Science.gov

Sample records for human transferrin receptor

  1. Human placental coated vesicles contain receptor-bound transferrin.

    PubMed Central

    Booth, A G; Wilson, M J

    1981-01-01

    Human placental coated vesicles have been purified by a method involving sucrose-density-gradient centrifugation and treatment with wheat-germ agglutinin. These preparations were free of contamination by placental microvillus fragments. Crossed immunoelectrophoresis demonstrated that the coated vesicles contained a single serum protein, which was identified as transferrin. This transferrin was only observed after the vesicles were treated with a non-ionic detergent, and its behaviour during crossed hydrophobic-interaction immunoelectrophoresis suggested that a large proportion of it was receptor-bound. No other serum proteins, including immunoglobulin G, could be detected in these preparations. Receptor-bound transferrin was the only antigen common to placental coated vesicles and microvilli, implying that other plasma-membrane proteins are excluded from the region of membrane involved in coated-vesicle formation. Images PLATE 2 PLATE 1 Fig. 1. Fig. 2. Fig. 3. PMID:6272755

  2. Transferrin receptors of human fibroblasts. Analysis of receptor properties and regulation.

    PubMed Central

    Ward, J H; Kushner, J P; Kaplan, J

    1982-01-01

    Normal human skin fibroblasts cultured in vitro exhibit specific binding sites for 125I-labelled transferrin. Kinetic studies revealed a rate constant for association (Kon) at 37 degrees C of 1.03 X 10(7) M-1 X min-1. The rate constant for dissociation (Koff) at 37 degrees C was 7.9 X 10(-2) X min-1. The dissociation constant (KD) was 5.1 X 10(-9) M as determined by Scatchard analysis of binding and analysis of rate constants. Fibroblasts were capable of binding 3.9 X 10(5) molecules of transferrin per cell. Binding of 125I-labelled diferric transferrin to cells was inhibited equally by either apo-transferrin or diferric transferrin, but no inhibition was evident with apo-lactoferrin, iron-saturated lactoferrin, or albumin. Preincubation of cells with saturating levels of diferric transferrin or apo-transferrin produced no significant change in receptor number or affinity. Preincubation of cells with ferric ammonium citrate caused a time- and dose-dependent decrease in transferrin binding. After preincubation with ferric ammonium citrate for 72 h, diferric transferrin binding was 37.7% of control, but no change in receptor affinity was apparent by Scatchard analysis. These results suggest that fibroblast transferrin receptor number is modulated by intracellular iron content and not by ligand-receptor binding. PMID:6297460

  3. Receptor-Mediated Recognition and Uptake of Iron from Human Transferrin by Staphylococcus aureus and Staphylococcus epidermidis

    PubMed Central

    Modun, Belinda; Evans, Robert W.; Joannou, Christopher L.; Williams, Paul

    1998-01-01

    Staphylococcus aureus and Staphylococcus epidermidis both recognize and bind the human iron-transporting glycoprotein, transferrin, via a 42-kDa cell surface protein receptor. In an iron-deficient medium, staphylococcal growth can be promoted by the addition of human diferric transferrin but not human apotransferrin. To determine whether the staphylococcal transferrin receptor is involved in the removal of iron from transferrin, we employed 6 M urea–polyacrylamide gel electrophoresis, which separates human transferrin into four forms (diferric, monoferric N-lobe, and monoferric C-lobe transferrin and apotransferrin). S. aureus and S. epidermidis but not Staphylococcus saprophyticus (which lacks the transferrin receptor) converted diferric human transferrin into its apotransferrin form within 30 min. During conversion, iron was removed sequentially from the N lobe and then from the C lobe. Metabolic poisons such as sodium azide and nigericin inhibited the release of iron from human transferrin, indicating that it is an energy-requiring process. To demonstrate that this process is receptor rather than siderophore mediated, we incubated (i) washed staphylococcal cells and (ii) the staphylococcal siderophore, staphyloferrin A, with porcine transferrin, a transferrin species which does not bind to the staphylococcal receptor. While staphyloferrin A removed iron from both human and porcine transferrins, neither S. aureus nor S. epidermidis cells could promote the release of iron from porcine transferrin. In competition binding assays, both native and recombinant N-lobe fragments of human transferrin as well as a naturally occurring human transferrin variant with a mutation in the C-lobe blocked binding of 125I-labelled transferrin. Furthermore, the staphylococci removed iron efficiently from the iron-loaded N-lobe fragment of human transferrin. These data demonstrate that the staphylococci efficiently remove iron from transferrin via a receptor-mediated process and

  4. Metabolic and cytoskeletal modulation of transferrin receptor mobility in mitogen-activated human lymphocytes.

    PubMed Central

    Galbraith, G M; Galbraith, R M

    1980-01-01

    The transferrin receptors which appear on mitogen-activated human peripheral blood lymphocytes were found by the use of immunofluorescence techniques to display temperature-dependent patching and capping reactions upon binding of transferrin. Lateral mobility of ligand-occupied membrane sites was accompanied by both shedding and endocytosis of receptor-transferrin complexes. In the presence of sodium azide or the microfilament inhibitor cytochalasin B, cap formation and shedding were markedly inhibited. In contrast, endocytosis of patched receptor-ligand complexes was inhibited by azide and microtubule inhibitors, including colchicine, vinblastine and vincristine. Co-capping experiments performed to elucidate further the alterations in membrane configuration involved in these reactions failed to reveal any topographical relationship between transferrin receptors and lectin-binding sites in these cells. These studied indicate that temperature-dependent mobility of transferrin receptors upon mitogen-activated peripheral blood lymphocytes is dependent upon the integrity of the cytoskeletal system and metabolic function of the cell. PMID:6258830

  5. How the Binding of Human Transferrin Primes the Transferrin Receptor Potentiating Iron Release at Endosomal pH

    SciTech Connect

    B Eckenroth; A Steere; N Chasteen; S Everse; A Mason

    2011-12-31

    Delivery of iron to cells requires binding of two iron-containing human transferrin (hTF) molecules to the specific homodimeric transferrin receptor (TFR) on the cell surface. Through receptor-mediated endocytosis involving lower pH, salt, and an unidentified chelator, iron is rapidly released from hTF within the endosome. The crystal structure of a monoferric N-lobe hTF/TFR complex (3.22-{angstrom} resolution) features two binding motifs in the N lobe and one in the C lobe of hTF. Binding of Fe{sub N}hTF induces global and site-specific conformational changes within the TFR ectodomain. Specifically, movements at the TFR dimer interface appear to prime the TFR to undergo pH-induced movements that alter the hTF/TFR interaction. Iron release from each lobe then occurs by distinctly different mechanisms: Binding of His349 to the TFR (strengthened by protonation at low pH) controls iron release from the C lobe, whereas displacement of one N-lobe binding motif, in concert with the action of the dilysine trigger, elicits iron release from the N lobe. One binding motif in each lobe remains attached to the same {alpha}-helix in the TFR throughout the endocytic cycle. Collectively, the structure elucidates how the TFR accelerates iron release from the C lobe, slows it from the N lobe, and stabilizes binding of apohTF for return to the cell surface. Importantly, this structure provides new targets for mutagenesis studies to further understand and define this system.

  6. Expression of transferrin receptors on mitogen-stimulated human peripheral blood lymphocytes: relation to cellular activation and related metabolic events.

