One of the key functions of mammalian pulmonary surfactant is the reduction of surface tension to minimal values. To fulfill this function it is expected to become enriched in dipalmitoylphosphatidylcholine either on its way from the alveolar type II pneumocytes to the air/water interface of the lung or within the surface film during compression and expansion of the alveoli during the breathing cycle. One protein that may play a major role in this enrichment process is the surfactant protein B. The aim of this study was to identify the lipidic interaction partner of this protein. Time-of-flight secondary ion mass spectrometry was used to analyze the lateral distribution of the components in two SP-B-containing model systems. Either native or partly isotopically labeled lipids were analyzed. The results of both setups give strong indications that, at least under the specific conditions of the chosen model systems (e.g., concerning pH and lipid composition), the lipid interacting with surfactant protein B is not phosphatidylglycerol as generally accepted, but dipalmitoylphosphatidylcholine instead. PMID:16632503

  8. Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling.

    PubMed

    Hasegawa, Y; Takahashi, M; Ariki, S; Asakawa, D; Tajiri, M; Wada, Y; Yamaguchi, Y; Nishitani, C; Takamiya, R; Saito, A; Uehara, Y; Hashimoto, J; Kurimura, Y; Takahashi, H; Kuroki, Y

    2015-02-12

    Surfactant protein D (SP-D) is a member of the collectin family that has an important role in maintaining pulmonary homeostasis. In this study, we demonstrated that SP-D inhibited the proliferation, migration and invasion of A549 human lung adenocarcinoma cells. We found that SP-D suppressed epidermal growth factor (EGF) signaling in A549 cells, H441 human lung adenocarcinoma cells and human EGF receptor (EGFR) stable expression CHO-K1 cells. A binding study using (125)I-EGF demonstrated that SP-D downregulated the binding of EGF to EGFR. A ligand blot indicated that SP-D bound to EGFR, and a lectin blot suggested that EGFR in A549 cells had both high-mannose type and complex type N-glycans. We purified the recombinant extracellular domain of EGFR (soluble EGFR=soluble EGFR (sEGFR)), and demonstrated that SP-D directly bound to sEGFR in a Ca(2+)-dependent manner. The binding of SP-D to sEGFR was suppressed by EDTA, mannose or N-glycopeptidase F treatment. Mass spectrometric analysis indicated that N-glycans in domain III of EGFR were of a high-mannose type. These data suggest that SP-D reduces EGF binding to EGFR through the interaction between the carbohydrate recognition domain of SP-D and N-glycans of EGFR, and downregulates EGF signaling. Our finding suggests the novel type of regulation system of EGF signaling involving lectin-to-carbohydrate interaction and downregulation of ligand binding. PMID:24608429

  9. Expression of p53 protein, Jaagsiekte sheep retrovirus matrix protein, and surfactant protein in the lungs of sheep with pulmonary adenomatosis.

    PubMed

    İlhan, Fatma; Vural, Sevil A; Yıldırım, Serkan; Sözdutmaz, İbrahim; Alcigir, Mehmet E

    2016-05-01

    Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring cancer in sheep that is caused by the Jaagsiekte sheep retrovirus (JSRV). Because the pathologic and epidemiologic features of OPA are similar to those of bronchoalveolar carcinoma in humans, OPA is considered a useful animal model for pulmonary carcinogenesis. In this study, 3,512 lungs from various breeds of sheep were collected and macroscopically examined. OPA was identified in 30 sheep, and samples of these animals were further examined by histologic, immunohistochemical (p53 protein, surfactant protein A [SP-A], proliferating cell nuclear antigen [PCNA], JSRV matrix protein [MA]), and PCR methods. Papillary or acinar adenocarcinomas were detected microscopically in the affected areas. Immunoreactivity for p53 PAb240 was detected in 13 sheep, whereas p53 DO-1 was not detected in any of the OPA animals. PCNA immunoreactivity was recorded in 27 animals. SP-A and JSRV MA protein was immunopositive in all 30. JSRV proviral DNA was detected by PCR analysis in all of the lung samples collected from OPA animals. In addition, the pulmonary SP-A levels were increased in tumor cells. The results of this study suggest that PCNA and p53 protein expression may be useful indicators in monitoring malignancy of pulmonary tumors. PMID:27016721

  10. Functional importance of the NH2-terminal insertion sequence of lung surfactant protein B

    PubMed Central

    Frey, Shelli L.; Pocivavsek, Luka; Waring, Alan J.; Walther, Frans J.; Hernandez-Juviel, Jose M.; Ruchala, Piotr

    2010-01-01

    Lung surfactant protein B (SP-B) is required for proper surface activity of pulmonary surfactant. In model lung surfactant lipid systems composed of saturated and unsaturated lipids, the unsaturated lipids are removed from the film at high compression. It is thought that SP-B helps anchor these lipids closely to the monolayer in three-dimensional cylindrical structures termed “nanosilos” seen by atomic force microscopy imaging of deposited monolayers at high surface pressures. Here we explore the role of the SP-B NH2 terminus in the formation and stability of these cylindrical structures, specifically the distribution of lipid stack height, width, and density with four SP-B truncation peptides: SP-B 1–25, SP-B 9–25, SP-B 11–25, and SP-B 1–25Nflex (prolines 2 and 4 substituted with alanine). The first nine amino acids, termed the insertion sequence and the interface seeking tryptophan residue 9, are shown to stabilize the formation of nanosilos while an increase in the insertion sequence flexibility (SP-B 1–25Nflex) may improve peptide functionality. This provides a functional understanding of the insertion sequence beyond anchoring the protein to the two-dimensional membrane lining the lung, as it also stabilizes formation of nanosilos, creating reversible repositories for fluid lipids at high compression. In lavaged, surfactant-deficient rats, instillation of a mixture of SP-B 1–25 (as a monomer or dimer) and synthetic lung lavage lipids quickly improved oxygenation and dynamic compliance, whereas SP-B 11–25 surfactants showed oxygenation and dynamic compliance values similar to that of lipids alone, demonstrating a positive correlation between formation of stable, but reversible, nanosilos and in vivo efficacy. PMID:20023175

  11. Multilayer structures in lipid monolayer films containing surfactant protein C: effects of cholesterol and POPE.

    PubMed

    Malcharek, Stefan; Hinz, Andreas; Hilterhaus, Lutz; Galla, Hans-Joachim

    2005-04-01

    The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased compressibility at medium surface pressure (10-30 mN/m). An increasing amount of liquid-expanded domains can be visualized by means of fluorescence light microscopy in lung surfactant monolayers after addition of either cholesterol or POPE. At surface pressures of 50 mN/m, protrusions are formed which differ in size and shape as a function of the content of cholesterol or POPE, but only if SP-C is present. Low amounts of cholesterol (10 mol %) lead to an increasing number of protrusions, which also grow in size. This is interpreted as a stabilizing effect of cholesterol on bilayers formed underneath the monolayer. Extreme amounts of cholesterol (30 mol %), however, cause an increased monolayer rigidity, thus preventing reversible multilayer formation. In contrast, POPE, as a nonbilayer lipid thought to stabilize the edges of protrusions, leads to more narrow protrusions. The lateral extension of the protrusions is thereby more influenced than their height. PMID:15653721

  12. Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging.

    PubMed

    Pugnaloni, Luis A; Dickinson, Eric; Ettelaie, Rammile; Mackie, Alan R; Wilde, Peter J

    2004-01-30

    Proteins and low-molecular-weight (LMW) surfactants are used in the food industry as emulsifying (and foaming) ingredients and as stabilizers. These attributes are related to their ability to adsorb at fluid-fluid (and gas-fluid) interfaces lowering the interfacial (and surface) tension of liquids. Hence, the study of the properties of adsorbed layers of these molecules can be expected to lead to a better understanding of their effect on food products. Direct proof of the validity of mesoscopic models of systems of proteins and LMW surfactants can only be achieved by quantitative theoretical predictions being tested against both macroscopic and mesoscopic experiments. Computer simulation constitutes one of the few available tools to predict mathematically the behaviour of models of realistic complexity. Furthermore, experimental techniques such as atomic force microscopy (AFM) now allow high resolution imaging of these systems, providing the mesoscopic scale measurements to compare with the simulations. In this review, we bring together a number of related findings that have been generated at this mesoscopic level over the past few years. A useful simple model consisting of spherical particles interacting via bonded and unbonded forces is described, and the derived computer simulation results are compared against those from the imaging experiments. Special attention is paid to the adsorption of binary mixtures of proteins, mixtures of LMW surfactants, and also protein+surfactant mixed systems. We believe that further development of these mathematically well-defined physical models is necessary in order to achieve a proper understanding of the key physico-chemical processes involved. PMID:14962406

  13. Resonance assignments for latherin, a natural surfactant protein from horse sweat.

    PubMed

    Vance, Steven J; McDonald, Rhona E; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O

    2014-04-01

    Latherin is an intrinsically surfactant protein of ~23 kDa found in the sweat and saliva of horses. Its function is probably to enhance the translocation of sweat water from the skin to the surface of the pelt for evaporative cooling. Its role in saliva may be to enhance the wetting, softening and maceration of the dry, fibrous food for which equines are adapted. Latherin is unusual in its relatively high content of aliphatic amino acids (~25% leucines) that might contribute to its surfactant properties. Latherin is related to the palate, lung, and nasal epithelium carcinoma-associated proteins (PLUNCs) of mammals, at least one of which is now known to exhibit similar surfactant activity to latherin. No structures of any PLUNC protein are currently available. (15)N,(13)C-labelled recombinant latherin was produced in Escherichia coli, and essentially all of the resonances were assigned despite the signal overlap due to the preponderance of leucines. The most notable exceptions include a number of residues located in an apparently dynamic loop region between residues 145 and 154. The assignments have been deposited with BMRB accession number 19067. PMID:23708874

  14. Surfactant protein D in serum from patients with allergic bronchopulmonary aspergillosis.

    PubMed

    Krane, M; Griese, M

    2003-10-01

    Surfactant protein D (SP-D) interacts with Aspergillus fumigatus and is strongly increased in the lavage from animals with acute allergic reactions to the fungus, suggesting a central role for SP-D. As the course of cystic fibrosis (CF) is often complicated by an allergic bronchopulmonary aspergillosis (ABPA), the authors hypothesised that SP-D may also be increased in serum during an ABPA, potentially assisting in its diagnosis and follow-up. In 22 patients with CF (11 with ABPA, 11 matched without ABPA) and 19 control patients without a pulmonary disease, SP-D concentrations in serum were assessed by an enzyme immunoassay. Serum SP-D in CF patients (130 +/- 16 ng x mL(-1) (mean +/- SEM)) was significantly higher than in the controls without lung disease (66 +/- 8 ng x mL(-1)). During the whole ABPA-episode, SP-D level did not change significantly, despite large changes of total serum immunoglobulin E. There was a clear negative correlation between SP-D concentration and overall lung function, i.e. forced expiratory volume in one second and forced vital capacity. Serum level of surfactant protein D may be of value to follow pulmonary function and lung injury in cystic fibrosis patients. Surfactant protein D serum levels are not helpful for the diagnosis and follow-up of an allergic bronchopulmonary aspergillosis episode, contrary to what was expected from animal experiments. PMID:14582909

  15. Surfactant Protein D Interacts with α2-Macroglobulin and Increases Its Innate Immune Potential*

    PubMed Central

    Craig-Barnes, Hayley A.; Doumouras, Barbara S.; Palaniyar, Nades

    2010-01-01

    Surfactant protein D (SP-D) is an innate immune collectin that recognizes microbes via its carbohydrate recognition domains, agglutinates bacteria, and forms immune complexes. During microbial infections, proteases, such as elastases, cleave the carbohydrate recognition domains and can inactivate the innate immune functions of SP-D. Host responses to counterbalance the reduction of SP-D-mediated innate immune response under these conditions are not clearly understood. We have unexpectedly identified that SP-D could interact with protein fractions containing ovomucin and ovomacroglobulin. Here, we show that SP-D interacts with human α2-macroglobulin (A2M), a protease inhibitor present in the lungs and serum. Using enzyme-linked immunosorbent assays, surface plasmon resonance, and carbohydrate competition assays, we show that SP-D interacts with A2M both in solid phase (KD of 7.33 nm) and in solution via lectin-carbohydrate interactions under physiological calcium conditions. Bacterial agglutination assays further show that SP-D·A2M complexes increase the ability of SP-D to agglutinate bacteria. Western blot analyses show that SP-D, but not A2M, avidly binds bacteria. Interestingly, intact and activated A2M also protect SP-D against elastase-mediated degradation, and the cleaved A2M still interacts with SP-D and is able to enhance its agglutination abilities. We also found that SP-D and A2M can interact with each other in the airway-lining fluid. Therefore, we propose that SP-D utilizes a novel mechanism in which the collectin interacts with protease inhibitor A2M to decrease its degradation and to concurrently increase its innate immune function. These interactions particularly enhance bacterial agglutination and immune complex formation. PMID:20207732

  16. A new model for assessing the damaging effects of soaps and surfactants on human stratum corneum.

    PubMed

    Shukuwa, T; Kligman, A M; Stoudemayer, T J

    1997-01-01

    To elucidate the damage to the horny layers of human skin produced by surfactants and soaps, we evaluated the cytological alterations of corneocytes using an in vitro assay. Suction blisters, 8 mm in diameter, were raised on the forearms of young adult Caucasoids. The roofs were cut off and the viable epidermis was removed. The discs of stratum corneum were then agitated for up to 6 h at 60 degrees C in 1% solution of five soap bars of differing irritancy. Additionally, individual examples of anionic, cationic and nonionic surfactants were similarly evaluated. Measurements of corneocytes included: (1) the number released with time (disaggregation), (2) size (swelling) and (3) morphologic degradation. The effects of the cationic and non-ionic surfactants did not differ significantly from those of distilled water. The anionic surfactant caused more release and less swelling and morphological change. The test soaps had vastly different effects on the structural integrity of the stratum corneum. The harsher ones caused greater disaggregation, more swelling and greater morphologic deterioration of corneocytes, whereas the milder ones had less marked effects on these parameters. This model would be a useful screening technique for formulating milder soaps and might also provide insights into the complex modes of action of surfactants on the stratum corneum. PMID:9059673

  17. Surface properties and sensitivity to protein-inhibition of a recombinant apoprotein C-based phospholipid mixture in vitro--comparison to natural surfactant.

    PubMed

    Seeger, W; Thede, C; Günther, A; Grube, C

    1991-01-01

    Surfactant alterations due to protein leakage are implicated in the pathogenesis of the adult respiratory distress syndrome. In the present study, surface properties of a palmitic acid containing phospholipid mixture (DPPC: PG: PA/68.5:22.5:9) supplemented with 2% recombinant human surfactant apoprotein C (PLM-Crec) were compared to those of the lipids alone (PLM) and to those of calf lung surfactant extract (CLSE). Experiments were performed in a Wilhelmy balance and in a pulsating bubble surfactometer. Adsorption facilities and dynamic surface tension-lowering properties of the surfactants alone, their sensitivity to the inhibitory effect of fibrinogen (fbg), and their capacity to restore surface properties of fbg-inhibited CLSE were investigated. PLM revealed limited surface activity, was very sensitive to inhibition by fbg and had moderate effect on the surface properties of fbg-inhibited CLSE. In contrast, PLM-Crec and CLSE revealed similar excellent adsorption kinetics and dynamic surface tension lowering properties. Higher percentage of SP-C within the synthetic mixture (up to 10%) or additional admixture of human purified or recombinant SP-A (up to 10%) did not further improve these surface properties. However, PLM-Crec was markedly more sensitive to inactivation by fbg than CLSE. The surface activity of fbg-inhibited CLSE was fully restored by additional admixture of CLSE or PLM-Crec in both the Wilhelmy and the bubble system, with slight superiority of the natural surfactant extract. We conclude that the surface properties of PLM-Crec are clearly superior to those of the apoprotein-free lipid mixture and are similar to those of the natural surfactant extract CLSE. PLM-Crec is markedly more sensitive to inhibition by fibrinogen than CLSE, but possesses nearly equivalent efficacy in restoring the surface properties of fbg-inhibited CLSE as compared to the natural material. PMID:1991155

  18. Surfactant protein B gene variations enhance susceptibility to squamous cell carcinoma of the lung in German patients

    PubMed Central

    Seifart, C; Seifart, U; Plagens, A; Wolf, M; von Wichert, P

    2002-01-01

    Genetic factors are thought to influence the risk for lung cancer. Since pulmonary surfactant mediates the response to inhaled carcinogenic substances, candidate genes may be among those coding for pulmonary surfactant proteins. In the present matched case–control study a polymorphism within intron 4 of the gene coding for surfactant specific protein B was analysed in 357 individuals. They were divided into 117 patients with lung cancer (40 patients with small cell lung cancer, 77 patients with non small cell lung cancer), matched controls and 123 healthy individuals. Surfactant protein B gene variants were analysed using specific PCR and cloned surfactant protein B sequences as controls. The frequency of the intron 4 variation was similar in both control groups (13.0% and 9.4%), whereas it was increased in the small cell lung cancer group (17.5%) and the non small cell lung cancer group (16.9%). The gene variation was found significantly more frequently in patients with squamous cell carcinoma (25.0%, P=0.016, odds ratio=3.2, 95%CI=1.24–8.28) than in the controls. These results indicate an association of the surfactant protein B intron 4 variants and/or its flanking loci with mechanisms that may enhance lung cancer susceptibility, especially to squamous cell carcinoma of the lung. British Journal of Cancer (2002) 37, 212–217. doi:10.1038/sj.bjc.6600353 www.bjcancer.com © 2002 Cancer Research UK PMID:12107845

  19. Effect of silk protein surfactant on silk degumming and its properties.

    PubMed

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. PMID:26117747

  20. Determination of Lipid-Protein Interactions in Lung Surfactants Using Computer Simulations and Structural Bioinformatics.

    NASA Astrophysics Data System (ADS)

    Kaznessis, Yiannis

    2001-06-01

    Proteins are the primary components of the networks that conduct the flows of mass, energy and information in living organisms. The discovery of the principles of protein structure and function allows the development of design rules for biological activities. The microscopic nature of the operating mechanisms of protein activity, and the vast complexity of the networks of interaction call for the employment of powerful computational methodologies that can decipher the physicochemical and evolutionary principles underlying protein structure and function. An example will be presented that reflects the strength of computational approaches. Atomistic molecular dynamics simulations and structural bioinformatics tools are employed to investigate the interactions between the first 25 N-terminal residues of surfactant protein B (SP-B 1-25) and the lipid components of the lung surfactant (LS). An understanding of the molecular level interactions between the LS components is essential for the establishment of design rules for the development of synthetic LS and the treatment of the neonatal respiratory distress syndrome, which results from deficiency or inactivation of LS.

  1. Structure of protein surfactant complexes as studied by small-angle neutron scattering and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Chodankar, S.; Aswal, V. K.; Hassan, P. A.; Wagh, A. G.

    2007-08-01

    The structure of protein-surfactant complexes of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS) and dynamic light scattering (DLS). SANS data indicate that addition of BSA to micellar surfactant solution leads to the formation of a complex that has a fractal structure. The fractal structure has been evaluated using a necklace model considering that the micelle-like aggregates are randomly distributed around the polypeptide chain. We have observed that the structure of protein-surfactant complex is independent of the size of micelles in their pure surfactant solutions. The SDS micelle size was varied using salts LiBr or/and NaBr, where SDS forms larger micelles in presence of NaBr than LiBr. The fractal dimension and the extent of the complex as well as the size and number of micelles attached to the complex have been determined. The micelle-like aggregates bound to protein in the complex are spherical with a much smaller aggregation number than those in pure surfactant solutions. DLS measurements support the above results on the protein-surfactant complexes as obtained using SANS.

  2. Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression.

    PubMed

    Das, Aparajita; Boggaram, Vijayakumar

    2007-01-01

    Surfactant proteins maintain lung function through their actions to reduce alveolar surface tension and control of innate immune responses in the lung. The ubiquitin proteasome pathway is responsible for the degradation of majority of intracellular proteins in eukaryotic cells, and proteasome dysfunction has been linked to the development of neurodegenerative, cardiac, and other diseases. Proteasome function is impaired in interstitial lung diseases associated with surfactant protein C (SP-C) mutation mapping to the BRICHOS domain located in the proSP-C protein. In this study we determined the effects of proteasome inhibition on surfactant protein expression in H441 and MLE-12 lung epithelial cells to understand the relationship between proteasome dysfunction and surfactant protein gene expression. Proteasome inhibitors lactacystin and MG132 reduced the levels of SP-A, SP-B, and SP-C mRNAs in a concentration-dependent manner in H441 and MLE-12 cells. In H441 cells, lactacystin and MG132 inhibition of SP-B mRNA was associated with similar decreases in SP-B protein, and the inhibition was due to inhibition of gene transcription. Proteasome inhibitors decreased thyroid transcription factor-1 (TTF-1)/Nkx2.1 DNA binding activity, and the reduced TTF-1 DNA binding activity was due to reduced expression levels of TTF-1 protein. These data indicated that the ubiquitin proteasome pathway is essential for the maintenance of surfactant protein gene expression and that disruption of this pathway inhibits surfactant protein gene expression via reduced expression of TTF-1 protein. PMID:16905641

  3. Patterns of neutrophil serine protease-dependent cleavage of surfactant protein D in inflammatory lung disease.

    PubMed

    Cooley, Jessica; McDonald, Barbara; Accurso, Frank J; Crouch, Erika C; Remold-O'Donnell, Eileen

    2008-04-01

    The manuscript presents definitive studies of surfactant protein D (SP-D) in the context of inflammatory lung fluids. The extent of SP-D depletion in bronchoalveolar lavage fluid (BALF) of children affected with cystic fibrosis (CF) is demonstrated to correlate best with the presence of the active neutrophil serine protease (NSP) elastase. Novel C-terminal SP-D fragments of 27 kDa and 11 kDa were identified in patient lavage fluid in addition to the previously described N-terminal, 35-kDa fragment by the use of isoelectrofocusing, modified blotting conditions, and region-specific antibodies. SP-D cleavage sites were identified. In vitro treatment of recombinant human SP-D dodecamers with NSPs replicated the fragmentation, but unexpectedly, the pattern of SP-D fragments generated by NSPs was dependent on calcium concentration. Whereas the 35- and 11-kDa fragments were generated when incubations were performed in low calcium (200 microM CaCl(2)), incubations in physiological calcium (2 mM) with higher amounts of elastase or proteinase-3 generated C-terminal 27, 21, and 14 kDa fragments, representing cleavage within the collagen and neck regions. Studies in which recombinant SP-D cleavage by individual NSPs was quantitatively evaluated under low and high calcium conditions showed that the most potent NSP for cleaving SP-D is elastase, followed by proteinase-3, followed by cathepsin G. These relative potency findings were considered in the context of other studies that showed that active NSPs in CF BALF are in the order: elastase, followed by cathepsin G, followed by proteinase-3. The findings support a pre-eminent role for neutrophil elastase as the critical protease responsible for SP-D depletion in inflammatory lung disease. PMID:18211966

  4. Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells.

    PubMed

    Pandit, Hrishikesh; Thakur, Gargi; Koippallil Gopalakrishnan, Aghila Rani; Dodagatta-Marri, Eswari; Patil, Anushree; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Activation of immune cells and increased serum SP-D is observed in a range of patho-physiological conditions including infections. We speculated if SP-D can modulate systemic immune response via direct interaction with activated PBMCs. In this study, we examined interaction of a recombinant fragment of human SP-D (rhSP-D) on PHA-activated PBMCs. We report a significant downregulation of activation receptors such as TLR2, TLR4, CD11c and CD69 upon rhSP-D treatment. rhSP-D inhibited production of Th1 (TNF-α and IFN-γ) and Th17 (IL-17A) cytokines along with IL-6. Interestingly, levels of IL-2, Th2 (IL-4) and regulatory (IL-10 and TGF-β) cytokines remained unaltered. Analysis of co-stimulatory CD28 and co-inhibitory CTLA4 receptors along with their ligands CD80 and CD86 revealed a selective up-regulation of CTLA4 in the lymphocyte subset. rhSP-D induced apoptosis in the activated but not in non-activated lymphocytes. Blockade of CTLA4 inhibited rhSP-D mediated apoptosis of activated lymphocytes, confirming involvement of CTLA4. We conclude that SP-D restores immune homeostasis. It regulates expression of immunomodulatory receptors and cytokines, which is followed by induction of apoptosis in activated lymphocytes. These findings suggest a critical role of SP-D in immune surveillance against activated immune cells. PMID:26563748

  5. Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro.

    PubMed

    Ito, Yoko; Ahmad, Aftab; Kewley, Emily; Mason, Robert J

    2011-11-01

    Alveolar type II (ATII) cells cultured at an air-liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley rats and cultured on inserts coated with a mixture of rat-tail collagen and Matrigel, in medium including 5% rat serum and 10 ng/ml keratinocyte growth factor, with their apical surfaces either exposed to air or submerged. The A/L interface condition maintained the expression of surfactant proteins, whereas that expression was down-regulated under the submerged condition, and the effect was rapid and reversible. Under submerged conditions, there was an increase in HIF1α and HIF2α in nuclear extracts, mRNA levels of HIF inducible genes, vascular endothelial growth factor, glucose transporter-1 (GLUT1), and the protein level of pyruvate dehydrogenase kinase isozyme-1. The expression of surfactant proteins was suppressed and GLUT1 mRNA levels were induced when cells were cultured with 1 mM dimethyloxalyl glycine. The expression of surfactant proteins was restored under submerged conditions with supplemented 60% oxygen. HIF signaling and oxygen tension at the surface of cells appears to be important in regulating the phenotype of rat ATII cells. PMID:21454802

  6. Role of surfactant protein A in non-infectious lung diseases.

    PubMed

    Goto, Hisatsugu; Mitsuhashi, Atsushi; Nishioka, Yasuhiko

    2014-01-01

    Surfactant protein A (SP-A) is a large multimeric protein found in the airways and alveoli of the lungs. SP-A is a member of the collectin family of proteins, characterized by NH2-terminal collagen-like regions and COOH-terminal lectin domains. Although other surfactant proteins such as SP-B function to reduce surface tension in the lungs, SP-A as well as SP-D regulates the pulmonary immune response. To date, a number of studies have shown the immunoregulatory function of SP-A, mainly in the field of infectious diseases. By binding to a wide variety of pathogens, SP-A opsonizes and enhances pathogen uptake by phagocytes. In addition to the effect on pathogens, recent studies have shown that SP-A also modulates lung immune system in the area of non-infectious lung diseases. In this review, the potential role of SP-A in the multiple aspects of pulmonary host defense will be discussed, focusing mainly on non-infectious lung diseases such as acute and chronic pulmonary fibrosis and lung cancer. J. Med. Invest. 61: 1-6, February, 2014. PMID:24705741

  7. Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2.

    PubMed

    Vance, Steven J; Desai, Vibhuti; Smith, Brian O; Kennedy, Malcolm W; Cooper, Alan

    2016-01-01

    C60 fullerene is not soluble in water and dispersion usually requires organic solvents, sonication or vigorous mechanical mixing. However, we show here that mixing of pristine C60 in water with natural surfactant proteins latherin and ranaspumin-2 (Rsn-2) at low concentrations yields stable aqueous dispersions with spectroscopic properties similar to those previously obtained by more vigorous methods. Particle sizes are significantly smaller than those achieved by mechanical dispersion alone, and concentrations are compatible with clusters approximating 1:1 protein:C60 stoichiometry. These proteins can also be adsorbed onto more intractable carbon nanotubes. This promises to be a convenient way to interface a range of hydrophobic nanoparticles and related materials with biological macromolecules, with potential to exploit the versatility of recombinant protein engineering in the development of nano-bio interface devices. It also has potential consequences for toxicological aspects of these and similar nanoparticles. PMID:27214760

  8. Evaluation of the Effectiveness of Surfactants and Denaturants to Elute and Denature Adsorbed Protein on Different Surface Chemistries.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-11-01

    The elution and/or denaturation of proteins from material surfaces by chemical excipients such as surfactants and denaturants is important for numerous applications including medical implant reprocessing, bioanalyses, and biodefense. The objective of this study was to develop and apply methods to quantitatively assess how surface chemistry and adsorption conditions influence the effectiveness of three commonly used surfactants (sodium dodecyl sulfate, n-octyl-β-d-glucoside, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and two denaturants (guanidium hydrochloride and urea) to elute protein (hen egg white lysozyme and bovine pancreatic ribonuclease A) from three different surface chemistries (silica glass, poly(methyl methacrylate), and high-density polyethylene). The structure and bioactivity of residual protein on the surface following elution were characterized using circular dichroism spectropolarimetry and enzyme assays to assess the extent of protein denaturation. Our results indicate that the denaturants were generally more effective than the surfactants in removing the adsorbed proteins from each type of surface. Also, the denaturing capacity of these excipients on the residual proteins on the surfaces was distinctly different from their influence on the proteins in solution and was unique for each of the adsorption conditions. Taken altogether, these results reveal that the effectiveness of surfactants and denaturants to elute and denature adsorbed protein is significantly influenced by surface chemistry and the conditions from which the protein was adsorbed. These results provide a basis for the selection, design, and further development of chemical agents for protein elution and surface decontamination. PMID:26449787

  9. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures. PMID:27043221

  10. Hybrid Fluorinated and Hydrogenated Double-Chain Surfactants for Handling Membrane Proteins.

    PubMed

    Legrand, Fréderic; Breyton, Cécile; Guillet, Pierre; Ebel, Christine; Durand, Grégory

    2016-01-15

    Two hybrid fluorinated double-chain surfactants with a diglucosylated polar head were synthesized. The apolar domain consists of a perfluorohexyl main chain and a butyl hydrogenated branch as a side chain. They were found to self-assemble into small micelles at low critical micellar concentrations, demonstrating that the short branch increases the overall hydrophobicity while keeping the length of the apolar domain short. They were both able to keep the membrane protein bacteriorhodopsin stable, one of them for at least 3 months. PMID:26694765

  11. Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells.

    PubMed

    Dong, Lifeng; Witkowski, Colette M; Craig, Michael M; Greenwade, Molly M; Joseph, Katherine L

    2009-01-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system. PMID:20652100

  12. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    PubMed Central

    2009-01-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood–brain barrier to the brain and the central nervous system. PMID:20652100

  13. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    NASA Astrophysics Data System (ADS)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  14. Modified natural porcine surfactant inhibits superoxide anions and proinflammatory mediators released by resting and stimulated human monocytes.

    PubMed

    Walti, H; Polla, B S; Bachelet, M

    1997-01-01

    Pulmonary surfactant has a potential role in modulating inflammation in normal and injured lungs. In lung injury, monocytes become activated and participate in lung inflammation. We therefore, investigated the proinflammatory functions of stimulated human blood monocytes after an overnight preincubation period with modified natural porcine surfactant (Curosurf) (500-1000 micrograms/mL). Monocytes were stimulated either with phorbol myristate acetate (PMA), bacterial extract OM-85, lipopolysaccharide (LPS), or Ca2+ ionophore A23187. The present study shows that Curosurf significantly inhibits: 1) the production of superoxide anions stimulated with OM-85 (1 mg/mL, 30 min), but not with PMA (100 ng/mL, 30 min); 2) the release of cyclooxygenase metabolites prostaglandin E2 and thromboxane B2 stimulated with OM-85 (1 mg/mL, overnight); 3) the release of lipoxygenase metabolite leukotriene C4 stimulated with A23187 (10 microM, 10 min); 4) the release of the cytokine TNF-alpha stimulated overnight with either OM-85 (1 mg/mL) or LPS (10 micrograms/mL)) in a dose-dependent fashion. In addition, Curosurf decreases the spontaneous adherence of monocytes to plastic culture wells in a dose-dependent fashion. Experiments performed with staurosporine, an inhibitor of protein kinase C (PKC) indicate that, in contrast with PMA, the production of superoxide anions stimulated by OM-85 is not related to PKC activation. Consequently, we propose that the mechanism involved in the suppressive effects of Curosurf is PKC-independent. In summary, the present study provides experimental evidence that favors the anti-inflammatory role of modified natural porcine surfactant (Curosurf) in human monocytes in vitro. PMID:8979299

  15. Different modes of interaction of pulmonary surfactant protein SP-B in phosphatidylcholine bilayers.

    PubMed Central

    Cruz, A; Casals, C; Keough, K M; Pérez-Gil, J

    1997-01-01

    Pulmonary surfactant-associated protein B (SP-B) has been incorporated into vesicles of dipalmitoyl phosphatidylcholine (DPPC) or egg yolk phosphatidylcholine (PC) by two different procedures to characterize the dependence of lipid-protein interactions on the method of reconstitution. In method A the protein was dissolved in a small volume of either methanol or 60% (v/v) acetonitrile and injected into an aqueous phase containing phospholipid vesicles. In method B the vesicles were prepared by injection of a mixture of phospholipid and SP-B dissolved in methanol or aqueous acetonitrile. Both methods of reconstitution led to the extensive interaction of SP-B with PC bilayers as demonstrated by co-migration during centrifugation, marked protection against proteolysis, change in the fluorescence emission intensity of SP-B, and protection of SP-B tryptophan fluorescence from quenching by acrylamide. SP-B promoted the rapid adsorption of DPPC on an air/liquid interface irrespective of the method of protein reconstitution. However, the interfacial adsorption activity of SP-B reconstituted by method B remained stable for hours, but that of SP-B prepared by method A decreased with time. Electron microscopy showed that the injection of SP-B into an aqueous phase containing PC or DPPC vesicles (method A) induced a rapid aggregation of vesicles. By contrast, a much longer time was required for detecting vesicle aggregation when the protein was reconstituted by co-injection of SP-B and phospholipids (method B). The presence of 5% (w/w) SP-B in DPPC bilayers prepared by method B broadened the differential scanning calorimetry thermogram and decreased the enthalpy of the transition. In contrast, the injection of SP-B into preformed DPPC vesicles (method A) did not influence the gel-to-liquid phase transition of DPPC bilayers. Taken together, these results indicate that the mode and extent of interaction of SP-B with surfactant phospholipids depends on the conditions of

  16. Micellar and biochemical properties of a propyl-ended fluorinated surfactant designed for membrane-protein study.

    PubMed

    Abla, Maher; Unger, Sebastian; Keller, Sandro; Bonneté, Françoise; Ebel, Christine; Pucci, Bernard; Breyton, Cécile; Durand, Grégory

    2015-05-01

    Our goal is to design optimised fluorinated surfactants for handling membrane proteins in solution. We report herein the self-assembling and biochemical properties of a new hemifluorinated surfactant (H3F6H3DigluM) with a branched diglucosylated polar head group and an apolar tail consisting of a perfluorohexane core decorated with a hydrogenated propyl tip. For the sake of comparison, its fluorinated analogue without propyl tip (F6H3DigluM) was also studied. Isothermal titration calorimetry and surface tension showed that the addition of a propyl tip has a significant effect on the overall hydrophobicity of the surfactant, in contrast to the behaviour described when adding an ethyl tip to a fluorinated surfactant. From dynamic light scattering, analytical ultracentrifugation and small-angle X-ray scattering, both H3F6H3DigluM and F6H3DigluM self-assemble into small globular micelles of 5-7 nm in diameter and have aggregation numbers of 62±8 and 46±2, respectively. Finally, H3F6H3DigluM was found to be the best fluorinated surfactant developed in our group to stabilise the model membrane protein bacteriorhodopsin (bR) in aqueous solution. This study demonstrates the suitability of this new propyl-ended fluorinated surfactant for biochemical and structural applications and confirms the superiority of hemifluorinated chains over fluorinated ones. PMID:25616252

  17. Role of the N-Terminal Seven Residues of Surfactant Protein B (SP-B)

    PubMed Central

    Sharifahmadian, Mahzad; Sarker, Muzaddid; Palleboina, Dharamaraju; Waring, Alan J.; Walther, Frans J.; Morrow, Michael R.; Booth, Valerie

    2013-01-01

    Breathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B) is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the “insertion sequence”. These studies employed a construct of SP-B, SP-B (1–25,63–78), also called Super Mini-B, which is a 41-residue peptide with internal disulfide bonds comprising the N-terminal 7-residue insertion sequence and the N- and C-terminal helices of SP-B. Circular dichroism, solution NMR, and solid state 2H NMR were used to study the structure of SP-B (1–25,63–78) and its interactions with phospholipid bilayers. Comparison of results for SP-B (8–25,63–78) and SP-B (1–25,63–78) demonstrates that the presence of the 7-residue insertion sequence induces substantial disorder near the centre of the lipid bilayer, but without a major disruption of the overall mechanical orientation of the bilayers. This observation suggests the insertion sequence is unlikely to penetrate deeply into the bilayer. The 7-residue insertion sequence substantially increases the solution NMR linewidths, most likely due to an increase in global dynamics. PMID:24023779

  18. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: characterization and interaction with human lung fibroblasts.

    PubMed

    Marianecci, Carlotta; Paolino, Donatella; Celia, Christian; Fresta, Massimo; Carafa, Maria; Alhaique, Franco

    2010-10-01

    Non-ionic surfactant vesicles (NSVs) were proposed for the pulmonary delivery of glucocorticoids such as beclomethasone dipropionate (BDP) for the treatment of inflammatory lung diseases, e.g. asthma, chronic obstructive pulmonary disease and various type of pulmonary fibrosis. The thin layer evaporation method followed by sonication was used to prepare small non-ionic surfactant vesicles containing beclomethasone dipropionate. Light scattering experiments showed that beclomethasone dipropionate-loaded non-ionic surfactant vesicles were larger than unloaded ones and showed a significant (P<0.001) decrease of the zeta potential. The morphological analysis, by freeze-fracture transmission electron microscopy, showed the maintenance of a vesicular structure in the presence of the drug. The colloidal and storage stability were evaluated by Turbiscan Lab Expert, which evidenced the good stability of BDP-loaded non-ionic surfactant vesicles, thus showing no significant variations of mean size and no colloidal phase segregation. Primary human lung fibroblast (HLF) cells were used for in vitro investigation of vesicle tolerability, carrier-cell interaction, intracellular drug uptake and drug-loaded vesicle anti-inflammatory activity. The investigated NSVs did not show a significant cytotoxic activity at all incubation times for concentrations ranging from 0.01 to 1 μM. Confocal laser scanning microscopy showed vesicular carrier localization at the level of the cytoplasm compartment, where the glucocorticoid receptor (target site) is localized. BDP-loaded non-ionic surfactant vesicles elicited a significant improvement of the HLF intracellular uptake of the drug with respect to the free drug solution, drug/surfactant mixtures and empty vesicles used as references. The treatment of HLF cells with BDP-loaded non-ionic surfactant vesicles determined a noticeable increase of the drug anti-inflammatory activity by reducing the secretion of both constitutive and interleukin-1

  19. Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media

    PubMed Central

    2015-01-01

    In this work, we investigate the ligand exchange of cetyltrimethylammonium bromide (CTAB) with bovine serum albumin for gold nanorods. We demonstrate by surface-enhanced Raman scattering measurements that CTAB, which is used as a shape-directing agent in the particle synthesis, is completely removed from solution and particle surface. Thus, the protein-coated nanorods are suitable for bioapplications, where cationic surfactants must be avoided. At the same time, the colloidal stability of the system is significantly increased, as evidenced by spectroscopic investigation of the particle longitudinal surface plasmon resonance, which is sensitive to aggregation. Particles are stable at very high concentrations (cAu 20 mg/mL) in biological media such as phosphate buffer saline or Dulbecco’s Modified Eagle’s Medium and over a large pH range (2–12). Particles can even be freeze-dried (lyophilized) and redispersed. The protocol was applied to gold nanoparticles with a large range of aspect ratios and sizes with main absorption frequencies covering the visible and the near-IR spectral range from 600 to 1100 nm. Thus, these colloidally stable and surfactant-free protein-coated nanoparticles are of great interest for various plasmonic and biomedical applications. PMID:25706195

  20. Surfactant-Bound Monolithic Columns for Separation of Proteins in Capillary High Performance Liquid Chromatography

    PubMed Central

    Gu, Congying; He, Jun; Jia, Jinping; Fang, Nenghu; Simmons, Robert; Shamsi, Shahab A.

    2011-01-01

    A surfactant bound monolithic stationary phase based on the co-polymerization of 11-acrylamino-undecanoic acid (AAUA) is designed for capillary high performance liquid chromatography (HPLC). Using D-optimal design, the effect of the polymerization mixture (concentrations of monomer, crosslinker and porogens) on the chromatographic performance (resolution and analysis time) of the AAUA-EDMA monolithic column was evaluated. The polymerization mixture was optimized using three proteins as model test solutes. The D-optimal design indicates a strong dependence of chromatographic parameters on the concentration of porogens (1,4-butanediol and water) in the polymerization mixture. Optimized solutions for fast separation and high resolution separation, respectively, were obtained using the proposed multivariate optimization. Differences less than 6.8% between the predicted and the experimental values in terms of resolution and retention time indeed confirmed that the proposed approach is practical. Using the optimized column, fast separation of proteins could be obtained in 2.5 min, and a tryptic digest of myoglobin was successfully separated on the high resolution column. The physical properties (i.e. morphology, porosity and permeability) of the optimized monolithic column were thoroughly investigated. It appears that this surfactant-bound monolith may have a great potential as a new generation of capillary HPLC stationary phase. PMID:20031139

  1. Molecular Dynamics Simulations of a Pulmonary Surfactant Protein B Peptide in a Lipid Monolayer

    PubMed Central

    Freites, J. Alfredo; Choi, Yunsoo; Tobias, Douglas J.