    PubMed Central

    Galbraith, R M; Galbraith, G M

    1981-01-01

    Mitogen-activated normal human peripheral blood lymphocytes bind transferrin to specific membrane receptors. In this study, lymphocytes stimulated with phytohaemagglutinin for 0-66 hr were examined to determine the relation of this phenomenon to cellular activation and related metabolic events. Transferrin receptors were first detected at 20-24 hr. This event was consistently preceded by RNA and protein turnover which commenced during the first 6 hr of culture, whereas initiation of DNA synthesis was detected concurrently with the appearance of receptors or slightly later (24-30 hr). Exposure of cells to inhibitors of RNA and protein synthesis early during culture (at 0 or 24 hr) prevented the expression of transferrin receptors, but also caused generalized metabolic failure, and abrogated cellular activation. In contrast, later addition of these agents at 48 hr did not interfere significantly with the process of activation, but did suppress the terminal increase in receptor-bearing cells observed during the final 18 hr in control cultures lacking inhibitor. After deliberate thermal stripping of receptors from activated cells, the reappearance of membrance binding sites which normally occurred within 30 min, was also blocked by cycloheximide, puromycin and actinomycin D. However, similar inhibition of DNA which was induced by hydroxyurea had much less effect upon both the initial appearance of receptors and their reappearance after ligand-induced depletion. These results demonstrate that the appearance of transferrin receptors upon human lymphocytes is dependent upon cellular activation and requires synthesis of protein and RNA. PMID:6172372

  7. H-Ferritin Is Preferentially Incorporated by Human Erythroid Cells through Transferrin Receptor 1 in a Threshold-Dependent Manner

    PubMed Central

    Sakamoto, Soichiro; Kawabata, Hiroshi; Masuda, Taro; Uchiyama, Tatsuki; Mizumoto, Chisaki; Ohmori, Katsuyuki; Koeffler, H. Phillip; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi

    2015-01-01

    Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body’s iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin. PMID:26441243

  8. H-Ferritin Is Preferentially Incorporated by Human Erythroid Cells through Transferrin Receptor 1 in a Threshold-Dependent Manner.

    PubMed

    Sakamoto, Soichiro; Kawabata, Hiroshi; Masuda, Taro; Uchiyama, Tatsuki; Mizumoto, Chisaki; Ohmori, Katsuyuki; Koeffler, H Phillip; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi

    2015-01-01

    Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body's iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin. PMID:26441243

  9. Human and Host Species Transferrin Receptor 1 Use by North American Arenaviruses

    PubMed Central

    Zong, Min; Fofana, Isabel

    2014-01-01

    ABSTRACT At least five New World (NW) arenaviruses cause hemorrhagic fevers in South America. These pathogenic clade B viruses, as well as nonpathogenic arenaviruses of the same clade, use transferrin receptor 1 (TfR1) of their host species to enter cells. Pathogenic viruses are distinguished from closely related nonpathogenic ones by their additional ability to utilize human TfR1 (hTfR1). Here, we investigate the receptor usage of North American arenaviruses, whose entry proteins share greatest similarity with those of the clade B viruses. We show that all six North American arenaviruses investigated utilize host species TfR1 orthologs and present evidence consistent with arenavirus-mediated selection pressure on the TfR1 of the North American arenavirus host species. Notably, one of these viruses, AV96010151, closely related to the prototype Whitewater Arroyo virus (WWAV), entered cells using hTfR1, consistent with a role for a WWAV-like virus in three fatal human infections whose causative agent has not been identified. In addition, modest changes were sufficient to convert hTfR1 into a functional receptor for most of these viruses, suggesting that a minor alteration in virus entry protein may allow these viruses to use hTfR1. Our data establish TfR1 as a cellular receptor for North American arenaviruses, highlight an “arms race” between these viruses and their host species, support the association of North American arenavirus with fatal human infections, and suggest that these viruses have a higher potential to emerge and cause human diseases than has previously been appreciated. IMPORTANCE hTfR1 use is a key determinant for a NW arenavirus to cause hemorrhagic fevers in humans. All known pathogenic NW arenaviruses are transmitted in South America by their host rodents. North American arenaviruses are generally considered nonpathogenic, but some of these viruses have been tentatively implicated in human fatalities. We show that these North American

  10. Inhibition of gallium-67 uptake in melanoma by an anti-human transferrin receptor monoclonal antibody

    SciTech Connect

    Chan, S.M.; Hoffer, P.B.; Maric, N.; Duray, P.

    1987-08-01

    The effect of an anti-human transferrin receptor (anti-TFR) monoclonal antibody (MoAb), designated B3/25, and an anti-melanoma antibody, designated 96.5, on the uptake of gallium-67 (/sup 67/Ga) by tumor was studied. Three groups of six athymic mice bearing a human melanoma were injected via tail vein with (a) 0.55 mg human serum albumin (HSA) (control group), (b) 0.5 mg MoAb B3/25 + 0.55 mg HSA, and (c) 0.5 mg MoAb 96.5 + 0.55 mg HSA, respectively. Twenty-four hours later, each mouse was given an intravenous dose of 5 microCi (/sup 67/Ga) citrate. Biodistribution of activity (percent injected dose per gram) determined 48 hr after injection of /sup 67/Ga showed a 75% decrease in tumor uptake in the group of mice that received B3/25 (anti-TFR MoAb) compared with the control group. In contrast, MoAb 96.5 did not show any effect on melanoma uptake of /sup 67/Ga. Histologic findings suggest that the decreased uptake was not due to cellular damage resulting from binding of B3/25 to TFR. The results of this study strongly suggest the involvement of TFR in the in vivo tumor uptake of /sup 67/Ga.

  11. Prospective Design of Anti-Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain.

    PubMed

    Kanodia, J S; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, R K; Luk, W; Hoyte, K; Lu, Y; Wildsmith, K R; Couch, J A; Watts, R J; Dennis, M S; Ernst, J A; Scearce-Levie, K; Atwal, J K; Ramanujan, S; Joseph, S

    2016-05-01

    Anti-transferrin receptor (TfR)-based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR-based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti-TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic-pharmacodynamic (PK-PD) model for bispecific anti-TfR/BACE1 antibodies that accounts for antibody-TfR interactions at the blood-brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti-BACE1 arm. The calibrated model correctly predicted the optimal anti-TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti-TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti-TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  12. Prospective Design of Anti‐Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain

    PubMed Central

    Kanodia, JS; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, RK; Luk, W; Hoyte, K; Lu, Y; Wildsmith, KR; Couch, JA; Watts, RJ; Dennis, MS; Ernst, JA; Scearce‐Levie, K; Atwal, JK; Joseph, S

    2016-01-01

    Anti‐transferrin receptor (TfR)‐based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR‐based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti‐TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model for bispecific anti‐TfR/BACE1 antibodies that accounts for antibody‐TfR interactions at the blood‐brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti‐BACE1 arm. The calibrated model correctly predicted the optimal anti‐TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti‐TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti‐TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  13. The transmembrane segment of the human transferrin receptor functions as a signal peptide.

    PubMed Central

    Zerial, M; Melancon, P; Schneider, C; Garoff, H

    1986-01-01

    The human transferrin receptor (TR) is a protein comprising 760 amino acid residues that spans the membrane once with its N terminus towards the cytoplasm. It is synthesized without a cleavable signal peptide. We have tested whether the signal responsible for its membrane insertion is present within its transmembrane peptide using a combined recombinant DNA/in vitro translation approach. The complete TR coding region was first reconstructed from overlapping TR cDNA clones and then engineered into an SP6-based transcription vector. In vitro transcription and subsequent translation in the presence of rough microsomes yielded TR molecules that were glycosylated and correctly inserted into the membrane. Two kinds of experiments demonstrated that the spanning region of the TR polypeptide contained the signal for translocation across the membrane of the rough endoplasmic reticulum. First, we deleted the spanning region of TR and showed that this deletion mutant could not be inserted. Second, we showed that two cytoplasmic proteins (the mouse dihydrofolate reductase and the chimpanzee alpha-globin) could be inserted into the microsomal membrane in the expected orientation when the TR transmembrane segment was added to their N termini. Thus, the spanning peptide was shown to be both necessary and sufficient for chain translocation. Further analyses demonstrated that the translocation event was dependent on the signal recognition particle. Images Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3017701

  14. Production and characterization of chimeric transferrins for the determination of the binding domains for bacterial transferrin receptors.

    PubMed

    Retzer, M D; Kabani, A; Button, L L; Yu, R H; Schryvers, A B

    1996-01-12

    Pathogenic bacteria in the Neisseriaceae and Pasteurellaceae possess outer membrane proteins that specifically bind transferrin from the host as the first step in the iron acquisition process. As a logical progression from prior studies of the ligand-receptor interaction using biochemical approaches, we have initiated an approach involving the production of recombinant chimeric transferrins to further identify the regions of transferrin involved in receptor binding. In order to prepare bovine/human hybrids, the bovine transferrin gene was cloned, sequenced, and compared with the existing human transferrin gene sequence. After identification of potential splice sites, hybrid transferrin genes were constructed using the polymerase chain reaction-based approach of splicing by overlap extension. Five hybrid genes containing sequences from both bovine and human transferrin were constructed. Recombinant transferrins were produced in a baculovirus expression vector system and affinity-purified using concanavalin A-Sepharose. The recombinant proteins were analyzed for reactivity against polyclonal and monoclonal antibodies and assessed for binding to Neisseria meningitidis transferrin receptor proteins in solid-phase binding assays and affinity isolation experiments. These experiments enabled us to localize the regions of human transferrin predominantly involved in binding to the N. meningitidis receptor to amino acid residues 346-588. The construction of these chimeras provides unique tools for the investigation of transferrin binding to receptors from both human and bovine bacterial pathogens. PMID:8557646

  15. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    SciTech Connect

    Muta, K.; Nishimura, J.; Ideguchi, H.; Umemura, T.; Ibayashi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia vera compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.

  16. In-111 chelate conjugates of human transferrin (HTr) and mouse monoclonal anti human transferrin receptor antibody (. cap alpha. HTrR MoAb) for tumor imaging

    SciTech Connect

    Goodwin, D.A.; Meares, C.F.; Diamanti, C.I.; McCall, M.; McTigue, M.; Torti, F.; Martin, B.

    1984-01-01

    At least one of the major pathways of uptake of the commonly used tumor scanning agent Ga-67 is via the transferrin receptor. This suggested the use of stably radio-labeled HTr, and ..cap alpha..HTrR MoAb for tumor imaging in humans. HTr and mouse ..cap alpha..HTrR MoAb were alkylated with 1-(parabromacetamidobenzyl)-EDTA. The mM Alkylproteins, approx. =1 chelate/molecule were labeled with 1-3 mCi In-111 citrate pH/sub 5/ (Sp Act approx. = 100-300 Ci/m mole). Images were made 24 hours after 1 mCi IV and in some patients blood levels, urine excretion and digitized whole body scans were obtained at 1, 24,48 and 96 hours post injection. Ten patients with biopsy proven prostate cancer were studied with In-111 HTr, and four with In-111 ..cap alpha.. HTrR MoAb; all had positive mets on bone scan. In-111 HTr persisted in the circulation with a T1/2 of approx. = four days, approx. = 5%/day being excreted in the urine, to a total of approx. = 60% in 21 days. Nine of ten scans were false negative due to the high blood background. In-111 ..cap alpha..HTrR disappeared rapidly from the blood; with most in the bone marrow at 24 hours. ROI analysis of three patients showed whole body 94% at 24 hours, 89% at 48 hours, and 82% at 96 hours (T1/2 = 10.7 days); liver 19% at 1 hour, 25% at 24 hours, and 21% at 96 hours; spleen 3% at 1 hour, 8% at 24 hours, 7.3% at 48 hours, and 3% at 96 hours. The high bone marrow background allowed only a few of the bone mets seen as bone scan to be visualized. Other tumor types not located in bone may be more easily seen.

  17. A structural comparison of human serum transferrin and human lactoferrin.

    PubMed

    Wally, Jeremy; Buchanan, Susan K

    2007-06-01

    The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences. PMID:17216400

  18. New DNA polymorphisms define ethnically distinct haplotypes in the human transferrin receptor gene.

    PubMed

    Van Landeghem, G F; Beckman, L E; Sikström, C; Saha, N; Kucinskas, V; Beckman, L

    1998-01-01

    In a study of transferrin receptor (TFR) polymorphism in different ethnic groups using PCR and restriction cleavage we found a new Hin6I polymorphism in intron 7 and confirmed a tentative BanI polymorphism in exon 4 reported by Evans and Kemp [Gene 1997;199:123-131]. In all ethnic groups there was a complete and highly significant (p < 10(-10)) linkage disequilibrium where all BanI 1 alleles were linked to Hin6I 1 alleles. Furthermore in the European populations, but not in the Chinese, there was a close correlation between the three BanI-Hin6I haplotypes and the alleles of a previously described three-allelic RsaI polymorphism in the TFR gene studied by Southern blotting. There were distinct ethnic differences in TFR allele and haplotype frequencies. Thus the Saamis were significantly different from the other European ethnic groups, and the Lithuanians had a significantly increased frequency of the BanI 2-Hin6I 1 haplotype, suggesting that this marker may be informative in tracing prehistoric migrations and admixture by Baltic peoples. The new TFR polymorphisms and haplotypes may also be useful markers in studies of interactions with the transferrin and hemochromatosis genes, the genetic influence on body iron stores and disease associations. PMID:9748693

  19. Roles of transferrin receptors in erythropoiesis.

    PubMed

    Kawabata, Hiroshi; Sakamoto, Soichiro; Masuda, Taro; Uchiyama, Tatsuki; Ohmori, Katsuyuki; Koeffler, H Phillip; Takaori-Kondo, Akifumi

    2016-07-01

    Erythropoiesis requires large amounts of iron for hemoglobin synthesis, which is mainly provided by macrophages and the intestines in a transferrin (Tf)-bound form. Bone marrow erythroblasts incorporate Tf through endocytosis, which is mediated by transferrin receptor 1 (TFR1). Recently, human TFR1, aside from its role as a Tf receptor, was also found to be a receptor for the H-subunit of ferritin (FTH). In humans, hematopoietic erythroid precursor cells express high levels of TFR1 and specifically take up the FTH homopolymer (H-ferritin). H-ferritin inhibits the formation of burst forming unit-erythroid colonies in vitro. TFR2, which is also a Tf receptor, is predominantly expressed in hepatocytes and erythroid precursor cells. In the liver, TFR2 forms a complex with HFE, a hereditary hemochromatosis-associated protein, and acts as an iron sensor. In mice, hepatocyte-specific knockout of the TFR2 gene has been shown to cause systemic iron-overload with decreased expression of hepcidin, the central regulator of iron homeostasis. In erythroid cells, TFR2 forms a complex with the erythropoietin receptor and facilitates its trafficking to the cell membrane. Moreover, hematopoietic cell-specific knockout of the TFR2 gene causes microcytic erythrocytosis in mice. This review focuses on the molecular evolution and functions of these TFRs and their ligands. PMID:27498743

  20. Human serum transferrin: a tale of two lobes. Urea gel and steady state fluorescence analysis of recombinant transferrins as a function of pH, time, and the soluble portion of the transferrin receptor

    PubMed Central

    Byrne, Shaina L.