    2003-01-01

    Pulmonary surfactant is a complex mixture of lipids and proteins that lines the air/liquid interface of the alveolar hypophase and confers mechanical stability to the alveoli during the breathing process. The desire to formulate synthetic mixtures for low-cost prophylactic and therapeutic applications has motivated the study of the specific roles and interactions of the different components. All-atom molecular dynamics simulations were carried out on a model system composed of a monolayer of palmitic acid (PA) and a surfactant protein B peptide, SP-B1–25. A detailed structural characterization as a function of the lipid monolayer specific area revealed that the peptide remains inserted in the monolayer up to values of specific area corresponding to an untilted condensed phase of the the pure palmitic acid monolayer. The system remains stable by altering the conformational order of both the anionic lipid monolayer and the peptide secondary structure. Two elements appear to be key for the constitution of this phase: an electrostatic interaction between the cationic peptide residues with the anionic headgroups, and an exclusion of the aromatic residues on the hydrophobic end of the peptide from the hydrophilic and aqueous regions. PMID:12668426

  2. Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin.

    PubMed

    Lawson, William E; Polosukhin, Vasiliy V; Stathopoulos, Georgios T; Zoia, Ornella; Han, Wei; Lane, Kirk B; Li, Bo; Donnelly, Edwin F; Holburn, George E; Lewis, Kenneth G; Collins, Robert D; Hull, William M; Glasser, Stephan W; Whitsett, Jeffrey A; Blackwell, Timothy S

    2005-11-01

    Recent reports have linked mutations in the surfactant protein C gene (SFTPC) to familial forms of pulmonary fibrosis, but it is uncertain whether deficiency of mature SP-C contributes to disease pathogenesis. In this study, we evaluated bleomycin-induced lung fibrosis in mice with genetic deletion of SFTPC. Compared with wild-type (SFTPC+/+) controls, mice lacking surfactant protein C (SFTPC-/-) had greater lung neutrophil influx at 1 week after intratracheal bleomycin, greater weight loss during the first 2 weeks, and increased mortality. At 3 and 6 weeks after bleomycin, lungs from SFTPC-/- mice had increased fibroblast numbers, augmented collagen accumulation, and greater parenchymal distortion. Furthermore, resolution of fibrosis was delayed. Although remodeling was near complete in SFTPC+/+ mice by 6 weeks, SFTPC-/- mice did not return to baseline until 9 weeks after bleomycin. By terminal dUTP nick-end labeling staining, widespread cell injury was observed in SFTPC-/- and SFTPC+/+ mice 1 week after bleomycin; however, ongoing apoptosis of epithelial and interstitial cells occurred in lungs of SFTPC-/- mice, but not SFTPC+/+ mice, 6 weeks after bleomycin. Thus, SP-C functions to limit lung inflammation, inhibit collagen accumulation, and restore normal lung structure after bleomycin. PMID:16251411

  3. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.

    PubMed

    Raesch, Simon Sebastian; Tenzer, Stefan; Storck, Wiebke; Rurainski, Alexander; Selzer, Dominik; Ruge, Christian Arnold; Perez-Gil, Jesus; Schaefer, Ulrich Friedrich; Lehr, Claus-Michael

    2015-12-22

    Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona. PMID:26575243

  4. Elevation of serum surfactant protein-A with exacerbation in canine eosinophilic pneumonia

    PubMed Central

    SONE, Katsuhito; AKIYOSHI, Hideo; HAYASHI, Akiyoshi; OHASHI, Fumihito

    2015-01-01

    A 7-year-old female spayed Labrador Retriever was admitted to our hospital, because of cough with sputum. She was diagnosed as having canine eosinophilic pneumonia (CEP) based on blood eosinophilia, bronchial pattern and infiltrative shadow observed on thoracic radiography, bronchiolar obstruction and air-space consolidation predominantly affecting the right caudal lung lobe, as revealed by computed tomography (CT), predominant eosinophils in CT-guided fine needle aspiration and the clinical course. She exhibited a good response to steroid therapy, and the cough disappeared. The serum surfactant protein (SP)-A level increased with the aggravated symptom and decreased markedly with improvement compared with the C-reactive protein level and the number of eosinophils. We propose that serum SP-A level is a good biomarker in CEP. PMID:26300438

  5. Stretching surfactant- or protein-coated droplets in a high frequency electric field

    NASA Astrophysics Data System (ADS)

    Randall, Greg

    2015-11-01

    Surfactant-stabilized and protein-coated droplets are stretched in a high-frequency AC electric field. This is the first work to study aqueous droplets stretching at a frequency (20 MHz) high enough that water behaves as a pure dielectric. Consequently, the water/oil system is free of steady electrohydrodynamic flow. The absence of a steady flow provides a potential way to measure interfacial rheological properties of water soluble additives with droplet stretching models. Results are presented for both the wide gap and thin gap geometries. Adding dilute protein additives (e.g. bovine serum albumin, switchable peptides, hydrophobins) to form interfacial elastic layers inhibits stretching, which is an important milestone in our efforts to engineer a continuous, uniform wall thickness shell production process. Work supported by General Atomics IR&D Funds.

  6. Serum surfactant protein-A, but not surfactant protein-D or KL-6, can predict preclinical lung damage induced by smoking.

    PubMed

    Kobayashi, Hideo; Kanoh, Soichiro; Motoyoshi, Kazuo

    2008-06-01

    Serum surfactant protein (SP)-A offers a useful clinical marker for interstitial lung disease (ILD). However, SP-A is occasionally elevated in non-ILD pulmonary patients. The present study was conducted to investigate factors that affect serum SP- A levels in respiratory medicine. Serum SP-A, serum SP-D, serum Klebs von den Lungen (KL)-6 and pulmonary function tests were evaluated in 929 patients (current smokers, n=255; ex-smokers, n=242; never-smokers, n=432) without ILD or pulmonary alveolar proteinosis. Serum SP-A was significantly higher in current smokers than in never- or ex-smokers (p<0.01 and p<0.05, respectively). Serum SP- A was significantly higher in chronic obstructive pulmonary disease (COPD) and pulmonary thromboembolism than in other diseases (p<0.01). Serum SP-A correlated positively with amount of smoking (p<0.01) and negatively with forced expiratory volume in 1 s/forced vital capacity (p<0.05). Serum SP-D and KL-6 were unaffected by smoking. Smoking should be taken into account when evaluating serum SP-A levels, and different baseline levels of serum SP-A should be established for smokers and non-smokers. Serum SP-A may also represent a useful marker for predicting COPD in the preclinical stage. PMID:18595202

  7. [The ocular surfactant system and its relevance in the dry eye].

    PubMed

    Schicht, M; Posa, A; Paulsen, F; Bräuer, L

    2010-11-01

    The amphiphilic surfactant proteins B (SP-B) and C (SP-C) are tightly bound to phospholipids. These proteins play important roles in maintaining the surface tension-lowering properties of pulmonary surfactant. Surfactant protein A (SP-A) and D (SP-D) are hydrophilic and are thought to have a role in recycling surfactant and, especially, in improving host defense in the lung. Moreover, SP-A supports the hydrophobic surfactant proteins B and during surfactant subtype assembly and inhibits the secretion of lamellar bodies into the alveolar space. During recent years surfactant proteins have also been detected at locations outside the lung such as the lacrimal apparatus. In this review, the latest information regarding SP function and regulation in the human lacrimal system, the tear film and the ocular surface is summarised with regard to dry eye, rheological and antimicrobial properties of the tear film, tear outflow, certain disease states and possible therapeutic perspectives. PMID:21077020

  8. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B).

    PubMed

    Hemming, Joanna M; Hughes, Brian R; Rennie, Adrian R; Tomas, Salvador; Campbell, Richard A; Hughes, Arwel V; Arnold, Thomas; Botchway, Stanley W; Thompson, Katherine C

    2015-08-25

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air-water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1-25,63-78)], called SMB. Exposure to dilute levels of ozone (~2 ppm) of monolayers of each peptide at the air-water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air-water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  9. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    PubMed Central

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  10. Developmental regulation of chicken surfactant protein A and its localization in lung.

    PubMed

    Zhang, Weidong; Cuperus, Tryntsje; van Dijk, Albert; Skjødt, Karsten; Hansen, Søren; Haagsman, Henk P; Veldhuizen, Edwin J A

    2016-08-01

    Surfactant Protein A (SP-A) is a collagenous C-type lectin (collectin) that plays an important role in the early stage of the host immune response. In chicken, SP-A (cSP-A) is expressed as a 26 kDa glycosylated protein in the lung. Using immunohistochemistry, cSP-A protein was detected mainly in the lung lining fluid covering the parabronchial epithelia. Specific cSP-A producing epithelial cells, resembling mammalian type II cells, were identified in the parabronchi. Gene expression of cSP-A markedly increased from embryonic day 14 onwards until the time of hatch, comparable to the SP-A homologue chicken lung lectin, while mannan binding lectin and collectins CL-L1 and CL-K1 only showed slightly changed expression during development. cSP-A protein could be detected as early as ED 18 in lung tissue using Western blotting, and expression increased steadily until day 28 post-hatch. Our observations are a first step towards understanding the role of this protein in vivo. PMID:26976230

  11. Immunohistochemical characteristics of surfactant proteins a, B, C and d in inflammatory and tumorigenic lung lesions of f344 rats.

    PubMed

    Yokohira, Masanao; Yamakawa, Keiko; Nakano, Yuko; Numano, Takamasa; Furukawa, Fumio; Kishi, Sosuke; Ninomiya, Fumiko; Kanie, Shohei; Hitotsumachi, Hiroko; Saoo, Kousuke; Imaida, Katsumi

    2014-10-01

    Surfactant proteins (SPs), originally known as human lung surfactants, are essential to respiratory structure and function. There are 4 subtypes, SP-A, SP-B, SP-C and SP-D, with SP-A and SP-D having immunological functions, and SP-B and SP-C having physicochemical properties that reduce the surface tension at biological interfaces. In this experiment, the expressions of SP-A, SP-B, SP-C and SP-D in lung neoplastic lesions induced by N-bis (2-hydroxypropyl) nitrosamine (DHPN) and inflammatory lesions due to quartz instillation were examined and compared immunohistochemically. Formalin fixed paraffin embedded (FFPE) lung samples featuring inflammation were obtained with a rat quartz instillation model, and neoplastic lesions, hyperplasias and adenomas, were obtained with the rat DHPN-induced lung carcinogenesis model. In the rat quartz instillation model, male 10-week old F344 rats were exposed by intratracheal instillation (IT) to quartz at a dose of 2 mg/rat suspended in saline (0.2 ml) on day 0, and sacrificed on day 28. Lung tumorigenesis in F344 male rats was initiated by DHPN in drinking water for 2 weeks, and the animals were then sacrificed in week 30. Lung proliferative lesions, hyperplasias and adenomas, were observed with DHPN, and inflammation was observed with quartz. The expressions of SP-A, SP-B, SP-C and SP-D were examined immunohistochemically. SP-B and SP-C showed strong expression in lung hyperplasias and adenomas, while SP-A and SP-D were observed in mucus or exudates in inflammatory alveoli. These results suggest the possibility that SP-B and SP-C are related to lung tumorigenesis. PMID:25378802

  12. Chronic obstructive pulmonary disease and inhaled steroids alter surfactant protein D (SP-D) levels: a cross-sectional study

    PubMed Central

    Sims, Michael W; Tal-Singer, Ruth M; Kierstein, Sonja; Musani, Ali I; Beers, Michael F; Panettieri, Reynold A; Haczku, Angela

    2008-01-01

    Background Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear. Methods We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture. Results Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture. Conclusion Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator

  13. Eosinophil-Associated Lung Diseases. A Cry for Surfactant Proteins A and D Help?

    PubMed Central

    Ledford, Julie G.; Addison, Kenneth J.; Foster, Matthew W.

    2014-01-01

    Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions. PMID:24960334

  14. Surfactant Protein D Modulates HIV Infection of Both T-Cells and Dendritic Cells

    PubMed Central

    Palaniyar, Nades; Dong, Tao; Mitchell, Daniel A.; Clark, Howard W.

    2013-01-01

    Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo. PMID:23527085

  15. A Unique Sugar-binding Site Mediates the Distinct Anti-influenza Activity of Pig Surfactant Protein D*

    PubMed Central

    van Eijk, Martin; Rynkiewicz, Michael J.; White, Mitchell R.; Hartshorn, Kevan L.; Zou, Xueqing; Schulten, Klaus; Luo, Dong; Crouch, Erika C.; Cafarella, Tanya R.; Head, James F.; Haagsman, Henk P.; Seaton, Barbara A.

    2012-01-01

    Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains. PMID:22685299

  16. Surfactant proteins A and D protect mice against pulmonary hypersensitivity induced by Aspergillus fumigatus antigens and allergens.

    PubMed

    Madan, T; Kishore, U; Singh, M; Strong, P; Clark, H; Hussain, E M; Reid, K B; Sarma, P U

    2001-02-01

    Allergic bronchopulmonary aspergillosis (ABPA) is an allergic disorder caused by an opportunistic fungal pathogen, Aspergillus fumigatus (AFU:). Lung surfactant proteins SP-A and SP-D can interact with the glycosylated antigens and allergens of AFU:, inhibit specific IgE binding to these allergens, and block histamine release from sensitized basophils. We have now examined the therapeutic effect of exogenous administration of human SP-A, SP-D, and a recombinant fragment of SP-D (rSP-D), in a murine model of pulmonary hypersensitivity induced by AFU: antigens and allergens, which resembles human ABPA immunologically. The ABPA mice exhibited high levels of AFU:-specific IgG and IgE, blood eosinophilia, extensive infiltration of lymphocytes and eosinophils in the lung sections, and a Th2 cytokine response. Treatment with SP-A, SP-D, and rSP-D lowered blood eosinophilia, pulmonary infiltration, and specific Ab levels considerably, which persisted up to 4 days in the SP-A-treated ABPA mice, and up to 16 days in the SP-D- or rSP-D-treated ABPA mice. The levels of IL-2, IL-4, and IL-5 were decreased, while the level of IFN-gamma was raised in the splenic supernatants of the treated mice, indicating a marked shift from Th2 to Th1 response. These results clearly implicate pulmonary SP-A and SP-D in the modulation of allergic reactions. PMID:11181646

  17. Phosphorylation of human link proteins

    SciTech Connect

    Oester, D.A.; Caterson, B.; Schwartz, E.R.

    1986-06-13

    Three link proteins of 48, 44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain /sup 32/P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO/sub 4//mole link protein.

  18. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations.

    PubMed

    Goh, Boon Chong; Wu, Huixing; Rynkiewicz, Michael J; Schulten, Klaus; Seaton, Barbara A; McCormack, Francis X

    2016-07-01

    Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions. PMID:27324153

  19. Genetic disorders of surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A

    2006-01-01

    Pulmonary surfactant reduces surface tension at the air-liquid interface in the alveolus, thereby maintaining lung volumes during the respiratory cycle. In premature newborn infants, the lack of surfactant causes atelectasis and respiratory failure, characteristic of respiratory of distress syndrome. Surfactant is comprised of lipids and associated proteins that are required for surfactant function. Surfactant proteins B and C and a lamellar body associated transport protein, ABCA3 play critical roles in surfactant synthesis and function. Mutations in the genes encoding these proteins cause lethal respiratory distress in newborn infants. This review discusses the clinical and pathological findings associated with these inherited disorders of alveolar homeostasis. PMID:16798578

  20. Innate immune collectin surfactant protein D enhances the clearance of DNA by macrophages and minimizes anti-DNA antibody generation.

    PubMed

    Palaniyar, Nades; Clark, Howard; Nadesalingam, Jeya; Shih, Michael J; Hawgood, Samuel; Reid, Kenneth B M

    2005-06-01

    Dying microbes and necrotic cells release highly viscous DNA that induces inflammation and septic shock, and apoptotic cells display DNA, a potential autoantigen, on their surfaces. However, innate immune proteins that mediate the clearance of free DNA and surface DNA-containing cells are not clearly established. Pulmonary surfactant proteins (SP-) A and D are innate immune pattern recognition collectins that contain fibrillar collagen-like regions and globular carbohydrate recognition domains (CRDs). We have recently shown that collectins SP-A, SP-D, and mannose binding lectin recognize DNA and RNA via their collagen-like regions and CRDs. Here we show that SP-D enhances the uptake of Cy3-labeled fragments of DNA and DNA-coated beads by U937 human monocytic cells, in vitro. Analysis of DNA uptake by freshly isolated mouse alveolar macrophages shows that SP-D, but not SP-A, deficiency results in reduced clearance of DNA, ex vivo. Analysis of bronchoalveolar lavage fluid shows that SP-D- but not SP-A-deficient mice are defective in clearing free DNA from the lung. Additionally, both SP-A- and SP-D-deficient mice accumulate anti-DNA Abs in sera in an age-dependent manner. Thus, we conclude that collectins such as SP-A and SP-D reduce the generation of anti-DNA autoantibody, which may be explained in part by the defective clearance of DNA from the lungs in the absence of these proteins. Our findings establish two new roles for these innate immune proteins and that SP-D enhances efficient pinocytosis and phagocytosis of DNA by macrophages and minimizes anti-DNA Ab generation. PMID:15905582

  1. Thyroid transcription factor-1, hepatocyte nuclear factor-3β and surfactant protein A and B in the developing chick lung

    PubMed Central

    ZENG, XIN; YUTZEY, KATHERINE E.; WHITSETT, JEFFREY A.

    1998-01-01

    Expression of surfactant proteins SP-A, SP-B and the transcription factors TTF-1 and HNF-3β was identified by immunohistochemistry in the developing chicken. SP-B, a small hydrophobic peptide critical for lung function and surfactant homeostasis in mammals, was detected in the epithelial cells of parabronchi in embryonic chicken lung from the 15th day of incubation, prior to the onset of the breathing movements and was expressed at high levels in the posthatching chicken lung. SP-A, an abundant surfactant protein involved in innate defence of the mammalian lung, was detected in the chick embryo in subsets of epithelial cells in the mesobronchus, starting from d 15 and was detected in the posthatching chicken lung. The transcription factors hepatocyte nuclear factor 3β (HNF-3β) and thyroid transcription factor-1 (TTF-1), both regulators epithelial cell differentiation and gene expression in mammalian species, were detected at the onset of lung bud formation (d 4 of incubation) and throughout lung development. Abundant nuclear expression was detected in nuclei of respiratory epithelial cells of developing bronchial tubules for both transcription factors. In contrast to the surfactant proteins, expression of both TTF-1 and HNF-3β decreased markedly in posthatching chicken lung. The expression of SP-A and SP-B in chick lung demonstrates the conservation of surfactant proteins in vertebrates. The temporospatial pattern of TTF-1 and HNF-3β overlaps with that of SP-A and SP-B, supporting their potential roles in chick lung development and demonstrating the conservation of regulatory mechanisms contributing to gene expression in respiratory epithelial cells in vertebrates. PMID:9877295

  2. Effect of surfactants on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus

    NASA Astrophysics Data System (ADS)

    Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.

    2016-09-01

    Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) surfactant on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these surfactants, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic surfactant-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic surfactant at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar nature of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.

  3. Effects of surfactant and salt species in reverse micellar forward extraction efficiency of isoflavones with enriched protein from soy flour.

    PubMed

    Zhao, Xiaoyan; Wei, Zhiyi; Du, Fangling; Zhu, Junqing

    2010-11-01

    Suitability of reverse micelles of anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT) and sodium dodecyl sulfate (SDS), cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and nonionic surfactant polyoxyethylene p-t-octylphenol (TritonX-100) in organic solvent isooctane for extraction of soy isoflavone-enriching proteins was investigated. The results showed that the order of combined isoflavone contents was SDS>CTAB>Triton X-100>AOT, while the order of protein recovery was SDS>AOT>TritonX-100>CTAB. As compared with ACN-HCl extraction, the total amount of isoflavones was lower than reverse micellar extraction. Ion strength was one of the important conditions to control extraction of isoflavone-enriching proteins with AOT reversed micelles. For the six salt systems, KNO(3), KCl, MgCl(2), CaCl(2), NaCl, and Na(2)SO(4), extracted fraction of isoflavone-enriching proteins was measured. Salt solutions greatly influenced the extraction efficiency of isoflavones in an order of KNO(3)>MgCl(2)>CaCl(2)>KCl>NaCl>Na(2)SO(4), while protein in an order of MgCl(2)>CaCl(2)>NaCl>KNO(3)>Na(2)SO(4)>KCl. PMID:20473722

  4. Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection.

    PubMed

    Glasser, Stephan W; Witt, Teah L; Senft, Albert P; Baatz, John E; Folger, Dusti; Maxfield, Melissa D; Akinbi, Henry T; Newton, Danforth A; Prows, Daniel R; Korfhagen, Thomas R

    2009-07-01

    Patients with mutations in the pulmonary surfactant protein C (SP-C) gene develop interstitial lung disease and pulmonary exacerbations associated with viral infections including respiratory syncytial virus (RSV). Pulmonary infection with RSV caused more severe interstitial thickening, air space consolidation, and goblet cell hyperplasia in SP-C-deficient (Sftpc(-/-)) mice compared with SP-C replete mice. The RSV-induced pathology resolved more slowly in Sftpc(-/-) mice with lung inflammation persistent up to 30 days postinfection. Polymorphonuclear leukocyte and macrophage counts were increased in the bronchoalveolar lavage (BAL) fluid of Sftpc(-/-) mice. Viral titers and viral F and G protein mRNA were significantly increased in both Sftpc(-/-) and heterozygous Sftpc(+/-) mice compared with controls. Expression of Toll-like receptor 3 (TLR3) mRNA was increased in the lungs of Sftpc(-/-) mice relative to Sftpc(+/+) mice before and after RSV infection. Consistent with the increased TLR3 expression, BAL inflammatory cells were increased in the Sftpc(-/-) mice after exposure to a TLR3-specific ligand, poly(I:C). Preparations of purified SP-C and synthetic phospholipids blocked poly(I:C)-induced TLR3 signaling in vitro. SP-C deficiency increases the severity of RSV-induced pulmonary inflammation through regulation of TLR3 signaling. PMID:19304906

  5. Surfactant Proteins SP-A and SP-D Modulate Uterine Contractile Events in ULTR Myometrial Cell Line

    PubMed Central

    Sotiriadis, Georgios; Dodagatta-Marri, Eswari; Kouser, Lubna; Alhamlan, Fatimah S.; Kishore, Uday; Karteris, Emmanouil

    2015-01-01

    Pulmonary surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules. However, there is extrapulmonary existence, especially in the amniotic fluid and at the feto-maternal interface. There is sufficient evidence to suggest that SP-A and SP-D are involved in the initiation of labour. This is of great importance given that preterm birth is associated with increased mortality and morbidity. In this study, we investigated the effects of recombinant forms of SP-A and SP-D (rhSP-A and rhSP-D, the comprising of trimeric lectin domain) on contractile events in vitro, using a human myometrial cell line (ULTR) as an experimental model. Treatment with rhSP-A or rhSP-D increased the cell velocity, distance travelled and displacement by ULTR cells. rhSP-A and rhSP-D also affected the contractile response of ULTRs when grown on collagen matrices showing reduced surface area. We investigated this effect further by measuring contractility-associated protein (CAP) genes. Treatment with rhSP-A and rhSP-D induced expression of oxytocin receptor (OXTR) and connexin 43 (CX43). In addition, rhSP-A and rhSP-D were able to induce secretion of GROα and IL-8. rhSP-D also induced the expression of IL-6 and IL-6 Ra. We provide evidence that SP-A and SP-D play a key role in modulating events prior to labour by reconditioning the human myometrium and in inducing CAP genes and pro-inflammatory cytokines thus shifting the uterus from a quiescent state to a contractile one. PMID:26641881

  6. Human MSH2 protein

    DOEpatents

    Chapelle, A. de la; Vogelstein, B.; Kinzler, K.W.

    1997-01-07

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error{sup +} (RER{sup +}) tumor cells. 19 figs.

  7. Human MSH2 protein

    DOEpatents

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    1997-01-01

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  8. The surfactant system protects both fetus and newborn.

    PubMed

    Hallman, Mikko

    2013-01-01

    Surfactant complex and its individual components decrease surface tension, silence inflammatory responses, bind and destroy air-borne microbes, facilitate phagocytosis by alveolar macrophages and bind endogenous and exogenous molecules. Surfactant components generally decrease harmful inflammatory responses. New exogenous surfactants and new indications for surfactant therapy remain to be studied. At term the pool of human surfactant from developing airways extends to the amniotic cavity and to the gastrointestinal tract. Preterm labor-inducing inflammatory ligands (interleukin-1 or lipopolysaccharide) cause a robust induction of surfactant complex and lower the risk of respiratory distress syndrome (RDS). The effect of antenatal glucocorticoid therapy is complementary. According to transgenic experiments or genetic evidence in humans, surfactant proteins A, D or C (SP-A, SP-D, SP-C), expressed in fetal tissue, influence the onset of term or preterm labor. After birth, the surface tension-reducing and the inflammation-silencing effects of exogenous and endogenous surfactant are complementary. Surfactant proteins influence the genetic predisposition of RDS, bronchopulmonary dysplasia (BPD) and airway infections in early infancy. Moderate to severe BPD has a strong genetic predisposition. Deleterious mutations of SP-B, ABCA3 or SP-C cause congenital interstitial lung disease that mimics the phenotype of established severe BPD. I propose that lung surfactant protects both the fetus and the newborn. Surfactant ameliorates inflammatory responses that are harmful to the mother, fetus and infant. In chorioamnionitis, inflammatory ligands are carried from the fetal membranes to the alveolar space via amniotic fluid and developing airways. They induce surfactant synthesis and secretion. Surfactant ameliorates severe inflammatory responses in fetal compartments and promotes spontaneous preterm birth. PMID:23736009

  9. The juxtamembrane lysine and arginine residues of surfactant protein C precursor influence palmitoylation via effects on trafficking.

    PubMed

    ten Brinke, A; Batenburg, J J; Gadella, B M; Haagsman, H P; Vaandrager, A B; van Golde, L M

    2001-08-01

    Surfactant protein (SP)-C propeptide (proSP-C) becomes palmitoylated on cysteines 5 and 6 before mature SP-C is formed by several proteolytic steps. To study the structural requirements for the palmitoylation of proSP-C, his-tagged human proSP-C (his-proSP-C) and his-proSP-C mutants were expressed in Chinese hamster ovary cells and analyzed by metabolic labeling with [(3)H]palmitate and immunocytochemistry. Substitution of cysteines 5 and 6 by serines showed that these were the only two cysteine residues palmitoylated in his-proSP-C. Substitution of the juxtamembrane basic residues lysine and arginine by uncharged glutamines led to a large decrease in palmitoylation level of proSP-C. The addition of brefeldin A nearly abolished this decrease for the lysine and double mutant; the palmitoylation of the arginine mutant increased also, but not to wild-type (WT) levels. Fluorescence immunocytochemistry showed that WT proSP-C was localized in punctate vesicles throughout the cell, whereas the mutant lacking the juxtamembrane positive charges was found more perinuclear, probably in the endoplasmic reticulum (ER). This indicates that the two basic juxtamembrane residues influence palmitoylation of proSP-C by preventing the transport of proSP-C out of the ER, implying that proSP-C becomes palmitoylated normally in a compartment distal to the ER. PMID:11509324

  10. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles

    PubMed Central

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens

    2015-01-01

    Abstract The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A−/− mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages. PMID:25676620

  11. Circulating pro-surfactant protein B as a risk biomarker for lung cancer

    PubMed Central

    Taguchi, Ayumu; Hanash, Samir; Rundle, Andrew; McKeague, Ian; Tang, Deliang; Darakjy, Salima; Gaziano, J. Michael; Sesso, Howard D.; Perera, Frederica

    2013-01-01

    Background Our prior studies of lung cancer suggested that a novel biomarker (pro-surfactant protein B or pro-SFTPB) might serve as a predictive marker for this disease. We aimed to determine the potential utility of pro-SFTPB for distinguishing lung cancer cases from matched controls as a risk marker. Methods Study subjects were drawn from the longitudinal Physicians’ Health Study (PHS). Cases (n = 188) included individuals who were cancer-free at study enrollment but developed lung cancer during follow-up. Controls (n = 337) were subjects who did not develop lung cancer. Cases and controls were matched on date of study enrollment, age at enrollment, and smoking status and amount. Baseline plasma samples drawn at enrollment were analyzed for pro-SFTPB using ELISA to detect differences in protein expression levels for cases and controls. Results Pro-SFTPB-non-detectable status was significantly associated with lung cancer risk (OR = 5.88, 95% CI 1.24, 27.48). Among subjects with detectable levels of the protein, increasing plasma concentration of pro-SFTPB was associated with higher lung cancer risk (OR = 1.41 per unit increase in log pro-SFTPB, 95% CI 1.08, 1.84). Conclusion These results suggest a non-linear, J-shaped association between plasma pro-SFTPB levels and lung cancer risk, with both non-detectable and higher levels of the marker being associated with lung cancer. Impact These results show promise of a risk marker that could contribute to predicting risk for lung cancer development and to narrowing the high risk population for low-dose computed tomography (LDCT) screening. PMID:23897585

  12. Combined and Independent Action of Proteins SP-B and SP-C in the Surface Behavior and Mechanical Stability of Pulmonary Surfactant Films

    PubMed Central

    Schürch, David; Ospina, Olga L.; Cruz, Antonio; Pérez-Gil, Jesús

    2010-01-01

    The hydrophobic proteins SP-B and SP-C are essential for pulmonary surfactant function, even though they are a relatively minor component (<2% of surfactant dry mass). Despite countless studies, their specific differential action and their possible concerted role to optimize the surface properties of surfactant films have not been completely elucidated. Under conditions kept as physiologically relevant as possible, we tested the surface activity and mechanical stability of several surfactant films of varying protein composition in vitro using a captive bubble surfactometer and a novel (to our knowledge) stability test. We found that in the naturally derived surfactant lipid mixtures, surfactant protein SP-B promoted film formation and reextension to lower surface tensions than SP-C, and in particular played a vital role in sustaining film stability at the most compressed states, whereas SP-C produced no stabilization. Preparations containing both proteins together revealed a slight combined effect in enhancing film formation. These results provide a qualitative and quantitative framework for the development of future synthetic therapeutic surfactants, and illustrate the crucial need to include SP-B or an efficient SP-B analog for optimal function. PMID:21081077

  13. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  14. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    PubMed Central

    Wang, Shan-Mei; He, Xian; Li, Nan; Yu, Feng; Hu, Yang; Wang, Liu-Sheng; Zhang, Peng; Du, Yu-Kui; Du, Shan-Shan; Yin, Zhao-Fang; Wei, Ya-Ru; Mulet, Xavier; Coia, Greg; Weng, Dong; He, Jian-Hua; Wu, Min; Li, Hui-Ping

    2015-01-01

    Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological alterations. Collectively, we have generated and characterized lung-specific nanobodies, which may be applicable for lung drug delivery. PMID:25926731

  15. Effect of calcium on phospholipid interaction with pulmonary surfactant protein C.

    PubMed Central

    Dico, A S; Taneva, S; Morrow, M R; Keough, K M

    1997-01-01

    Porcine pulmonary surfactant-associated protein SP-C was incorporated into bilayers of chain-perdeuterated dipalmitoylphosphatidylglycerol (DPPG-d62) and chain-perdeuterated dipalmitoyl-phosphatidylcholine (DPPC-d62) and into bilayers containing 70 mol% dipalmitoyl-phosphatidylcholine (DPPC) and 30 mol% DPPG-d62 or 70 mol% DPPC-d62 and 30 mol% dipalmitoylphosphatidylglycerol (DPPG). The effect of SP-C on the phase behavior, lipid chain order, and dynamics in these bilayers was examined by using deuterium nuclear magnetic resonance. SP-C was found to have a similar effect on the chain order and phase behavior of DPPC-d62 and DPPG-d62 in bilayers with a single lipid component. In gel phase DPPC/DPPG (7:3) bilayers with one or the other lipid component chain-perdeuterated, SP-C was found to affect first spectral moment more strongly for DPPG-d62 than for DPPC-d62. This may indicate that SP-C induced a nonrandom lateral distribution in the mixed lipid bilayer. SP-C was also found to influence motions responsible for deuteron transverse relaxation in both the gel and liquid crystalline phases. The presence of 5 mM Ca2+ in the aqueous phase substantially altered the effect of SP-C on transverse relaxation in the bilayer. PMID:9370454

  16. Surfactant Protein-D Is Essential for Immunity to Helminth Infection.

    PubMed

    Thawer, Sumaiyya; Auret, Jennifer; Schnoeller, Corinna; Chetty, Alisha; Smith, Katherine; Darby, Matthew; Roberts, Luke; Mackay, Rosie-Marie; Whitwell, Harry J; Timms, John F; Madsen, Jens; Selkirk, Murray E; Brombacher, Frank; Clark, Howard William; Horsnell, William G C

    2016-02-01

    Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. PMID:26900854

  17. Autophagy regulates hyperoxia-induced intracellular accumulation of surfactant protein C in alveolar type II cells.

    PubMed

    Zhang, Liang; Zhao, Shuang; Yuan, Li-Jie; Wu, Hong-Min; Jiang, Hong; Zhao, Shi-Meng; Luo, Gang; Xue, Xin-Dong

    2015-10-01

    Surfactant protein C (SP-C) deficiency is a risk factor for hyperoxia-induced bronchopulmonary dysplasia in newborn infants. However, the role of SP-C deficiency in the process is unclear. Here, using neonatal rat BPD model and MLE-12, mouse alveolar epithelial type II cell, we examined the changes of SP-C levels during hyperoxia. Immunohistochemistry, immunofluorescence, and ELISA analysis showed SP-C accumulation in alveolar epithelial type II cells. Electron microscopy further demonstrated the accumulation of lamellar bodies and the co-localization of lamellar bodies with autophagosomes in the cytoplasm of alveolar epithelial type II cells. The inhibition of autophagy with 3-Methyladenine and knockdown of Atg7 abolished hyperoxia-induced SP-C accumulation in the cytoplasm. Furthermore, inhibition of JNK signaling with SP600125 suppressed hyperoxia-induced Atg7 expression and SP-C accumulation. These findings suggest that hyperoxia triggers autophagy via JNK signaling-mediated Atg7 expression, which promotes the accumulation of SP-C within alveolar epithelial type II cells. Our data provide a potential approach for hyperoxic lung injury therapy by targeted pharmacological inhibition of autophagic pathway. PMID:26122393

  18. Surfactant Protein-C Promoter Variants Associated with Neonatal Respiratory Distress Syndrome Reduce Transcription

    PubMed Central

    Wambach, Jennifer A.; Yang, Ping; Wegner, Daniel J.; An, Ping; Hackett, Brian P.; Cole, F. S.; Hamvas, Aaron

    2010-01-01

    Dominant mutations in coding regions of the surfactant protein-C gene (SFTPC) cause respiratory distress syndrome (RDS) in infants. However, the contribution of variants in noncoding regions of SFTPC to pulmonary phenotypes is unknown. Using a case-control group of infants ≥34 weeks gestation (n=538), we used complete resequencing of SFTPC and its promoter, genotyping, and logistic regression to identify 80 single nucleotide polymorphisms (SNPs). Three promoter SNPs were statistically associated with neonatal RDS among European descent infants. To assess the transcriptional effects of these three promoter SNPs, we selectively mutated the SFTPC promoter and performed transient transfection using MLE-15 cells and a firefly luciferase reporter vector. Each promoter SNP decreased SFTPC transcription. The combination of two variants in high linkage dysequilibrium also decreased SFTPC transcription. In silico evaluation of transcription factor binding demonstrated that the rare allele at g.-1167 disrupts a SOX (SRY-related high mobility group box) consensus motif and introduces a GATA-1 site, at g.-2385 removes a MZF-1 (myeloid zinc finger) binding site, and at g.-1647 removes a potential methylation site. This combined statistical, in vitro, and in silico approach suggests that reduced SFTPC transcription contributes to the genetic risk for neonatal RDS in developmentally susceptible infants. PMID:20539253

  19. Surfactant Protein-D Is Essential for Immunity to Helminth Infection

    PubMed Central

    Schnoeller, Corinna; Chetty, Alisha; Smith, Katherine; Darby, Matthew; Roberts, Luke; Mackay, Rosie-Marie; Whitwell, Harry J.; Timms, John F.; Madsen, Jens; Selkirk, Murray E.; Brombacher, Frank; Clark, Howard William; Horsnell, William G. C.

    2016-01-01

    Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. PMID:26900854

  20. Macrophage dysfunction and susceptibility to pulmonary Pseudomonas aeruginosa infection in surfactant protein C-deficient mice.

    PubMed

    Glasser, Stephan W; Senft, Albert P; Whitsett, Jeffrey A; Maxfield, Melissa D; Ross, Gary F; Richardson, Theresa R; Prows, Daniel R; Xu, Yan; Korfhagen, Thomas R

    2008-07-01

    To determine the role of surfactant protein C (SP-C) in host defense, SP-C-deficient (Sftpc-/-) mice were infected with the pulmonary pathogen Pseudomonas aeruginosa by intratracheal injection. Survival of young, postnatal day 14 Sftpc-/- mice was decreased in comparison to Sftpc+/+ mice. The sensitivity to Pseudomonas bacteria was specific to the 129S6 strain of Sftpc-/- mice, a strain that spontaneously develops interstitial lung disease-like lung pathology with age. Pulmonary bacterial load and leukocyte infiltration were increased in the lungs of Sftpc-/- mice 24 h after infection. Early influx of polymorphonuclear leukocytes in the lungs of uninfected newborn Sftpc-/- mice relative to Sftpc+/+ mice indicate that the lack of SP-C promotes proinflammatory responses in the lung. Mucin expression, as indicated by Alcian blue staining, was increased in the airways of Sftpc-/- mice following infection. Phagocytic activity of alveolar macrophages from Sftpc-/- mice was reduced. The uptake of fluorescent beads in vitro and the number of bacteria phagocytosed by alveolar macrophages in vivo was decreased in the Sftpc-/- mice. Alveolar macrophages from Sftpc-/- mice expressed markers of alternative activation that are associated with diminished pathogen response and advancing pulmonary fibrosis. These findings implicate SP-C as a modifier of alveolar homeostasis. SP-C plays an important role in innate host defense of the lung, enhancing macrophage-mediated Pseudomonas phagocytosis, clearance and limiting pulmonary inflammatory responses. PMID:18566429

  1. Measurement of pulmonary status and surfactant protein levels during dexamethasone treatment of neonatal respiratory distress syndrome.

    PubMed Central

    Wang, J. Y.; Yeh, T. F.; Lin, Y. C.; Miyamura, K.; Holmskov, U.; Reid, K. B.

    1996-01-01

    BACKGROUND: Early postnatal use of dexamethasone in infants with respiratory distress syndrome (RDS) has been shown effectively to improve pulmonary status and to allow early weaning off mechanical ventilation. However, the mechanisms to explain the beneficial effects of dexamethasone in ventilatory dependent preterm infants remain unclear. METHODS: A double blind, placebo controlled study was performed to determine the change in pulmonary ventilation of premature infants with RDS as a result of dexamethasone treatment, and to evaluate the effect of dexamethasone on the levels of surfactant-associated proteins A (SP-A) and D (SP-D) in the tracheal fluid from 34 premature infants with RDS and 29 control subjects. RESULTS: Dexamethasone treatment decreased fractional inspired oxygen concentration (FIO2), arterial carbon dioxide tension (PCO2), mean airway pressure (MAP), and facilitated successful weaning from mechanical ventilation. SP-A concentrations in the tracheal aspirates were increased at days 7 and 14, and SP-D concentrations were increased during the period from days 3 to 14 in the dexamethasone treated group compared with the control group. However, albumin levels in the tracheal aspirate samples were decreased after dexamethasone treatment over the period from days 3 to 14. There was an inverse correlation between PCO2 values and SP-A concentrations. CONCLUSIONS: These results suggest that early use of dexamethasone can improve pulmonary status and also increase SP-A and SP-D levels in the tracheal fluid in premature infants with RDS. PMID:8984701

  2. Human genome protein function database.

    PubMed Central

    Sorenson, D. K.

    1991-01-01

    A database which focuses on the normal functions of the currently-known protein products of the Human Genome was constructed. Information is stored as text, figures, tables, and diagrams. The program contains built-in functions to modify, update, categorize, hypertext, search, create reports, and establish links to other databases. The semi-automated categorization feature of the database program was used to classify these proteins in terms of biomedical functions. PMID:1807638

  3. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    NASA Astrophysics Data System (ADS)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  4. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  5. Critical Structural and Functional Roles for the N-Terminal Insertion Sequence in Surfactant Protein B Analogs

    PubMed Central

    Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Wang, Zhengdong; Jung, Chun-Ling; Ruchala, Piotr; Clark, Andrew P.; Smith, Wesley M.; Sharma, Shantanu; Notter, Robert H.