    2009-01-01

    Iron release from human serum transferrin (hTF) has been studied extensively; however, the molecular details of the mechanism(s) remain incomplete. This is in part due to the complexity of this process, which is influenced by lobe–lobe interactions, the transferrin receptor (TFR), the salt effect, the presence of a chelator, and acidification within the endosome, resulting in iron release. The present work brings together many of the concepts and assertions derived from previous studies in a methodical, uniform, and visual manner. Examination of earlier work reveals some uncertainty due to sample and technical limitations. We have used a combination of steady-state fluorescence and urea gels to evaluate the effect of conformation, pH, time, and the soluble portion of the TFR (sTFR) on iron release from each lobe of hTF. The use of authentic recombinant monoferric and locked species removes any possibility of cross-contamination by acquisition of iron. Elimination of detergent by use of the sTFR provides a further technical advantage. We find that iron release from the N-lobe is very sensitive to the conformation of the C-lobe, but is insensitive to the presence of the sTFR or to changes in pH (between 5.6 and 6.4). Specifically, when the cleft of the C-lobe is locked, the urea gels indicate that only about half of the iron is completely removed from the cleft of the N-lobe. Iron release from the C-lobe is most affected by the presence of the sTFR and changes in pH, but is unaffected by the conformation of the N-lobe. A model for iron release from diferric hTF is provided to delineate our findings. PMID:19290554

  1. Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins.

    PubMed Central

    Cornelissen, C N; Sparling, P F

    1996-01-01

    Neisseria gonorrhoeae is capable of iron utilization from human transferrin in a receptor-mediated event. Transferrin-binding protein 1 (Tbp1) and Tbp2 have been implicated in transferrin receptor function, but their specific roles in transferrin binding and transferrin iron utilization have not yet been defined. We utilized specific gonococcal mutants lacking Tbp1 or Tbp2 to assess the relative transferrin-binding properties of each protein independently of the other. The apparent affinities of the wild-type transferrin receptor and of Tbp1 and Tbp2 individually were much higher than previously estimated for the gonococcal receptor and similar to the estimates for the mammalian transferrin receptor. The binding parameters of both of the mutants were distinct from those of the parent, which expressed two transferrin-binding sites. Tbp2 discriminated between ferrated transferrin and apotransferrin, while Tbp1 did not. Results of transferrin-binding affinity purification, and protease accessibility experiments were consistent with the hypothesis that Tbp1 and Tbp2 interact in the wild-type strain, although both proteins were capable of binding to transferrin independently when separated in the mutants. The presence of Tbp1 partially protected Tbp2 from trypsin proteolysis, and Tbp2 also protected Tbp1 from trypsin exposure. Addition of transferrin to wild-type but not mutant cells protected Tbp1 from trypsin but increased the trypsin susceptibility of Tbp2. These observations indicate that Tbp1 and Tbp2 function together in the wild-type strain to evoke binding conformations that are distinct from those expressed by the mutants lacking either protein. PMID:8631722

  2. Interaction of human diferric transferrin with reticulocytes.

    PubMed Central

    Huebers, H; Csiba, E; Josephson, B; Huebers, E; Finch, C

    1981-01-01

    Methods have been devised for preparing human transferrin with a different isotope of iron selectively labeling each of the two iron binding sites and for determining the distribution of radioiron among transferrin molecules. When diferric human transferrin was exposed to human or animal reticulocytes, there was an equal contribution of radioiron from the acid-stable and acid-labile sites. In this delivery, both atoms of iron were removed simultaneously from the diferric transferrin molecule, converting it to apotransferrin. At similar iron concentrations the amount of iron delivered by diferric transferrin was twice that delivered by monoferric transferrin. PMID:6264452

  3. Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv.

    PubMed

    Newton, D L; Nicholls, P J; Rybak, S M; Youle, R J

    1994-10-28

    The gene for the human recombinant eosinophil-derived neurotoxin (rEDN) was synthesized and fused to the gene encoding a single chain antibody (sFv) to the human transferrin receptor (EDNsFv). Both rEDN and EDNsFv were expressed as insoluble proteins in inclusion bodies in Escherichia coli BL21(DE3). Following denaturation and renaturation, EDN and EDNsFv were partially purified by chromatography on heparin-Sepharose. Final purification of EDN was achieved by Sephadex G-100, whereas EDNsFv which contained a 6-histidyl residue carboxyl terminus was highly purified using the metal chelate resin, Ni(2+)-nitriloacetic acid. Whereas the recombinant EDN had ribonuclease activity that was similar to the native protein, the fusion protein had enzymatic activity that was 6-13% that of native EDN. The fusion protein was able to bind to the human transferrin receptor. In contrast to rEDN that had no inherent cytotoxicity to human tumor cells, the EDNsFv fusion protein was cytotoxic to human leukemia cells that express the human transferrin receptor with an IC50, 0.2-1 nM. At 1.3 nM EDNsFv, no cytotoxicity was observed on cells that lack the human transferrin receptor. Free antibody to the human transferrin receptor, E6, inhibited the cytotoxicity of the EDNsFv. Human enzymes may be engineered to acquire cytotoxic properties by fusing them to antibodies. Thus, they may be candidates for the construction of immunofusion proteins that may be less immunogenic than immunotoxins containing bacterial- or plant-derived toxin moieties. PMID:7929408

  4. Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation

    SciTech Connect

    Hirata, T.; Bitterman, P.B.; Mornex, J.; Crystal, R.G.

    1986-02-15

    The expression of transferrin receptors by blood monocytes, human alveolar macrophages, and in vitro matured macrophages was evaluated by immunofluorescence, radioligand binding, and Northern analysis, using the monoclonal anti-human transferrin receptor antibody OKT9, (/sup 125/I)-labeled human transferrin and a (/sup 32/P)-labeled human transferrin receptor cDNA probe, respectively. By immunofluorescence, the majority of alveolar macrophages expressed transferrin receptors (86 +/- 3%). The radioligand binding assay demonstrated the affinity constant (K/sub a/) of the alveolar macrophage transferrin receptor was 4.4 +/- 0.7 x 10/sup 8/ M/sup -1/, and the number of receptors per cell was 4.4 +/- 1.2 x 10/sup 4/. In marked contrast, transferrin receptors were not present on the surface or in the cytoplasm of blood monocytes, the precursors of the alveolar macrophages. However, when monocytes were cultured in vitro and allowed to mature, > 80% expressed transferrin receptors by day 6, and the receptors could be detected by day 3. Consistent with these observations, a transferrin receptor mRNA with a molecular size of 4.9 kb was demonstrated in alveolar macrophages and in vitro matured macrophages but not in blood monocytes. Thus, although blood monocytes do not express the transferrin receptor gene, it is expressed by mature macrophages, an event that probably occurs relatively early in the process of monocyte differentiation to macrophages.

  5. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form

    PubMed Central

    Pagani, Alessia; Vieillevoye, Maud; Nai, Antonella; Rausa, Marco; Ladli, Meriem; Lacombe, Catherine; Mayeux, Patrick; Verdier, Frédérique; Camaschella, Clara; Silvestri, Laura

    2015-01-01

    Transferrin receptor-2 is a transmembrane protein whose expression is restricted to hepatocytes and erythroid cells. Transferrin receptor-2 has a regulatory function in iron homeostasis, since its inactivation causes systemic iron overload. Hepatic transferrin receptor-2 participates in iron sensing and is involved in hepcidin activation, although the mechanism remains unclear. Erythroid transferrin receptor-2 associates with and stabilizes erythropoietin receptors on the erythroblast surface and is essential to control erythrocyte production in iron deficiency. We identified a soluble form of transferrin receptor-2 in the media of transfected cells and showed that cultured human erythroid cells release an endogenous soluble form. Soluble transferrin receptor-2 originates from a cleavage of the cell surface protein, which is inhibited by diferric transferrin in a dose-dependent manner. Accordingly, the shedding of the transferrin receptor-2 variant G679A, mutated in the Arginine-Glycine-Aspartic acid motif and unable to bind diferric transferrin, is not modulated by the ligand. This observation links the process of transferrin receptor-2 removal from the plasma membrane to iron homeostasis. Soluble transferrin receptor-2 does not affect the binding of erythropoietin to erythropoietin receptor or the consequent signaling and partially inhibits hepcidin promoter activation only in vitro. Whether it is a component of the signals released by erythropoiesis in iron deficiency remains to be investigated. Our results indicate that membrane transferrin receptor-2, a sensor of circulating iron, is released from the cell membrane in iron deficiency. PMID:25637053

  6. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form.

    PubMed

    Pagani, Alessia; Vieillevoye, Maud; Nai, Antonella; Rausa, Marco; Ladli, Meriem; Lacombe, Catherine; Mayeux, Patrick; Verdier, Frédérique; Camaschella, Clara; Silvestri, Laura

    2015-04-01

    Transferrin receptor-2 is a transmembrane protein whose expression is restricted to hepatocytes and erythroid cells. Transferrin receptor-2 has a regulatory function in iron homeostasis, since its inactivation causes systemic iron overload. Hepatic transferrin receptor-2 participates in iron sensing and is involved in hepcidin activation, although the mechanism remains unclear. Erythroid transferrin receptor-2 associates with and stabilizes erythropoietin receptors on the erythroblast surface and is essential to control erythrocyte production in iron deficiency. We identified a soluble form of transferrin receptor-2 in the media of transfected cells and showed that cultured human erythroid cells release an endogenous soluble form. Soluble transferrin receptor-2 originates from a cleavage of the cell surface protein, which is inhibited by diferric transferrin in a dose-dependent manner. Accordingly, the shedding of the transferrin receptor-2 variant G679A, mutated in the Arginine-Glycine-Aspartic acid motif and unable to bind diferric transferrin, is not modulated by the ligand. This observation links the process of transferrin receptor-2 removal from the plasma membrane to iron homeostasis. Soluble transferrin receptor-2 does not affect the binding of erythropoietin to erythropoietin receptor or the consequent signaling and partially inhibits hepcidin promoter activation only in vitro. Whether it is a component of the signals released by erythropoiesis in iron deficiency remains to be investigated. Our results indicate that membrane transferrin receptor-2, a sensor of circulating iron, is released from the cell membrane in iron deficiency. PMID:25637053

  7. Selection of cell lines resistant to anti-transferrin receptor antibody: evidence for a mutation in transferrin receptor.

    PubMed Central

    Lesley, J F; Schulte, R J

    1984-01-01

    Some anti-murine transferrin receptor monoclonal antibodies block iron uptake in mouse cell lines and inhibit cell growth. We report here the selection and characterization of mutant murine lymphoma cell lines which escape this growth inhibition by anti-transferrin receptor antibody. Growth assays and immunoprecipitation of transferrin receptor in hybrids between independently derived mutants or between mutants and antibody-susceptible parental cell lines indicate that all of the selected lines have a similar genetic alteration that is codominantly expressed in hybrids. Anti-transferrin receptor antibodies and transferrin itself still bind to the mutant lines with saturating levels and Kd values very similar to those of the parental lines. However, reciprocal clearing experiments by immunoprecipitation and reciprocal blocking of binding to the cell surface with two anti-transferrin receptor antibodies indicate that the mutant lines have altered a fraction of their transferrin receptors such that the growth-inhibiting antibody no longer binds, whereas another portion of their transferrin receptors is similar to those of the parental lines and binds both antibodies. These results argue that the antibody-selected mutant cell lines are heterozygous in transferrin receptor expression, probably with a mutation in one of the transferrin receptor structural genes. Images PMID:6092931

  8. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.)

    PubMed Central

    Zhang, Deshui; Nandi, Somen; Bryan, Paula; Pettit, Steve; Nguyen, Diane; Santos, Mary Ann; Huang, Ning

    2010-01-01

    Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug’s therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human- or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines. PMID:20447458

  9. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.).

    PubMed

    Zhang, Deshui; Nandi, Somen; Bryan, Paula; Pettit, Steve; Nguyen, Diane; Santos, Mary Ann; Huang, Ning

    2010-11-01

    Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug's therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines. PMID:20447458

  10. Transferrin facilitates the formation of DNA double-strand breaks via transferrin receptor 1: the possible involvement of transferrin in carcinogenesis of high-grade serous ovarian cancer.

    PubMed

    Shigeta, S; Toyoshima, M; Kitatani, K; Ishibashi, M; Usui, T; Yaegashi, N

    2016-07-01

    Fallopian tubal epithelium is a candidate for the origin of high-grade serous ovarian cancer. Transferrin-containing follicular fluid and/or retrograde menstrual blood are possible risk factors for carcinogenesis. Accumulation of DNA double-strand breaks (DNA-DSBs) in the fallopian tubal epithelium is considered to play an important role in the development of cancer. However, the mechanisms by which DNA-DSBs accumulate have not yet been fully elucidated. The hydroxyl radical, which is produced in a Fenton reaction catalyzed by an iron ion, serves as a potent DNA-DSB-inducing molecule, raising the potential of an iron ion transporter of transferrin in the formation of DNA-DSBs. We studied the potential involvement of transferrin in DNA damage and the development of ovarian cancer. Treatment with transferrin facilitated the formation of histone 2AX phosphorylated at Serine 139 (γH2AX), which is known as a DNA-DSB marker, in human fallopian tube secretory epithelial cells and A2780 ovarian cancer cells. Knockdown of transferrin receptor 1 (TfR1), but not transferrin receptor 2, suppressed the transferrin uptake and consequent formation of γH2AX. As hydroxyl radicals in reactive oxygen species (ROS) are involved in DNA-DSBs, the formation of ROS was determined. Treatment with TfR1-specific small interference RNAs significantly diminished transferrin-induced formation of ROS. Moreover, TfR1-dependent uptake of transferrin was revealed to augment the formation of DNA-DSBs in the presence of hydrogen peroxide, which served as a substrate for the Fenton reaction. An ex vivo study with murine fallopian tubes further demonstrated that transferrin treatment introduced DNA-DSBs in the fallopian tubal epithelium. Collectively, these data suggested that the transferrin-TfR1 axis accounts for the induction of DNA-DSBs that potentially lead to DNA damage/genome instability. These findings also suggested that exposure to transferrin initiates and promotes the development of

  11. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    SciTech Connect

    Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua; Davey, Robert A.; Ross, Susan R.