    2010-01-01

    Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of

  6. Surfactant protein D, a clinical biomarker for chronic obstructive pulmonary disease with excellent discriminant values

    PubMed Central

    AKIKI, ZEINA; FAKIH, DALIA; JOUNBLAT, RANIA; CHAMAT, SOULAIMA; WAKED, MIRNA; HOLMSKOV, UFFE; SORENSEN, GRITH L.; NADIF, RACHEL; SALAMEH, PASCALE

    2016-01-01

    Biological markers can help to better identify a disease or refine its diagnosis. In the present study, the association between surfactant protein D (SP-D) and chronic obstructive pulmonary disease (COPD) was studied among subjects consulting for respiratory diseases or symptoms and was compared with C-reactive protein (CRP) and fibrinogen. A further aim of this study was to identify the optimal cut-off point of SP-D able to discriminate COPD patients. A case-control study including 90 COPD patients, 124 asthma patients and 180 controls was conducted. Standardized questionnaires were administered and lung function tests were performed. Biological markers were measured in blood samples according to standardized procedures. The association between SP-D and COPD was investigated using logistic regression models. Receiver-operating characteristic curves were used for threshold identification. SP-D levels above the median value were positively associated with COPD [adjusted odds ratio (OR)=3.86, 95% confidence interval (CI): 1.51–9.85, P=0.005). No associations with COPD or asthma were found for CRP or fibrinogen levels. Scores for COPD diagnosis in all COPD patients or ever-smoker COPD patients were identified (sensitivity, 76.4 and 77.8%; specificity, 89.3 and 88.5%, respectively). The results indicate that SP-D can differentiate COPD from other respiratory symptoms or diseases. Used with socio-demographic characteristics and respiratory symptoms, SP-D is able to discriminate COPD patients from controls, particularly among smokers. PMID:26997985

  7. Linking surfactant protein SP-D and IL-13: implications in asthma and allergy.

    PubMed

    Qaseem, Asif S; Sonar, Sanchaita; Mahajan, Lakshna; Madan, Taruna; Sorensen, Grith L; Shamji, Mohamed H; Kishore, Uday

    2013-05-01

    Surfactant protein D (SP-D) is an innate immune molecule that plays a protective role against lung infection, allergy, asthma and inflammation. In vivo experiments with murine models have shown that SP-D can protect against allergic challenge via a range of mechanisms including inhibition of allergen-IgE interaction, histamine release by sensitised mast cells, downregulation of specific IgE production, suppression of pulmonary and peripheral eosinophilia, inhibition of mechanisms that cause airway remodelling, and induction of apoptosis in sensitised eosinophils. SP-D can also shift helper T cell polarisation following in vivo allergenic challenge, from pathogenic Th2 to a protective Th1 cytokine response. Interestingly, SP-D gene deficient (-/-) mice show an IL-13 over-expressing phenotype. IL-13 has been shown to be involved in the development of asthma. Transgenic mice over-expressing IL-13 in the lung develop several characteristics of asthma such as pulmonary eosinophilia, airway epithelial hyperplasia, mucus cell metaplasia, sub-epithelial fibrosis, charcot-Leyden-Like crystals, airways obstruction, and non-specific airways hyper-responsiveness to cholinergic stimulation. Although both IL-4 and IL-13 are capable of inducing asthma like phenotype, the effector activity of IL-13 appears to be greater than that of IL-4. SP-D -/- mice seem to express considerably higher levels of IL-13, which is consistent with increased sensitivity and exaggerated immune response of the mice to allergenic challenge. Allergenic exposure also induces elevation in SP-D protein levels in an IL-4/IL-13-dependent manner, which prevents further activation of sensitised T cells. This negative feedback loop seems essential in protecting the airways from inflammatory damage after allergen inhalation. Here, we examine this link between IL-13 and SP-D, and its implications in the progression/regulation of asthma and allergy. PMID:23220073

  8. Surfactant-associated protein A provides critical immunoprotection in neonatal mice.

    PubMed

    George, Caroline L S; Goss, Kelli L; Meyerholz, David K; Lamb, Fred S; Snyder, Jeanne M

    2008-01-01

    The collectins surfactant-associated protein A (SP-A) and SP-D are components of innate immunity that are present before birth. Both proteins bind pathogens and assist in clearing infection. The significance of SP-A and SP-D as components of the neonatal immune system has not been investigated. To determine the role of SP-A and SP-D in neonatal immunity, wild-type, SP-A null, and SP-D null mice were bred in a bacterium-laden environment (corn dust bedding) or in a semisterile environment (cellulose fiber bedding). When reared in the corn dust bedding, SP-A null pups had significant mortality (P < 0.001) compared to both wild-type and SP-D null pups exposed to the same environment. The mortality of the SP-A null pups was associated with significant gastrointestinal tract pathology but little lung pathology. Moribund SP-A null newborn mice exhibited Bacillus sp. and Enterococcus sp. peritonitis. When the mother or newborn produced SP-A, newborn survival was significantly improved (P < 0.05) compared to the results when there was a complete absence of SP-A in both the mother and the pup. Significant sources of SP-A likely to protect a newborn include the neonatal lung and gastrointestinal tract but not the lactating mammary tissue of the mother. Furthermore, exogenous SP-A delivered by mouth to newborn SP-A null pups with SP-A null mothers improved newborn survival in the corn dust environment. Therefore, a lack of SP-D did not affect newborn survival, while SP-A produced by either the mother or the pup or oral exogenous SP-A significantly reduced newborn mortality associated with environmentally induced infection in SP-A null newborns. PMID:17967856

  9. Purifying selection drives the evolution of surfactant protein C (SP-C) independently of body temperature regulation in mammals.

    PubMed

    Potter, Sally; Orgeig, Sandra; Donnellan, Stephen; Daniels, Christopher B

    2007-06-01

    The pulmonary surfactant system of heterothermic mammals must be capable of dealing with the effect of low body temperatures on the physical state of the lipid components. We have shown previously that there is a modest increase in surfactant cholesterol during periods of torpor, however these changes do not fully explain the capacity of surfactant to function under the wide range of physical conditions imposed by torpor. Here we examine indirectly the role of surfactant protein C (SP-C) in adapting to variable body temperatures by testing for the presence of positive (adaptive) selection during evolutionary transitions between heterothermy and homeothermy. We sequenced SP-C from genomic DNA of 32 mammalian species from groups of closely related heterothermic and homeothermic species (contrasts). We used phylogenetic analysis by maximum likelihood estimates of rates of non-synonymous to synonymous substitutions and fully Bayesian inference of these sequences to determine whether the mode of body temperature regulation exerts a selection pressure driving the molecular adaptation of SP-C. The protein sequence of SP-C is highly conserved with synonymous or highly conservative amino acid substitutions being predominant. The evolution of SP-C among mammals is characterised by high codon usage bias and high rates of transition/transversion. The only contrast to show evidence of positive selection was that of the bears (Ursus americanus and U. maritimus). The significance of this result is unclear. We show that SP-C is under strong evolutionary constraints, driven by purifying selection, presumably to maintain protein function despite variation in the mode of body temperature regulation. PMID:20483290

  10. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B

    PubMed Central

    Bañares-Hidalgo, Ángeles; Estrada, Pilar

    2016-01-01

    Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B), along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN) triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C) with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C) and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment. PMID:27380171

  11. Effects of the lung surfactant protein B construct Mini-B on lipid bilayer order and topography

    PubMed Central

    Palleboina, Dharamaraju; Waring, Alan J.; Notter, Robert H.; Booth, Valerie

    2013-01-01

    The hydrophobic lung surfactant protein, SP-B, is essential for survival. Cycling of lung volume during respiration requires a surface-active lipid–protein layer at the alveolar air–water interface. SP-B may contribute to surfactant layer maintenance and renewal by facilitating contact and transfer between the surface layer and bilayer reservoirs of surfactant material. However, only small effects of SP-B on phospholipid orientational order in model systems have been reported. In this study, N-terminal (SP-B8–25) and C-terminal (SP-B63–78) helices of SP-B, either linked as Mini-B or unlinked but present in equal amounts, were incorporated into either model phospholipid mixtures or into bovine lipid extract surfactant in the form of vesicle dispersions or mechanically oriented bilayer samples. Deuterium and phosphorus nuclear magnetic resonance (NMR) were used to characterize effects of these peptides on phospholipid chain orientational order, headgroup orientation, and the response of lipid–peptide mixtures to mechanical orientation by mica plates. Only small effects on chain orientational order or headgroup orientation, in either vesicle or mechanically oriented samples, were seen. In mechanically constrained samples, however, Mini-B and its component helices did have specific effects on the propensity of lipid–peptide mixtures to form unoriented bilayer populations which do not exchange with the oriented fraction on the timescale of the NMR experiment. Modification of local bilayer orientation, even in the presence of mechanical constraint, may be relevant to the transfer of material from bilayer reservoirs to a flat surface-active layer, a process that likely requires contact facilitated by the formation of highly curved protrusions. PMID:22903196

  12. Hypoxia-induced mitogenic factor modulates surfactant protein B and C expression in mouse lung.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Dodd-o, Jeffrey; Langer, John; Wang, Danming; Li, Dechun

    2006-01-01

    Previous studies have demonstrated a robust pulmonary expression of hypoxia-induced mitogenic factor (HIMF) during the perinatal period, when surfactant protein (SP) synthesis begins. We hypothesized that HIMF modulates SP expression and participates in lung development and maturation. The temporal-spatial expression of HIMF, SP-B, and SP-C in developing mouse lungs was examined by immunohistochemical staining, Western blot, and RT-PCR. The expression and localization of SP-B and SP-C were investigated in mouse lungs after intratracheal instillation of HIMF in adult mice. The effects of HIMF on SP-B and SP-C transcription activity, and on mRNA degradation, were investigated in mouse lung epithelial (MLE)-12 and C10 cells using the promoter-luciferase reporter assay and actinomycin D incubation. The activation of Akt, extracellular signal-regulated kinase (ERK)1/2, and p38 mitogen-activated protein kinase was explored by Western blot. Intratracheal instillation of HIMF resulted in significant increases of SP-B and SP-C production, predominantly localized to alveolar type II cells. In MLE-12 and C10 cells, HIMF enhanced SP-B and SP-C mRNA levels in a dose-dependent manner. Meanwhile, HIMF increased transcription activity and prevented actinomycin D-facilitated SP-B and SP-C mRNA degradation in MLE-12 cells. Incubation of cells with LY294002, PD098059, or U0126 abolished HIMF-induced Akt and ERK1/2 phosphorylation and suppressed HIMF-induced SP-B and SP-C production, whereas SB203580 had no effect. These results indicate that HIMF induces SP-B and SP-C production in mouse lungs and alveolar type II-like cell lines via activations of phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase, suggesting that HIMF plays critical roles in lung development and maturation. PMID:16166744

  13. In vitro analysis of the effect of alkyl-chain length of anionic surfactants on the skin by using a reconstructed human epidermal model.

    PubMed

    Yamaguchi, Fumiko; Watanabe, Shin-Ichi; Harada, Fusae; Miyake, Miyuki; Yoshida, Masaki; Okano, Tomomichi

    2014-01-01

    We investigated the effect of the alkyl-chain length of anionic surfactants on the skin using an in vitro model. The evaluated anionic surfactants were sodium alkyl sulfate (AS) and sodium fatty acid methyl ester sulfonate (MES), which had different alkyl-chain lengths (C8-C14). Skin tissue damage and permeability were examined using a reconstructed human epidermal model, LabCyte EPI-MODEL24. Skin tissue damage was examined by measuring cytotoxicity with an MTT assay. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) and liquid chromatography/mass spectrometry (LC/MS) were used to detect surfactants that permeated into the assay medium through an epidermal model. To assess the permeation mechanism and cell damage caused by the surfactants through the epidermis, we evaluated the structural changes of Bovine Serum Albumin (BSA), used as a simple model protein, and the fluidity of 1,2-dipalmitoyl-sn-glycero-3-phosphpcholine (DPPC) liposome, which serves as one of the most abundant phospholipid models of living cell membranes in the epidermis. The effects of the surfactants on the proteins were measured using Circular Dichroism (CD) spectroscopy, while the effects on membrane fluidity were investigated by electron spin resonance (ESR) spectroscopy. ET50 (the 50% median effective time) increased as follows: C10 < C12 < C8 < C14 in AS and C8, C10 < C12 < C14 in MES. The order of permeation through the LabCyte EPI-MODEL24 was C10 > C12 > C14, for both AS and MES. For both AS and MES, the order parameter, which is the criteria for the microscopic viscosity of lipid bilayers, increased as follows: C10 < C12 < C14, which means the membrane fluidity is C10 > C12 > C14. It was determined that the difference in skin tissue damage in the LabCyte EPI-MODEL24 with C10 to C14 AS and MES was caused by the difference in permeation and cell membrane fluidity through the lipid bilayer path in the epidermis. PMID:25213449

  14. Studies on the synthesis, characterization, human serum albumin binding and biological activity of single chain surfactant-cobalt(III) complexes.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K

    2016-03-01

    The interaction of surfactant-cobalt(III) complexes [Co(bpy)(dien)TA](ClO4)3 · 3H2O (1) and [Co(dien)(phen)TA](ClO4)3 · 4H2O (2), where bpy = 2,2'-bipyridine, dien = diethylenetriamine, phen = 1,10-phenanthroline and TA = tetradecylamine with human serum albumin (HSA) under physiological conditions was analyzed using steady state, synchronous, 3D fluorescence, UV/visabsorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of HSA through a static mechanism. The binding constant (Kb ) and number of binding-sites (n) were obtained at different temperatures. The corresponding thermodynamic parameters (∆G°, ∆H° and ∆S°) and Ea were also obtained. According to Förster's non-radiation energy transfer theory, the binding distance (r) between the complexes and HSA were calculated. The results of synchronous and 3D fluorescence spectroscopy indicate that the binding process has changed considerably the polarity around the fluorophores, along with changes in the conformation of the protein. The antimicrobial and anticancer activities of the complexes were tested and the results show that the complexes have good activities against pathogenic microorganisms and cancer cells. PMID:26250655

  15. Innate immunity of surfactant proteins A and D in urinary tract infection with uropathogenic Escherichia coli

    PubMed Central

    Hu, Fengqi; Ding, Guohua; Zhang, Zhiyong; Gatto, Louis A.; Hawgood, Samuel; Poulain, Francis R.; Cooney, Robert N.; Wang, Guirong

    2015-01-01

    To investigate the effects of surfactant proteins A and D (SP-A, SP-D) in urinary tract infection (UTI), SP-A and SP-D double knockout (SP-A/D KO) and wild type (WT) C57BL/6 female mice were infected with uropathogenic Escherichia coli by intravesical inoculation. Compared with WT mice SP-A/D KO mice showed increased susceptibility to UTI as evidenced by higher bacterial CFU, more infiltrating neutrophils and severe pathological changes. Keratinocyte-derived chemokine increased in the kidney of WT mice but not in SP-A/D KO mice 24 h post-infection. Compared to control, level of IL-17 was elevated in the kidney of infected WT and SP-A/D KO mice and the level of IL-17 was higher in the infected SP-A/D KO mice than infected WT mice 24 and 48 h post-infection. Basal level of p38 MAPK phosphorylation in SP-A/D KO mice was higher compared to WT mice. Phosphorylated-p38 level was elevated in the kidney of WT mice post-infection but not in SP-A/D KO mice. Furthermore, in vitro growth of uropathogenic E. coli was inhibited by SP-A and SP-D. We conclude that SP-A and SP-D function as mediators of innate immunity by inhibiting bacterial growth and modulating renal inflammation in part by regulating p38 MAPK-related pathway in murine UTI. PMID:26511057

  16. Innate immunity of surfactant proteins A and D in urinary tract infection with uropathogenic Escherichia coli.

    PubMed

    Hu, Fengqi; Ding, Guohua; Zhang, Zhiyong; Gatto, Louis A; Hawgood, Samuel; Poulain, Francis R; Cooney, Robert N; Wang, Guirong

    2016-01-01

    To investigate the effects of surfactant proteins A and D (SP-A and SP-D, respectively) in urinary tract infection (UTI), SP-A and SP-D double knockout (SP-A/D KO) and wild type (WT) C57BL/6 female mice were infected with uropathogenic Escherichia coli by intravesical inoculation. Compared with WT mice SP-A/D KO mice showed increased susceptibility to UTI, as evidenced by higher bacterial CFU, more infiltrating neutrophils and severe pathological changes. Keratinocyte-derived chemokine increased in the kidney of WT mice but not in SP-A/D KO mice 24 h post-infection. Compared with control, the level of IL-17 was elevated in the kidney of infected WT and SP-A/D KO mice and the level of IL-17 was higher in the infected SP-A/D KO mice than in infected WT mice 24 and 48 h post-infection. The basal level of p38 MAPK phosphorylation in SP-A/D KO mice was higher than in WT mice. The phosphorylated p38 level was elevated in the kidney of WT mice post infection but not in SP-A/D KO mice. Furthermore, in vitro growth of uropathogenic E. coli was inhibited by SP-A and SP-D. We conclude that SP-A and SP-D function as mediators of innate immunity by inhibiting bacterial growth and modulating renal inflammation in part by regulating p38 MAPK-related pathway in murine UTI. PMID:26511057

  17. Protective Role of Surfactant Protein D in Ocular Staphylococcus aureus Infection

    PubMed Central

    Zhang, Zhiyong; Abdel-Razek, Osama; Hawgood, Samuel; Wang, Guirong

    2015-01-01

    Staphylococcus aureus is one of the most common pathogens causing keratitis. Surfactant protein D (SP-D) plays a critical role in host defense and innate immunity. In order to investigate the role of SP-D in ocular S. aureus infection, the eyes of wild-type (WT) and SP-D knockout (SP-D KO) C57BL/6 mice were infected with S. aureus (107 CFU/eye) in the presence and absence of cysteine protease inhibitor(E64).Bacterial counts in the ocular surface were examined 3, 6, 12, 24 hrs after infection. Bacterial phagocytosis by neutrophils and bacterial invasion in ocular epithelial cells were evaluated quantitatively. S. aureus-induced ocular injury was determined with corneal fluorescein staining. The results demonstrated that SP-D is expressed in ocular surface epithelium and the lacrimal gland; WT mice had increased clearance of S. aureus from the ocular surface (p<0.05) and reduced ocular injury compared with SP-D KO mice. The protective effects of SP-D include increased bacterial phagocytosis by neutrophils (p<0.05) and decreased bacterial invasion into epithelial cells (p<0.05) in WT mice compared to in SP-D KO mice. In the presence of inhibitor (E64), WT mice showed enhanced bacterial clearance (p<0.05) and reduced ocular injury compared to absent E64 while SP-D KO mice did not. Collectively, we concluded that SP-D protects the ocular surface from S. aureus infection but cysteine protease impairs SP-D function in this murine model, and that cysteine protease inhibitor may be a potential therapeutic agent in S. aureus keratitis. PMID:26398197

  18. Serum Levels of Surfactant Proteins in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE)

    PubMed Central

    Papaioannou, Andriana I.; Kostikas, Konstantinos; Manali, Effrosyni D.; Papadaki, Georgia; Roussou, Aneza; Spathis, Aris; Mazioti, Argyro; Tomos, Ioannis; Papanikolaou, Ilias; Loukides, Stelios; Chainis, Kyriakos; Karakitsos, Petros; Griese, Matthias; Papiris, Spyros

    2016-01-01

    Introduction Emphysema and idiopathic pulmonary fibrosis (IPF) present either per se or coexist in combined pulmonary fibrosis and emphysema (CPFE). Serum surfactant proteins (SPs) A, B, C and D levels may reflect lung damage. We evaluated serum SP levels in healthy controls, emphysema, IPF, and CPFE patients and their associations to disease severity and survival. Methods 122 consecutive patients (31 emphysema, 62 IPF, and 29 CPFE) and 25 healthy controls underwent PFTs, ABG-measurements, 6MWT and chest HRCT. Serum levels of SPs were measured. Patients were followed-up for 1-year. Results SP-A and SP-D levels differed between groups (p = 0.006 and p<0.001 respectively). In post-hoc analysis, SP-A levels differed only between controls and CPFE (p<0.05) and CPFE and emphysema (p<0.05). SP-D differed between controls and IPF or CPFE (p<0.001 for both comparisons). In IPF SP-B correlated to pulmonary function while SP-A, correlated to the Composite Physiological Index (CPI). Controls current smokers had higher SP-A and SP-D levels compared to non-smokers (p = 0.026 and p = 0.023 respectively). SP-D levels were higher in CPFE patients with extended emphysema (p = 0.042). In patients with IPF, SP-B levels at the upper quartile of its range (≥26 ng/mL) presented a weak association with reduced survival (p = 0.05). Conclusion In conclusion, serum SP-A and SP-D levels were higher where fibrosis exists or coexists and related to disease severity, suggesting that serum SPs relate to alveolar damage in fibrotic lungs and may reflect either local overproduction or overleakage. The weak association between high levels of SP-B and survival needs further validation in clinical trials. PMID:27337142

  19. Surfactant protein (SP)-A suppresses preterm delivery and inflammation via TLR2.

    PubMed

    Agrawal, Varkha; Smart, Keith; Jilling, Tamas; Hirsch, Emmet

    2013-01-01

    Toll like receptors (TLRs) are pattern-recognition molecules that initiate the innate immune response to pathogens. Pulmonary surfactant protein (SP)-A is an endogenously produced ligand for TLR2 and TLR4. SP-A has been proposed as a fetally produced signal for the onset of parturition in the mouse. We examined the effect of interactions between SP-A and the pathogenic TLR agonists lipopolysaccharide (LPS), peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C)) (ligands for TLR4, TLR2 and TLR3, respectively) on the expression of inflammatory mediators and preterm delivery. Three types of mouse macrophages (the cell line RAW 264.7, and fresh amniotic fluid and peritoneal macrophages, including macrophages from TLR4 and TLR2 knockout mice) were treated for up to 7 hours with pathogenic TLR agonists with or without SP-A. SP-A alone had no effect upon inflammatory mediators in mouse macrophages and did not independently induce preterm labor. SP-A significantly suppressed TLR ligand-induced expression of inflammatory mediators (interleukin (IL)-1β, tumor necrosis factor (TNF)-α and the chemokine CCL5) via a TLR2 dependent mechanism. In a mouse inflammation-induced preterm delivery model, intrauterine administration of SP-A significantly inhibited preterm delivery, suppressed the expression of proinflammatory mediators and enhanced the expression of the CXCL1 and anti-inflammatory mediator IL-10. We conclude that SP-A acts via TLR2 to suppress TLR ligand-induced preterm delivery and inflammatory responses. PMID:23700442

  20. Surfactant protein A genetic variants associate with severe respiratory insufficiency in pandemic influenza A virus infection

    PubMed Central

    2014-01-01

    Introduction Inherited variability in host immune responses influences susceptibility and outcome of Influenza A virus (IAV) infection, but these factors remain largely unknown. Components of the innate immune response may be crucial in the first days of the infection. The collectins surfactant protein (SP)-A1, -A2, and -D and mannose-binding lectin (MBL) neutralize IAV infectivity, although only SP-A2 can establish an efficient neutralization of poorly glycosylated pandemic IAV strains. Methods We studied the role of polymorphic variants at the genes of MBL (MBL2), SP-A1 (SFTPA1), SP-A2 (SFTPA2), and SP-D (SFTPD) in 93 patients with H1N1 pandemic 2009 (H1N1pdm) infection. Results Multivariate analysis showed that two frequent SFTPA2 missense alleles (rs1965708-C and rs1059046-A) and the SFTPA2 haplotype 1A0 were associated with a need for mechanical ventilation, acute respiratory failure, and acute respiratory distress syndrome. The SFTPA2 haplotype 1A1 was a protective variant. Kaplan-Meier analysis and Cox regression also showed that diplotypes not containing the 1A1 haplotype were associated with a significantly shorter time to ICU admission in hospitalized patients. In addition, rs1965708-C (P = 0.0007), rs1059046-A (P = 0.0007), and haplotype 1A0 (P = 0.0004) were associated, in a dose-dependent fashion, with lower PaO2/FiO2 ratio, whereas haplotype 1A1 was associated with a higher PaO2/FiO2 ratio (P = 0.001). Conclusions Our data suggest an effect of genetic variants of SFTPA2 on the severity of H1N1pdm infection and could pave the way for a potential treatment with haplotype-specific (1A1) SP-A2 for future IAV pandemics. PMID:24950659

  1. Pro–Surfactant Protein B As a Biomarker for Lung Cancer Prediction

    PubMed Central

    Sin, Don D.; Tammemagi, C. Martin; Lam, Stephen; Barnett, Matt J.; Duan, Xiaobo; Tam, Anthony; Auman, Heidi; Feng, Ziding; Goodman, Gary E.; Hanash, Samir; Taguchi, Ayumu

    2013-01-01

    Purpose Preliminary studies have identified pro–surfactant protein B (pro-SFTPB) to be a promising blood biomarker for non–small-cell lung cancer. We conducted a study to determine the independent predictive potential of pro-SFTPB in identifying individuals who are subsequently diagnosed with lung cancer. Patients and Methods Pro-SFTPB levels were measured in 2,485 individuals, who enrolled onto the Pan-Canadian Early Detection of Lung Cancer Study by using plasma sample collected at the baseline visit. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB in addition to known lung cancer risk factors. Calibration and discrimination were evaluated, the latter by an area under the receiver operating characteristic curve (AUC). External validation was performed with samples collected in the Carotene and Retinol Efficacy Trial (CARET) participants using a case-control study design. Results Adjusted for age, sex, body mass index, personal history of cancer, family history of lung cancer, forced expiratory volume in one second percent predicted, average number of cigarettes smoked per day, and smoking duration, pro-SFTPB (log transformed) had an odds ratio of 2.220 (95% CI, 1.727 to 2.853; P < .001). The AUCs of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95% CI, 0.620 to 0.717; difference in AUC P < .001). In the CARET Study, the use of pro-SFPTB yielded an AUC of 0.683 (95% CI, 0.604 to 0.761). Conclusion Pro-SFTPB in plasma is an independent predictor of lung cancer and may be a valuable addition to existing lung cancer risk prediction models. PMID:24248694

  2. Cationic surfactants in the form of nanoparticles and micelles elicit different human neutrophil responses: a toxicological study.

    PubMed

    Hwang, Tsong-Long; Sung, Calvin T; Aljuffali, Ibrahim A; Chang, Yuan-Ting; Fang, Jia-You

    2014-02-01

    Cationic surfactants are an ingredient commonly incorporated into nanoparticles for clinical practicability; however, the toxicity of cationic surfactants in nanoparticles is not fully elucidated. We aimed to evaluate the inflammatory responses of cationic nanobubbles and micelles in human neutrophils. Soyaethyl morpholinium ethosulfate (SME) and hexadecyltrimethyl-ammonium bromide (CTAB) are the two cationic surfactants employed in this study. The zeta potential of CTAB nanobubbles was 80 mV, which was the highest among all formulations. Nanobubbles, without cationic surfactants, showed no cytotoxic effects on neutrophils in terms of inflammatory responses. Cationic nanobubbles caused a concentration-dependent cytotoxicity of degranulation (elastase release) and membrane damage (release of lactate dehydrogenase, LDH). Among all nanoparticles and micelles, CTAB-containing nanosystems showed the greatest inflammatory responses. A CTAB nanobubble diluent (1/150) increased the LDH release 80-fold. Propidium iodide staining and scanning electron microscopy (SEM) verified cell death and morphological change of neutrophils treated by CTAB nanobubbles. SME, in a micelle form, strengthened the inflammatory response more than SME-loaded nanobubbles. Membrane interaction and subsequent Ca(2+) influx were the mechanisms that triggered inflammation. The information obtained from this work is beneficial in designing nanoparticulate formulations for balancing clinical activity and toxicity. PMID:24246197

  3. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    PubMed

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes. PMID:25333871

  4. Surfactant protein C peptides with salt-bridges (“ion-locks”) promote high surfactant activities by mimicking the α-helix and membrane topography of the native protein

    PubMed Central

    Waring, Alan J.; Hernández-Juviel, José M.; Ruchala, Piotr; Wang, Zhengdong; Notter, Robert H.; Gordon, Larry M.

    2014-01-01

    Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as ‘helical adjuvants’ to maintain activity by overriding the β-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges (“ion-locks”) promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu−–Lys+ into the parent SP-C’s. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with ‘amyloid-like’ properties. The enhanced β-sheet properties

  5. Simultaneous separation of acidic and basic proteins using gemini pyrrolidinium surfactants and hexafluoroisopropanol as dynamic coating additives in capillary electrophoresis.

    PubMed

    Tian, Yu; Li, Yunfang; Mei, Jie; Cai, Bo; Dong, Jinfeng; Shi, Zhiguo; Xiao, Yuxiu

    2015-09-18

    The separation of acidic and basic proteins using CE has been limited in part due to the adsorption of proteins onto the capillary wall. In this work, the efficient control of EOF and the simultaneous separation of acidic and basic proteins are achieved by use of C18-4-C18PB as a dynamic coating additive, which is a representative surfactant for 1,1'-(butane-1,s-alkyl)bis(1-alkylpyrrolidinium) bromide (Cn-4-CnPB, n=10, 12, 14, 16 and 18). C18-4-C18PB exhibits a powerful capability in the reversal of EOF, and a low concentration even less than 0.001 mM is sufficient to reverse EOF at the tested pH values (3.0-9.0). Baseline separation of eight proteins with sharp peaks and high efficiencies (54,000-297,000 plates/m) is obtained with 30 mM NaH2PO4 buffer (pH 5.0) containing 4 mM C18-4-C18PB. At the same buffer condition, the Cn-4-CnPB with shorter alkyl chain (n=10, 12, 14, 16) cannot achieve the same effective protein separation as C18-4-C18PB. However, the combined use of small amounts (≤0.5%, v/v) of hexafluoroisopropanol (HFIP) and Cn-4-CnPB (n=10, 12, 14, 16) as additives can completely separate all eight proteins with high efficiencies of 81,000-318,000 plates/m. The RSDs of migration time are less than 0.80% and 5.84% for run-to-run and day-to-day assays (n=5), respectively, and the protein recoveries are larger than 90.15%. To the best of our knowledge, this is the first report on the simultaneous separation of acidic and basic proteins using Cn-4-CnPB surfactants or Cn-4-CnPB surfactants combined with HFIP as dynamic coating additives. PMID:26300480

  6. A non-aggregating Surfactant Protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling

    PubMed Central

    Beers, Michael F.; Hawkins, Arie; Maguire, Jean Ann; Kotorashvili, Adam; Zhao, Ming; Newitt, Jennifer L.; Ding, Wenge; Russo, Scott; Guttentag, Susan; Gonzales, Linda; Mulugeta, Surafel

    2011-01-01

    Interstitial lung disease in both children and adults has been linked to mutations in the lung-specific Surfactant protein C gene (SFTPC). Among these, the missense mutation (isoleucine to threonine at codon 73 = hSP-CI73T) accounts for ~30% of all described SFTPC mutations. We reported previously that unlike the BRICHOS misfolding SFTPC mutants, expression of hSP-CI73T induces lung remodeling and alveolar lipoproteinosis without a substantial ER stress response or ER-mediated intrinsic apoptosis. We show here that, in contrast to its wild type counterpart that is directly routed to lysosomal-like organelles for processing, SP-CI73T is misdirected to the plasma membrane and subsequently internalized to the endocytic pathway via early endosomes, leading to the accumulation of abnormally processed proSP-C isoforms. Functionally, cells expressing hSP-CI73T demonstrated both impaired uptake and degradation of surfactant phospholipid, thus providing a molecular mechanism for the observed lipid accumulation in patients expressing hSP-CI73T through the disruption of normal phospholipid recycling. Our data provide evidence for a novel cellular mechanism for conformational protein associated diseases, and suggest a paradigm for mistargeted proteins involved in the disruption of the endosomal/lysosomal sorting machinery. PMID:21707890

  7. Quantitative analysis of surfactant deposits on human skin by liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Massey, Karen A; Snelling, Anna M; Nicolaou, Anna

    2010-05-15

    Surfactants are commonly used as cleansing agents and yet there are concerns that they may also have a role in skin irritation. The lack of suitable methods for the quantitative and qualitative analysis of surfactant deposition on skin has hindered the in-depth investigation of such effects. Here, we report the application of reversed-phase liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) assays for two surfactants commonly used in consumer products, namely sodium lauryl ether sulfate (SLES) and laurylamidopropyl betaine (LAPB), to a baseline study aiming to assess deposition levels on human skin. The linearity of the assays was established at 3-20 ng, with coefficient of variation below 5%. The detection limits were 100 pg for LAPB and 1 ng for SLES; quantitation limits were 500 pg for LAPB and 2.5 ng for SLES. The baseline study was conducted using a panel of 40 healthy volunteers. Skin extract samples were taken in triplicate from forearms, using ethanol. SLES was detected on most volunteers, with 75% of them having SLES deposits in the range of 100-600 ng/cm(2). LAPB was detected on the skin of all volunteers with 85% of them having deposit levels within the concentration range of 1-100 ng/cm(2). These results demonstrate the extent to which commonly used surfactants remain on the skin during the day. The analytical methods reported here can be applied to the investigation of surfactants in relation to general skin condition and to the development and optimisation of new consumer wash products. PMID:20391611

  8. The Role of Surfactant in Respiratory Distress Syndrome

    PubMed Central

    Ma, Christopher Cheng-Hwa; Ma, Sze

    2012-01-01

    The key feature of respiratory distress syndrome (RDS) is the insufficient production of surfactant in the lungs of preterm infants. As a result, researchers have looked into the possibility of surfactant replacement therapy as a means of preventing and treating RDS. We sought to identify the role of surfactant in the prevention and management of RDS, comparing the various types, doses, and modes of administration, and the recent development. A PubMed search was carried out up to March 2012 using phrases: surfactant, respiratory distress syndrome, protein-containing surfactant, protein-free surfactant, natural surfactant, animal-derived surfactant, synthetic surfactant, lucinactant, surfaxin, surfactant protein-B, surfactant protein-C. Natural, or animal-derived, surfactant is currently the surfactant of choice in comparison to protein-free synthetic surfactant. However, it is hoped that the development of protein-containing synthetic surfactant, such as lucinactant, will rival the efficacy of natural surfactants, but without the risks of their possible side effects. Administration techniques have also been developed with nasal continuous positive airway pressure (nCPAP) and selective surfactant administration now recommended; multiple surfactant doses have also reported better outcomes. An aerosolised form of surfactant is being trialled in the hope that surfactant can be administered in a non-invasive way. Overall, the advancement, concerning the structure of surfactant and its mode of administration, offers an encouraging future in the management of RDS. PMID:22859930

  9. Protein Evolution of Human Milk.

    PubMed

    Thakkar, Sagar K; Giuffrida, Francesca; Bertschy, Emmanuelle; De Castro, Antonio; Destaillats, Frédéric; Lee, Le Ye

    2016-01-01

    Given the documented short- and long-term advantages of breastfeeding, human milk (HM) as a sole source of nutrition for the first few months of newborn life is considered a normative standard. Each macroconstituent of HM plays a crucial role in the growth and development of the baby. Lipids are largely responsible for providing more than 50% of the energy as well as providing essential fatty acids and minor lipids that are integral to all cell membranes. Carbohydrates can be broadly divided into lactose and oligosaccharides, which are a readily digestible source of glucose and indigestible nonnutritive components, respectively. Proteins in HM provide essential amino acids indispensable for the growth of infants. What is more interesting is that protein concentration profoundly changes from colostrum to mature milk. In this report, we share data from an observatory, single-center, longitudinal trial assessing the constituents of HM collected 30, 60 and 120 days postpartum from 50 mothers (singleton deliveries: 25 male and 25 female infants). The protein content decreased with evolving stages of lactation from an average of 1.45 to 1.38 g/100 ml. The data did not show any gender differences as it was reported for lipid content at 120 days postpartum by our group. Additionally, we also share consolidated literature data on protein evolution of HM during the first year of lactation. PMID:27336906

  10. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  11. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response.

    PubMed

    Carreto-Binaghi, Laura Elena; Aliouat, El Moukhtar; Taylor, Maria Lucia

    2016-01-01

    Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs' surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host's lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins' regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways. PMID:27250970

  12. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  13. Protective effects of surfactant protein D treatment in 1,3-β-glucan-modulated allergic inflammation.

    PubMed

    Fakih, Dalia; Pilecki, Bartosz; Schlosser, Anders; Jepsen, Christine S; Thomsen, Laura K; Ormhøj, Maria; Watson, Alastair; Madsen, Jens; Clark, Howard W; Barfod, Kenneth K; Hansen, Soren; Marcussen, Niels; Jounblat, Rania; Chamat, Soulaima; Holmskov, Uffe; Sorensen, Grith L

    2015-12-01

    Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-β-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-β-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-β-glucan, or OVA/1,3-β-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-β-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-β-glucan, but were reversed with rfhSP-D treatment. 1,3-β-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-β-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-β-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma. PMID:26432866

  14. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  15. Diseases of pulmonary surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A; Wert, Susan E; Weaver, Timothy E

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  16. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  17. Comparative surfactant reactivity of canine and human stratum corneum: a plea for the use of the corneosurfametry bioassay.

    PubMed

    Goffin, V; Fontaine, J; Piérard, G E

    1999-01-01

    Comparative dermatology has paid little attention to the physiopathology of the stratum corneum. In this study, we investigated the responses of human and canine horny layers to marketed animal wash products by using the corneosurfametry bioassay. Previous work has shown that, with increasing surfactant aggressiveness to the stratum corneum, the colorimetric index of mildness (CIM) decreases, while both the corneosurfametry index (CSMI) and the overall difference in corneosurfametry (ODC) increase. In the present study, stratum corneum reactivity to wash products and inter-individual variability were significantly higher in humans than in dogs. For the three corneosurfametry variables, linear correlations were found between data gathered in the two panel groups. In conclusion, this pilot study suggests that mean stratum corneum reactivity to surfactants is stronger in humans than in dogs. Inter-individual variation, indicative of sensitive skin, also appears to be broader in humans. As a consequence, data gathered from dogs by using the corneosurfametry bioassay cannot be extrapolated to humans. Such variation between species could be important in the assessment of product safety and in supporting claims for mildness. PMID:25423404

  18. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations. PMID:12640270

  19. High resolution mass spectrometric alveolar proteomics: identification of surfactant protein SP-A and SP-D modifications in proteinosis and cystic fibrosis patients.