    2008-11-25

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment.

  12. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  13. Expression of the Haemophilus influenzae transferrin receptor is repressible by hemin but not elemental iron alone.

    PubMed Central

    Morton, D J; Musser, J M; Stull, T L

    1993-01-01

    The absolute requirement for elemental iron and the porphyrin nucleus for growth of Haemophilus influenzae led us to investigate the role of iron and hemin in regulation of expression of the H. influenzae transferrin receptor. H. influenzae type b strain H1689 was grown in brain heart infusion broth supplemented with beta-NAD and either 10 or 0.1 microgram of hemin ml-1. Transferrin-binding ability was determined with a dot blot assay using human transferrin-horseradish peroxidase conjugate. Cells grown in media with 0.1 microgram of hemin ml-1 bound transferrin, but organisms grown in media with 10 micrograms ml-1 did not. In hemin-restricted media, transferrin binding occurred despite addition of up to 10 mM ferric nitrate, ferric citrate, or ferric PPi, whereas addition of 10 micrograms of hemoglobin ml-1 repressed expression. The breadth of species distribution of this mode of regulation was determined with strains previously characterized by multilocus enzyme electrophoresis. When grown in hemin-restricted media, 24 of 28 type b strains and 52 of 57 serologically nontypeable strains exhibited transferrin binding, although none did so in hemin- and iron-sufficient media. Strain H1689 and serologically nontypeable strain HI1423 grown in heat-inactivated pooled normal human serum, human cerebrospinal fluid, or human breast milk exhibited transferrin binding. Growth in these fluids with 10 micrograms of added hemin ml-1 abolished transferrin binding, whereas addition of 10 mM ferric nitrate did not. These data suggest that the transferrin receptor of H. influenzae is regulated by levels of hemin but not elemental iron alone and that this property is widely distributed among several major cloned families in the species. Images PMID:8406790

  14. Galectin-4-mediated transcytosis of transferrin receptor

    PubMed Central

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Rodriguez-Boulan, Enrique J.

    2014-01-01

    ABSTRACT Some native epithelia, for example, retinal pigment epithelium (RPE) and kidney proximal tubule (KPT), constitutively lack the basolateral sorting adaptor AP-1B; this results in many basolateral plasma membrane proteins being repositioned to the apical domain, where they perform essential functions for their host organs. We recently reported the underlying apical polarity reversal mechanism: in the absence of AP-1B-mediated basolateral sorting, basolateral proteins are shuttled to the apical plasma membrane through a transcytotic pathway mediated by the plus-end kinesin KIF16B. Here, we demonstrate that this apical transcytotic pathway requires apical sorting of basolateral proteins, which is mediated by apical signals and galectin-4. Using RPE and KPT cell lines, and AP-1B-knockdown MDCK cells, we show that mutation of the N-glycan linked to N727 in the basolateral marker transferrin receptor (TfR) or knockdown of galectin-4 inhibits TfR transcytosis to apical recycling endosomes and the apical plasma membrane, and promotes TfR lysosomal targeting and subsequent degradation. Our results report a new role of galectins in basolateral to apical epithelial transcytosis. PMID:25179596

  15. Molecular modeling of human serum transferrin for rationalizing the changes in its physicochemical properties induced by iron binding. Implication of the mechanism of binding to its receptor.

    PubMed

    Yajima, H; Sakajiri, T; Kikuchi, T; Morita, M; Ishii, T

    2000-04-01

    In order to rationalize the physicochemical properties of human serum-transferrin (STf) and the STf-receptor (TfR) recognition process, we have tried to predict the 3D structures of apo- and iron-loaded STf using a homology modeling technique to study the changes in the structural characteristics that take place upon the uptake of iron by STf in solution. The crystal structures of both forms for ovotransferrin were used as templates for the STf modeling. The modeled structure of STf gave a satisfactory interpretation for the typical physicochemical properties such that (1) STf has a negative electrophoretic mobility and its value increases with iron uptake, and (2) the radius of gyration Rg of Tf decreases with iron uptake. It was found that upon iron binding, interdomain closures take place with large movements of the NII and CII subdomains comprising the N- and C-lobes in STf through a hinge-bending motion, accompanied by the opening of the bridge region with a displacement of more than 15 A. Moreover, in view of the findings from our capillary electrophoresis experiments that the electrostatic interactions significantly contribute to a specific binding of Fe2-STf with TfR, it is inferred that the connecting (bridge) and its neighboring region associated with a surface exposure of negative charge play an important role in the STf-receptor recognition process. PMID:10981814

  16. Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity

    PubMed Central

    Liu, Ke; Lei, Run; Li, Qiong; Wang, Xin-Xin; Wu, Qian; An, Peng; Zhang, Jianchao; Zhu, Minyan; Xu, Zhiheng; Hong, Yang; Wang, Fudi; Shen, Ying; Li, Hongchang; Li, Huashun

    2016-01-01

    Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity. PMID:26880306

  17. Uptake and release of iron from human transferrin.

    PubMed Central

    Huebers, H; Josephson, B; Huebers, E; Csiba, E; Finch, C

    1981-01-01

    Purified fractions of human apotransferrin, monoferric transferrins with iron on the acid-labile binding site and on the acid-stable binding site, and diferric transferrin have been prepared. The iron loading and unloading behavior of these preparations has been examined by isoelectric focusing. Iron release from the two monoferric transferrin preparations to human reticulocytes was of similar magnitude. In a mixture containing equal amounts of diferic and monoferric iron, approximately 4 times the amount of iron delivered by the monoferric species was delivered by the diferric species. Iron loading of transferrin in vitro showed a random distribution between monoferric and diferric transferrin. Among the monoferric transferrins, loading of the acid-labile binding sites was greater than that of the acid-stable binding sites. In vivo iron distribution in normal subjects, as evaluated by in vitro-added 50Fe, gave similar results. Absorption of a large dose of orally administered iron in iron-deficient subjects resulted in a somewhat greater amount of diferric transferrin at low saturation and a somewhat smaller amount of diferric transferrin at higher saturations than would have been anticipated by random loading. These data would indicate that in the human, iron loading of transferrin may be considered essentially random. Unloading from the two monoferric transferrin species is of similar magnitude but far less than that delivered by diferric transferrin. PMID:6941310

  18. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    SciTech Connect

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P. . E-mail: Bressler@kennedykrieger.org

    2007-05-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

  19. Interlobe communication in 13C-methionine-labeled human transferrin.

    PubMed

    Beatty, E J; Cox, M C; Frenkiel, T A; Tam, B M; Mason, A B; MacGillivray, R T; Sadler, P J; Woodworth, R C