    PubMed

    Bai, Yu; Galetskiy, Dmitry; Damoc, Eugen; Paschen, Christian; Liu, Zhiqiang; Griese, Mathias; Liu, Shuying; Przybylski, Michael

    2004-08-01

    In the present study, one- and two-dimensional gel electrophoresis combined with high resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) have been applied as powerful approaches for the proteome analysis of surfactant proteins SP-A and SP-D, including identification of structurally modified and truncation forms, in bronchoalveolar lavage fluid from patients with cystic fibrosis, chronic bronchitis and pulmonary alveolar proteinosis. Highly sensitive micropreparation techniques were developed for matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS analysis which provided the identification of surfactant proteins at very low levels. Owing to the high resolution, FT-ICR MS was found to provide substantial advantages for the structural identification of surfactant proteins from complex biological matrices with high mass determination accuracy. Several protein bands corresponding to SP-A and SP-D were identified by MALDI-FT-ICR MS after electrophoretic separation by one- and two-dimensional gel electrophoresis, and provided the identification of structural modifications (hydroxy-proline) and degradation products. The high resolution mass spectrometric proteome analysis should facilitate the unequivocal identification of subunits, aggregations, modifications and degradation products of surfactant proteins and hence contribute to the understanding of the mechanistic basis of lung disease pathogenesis. PMID:15274124

  20. Extreme multifunctional proteins identified from a human protein interaction network

    PubMed Central

    Chapple, Charles E.; Robisson, Benoit; Spinelli, Lionel; Guien, Céline; Becker, Emmanuelle; Brun, Christine

    2015-01-01

    Moonlighting proteins are a subclass of multifunctional proteins whose functions are unrelated. Although they may play important roles in cells, there has been no large-scale method to identify them, nor any effort to characterize them as a group. Here, we propose the first method for the identification of ‘extreme multifunctional' proteins from an interactome as a first step to characterize moonlighting proteins. By combining network topological information with protein annotations, we identify 430 extreme multifunctional proteins (3% of the human interactome). We show that the candidates form a distinct sub-group of proteins, characterized by specific features, which form a signature of extreme multifunctionality. Overall, extreme multifunctional proteins are enriched in linear motifs and less intrinsically disordered than network hubs. We also provide MoonDB, a database containing information on all the candidates identified in the analysis and a set of manually curated human moonlighting proteins. PMID:26054620

  1. Human protein reference database--2006 update.

    PubMed

    Mishra, Gopa R; Suresh, M; Kumaran, K; Kannabiran, N; Suresh, Shubha; Bala, P; Shivakumar, K; Anuradha, N; Reddy, Raghunath; Raghavan, T Madhan; Menon, Shalini; Hanumanthu, G; Gupta, Malvika; Upendran, Sapna; Gupta, Shweta; Mahesh, M; Jacob, Bincy; Mathew, Pinky; Chatterjee, Pritam; Arun, K S; Sharma, Salil; Chandrika, K N; Deshpande, Nandan; Palvankar, Kshitish; Raghavnath, R; Krishnakanth, R; Karathia, Hiren; Rekha, B; Nayak, Rashmi; Vishnupriya, G; Kumar, H G Mohan; Nagini, M; Kumar, G S Sameer; Jose, Rojan; Deepthi, P; Mohan, S Sujatha; Gandhi, T K B; Harsha, H C; Deshpande, Krishna S; Sarker, Malabika; Prasad, T S Keshava; Pandey, Akhilesh

    2006-01-01

    Human Protein Reference Database (HPRD) (http://www.hprd.org) was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein-protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein-protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (http://www.genprot.org), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data. PMID:16381900

  2. Lysophospholipid generation and phosphatidylglycerol depletion in phospholipase A(2)-mediated surfactant dysfunction.

    PubMed

    Hite, R Duncan; Seeds, Michael C; Safta, Anca M; Jacinto, Randolph B; Gyves, Julianna I; Bass, David A; Waite, B Moseley

    2005-04-01

    Pulmonary surfactant's complex mixture of phospholipids and proteins reduces the work of breathing by lowering alveolar surface tension during respiration. One mechanism of surfactant damage appears to be the hydrolysis of phospholipid by phospholipases activated in the inflamed lung. Humans have several candidate secretory phospholipase A(2) (sPLA(2)) enzymes in lung cells and infiltrating leukocytes that could damage extracellular surfactant. We considered two mechanisms of surfactant disruption by five human sPLA(2)s, including generation of lysophospholipids and the depletion of specific phospholipids. All five sPLA(2)s studied ultimately caused surfactant dysfunction. Each enzyme exhibited a different pattern of hydrolysis of surfactant phospholipids. Phosphatidylcholine, the major phospholipid in surfactant and the greatest potential source for generation of lysophospholipids, was susceptible to hydrolysis by group IB, group V, and group X sPLA(2)s, but not group IIA or IID. Group IIA hydrolyzed both phosphatidylethanolamine and phosphatidylglycerol, whereas group IID was active against only phosphatidylglycerol. Thus, with groups IB and X, the generation of lysophospholipids corresponded with surfactant dysfunction. However, hydrolysis of and depletion of phosphatidylglycerol had a greater correlation with surfactant dysfunction for groups IIA and IID. Surfactant dysfunction caused by group V sPLA(2) is less clear and may be the combined result of both mechanisms. PMID:15516491

  3. Palmitoylation of Pulmonary Surfactant Protein SP-C Is Critical for Its Functional Cooperation with SP-B to Sustain Compression/Expansion Dynamics in Cholesterol-Containing Surfactant Films

    PubMed Central

    Baumgart, Florian; Ospina, Olga L.; Mingarro, Ismael; Rodríguez-Crespo, Ignacio; Pérez-Gil, Jesús

    2010-01-01

    Recent data suggest that a functional cooperation between surfactant proteins SP-B and SP-C may be required to sustain a proper compression-expansion dynamics in the presence of physiological proportions of cholesterol. SP-C is a dually palmitoylated polypeptide of 4.2 kDa, but the role of acylation in SP-C activity is not completely understood. In this work we have compared the behavior of native palmitoylated SP-C and recombinant nonpalmitoylated versions of SP-C produced in bacteria to get a detailed insight into the importance of the palmitic chains to optimize interfacial performance of cholesterol-containing surfactant films. We found that palmitoylation of SP-C is not essential for the protein to promote rapid interfacial adsorption of phospholipids to equilibrium surface tensions (∼22 mN/m), in the presence or absence of cholesterol. However, palmitoylation of SP-C is critical for cholesterol-containing films to reach surface tensions ≤1 mN/m at the highest compression rates assessed in a captive bubble surfactometer, in the presence of SP-B. Interestingly, the ability of SP-C to facilitate reinsertion of phospholipids during expansion was not impaired to the same extent in the absence of palmitoylation, suggesting the existence of palmitoylation-dependent and -independent functions of the protein. We conclude that palmitoylation is key for the functional cooperation of SP-C with SP-B that enables cholesterol-containing surfactant films to reach very low tensions under compression, which could be particularly important in the design of clinical surfactants destined to replacement therapies in pathologies such as acute respiratory distress syndrome. PMID:21081071

  4. Interactions of the C-terminus of lung surfactant protein B with lipid bilayers are modulated by acyl chain saturation.

    PubMed

    Antharam, Vijay C; Farver, R Suzanne; Kuznetsova, Anna; Sippel, Katherine H; Mills, Frank D; Elliott, Douglas W; Sternin, Edward; Long, Joanna R

    2008-11-01

    Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and (31)P and (2)H solid-state NMR spectroscopy. SP-B(59-80) forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B(59-80) in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B(59-80); in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B(59-80) penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL(4), a peptide mimetic of SP-B which was originally designed using SP-B(59-80) as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment. PMID:18694722

  5. Severe respiratory insufficiency during pandemic H1N1 infection: prognostic value and therapeutic potential of pulmonary surfactant protein A.

    PubMed

    Tolosa, Monica Fern; Palaniyar, Nades

    2014-01-01

    For almost two decades, studies have shown collectins to be critical for effective antimicrobial defense of the airways. Members of this protein family, which includes surfactant proteins (SP)-A and D, provide broad-spectrum protection through promoting the aggregation and clearance of pathogens. Interestingly, these proteins may also modulate the immune response, and growing evidence has shown collectins to be protective against several markers of inflammation and injury. In a recent study by Herrera-Ramos and colleagues, genetic variants of collectins were examined in Spanish patients with the pandemic 2009 H1N1 influenza A virus. Comparing genotypes for measures of poor lung function, inflammation, and admission to intensive care, these authors identified three variants of the SP-A gene SFTPA2 that positively correlated with flu severity. Remarkably, they also found the haplotype 1A(1) of SFTPA2 to be protective against these indicators, suggesting that targeted therapy with a recombinant form of SP-A2 may improve patient outcome. Although further work is required to confirm the specificity and efficacy of SP-A in therapeutic H1N1 protection, this study is one of the first to suggest a clinical role for SP-A in pandemic influenza. PMID:25184962

  6. Human protein reference database—2006 update

    PubMed Central

    Mishra, Gopa R.; Suresh, M.; Kumaran, K.; Kannabiran, N.; Suresh, Shubha; Bala, P.; Shivakumar, K.; Anuradha, N.; Reddy, Raghunath; Raghavan, T. Madhan; Menon, Shalini; Hanumanthu, G.; Gupta, Malvika; Upendran, Sapna; Gupta, Shweta; Mahesh, M.; Jacob, Bincy; Mathew, Pinky; Chatterjee, Pritam; Arun, K. S.; Sharma, Salil; Chandrika, K. N.; Deshpande, Nandan; Palvankar, Kshitish; Raghavnath, R.; Krishnakanth, R.; Karathia, Hiren; Rekha, B.; Nayak, Rashmi; Vishnupriya, G.; Kumar, H. G. Mohan; Nagini, M.; Kumar, G. S. Sameer; Jose, Rojan; Deepthi, P.; Mohan, S. Sujatha; Gandhi, T. K. B.; Harsha, H. C.; Deshpande, Krishna S.; Sarker, Malabika; Prasad, T. S. Keshava; Pandey, Akhilesh

    2006-01-01

    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data. PMID:16381900

  7. Granulocyte-macrophage colony-stimulating factor and pulmonary surfactant homeostasis.

    PubMed

    Reed, J A; Whitsett, J A

    1998-01-01

    Pulmonary surfactant lining the alveolus of the lung is critical to postnatal adaptation to air breathing. Precise concentrations of surfactant proteins and lipids are maintained in the alveolar space by a careful balance among synthesis, recycling, and catabolism. Pulmonary alveolar proteinosis is a rare pulmonary disease associated with accumulation of surfactant lipids and proteins in the alveolar spaces. Recent work with transgenic mice demonstrated that disruption of the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) or the common beta-subunit of the GM-CSF receptor caused alveolar proteinosis that was histologically similar to that seen in human patients. The defect in surfactant homeostasis is caused by decreased surfactant clearance, mediated (at least in part) by dysfunction of the alveolar macrophage. Local production of GM-CSF corrects the alveolar proteinosis in the GM-CSF knockout mouse. Likewise, transplantation of wild-type bone marrow cells expressing the common beta-chain of the GM-CSF receptor restores surfactant homeostasis in the GM-CSF receptor knockout mouse. These studies demonstrate the previously unanticipated role of GM-CSF signaling in surfactant homeostasis, mediated (at least in part) by its actions on the clearance of surfactant lipids and proteins by the alveolar macrophage. These findings may have important implications for the diagnosis and treatment of pulmonary alveolar proteinosis syndromes in humans. PMID:9686680

  8. Decreased Expression of Surfactant Protein Genes Is Associated with an Increased Expression of Forkhead Box M1 Gene in the Fetal Lung Tissues of Premature Rabbits

    PubMed Central

    Hahn, Won-Ho; Chang, Ji-Young; Lee, Kyung Suk

    2013-01-01

    Purpose Recently, Forkhead box M1 (FoxM1) was reported to be correlated with lung maturation and expression of surfactant proteins (SPs) in mice models. However, no study has been conducted in rabbit lungs despite their high homology with human lungs. Thus, we attempted to investigate serial changes in the expressions of FoxM1 and SP-A/B throughout lung maturation in rabbit fetuses. Materials and Methods Pregnant New Zealand White rabbits were grouped according to gestational age from 5 days before to 2 days after the day of expected full term delivery (F5, F4, F3, F2, F1, F0, P1, and P2). A total of 64 fetuses were enrolled after Cesarean sections. The expressions of mRNA and proteins of FoxM1 and SP-A/B in fetal lung tissue were tested by quantitative reverse-transcriptase real-time PCR and Western blot. Furthermore, their correlations were analyzed. Results The mRNA expression of SP-A/B showed an increasing tendency positively correlated with gestational age, while the expression of FoxM1 mRNA and protein decreased from F5 to F0. A significant negative correlation was found between the expression levels of FoxM1 and SP-A/B (SP-A: R=-0.517, p=0.001; SP-B: R=-0.615, p<0.001). Conclusion Preterm rabbits demonstrated high expression of FoxM1 mRNA and protein in the lungs compared to full term rabbits. Also, the expression of SP-A/B was inversely related with serial changes in FoxM1 expression. This is the first report to suggest an association between FoxM1 and expression of SP-A/B and lung maturation in preterm rabbits. PMID:24142647

  9. Utilization of modified surfactant-associated protein B for delivery of DNA to airway cells in culture.

    PubMed Central

    Baatz, J E; Bruno, M D; Ciraolo, P J; Glasser, S W; Stripp, B R; Smyth, K L; Korfhagen, T R

    1994-01-01

    Pulmonary surfactant lines the airway epithelium and creates a potential barrier to successful transfection of the epithelium in vivo. Based on the functional properties of pulmonary surfactant protein B (SP-B) and the fact that this protein is neither toxic nor immunogenic in the airway, we hypothesized that SP-B could be modified to deliver DNA to airway cells. We have modified native bovine SP-B by the covalent linkage of poly(lysine) (average molecular mass of 3.3 or 10 kDa) to the N terminus of SP-B and formed complexes between a test plasmid and the modified SP-B. Transfection efficiency was determined by transfection of pulmonary adenocarcinoma cells (H441) in culture with the test plasmid pCPA-RSV followed by measurement of activity of the reporter gene encoding chloramphenicol acetyltransferase (CAT). Transfections were performed with DNA.protein complexes using poly(lysine)10kDa-SP-B ([Lys]10kDa-SP-B) or poly(lysine)3.3kDa-SP-B ([Lys]3.3kDa-SP-B), and results were compared with transfections using unmodified poly(lysine).DNA, unmodified SP-B.DNA, or DNA only. For [Lys]10kDa-SP-B.pCPA-RSV preparations, CAT activity was readily detectable above the background of [Lys]3.3kDa-SP-B or unmodified SP-B. The SP-B-poly(lysine) conjugates were effective over a broad range of protein-to-DNA molar ratios, although they were optimal at approximately 500:1-1000:1. Transfection efficiency varied with the tested cell line but was not specific to airway cells. Addition of replication-defective adenovirus to the [Lys]10kDa-SP-B.pCPA-RSV complex enhanced CAT activity about 30-fold with respect to that produced by the [Lys]10kDa-SP-B.pCPA-RSV complex alone. This increase suggests routing of the adenoviral.[Lys]10kDa-SP-B.pCPA-RSV complex through an endosomal pathway. Effects of covalent modification on the secondary structure of SP-B were examined by Fourier transform infrared spectrometry (FTIR). Results of FTIR indicated that the conformation of [Lys]10kDa-SP-B was

  10. Protein phosphorylation systems in postmortem human brain

    SciTech Connect

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P. )

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders.

  11. Surfactant Protein A in Exhaled Endogenous Particles Is Decreased in Chronic Obstructive Pulmonary Disease (COPD) Patients: A Pilot Study

    PubMed Central

    Lärstad, Mona; Almstrand, Ann-Charlotte; Larsson, Per; Bake, Björn; Larsson, Sven; Ljungström, Evert; Mirgorodskaya, Ekaterina; Olin, Anna-Carin

    2015-01-01

    Background Exhaled, endogenous particles are formed from the epithelial lining fluid in small airways, where surfactant protein A (SP-A) plays an important role in pulmonary host defense. Based on the knowledge that chronic obstructive pulmonary disease (COPD) starts in the small airway epithelium, we hypothesized that chronic inflammation modulates peripheral exhaled particle SP-A and albumin levels. The main objective of this explorative study was to compare the SP-A and albumin contents in exhaled particles from patients with COPD and healthy subjects and to determine exhaled particle number concentrations. Methods Patients with stable COPD ranging from moderate to very severe (n = 13), and healthy non-smoking subjects (n = 12) were studied. Subjects performed repeated breath maneuvers allowing for airway closure and re-opening, and exhaled particles were optically counted and collected on a membrane using the novel PExA® instrument setup. Immunoassays were used to quantify SP-A and albumin. Results COPD patients exhibited significantly lower SP-A mass content of the exhaled particles (2.7 vs. 3.9 weight percent, p = 0.036) and lower particle number concentration (p<0.0001) than healthy subjects. Albumin mass contents were similar for both groups. Conclusions Decreased levels of SP-A may lead to impaired host defense functions of surfactant in the airways, contributing to increased susceptibility to COPD exacerbations. SP-A in exhaled particles from small airways may represent a promising non-invasive biomarker of disease in COPD patients. PMID:26656890

  12. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes.

    PubMed

    Wu, Yun; Ma, Junyu; Woods, Parker S; Chesarino, Nicholas M; Liu, Chang; Lee, L James; Nana-Sinkam, Serge P; Davis, Ian C

    2015-04-10

    Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with >70% specificity in vivo, were retained within ATII cells for at least 48h, and did not accumulate at significant levels in other lung cell types or viscera. 48h after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for the treatment of pulmonary diseases that result primarily from ATII cell dysfunction. PMID:25687308

  13. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes

    PubMed Central

    Wu, Yun; Ma, Junyu; Woods, Parker S.; Chesarino, Nicholas M.; Liu, Chang; Lee, L. James; Nana-Sinkam, Serge P.; Davis, Ian C.

    2015-01-01

    Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with >70% specificity in vivo, were retained within ATII cells for at least 48 hours, and did not accumulate at significant levels in other lung cell types or viscera. 48 hours after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for treatment of pulmonary diseases that result primarily from ATII cell dysfunction. PMID:25687308

  14. The impact of surfactant protein-A on ozone-induced changes in the mouse bronchoalveolar lavage proteome

    PubMed Central

    2009-01-01

    Background Ozone is a major component of air pollution. Exposure to this powerful oxidizing agent can cause or exacerbate many lung conditions, especially those involving innate immunity. Surfactant protein-A (SP-A) plays many roles in innate immunity by participating directly in host defense as it exerts opsonin function, or indirectly via its ability to regulate alveolar macrophages and other innate immune cells. The mechanism(s) responsible for ozone-induced pathophysiology, while likely related to oxidative stress, are not well understood. Methods We employed 2-dimensional difference gel electrophoresis (2D-DIGE), a discovery proteomics approach, coupled with MALDI-ToF/ToF to compare the bronchoalveolar lavage (BAL) proteomes in wild type (WT) and SP-A knockout (KO) mice and to assess the impact of ozone or filtered air on the expression of BAL proteins. Using the PANTHER database and the published literature most identified proteins were placed into three functional groups. Results We identified 66 proteins and focused our analysis on these proteins. Many of them fell into three categories: defense and immunity; redox regulation; and protein metabolism, modification and chaperones. In response to the oxidative stress of acute ozone exposure (2 ppm; 3 hours) there were many significant changes in levels of expression of proteins in these groups. Most of the proteins in the redox group were decreased, the proteins involved in protein metabolism increased, and roughly equal numbers of increases and decreases were seen in the defense and immunity group. Responses between WT and KO mice were similar in many respects. However, the percent change was consistently greater in the KO mice and there were more changes that achieved statistical significance in the KO mice, with levels of expression in filtered air-exposed KO mice being closer to ozone-exposed WT mice than to filtered air-exposed WT mice. Conclusion We postulate that SP-A plays a role in reactive oxidant

  15. Computer simulations of lung surfactant.

    PubMed

    Baoukina, Svetlana; Tieleman, D Peter

    2016-10-01

    Lung surfactant lines the gas-exchange interface in the lungs and reduces the surface tension, which is necessary for breathing. Lung surfactant consists mainly of lipids with a small amount of proteins and forms a monolayer at the air-water interface connected to bilayer reservoirs. Lung surfactant function involves transfer of material between the monolayer and bilayers during the breathing cycle. Lipids and proteins are organized laterally in the monolayer; selected species are possibly preferentially transferred to bilayers. The complex 3D structure of lung surfactant and the exact roles of lipid organization and proteins remain important goals for research. We review recent simulation studies on the properties of lipid monolayers, monolayers with phase coexistence, monolayer-bilayer transformations, lipid-protein interactions, and effects of nanoparticles on lung surfactant. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26922885

  16. The centrality of cancer proteins in human protein-protein interaction network: a revisit.

    PubMed

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong

    2014-01-01

    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  17. NMR studies on interaction of lauryl maltoside with cytochrome c oxidase: a model for surfactant interaction with the membrane protein.

    PubMed

    Chattopadhyay, Krishnananda; Das, Tapan Kanti; Majumdar, Ananya; Mazumdar, Shyamalava

    2002-07-25

    Interaction of lauryl maltoside (LM) surfactant with bovine heart cytochrome c oxidase (CcO) has been studied by NMR techniques. Detailed 2-D (1)H and (13)C NMR techniques were used to assign the NMR signals of the surfactant nuclei. Paramagnetic dipolar shift of the surfactant (13)C NMR signals were used to identify the atoms close to the enzyme. The diamagnetic carbon monoxide complex of CcO did not cause any shift in the surfactant NMR spectra suggesting that the paramagnetic centres of the native CcO cause the shifts by dipolar interactions. The results showed that the polar head groups of the surfactant comprised of two maltoside rings are more affected, while the hydrophobic tail groups did not show any significant change on binding of the surfactant to the enzyme. This indicated that surfactant head groups possibly bind to the enzyme surface and the hydrophobic tail of the surfactant forms micelles and remains away from the enzyme. Based on the results, we propose that the membrane bound enzyme is possibly stabilised in aqueous solution by association with the micelles of the neutral surfactant so that the polar heads of the micelles bind to the polar surface of the enzyme. These micelles might form a 'belt like' structure around the enzyme helping it to remain monodispersed in the active form. PMID:12121768

  18. Human Protein and Amino Acid Requirements.

    PubMed

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. PMID:26796095

  19. Intrafetal glucose infusion alters glucocorticoid signaling and reduces surfactant protein mRNA expression in the lung of the late-gestation sheep fetus.

    PubMed

    McGillick, Erin V; Morrison, Janna L; McMillen, I Caroline; Orgeig, Sandra

    2014-09-01

    Increased circulating fetal glucose and insulin concentrations are potential inhibitors of fetal lung maturation and may contribute to the pathogenesis of respiratory distress syndrome (RDS) in infants of diabetic mothers. In this study, we examined the effect of intrafetal glucose infusion on mRNA expression of glucose transporters, insulin-like growth factor signaling, glucocorticoid regulatory genes, and surfactant proteins in the lung of the late-gestation sheep fetus. The numerical density of the cells responsible for producing surfactant was determined using immunohistochemistry. Glucose infusion for 10 days did not affect mRNA expression of glucose transporters or IGFs but did decrease IGF-1R expression. There was reduced mRNA expression of the glucocorticoid-converting enzyme HSD11B-1 and the glucocorticoid receptor, potentially reducing glucocorticoid responsiveness in the fetal lung. Furthermore, surfactant protein (SFTP) mRNA expression was reduced in the lung following glucose infusion, while the number of SFTP-B-positive cells remained unchanged. These findings suggest the presence of a glucocorticoid-mediated mechanism regulating delayed maturation of the surfactant system in the sheep fetus following glucose infusion and provide evidence for the link between abnormal glycemic control during pregnancy and the increased risk of RDS in infants of uncontrolled diabetic mothers. PMID:24990855

  20. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  1. Human telomeric proteins occupy selective interstitial sites

    PubMed Central

    Yang, Dong; Xiong, Yuanyan; Kim, Hyeung; He, Quanyuan; Li, Yumei; Chen, Rui; Songyang, Zhou

    2011-01-01

    Human telomeres are bound and protected by protein complexes assembled around the six core telomeric proteins RAP1, TRF1, TRF2, TIN2, TPP1, and POT1. The function of these proteins on telomeres has been studied extensively. Recently, increasing evidence has suggested possible roles for these proteins outside of telomeres. However, the non-canonical (extra-telomeric) function of human telomeric proteins remains poorly understood. To this end, we systematically investigated the binding sites of telomeric proteins along human chromosomes, by performing whole-genome chromatin immunoprecipitation (ChIP) for RAP1 and TRF2. ChIP sequencing (ChIP-seq) revealed that RAP1 and TRF2 could be found on a small number of interstitial sites, including regions that are proximal to genes. Some of these binding sites contain short telomere repeats, suggesting that telomeric proteins could directly bind to interstitial sites. Interestingly, only a small fraction of the available interstitial telomere repeat-containing regions were occupied by RAP1 and TRF2. Ectopically expressed TRF2 was able to occupy additional interstitial telomere repeat sites, suggesting that protein concentration may dictate the selective targeting of telomeric proteins to interstitial sites. Reducing RAP1 and TRF2 expression by RNA interference led to altered transcription of RAP1- and TRF2-targeted genes. Our results indicate that human telomeric proteins could occupy a limited number of interstitial sites and regulate gene transcription. PMID:21423278

  2. Cyclic Changes in the Level of the Innate Immune Molecule, Surfactant Protein-A, and Cytokines in Vaginal Fluid

    PubMed Central

    MacNeill, Colin; de Guzman, Glendell; Sousa, Grace E.; Umstead, Todd M.; Phelps, David S.; Floros, Joanna; Ahn, Kwangmi; Weisz, Judith

    2013-01-01

    PROBLEM Our knowledge of the innate host-defenses in the vagina, a site where these defenses are essential to protecting the host upper reproductive tract from invasion by pathogens, is as yet rudimentary. Specifically, little is known about the pattern-recognition component of vaginal innate immunity, the relationship of pattern-recognition molecules to known cytokine levels, and the role of gonadal hormones in their regulation. METHOD OF STUDY We measured levels of Surfactant Protein-A (SP-A), a prototypic innate pattern-recognition protein, in vaginal fluid (VF) and correlated them with levels of IL-1β and IL-8, two cytokines known to be present in VF. Assays were carried out on VF collected over three consecutive cycles from ten healthy naturally cycling women who were sampled at three specific time points in the menstrual cycle. The three time points were chosen to enable correlation with distinct hormonal states. RESULTS Both SP-A and cytokines levels were highest 5–6 days after menses (p < 0.05) and were significantly lower at ovulation and mid-luteal phase. CONCLUSION SP-A, like other host-defense molecules in the reproductive tract, appears to be regulated by gonadal hormones. PMID:22672628

  3. Antiviral activity of recombinant porcine surfactant protein A against porcine reproductive and respiratory syndrome virus in vitro.

    PubMed

    Li, Lan; Zheng, Qisheng; Zhang, Yuanpeng; Li, Pengcheng; Fu, Yanfeng; Hou, Jibo; Xiao, Xilong

    2016-07-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses in the swine industry worldwide. However, there is not an ideal vaccine to provide complete protection against PRRSV. Thus, the need for new antiviral strategies to control PRRSV still remains. Surfactant protein A (SP-A) belongs to the family of C-type lectins, which can exert antiviral activities. In this present study, we assessed the antiviral properties of recombinant porcine SP-A (RpSP-A) on PRRSV infection in Marc 145 cells and revealed its antiviral mechanism using a plaque assay, real-time qPCR, western blotting analysis and an attachment and penetration assay. Our results showed that RpSP-A could inhibit the infectivity of PRRSV in Marc 145 cells and could reduce the total RNA and protein level. The attachment assay indicated that RpSP-A in the presence of Ca(2+) could largely inhibit Marc 145 cell attachment; however, in the penetration assay, it was relatively inactive. Furthermore, our study suggested that virus progeny released from infected Marc145 cells were blocked by RpSP-A from infecting other cells. We conclude that RpSP-A has antiviral activity against PRRSV, most probably by blocking viral attachment and the cell-to-cell transmission pathway, and therefore, RpSP-A holds promise as a novel antiviral agent against PRRSV. PMID:27101074

  4. The human "magnesome": detecting magnesium binding sites on human proteins

    PubMed Central

    2012-01-01

    Background Magnesium research is increasing in molecular medicine due to the relevance of this ion in several important biological processes and associated molecular pathogeneses. It is still difficult to predict from the protein covalent structure whether a human chain is or not involved in magnesium binding. This is mainly due to little information on the structural characteristics of magnesium binding sites in proteins and protein complexes. Magnesium binding features, differently from those of other divalent cations such as calcium and zinc, are elusive. Here we address a question that is relevant in protein annotation: how many human proteins can bind Mg2+? Our analysis is performed taking advantage of the recently implemented Bologna Annotation Resource (BAR-PLUS), a non hierarchical clustering method that relies on the pair wise sequence comparison of about 14 millions proteins from over 300.000 species and their grouping into clusters where annotation can safely be inherited after statistical validation. Results After cluster assignment of the latest version of the human proteome, the total number of human proteins for which we can assign putative Mg binding sites is 3,751. Among these proteins, 2,688 inherit annotation directly from human templates and 1,063 inherit annotation from templates of other organisms. Protein structures are highly conserved inside a given cluster. Transfer of structural properties is possible after alignment of a given sequence with the protein structures that characterise a given cluster as obtained with a Hidden Markov Model (HMM) based procedure. Interestingly a set of 370 human sequences inherit Mg2+ binding sites from templates sharing less than 30% sequence identity with the template. Conclusion We describe and deliver the "human magnesome", a set of proteins of the human proteome that inherit putative binding of magnesium ions. With our BAR-hMG, 251 clusters including 1,341 magnesium binding protein structures

  5. Structure and potential C-terminal dimerization of a recombinant mutant of surfactant-associated protein C in chloroform/methanol.

    PubMed

    Luy, Burkhard; Diener, Alexander; Hummel, Rolf-Peter; Sturm, Ernst; Ulrich, Wolf-Rüdiger; Griesinger, Christian

    2004-06-01

    The solution structure of a recombinant mutant [rSP-C (FFI)] of the human surfactant-associated protein C (hSP-C) in a mixture of chloroform and methanol was determined by high-resolution NMR spectroscopy. rSP-C (FFI) contains a helix from Phe5 to the C-terminal Leu34 and is thus longer by two residues than the helix of porcine SP-C (pSP-C), which is reported to start at Val7 in the same solvent. Two sets of resonances at the C-terminus of the peptide were observed, which are explained by low-order oligomerization, probably dimerization of rSP-C (FFI) in its alpha-helical form. The dimerization may be induced by hydrogen bonding of the C-terminal carboxylic groups or by the strictly conserved C-terminal heptapeptide segment with a motif similar to the GxxxG dimerization motif of glycophorin A. Dimerization at the heptapeptide segment would be consistent with findings based on electrospray ionization MS data, chemical cross-linking studies, and CNBr cleavage data. PMID:15153097

  6. Optimized Reverse Micelle Surfactant System for High-Resolution NMR Spectroscopy of Encapsulated Proteins and Nucleic Acids Dissolved in Low Viscosity Fluids

    PubMed Central

    2015-01-01

    An optimized reverse micelle surfactant system has been developed for solution nuclear magnetic resonance studies of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. Comprising the nonionic 1-decanoyl-rac-glycerol and the zwitterionic lauryldimethylamine-N-oxide (10MAG/LDAO), this mixture is shown to efficiently encapsulate a diverse set of proteins and nucleic acids. Chemical shift analyses of these systems show that high structural fidelity is achieved upon encapsulation. The 10MAG/LDAO surfactant system reduces the molecular reorientation time for encapsulated macromolecules larger than ∼20 kDa leading to improved overall NMR performance. The 10MAG/LDAO system can also be used for solution NMR studies of lipid-modified proteins. New and efficient strategies for optimization of encapsulation conditions are described. 10MAG/LDAO performs well in both the low viscosity pentane and ultralow viscosity liquid ethane and therefore will serve as a general surfactant system for initiating solution NMR studies of proteins and nucleic acids. PMID:24495164

  7. Positive end-expiratory pressure preserves surfactant function in preterm lambs.

    PubMed

    Michna, J; Jobe, A H; Ikegami, M

    1999-08-01

    Ventilation style influences lung injury and the amount of large-aggregate biophysically active surfactant in adult lungs. We asked how positive end-expiratory pressures (PEEP) would influence clinical responses and surfactant pools in surfactant-treated preterm lambs ventilated for 7 h with tidal volumes (VT) of 10 ml/kg. The 126-d gestation preterms were delivered and treated with 100 mg/kg recombinant human surfactant protein C (rSP-C) containing surfactant and ventilated with zero, 4, or 7 cm H(2)O of PEEP. A comparison group was treated with natural sheep surfactant and ventilated with zero PEEP. Physiologic measurements were similar for lambs treated with rSP-C surfactant and natural surfactant. PEEP 4 and 7 improved oxygenation and compliance relative to either group of lambs ventilated with PEEP zero. The maximal lung volumes measured at 40 cm H(2)O pressure after 7 h ventilation for the PEEP 4 and 7 groups were more than double those measured for either PEEP zero group. Alveolar surfactant pools were larger for the PEEP 7 group, and the large-aggregate fraction was increased for the PEEP 4 and 7 groups, resulting in large-aggregate pool sizes that were 3-fold higher for the PEEP 4 and 4-fold higher for the PEEP 7 groups relative to the PEEP zero group treated with rSP-C surfactant. All large-aggregate surfactants lowered minimal surface tensions of a captive bubble to less than 5 mN/m. In preterm surfactant-treated lambs PEEP improved lung function and maintained more of an rSP-C surfactant in the biophysically active form. PMID:10430740

  8. Increased Adipose Protein Carbonylation in Human Obesity

    PubMed Central

    Frohnert, Brigitte I.; Sinaiko, Alan R.; Serrot, Federico J.; Foncea, Rocio E.; Moran, Antoinette; Ikramuddin, Sayeed; Choudry, Umar; Bernlohr, David A.

    2015-01-01

    Insulin resistance is associated with obesity but mechanisms controlling this relationship in humans are not fully understood. Studies in animal models suggest a linkage between adipose reactive oxygen species (ROS) and insulin resistance. ROS oxidize cellular lipids to produce a variety of lipid hydroperoxides that in turn generate reactive lipid aldehydes that covalently modify cellular proteins in a process termed carbonylation. Mammalian cells defend against reactive lipid aldehydes and protein carbonylation by glutathionylation using glutathione-S-transferase A4 (GSTA4) or carbonyl reduction/oxidation via reductases and/or dehydrogenases. Insulin resistance in mice is linked to ROS production and increased level of protein carbonylation, mitochondrial dysfunction, decreased insulin-stimulated glucose transport, and altered adipokine secretion. To assess protein carbonylation and insulin resistance in humans, eight healthy participants underwent subcutaneous fat biopsy from the periumbilical region for protein analysis and frequently sampled intravenous glucose tolerance testing to measure insulin sensitivity. Soluble proteins from adipose tissue were analyzed using two-dimensional gel electrophoresis and the major carbonylated proteins identified as the adipocyte and epithelial fatty acid–binding proteins. The level of protein carbonylation was directly correlated with adiposity and serum free fatty acids (FFAs). These results suggest that in human obesity oxidative stress is linked to protein carbonylation and such events may contribute to the development of insulin resistance. PMID:21593812

  9. Genetic variation in Surfactant Protein-A2 (SP-A2) leads to differential binding to Mycoplasma pneumoniae membranes and regulation of host responses

    PubMed Central

    Ledford, Julie G.; Voelker, Dennis R.; Addison, Kenneth J.; Wang, Ying; Nikam, Vinayak; Degan, Simone; Kandasamy, Pitachaimani; Tanyaratsrisakul, Sasipa; Fischer, Bernard M.; Kraft, Monica; Hollingsworth, John W.

    2015-01-01

    Mycoplasma pneumoniae (Mp) is an extracellular pathogen that colonizes mucosal surfaces of the respiratory tract and is associated with asthma exacerbations. Previous reports demonstrate that surfactant protein-A (SP-A) binds live Mp and mycoplasma membranes (MMF) with high affinity. Humans express a repertoire of single amino acid genetic variants of SP-A that may be associated with lung disease, and our findings demonstrate that allelic differences in SP-A2 (Gln223Lys) affect the binding to MMF. We show that SP-A−/− mice are more susceptible to MMF exposure and have significant increases in mucin production and neutrophil recruitment. Novel humanized-SP-A2 transgenic mice harboring the hSP-A2 223K allele exhibit reduced neutrophil influx and mucin production in the lungs, when challenged with MMF, compared to SP-A−/− mice. Conversely, mice expressing hSP-A2 223Q have increased neutrophil influx and mucin production that is similar to SP-A−/− mice. Using tracheal epithelial cell cultures, we show that enhanced mucin production to MMF occurs in the absence of SP-A, and is not dependent upon neutrophil recruitment. Increased phosphorylation of the epidermal growth factor receptor (EGFR) was evident in the lungs of MMF-challenged mice when SP-A was absent. Pharmacologic inhibition of EGFR prior to MMF challenge dramatically reduced mucin production in SP-A−/− mice. These findings suggest a protective role for SP-A in limiting MMF-stimulated mucin production that occurs through interference with EGFR mediated signaling. The SP-A interaction with the EGFR signaling pathway appears to occur in an allele specific manner that may have important implications for SP-A polymorphisms in human diseases. PMID:25957169

  10. Selective adsorption of proteins on single-wall carbon nanotubes by using a protective surfactant.

    PubMed

    Knyazev, Anton; Louise, Loïc; Veber, Michèle; Langevin, Dominique; Filoramo, Arianna; Prina-Mello, Adriele; Campidelli, Stéphane

    2011-12-16

    The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling. PMID:22095560

  11. Clouding behaviour in surfactant systems.

    PubMed

    Mukherjee, Partha; Padhan, Susanta K; Dash, Sukalyan; Patel, Sabita; Mishra, Bijay K

    2011-02-17

    A study on the phenomenon of clouding and the applications of cloud point technology has been thoroughly discussed. The phase behaviour of clouding and various methods adopted for the determination of cloud point of various surfactant systems have been elucidated. The systems containing anionic, cationic, nonionic surfactants as well as microemulsions have been reviewed with respect to their clouding phenomena and the effects of structural variation in the surfactant systems have been incorporated. Additives of various natures control the clouding of surfactants. Electrolytes, nonelectrolytes, organic substances as well as ionic surfactants, when present in the surfactant solutions, play a major role in the clouding phenomena. The review includes the morphological study of clouds and their applications in the extraction of trace inorganic, organic materials as well as pesticides and protein substrates from different sources. PMID:21296314

  12. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein.

    PubMed

    Zhong, Qian; Zhou, Beiyun; Ann, David K; Minoo, Parviz; Liu, Yixin; Banfalvi, Agnes; Krishnaveni, Manda S; Dubourd, Mickael; Demaio, Lucas; Willis, Brigham C; Kim, Kwang-Jin; duBois, Roland M; Crandall, Edward D; Beers, Michael F; Borok, Zea

    2011-09-01

    Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens-1 (ZO-1), increased the myofibroblast marker, α-smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)-C BRICHOS mutant SP-C(ΔExon4) in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-C(ΔExon4) induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-C(ΔExon4) increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis. PMID:21169555

  13. Solubilization of growth hormone and other recombinant proteins from Escherichia coli inclusion bodies by using a cationic surfactant.

    PubMed Central

    Puri, N K; Crivelli, E; Cardamone, M; Fiddes, R; Bertolini, J; Ninham, B; Brandon, M R

    1992-01-01

    Recombinant pig growth hormone (rPGH) was solubilized from inclusion bodies by using the cationic surfactant cetyltrimethylammonium chloride (CTAC). The solubilizing action of CTAC appeared to be dependent on the presence of a positively charged head group, as a non-charged variant was inactive. Relatively low concentrations of CTAC were required for rapid solubilization, and protein-bound CTAC was easily removed by ion-exchange chromatography. Compared with solubilization and recovery of rPGH from inclusion bodies with 7.5 M-urea and 6 M-guanidinium chloride, the relative efficiency of solubilization was lower with CTAC. However, superior refolding efficiency resulted in final yields of purified rPGH being in the order of CTAC greater than urea greater than or equal to guanidinium chloride. Detailed comparison of the different rPGH preparations as well as pituitary-derived growth hormone by h.p.l.c., native PAGE, c.d. spectral analysis and radioreceptor-binding assay showed that the CTAC-derived rPGH was essentially indistinguishable from the urea and guanidinium chloride preparations. The CTAC-derived rPGH was of greater biopotency than pituitary-derived growth hormone. The advantages of CTAC over urea and guanidinium chloride for increasing recovery of monomeric rPGH by minimizing aggregation during refolding in vitro were also found with recombinant sheep interleukin-I beta and a sheep insulin-like growth factor II fusion protein. In addition, the bioactivity of the CTAC-derived recombinant interleukin-1 beta was approximately ten-fold greater than that of an equivalent amount obtained from urea and guanidinium chloride preparations. It is concluded that CTAC represents, in general, an excellent additional approach or a superior alternative to urea and in particular guanidinium chloride for solubilization and recovery of bioactive recombinant proteins from inclusion bodies. Images Fig. 1. Fig. 3. Fig. 5. Fig. 9. PMID:1497625

  14. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability.

    PubMed

    Wu, Huixing; Kuzmenko, Alexander; Wan, Sijue; Schaffer, Lyndsay; Weiss, Alison; Fisher, James H; Kim, Kwang Sik; McCormack, Francis X

    2003-05-01

    The pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), have been reported to bind lipopolysaccharide (LPS), opsonize microorganisms, and enhance the clearance of lung pathogens. In this study, we examined the effect of SP-A and SP-D on the growth and viability of Gram-negative bacteria. The pulmonary clearance of Escherichia coli K12 was reduced in SP-A-null mice and was increased in SP-D-overexpressing mice, compared with strain-matched wild-type controls. Purified SP-A and SP-D inhibited bacterial synthetic functions of several, but not all, strains of E. coli, Klebsiella pneumoniae, and Enterobacter aerogenes. In general, rough E. coli strains were more susceptible than smooth strains, and collectin-mediated growth inhibition was partially blocked by coincubation with rough LPS vesicles. Although both SP-A and SP-D agglutinated E. coli K12 in a calcium-dependent manner, microbial growth inhibition was independent of bacterial aggregation. At least part of the antimicrobial activity of SP-A and SP-D was localized to their C-terminal domains using truncated recombinant proteins. Incubation of E. coli K12 with SP-A or SP-D increased bacterial permeability. Deletion of the E. coli OmpA gene from a collectin-resistant smooth E. coli strain enhanced SP-A and SP-D-mediated growth inhibition. These data indicate that SP-A and SP-D are antimicrobial proteins that directly inhibit the proliferation of Gram-negative bacteria in a macrophage- and aggregation-independent manner by increasing the permeability of the microbial cell membrane. PMID:12750409

  15. Genetic disorders of surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A; Wert, Susan E; Xu, Yan

    2005-01-01

    Adaptation to air breathing at birth requires the precise orchestration of cellular processes to initiate fluid clearance, enhance pulmonary blood flow, and to synthesize and secrete pulmonary surfactant needed to reduce surface tension at the air-liquid interface in the alveoli. Genetic programs regulating the synthesis of the surfactant proteins and lipids required for the production and function of pulmonary surfactant are highly conserved across vertebrates, and include proteins that regulate the synthesis and packaging of pulmonary surfactant proteins and lipids. Surfactant proteins B and C (SP-B and -C) are small, uniquely hydrophobic proteins that play important roles in the stability and spreading of surfactant lipids in the alveolus. Deletion or mutations in SP-B and -C cause acute and chronic lung disease in neonates and infants. SP-B and -C are synthesized and packaged with surfactant phospholipids in lamellar bodies. Normal lamellar body formation requires SP-B and a member of the ATP-binding cassette (ABC) family of ATP-dependent membrane-associated transport proteins, ABCA3. Mutations in ABCA3 cause fatal respiratory disease in newborns and severe chronic lung disease in infancy. Expression of SP-B, -C, and ABCA3 are coregulated during late gestation by transcriptional programs influenced by thyroid transcription factor-1 and forkhead box a2, transcription factors that regulate both differentiation of the respiratory epithelium and transcription of genes required for perinatal adaptation to air breathing. PMID:15985750

  16. Transcriptional responses of Mycobacterium tuberculosis to lung surfactant

    PubMed Central

    Schwab, Ute; Rohde, Kyle H.; Wang, Zhengdong; Chess, Patricia R.; Notter, Robert H.; Russell, David G.