    1996-06-18

    [1H, 13C] NMR investigations of metal-induced conformational changes in the blood serum protein transferrin (80 kDa) are reported. These are thought to play an important role in the recognition of this protein by its cellular receptors. [1H, 13C] NMR resonance assignments are presented for all nine methionine 13CH3 groups of recombinant deglycosylated human transferrin on the basis of studies of recombinant N-lobe (40 kDa, five Met residues), NOESY-relayed [1H, 13C] HMQC spectra, and structural considerations. The first specific assignments for C-lobe resonances of transferrin are presented. Using methionine 13CH3 resonances as probes, it is shown that, with oxalate as the synergistic anion, Ga3+ binds preferentially to the C-lobe and subsequently to the N-lobe. The NMR shifts of Met464, which is in the Trp460-centered hydrophobic patch of helix 5 in the C-lobe in contact with the anion and metal binding site, show that Ga3+ binding causes movement of side chains within this helix, as is also the case in the N-lobe. The C-lobe residue Met382, which contacts the N-lobe hinge region, is perturbed when Ga3+ binds to the N-lobe, indicative of interlobe communication, a feature which may control the recognition of fully-metallated transferrin by its receptor. These results demonstrate that selective 13C labeling is a powerful method for probing the structure and dynamics of high-molecular-mass proteins. PMID:8672464

  20. TDPAC studies of181Hf-labelled transferrin: Comparison between human and rat serum transferrin

    NASA Astrophysics Data System (ADS)

    Appel, H.; Duffield, J.; Taylor, D. M.; Then, G. M.; Thies, W.-G.

    1987-04-01

    A fast BaF2 TDPAC setup was used to study the binding of181Hf to serum transferrin. Two well-defined binding configurations were observed, which are characterized by high EFGs and large asymetry parameter values. The distribution between these configurations depends essentially on the pH of the serum. Small but significant differences between human and rat serum transferrin can be deduced from the electric quadrupole interaction (QI) parameters.

  1. Enhancement of p53 gene transfer efficiency in hepatic tumor mediated by transferrin receptor through trans-arterial delivery.

    PubMed

    Lu, Qin; Teng, Gao-Jun; Zhang, Yue; Niu, Huan-Zhang; Zhu, Guang-Yu; An, Yan-Li; Yu, Hui; Li, Guo-Zhao; Qiu, Ding-Hong; Wu, Chuan-Ging

    2008-02-01

    Transferrin-DNA complex mediated by transferrin receptor in combination with interventional trans-arterial injection into a target organ may be a duel-target-oriented delivery means to achieve an efficient gene therapy. In this study, transferrin receptor expression in normal human hepatocyte and two hepatocellular-carcinoma cells (Huh7/SK-Hep1) was determined. p53-LipofectAMINE with different amounts of transferrin was transfected into the cells and the gene transfection efficiency was evaluated. After VX2 rabbit hepatocarcinoma model was established, the transferrin-p53-LipofectAMINE complex was delivered into the hepatic artery via interventional techniques to analyze the therapeutic p53 gene transfer efficiency in vivo by Western blot, immunohistochemical/immunofluorescence staining analysis and survival time. The results were transferrin receptor expression in Huh7 and SK-Hep1 cells was higher than in normal hepatocyte. Transfection efficiency of p53 was increased in vitro in both Huh7 and SK-Hep1 cells with increasing transferrin in a dose-dependent manner. As compared to intravenous administration, interventional injection of p53-gene complex into hepatic tumor mediated by transferrin-receptor, could enhance the gene transfer efficiency in vivo as evaluated by Western blot, immunohistochemical/immunofluorenscence staining analyses and improved animal survival (H = 12.567, p = 0.0019). These findings show the transferrin-transferrin receptor system combined with interventional techniques enhanced p53-gene transfer to hepatic tumor and the duel-target-oriented gene delivery may be an effective approach for gene therapy. PMID:18347429

  2. An RNA Alternative to Human Transferrin: A New Tool for Targeting Human Cells

    PubMed Central

    Wilner, Samantha E; Wengerter, Brian; Maier, Keith; de Lourdes Borba Magalhães, Maria; Del Amo, David Soriano; Pai, Supriya; Opazo, Felipe; Rizzoli, Silvio O; Yan, Amy; Levy, Matthew

    2012-01-01

    The transferrin receptor, CD71, is an attractive target for drug development because of its high expression on a number of cancer cell lines and the blood brain barrier. To generate serum-stabilized aptamers that recognize the human transferrin receptor, we have modified the traditional aptamer selection protocol by employing a functional selection step that enriches for RNA molecules which bind the target receptor and are internalized by cells. Selected aptamers were specific for the human receptor, rapidly endocytosed by cells and shared a common core structure. A minimized variant was found to compete with the natural ligand, transferrin, for receptor binding and cell uptake, but performed ~twofold better than it in competition experiments. Using this molecule, we generated aptamer-targeted siRNA-laden liposomes. Aptamer targeting enhanced both uptake and target gene knockdown in cells grown in culture when compared to nonmodified or nontargeted liposomes. The aptamer should prove useful as a surrogate for transferrin in many applications including cell imaging and targeted drug delivery. PMID:23344001

  3. Transferrin Binding to Peripheral Blood Lymphocytes Activated by Phytohemagglutinin Involves a Specific Receptor

    PubMed Central

    Galbraith, Robert M.; Werner, Phillip; Arnaud, Philippe; Galbraith, Gillian M. P.

    1980-01-01

    Immunohistological studies have indicated that membrane sites binding transferrin are present upon activated human peripheral blood lymphocytes. In this study, we have investigated transferrin uptake in human lymphocytes exposed to phytohemagglutinin (PHA), by quantitative radiobinding and immunofluorescence in parallel. In stimulated lymphocytes, binding was maximal after a 30-min incubation, being greatest at 37°C, and greater at 22°C than at 4°C. Although some shedding and endocytosis of transferrin occurred at 22° and 37°C, these factors, and resulting synthesis of new sites, did not affect measurement of binding which was found to be saturable, reversible, and specific for transferrin (Ka 0.5-2.5 × 108 M−1). Binding was greater after a 48-h exposure to PHA than after 24 h, and was maximal at 66 h. Sequential Scatchard analysis revealed no significant elevation in affinity of interaction. However, although the total number of receptors increased, the proportion of cells in which binding of ligand was detected immunohistologically increased in parallel, and after appropriate correction, the cellular density of receptors remained relatively constant throughout (60,000-80,000 sites/cell). Increments in binding during the culture period were thus due predominantly to expansion of a population of cells bearing receptors. Similar differences in binding were apparent upon comparison of cells cultured in different doses of PHA, and in unstimulated cells binding was negligible. Transferrin receptors appear, therefore, to be readily detectable only upon lymphocytes that have been activated. Images PMID:6253523

  4. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface.