    2009-01-01

    This study uses microarray analyses to examine gene expression profiles for Mycobacterium tuberculosis (Mtb) induced by exposure in vitro to bovine lung surfactant preparations that vary in apoprotein content: (i) whole lung surfactant (WLS) containing the complete mix of endogenous lipids and surfactant proteins (SP)-A, -B, -C, and -D; (ii) extracted lung surfactant (CLSE) containing lipids plus SP-B and -C; (iii) column-purified surfactant lipids (PPL) containing no apoproteins, and (iv) purified human SP-A. Exposure to WLS evoked a multitude of transcriptional responses in Mtb, with 52 genes up-regulated and 23 genes down-regulated at 30 min exposure, plus 146 genes up-regulated and 27 genes down-regulated at 2 h. Notably, WLS rapidly induced several membrane-associated lipases that presumptively act on surfactant lipids as substrates, and a large number of genes involved in the synthesis of phthiocerol dimycocerosate (PDIM), a cell wall component known to be important in macrophage interactions and Mtb virulence. Exposure of Mtb to CLSE, PPL, or purified SP-A caused a substantially weaker transcriptional response (≤20 genes were induced) suggesting that interactions among multiple lipid-protein components of WLS may contribute to its effects on Mtb transcription. PMID:19272305

  17. Modifications to surfactant protein B structure and lipid interactions under respiratory distress conditions: consequences of tryptophan oxidation.

    PubMed

    Sarker, Muzaddid; Rose, Jarratt; McDonald, Mark; Morrow, Michael R; Booth, Valerie

    2011-01-11

    These studies detail the altered structure-function relationships caused by oxidation of surfactant protein B (SP-B), a mode of damage thought to be important in acute respiratory distress syndrome (ARDS), a common and frequently fatal condition. An 18-residue fragment comprising the N-terminal helix of SP-B was investigated in oxidized and unmodified forms by solution and solid-state nuclear magnetic resonance (NMR), circular dichroism (CD), and molecular dynamics (MD) simulation. Taken together, the results indicate that tryptophan oxidation causes substantial disruptions in helical structure and lipid interactions. The structural modifications induced by tryptophan oxidation were severe, with a reduction in helical extent from approximately three helical turns to, at most, one turn, and were observed in a variety of solvent environments, including sodium dodecyl sulfate (SDS) micelles, dodecyl phosphocholine (DPC) micelles, and a 40% hexafluoro-2-propanol (HFIP) aqueous solution. The unmodified peptide takes on an orientation within lipid bilayers that is tilted approximately 30° away from an in-plane position. Tryptophan oxidation causes significant modifications to the peptide-lipid interactions, and the peptide likely shifts to a more in-plane orientation within the lipids. Interestingly, the character of the disruptions to peptide-lipid interactions caused by tryptophan oxidation was highly dependent on the charge of the lipid headgroup. PMID:21128671

  18. Fractionation of protein, RNA, and plasmid DNA in centrifugal precipitation chromatography using cationic surfactant CTAB containing inorganic salts NaCl and NH(4)Cl.

    PubMed

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2004-10-01

    Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA. PMID:15384057

  19. Structure of mutant human oncogene protein determined

    SciTech Connect

    Baum, R.

    1989-01-16

    The protein encoded by a mutant human oncogene differs only slightly in structure from the native protein that initiates normal cell division, a finding that may complicate efforts to develop inhibitors of the mutant protein. Previously, the x-ray structure of the protein encoded by the normal c-Ha-ras gene, a protein believed to signal cells to start or stop dividing through its interaction with guanosine triphosphate (GTP), was reported. The structure of the protein encoded by a transforming c-Ha-ras oncogene, in which a valine codon replaces the normal glycine codon at position 12 in the gene, has now been determined. The differences in the structures of the mutant and normal proteins are located primarily in a loop that interacts with the /beta/-phosphate of a bound guanosine diphosphate (GDP) molecule.

  20. Surfactant protein D inhibits adherence of uropathogenic Escherichia coli to the bladder epithelial cells and the bacterium-induced cytotoxicity: a possible function in urinary tract.

    PubMed

    Kurimura, Yuichiro; Nishitani, Chiaki; Ariki, Shigeru; Saito, Atsushi; Hasegawa, Yoshihiro; Takahashi, Motoko; Hashimoto, Jiro; Takahashi, Satoshi; Tsukamoto, Taiji; Kuroki, Yoshio

    2012-11-16

    The adherence of uropathogenic Escherichia coli (UPEC) to the host urothelial surface is the first step for establishing UPEC infection. Uroplakin Ia (UPIa), a glycoprotein expressed on bladder urothelium, serves as a receptor for FimH, a lectin located at bacterial pili, and their interaction initiates UPEC infection. Surfactant protein D (SP-D) is known to be expressed on mucosal surfaces in various tissues besides the lung. However, the functions of SP-D in the non-pulmonary tissues are poorly understood. The purposes of this study were to investigate the possible function of SP-D expressed in the bladder urothelium and the mechanisms by which SP-D functions. SP-D was expressed in human bladder mucosa, and its mRNA was increased in the bladder of the UPEC infection model in mice. SP-D directly bound to UPEC and strongly agglutinated them in a Ca(2+)-dependent manner. Co-incubation of SP-D with UPEC decreased the bacterial adherence to 5637 cells, the human bladder cell line, and the UPEC-induced cytotoxicity. In addition, preincubation of SP-D with 5637 cells resulted in the decreased adherence of UPEC to the cells and in a reduced number of cells injured by UPEC. SP-D directly bound to UPIa and competed with FimH for UPIa binding. Consistent with the in vitro data, the exogenous administration of SP-D inhibited UPEC adherence to the bladder and dampened UPEC-induced inflammation in mice. These results support the conclusion that SP-D can protect the bladder urothelium against UPEC infection and suggest a possible function of SP-D in urinary tract. PMID:23012359

  1. Expression of the 35kDa and low molecular weight surfactant-associated proteins in the lungs of infants dying with respiratory distress syndrome.

    PubMed

    deMello, D E; Phelps, D S; Patel, G; Floros, J; Lagunoff, D

    1989-06-01

    Newborn respiratory distress syndrome (RDS) results from a deficiency of pulmonary surfactant. Surfactant has three ultrastructural forms: lamellar bodies, which, when secreted from Type II pneumocytes, transform into tubular myelin; tubular myelin in turn gives rise to the phospholipid monolayer at the air-fluid interface in the alveolus that constitutes functional surfactant. It has been shown previously that the lungs of infants dying from RDS lacked tubular myelin despite the presence of abundant lamellar bodies, whereas the lungs of control infants dying from other causes had both tubular myelin and lamellar bodies. An abnormality in the conversion of lamellar bodies to tubular myelin in RDS was proposed as a possible explanation for this finding. To evaluate the role of surfactant proteins (SPs) in this conversion, the authors re-examined the lungs of 11 RDS infants and 10 control infants for reactivity with antisera to high and low molecular weight SPs. In control infants, abundant intense staining with antisera to both types of SPs was found, but in the RDS lungs, staining was weaker than that in controls and less intense for high molecular weight compared to low molecular weight SPs. In lungs from patients with RDS, although staining increased with increasing gestational and post-natal ages, the intensity was less than control levels at all ages. The correlation of deficiency of SPs in RDS with lack of tubular myelin suggests that SPs may be involved in the conversion of normal lamellar bodies to tubular myelin and that the deficiency of SPs could explain the persistent respiratory distress in the presence of surfactant phospholipid synthesis. PMID:2757118

  2. Interdependent TTF1 - ErbB4 interactions are critical for surfactant protein-B homeostasis in primary mouse lung alveolar type II cells.

    PubMed

    Marten, Elger; Nielsen, Heber C; Dammann, Christiane E L

    2015-09-01

    ErbB4 receptor and thyroid transcription factor (TTF)-1 are important modulators of fetal alveolar type II (ATII) cell development and injury. ErbB4 is an upstream regulator of TTF-1, promoting its expression in MLE-12 cells, an ATII cell line. Both proteins are known to promote surfactant protein-B gene (SftpB) and protein (SP-B) expression, but their feedback interactions on each other are not known. We hypothesized that TTF-1 expression has a feedback effect on ErbB4 expression in an in-vitro model of isolated mouse ATII cells. We tested this hypothesis by analyzing the effects of overexpressing HER4 and Nkx2.1, the genes of ErbB4 and TTF-1 on TTF-1 and ErbB4 protein expression, respectively, as well as SP-B protein expression in primary fetal mouse lung ATII cells. Transient ErbB4 protein overexpression upregulated TTF-1 protein expression in primary fetal ATII cells, similarly to results previously shown in MLE-12 cells. Transient TTF-1 protein overexpression down regulated ErbB4 protein expression in both cell types. TTF-1 protein was upregulated in primary transgenic ErbB4-depleted adult ATII cells, however SP-B protein expression in these adult transgenic ATII cells was not affected by the absence of ErbB4. The observation that TTF-1 is upregulated in fetal ATII cells by ErbB4 overexpression and also in ErbB4-deleted adult ATII cells suggests additional factors interact with ErbB4 to regulate TTF-1 levels. We conclude that the interdependency of TTF-1 and ErbB4 is important for surfactant protein levels. The interactive regulation of ErbB4 and TTF-1 needs further elucidation. PMID:26198867

  3. Inferring high-confidence human protein-protein interactions

    PubMed Central

    2012-01-01

    Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs), aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83%) of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134%) than either ranking based on the hypergeometric test (~109%) or occurrence ranking (~46%). Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high-confidence protein interactions

  4. Protective Role of Lung Surfactant Protein D in a Murine Model of Invasive Pulmonary Aspergillosis

    PubMed Central

    Madan, Taruna; Kishore, Uday; Singh, Mamta; Strong, Peter; Hussain, Ejaj M.; Reid, Kenneth B. M.; Sarma, P. Usha

    2001-01-01

    The protective effects of intranasal administration of amphotericin B (AmB), human SP-A, SP-D and a 60-kDa fragment of SP-D (rSP-D) were examined in a murine model of invasive pulmonary aspergillosis (IPA). The untreated group of IPA mice showed no survival at 7 days postinfection. Treatment with AmB, SP-D, and rSP-D increased the survival rate to 80, 60, and 80%, respectively, suggesting that SP-D (and rSP-D) can protect immunosuppressed mice from an otherwise fatal challenge with Aspergillus fumigatus conidia. PMID:11254642

  5. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  6. Systematic Characterization of Human Protein Complexes Identifies Chromosome Segregation Proteins

    PubMed Central

    Hutchins, James R.A.; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M.; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A.; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A.; Peters, Jan-Michael

    2010-01-01

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference (RNAi) screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization and tandem affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex (APC/C) and the γ-tubulin ring complex (γ-TuRC), large complexes which are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high throughput follow-up analyses of phenotypic screens in mammalian cells. PMID:20360068

  7. Systematic analysis of human protein complexes identifies chromosome segregation proteins.

    PubMed

    Hutchins, James R A; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A; Peters, Jan-Michael

    2010-04-30

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells. PMID:20360068

  8. Surfactant Protein D Deficiency in Mice Is Associated with Hyperphagia, Altered Fat Deposition, Insulin Resistance, and Increased Basal Endotoxemia

    PubMed Central

    Rahbek, Martin K. U.; Kirketerp-Møller, Katrine L.; Hansen, Pernille B. L.; Bie, Peter; Kejling, Karin; Mandrup, Susanne; Hawgood, Samuel; Nielsen, Ole; Nielsen, Claus H.; Owens, Trevor; Holmskov, Uffe; Sørensen, Grith L.

    2012-01-01

    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese. However, the mechanism behind SP-D's role in energy metabolism is not known. Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight accumulation. In ad libitum fed animals, serum leptin, insulin, and glucose were significantly increased in mice deficient in SP-D, and indicative of insulin resistance. However, restricted diets eliminated all metabolic differences except the distribution of body fat. SP-D deficiency was further associated with elevated levels of systemic bacterial lipopolysaccharide. In conclusion, our findings suggest that lack of SP-D mediates modulation of food intake not directly involving hypothalamic regulatory pathways. The resulting accumulation of adipose tissue was associated with insulin resistance. The data suggest SP-D as a regulator of energy intake and body composition and an inhibitor of metabolic endotoxemia. SP-D may play a causal role at the crossroads of inflammation, obesity, and insulin resistance. PMID:22509382

  9. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  10. Expression of surfactant proteins SP-A and SP-D in murine decidua and immunomodulatory effects on decidual macrophages.

    PubMed

    Madhukaran, Shanmuga Priyaa; Koippallil Gopalakrishnan, Aghila Rani; Pandit, Hrishikesh; Marri, Eswari Dodagatta-; Kouser, Lubna; Jamil, Kaiser; Alhamlan, Fatimah S; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules that belong to the C-type lectin family. In lungs, they play an important role in the clearance of pathogens and control of inflammation. SP-A and SP-D are also expressed in the female reproductive tract where they play an important role in pregnancy and parturition. However, the role of SP-A and SP-D expressed at the feto-maternal interface (decidua) remains unclear. Here, we have examined the expression of SP-A and SP-D in the murine decidua at 17.5 (pre-parturition) and 19.5dpc (near parturition) and their effect on lipopolysaccharide (LPS)-treated decidual macrophages. SP-A and SP-D were localized to stromal cells in the murine decidua at 17.5 and 19.5dpc in addition to cells lining the maternal spiral artery. Purified pre-parturition decidual cells were challenged with LPS with and without SP-A or SP-D, and expression of F4/80 and TNF-α were measured by flow cytometry. On their own, SP-A or SP-D did not affect the percentage of F4/80 positive cells while they suppressed the percentage of TNF-α positive cells. However, simultaneous addition of SP-A or SP-D, together with LPS, reduced TNF-α secreting F4/80 positive cells. It is likely that exogenous administration of SP-A and SP-D in decidua can potentially control infection and inflammation mediators during spontaneous term labor and infection-induced preterm labor. Thus, the presence of SP-A and SP-D in the murine decidua is likely to play a protective role against intrauterine infection during pregnancy. PMID:26421960

  11. The role of serum surfactant protein D as a biomarker of exacerbation of chronic obstructive pulmonary disease

    PubMed Central

    Zien Alaabden, Alaa; Mohammad, Yousser; Fahoum, Sahar

    2015-01-01

    Background: The exacerbation of chronic obstructive pulmonary disease (COPD) is a major factor for the high mortality associated with the disease. There is a paucity in the lung-specific biomarkers which diagnose these exacerbations. Surfactant protein D (SP-D) is a promising biomarker in predicting clinical outcomes for patients with COPD, is lung-specific and can be detected in serum. However, the profile in which serum concentrations of SP-D change during acute exacerbation is still unclear. This study aims to estimate and compare the concentrations of serum SP-D in patients with stable disease and during the exacerbation. Methods: A cross-sectional study was conducted which composed of apparently healthy individuals (n = 28), which included 14 smokers and 14 nonsmokers, patients with stable COPD (n = 28), and patients experiencing acute exacerbations (n = 28). Pulmonary functions were performed for all groups. Serum SP-D concentrations were measured using enzyme-linked immunosorbent assay (ELISA). These concentrations were compared by analysis of variance. Results: Serum SP-D levels were significantly elevated in patients with acute exacerbations (508.733 ± 102.813 ng/ml) compared to patients with stable COPD (337.916 ± 86.265 ng/ml) and healthy subjects (177.313 ± 46.998 ng/ml; p <  0.001). Serum SP-D levels correlated inversely with lung function parameters including FEV1%pred, FVC%pred and FEV1/FVC. Conclusion: Serum SP-D levels are raised early on during acute exacerbations of COPD, which could be a potential early diagnostic biomarker for COPD exacerbations. PMID:26942111

  12. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice.

    PubMed

    Knudsen, Lars; Atochina-Vasserman, Elena N; Massa, Christopher B; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F; Ochs, Matthias; Gow, Andrew J

    2015-11-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  13. Common Genetic Variants of Surfactant Protein-D (SP-D) Are Associated with Type 2 Diabetes

    PubMed Central

    Mercader, Josep M.; Moreno-Navarrete, José M.; Sabater, Monica; Bonàs, Sílvia; Botas, Patricia; Delgado, Elías; Ricart, Wifredo; Martinez-Larrad, María T.; Serrano-Ríos, Manuel; Torrents, David; Fernández-Real, José M.

    2013-01-01

    Context Surfactant protein-D (SP-D) is a primordial component of the innate immune system intrinsically linked to metabolic pathways. We aimed to study the association of single nucleotide polymorphisms (SNPs) affecting SP-D with insulin resistance and type 2 diabetes (T2D). Research Design and Methods We evaluated a common genetic variant located in the SP-D coding region (rs721917, Met31Thr) in a sample of T2D patients and non-diabetic controls (n = 2,711). In a subset of subjects (n = 1,062), this SNP was analyzed in association with circulating SP-D concentrations, insulin resistance, and T2D. This SNP and others were also screened in the publicly available Genome Wide Association (GWA) database of the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC). Results We found the significant association of rs721917 with circulating SP-D, parameters of insulin resistance and T2D. Indeed, G carriers showed decreased circulating SP-D (p = 0.004), decreased fasting glucose (p = 0.0002), glycated hemoglobin (p = 0.0005), and 33% (p = 0.002) lower prevalence of T2D, estimated under a dominant model, especially among women. Interestingly, these differences remained significant after controlling for origin, age, gender, and circulating SP-D. Moreover, this SNP and others within the SP-D genomic region (i.e. rs10887344) were significantly associated with quantitative measures of glucose homeostasis, insulin sensitivity, and T2D, according to GWAS datasets from MAGIC. Conclusions SP-D gene polymorphisms are associated with insulin resistance and T2D. These associations are independent of circulating SP-D concentrations. PMID:23577114

  14. Comparison of diffusion by anionic surfactants through cellulose acetate and collagen membranes.

    PubMed

    García Ramón, M T; Ribosa, I; Leal, J S; Parra, J L

    1989-06-01

    Synopsis From a dermatological point of view, it is important to know what is the irritation potential of surfactants on human skin. Recent research trends have been oriented towards the establishment of new 'in vitro' techniques that will avoid animal experimentation. In this paper, some results on the rate of diffusion of different anionic surfactants through both cellulose acetate and collagen membranes are described. A correlation between results of diffusion through the protein membrane and results published on the same surfactants and their irritation potential during 'in vivo' experiments appears possible. PMID:19456944

  15. [Cow's milk protein allergy through human milk].

    PubMed

    Denis, M; Loras-Duclaux, I; Lachaux, A

    2012-03-01

    Cow's milk protein allergy (CMPA) is the first allergy that affects infants. In this population, the incidence rate reaches 7.5%. The multiplicity and aspecificity of the symptoms makes its diagnosis sometimes complicated, especially in the delayed type (gastrointestinal, dermatological, and cutaneous). CMPA symptoms can develop in exclusively breastfed infants with an incidence rate of 0.5%. It, therefore, raises questions about sensitization to cow's milk proteins through breast milk. Transfer of native bovine proteins such as β-lactoglobulin into the breast milk is controversial: some authors have found bovine proteins in human milk but others point to cross-reactivity between human milk proteins and cow's milk proteins. However, it seems that a small percentage of dietary proteins can resist digestion and become potentially allergenic. Moreover, some authors suspect the transfer of some of these dietary proteins from the maternal bloodstream to breast milk, but the mechanisms governing sensitization are still being studied. Theoretically, CMPA diagnosis is based on clinical observations, prick-test or patch-test results, and cow's milk-specific IgE antibody concentration. A positive food challenge test usually confirms the diagnosis. No laboratory test is available to make a certain diagnosis, but the detection of eosinophil cationic protein (ECP) in the mother's milk, for example, seems to be advantageous since it is linked to CMA. Excluding cow's milk from the mother's diet is the only cure when she still wants to breastfeed. Usually, cow's milk proteins are reintroduced after 6 months of exclusion. Indeed, the prognosis for infants is very good: 80% acquire a tolerance before the age of 3 or 4 years. Mothers should not avoid dairy products during pregnancy and breastfeeding as preventive measures against allergy. PMID:22226014

  16. Dietary protein intake and human health.

    PubMed

    Wu, Guoyao

    2016-03-16

    A protein consists of amino acids (AA) linked by peptide bonds. Dietary protein is hydrolyzed by proteases and peptidases to generate AA, dipeptides, and tripeptides in the lumen of the gastrointestinal tract. These digestion products are utilized by bacteria in the small intestine or absorbed into enterocytes. AA that are not degraded by the small intestine enter the portal vein for protein synthesis in skeletal muscle and other tissues. AA are also used for cell-specific production of low-molecular-weight metabolites with enormous physiological importance. Thus, protein undernutrition results in stunting, anemia, physical weakness, edema, vascular dysfunction, and impaired immunity. Based on short-term nitrogen balance studies, the Recommended Dietary Allowance of protein for a healthy adult with minimal physical activity is currently 0.8 g protein per kg body weight (BW) per day. To meet the functional needs such as promoting skeletal-muscle protein accretion and physical strength, dietary intake of 1.0, 1.3, and 1.6 g protein per kg BW per day is recommended for individuals with minimal, moderate, and intense physical activity, respectively. Long-term consumption of protein at 2 g per kg BW per day is safe for healthy adults, and the tolerable upper limit is 3.5 g per kg BW per day for well-adapted subjects. Chronic high protein intake (>2 g per kg BW per day for adults) may result in digestive, renal, and vascular abnormalities and should be avoided. The quantity and quality of protein are the determinants of its nutritional values. Therefore, adequate consumption of high-quality proteins from animal products (e.g., lean meat and milk) is essential for optimal growth, development, and health of humans. PMID:26797090

  17. Increased surfactant protein D fails to improve bacterial clearance and inflammation in serpinB1-/- mice.

    PubMed

    Stolley, J Michael; Gong, Dapeng; Farley, Kalamo; Zhao, Picheng; Cooley, Jessica; Crouch, Erika C; Benarafa, Charaf; Remold-O'Donnell, Eileen

    2012-12-01

    Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-D(low)serpinB1(-/-) and SP-D(high) serpinB1(-/-) mice were 4 logs higher than wild-type and not different from serpinB1(-/-) mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-D(high)serpinB1(-/-) mice than for serpinB1(-/-) mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis. PMID:23024061

  18. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  19. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells.

    PubMed

    Theodorou, Ioannis G; Ruenraroengsak, Pakatip; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Chung, Kian Fan; Tetley, Teresa D; Ryan, Mary P; Porter, Alexandra E

    2016-11-01

    Inhaled nanoparticles (NPs) have high-deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24 h. Although serum improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general. PMID:27441789

  20. A comparative human health risk assessment of p-dichlorobenzene-based toilet rimblock products versus fragrance/surfactant-based alternatives.

    PubMed

    Aronson, Dallas B; Bosch, Stephen; Gray, D Anthony; Howard, Philip H; Guiney, Patrick D

    2007-10-01

    A comparison of the human health risk to consumers using one of two types of toilet rimblock products, either a p-dichlorobenzene-based rimblock or two newer fragrance/surfactant-based alternatives, was conducted. Rimblock products are designed for global use by consumers worldwide and function by releasing volatile compounds into indoor air with subsequent exposure presumed to be mainly by inhalation of indoor air. Using the THERdbASE exposure model and experimentally determined emission data, indoor air concentrations and daily intake values were determined for both types of rimblock products. Modeled exposure concentrations from a representative p-dichlorobenzene rimblock product are an order of magnitude higher than those from the alternative rimblock products due to its nearly pure composition and high sublimation rate. Lifetime exposure to p-dichlorobenzene or the subset of fragrance components with available RfD values is not expected to lead to non-cancer-based adverse health effects based on the exposure concentrations estimated using the THERdbASE model. A similar comparison of cancer-based effects was not possible as insufficient data were available for the fragrance components. PMID:17934948

  1. Lysophosphatidylcholine Acyltransferase 1 (LPCAT1) Specifically Interacts with Phospholipid Transfer Protein StarD10 to Facilitate Surfactant Phospholipid Trafficking in Alveolar Type II Cells*

    PubMed Central

    Lin, Sui; Ikegami, Machiko; Moon, Changsuk; Naren, Anjaparavanda P.; Shannon, John M.

    2015-01-01

    Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79–271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein. PMID:26048993

  2. Lysophosphatidylcholine Acyltransferase 1 (LPCAT1) Specifically Interacts with Phospholipid Transfer Protein StarD10 to Facilitate Surfactant Phospholipid Trafficking in Alveolar Type II Cells.

    PubMed

    Lin, Sui; Ikegami, Machiko; Moon, Changsuk; Naren, Anjaparavanda P; Shannon, John M

    2015-07-24

    Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79-271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein. PMID:26048993

  3. Bronchoalveolar Lavage Fluid and Serum Canine Surfactant Protein A Concentrations in Dogs with Chronic Cough by Bronchial and Interstitial Lung Diseases

    PubMed Central

    YAMAYA, Yoshiki; SUZUKI, Kazuyuki; WATARI, Toshihiro; ASANO, Ryuji

    2013-01-01

    ABSTRACT We measured bronchoalveolar lavage fluid (BALF) and serum canine surfactant protein (cSP)-A concentrations in dogs with chronic cough. There were no significant differences between bronchial and interstitial lung diseases in BALF cSP-A concentrations. However, serum cSP-A concentrations in dogs with the interstitial lung disease as diffuse panbronchiolitis and idiopathic pulmonary fibrosis were significantly higher than those in dogs with the bronchial disease as chronic bronchitis. These results suggest that serum cSP-A concentrations may be a useful and noninvasive biomarker to understand the existence of interstitial lung damage in dogs with chronic cough. PMID:24366151

  4. Chemical Polysialylation of Recombinant Human Proteins.

    PubMed

    Smirnov, Ivan V; Vorobiev, Ivan I; Belogurov, Alexey A; Genkin, Dmitry D; Deyev, Sergey M; Gabibov, Alexander G

    2015-01-01

    Design of drug with prolonged therapeutic action is one of the rapid developing fields of modern medical science and required implementation of different methods of protein chemistry and molecular biology. There are several therapeutic proteins needing increasing of their stability, pharmacokinetic, and pharmacodynamics parameters. To make long-live DNA-encoded drug PEGylation was proposed. Alternatively polysialic (colominic) acid, extracted from the cell wall of E. coli, fractionated to the desired size by anion-exchange chromatography and chemically activated to the amine-reactive aldehyde form, may be chemically attached to the polypeptide chain. Conjugates of proteins and polysialic acid generally resemble properties of protein-PEG conjugates, but possess significant negative net charge and are thought to be fully degradable after endocytosis due to the presence of intracellular enzymes, hydrolyzing the polysialic acid. Complete biodegradation of the polysialic acid moiety makes this kind of conjugates preferable for creation of drugs, intended for chronic use. Here, we describe two different protocols of chemical polysialylation. First protocol was employed for the CHO-derived human butyrylcholinesterase with optimized for recovery of specific enzyme activity. Polysialic acid moieties are attached at various lysine residues. Another protocol was developed for high-yield conjugation of human insulin; major conjugation point is the N-terminal residue of the insulin's light chain. These methods may allow to produce polysialylated conjugates of various proteins or polypeptides with reasonable yield and without significant loss of functional activity. PMID:26082236

  5. Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface.

    PubMed

    Chakraborty, Aishik; Hui, Erica; Waring, Alan J; Dhar, Prajnaparamita

    2016-04-01

    The overall goal of this work is to study the combined effects of Mini-B, a 34 residue synthetic analog of the lung surfactant protein SP-B, and cholesterol, a neutral lipid, on a model binary lipid mixture containing dipalmitolphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), that is often used to mimic the primary phospholipid composition of lung surfactants. Using surface pressure vs. mean molecular area isotherms, fluorescence imaging and analysis of lipid domain size distributions; we report on changes in the structure, function and stability of the model lipid-protein films in the presence and absence of varying composition of cholesterol. Our results indicate that at low cholesterol concentrations, Mini-B can prevent cholesterol's tendency to lower the line tension between lipid domain boundaries, while maintaining Mini-B's ability to cause reversible collapse resulting in the formation of surface associated reservoirs. Our results also show that lowering the line tension between domains can adversely impact monolayer folding mechanisms. We propose that small amounts of cholesterol and synthetic protein Mini-B can together achieve the seemingly opposing requirements of efficient LS: fluid enough to flow at the air-water interface, while being rigid enough to oppose irreversible collapse at ultra-low surface tensions. PMID:26775740

  6. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Plasma Protein Fraction (Human). 640.90 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  7. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  8. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  9. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  10. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  11. Lung Fibrosis-associated Surfactant Protein A1 and C Variants Induce Latent Transforming Growth Factor β1 Secretion in Lung Epithelial Cells*

    PubMed Central

    Maitra, Meenakshi; Dey, Moushumi; Yuan, Wen-Cheng; Nathanielsz, Peter W.; Garcia, Christine Kim

    2013-01-01

    Missense mutations of surfactant proteins are recognized as important causes of inherited lung fibrosis. Here, we study rare and common surfactant protein (SP)-A1 and SP-C variants, either discovered in our familial pulmonary fibrosis cohort or described by others. We show that expression of two SP-A1 (R219W and R242*) and three SP-C (I73T, M71V, and L188Q) variant proteins lead to the secretion of the profibrotic latent transforming growth factor (TGF)-β1 in lung epithelial cell lines. The secreted TGF-β1 is capable of autocrine and paracrine signaling and is dependent upon expression of the latent TGF-β1 binding proteins. The dependence upon unfolded protein response (UPR) mediators for TGF-β1 induction differs for each variant. TGF-β1 secretion induced by the expression of the common SP-A1 R219W variant is nearly completely blocked by silencing the UPR transducers IRE-1α and ATF6. In contrast, the secretion of TGF-β1 induced by two rare SP-C mutant proteins (I73T and M71V), is largely unaffected by UPR silencing or by the addition of the small molecular chaperone 4-phenylbutyric acid, implicating a UPR-independent mechanism for these variants. Blocking TGF-β1 secretion reverses cell death of RLE-6TN cells expressing these SP-A1 and SP-C variants suggesting that anti-TGF-β therapeutics may be beneficial to this molecularly defined subgroup of pulmonary fibrosis patients. PMID:23926107

  12. Lung fibrosis-associated surfactant protein A1 and C variants induce latent transforming growth factor β1 secretion in lung epithelial cells.

    PubMed

    Maitra, Meenakshi; Dey, Moushumi; Yuan, Wen-Cheng; Nathanielsz, Peter W; Garcia, Christine Kim

    2013-09-20

    Missense mutations of surfactant proteins are recognized as important causes of inherited lung fibrosis. Here, we study rare and common surfactant protein (SP)-A1 and SP-C variants, either discovered in our familial pulmonary fibrosis cohort or described by others. We show that expression of two SP-A1 (R219W and R242*) and three SP-C (I73T, M71V, and L188Q) variant proteins lead to the secretion of the profibrotic latent transforming growth factor (TGF)-β1 in lung epithelial cell lines. The secreted TGF-β1 is capable of autocrine and paracrine signaling and is dependent upon expression of the latent TGF-β1 binding proteins. The dependence upon unfolded protein response (UPR) mediators for TGF-β1 induction differs for each variant. TGF-β1 secretion induced by the expression of the common SP-A1 R219W variant is nearly completely blocked by silencing the UPR transducers IRE-1α and ATF6. In contrast, the secretion of TGF-β1 induced by two rare SP-C mutant proteins (I73T and M71V), is largely unaffected by UPR silencing or by the addition of the small molecular chaperone 4-phenylbutyric acid, implicating a UPR-independent mechanism for these variants. Blocking TGF-β1 secretion reverses cell death of RLE-6TN cells expressing these SP-A1 and SP-C variants suggesting that anti-TGF-β therapeutics may be beneficial to this molecularly defined subgroup of pulmonary fibrosis patients. PMID:23926107

  13. Cow's milk proteins in human milk.

    PubMed

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Rovelli, I; Peila, C; Martano, C; Chiale, F; Bertino, E

    2012-01-01

    Cow's milk proteins (CMPs) are among the best characterized food allergens. Cow's milk contains more than twenty five different proteins, but only whey proteins alpha-lactalbumin, beta-lactoglobulin, bovine serum albumin (BSA), and lactoferrin, as well as the four caseins, have been identified as allergens. Aim of this study was to investigate by proteomics techniques cow's milk allergens in human colostrum of term and preterm newborns' mothers, not previously detected, in order to understand if such allergens could be cause of sensitization during lactation. Term colostrum samples from 62 healthy mothers and preterm colostrum samples from 11 healthy mothers were collected for this purpose. The most relevant finding was the detection of the intact bovine alpha-S1-casein in both term and preterm colostrum. Using this method, which allows direct proteins identification, beta-lactoglobulin was not detected in any of colostrum samples. According to our results bovine alpha 1 casein that is considered a major cow's milk allergen is readily secreted in human milk: further investigations are needed in order to clarify if alpha-1-casein has a major role in sensitization or tolerance to cow's milk of exclusively breastfed predisposed infants. PMID:23158513

  14. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  15. Separation of human, bovine, and porcine insulins, three very closely related proteins, by micellar electrokinetic chromatography.

    PubMed

    Lamalle, Caroline; Roland, Diane; Crommen, Jacques; Servais, Anne-Catherine; Fillet, Marianne

    2015-10-01

    Human, bovine, and porcine insulins are small proteins with very closely related amino acid sequences, which makes their separation challenging. In this study, we took advantage of the high-resolution power of CE, and more particularly of micellar electrokinetic chromatography, to separate those biomolecules. Among several surfactants, perfluorooctanoic acid ammonium salt was selected. Then, using a design of experiments approach, the optimal BGE composition was found to consist of 50 mM ammonium acetate pH 9.0, 65 mM perfluorooctanoic acid ammonium salt, and 4% MeOH. The three insulins could be separated within 12 min with a satisfactory resolution. This method could be useful to detect possible counterfeit pharmaceutical formulations. Indeed, it would be easy to determine if human insulin was replaced by bovine or porcine insulin. PMID:26095856

  16. A small key unlocks a heavy door: The essential function of the small hydrophobic proteins SP-B and SP-C to trigger adsorption of pulmonary surfactant lamellar bodies.

    PubMed

    Hobi, Nina; Giolai, Michael; Olmeda, Bárbara; Miklavc, Pika; Felder, Edward; Walther, Paul; Dietl, Paul; Frick, Manfred; Pérez-Gil, Jesus; Haller, Thomas

    2016-08-01

    The molecular basis involving adsorption of pulmonary surfactant at the respiratory air-liquid interface and the specific roles of the surfactant proteins SP-B and SP-C in this process have not been completely resolved. The reasons might be found in the largely unknown structural assembly in which surfactant lipids and proteins are released from alveolar type II cells, and the difficulties to sample, manipulate and visualize the adsorption of these micron-sized particles at an air-liquid interface under appropriate physiological conditions. Here, we introduce several approaches to overcome these problems. First, by immunofluorescence we could demonstrate the presence of SP-B and SP-C on the surface of exocytosed surfactant particles. Second, by sampling the released particles and probing their adsorptive capacity we could demonstrate a remarkably high rate of interfacial adsorption, whose rate and extent was dramatically affected by treatment with antibodies against SP-B and SP-C. The effect of both antibodies was additive and specific. Third, direct microscopy of an inverted air-liquid interface revealed that the blocking effect is due to a stabilization of the released particles when contacting the air-liquid interface, precluding their transformation and the formation of surface films. We conclude that SP-B and SP-C are acting as essential, preformed molecular keys in the initial stages of surfactant unpacking and surface film formation. We further propose that surfactant activation might be transduced by a conformational change of the surfactant proteins upon contact with surface forces acting on the air-liquid interface. PMID:27155084

  17. Oxidative damage to human plasma proteins by ozone.

    PubMed

    Cross, C E; Reznick, A Z; Packer, L; Davis, P A; Suzuki, Y J; Halliwell, B

    1992-01-01

    Exposure of human plasma to ozone produces oxidative protein damage, measured as protein carbonyl formation. Isolated human albumin or creatine phosphokinase are oxidized much faster than are total proteins. Consideration must be given to proteins as targets of oxidative injury by ozone in vivo. PMID:1568641

  18. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  19. Aerosol delivery of synthetic lung surfactant

    PubMed Central

    Hernández-Juviel, José M.; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support

  20. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  1. Pulmonary Surfactant: An Immunological Perspective

    PubMed Central

    Chroneos, Zissis C.; Sever-Chroneos, Zvjezdana; Shepherd, Virginia L.

    2009-01-01

    Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPα, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense. PMID:20054141

  2. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains

    PubMed Central

    Abate, Wondwossen; Alghaithy, Abdulaziz A.; Parton, Joan; Jones, Kenneth P.; Jackson, Simon K.

    2010-01-01

    In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta®, Curosurf®, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta®, Curosurf®, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids. PMID:19648651

  3. Protein oxidation, UVA and human DNA repair.

    PubMed

    Karran, Peter; Brem, Reto

    2016-08-01

    Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency - with particular reference to NER and skin cancer risk. PMID:27324272

  4. Human skeletal muscle protein breakdown during spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1997-01-01

    Human spaceflight is associated with a loss of body protein. Excretion of 3-methylhistidine (3-MH) in the urine is a useful measurement of myofibrillar protein breakdown. Bed rest, particularly with 6 degrees head-down tilt, is an accepted ground-based model for human spaceflight. The objectives of this report were to compare 3-MH excretion from two Life Sciences shuttle missions (duration 9.5 and 15 days, n = 9) and from 17 days of bed rest (n = 7) with 6 degrees head-down tilt. The bed rest study was designed to mimic an actual Life Sciences spaceflight and so incorporated an extensive battery of physiological tests focused on the musculoskeletal system. Results showed that nitrogen retention, based on excretion of nitrogen in the urine, was reduced during both bed rest [from 22 +/- 1 to 1 +/- 5 mg N x kg(-1) x day(-1) (n = 7; P < 0.05)] and spaceflight [from 57 +/- 9 to 19 +/- 3 mg N x kg(-1) x day(-1) (n = 9; P < 0.05)]. 3-MH excretion was unchanged with either bed rest [pre-bed rest 5.30 +/- 0.29 vs. bed rest 5.71 +/- 0.30 micromol 3-MH x kg(-1) x day(-1), n = 7; P = not significant (NS)] or spaceflight [preflight 4.98 +/- 0.37 vs. 4.59 +/- 0.39 micromol 3-MH x kg(-1) x day(-1) in-flight, n = 9; P = NS]. We conclude that 1) 3-MH excretion was unaffected by spaceflight on the shuttle or with bed rest plus exercise, and 2) because protein breakdown (elevated 3-MH) was increased on Skylab but not on the shuttle, it follows that muscle protein breakdown is not an inevitable consequence of spaceflight.

  5. Human protein kinase CK2 genes.

    PubMed

    Wirkner, U; Voss, H; Lichter, P; Pyerin, W

    1994-01-01

    We have analyzed the genomic structure of human protein kinase CK2. Of the presumably four genes, the gene encoding the regulatory subunit beta and a processed (pseudo)gene of the catalytic subunit alpha have been characterized completely. In addition, a 18.9 kb-long central part of the gene encoding the catalytic subunit alpha has been characterized. The subunit beta gene spans 4.2 kb and is composed of seven exons. Its promoter region shows several features of a "housekeeping gene" and shares common features with the promoter of the regulatory subunit of cAMP-dependent protein kinase. Conforming to the genomic structure, the beta gene transcripts form a band around 1.1 kb. The central part of the subunit alpha gene contains eight exons comprising bases 102 to 824 of the translated region. Within the introns, 16 Alu repeats were identified, some of which arranged in tandems. The structure of both human CK2 coding genes, alpha and beta, is highly conserved. Several introns are located at corresponding positions in the respective genes of the nematode Caenorhabditis elegans. The processed alpha (pseudo)gene has a complete open reading frame and is 99% homologous to the coding region of the CK2 alpha cDNA. Although the gene has a promoter-like upstream region, no transcript could be identified so far. The genomic clones were used for localization in the human genome. The beta gene was mapped to locus 6p21, the alpha gene to locus 20p13 and the alpha (pseudo)gene to locus 11p15. There is no evidence for additional alpha or beta loci in the human genome. PMID:7735323

  6. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. PMID:26707414

  7. Proteins of human milk. I. Identification of major components

    SciTech Connect

    Anderson, N.G.; Powers, M.T.; Tollaksen, S.L.

    1982-04-01

    Traditionally, human milk proteins are identified largely by reference to bovine milk. Hence, to identify the major proteins in human milk, we subjected human and bovine milk, in parallel, to high-resolution two-dimensional electrophoresis. Isoelectric precipitation at pH 4.6 was our criterion for distinguishing whey proteins from those of the casein complex. The ..cap alpha..- and..beta..-caseins were identified on the basis of relative abundance, relative molecular mass, and relative isoelectric points. No protein disappeared from ISO-DALT patterns of human milk after rennin treatment, and no new protein comparable to bovine para K-casein appeared in the BASO-DALT patterns; this suggests that K-casein is absent from human milk. The proteins identified in human milk patterns include the ..cap alpha.. and ..beta.. casein families, lactalbumin, albumin, transferrin, IgA, and lactoferrin. Numerous additional proteins seen in patterns for human milk remain to be identified.

  8. Effect of a bovine lung surfactant protein isolate (SP-B/C) on egg phosphatidylglycerol acyl chain order in a lipid mixture with dipalmitoylphosphatidylcholine and palmitic acid.

    PubMed

    Krill, S L; Gupta, S L

    1994-04-01

    Dynamic surface tension measurements of films of a d62 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine:L-alpha-phosphatidyl-DL - glycerol:d31 palmitic acid (d62-DPPC:EggPG:d31-PA) lipid matrix in the presence of a bovine pulmonary surfactant protein isolate (SP-B/C) demonstrate the improved surface activity over that of the lipids alone. Thus, significant interaction of the proteins with the lipid matrix is demonstrated. The effect of SP-B/C on the acyl chain order of the negatively charged EggPG within a d62-DPPC:EggPG:d31-PA lipid matrix in D2O saline was investigated in thermal perturbation Fourier transform IR spectroscopic studies. The EggPG thermotropic phase behavior was determined independently of the other lipid components with perdeuterated lipids and D2O. The data demonstrate the high degree of EggPG acyl chain disorder in the absence of the protein isolate. A broad transition occurs between 30 and 40 degrees C. The addition of the protein isolate did not alter the acyl chain order at 0.281 and 1.46 mg/mL of protein. However, alterations in the lipid carbonyl vibrational mode were observed. PMID:8046609

  9. The proteins of human chromosome 21.

    PubMed

    Gardiner, Katheleen; Costa, Alberto C S

    2006-08-15

    Recent genomic sequence annotation suggests that the long arm of human chromosome 21 encodes more than 400 genes. Because there is no evidence to exclude any significant segment of 21 q from containing genes relevant to the Down syndrome (DS) cognitive phenotype, all genes in this entire set must be considered as candidates. Only a subset, however, is likely to make critical contributions. Determining which these are is both a major focus in biology and a critical step in efficient development of therapeutics. The subtle molecular abnormality in DS, the 50% increase in chromosome 21 gene expression, presents significant challenges for researchers in detection and quantitation. Another challenge is the current limitation in understanding gene functions and in interpreting biological characteristics. Here, we review information on chromosome 21-encoded proteins compiled from the literature and from genomics and proteomics databases. For each protein, we summarize their evolutionary conservation, the complexity of their known protein interactions and their level of expression in brain, and discuss the implications and limitations of these data. For a subset, we discuss neurologically relevant phenotypes of mouse models that include knockouts, mutations, or overexpression. Lastly, we highlight a small number of genes for which recent evidence suggests a function in biochemical/cellular pathways that are relevant to cognition. Until knowledge deficits are overcome, we suggest that effective development of gene-phenotype correlations in DS requires a serious and continuous effort to assimilate broad categories of information on chromosome 21 genes, plus the creation of more versatile mouse models. PMID:17048356

  10. The Pseudomonas aeruginosa Flagellum Confers Resistance to Pulmonary Surfactant Protein-A by Impacting the Production of Exoproteases Through Quorum-Sensing

    PubMed Central

    Kuang, Zhizhou; Hao, Yonghua; Hwang, Sunghei; Zhang, Shiping; Kim, Eunice; Akinbi, Henry T; Schurr, Michael J.; Irvin, Randall T.; Hassett, Daniel J; Lau, Gee W.

    2011-01-01

    Surfactant protein-A (SP-A) is an important antimicrobial protein that opsonizes and permeabilizes membranes of microbial pathogens in mammalian lungs. Previously, we have shown that Pseudomonas aeruginosa flagellum-deficient mutants are preferentially cleared in the lungs of wild-type mice by SP-A-mediated membrane permeabilization, and not by opsonization. In this study, we report a flagellum-mediated mechanism of P. aeruginosa resistance to SP-A. We discovered that flagellum-deficient (ΔfliC) bacteria are unable to produce adequate amounts of exoproteases to degrade SP-A in vitro and in vivo, leading to its preferential clearance in the lungs of SP-A+/+ mice. In addition, ΔfliC bacteria failed to degrade another important lung antimicrobial protein lysozyme. Detailed analyses showed that ΔfliC bacteria are unable to upregulate the transcription of lasI and rhlI genes, impairing the production of homoserine lactones necessary for quorum-sensing, an important virulence process that regulates the production of multiple exoproteases. Thus, reduced ability of ΔfliC bacteria to quorum-sense attenuates production of exoproteases and limits degradation of SP-A, thereby conferring susceptibility to this major pulmonary host defense protein. PMID:21205009

  11. Surfactants and atherogenesis.

    PubMed

    Seely, S

    1977-01-01

    In previous publications (1,2) the hypothesis was put forward that atheroma is caused by some pathogen or metabolic fault which impairs the transportability of cholesterol in the plasma. The lipoproteins containing the faulty metabolites are assumed to be incapable of traversing the capillary endothelium and continue to circulate uselessly in the blood stream, possibly giving rise to hypercholesterolaemia, until captured by lipophages which, if they can successfully complete their journey, void them into the gall bladder. The present paper takes the argument a step further by pointing out that the types of substances most likely to cause the described impairment are surfactants. A surfactant finding its way into the plasma could separate cholesterol from its carrier protein and itself become its carrier. The complex would still be kept in suspension in the plasma, but unable to cross biological barriers like the capillary endothelium. An important argument in favour of the hypothesis is that it can offer an explanation of the long-standing medical mystery of the connection between atheroma and the hardness or softness of the water supply. Infant deaths from coronary occlusion present a similar enigma. The paper points out that surfactants can conceivably find their way into infants' feeding bottles. PMID:593183

  12. Functional prediction of hypothetical proteins in human adenoviruses.

    PubMed

    Dorden, Shane; Mahadevan, Padmanabhan

    2015-01-01

    Assigning functional information to hypothetical proteins in virus genomes is crucial for gaining insight into their proteomes. Human adenoviruses are medium sized viruses that cause a range of diseases. Their genomes possess proteins with uncharacterized function known as hypothetical proteins. Using a wide range of protein function prediction servers, functional information was obtained about these hypothetical proteins. A comparison of functional information obtained from these servers revealed that some of them produced functional information, while others provided little functional information about these human adenovirus hypothetical proteins. The PFP, ESG, PSIPRED, 3d2GO, and ProtFun servers produced the most functional information regarding these hypothetical proteins. PMID:26664031

  13. Luminescent probe in the study of surfactant-induced structural changes in serum albumin in human blood plasma

    NASA Astrophysics Data System (ADS)

    Melnikov, A. G.; Pravdin, A. B.; Kochubey, V. I.; Melnikov, G. V.

    2005-06-01

    The luminescence-kinetic technique of the monitoring of structural changes in albumins of human blood plasma that uses a luminescent probe-eosin is proposed. Phosphorescence of eosin bound to the globular proteins of blood plasma-albumins was recorded at room temperature. It is found that under the action of sodium dodecylsulfate on the albumins the rate constant of eosin phosphorescence decay grows and the intensity of eosin phosphorescence decreases. It is assumed that these changes are connected with the denaturing of blood plasma albumins by sodium dodecylsulfate.

  14. The Proteins of Human Chromosome 21

    PubMed Central

    Gardiner, Katheleen; Costa, Alberto C. S.

    2009-01-01

    Recent genomic sequence annotation suggests that the long arm of human chromosome 21 encodes more than 400 genes. Because there is no evidence to exclude any significant segment of 21q from containing genes relevant to the Down syndrome cognitive phenotype, all genes in this entire set must be considered as candidates. Only a subset, however, is likely to make critical contributions. Determining which these are is both a major focus in biology and a critical step in efficient development of therapeutics. The subtle molecular abnormality in Down syndrome, the 50% increase in chromosome 21 gene expression, presents significant challenges for researchers in detection and quantitation. Another challenge is the current limitation in understanding gene functions and in interpreting biological characteristics. Here, we review information on chromosome 21-encoded proteins compiled from the literature and from genomics and proteomics databases. For each protein, we summarize their evolutionary conservation, the complexity of their known protein interactions and their level of expression in brain, and discuss the implications and limitations of these data. For a subset, we discuss neurologically relevant phenotypes of mouse models that include knockouts, mutations or overexpression. Lastly, we highlight a small number of genes for which recent evidence suggests a function in biochemical/cellular pathways that are relevant to cognition. Until knowledge deficits are overcome, we suggest that effective development of gene-phenotype correlations in Down syndrome requires a serious and continuous effort to assimilate broad categories of information on chromosome 21 genes, plus the creation of more versatile mouse models. PMID:17048356

  15. Pulmonary surfactants and their role in pathophysiology of lung disorders.

    PubMed

    Akella, Aparna; Deshpande, Shripad B

    2013-01-01

    Surfactant is an agent that decreases the surface tension between two media. The surface tension between gaseous-aqueous interphase in the lungs is decreased by the presence of a thin layer of fluid known as pulmonary surfactant. The pulmonary surfactant is produced by the alveolar type-II (AT-II) cells of the lungs. It is essential for efficient exchange of gases and for maintaining the structural integrity of alveoli. Surfactant is a secretory product, composed of lipids and proteins. Phosphatidylcholine and phosphatidylglycerol are the major lipid constituents and SP-A, SP-B, SP-C, SP-D are four types of surfactant associated proteins. The lipid and protein components are synthesized separately and are packaged into the lamellar bodies in the AT-II cells. Lamellar bodies are the main organelle for the synthesis and metabolism of surfactants. The synthesis, secretion and recycling of the surfactant lipids and proteins is regulated by complex genetic and metabolic mechanisms. The lipid-protein interaction is very important for the structural organization of surfactant monolayer and its functioning. Alterations in surfactant homeostasis or biophysical properties can result in surfactant insufficiency which may be responsible for diseases like respiratory distress syndrome, lung proteinosis, interstitial lung diseases and chronic lung diseases. The biochemical, physiological, developmental and clinical aspects of pulmonary surfactant are presented in this article to understand the pathophysiological mechanisms of these diseases. PMID:23441475

  16. Genetic Disorders of Surfactant Dysfunction

    PubMed Central

    Wert, Susan E.; Whitsett, Jeffrey A.; Nogee, Lawrence M.

    2010-01-01

    Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease in the pediatric population. Expression of these proteins is regulated developmentally, increasing with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface, preventing collapse of the lung at the end of expiration. SP-B and ABCA3 are required for the normal organization and packaging of surfactant phospholipids into specialized secretory organelles, known as lamellar bodies, while both SP-B and SP-C are important for adsorption of secreted surfactant phospholipids to the alveolar surface. In general, mutations in the SP-B gene SFTPB are associated with fatal respiratory distress in the neonatal period, and mutations in the SP-C gene SFTPC are more commonly associated with interstitial lung disease in older infants, children, and adults. Mutations in the ABCA3 gene are associated with both phenotypes. Despite this general classification, there is considerable overlap in the clinical and histologic characteristics of these genetic disorders. In this review, similarities and differences in the presentation of these disorders with an emphasis on their histochemical and ultrastructural features will be described, along with a brief discussion of surfactant metabolism. Mechanisms involved in the pathogenesis of lung disease caused by mutations in these genes will also be discussed. PMID:19220077

  17. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice

    SciTech Connect

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi; Guo Xiaoxuan; Hawgood, Samuel; Phelps, David S.; Floros, Joanna . E-mail: jfloros@psu.edu

    2007-04-01

    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure.

  18. The protein interaction landscape of the human CMGC kinase group.

    PubMed

    Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias

    2013-04-25

    Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways. PMID:23602568

  19. Spectral Monitoring of Surfactant Clearance during Alveolar Epithelial Type II Cell Differentiation

    PubMed Central

    Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.

    2008-01-01

    In this study, we report on the noninvasive identification of spectral markers of alveolar type II (ATII) cell differentiation in vitro using Raman microspectroscopy. ATII cells are progenitor cells for alveolar type I (ATI) cells in vivo, and spontaneously differentiate toward an ATI-like phenotype in culture. We analyzed undifferentiated and differentiated primary human ATII cells, and correlated Raman spectral changes to cellular changes in morphology and marker protein synthesis (surfactant protein C, alkaline phosphatase, caveolin-1). Undifferentiated ATII cells demonstrated spectra with strong phospholipid vibrations, arising from alveolar surfactant stored within cytoplasmic lamellar bodies (Lbs). Differentiated ATI-like cells yielded spectra with significantly less lipid content. Factor analysis revealed a phospholipid-dominated spectral component as the main discriminator between the ATII and ATI-like phenotypes. Spectral modeling of the data revealed a significant decrease in the spectral contribution of cellular lipids—specifically phosphatidyl choline, the main constituent of surfactant, as ATII cells differentiate. These observations were consistent with the clearance of surfactant from Lbs as ATII cells differentiate, and were further supported by cytochemical staining for Lbs. These results demonstrate the first spectral characterization of primary human ATII cells, and provide insight into the biochemical properties of alveolar surfactant in its unperturbed cellular environment. PMID:18820234

  20. Synthesis of β-arabinofuranoside glycolipids, studies of their binding to surfactant protein-A and effect on sliding motilities of M. smegmatis.

    PubMed

    Naresh, Kottari; Avaji, Prakash Gouda; Maiti, Krishnagopal; Bharati, Binod K; Syal, Kirtimaan; Chatterji, Dipankar; Jayaraman, Narayanaswamy

    2012-04-01

    Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, β-arabinofuranoside trisaccharide glycolipids constituted with β-(1→2), β-(1→3) and β-(1→2), β-(1→5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying β-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few α-anomeric arabinofuranoside glycolipids showed that glycolipids with β-anomeric linkages were having relatively lower equilibrium binding constants than those with α-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with α-anomeric linkages. PMID:22258791

  1. Motifs within the CA-repeat-rich region of Surfactant Protein B (SFTPB) intron 4 differentially affect mRNA splicing

    PubMed Central

    Yang, Wenjun; Ni, Lan; Silveyra, Patricia; Wang, Guirong; Noutsios, Georgios T; Singh, Anamika; DiAngelo, Susan L; Sanusi, Olabisi; Raval, Manmeet; Floros, Joanna

    2013-01-01

    The first half of the surfactant protein B (SP-B) gene intron 4 is a CA-repeat-rich region that contains 11 motifs. To study the role of this region on SP-B mRNA splicing, minigenes were generated by systematic removal of motifs from either the 5′ or 3′ end. These were transfected in CHO cells to study their splicing efficiency. The latter was determined as the ratio of completely to incompletely spliced SP-B RNA. Our results indicate that SP-B intron 4 motifs differentially affect splicing. Motifs 8 and 9 significantly enhanced and reduced splicing of intron 4, respectively. RNA mobility shift assays performed with a Motif 8 sequence that contains a CAUC cis-element and cell extracts resulted in a RNA:protein shift that was lost upon mutation of the element. Furthermore, in silico analysis of mRNA secondary structure stability for minigenes with and without motif 8 indicated a correlation between mRNA stability and splicing ratio. We conclude that differential loss of specific intron 4 motifs results in one or more of the following: a) altered splicing, b) differences in RNA stability and c) changes in secondary structure. These, in turn, may affect SP-B content in lung health or disease. PMID:23687636

  2. Angiotensin I-Converting Enzyme inhibitory and antioxidant activities and surfactant properties of protein hydrolysates as obtained of Amaranthus hypochondriacus L. grain.

    PubMed

    Soriano-Santos, J; Escalona-Buendía, H

    2015-04-01

    Even though some research has been carried out on surfactant properties of amaranth protein hydrolysates, their bio-functionality has not been studied yet. In this work amaranth grain Alb 1 and Glob were hydrolyzed (Alb 1H, Glob H) and foams and emulsions at optimal conditions (t, E/S, pH5) were prepared in order to assess techno-functional properties such as foaming (F) and emulsifying (E) (capacity (C) and stability (S)). FC and EC were much better for Glob H than for Alb H. Angiotensin I-converting enzyme-inhibitory activity was higher for Alb 1H (roughly 50 %) than that of Glob H (roughly 30 %). Scavenging of radicals activity (DPPH· or ABTS· (+) ) of Alb 1H and Glob H, at 2 mg/mL, was similar (approx. 40 %), but lower than Alb 1 (approx. 70 %), which was the best antioxidant. The low reducing power showed that hydrolysates barely donate an electron or hydrogen. Chelating activity on Cu(2+) was lower than that exhibited by Fe(2+,) which was remarkable, approx. 80 % as long as DH% > 10 %, where hydrolysates displayed high solubility (Alb 1H = 85 %, Glob H = 70 %) because of occurrence of 1-10 kDa peptides. Amaranth foams and emulsions prepared with protein hydrolysates have a potential as a nutraceutical food. PMID:25829587

  3. A Survey of Membrane Proteins in Human Serum

    PubMed Central

    Dung, Nguyen Tien; Van Chi, Phan

    2012-01-01

    Serum and membrane proteins are two of the most attractive targets for proteomic analysis. Previous membrane protein studies tend to focus on tissue sample, while membrane protein studies in serum are still limited. In this study, an analysis of membrane proteins in normal human serum was carried out. Nano-liquid chromatography-electrospray ionization mass spectrometry (NanoLC-ESI-MS/MS) and bioinformatics tools were used to identify membrane proteins. Two hundred and seventeen membrane proteins were detected in the human serum, of which 129 membrane proteins have at least one transmembrane domain (TMD). Further characterizations of identified membrane proteins including their subcellular distributions, molecular weights, post translational modifications, transmembrane domains and average of hydrophobicity, were also implemented. Our results showed the potential of membrane proteins in serum for diagnosis and treatment of diseases. PMID:25288886

  4. Protein-Linked Glycan Degradation in Infants Fed Human Milk

    PubMed Central

    Dallas, David C.; Sela, David; Underwood, Mark A.; German, J. Bruce; Lebrilla, Carlito

    2014-01-01

    Many human milk proteins are glycosylated. Glycosylation is important in protecting bioactive proteins and peptide fragments from digestion. Protein-linked glycans have a variety of functions; however, there is a paucity of information on protein-linked glycan degradation in either the infant or the adult digestive system. Human digestive enzymes can break down dietary disaccharides and starches, but most of the digestive enzymes required for complex protein-linked glycan degradation are absent from both human digestive secretions and the external brush border membrane of the intestinal lining. Indeed, complex carbohydrates remain intact throughout their transit through the stomach and small intestine, and are undegraded by in vitro incubation with either adult pancreatic secretions or intact intestinal brush border membranes. Human gastrointestinal bacteria, however, produce a wide variety of glycosidases with regio- and anomeric specificities matching those of protein-linked glycan structures. These bacteria degrade a wide array of complex carbohydrates including various protein-linked glycans. That bacteria possess glycan degradation capabilities, whereas the human digestive system, perse, does not, suggests that most dietary protein-linked glycan breakdown will be of bacterial origin. In addition to providing a food source for specific bacteria in the colon, protein-linked glycans from human milk may act as decoys for pathogenic bacteria to prevent invasion and infection of the host. The composition of the intestinal microbiome may be particularly important in the most vulnerable humans-the elderly, the immunocompromised, and infants (particularly premature infants). PMID:24533224

  5. Increased lung prolyl hydroxylase and decreased glucocorticoid receptor are related to decreased surfactant protein in the growth-restricted sheep fetus.

    PubMed

    Orgeig, Sandra; McGillick, Erin V; Botting, Kimberley J; Zhang, Song; McMillen, I Caroline; Morrison, Janna L

    2015-07-01

    Experimental placental restriction (PR) by carunclectomy in fetal sheep results in intrauterine growth restriction (IUGR), chronic hypoxemia, increased plasma cortisol, and decreased lung surfactant protein (SP) expression. The mechanisms responsible for decreased SP expression are unknown but may involve decreased glucocorticoid (GC) action or changes in hypoxia signaling. Endometrial caruncles were removed from nonpregnant ewes to induce PR. Lungs were collected from control and PR fetuses at 130-135 (n = 19) and 139-145 (n = 28) days of gestation. qRT-PCR and Western blotting were used to quantify lung mRNA and protein expression, respectively, of molecular regulators and downstream targets of the GC and hypoxia-signaling pathways. We confirmed a decrease in SP-A, -B, and -C, but not SP-D, mRNA expression in PR fetuses at both ages. There was a net downregulation of GC signaling with a reduction in GC receptor (GR)-α and -β protein expression and a decrease in the cofactor, GATA-6. GC-responsive genes including transforming growth factor-β1, IL-1β, and β2-adrenergic receptor were not stimulated. Prolyl hydroxylase domain (PHD)2 mRNA and protein and PHD3 mRNA expression increased with a concomitant increase in hypoxia-inducible factor-1α (HIF-1α) and HIF-1β mRNA expression. There was an increase in mRNA expression of several, but not all, hypoxia-responsive genes. Hence, both GC and hypoxia signaling may contribute to reduced SP expression. Although acute hypoxia normally inactivates PHDs, chronic hypoxemia in the PR fetus increased PHD abundance, which normally prevents HIF signaling. This may represent a mechanism by which chronic hypoxemia contributes to the decrease in SP production in the IUGR fetal lung. PMID:25934670

  6. BMP signaling is essential in neonatal surfactant production during respiratory adaptation.

    PubMed

    Luo, Yongfeng; Chen, Hui; Ren, Siying; Li, Nan; Mishina, Yuji; Shi, Wei

    2016-07-01

    Deficiency in pulmonary surfactant results in neonatal respiratory distress, and the known genetic mutations in key components of surfactant only account for a small number of cases. Therefore, determining the regulatory mechanisms of surfactant production and secretion, particularly during the transition from prenatal to neonatal stages, is essential for better understanding of the pathogenesis of human neonatal respiratory distress. We have observed significant increase of bone morphogenetic protein (BMP) signaling in neonatal mouse lungs immediately after birth. Using genetically manipulated mice, we then studied the relationship between BMP signaling and surfactant production in neonates. Blockade of endogenous BMP signaling by deleting Bmpr1a (Alk3) or Smad1 in embryonic day 18.5 in perinatal lung epithelial cells resulted in severe neonatal respiratory distress and death, accompanied by atelectasis in histopathology and significant reductions of surfactant protein B and C, as well as Abca3, whereas prenatal lung development was not significantly affected. We then identified a new BMP-Smad1 downstream target, Nfatc3, which is known as an important transcription activator for surfactant proteins and Abca3. Furthermore, activation of BMP signaling in cultured lung epithelial cells was able to promote endogenous Nfatc3 expression and also stimulate the activity of an Nfatc3 promoter that contains a Smad1-binding site. Therefore, our study suggests that the BMP-Alk3-Smad1-Nfatc3 regulatory loop plays an important role in enhancing surfactant production in neonates, possibly helping neonatal respiratory adaptation from prenatal amniotic fluid environment to neonatal air breathing. PMID:27190064

  7. Lung injury and surfactant metabolism after hyperventilation of premature lambs.

    PubMed

    Ikegami, M; Kallapur, S; Michna, J; Jobe, A H

    2000-03-01

    We asked whether lung injury and surfactant metabolism differed in preterm lambs after a 1-h period of hyperventilation to P(CO2) values of 25-30 mm Hg. The lambs then were surfactant treated and conventionally ventilated (CV) or high-frequency oscillatory ventilated (HFOV) for an additional 1 or 8 h. The results were compared with lambs that were not hyperventilated or surfactant treated but were ventilated with CV or HFOV. The 1-h hyperventilation resulted in increased alveolar protein, increased recovery of intravascular [131I]albumin in the lungs, and an increase in tumor necrosis factor-alpha mRNA. There were no differences between CV or HFOV in alveolar or total lung recoveries of saturated phosphatidylcholine (Sat PC), tracer doses of [14C]Sat PC and [125I]surfactant protein-B, or in percent Sat PC in large aggregate surfactant in surfactant-treated lambs. The lambs not hyperventilated or treated with surfactant had lower large aggregate pools and lower recoveries of [14C]Sat PC and [125I]surfactant protein-B in total lungs than for the surfactant-treated lungs, but there were no differences between the CV and HFOV groups. Hyperventilation followed by surfactant treatment resulted in a mild injury, but the subsequent use of CV or HFOV did not result in differences in surfactant metabolism. PMID:10709742

  8. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  9. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  10. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  11. Stabilization of a human recombinant factor VIII by poloxamer 188 in relation to polysorbate 80.

    PubMed

    Clark, Jakson; Montgomery, Jade; Squires, Ryan; McGuire, Joseph

    2016-03-01

    Detection of enhanced surface tension depression by surfactant in the presence of protein was recently suggested as a basis for determining whether protein stabilization by that surfactant is owing to surfactant forming a steric barrier at interfaces or surfactant association with the protein. In particular, protein interaction with surfactant aggregates may lead to an increased concentration of monomers thus enhancing surfactant adsorption, or to formation of surfactant-protein complexes having little or no effect on adsorption. We compared the initial rates of surface tension depression by poloxamer 188 and polysorbate 80 (PS 80) in the presence and absence of a human recombinant factor VIII (rFVIII). Indirect evidence had suggested poloxamer 188 enters into stable associations with rFVIII in solution but does not form a steric barrier at the interface, while PS 80 behaves in contrary fashion. In this study, we show the presence of rFVIII caused an increase in the rate (reduction in the activation energy) of PS 80 adsorption, while no such change was recorded in the case of poloxamer 188. Thus, we provide substantiation for detection of protein-mediated acceleration of surfactant adsorption as a means to compare different surfactants in relation to their favored mechanism for protein stabilization. PMID:25471699

  12. Determination of Dideoxyosone Precursors of AGEs in Human Lens Proteins

    PubMed Central

    Linetsky, Mikhail; Johar, Kaid; Meltretter, Jasmin; Padmanabha, Smitha; Parmar, Trilok; Vasavada, Abhay R.; Pischetsrieder, Monika; Nagaraj, Ram H.

    2011-01-01

    Dideoxyosones (DDOs) are intermediates in the synthesis of advanced glycation end products (AGEs), such as pentosidine and glucosepane. Although the formation of pentosidine and glucosepane in the human lens has been firmly established, the formation of DDOs has not been demonstrated. The aim of this study was to develop a reliable method to detect DDOs in lens proteins. A specific DDO trapping agent, biotinyl-diaminobenzene (3,4-diamino-N-(3-{[5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl]aminopropyl) benzamide) (BDAB) was added during in vitro protein glycation or during protein extraction from human lenses. In vitro glycated human lens protein showed strong reaction in monomeric and polymeric crosslinked proteins by western blot and ELISA. Glycation of BSA in the presence of BDAB resulted in covalent binding of BDAB to the protein and inhibited pentosidine formation. Mass spectrometric analysis of lysozyme glycated in the presence of BDAB showed the presence of quinoxalines at lysine residues at positions K1, K33, K96, and K116. The ELISA results indicated that cataractous lens proteins contain significantly higher levels of DDO than non-cataractous lenses (101.9±67.8 AU/mg protein vs. 31.7±19.5 AU/mg protein, p<0.0001). This study provides first direct evidence of DDO presence in human tissue proteins and establishes that AGE crosslink synthesis in the human lens occurs via DDO intermediates. PMID:21820400

  13. Pulmonary Surfactant Protein A Is Expressed in Mouse Retina by Müller Cells and Impacts Neovascularization in Oxygen-Induced Retinopathy

    PubMed Central

    Bhatti, Faizah; Ball, Genevieve; Hobbs, Ronald; Linens, Annette; Munzar, Saad; Akram, Rizwan; Barber, Alistair J.; Anderson, Michael; Elliott, Michael; Edwards, Madeline

    2015-01-01

    Purpose. Surfactant protein A (SP-A) up-regulates cytokine expression in lung disease of prematurity. Here we present data that for the first time characterizes SP-A expression and localization in the mouse retina and its impact on neovascularization (NV) in the mouse. Methods. Retinal SP-A was localized in wild-type (WT) mice with the cell markers glutamine synthetase (Müller cells), neurofilament-M (ganglion cells), glial acid fibrillary acid protein (astrocytes), and cluster of differentiation 31 (endothelial cells). Toll-like receptor 2 and 4 (TLR-2 and TLR-4) ligands were used to up-regulate SP-A expression in WT and myeloid differentiation primary response 88 (MyD88) protein (necessary for NFκB signaling) null mouse retinas and Müller cells, which were quantified using ELISA. Retinal SP-A was then measured in the oxygen-induced retinopathy (OIR) mouse model. The effect of SP-A on retinal NV was then studied in SP-A null (SP-A−/−) mice. Results. SP-A is present at birth in the WT mouse retina and colocalizes with glutamine synthetase. TLR-2 and TLR-4 ligands increase SP-A both in the retina and in Müller cells. SP-A is increased at postnatal day 17 (P17) in WT mouse pups with OIR compared to that in controls (P = 0.02), and SP-A−/− mice have reduced NV compared to WT mice (P = 0.001) in the OIR model. Conclusions. Retinal and Müller cell SP-A is up-regulated via the NFκB pathway and up-regulated during the hypoxia phase of OIR. Absence of SP-A attenuates NV in the OIR model. Thus SP-A may be a marker of retinal inflammation during NV. PMID:25406276

  14. S100 protein family in human cancer

    PubMed Central

    Chen, Hongyan; Xu, Chengshan; Jin, Qing’e; Liu, Zhihua

    2014-01-01

    S100 protein family has been implicated in multiple stages of tumorigenesis and progression. Among the S100 genes, 22 are clustered at chromosome locus 1q21, a region frequently rearranged in cancers. S100 protein possesses a wide range of intracellular and extracellular functions such as regulation of calcium homeostasis, cell proliferation, apoptosis, cell invasion and motility, cytoskeleton interactions, protein phosphorylation, regulation of transcriptional factors, autoimmunity, chemotaxis, inflammation and pluripotency. Many lines of evidence suggest that altered expression of S100 proteins was associated with tumor progression and prognosis. Therefore, S100 proteins might also represent potential tumor biomarkers and therapeutic targets. In this review, we summarize the evidence connecting S100 protein family and cancer and discuss the mechanisms by which S100 exerts its diverse functions. PMID:24660101

  15. Nucleic acid is a novel ligand for innate, immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin.

    PubMed

    Palaniyar, Nades; Nadesalingam, Jeya; Clark, Howard; Shih, Michael J; Dodds, Alister W; Reid, Kenneth B M

    2004-07-30

    Collectins are a family of innate immune proteins that contain fibrillar collagen-like regions and globular carbohydrate recognition domains (CRDs). The CRDs of these proteins recognize various microbial surface-specific carbohydrate patterns, particularly hexoses. We hypothesized that collectins, such as pulmonary surfactant proteins (SPs) SP-A and SP-D and serum protein mannose-binding lectin, could recognize nucleic acids, pentose-based anionic phosphate polymers. Here we show that collectins bind DNA from a variety of origins, including bacteria, mice, and synthetic oligonucleotides. Pentoses, such as arabinose, ribose, and deoxyribose, inhibit the interaction between SP-D and mannan, one of the well-studied hexose ligands for SP-D, and biologically relevant d-forms of the pentoses are better competitors than the l-forms. In addition, DNA and RNA polymer-related compounds, such as nucleotide diphosphates and triphosphates, also inhibit the carbohydrate binding ability of SP-D, or approximately 60 kDa trimeric recombinant fragments of SP-D that are composed of the alpha-helical coiled-coil neck region and three CRDs (SP-D(n/CRD)) or SP-D(n/CRD) with eight GXY repeats (SPD(GXY)(8)(n/CRD)). Direct binding and competition studies suggest that collectins bind nucleic acid via their CRDs as well as by their collagen-like regions, and that SP-D binds DNA more effectively than do SP-A and mannose-binding lectin at physiological salt conditions. Furthermore, the SP-D(GXY)(8)(n/CRD) fragments co-localize with DNA, and the protein competes the interaction between propidium iodide, a DNA-binding dye, and apoptotic cells. In conclusion, we show that collectins are a new class of proteins that bind free DNA and the DNA present on apoptotic cells by both their globular CRDs and collagen-like regions. Collectins may therefore play an important role in decreasing the inflammation caused by DNA in lungs and other tissues. PMID:15145932

  16. Determination of dideoxyosone precursors of AGEs in human lens proteins.

    PubMed

    Linetsky, Mikhail; Kaid Johar, S R; Meltretter, Jasmin; Padmanabha, Smitha; Parmar, Trilok; Vasavada, Abhay R; Pischetsrieder, Monika; Nagaraj, Ram H

    2011-10-01

    Dideoxyosones (DDOs) are intermediates in the synthesis of advanced glycation endproducts (AGEs), such as pentosidine and glucosepane. Although the formation of pentosidine and glucosepane in the human lens has been firmly established, the formation of DDOs has not been demonstrated. The aim of this study was to develop a reliable method to detect DDOs in lens proteins. A specific DDO trapping agent, biotinyl-diaminobenzene (3,4-diamino-N-(3-[5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl]aminopropyl)benzamide) (BDAB) was added during in vitro protein glycation or during protein extraction from human lenses. In vitro glycated human lens protein showed strong reaction in monomeric and polymeric crosslinked proteins by Western blot and ELISA. Glycation of BSA in the presence of BDAB resulted in covalent binding of BDAB to the protein and inhibited pentosidine formation. Mass spectrometric analysis of lysozyme glycated in the presence of BDAB showed the presence of quinoxalines at lysine residues at positions K1, K33, K96, and K116. The ELISA results indicated that cataractous lens proteins contain significantly higher levels of DDO than non-cataractous lenses (101.9±67.8 vs. 31.7±19.5AU/mg protein, p<0.0001). This study provides first direct evidence of DDO presence in human tissue proteins and establishes that AGE crosslink synthesis in the human lens occurs via DDO intermediates. PMID:21820400

  17. Skin2--an in vitro human skin model: the correlation between in vivo and in vitro testing of surfactants.

    PubMed

    Demetrulias, J; Donnelly, T; Morhenn, V; Jessee, B; Hainsworth, S; Casterton, P; Bernhofer, L; Martin, K; Decker, D

    1998-02-01

    The availability of an in vitro test system to replace animal testing of potential irritants is becoming more and more urgent especially in Europe as a consequence of the European Community Cosmetics Directive. To evaluate the ability of Advanced Tissue Sciences' (ATS) ZK1301 skin model to predict the skin irritation potential of surfactants, we performed a pilot validation study utilizing four different laboratories. The in vitro protocol was designed as a quantitative pre-screen for the clinical patch studies. Sixteen substances, representing various surfactant categories and ranges of irritation potential, were tested. The 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was used to quantitate viability in vitro. We documented the viability of tissues exposed to unknown substances for specific periods. The in vitro results were calculated as percent distilled water controls (DWC). The time required to reduce the viability of each tissue to 50% of the distilled water controls (T50) was compared to mean erythema and edema scores from the clinical studies by Pearson's correlation. The individual laboratories demonstrated coefficients of 0.72. The results indicated that the 30 min percent untreated control values best predicted the 24 h clinical patch scores. No statistically significant interlab variability was found. Only one false negative was seen when non/mild and moderate/severe irritant categories were assigned according to the in vitro scores. These results demonstrate that the skin2 in vitro test system may serve as a good screening method prior to clinical patch studies. PMID:9517918

  18. Validation of mechanically-assisted sodium dodecyl-sulphate elution as a technique to remove pellicle protein components from human enamel.

    PubMed

    Svendsen, Ida E; Arnebrant, Thomas; Lindh, Liselott

    2008-01-01

    The salivary film, denoted the pellicle, formed on oral surfaces is of great importance for oral health and comfort. The present study describes mechanically-assisted sodium dodecyl sulphate (SDS) elution of the in vivo pellicle formed on human enamel and visualisation of the desorbed pellicle proteins using two-dimensional gel electrophoresis (2-DE). To verify this removal of the pellicle, a combined mechanical and surfactant procedure was additionally performed on an in vitro pellicle formed on human enamel, and the effectiveness was validated by mechanical removal in combination with HCl. As indicated by protein quantitation and one dimensional gel electrophoresis, rubbing with polyamide fibre pellets soaked in a 0.5% SDS solution was optimal for completely removing the adsorbed proteins from the enamel surface, and yet provided separation of the proteins by 2-DE to enable identification in future studies. PMID:18392990

  19. Deacylated Pulmonary Surfactant Protein SP-C Transforms From α-Helical to Amyloid Fibril Structure via a pH-Dependent Mechanism: An Infrared Structural Investigation

    PubMed Central

    Dluhy, Richard A.; Shanmukh, Saratchandra; Leapard, J. Brian; Krüger, Peter; Baatz, John E.

    2003-01-01

    Bovine pulmonary surfactant protein C (SP-C) is a hydrophobic, α-helical membrane-associated lipoprotein in which cysteines C4 and C5 are acylated with palmitoyl chains. Recently, it has been found that the α-helix form of SP-C is metastable, and under certain circumstances may transform from an α-helix to a β-strand conformation that resembles amyloid fibrils. This transformation is accelerated when the protein is in its deacylated form (dSP-C). We have used infrared spectroscopy to study the structure of dSP-C in solution and at membrane interfaces. Our results show that dSP-C transforms from an α-helical to a β-type amyloid fibril structure via a pH-dependent mechanism. In solution at low pH, dSP-C is α-helical in nature, but converts to an amyloid fibril structure composed of short β-strands or β-hairpins at neutral pH. The α-helix structure of dSP-C is fully recoverable from the amyloid β-structure when the pH is once again lowered. Attenuated total reflectance infrared spectroscopy of lipid-protein monomolecular films showed that the fibril β-form of dSP-C is not surface-associated at the air-water interface. In addition, the lipid-associated α-helix form of dSP-C is only retained at the surface at low surface pressures and dissociates from the membrane at higher surface pressures. In situ polarization modulation infrared spectroscopy of protein and lipid-protein monolayers at the air-water interface confirmed that the residual dSP-C helix conformation observed in the attenuated total reflectance infrared spectra of transferred films is randomly or isotropically oriented before exclusion from the membrane interface. This work identifies pH as one of the mechanistic causes of amyloid fibril formation for dSP-C, and a possible contributor to the pathogenesis of pulmonary alveolar proteinosis. PMID:14507705

  20. The Evolution of Human Cells in Terms of Protein Innovation

    PubMed Central

    Sardar, Adam J.; Oates, Matt E.; Fang, Hai; Forrest, Alistair R.R.; Kawaji, Hideya; Gough, Julian; Rackham, Owen J.L.

    2014-01-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type–specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type–specific domain architectures. PMID:24692656

  1. Cloning and expression of special F protein from human liver

    PubMed Central

    Liu, Shu-Ye; Yu, Xin-Da; Song, Chun-Juan; Lu, Wei; Zhang, Jian-Dong; Shi, Xin-Rong; Duan, Ying; Zhang, Ju

    2007-01-01

    AIM: To clone human liver special F protein and to express it in a prokaryotic system. METHODS: Total RNA was isolated from human liver tissue and first-strand cDNA was reverse transcribed using the PCR reverse primer. Following this, cDNA of the F protein was ligated into the clone vector pUCm-T. The segment of F protein’s cDNA was subcloned into the expression vector pET-15b and transformed into E. coli BL21 (DE3) pLyss. Isopropy-β-D-thiogalactoside (IPTG) was then used to induce expression of the target protein. RESULTS: The cDNA clone of human liver special F protein (1134bp) was successfully produced, with the cDNA sequence being published in Gene-bank: DQ188836. We confirmed the expression of F protein by Western blot with a molecular weight of 43 kDa. The expressed protein accounted for 40% of the total protein extracted. CONCLUSION: F protein expresses cDNA clone in a prokaryotic system, which offers a relatively simple way of producing sufficient quantities of F protein and contributes to understanding the principal biological functions of this protein. PMID:17465469

  2. neXtProt: a knowledge platform for human proteins.

    PubMed

    Lane, Lydie; Argoud-Puy, Ghislaine; Britan, Aurore; Cusin, Isabelle; Duek, Paula D; Evalet, Olivier; Gateau, Alain; Gaudet, Pascale; Gleizes, Anne; Masselot, Alexandre; Zwahlen, Catherine; Bairoch, Amos

    2012-01-01

    neXtProt (http://www.nextprot.org/) is a new human protein-centric knowledge platform. Developed at the Swiss Institute of Bioinformatics (SIB), it aims to help researchers answer questions relevant to human proteins. To achieve this goal, neXtProt is built on a corpus containing both curated knowledge originating from the UniProtKB/Swiss-Prot knowledgebase and carefully selected and filtered high-throughput data pertinent to human proteins. This article presents an overview of the database and the data integration process. We also lay out the key future directions of neXtProt that we consider the necessary steps to make neXtProt the one-stop-shop for all research projects focusing on human proteins. PMID:22139911

  3. neXtProt: a knowledge platform for human proteins

    PubMed Central

    Lane, Lydie; Argoud-Puy, Ghislaine; Britan, Aurore; Cusin, Isabelle; Duek, Paula D.; Evalet, Olivier; Gateau, Alain; Gaudet, Pascale; Gleizes, Anne; Masselot, Alexandre; Zwahlen, Catherine; Bairoch, Amos

    2012-01-01

    neXtProt (http://www.nextprot.org/) is a new human protein-centric knowledge platform. Developed at the Swiss Institute of Bioinformatics (SIB), it aims to help researchers answer questions relevant to human proteins. To achieve this goal, neXtProt is built on a corpus containing both curated knowledge originating from the UniProtKB/Swiss-Prot knowledgebase and carefully selected and filtered high-throughput data pertinent to human proteins. This article presents an overview of the database and the data integration process. We also lay out the key future directions of neXtProt that we consider the necessary steps to make neXtProt the one-stop-shop for all research projects focusing on human proteins. PMID:22139911

  4. Human protein reference database as a discovery resource for proteomics

    PubMed Central

    Peri, Suraj; Navarro, J. Daniel; Kristiansen, Troels Z.; Amanchy, Ramars; Surendranath, Vineeth; Muthusamy, Babylakshmi; Gandhi, T. K. B.; Chandrika, K. N.; Deshpande, Nandan; Suresh, Shubha; Rashmi, B. P.; Shanker, K.; Padma, N.; Niranjan, Vidya; Harsha, H. C.; Talreja, Naveen; Vrushabendra, B. M.; Ramya, M. A.; Yatish, A. J.; Joy, Mary; Shivashankar, H. N.; Kavitha, M. P.; Menezes, Minal; Choudhury, Dipanwita Roy; Ghosh, Neelanjana; Saravana, R.; Chandran, Sreenath; Mohan, Sujatha; Jonnalagadda, Chandra Kiran; Prasad, C. K.; Kumar-Sinha, Chandan; Deshpande, Krishna S.; Pandey, Akhilesh

    2004-01-01

    The rapid pace at which genomic and proteomic data is being generated necessitates the development of tools and resources for managing data that allow integration of information from disparate sources. The Human Protein Reference Database (http://www.hprd.org) is a web-based resource based on open source technologies for protein information about several aspects of human proteins including protein–protein interactions, post-translational modifications, enzyme–substrate relationships and disease associations. This information was derived manually by a critical reading of the published literature by expert biologists and through bioinformatics analyses of the protein sequence. This database will assist in biomedical discoveries by serving as a resource of genomic and proteomic information and providing an integrated view of sequence, structure, function and protein networks in health and disease. PMID:14681466

  5. Mitochondrial Protein Import and Human Health and Disease

    PubMed Central

    MacKenzie, James A.; Mark Payne, R.

    2009-01-01

    The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease. PMID:17300922

  6. Mineral-bound noncollagenous proteins in archaeological human skeletons.

    PubMed

    Freundorfer, S; Grupe, G; Weickmann, D

    1995-05-01

    Archaeometric approaches to archaelogical human bone also include the extraction, identification and molecular analysis of surviving bone proteins. Due to its abundance as a matrix protein, most studies focus on collagen (e.g. radiocarbon dating). Also, a variety of serum proteins are detectable in excavated skeletons. Very limited knowledge still exists on mineral-bound noncollagenous bone proteins from ancient bones because, in the mature tissue, they occur in trace amounts only. Moreover, post-mortem decomposition is likely to change characteristic features of the molecules. Due to their suggested role as growth and developmental factors, identification and quantification of such proteins should be valuable for both physical anthropology and epidemiology. We present a valid method for the detection of small amounts of surviving mineral-bound noncollagenous proteins in excavated human bones up to 7500 years of age. PMID:7588569

  7. Spaceflight and protein metabolism, with special reference to humans

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Gaprindashvili, T.

    1994-01-01

    Human space missions have shown that human spaceflight is associated with a loss of body protein. Specific changes include a loss of lean body mass, decreased muscle mass in the calves, decreased muscle strength, and changes in plasma proteins and amino acids. The major muscle loss is believed to be associated with the antigravity (postural) muscle. The most significant loss of protein appears to occur during the first month of flight. The etiology is believed to be multifactorial with contributions from disuse atrophy, undernutrition, and a stress type of response. This article reviews the results of American and Russian space missions to investigate this problem in humans, monkeys, and rats. The relationship of the flight results with ground-based models including bedrest for humans and hindlimb unweighting for rats is also discussed. The results suggest that humans adapt to spaceflight much better than either monkeys or rats.

  8. Characterization of mercury-containing protein in human plasma.

    PubMed

    Yun, Zhaojun; Li, Lu; Liu, Lihong; He, Bin; Zhao, Xingchen; Jiang, Guibin

    2013-06-01

    Characterization of mercury binding protein in the human body is very important for understanding the metabolism and the mechanism of toxication of ingested mercuric compounds. In this study, mercury-containing protein in human plasma was separated by on-line heart-cutting two-dimensional high performance liquid chromatography (2D-HPLC). This 2D separation system used size exclusion liquid chromatography (SEC) followed by weak anion exchange liquid chromatography (WAX) and the two LC parts were coupled by a six-port valve equipped with a storage loop and controled by the computer. The WAX effluent was determined by both UV detection and inductively coupled plasma-mass spectrometry (ICP-MS) to locate the mercury-containing protein. A unique mercury-containing protein fraction was obtained by 2D-HPLC separation and subsequently identified by HPLC coupled with linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry (HPLC-LTQ-FT). The database search confirmed that the mercury-containing protein in the human plasma is human serum albumin (HSA). The stoichiometry and thermodyamics interaction of inorganic mercury (Hg(2+)) with HSA was studied by isothermal titration calorimetry (ITC) and two binding types were observed. Mercury-containing protein in human plasma was separated and identified in the present study and it is important for understanding the metabolism of mercury in the human body. PMID:23748885

  9. A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin.

    PubMed

    Maurya, Jitendra Kumar; Mir, Muzaffar Ul Hassan; Maurya, Neha; Dohare, Neeraj; Ali, Anwar; Patel, Rajan

    2016-10-01

    The interactions of imidazolium bashed ionic liquid-type cationic gemini surfactant ([C12-4-C12im]Br2) with HSA were studied by fluorescence, time-resolved fluorescence, UV-visible, circular dichroism, molecular docking and molecular dynamic simulation methods. The results showed that the [C12-4-C12im]Br2 quenched the fluorescence of HSA through dynamic quenching mechanism as confirmed by time-resolved spectroscopy. The Stern-Volmer quenching constant (Ksv) and relevant thermodynamic parameters such as enthalpy change (ΔH), Gibbs free energy change (ΔG) and entropy change (ΔS) for interaction system were calculated at different temperatures. The results revealed that hydrophobic forces played a major role in the interactions process. The results of synchronous fluorescence, UV-visible and CD spectra demonstrated that the binding of [C12-4-C12im]Br2 with HSA induces conformational changes in HSA. Inquisitively, the molecular dynamics study contribute towards understanding the effect of binding of [C12-4-C12im]Br2 on HSA to interpret the conformational change in HSA upon binding in aqueous solution. Moreover, the molecular modelling results show the possible binding sites in the interaction system. PMID:26473302

  10. Protein buffering in model systems and in whole human saliva.

    PubMed

    Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian

    2007-01-01

    The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922

  11. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  12. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease.

    PubMed

    Nkadi, Paul O; Merritt, T Allen; Pillers, De-Ann M

    2009-06-01

    Pulmonary surfactant is a complex mixture of phospholipids (PL) and proteins (SP) that reduce surface tension at the air-liquid interface of the alveolus. It is made up of about 70-80% PL, mainly dipalmitoylphosphatidylcholine (DPPC), 10% SP-A, B, C and D, and 10% neutral lipids, mainly cholesterol. Surfactant is synthesized, assembled, transported and secreted into the alveolus where it is degraded and then recycled. Metabolism of surfactant is slower in newborns, especially preterm, than in adults. Defective pulmonary surfactant metabolism results in respiratory distress with attendant morbidity and mortality. This occurs due to accelerated breakdown by oxidation, proteolytic degradation, inhibition or inherited defects of surfactant metabolism. Prenatal corticosteroids, surfactant replacement, whole lung lavage and lung transplantation have yielded results in managing some of these defects. Gene therapy could prove valuable in treating inherited defects of surfactant metabolism. PMID:19299177

  13. Surfactant replacement therapy for adult respiratory distress syndrome in children.

    PubMed

    Evans, D A; Wilmott, R W; Whitsett, J A

    1996-05-01

    Surfactant replacement therapy may have a role in the treatment of ARDS in children. The current studies suggest that rapid instillation of exogenous surfactant is more effective than slow tracheal instillation or aerosolized delivery. Studies suggest that exogenous surfactant given early in the development of ARDS is more effective than therapy provided late in the course of the disease. Natural surfactants appear to be more effective than artificial surfactants due to the presence of SP-B and SP-C, which prevent inhibition of the exogenous surfactant by the protein leakage into the alveolus that is characteristic of ARDS. Exogenous surfactant replacement therapy appears to be safe and well tolerated. A surfactant that can be delivered by aerosol would be useful since this is more easily tolerated by the patients, requires less surfactant, and would be more cost effective when compared with tracheal instillation. Aerosolized surfactant could be given to patients who have not yet required mechanical ventilation, thus potentially preventing the progression of the acute lung injury to respiratory failure. The recent failure of a large multi-center trial of aerosolized Exosurf for the treatment of sepsis-related ARDS72 may have been due to the failure of the delivery system as opposed to the surfactant used in the trial; therefore, further research into aerosol delivery systems is needed. There may be different responses to exogenous surfactant therapy by patients with ARDS of different etiologies, such as aspiration pneumonia, sepsis, or trauma. Well-planned placebo-controlled trials will be required to determine these differences. The data supporting the role of surfactant replacement for the treatment of ARDS in children is growing. However, before widespread use of surfactant is considered, a multi-center, placebo-controlled trial will be required to establish the safety and efficacy of surfactant replacement in such patients. PMID:8726159

  14. Surfactants in the Management of Respiratory Distress Syndrome in Extremely Premature Infants

    PubMed Central

    Ramanathan, Rangasamy

    2006-01-01

    Respiratory distress syndrome (RDS) is primarily due to decreased production of pulmonary surfactant, and it is associated with significant neonatal morbidity and mortality. Exogenous pulmonary surfactant therapy is currently the treatment of choice for RDS, as it demonstrates the best clinical and economic outcomes. Studies confirm the benefits of surfactant therapy to include reductions in mortality, pneumothorax, and pulmonary interstitial emphysema, as well as improvements in oxygenation and an increased rate of survival without bronchopulmonary dysplasia. Phospholipids (PL) and surfactant-associated proteins (SP) play key roles in the physiological activity of surfactant. Different types of natural and synthetic surfactant preparations are currently available. To date, natural surfactants demonstrate superior outcomes compared to the synthetic surfactants, at least during the acute phase of RDS. This disparity is often attributed to biochemical differences including the presence of surfactant-associated proteins in natural products that are not found in the currently available synthetic surfactants. Comparative trials of the natural surfactants strive to establish the precise differences in clinical outcomes among the different preparations. As new surfactants become available, it is important to evaluate them relative to the known benefits of the previously existing surfactants. In order to elucidate the role of surfactant therapy in the management of RDS, it is important to review surfactant biochemistry, pharmacology, and outcomes from randomized clinical trials. PMID:23118650

  15. Human plasma protein N-glycosylation.

    PubMed

    Clerc, Florent; Reiding, Karli R; Jansen, Bas C; Kammeijer, Guinevere S M; Bondt, Albert; Wuhrer, Manfred

    2016-06-01

    Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level. PMID:26555091

  16. Genetic alterations of protein tyrosine phosphatases in human cancers

    PubMed Central

    Zhao, Shuliang; Sedwick, David; Wang, Zhenghe

    2014-01-01

    Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, protein tyrosine phosphatase T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11 which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. PMID:25263441

  17. Surfactant therapy: the current practice and the future trends

    PubMed Central

    Altirkawi, Khalid

    2013-01-01

    The efficacy of surfactant preparations used in the prevention and treatment of respiratory distress syndrome (RDS) is a well known fact; however, many controversies remain. The debate over which surfactant to be used, when and what is the best mode of delivery is still raging. Currently, animal-derived surfactants are preferred and clearly recommended by various practice guidelines, but new synthetic surfactants containing peptides that mimic the action of surfactant proteins are emerging and they seem to have a comparable efficacy profile to the natural surfactants. It is hoped that with further improvements, they will outperform their natural counterparts in terms of reliability and cost-effectiveness. Early surfactant administration was shown to further reduce the risk of RDS and its complications. However, as nasal continuous positive airway pressure (nCPAP) is becoming increasingly the preferred first-line therapy for RDS, the less invasive approaches of respiratory support along with early selective surfactant administration (e.g. INSURE) appears to provide a better option. Although neonatal RDS is still the main indication of surfactant therapy, other pathological processes received considerable attention and major research has been dedicated to explore the role of surfactant in their management, Meconium aspiration syndrome (MAS) and congenital pneumonia are two worthy examples. The most updated practice guidelines do recommend the use of endotracheal instillation as the preferred mode of surfactant delivery. However, aerosolization and other non-invasive methods are being investigated with some success; nonetheless, further improvements are very much in need. PMID:27493353

  18. Systems Proteomics View of the Endogenous Human Claudin Protein Family.

    PubMed

    Liu, Fei; Koval, Michael; Ranganathan, Shoba; Fanayan, Susan; Hancock, William S; Lundberg, Emma K; Beavis, Ronald C; Lane, Lydie; Duek, Paula; McQuade, Leon; Kelleher, Neil L; Baker, Mark S

    2016-02-01

    Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation. PMID:26680015

  19. Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein.

    PubMed Central

    Malik, A; Egan, J E; Houghten, R A; Sadoff, J C; Hoffman, S L

    1991-01-01

    Cytotoxic T lymphocytes (CTL) against the circumsporozoite (CS) protein of malaria sporozoites protect against malaria in rodents. Although there is interest in developing human vaccines that induce CTL against the Plasmodium falciparum CS protein, humans have never been shown to produce CTL against any Plasmodium species protein or other parasite protein. We report that when peripheral blood mononuclear cells (PBMC) from three of four volunteers immunized with irradiated P. falciparum sporozoites were stimulated in vitro with a recombinant vaccinia virus expressing the P. falciparum CS protein or a peptide including only amino acids 368-390 of the P. falciparum CS protein [CS-(368-390)], the PBMC lysed autologous Epstein-Barr virus-transformed B cells transfected with the P. falciparum CS protein gene or incubated with CS-(368-390) tricosapeptide. Activity was antigen specific, genetically restricted, and dependent on CD8+ T cells. In one volunteer, seven peptides reflecting amino acids 311-400 were tested, and, as in B10.BR mice, CTL activity was only associated with the CS-(368-390) peptide. Development of an assay for studying human CTL against the CS and other malaria proteins and a method for constructing target cells by direct gene transfection provide a foundation for studying the role of CTL in protection against malaria. PMID:1707538

  20. Induction of Mycobacterium avium proteins upon infection of human macrophages.

    PubMed

    Brunori, Lara; Giannoni, Federico; Bini, Luca; Liberatori, Sabrina; Frota, Cristiane; Jenner, Peter; Thoresen, Ove Fredrik; Orefici, Graziella; Fattorini, Lanfranco

    2004-10-01

    Induction of Mycobacterium avium proteins labelled with [35S]methionine and mRNAs upon infection of the human macrophage cell line THP-1 was investigated by two-dimensional gel electrophoresis-mass spectrometry and reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. M. avium overexpressed proteins within the macrophages that are involved in fatty acids metabolism (FadE2, FixA), cell wall synthesis (KasA), and protein synthesis (EF-tu). The correlation of differential protein and mRNA expression varied between good and no correlation. Overall, these four proteins may be involved in the adaptation and survival of M. avium within human macrophages. PMID:15378697

  1. LGI Proteins and Epilepsy in Human and Animals.

    PubMed

    Pakozdy, A; Patzl, M; Zimmermann, L; Jokinen, T S; Glantschnigg, U; Kelemen, A; Hasegawa, D

    2015-01-01

    Leucine-rich glioma-inactivated (LGI) protein was first thought to have a suppressor effect in the formation of some cancers. Developments in physiology and medicine made it possible to characterize the function of the LGI protein family and its crucial role in different conditions more precisely. These proteins play an important role in synaptic transmission, and dysfunction may cause hyperexcitability. Genetic mutation of LGI1 was confirmed to be the cause of autosomal dominant lateral temporal lobe epilepsy in humans. The LGI2 mutation was identified in benign familial juvenile epilepsy in Lagotto Romagnolo (LR) dogs. Cats with familial spontaneous temporal lobe epilepsy have been reported, and the etiology might be associated with LGI protein family dysfunction. In addition, an autoimmune reaction against LGI1 was detected in humans and cats with limbic encephalitis. These advances prompted a review of LGI protein function and its role in different seizure disorders. PMID:26032921

  2. Deep Conservation of Human Protein Tandem Repeats within the Eukaryotes

    PubMed Central

    Schaper, Elke; Gascuel, Olivier; Anisimova, Maria

    2014-01-01

    Tandem repeats (TRs) are a major element of protein sequences in all domains of life. They are particularly abundant in mammals, where by conservative estimates one in three proteins contain a TR. High generation-scale duplication and deletion rates were reported for nucleic TR units. However, it is not known whether protein TR units can also be frequently lost or gained providing a source of variation for rapid adaptation of protein function, or alternatively, tend to have conserved TR unit configurations over long evolutionary times. To obtain a systematic picture, we performed a proteome-wide analysis of the mode of evolution for human protein TRs. For this purpose, we propose a novel method for the detection of orthologous TRs based on circular profile hidden Markov models. For all detected TRs, we reconstructed bispecies TR unit phylogenies across 61 eukaryotes ranging from human to yeast. Moreover, we performed additional analyses to correlate functional and structural annotations of human TRs with their mode of evolution. Surprisingly, we find that the vast majority of human TRs are ancient, with TR unit number and order preserved intact since distant speciation events. For example, ≥61% of all human TRs have been strongly conserved at least since the root of all mammals, approximately 300 Ma. Further, we find no human protein TR that shows evidence for strong recent duplications and deletions. The results are in contrast to the high generation-scale mutability of nucleic TRs. Presumably, most protein TRs fold into stable and conserved structures that are indispensable for the function of the TR-containing protein. All of our data and results are available for download from http://www.atgc-montpellier.fr/TRE. PMID:24497029

  3. Detection of protein C activation in humans.

    PubMed Central

    Bauer, K A; Kass, B L; Beeler, D L; Rosenberg, R D

    1984-01-01

    We have developed a radioimmunoassay (RIA) for the dodecapeptide that is liberated from protein C when this zymogen is activated by thrombin bound to thrombomodulin present on the vascular endothelium. The protein C activation peptide (PCP) was synthesized using the solid-phase method of Merrifield. Antisera were raised in rabbits to the synthetic analogue coupled to bovine serum albumin with glutaraldehyde. The antibody population obtained was used together with a 125I-labeled tyrosinated ligand and various concentrations of unlabeled PCP to construct a double antibody RIA capable of measuring as little as 10 pM of this component. We have established that the synthetic dodecapeptide has the same immunoreactivity as the native peptide and that the reactivity of protein C is less than 1/2,000 that of PCP on a molar basis. The extremely low levels of peptide in normal individuals as well as the nonspecific contributions of plasma constituents to the immunoreactive signal, necessitated the development of a procedure by which the PCP could be reproducibly extracted from plasma and concentrated approximately 20-fold. This methodology permitted us to demonstrate that the plasma PCP levels in 17 normal donors averaged 6.47 pM, and that elevations up to 180 pM were observed in individuals with evidence of disseminated intravascular coagulation. The validity of these measurements of protein C activation is supported by the fact that, in both of these situations, the RIA signal migrates on reverse-phase high pressure liquid chromatography in a manner identical to that of the native dodecapeptide. We have also noted that the mean PCP concentration in seven patients fully anticoagulated with warfarin averaged 2.61 pM. Our studies also show that PCP is cleared from the plasma of primates with a t1/2 of approximately 5 min. Given that the t1/2 of activated protein C is estimated to be 10-15 min, the latter enzyme appears to exert its effects on the activated cofactors of the

  4. Surfactant and its role in the pathobiology of pulmonary infection.

    PubMed

    Glasser, Jennifer R; Mallampalli, Rama K

    2012-01-01

    Pulmonary surfactant is a complex surface-active substance comprised of key phospholipids and proteins that has many essential functions. Surfactant's unique composition is integrally related to its surface-active properties, its critical role in host defense, and emerging immunomodulatory activities ascribed to surfactant lipids. Together these effector functions provide for lung stability and protection from a barrage of potentially virulent infectious pathogens. PMID:21945366

  5. Lung surfactants and different contributions to thin film stability.

    PubMed

    Hermans, Eline; Bhamla, M Saad; Kao, Peter; Fuller, Gerald G; Vermant, Jan

    2015-11-01

    The surfactant lining the walls of the alveoli in the lungs increases pulmonary compliance and prevents collapse of the lung at the end of expiration. In premature born infants, surfactant deficiency causes problems, and lung surfactant replacements are instilled to facilitate breathing. These pulmonary surfactants, which form complex structured fluid-fluid interfaces, need to spread with great efficiency and once in the alveolus they have to form a thin stable film. In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant replacements Survanta, Curosurf and Infasurf, along with the phospholipid dipalmitoylphosphatidylcholine (DPPC), are used. The surface of the dome can be covered with human alveolar epithelial cells and experiments are conducted at the physiological temperature. Drainage is slowed down due to the presence of all the different lung surfactant replacements and therefore the thin films show enhanced stability. However, a scaling analysis combined with visualization experiments demonstrates that different mechanisms are involved. For Curosurf and Infasurf, Marangoni stresses are essential to impart stability and interfacial shear rheology does not play a role, in agreement with what is observed for simple surfactants. Survanta, which was historically the first natural surfactant used, is rheologically active. For DPPC the dilatational properties play a role. Understanding these different modes of stabilization for natural surfactants can benefit the design of effective synthetic surfactant replacements for treating infant and adult respiratory disorders. PMID:26307946

  6. Proteins associated with human parainfluenza virus type 3.

    PubMed Central

    Jambou, R C; Elango, N; Venkatesan, S

    1985-01-01

    The polypeptides associated with human parainfluenza virus type 3 were identified. Five proteins were present in detergent- and salt-resistant viral cores. Of these, three proteins designated NP0, NP1, and NP2 of 68,000, 58,000, and 52,000 daltons, respectively, were stably associated with 50S RNA in CsCl gradient-purified nucleocapsids. The amounts of NP1 and NP2 were variable, and these proteins were shown to be structurally related to the major nucleocapsid protein (NP0) by partial Staphylococcus aureus V8 protease mapping. The other core proteins included a 240K protein designated L (candidate for the viral polymerase) and an 84K protein designated as the phosphoprotein (P) on the basis of a predominant incorporation of Pi. The viral envelope had four prominent proteins (72, 53, 40, and 12K) under reducing conditions of electrophoresis. The 72 and 53K proteins were specifically labeled with [3H]glucosamine and [3H]mannose. When sulfhydryl reagents were removed, a new 62K protein was visualized in place of the 72, 53, and 12K proteins. The 53 and 12K proteins were interpreted to be the two subunits (F1 and F2) of the fusion protein, and the 72K protein was designated as the HN (hemagglutinin-neuraminidase) glycoprotein. The unglycosylated 40K protein represented the viral matrix protein (M). Immunoprecipitation of infected cell lysates with rabbit hyperimmune antiserum against purified virus confirmed the viral origin of these polypeptides. Images PMID:2993658

  7. Surfactant therapy restores gas exchange in lung injury due to paraquat intoxication in rats.

    PubMed

    So, K L; de Buijzer, E; Gommers, D; Kaisers, U; van Genderen, P J; Lachmann, B

    1998-08-01

    Paraquat is a weed killer which causes often fatal lung damage in humans and other animals. There is evidence that the pulmonary surfactant system is involved in the pathophysiology of respiratory failure after paraquat intoxication and, therefore, the possible therapeutic effect of intratracheal surfactant administration on gas exchange in rats with progressive lung injury induced by paraquat poisoning was studied. In one group of rats, the time course of the development of lung injury due to paraquat intoxication was characterized. In a second group of rats, 72 h after paraquat intoxication, the animals underwent mechanical ventilation and only those animals in which the arterial oxygen tension/inspiratory oxygen fraction (Pa,O2/FI,O2) decreased to below 20 kPa (150 mmHg) received exogenous surfactant (200 mg x kg(-1) body weight). Within 3 days the rats in group 1 developed progressive respiratory failure, demonstrated not only by impaired gas exchange and lung mechanics but also by increased minimal surface tension and increased protein concentration in bronchoalveolar lavage fluid. In group 2, intratracheal surfactant administration increased Pa,O2/FI,O2 significantly within 5 min (14.4+/-2.4 kPa (108+/-18 mmHg)) to (55.2+/-53 kPa (414+/-40 mmHg)) and sustained this level for at least 2 h. It is concluded that intratracheal surfactant administration is a promising approach in the treatment of severe respiratory failure caused by paraquat poisoning. PMID:9727775

  8. Human Proteinpedia enables sharing of human protein data

    SciTech Connect

    Mathivanan, Suresh; Ahmed, Mukhtar; Ahn, Natalie G.; Alexandre, Hainard; Amanchy, Ramars; Andrews, Philip C.; Bader, Joel S.; Balgley, Brian M.; Bantscheff, Marcus; Bennett, Keiryn; Bjorling, Erik; Blagoev, Blagoy; Bose , Ron; Brahmachari, Samir K.; Burlingame, Alma S.; Bustelo, Xos R.; Cagney, Gerard; Cantin, Greg T; Cardasis, Helene L; Celis, Julio E; Chaerkady, Raghothama; Chu, Feixia; Cole, Phillip A.; Costello, Catherine E; Cotter , Robert J.; Crockett, David; DeLany , James P.; De Marzo, Angelo M; DeSouza, Leroi V; Deutsch, Eric W.; Dransfield , Eric; Drewes , Gerard; Droit , Arnaud; Dunn, Michael; Elenitoba-Johnson, Kojo; Ewing, Rob M.; Van Eyk , Jennifer; Faca , Vitor; Falkner , Jayson; Fang, Xiangming; Fenselau , Catherine; Figeys , Daniel; Gagne , Pierre; Gelfi , Cecilia; Gevaert , Kris; Gimble , Jeffrey; Gnad , Florian; Goel, Renu; Gromov , Pavel; Hanash, Samir M.; Hancock, William S.; Harsha , HC; Hart , Gerald; Faith , Hays; He , Fuchu; Hebbar , Prashantha; Helsens , Kenny; Hermeking , Heiko; Hide , Winston; Hjerno, Karin; Hochstrasser, Denis F.; Hofmann, Oliver; Horn , David M.; Hruban , Ralph H.; Ibarrola , Nieves; James , Peter; Jensen , Ole N.; Jensen, Pia H.; Jung , Peter; Kandasamy, Kumaran; Kheterpal , Indu; Kikuno , Reiko; Korf, Ulrike; Korner, Roman; Kuster, Bernhard; Kwon , Min-Seok; Lee , Hyoung-Joo; Lee , Young - Jin; Lefevre , Michael; Lehvaslaiho, Minna; Lescuyer, Pierre; Levander, Fredrik; Lim, Megan S.; Lobke, Christian; Loo, Joseph; Mann, Matthias; Martens , Lennart; Martinez-Heredia, Juan; McComb, Mark E.; McRedmond , James; Mehrle, Alexander; Menon, Rajasree; Miller, Christine A.; Mischak, Harald; Mohan, S Sujatha; Mohmood , Riaz; Molina , Henrik; Moran , Michael F.; Morgan, James D.; Moritz , Robert; Morzel, Martine; Muddiman, David C.; Nalli , Anuradha; Navarro, J. D.; Neubert , Thomas A.; Ohara , Osamu; Oliva, Rafael; Omenn, Gilbert; Oyama , Masaaki; Paik, Young-Ki; Pennington , Kyla; Pepperkok, Rainer; Periaswamy, Balamurugan; Petricoin, Emanuel F.; Poirier, Guy G.; Prasad, T S Keshava; Purvine, Samuel O.; Rahiman , B Abdul; Ramachandran, Prasanna; Ramachandra , Y L; Rice, Robert H.; Rick , Jens; Ronnholm , Ragna H.; Salonen , Johanna; Sanchez , Jean - Charles; Sayd , Thierry; Seshi, Beerelli; Shankari, Kripa; Sheng , Shi Jun; Shetty , Vivekananda; Shivakumar, K.; Simpson, Richard J.; Sirdeshmukh, Ravi; Siu , K W Michael; Smith, Jeffrey C.; Smith, Richard D.; States, David J.; Sugano, Sumio; Sullivan , Matthew; Superti - Furga, Giulio; Takatalo , Maarit; Thongboonkerd , Visith; Trinidad , Jonathan C.; Uhlen , Mathias; Vandekerckhove, Joel; Vasilescu , Julian; Veenstra, Timothy D.; Vidal - Taboada, Jose - Manuel; Vihinen, Mauno; Wait , Robin; Wang, Xiaoyue; Wiemann, Stefan; Wu , Billy; Xu, Tao; Yates, John R.; Zhong, Jun; Zhou, Ming; Zhu, Yunping; Zurbig, Petra; Pandey, Akhilesh

    2008-02-01

    Proteomic technologies, such as yeast twohybrid, mass spectrometry (MS), protein/ peptide arrays and fluorescence microscopy, yield multi-dimensional data sets, which are often quite large and either not published or published as supplementary information that is not easily searchable. Without a system in place for standardizing and sharing data, it is not fruitful for the biomedical community to contribute these types of data to centralized repositories. Even more difficult is the annotation and display of pertinent information in the context of the corresponding proteins. Wikipedia, an online encyclopedia that anyone can edit, has already proven quite successful1 and can be used as a model for sharing biological data. However, the need for experimental evidence, data standardization and ownership of data creates scientific obstacles.

  9. Multiple protein-protein interactions converging on the Prp38 protein during activation of the human spliceosome.

    PubMed

    Schütze, Tonio; Ulrich, Alexander K C; Apelt, Luise; Will, Cindy L; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C

    2016-02-01

    Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein-protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein-protein interaction platform that might organize the relative positioning of other proteins during splicing. PMID:26673105

  10. The Nucleocapsid Protein of Human Coronavirus NL63

    PubMed Central

    Zuwała, Kaja; Golda, Anna; Kabala, Wojciech; Burmistrz, Michał; Zdzalik, Michal; Nowak, Paulina; Kedracka-Krok, Sylwia; Zarebski, Mirosław; Dobrucki, Jerzy; Florek, Dominik; Zeglen, Sławomir; Wojarski, Jacek; Potempa, Jan; Dubin, Grzegorz; Pyrc, Krzysztof

    2015-01-01

    Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV. PMID:25700263

  11. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  12. Development of a full-length human protein production pipeline

    PubMed Central

    Saul, Justin; Petritis, Brianne; Sau, Sujay; Rauf, Femina; Gaskin, Michael; Ober-Reynolds, Benjamin; Mineyev, Irina; Magee, Mitch; Chaput, John; Qiu, Ji; LaBaer, Joshua

    2014-01-01

    There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high-throughput (HT) methods, we transferred the genes of 31 full-length proteins into three expression vectors, and expressed the collection as N-terminal HaloTag fusion proteins in Escherichia coli and two commercial cell-free (CF) systems, wheat germ extract (WGE) and HeLa cell extract (HCE). Expression was assessed by labeling the fusion proteins specifically and covalently with a fluorescent HaloTag ligand and detecting its fluorescence on a LabChip® GX microfluidic capillary gel electrophoresis instrument. This automated, HT assay provided both qualitative and quantitative assessment of recombinant protein. E. coli was only capable of expressing 20% of the test collection in the supernatant fraction with ≥20 μg yields, whereas CF systems had ≥83% success rates. We purified expressed proteins using an automated HaloTag purification method. We purified 20, 33, and 42% of the test collection from E. coli, WGE, and HCE, respectively, with yields ≥1 μg and ≥90% purity. Based on these observations, we have developed a triage strategy for producing full-length human proteins in these three expression systems. PMID:24806540

  13. Proteome-scale purification of human proteins from bacteria

    PubMed Central

    Braun, Pascal; Hu, Yanhui; Shen, Binghua; Halleck, Allison; Koundinya, Malvika; Harlow, Ed; LaBaer, Joshua

    2002-01-01

    The completion of the human genome project and the development of high-throughput approaches herald a dramatic acceleration in the pace of biological research. One of the most compelling next steps will be learning the functional roles of all proteins. Achievement of this goal depends in part on the rapid expression and isolation of proteins at large scale. We exploited recombinational cloning to facilitate the development of methods for the high-throughput purification of human proteins. cDNAs were introduced into a master vector from which they could be rapidly transferred into a variety of protein expression vectors for further analysis. A test set of 32 sequence-verified human cDNAs of various sizes and activities was moved into four different expression vectors encoding different affinity-purification tags. By means of an automatable 2-hr protein purification procedure, all 128 proteins were purified and subsequently characterized for yield, purity, and steps at which losses occurred. Under denaturing conditions when the His6 tag was used, 84% of samples were purified. Under nondenaturing conditions, both the glutathione S-transferase and maltose-binding protein tags were successful in 81% of samples. The developed methods were applied to a larger set of 336 randomly selected cDNAs. Sixty percent of these proteins were successfully purified under denaturing conditions and 82% of these under nondenaturing conditions. A relational database, FLEXProt, was built to compare properties of proteins that were successfully purified and proteins that were not. We observed that some domains in the Pfam database were found almost exclusively in proteins that were successfully purified and thus may have predictive character. PMID:11880620

  14. Pulmonary surfactant: no mere paint on the alveolar wall.

    PubMed

    Nicholas, T E

    1996-12-01

    The gas-liquid interface within the alveolus is completely lined with a complex mixture of lipids and unique proteins termed pulmonary surfactant, which both reduces surface tension and permits it to vary directly with the radius of curvature. In this way it minimizes the work of breathing and permits alveoli of different sizes to exist in equilibrium. However, surfactant does far more in that it also controls fluid balance in the lung and appears to play a key role in host defence. Either a deficiency in surfactant or an aberrant surfactant results in atelectasis and oedema. The surfactant system is very dynamic: alveolar surfactant phosphatidylcholine, the principal component, having a half life of only a few hours, with as much as 85% being recycled. Although distortion of the alveolar type II cell is now accepted as the principal stimulus for release, much remains to be discovered of modulating factors and intracellular signalling in the control of surfactant homeostasis. Likewise, many questions remain concerning the control of synthesis of the surfactant phospholipids, neutral lipids and proteins and their assembly into the tubular myelin form of alveolar surfactant, the refining of the monolayer with breathing, the control of re-uptake of different components into the type II cells and the roles of the proteins. PMID:9441113

  15. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA. PMID:25133582

  16. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A).

    PubMed

    Su, Xinyang; Li, Zefu; Wang, Meilin; Li, Zhenzhu; Wang, Qingbo; Lu, Wenxian; Li, Xiaoli; Zhou, Youfei; Xu, Hongmei

    2016-02-10

    The purpose of this study was to establish a rat model of a brain injury with tracheotomy and compared the wetting effects of different airway humidification liquids, afterward, the best airway humidification liquid was selected for the clinical trial, thus providing a theoretical basis for selecting a proper airway humidification liquid in a clinical setting. Rats were divided into a sham group, group A (0.9% NaCl), group B (0.45% NaCl), group C (0.9% NaCl+ambroxol) and group D (0.9% NaCl+Pulmicort). An established rat model of traumatic brain injury with tracheotomy was used. Brain tissue samples were taken to determine water content, while lung tissue samples were taken to determine wet/dry weight ratio (W/D), histological changes and expression levels of SP-A mRNA and SP-A protein. 30 patients with brain injury and tracheotomy were selected and divided into two groups based on the airway humidification liquid instilled in the trachea tube, 0.45% NaCl and 0.9% NaCl+ambroxol. Blood was then extracted from the patients to measure the levels of SP-A, interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The difference between group C and other groups in lung W/D and expression levels of SP-A mRNA and SP-A protein was significant (P<0.05). In comparison, the histological changes showed that the lung tissue damage was smallest in group C compared to the three other groups. Aspect of patients, 0.45% NaCl group and 0.9% NaCl+ambroxol group were significantly different in the levels of SP-A, IL-6, IL-8 and TNF-α (P<0.01). In the present study, 0.9% NaCl+ambroxol promote the synthesis and secretion of pulmonary surfactant, and has anti-inflammatory and antioxidant effects, which inhibit the release of inflammatory factors and cytokines, making it an ideal airway humidification liquid. PMID:26611525

  17. Exceptional overproduction of a functional human membrane protein.

    PubMed

    Nyblom, Maria; Oberg, Fredrik; Lindkvist-Petersson, Karin; Hallgren, Karin; Findlay, Heather; Wikström, Jennie; Karlsson, Anders; Hansson, Orjan; Booth, Paula J; Bill, Roslyn M; Neutze, Richard; Hedfalk, Kristina

    2007-11-01

    Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization. PMID:17869538

  18. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein.

    PubMed Central

    Larrick, J W; Hirata, M; Balint, R F; Lee, J; Zhong, J; Wright, S C

    1995-01-01

    CAP18 (18-kDa cationic antimicrobial protein) is a protein originally identified and purified from rabbit leukocytes on the basis of its capacity to bind and inhibit various activities of lipopolysaccharide (LPS). Here we report the cloning of human CAP18 and characterize the anti-LPS activity of the C-terminal fragment. Oligonucleotide probes designed from the rabbit CAP18 cDNA were used to identify human CAP18 from a bone marrow cDNA library. The cDNA encodes a protein composed of a 30-amino-acid signal peptide, a 103-amino-acid N-terminal domain of unknown function, and a C-terminal domain of 37 amino acids homologous to the LPS-binding antimicrobial domain of rabbit CAP18, designated CAP18(104-140). A human CAP18-specific antiserum was generated by using CAP18 expressed as a fusion protein with the maltose-binding protein. Western blots (immunoblots) with this antiserum showed specific expression of human CAP18 in granulocytes. Synthetic human CAP18(104-140) and a more active truncated fragment, CAP18(104-135), were shown to (i) bind to erythrocytes coated with diverse strains of LPS, (ii) inhibit LPS-induced release of nitric oxide from macrophages, (iii) inhibit LPS-induced generation of tissue factor, and (iv) protect mice from LPS lethality. CAP18(104-140) may have therapeutic utility for conditions associated with elevated concentrations of LPS. PMID:7890387

  19. Antibody Response to Cryptococcus neoformans Proteins in Rodents and Humans

    PubMed Central

    Chen, Lin-Chi; Goldman, David L.; Doering, Tamara L.; Pirofski, Liise-anne; Casadevall, Arturo

    1999-01-01

    The prevalence and specificity of serum antibodies to Cryptococcus neoformans proteins was studied in mice and rats with experimental infection, in individuals with or without a history of potential laboratory exposure to C. neoformans, human immunodeficiency virus (HIV)-positive individuals who developed cryptococcosis, in matched samples from HIV-positive individuals who did not develop cryptococcosis, and in HIV-negative individuals. Rodents had little or no serum antibody reactive with C. neoformans proteins prior to infection. The intensity and specificity of the rodent antibody response were dependent on the species, the mouse strain, and the viability of the inoculum. All humans had serum antibodies reactive with C. neoformans proteins regardless of the potential exposure, the HIV infection status, or the subsequent development of cryptococcosis. Our results indicate (i) a high prevalence of antibodies reactive with C. neoformans proteins in the sera of rodents after cryptococcal infection and in humans with or without HIV infection; (ii) qualitative and quantitative differences in the antibody profiles of HIV-positive individuals; and (iii) similarities and differences between humans, mice, and rats with respect to the specificity of the antibodies reactive with C. neoformans proteins. The results are consistent with the view that C. neoformans infections are common in human populations, and the results have implications for the development of vaccination strategies against cryptococcosis. PMID:10225877

  20. MATERNAL PROTEIN HOMEOSTASIS AND MILK PROTEIN SYNTHESIS DURING FEEDING AND FASTING IN HUMANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about amino acid (aa) and protein metabolism in lactating women. We hypothesized: 1) aa sources other than the plasma acid pool provide substrate for milk protein synthesis in humans; and 2) if albumin was one such source, then albumin fractional synthesis rate (FSR) is higher in th...

  1. Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans

    PubMed Central

    Peri, Suraj; Navarro, J. Daniel; Amanchy, Ramars; Kristiansen, Troels Z.; Jonnalagadda, Chandra Kiran; Surendranath, Vineeth; Niranjan, Vidya; Muthusamy, Babylakshmi; Gandhi, T.K.B.; Gronborg, Mads; Ibarrola, Nieves; Deshpande, Nandan; Shanker, K.; Shivashankar, H.N.; Rashmi, B.P.; Ramya, M.A.; Zhao, Zhixing; Chandrika, K.N.; Padma, N.; Harsha, H.C.; Yatish, A.J.; Kavitha, M.P.; Menezes, Minal; Choudhury, Dipanwita Roy; Suresh, Shubha; Ghosh, Neelanjana; Saravana, R.; Chandran, Sreenath; Krishna, Subhalakshmi; Joy, Mary; Anand, Sanjeev K.; Madavan, V.; Joseph, Ansamma; Wong, Guang W.; Schiemann, William P.; Constantinescu, Stefan N.; Huang, Lily; Khosravi-Far, Roya; Steen, Hanno; Tewari, Muneesh; Ghaffari, Saghi; Blobe, Gerard C.; Dang, Chi V.; Garcia, Joe G.N.; Pevsner, Jonathan; Jensen, Ole N.; Roepstorff, Peter; Deshpande, Krishna S.; Chinnaiyan, Arul M.; Hamosh, Ada; Chakravarti, Aravinda; Pandey, Akhilesh

    2003-01-01

    Human Protein Reference Database (HPRD) is an object database that integrates a wealth of information relevant to the function of human proteins in health and disease. Data pertaining to thousands of protein-protein interactions, posttranslational modifications, enzyme/substrate relationships, disease associations, tissue expression, and subcellular localization were extracted from the literature for a nonredundant set of 2750 human proteins. Almost all the information was obtained manually by biologists who read and interpreted >300,000 published articles during the annotation process. This database, which has an intuitive query interface allowing easy access to all the features of proteins, was built by using open source technologies and will be freely available at http://www.hprd.org to the academic community. This unified bioinformatics platform will be useful in cataloging and mining the large number of proteomic interactions and alterations that will be discovered in the postgenomic era. PMID:14525934

  2. Regulation of the retinoblastoma proteins by the human herpesviruses

    PubMed Central

    Hume, Adam J; Kalejta, Robert F

    2009-01-01

    Viruses are obligate intracellular parasites that alter the environment of infected cells in order to replicate more efficiently. One way viruses achieve this is by modulating cell cycle progression. The main regulators of progression out of G0, through G1, and into S phase are the members of the retinoblastoma (Rb) family of tumor suppressors. Rb proteins repress the transcription of genes controlled by the E2F transcription factors. Because the expression of E2F-responsive genes is required for cell cycle progression into the S phase, Rb arrests the cell cycle in G0/G1. A number of viral proteins directly target Rb family members for inactivation, presumably to create an environment more hospitable for viral replication. Such viral proteins include the extensively studied oncoproteins E7 (from human papillomavirus), E1A (from adenovirus), and the large T (tumor) antigen (from simian virus 40). Elucidating how these three viral proteins target and inactivate Rb has proven to be an invaluable approach to augment our understanding of both normal cell cycle progression and carcinogenesis. In addition to these proteins, a number of other virally-encoded inactivators of the Rb family have subsequently been identified including a surprising number encoded by human herpesviruses. Here we review how the human herpesviruses modulate Rb function during infection, introduce the individual viral proteins that directly or indirectly target Rb, and speculate about what roles Rb modulation by these proteins may play in viral replication, pathogenesis, and oncogenesis. PMID:19146698

  3. A nuclear protein associated with human cancer cells binds preferentially to a human repetitive DNA sequence

    SciTech Connect

    Gao, J. ); Law, M.L.; Puck, T.T. Univ. of Colorado Health Sciences Center, Denver )

    1989-11-01

    A protein (Rp66) of 66 kDa was shown by DNA-binding protein blot assay to bind to a human repetitive DNA sequence (low-repeat sequences; LRS) in each of 10 transformed human cell lines examined. This protein-DNA interaction was not observed in 11 normal human cell cultures or in the Chinese hamster cell line CHO-K1. Gel retardation assay confirmed the specificity of the protein-DNA binding between Rp66 and LRS. In a histiocytic lymphoma human cell line, U937, that can be induced to differentiate in the presence of phorbol ester, this binding disappeared after cell differentiation. These together with other results cited suggest a regulatory role for these repetitive sequences in the human genome, with particular application to cancer.

  4. Assessment of protein domain fusions in human protein interaction networks prediction: application to the human kinetochore model.

    PubMed

    Morilla, Ian; Lees, Jon G; Reid, Adam J; Orengo, Christine; Ranea, Juan A G

    2010-12-31

    In order to understand how biological systems function it is necessary to determine the interactions and associations between proteins. Some proteins, involved in a common biological process and encoded by separate genes in one organism, can be found fused within a single protein chain in other organisms. By detecting these triplets, a functional relationship can be established between the unfused proteins. Here we use a domain fusion prediction method to predict these protein interactions for the human interactome. We observed that gene fusion events are more related to physical interaction between proteins than to other weaker functional relationships such as participation in a common biological pathway. These results suggest that domain fusion is an appropriate method for predicting protein complexes. The most reliable fused domain predictions were used to build protein-protein interaction (PPI) networks. These predicted PPI network models showed the same topological features as real biological networks and different features from random behaviour. We built the PPI domain fusion sub-network model of the human kinetochore and observed that the majority of the predicted interactions have not yet been experimentally characterised in the publicly available PPI repositories. The study of the human kinetochore domain fusion sub-network reveals undiscovered kinetochore proteins with presumably relevant functions, such as hubs with many connections in the kinetochore sub-network. These results suggest that experimentally hidden regions in the predicted PPI networks contain key functional elements, associated with important functional areas, still undiscovered in the human interactome. Until novel experiments shed light on these hidden regions; domain fusion predictions provide a valuable approach for exploring them. PMID:20851221

  5. Towards unravelling surfactant transport

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Panda, Satyananda

    2015-11-01

    Surfactant transport arises in many natural or industrial settings. Examples include lipid tear layers in the eye, pulmonary surfactant replacement therapy, or industrial coating flows. Flows driven by the surface tension gradient which arises as a consequence of surfactant concentration inhomogeneity, also known as Marangoni-driven flows, have attracted the attention of fluid dynamists for several decades and has led to the development of sophisticated models and the undeniable advancement of the understanding of such flows. Yet, experimental confirmation of these models has been hampered by the difficulty in reliably and accurately measuring the surfactant concentration and its temporal evolution. In this contribution, we propose a methodology which may help shed some light on surfactant transport at the surface of thin liquid films. The surface stress induced by surfactant concentration induces a flow at the free surface which is visible and measurable. In the context of thin film flows for which the lubrication approximation hold, we demonstrate how the knowledge of this free surface flow field provides sufficient information to reconstruct the surfactant tension field. From the surface tension and an assumed equation of state, the local surfactant concentration can also be calculated and other transport parameters such as the surfactant surface diffusivity indirectly inferred. In this contribution, the proposed methodology is tested with synthetic data generated by the forward solution of the governing partial differential equations in order to illustrate the feasibility of the algorithm and highlight numerical challenges.

  6. Comparative analysis of protein unfoldedness in human housekeeping and non-housekeeping proteins.

    PubMed

    Pandey, Neeraj; Ganapathi, Mythily; Kumar, Kaushal; Dasgupta, Dipayan; Das Sutar, Sushanta Kumar; Dash, Debasis

    2004-11-22

    Absence of any regular structure is increasingly being observed in structural studies of proteins. These disordered regions or random coils, which have been observed under physiological conditions, are indicators of protein plasticity. The wide variety of interactions possible due to the flexibility of these 'natively disordered' regions confers functional advantage to the protein and the organism in general. This concept is underscored by the increasing proportion of intrinsically unstructured proteins seen with the ascension in the complexity of the organisms. The 'natively unfolded/disordered' state of the protein can be predicted utilizing Uversky's or Dunker's algorithm. We utilized Uversky's prediction scheme and based on the unique position of a protein in the charge-hydrophobicity plot, a derived net score was used to predict the overall disorder of the human housekeeping and non-housekeeping proteins. Substantial numbers of proteins in both the classes were predicted to be unfolded. However, comparative genomic analysis of predicted unfolded Homo sapiens proteins with homologues in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus revealed significant increase in unfoldedness in non-housekeeping proteins in comparison with housekeeping proteins. Our analysis in the evolutionary context suggests addition or substitution of amino acid residues which favour unfoldedness in non-housekeeping proteins compared to housekeeping proteins. PMID:15238363

  7. Site-Specific GlcNAcylation of Human Erythrocyte Proteins

    PubMed Central

    Wang, Zihao; Park, Kyoungsook; Comer, Frank; Hsieh-Wilson, Linda C.; Saudek, Christopher D.; Hart, Gerald W.

    2009-01-01

    OBJECTIVE—O-linked N-acetylglucosamine (O-GlcNAc) is upregulated in diabetic tissues and plays a role in insulin resistance and glucose toxicity. Here, we investigated the extent of GlcNAcylation on human erythrocyte proteins and compared site-specific GlcNAcylation on erythrocyte proteins from diabetic and normal individuals. RESEARCH DESIGN AND METHODS—GlcNAcylated erythrocyte proteins or GlcNAcylated peptides were tagged and selectively enriched by a chemoenzymatic approach and identified by mass spectrometry. The enrichment approach was combined with solid-phase chemical derivatization and isotopic labeling to detect O-GlcNAc modification sites and to compare site-specific O-GlcNAc occupancy levels between normal and diabetic erythrocyte proteins. RESULTS—The enzymes that catalyze the cycling (addition and removal) of O-GlcNAc were detected in human erythrocytes. Twenty-five GlcNAcylated erythrocyte proteins were identified. Protein expression levels were compared between diabetic and normal erythrocytes. Thirty-five O-GlcNAc sites were reproducibly identified, and their site-specific O-GlcNAc occupancy ratios were calculated. CONCLUSIONS—GlcNAcylation is differentially regulated at individual sites on erythrocyte proteins in response to glycemic status. These data suggest not only that site-specific O-GlcNAc levels reflect the glycemic status of an individual but also that O-GlcNAc site occupancy on erythrocyte proteins may be eventually useful as a diagnostic tool for the early detection of diabetes. PMID:18984734

  8. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions surfactant dysfunction surfactant dysfunction Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Surfactant dysfunction is a lung disorder that causes breathing ...

  9. Crystal Structure of Human Retinoblastoma Binding Protein 9

    SciTech Connect

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  10. Exploiting Bacterial Operons To Illuminate Human Iron-Sulfur Proteins.

    PubMed

    Andreini, Claudia; Banci, Lucia; Rosato, Antonio

    2016-04-01

    Organisms from all kingdoms of life use iron-sulfur proteins (FeS-Ps) in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of FeS-Ps. Sixty-one percent of human FeS-Ps bind Fe4S4 clusters, whereas 39% bind Fe2S2 clusters. However, this relative ratio varies significantly depending on the specific cellular compartment. We compared the portfolio of human FeS-Ps to 12 other eukaryotes and to about 700 prokaryotes. The comparative analysis of the organization of the prokaryotic homologues of human FeS-Ps within operons allowed us to reconstruct the human functional networks involving the conserved FeS-Ps common to prokaryotes and eukaryotes. These functional networks have been maintained during evolution and thus presumably represent fundamental cellular processes. The respiratory chain and the ISC machinery for FeS-P biogenesis are the two conserved processes that involve the majority of human FeS-Ps. Purine metabolism is another process including several FeS-Ps, in which BOLA proteins possibly have a regulatory role. The analysis of the co-occurrence of human FeS-Ps with other proteins highlighted numerous links between the iron-sulfur cluster machinery and the response mechanisms to cell damage, from repair to apoptosis. This relationship probably relates to the production of reactive oxygen species within the biogenesis and degradation of FeS-Ps. PMID:26889782

  11. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays

    PubMed Central

    Yu, Xiaobo; LaBaer, Joshua

    2015-01-01

    Summary AMPylation (adenylylation) has been recognized as an important post translational modification employed by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes and is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method to identify new substrates using protein microarrays, which can significantly expand the list of potential substrates. Here, we describe procedures to detect AMPylated and auto-AMPylated proteins in a sensitive, high throughput, and non-radioactive manner. The approach employs high-density protein microarrays fabricated using NAPPA (Nucleic Acid Programmable Protein Arrays) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide–alkyne cycloaddition. The assay can be accomplished within 11 hours. PMID:25881200

  12. Propeptide of human protein C is necessary for. gamma. -carboxylation

    SciTech Connect

    Foster, D.C.; Rudinski, M.S.; Schach, B.G.; Berkner, K.L.; Kumar, A.A.; Hagen, F.S.; Sprecher, C.A.; Insley, M.Y.; Davie, E.W.

    1987-11-03

    Protein C is one of a family of vitamin K dependent proteins, including blood coagulation factors and bone proteins, that contains ..gamma..-carboxyglutamic acid. Sequence analysis of the cDNAs for these proteins has revealed the presence of a prepro leader sequence that contains a pre sequence or hydrophobic signal sequence and a propeptide containing a number of highly conserved amino acids. The pre region is removed from the growing polypeptide chain by signal peptidase, while the pro region is subsequently removed from the protein prior to secretion. In the present study, deletion mutants have been constructed in the propeptide region of the cDNA for human protein C, and the cDNAs were then expressed in mammalian cell culture. These deletions included the removal of 4, 9, 12, 15, 16, or 17 amino acids comprising the carboxyl end of the leader sequence of 42 amino acids. The mutant proteins were then examined by Western blotting, barium citrate adsorption and precipitation, amino acid sequence analysis, and biological activity and compared with the native protein present in normal plasma. These experiments have shown that protein C is readily synthesized in mammalian cell cultures, processed, and secreted as a two-chain molecule with biological activity. Furthermore, the pre portion or signal sequence in human protein C is 18 amino acids in length, and the pro portion of the leader sequence is 24 amino acids in length. Also, during biosynthesis and secretion, the amino-terminal region of the propeptide (residues from about -12 through -17) is important for ..gamma..-carboxylation of protein C, while the present data and those of others indicate that the carboxyl-terminal portion of propeptide (residues -1 through -4) is important for the removal of the pro leader sequence by proteolytic processing.

  13. Predicting disease-related genes by topological similarity in human protein-protein interaction network

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Ke; Tang, Yi

    2010-08-01

    Predicting genes likely to be involved in human diseases is an important task in bioinformatics field. Nowadays, the accumulation of human protein-protein interactions (PPIs) data provides us an unprecedented opportunity to gain insight into human diseases. In this paper, we adopt the topological similarity in human protein-protein interaction network to predict disease-related genes. As a computational algorithm to speed up the identification of disease-related genes, the topological similarity has substantial advantages over previous topology-based algorithms. First of all, it provides a global measurement of similarity between two vertices. Secondly, quantity which can measure new topological feature has been integrated into the notion of topological similarity. Our method is specially designed for predicting disease-related genes of single disease-gene family. The proposed method is applied to human protein-protein interaction and hepatocellular carcinoma (HCC) data. The results show a significant enrichment of disease-related genes that are characterized by higher topological similarity than other genes.

  14. Infasurf and Curosurf: Theoretical and Practical Considerations with New Surfactants

    PubMed Central

    Nguyen, Thuy N.; Cunsolo, Stephanie M.; Gal, Peter; Ransom, J. Laurence

    2003-01-01

    Type II pneumocytes, normally responsible for surfactant production and release, are insufficiently formed and differentiated in the premature infant born before 34 weeks' gestation. Without an adequate amount of pulmonary surfactant, alveolar surface tension increases, leading to collapse and decreased lung compliance. Pulmonary surfactants are naturally occurring substances made of lipids and proteins. They lower surface tension at the interface between the air in the lungs, specifically at the alveoli, and the blood in the capillaries. This review examines the relative benefits of the two most recently marketed surfactants, calfactan (Infasurf) and poractant alfa (Curosurf). PMID:23300398

  15. Instability of the biotin-protein bond in human plasma.

    PubMed

    Bogusiewicz, Anna; Mock, Nell I; Mock, Donald M

    2004-04-15

    Labeling proteins with biotin offers an alternative to labeling with radioisotopes for pharmacokinetic studies in humans. However, stability of the biotin-protein bond is a critical tacit assumption. Using release of biotin from immunoglobulin G as the outcome, we individually evaluated stability of the biotin label produced by six biotinylation agents: biotin PEO-amine, 5-(biotinamido)-pentylamine, iodoacetyl-LC-biotin, NHS-LC-biotin, sulfo-NHS-LC-biotin, and biotin-LC-hydrazide. Each of the six biotinylated proteins was incubated at room temperature for 4h in human plasma or in phosphate-buffered saline (control). Free biotin was separated from the biotinylated protein by ultrafiltration and quantitated by avidin-binding assay. For each biotinylation reagent, biotin release was significantly increased by plasma (p < 0.0001 vs control by unpaired t test). Moreover, the hydrazide bond was also unstable in buffer. Biotin remaining on the protein was quantitated directly using capture of europium-streptavidin by the immobilized biotinylated immunoglobulin G. Consistent with biotin release data, streptavidin capture was reduced by plasma to 8% of control. We conclude that all of the biotinylating agents produce biotin-protein bonds that are susceptible to hydrolysis by factors present in human plasma; five of six are stable in buffer. PMID:15051531

  16. Antibody-based Protein Profiling of the Human Chromosome 21*

    PubMed Central

    Uhlén, Mathias; Oksvold, Per; Älgenäs, Cajsa; Hamsten, Carl; Fagerberg, Linn; Klevebring, Daniel; Lundberg, Emma; Odeberg, Jacob; Pontén, Fredrik; Kondo, Tadashi; Sivertsson, Åsa

    2012-01-01

    The Human Proteome Project has been proposed to create a knowledge-based resource based on a systematical mapping of all human proteins, chromosome by chromosome, in a gene-centric manner. With this background, we here describe the systematic analysis of chromosome 21 using an antibody-based approach for protein profiling using both confocal microscopy and immunohistochemistry, complemented with transcript profiling using next generation sequencing data. We also describe a new approach for protein isoform analysis using a combination of antibody-based probing and isoelectric focusing. The analysis has identified several genes on chromosome 21 with no previous evidence on the protein level, and the isoform analysis indicates that a large fraction of human proteins have multiple isoforms. A chromosome-wide matrix is presented with status for all chromosome 21 genes regarding subcellular localization, tissue distribution, and molecular characterization of the corresponding proteins. The path to generate a chromosome-specific resource, including integrated data from complementary assay platforms, such as mass spectrometry and gene tagging analysis, is discussed. PMID:22042635

  17. Structural studies of human glioma pathogenesis-related protein 1

    SciTech Connect

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  18. Human muscle proteins: analysis by two-dimensional electrophoresis

    SciTech Connect

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  19. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases].

    PubMed

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan

    2016-08-10

    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases. PMID:27455022

  20. Absolute Quantification of Selected Proteins in the Human Osteoarthritic Secretome

    PubMed Central

    Peffers, Mandy J.; Beynon, Robert J.; Clegg, Peter D.

    2013-01-01

    Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA. PMID:24132152

  1. Evaluation of silica nanoparticle binding to major human blood proteins

    NASA Astrophysics Data System (ADS)

    Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-12-01

    Nanomaterials are used for various biomedical applications because they are often more effective than conventional materials. Recently, however, it has become clear that the protein corona that forms on the surface of nanomaterials when they make contact with biological fluids, such as blood, influences the pharmacokinetics and biological responses induced by the nanomaterials. Therefore, when evaluating nanomaterial safety and efficacy, it is important to analyze the interaction between nanomaterials and proteins in biological fluids and to evaluate the effects of the protein corona. Here, we evaluated the interaction of silica nanoparticles, a commonly used nanomaterial, with the human blood proteins albumin, transferrin, fibrinogen, and IgG. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the amount of albumin, transferrin, and IgG binding to the silica particles increased as the particle size decreased under conditions where the silica particle mass remained the same. However, under conditions in which the specific surface area remained constant, there were no differences in the binding of human plasma proteins to the silica particles tested, suggesting that the binding of silica particles with human plasma proteins is dependent on the specific surface area of the silica particles. Furthermore, the amount of albumin, transferrin, and IgG binding to silica nanoparticles with a diameter of 70 nm (nSP70) and a functional amino group was lower than that with unmodified nSP70, although there was no difference in the binding between nSP70 with the surface modification of a carboxyl functional group and nSP70. These results suggest that the characteristics of nanomaterials are important for binding with human blood proteins; this information may contribute to the development of safe and effective nanomaterials.

  2. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  3. SURFACTANTS IN LUBRICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  4. Human SUMO fusion systems enhance protein expression and solubility.

    PubMed

    Wang, Zhongyuan; Li, Haolong; Guan, Wei; Ling, Haili; Wang, Zhiyong; Mu, Tianyang; Shuler, Franklin D; Fang, Xuexun

    2010-10-01

    A major challenge associated with recombinant protein production in Escherichia coli is generation of large quantities of soluble, functional protein. Yeast SUMO (small ubiquitin-related modifier), has been shown to enhance heterologous protein expression and solubility as fusion tag, however, the effects of human SUMOs on protein expression have not been investigated. Here we describe the use of human SUMO1 and SUMO2 as a useful gene fusion technology. Human SUMO1 and SUMO2 fusion expression vectors were constructed and tested in His-tag and ubiquitin fusion expression systems. Two difficult-to-express model proteins, matrix metalloprotease-13 (MMP13) and enhanced green fluorescence protein (eGFP) were fused to the C-terminus of the human SUMO1 and SUMO2 expression vectors. These constructs were expressed in E. coli and evaluation of MMP13 and eGFP expression and solubility was conducted. We found that both SUMO1 and SUMO2 had the ability to enhance the solubility of MMP13 and eGFP, with the SUMO2 tag having a more significant effect. Since fusion tags produce varying quantities of soluble proteins, we assessed the effect of SUMO2 coupled with ubiquitin (Ub). SUMO2-ubiquitin and ubiquitin-SUMO2 fusion expression plasmids were constructed with eGFP as a passenger protein. Following expression in E. coli, both plasmids could improve eGFP expression and solubility similar to the SUMO2 fusion and better than the ubiquitin fusion. The sequential order of SUMO2 and ubiquitin had little effect on expression and solubility of eGFP. Purification of eGFP from the gene fusion product, SUMO2-ubiquitin-eGFP, involved cleavage by a deubiquitinase (Usp2-cc) and Ni-Sepharose column chromatography. The eGFP protein was purified to high homogeneity. In summary, human SUMO1 and SUMO2 are useful gene fusion technologies enhancing the expression, solubility and purification of model heterologous proteins. PMID:20457256

  5. Spatial and Temporal Control of Surfactant Systems

    PubMed Central

    Liu, Xiaoyang; Abbott, Nicholas L.

    2011-01-01

    This paper reviews some recent progress on approaches leading to spatial and temporal control of surfactant systems. The approaches revolve around the use of redox-active and light-sensitive surfactants. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous surfactant systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of surfactants with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene – reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive surfactants containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive surfactants that lead to large (> 20mN/m) and spatially localized (~mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures – such as micelle-to-vesicle transitions or monomer-to-micelle transitions – are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of surfactant systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of surfactants with biomolecules to modulate their transport into cells. PMID:19665723

  6. Advances in reactive surfactants.

    PubMed

    Guyot, A

    2004-05-20

    The study of reactive surfactants and their applications in the synthesis of latexes for waterborne coatings has been recently boosted by two successive European programmes, involving all together eight academic and five industrial laboratories. The most significant results were obtained using surfactants derived from maleic and related anhydrides, or both nonionic and anionic reactive polymeric surfactants. Such surfactants are able to improve the stability of styrenic and acrylic latexes vs. various constraints, such as electrolyte addition, freeze-thawing tests or extraction with alcohol or acetone. The properties of films used in waterborne coatings are also improved in case of water exposure (less water uptake, dimensional stability), as well as improved weatherability, and blocking properties. Formulations for woodstain varnishes, metal coating of printing inks, based on the use of simple polymerizable surfactants, are now in the market. PMID:15072924

  7. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.

    PubMed

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A; Gerlich, Daniel W

    2016-07-14

    Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226

  8. CentrosomeDB: a human centrosomal proteins database

    PubMed Central

    Nogales-Cadenas, Rubén; Abascal, Federico; Díez-Pérez, Javier; Carazo, José María; Pascual-Montano, Alberto

    2009-01-01

    Active research on the biology of the centrosome during the past decades has allowed the identification and characterization of many centrosomal proteins. Unfortunately, the accumulated data is still dispersed among heterogeneous sources of information. Here we present centrosome:db, which intends to compile and integrate relevant information related to the human centrosome. We have compiled a set of 383 likely human centrosomal genes and recorded the associated supporting evidences. Centrosome:db offers several perspectives to study the human centrosome including evolution, function and structure. The database contains information on the orthology relationships with other species, including fungi, nematodes, arthropods, urochordates and vertebrates. Predictions of the domain organization of centrosome:db proteins are graphically represented at different sections of the database, including sets of alternative protein isoforms, interacting proteins, groups of orthologs and the homologs identified with blast. Centrosome:db also contains information related to function, gene–disease associations, SNPs and the 3D structure of proteins. Apart from important differences in the coverage of the set of centrosomal genes, our database differentiates from other similar initiatives in the way information is treated and analyzed. Centrosome:db is publicly available at http://centrosome.dacya.ucm.es. PMID:18971254

  9. Expression cloning of genes encoding human peroxisomal proteins

    SciTech Connect

    Spathaky, J.M.; Tate, A.W.; Cox, T.M.

    1994-09-01

    Numerous metabolic disorders associated with diverse peroxisomal defects have been identified but their molecular characterization has been hampered by difficulties associated with the purification of proteins from this fragile organelle. We have utilized antibodies directed against the C-terminal tripeptide peroxisomal targeting signal to detect hitherto unknown peroxisomal proteins in tissue fractions and to isolate genes encoding peroxisonal proteins from human expression libraries. We immunized rabbits with a peptide conjugate encompassing the C-terminal nine amino acids of rat peroxisomal acyl CoA oxidase. Immunoprecipitation assays using radio-labelled peptide showed that the antibody specifically recognizes the terminal SKL motif as well as C-terminal SHL and SRL but not SHL at an internal position. Affinity-purified antibody was used to probe Western blots of crude and peroxisome-enriched monkey liver preparations and detected 8-10 proteins specifically in the peroxisome fractions. 100 positive clones were identified on screening a human liver cDNA expression library in {lambda}-gt11. Sequence analysis has confirmed the identity of cDNA clones for human acyl CoA oxidase and epoxide hydrolase. Four clones show no sequence identity and their putative role in the human peroxisome is being explored.

  10. Protein and amino acid metabolism in the human newborn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, ...

  11. Integrative analysis of human protein, function and disease networks

    PubMed Central

    Liu, Wei; Wu, Aiping; Pellegrini, Matteo; Wang, Xiaofan

    2015-01-01

    Protein-protein interaction (PPI) networks serve as a powerful tool for unraveling protein functions, disease-gene and disease-disease associations. However, a direct strategy for integrating protein interaction, protein function and diseases is still absent. Moreover, the interrelated relationships among these three levels are poorly understood. Here we present a novel systematic method to integrate protein interaction, function, and disease networks. We first identified topological modules in human protein interaction data using the network topological algorithm (NeTA) we previously developed. The resulting modules were then associated with functional terms using Gene Ontology to obtain functional modules. Finally, disease modules were constructed by associating the modules with OMIM and GWAS. We found that most topological modules have cohesive structure, significant pathway annotations and good modularity. Most functional modules (70.6%) fully cover corresponding topological modules, and most disease modules (88.5%) are fully covered by the corresponding functional modules. Furthermore, we identified several protein modules of interest that we describe in detail, which demonstrate the power of our integrative approach. This approach allows us to link genes, and pathways with their corresponding disorders, which may ultimately help us to improve the prevention, diagnosis and treatment of disease. PMID:26399914

  12. Human protein atlas and the use of microarray technologies.

    PubMed

    Hober, S; Uhlén, M

    2008-02-01

    Currently one of the most challenging tasks in biological and medical research is to explore and understand the function of all proteins encoded by the genome of an organism. A systematic approach based on the genome sequences is feasible because the full genome of many organisms presently is available and many more are underway. For the production of expression atlases different strategies are used. Early attempts to acquire information about protein expression levels have focused on the analysis of mRNA levels within different tissues and cell types. Recently, novel strategies to focus directly on protein levels have been developed. To assess global protein expression in a systematic and high-throughput manner, methods based on design of specific affinity ligands to recognize the proteins have been presented. By subsequently using these affinity molecules for detection of the corresponding proteins in a wide range of platforms, important information can be gained. This article focuses on strategies to profile protein levels and in particular the human protein atlas initiative and the use of microarray technologies. PMID:18187316

  13. Identification of Cellular Proteins that Interact with Human Cytomegalovirus Immediate-Early Protein 1 by Protein Array Assay

    PubMed Central

    Puerta Martínez, Francisco; Tang, Qiyi

    2013-01-01

    Human cytomegalovirus (HCMV) gene expression during infection is characterized as a sequential process including immediate-early (IE), early (E), and late (L)-stage gene expression. The most abundantly expressed gene at the IE stage of infection is the major IE (MIE) gene that produces IE1 and IE2. IE1 has been the focus of study because it is an important protein, not only for viral gene expression but also for viral replication. It is believed that IE1 plays important roles in viral gene regulation by interacting with cellular proteins. In the current study, we performed protein array assays and identified 83 cellular proteins that interact with IE1. Among them, seven are RNA-binding proteins that are important in RNA processing; more than half are nuclear proteins that are involved in gene regulations. Tumorigenesis-related proteins are also found to interact with IE1, implying that the role of IE1 in tumorigenesis might need to be reevaluated. Unexpectedly, cytoplasmic proteins, such as Golgi autoantigen and GGA1 (both related to the Golgi trafficking protein), are also found to be associated with IE1. We also employed a coimmunoprecipitation assay to test the interactions of IE1 and some of the proteins identified in the protein array assays and confirmed that the results from the protein array assays are reliable. Many of the proteins identified by the protein array assay have not been previously reported. Therefore, the functions of the IE1-protein interactions need to be further explored in the future. PMID:24385082

  14. Dynamic interfacial properties of human tear-lipid films and their interactions with model-tear proteins in vitro.

    PubMed

    Svitova, Tatyana F; Lin, Meng C

    2016-07-01

    This review summarizes the current state of knowledge regarding interfacial properties of very complex biological colloids, specifically, human meibum and tear lipids, and their interactions with proteins similar to the proteins found in aqueous part of human tears. Tear lipids spread as thin films over the surface of tear-film aqueous and play crucial roles in tear-film stability and overall ocular-surface health. The vast majority of papers published to date report interfacial properties of meibum-lipid monolayers spread on various aqueous sub-phases, often containing model proteins, in Langmuir trough. However, it is well established that natural human ocular tear lipids exist as multilayered films with a thickness between 30 and 100nm, that is very much disparate from 1 to 2nm thick meibum monolayers. We employed sessile-bubble tensiometry to study the dynamic interfacial and rheological properties of reconstituted multilayered human tear-lipid films. Small amounts (0.5-1μg) of human tear lipids were deposited on an air-bubble surface to produce tear-lipid films in thickness range 30-100nm corresponding to ocular lipid films. Thus, we were able to overcome major Langmuir-trough method limitations because ocular tear lipids can be safely harvested only in minute, sub-milligram quantities, insufficient for Langmuir through studies. Sessile-bubble method is demonstrated to be a versatile tool for assessing conventional synthetic surfactants adsorption/desorption dynamics at an air-aqueous solution interface. (Svitova T., Weatherbee M., Radke C.J. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry. J. Colloid Interf. Sci. 2003;261:1170-179). The augmented flow-sessile-bubble setup, with step-strain relaxation module for dynamic interfacial rheological properties and high-precision syringe pump to generate larger and slow interfacial area expansions-contractions, was developed and employed in our studies. We established that

  15. Nuclear and nucleolar targeting of human ribosomal protein S6.

    PubMed Central

    Schmidt, C; Lipsius, E; Kruppa, J

    1995-01-01

    Chimeric proteins were constructed to define the nuclear localization signals (NLSs) of human ribosomal protein S6. The complete cDNA sequence, different cDNA fragments and oligonucleotides of the human ribosomal proteins S6, respectively, were joined to the 5' end of the entire LacZ gene of Escherichia coli by using recombinant techniques. The hybrid genes were transfected into L cells, transiently expressed, and the intracellular location of the fusion proteins was determined by their beta-galactosidase activity. Three NLSs were identified in the C-terminal half of the S6 protein. Deletion mutagenesis demonstrated that a single NLS is sufficient for targeting the corresponding S6-beta-galactosidase chimera into the nucleus. Removal of all three putative NLSs completely blocked the nuclear import of the resulting S6-beta-galactosidase fusion protein, which instead became evenly distributed in the cytoplasm. Chimeras containing deletion mutants of S6 with at least one single NLS or unmodified S6 accumulated in the nucleolus. Analysis of several constructs reveals the existence of a specific domain that is essential but not sufficient for nucleolar accumulation of S6. Images PMID:8590812

  16. An extensive library of surrogate peptides for all human proteins.

    PubMed

    Mohammed, Yassene; Borchers, Christoph H

    2015-11-01

    Selecting the most appropriate surrogate peptides to represent a target protein is a major component of experimental design in Multiple Reaction Monitoring (MRM). Our software PeptidePicker with its v-score remains distinctive in its approach of integrating information about the proteins, their tryptic peptides, and the suitability of these peptides for MRM that is available online in UniProtKB, NCBI's dbSNP, ExPASy, PeptideAtlas, PRIDE, and GPMDB. The scoring algorithm reflects our "best knowledge" for selecting candidate peptides for MRM, based on the uniqueness of the peptide in the targeted proteome, its physiochemical properties, and whether it has previously been observed. Here we present an updated approach where we have already compiled a list of all possible surrogate peptides of the human proteome. Using our stringent selection criteria, the list includes 165k suitable MRM peptides covering 17k proteins of the human reviewed proteins in UniProtKB. Compared to average of 2-4min per protein for retrieving and integrating the information, the precompiled list includes all peptides available instantly. This allows a more cohesive and faster design of a multiplexed MRM experiment and provides insights into evidence for a protein's existence. We will keep this list up-to-date as proteomics data repositories continue to grow. This article is part of a Special Issue entitled: Computational Proteomics. PMID:26232110

  17. Human testis expresses a specific poly(A)-binding protein.

    PubMed

    Féral, C; Guellaën, G; Pawlak, A

    2001-05-01

    In testis mRNA stability and translation initiation are extensively under the control of poly(A)-binding proteins (PABP). Here we have cloned a new human testis-specific PABP (PABP3) of 631 amino acids (70.1 kDa) with 92.5% identical residues to the ubiquitous PABP1. A northern blot of multiple human tissues hybridised with PABP3- and PABP1-specific oligonucleotide probes revealed two PABP3 mRNAs (2.1 and 2.5 kb) detected only in testis, whereas PABP1 mRNA (3.2 kb) was present in all tested tissues. In human adult testis, PABP3 mRNA expression was restricted to round spermatids, whereas PABP1 was expressed in these cells as well as in pachytene spermatocytes. PABP3-specific antibodies identified a protein of 70 kDa in human testis extracts. This protein binds poly(A) with a slightly lower affinity as compared to PABP1. The human PABP3 gene is intronless with a transcription start site 61 nt upstream from the initiation codon. A sequence of 256 bp upstream from the transcription start site drives the promoter activity of PABP3 and its tissue-specific expression. The expression of PABP3 might be a way to bypass PABP1 translational repression and to produce the amount of PABP needed for active mRNA translation in spermatids. PMID:11328870

  18. Annexin A6 protein is downregulated in human hepatocellular carcinoma.

    PubMed

    Meier, Elisabeth M; Rein-Fischboeck, Lisa; Pohl, Rebekka; Wanninger, Josef; Hoy, Andrew J; Grewal, Thomas; Eisinger, Kristina; Krautbauer, Sabrina; Liebisch, Gerhard; Weiss, Thomas S; Buechler, Christa

    2016-07-01

    Annexin A6 (AnxA6) is a lipid-binding protein highly expressed in the liver, regulating cholesterol homeostasis and signaling pathways with a role in liver physiology. Here, we analyzed whether hepatic AnxA6 levels are affected by pathological conditions that are associated with liver dysfunction and liver injury. AnxA6 levels in the fatty liver of mice fed a high-fat diet, in ob/ob and db/db animals and in human fatty liver are comparable to controls. Similarly, AnxA6 levels appear unaffected in murine nonalcoholic steatohepatitis and human liver fibrosis. Accordingly, adiponectin, lysophosphatidylcholine, palmitate, and TGFbeta, all of which have a role in liver injury, do not affect AnxA6 expression in human hepatocytes. Likewise, adiponectin and IL8 do not alter AnxA6 levels in primary human hepatic stellate cells. However, in hepatic tumors of 18 patients, AnxA6 protein levels are substantially reduced compared to nontumorous tissues. AnxA6 mRNA is even increased in the tumors suggesting that posttranscriptional mechanisms are involved herein. Lipidomic analysis shows trends toward elevated cholesteryl ester and sphingomyelin in the tumor samples, yet the ratio of tumor to nontumorous AnxA6 does not correlate with these lipids. The current study shows that AnxA6 is specifically reduced in human hepatocellular carcinoma suggesting a role of this protein in hepatocarcinogenesis. PMID:27334756

  19. Unique expression of cytoskeletal proteins in human soft palate muscles.

    PubMed

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. PMID:26597319

  20. Protein-protein interaction between ezrin and p65 in human breast cancer cells.

    PubMed

    Tang, R; Li, F X; Shao, W F; Wen, Q S; Yu, X R; Xiong, J B

    2016-01-01

    Our study aimed to investigate the co-localization and protein-protein interactions between ezrin and p65 in human breast cancer cells. Liquid chromatography-mass spectrometry (LCMS) was used to uncover novel protein interactions with ezrin in MDA-MB-231 cells. Endogenous co-immunoprecipitation was used to validate protein-protein interactions between ezrin and p65 in MDA-MB-231. Exogenous interactions between ezrin and p65 were validated in MDA-MB-231 cells via Flag-ezrin and HA-p65 co-transfection and followed by co-immunoprecipitation. Immunofluorescence staining was used to visualize ezrin and p65 co-localization in MDA-MB-231. LCMS results showed that there were 1000 proteins interacting with ezrin in MDA-MB-231 cells. Ezrin and p65 interactions were confirmed with both endogenous and exogenous methods. We were also able to visualize ezrin and p65 co-localization in MDA-MB-231. In summary, we found protein-protein interactions between Ezrin and p65 in human breast cancer cells. PMID:27420986

  1. Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise.

    PubMed

    Bolster, Douglas R; Pikosky, Matthew A; Gaine, P Courtney; Martin, William; Wolfe, Robert R; Tipton, Kevin D; Maclean, David; Maresh, Carl M; Rodriguez, Nancy R

    2005-10-01

    This investigation evaluated the physiological impact of different dietary protein intakes on skeletal muscle protein synthesis postexercise in endurance runners. Five endurance-trained, male runners participated in a randomized, crossover design diet intervention, where they consumed either a low (0.8 g/kg; LP)-, moderate (1.8 g/kg; MP)-, or high (3.6 g/kg; HP)-protein diet for 4 wk. Diets were designed to be eucaloric with carbohydrate, fat, and protein approximating 60, 30, and 10%; 55, 30, and 15%; and 40, 30, and 30% for LP, MP, and HP, respectively. Substrate oxidation was assessed via indirect calorimetry at 3 wk of the dietary interventions. Mixed-muscle protein fractional synthetic rate (FSR) was measured after an endurance run (75 min at 70% V(O2 peak)) using a primed, continuous infusion of [(2)H(5)]phenylalanine. Protein oxidation increased with increasing protein intake, with each trial being significantly different from the other (P < 0.01). FSR after exercise was significantly greater for LP (0.083%/h) and MP (0.078%/h) than for HP (0.052%/h; P < 0.05). There was no difference in FSR between LP and MP. This is the first investigation to establish that habitual dietary protein intake in humans modulates skeletal muscle protein synthesis after an endurance exercise bout. Future studies directed at mechanisms by which level of protein intake influences skeletal muscle turnover are needed. PMID:15914508

  2. Recombinant human bone morphogenetic protein induces bone formation.

    PubMed Central

    Wang, E A; Rosen, V; D'Alessandro, J S; Bauduy, M; Cordes, P; Harada, T; Israel, D I; Hewick, R M; Kerns, K M; LaPan, P

    1990-01-01

    We have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 micrograms of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans. Images PMID:2315314

  3. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  4. Quality control of cytoskeletal proteins and human disease.

    PubMed

    Lundin, Victor F; Leroux, Michel R; Stirling, Peter C

    2010-05-01

    Actins and tubulins are abundant cytoskeletal proteins that support diverse cellular processes. Owing to the unique properties of these filament-forming proteins, an intricate cellular machinery consisting minimally of the chaperonin CCT, prefoldin, phosducin-like proteins, and tubulin cofactors has evolved to facilitate their biogenesis. More recent evidence also suggests that regulated degradation pathways exist for actin (via TRIM32) and tubulin (via parkin or cofactor E-like). Collectively, these pathways maintain the quality control of cytoskeletal proteins ('proteostasis'), ensuring the appropriate function of microfilaments and microtubules. Here, we focus on the molecular mechanisms of the quality control of actin and tubulin, and discuss emerging links between cytoskeletal proteostasis and human diseases. PMID:20116259

  5. LPS impairs phospholipid synthesis by triggering beta-transducin repeat-containing protein (beta-TrCP)-mediated polyubiquitination and degradation of the surfactant enzyme acyl-CoA:lysophosphatidylcholine acyltransferase I (LPCAT1).

    PubMed

    Zou, Chunbin; Butler, Phillip L; Coon, Tiffany A; Smith, Rebecca M; Hammen, Gary; Zhao, Yutong; Chen, Bill B; Mallampalli, Rama K

    2011-01-28

    Acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a relatively newly described and yet indispensable enzyme needed for generation of the bioactive surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPtdCho). Here, we show that lipopolysaccharide (LPS) causes LPCAT1 degradation using the Skp1-Cullin-F-box ubiquitin E3 ligase component, β-transducin repeat-containing protein (β-TrCP), that polyubiquitinates LPCAT1, thereby targeting the enzyme for proteasomal degradation. LPCAT1 was identified as a phosphoenzyme as Ser(178) within a phosphodegron was identified as a putative molecular recognition site for glycogen synthase kinase-3β (GSK-3β) phosphorylation that recruits β-TrCP docking within the enzyme. β-TrCP ubiquitinates LPCAT1 at an acceptor site (Lys(221)), as substitution of Lys(221) with Arg abrogated LPCAT1 polyubiquitination. LPS profoundly reduced immunoreactive LPCAT1 levels and impaired lung surfactant mechanics, effects that were overcome by siRNA to β-TrCP and GSK-3β or LPCAT1 gene transfer, respectively