    PubMed

    Giannetti, Anthony M; Björkman, Pamela J

    2004-06-11

    Transferrin receptor (TfR) is a dimeric cell surface protein that binds both the serum iron transport protein transferrin (Fe-Tf) and HFE, the protein mutated in patients with the iron overload disorder hereditary hemochromatosis. HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, but HFE binding to TfR lowers the apparent affinity of the Fe-Tf/TfR interaction. This apparent affinity reduction could result from direct competition between HFE and Fe-Tf for their overlapping binding sites on each TfR polypeptide chain, from negative cooperativity, or from a combination of both. To explore the mechanism of the affinity reduction, we constructed a heterodimeric TfR that contains mutations such that one TfR chain binds only HFE and the other binds only Fe-Tf. Binding studies using a heterodimeric form of soluble TfR demonstrate that TfR does not exhibit cooperativity in heterotropic ligand binding, suggesting that some or all of the effects of HFE on iron homeostasis result from competition with Fe-Tf for TfR binding. Experiments using transfected cell lines demonstrate a physiological role for this competition in altering HFE trafficking patterns. PMID:15056661

  5. Stress reticulocytes lose transferrin receptors by an extrinsic process involving spleen and macrophages.

    PubMed

    Rhodes, Melissa M; Koury, Stephen T; Kopsombut, Prapaporn; Alford, Catherine E; Price, James O; Koury, Mark J

    2016-09-01

    As they mature into erythrocytes during normal erythropoiesis, reticulocytes lose surface transferrin receptors before or concurrently with reticulin. Exosome release accounts for most of the loss of transferrin receptors from reticulocytes. During erythropoietic stress, reticulocytes are released early from hematopoietic tissues and have increased reticulin staining and transferrin receptors. Flow cytometry of dually stained erythrocytes of mice recovering from phlebotomy demonstrated delayed loss of reticulin and transferrin receptors during in vitro maturation compared to in vivo maturation, indicating that an in vivo process extrinsic to the reticulocytes facilitates their maturation. Splenectomy or macrophage depletion by liposomal clodronate inhibited in vivo maturation of reticulocytes and increased the numbers of reticulin-negative, transferrin receptor-positive cells during and after recovery from phlebotomy. This reticulin-negative, transferrin receptor-positive population was rarely found in normal mice. Transmission electron microscopy demonstrated that the reticulin-negative, transferrin receptor-positive cells were elongated and discoid erythrocytes, but they had intracellular and surface structures that appeared to be partially degraded organelles. The results indicate that maturation of circulating stress reticulocytes is enhanced by an extrinsic process that occurs in the spleen and involves macrophage activity. Complete loss of reticulin with incomplete loss of surface transferrin receptors in this process produces a reticulin-negative, transferrin receptor-positive erythrocyte population that has potential utility for detecting prior erythropoietic stresses including bleeding, hemolysis and erythropoietin administration, even after recovery has been completed. Am. J. Hematol. 91:875-882, 2016. © 2016 Wiley Periodicals, Inc. PMID:27194638

  6. Delivery of iron to human cells by bovine transferrin. Implications for the growth of human cells in vitro.

    PubMed Central

    Young, S P; Garner, C

    1990-01-01

    Following suggestions that transferrin present in fetal-bovine serum, a common supplement used in tissue-culture media, may not bind well to human cells, we have isolated the protein and investigated its interaction with both human and bovine cells. Bovine transferrin bound to a human cell line, K562, at 4 degrees C with a kd of 590 nM, whereas human transferrin bound with a kd of 3.57 nM, a 165-fold difference. With a bovine cell line, NBL4, bovine transferrin bound with the higher affinity, kd 9.09 nM, whereas human transferrin bound with a kd of 41.7 nM, only a 5-fold difference. These values were reflected in an 8.6-fold difference in the rate of iron delivery by the two proteins to human cells, whereas delivery to bovine cells was the same. Nevertheless, the bovine transferrin was taken up by the human cells by a specific receptor-mediated process. Human cells cultured in bovine diferric transferrin at 40 micrograms/ml, the concentration expected in the presence of 10% fetal-bovine serum, failed to thrive, whereas cells cultured in the presence of human transferrin proliferated normally. These results suggest that growth of human cells in bovine serum could give rise to a cellular iron deficiency, which may in turn lead to the selection of clones of cells adapted for survival with less iron. This has important consequences for the use of such cells as models, since they may have aberrant iron-dependent pathways and perhaps other unknown alterations in cell function. PMID:2302189

  7. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  8. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis.

    PubMed

    Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H

    2016-01-01

    The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800

  9. GLUT4 and transferrin receptor are differentially sorted along the endocytic pathway in CHO cells.

    PubMed

    Wei, M L; Bonzelius, F; Scully, R M; Kelly, R B; Herman, G A

    1998-02-01

    The trafficking of GLUT4, a facilitative glucose transporter, is examined in transfected CHO cells. In previous work, we expressed GLUT4 in neuroendocrine cells and fibroblasts and found that it was targeted to a population of small vesicles slightly larger than synaptic vesicles (Herman, G.A, F. Bonzelius, A.M. Cieutat, and R.B. Kelly. 1994. Proc. Natl. Acad. Sci. USA. 91: 12750-12754.). In this study, we demonstrate that at 37 degrees C, GLUT4-containing small vesicles (GSVs) are detected after cell surface radiolabeling of GLUT4 whereas uptake of radioiodinated human transferrin does not show appreciable accumulation within these small vesicles. Immunofluorescence microscopy experiments show that at 37 degrees C, cell surface-labeled GLUT4 as well as transferrin is internalized into peripheral and perinuclear structures. At 15 degrees C, endocytosis of GLUT4 continues to occur at a slowed rate, but whereas fluorescently labeled GLUT4 is seen to accumulate within large peripheral endosomes, no perinuclear structures are labeled, and no radiolabeled GSVs are detectable. Shifting cells to 37 degrees C after accumulating labeled GLUT4 at 15 degrees C results in the reappearance of GLUT4 in perinuclear structures and GSV reformation. Cytosol acidification or treatment with hypertonic media containing sucrose prevents the exit of GLUT4 from peripheral endosomes as well as GSV formation, suggesting that coat proteins may be involved in the endocytic trafficking of GLUT4. In contrast, at 15 degrees C, transferrin continues to traffic to perinuclear structures and overall labels structures similar in distribution to those observed at 37 degrees C. Furthermore, treatment with hypertonic media has no apparent effect on transferrin trafficking from peripheral endosomes. Double-labeling experiments after the internalization of both transferrin and surface-labeled GLUT4 show that GLUT4 accumulates within peripheral compartments that exclude the transferrin receptor (TfR) at

  10. Erythropoiesis-driven regulation of hepcidin in human red cell disorders is better reflected through concentrations of soluble transferrin receptor rather than growth differentiation factor 15.

    PubMed

    Fertrin, Kleber Yotsumoto; Lanaro, Carolina; Franco-Penteado, Carla Fernanda; de Albuquerque, Dulcinéia Martins; de Mello, Mariana Rezende Bandeira; Pallis, Flávia Rubia; Bezerra, Marcos André Cavalcanti; Hatzlhofer, Betania Lucena Domingues; Olbina, Gordana; Saad, Sara Terezinha Olalla; da Silva Araújo, Aderson; Westerman, Mark; Costa, Fernando Ferreira

    2014-04-01

    Growth differentiation factor 15 (GDF-15) is a bone marrow-derived cytokine whose ability to suppress iron regulator hepcidin in vitro and increased concentrations found in patients with ineffective erythropoiesis (IE)suggest that hepcidin deficiency mediated by GDF-15 may be the pathophysiological explanation for nontransfusional iron overload. We aimed to compare GDF-15 production in anemic states with different types of erythropoietic dysfunction. Complete blood counts, biochemical markers of iron status, plasma hepcidin, GDF-15, and known hepcidin regulators [interleukin-6 and erythropoietin (EPO)] were measured in 87 patients with red cell disorders comprising IE and hemolytic states: thalassemia, sickle cell anemia, and cobalamin deficiency. Healthy volunteers were also evaluated for comparison. Neither overall increased EPO,nor variable GDF-15 concentrations correlated with circulating hepcidin concentrations (P = 0.265 and P = 0.872). Relative hepcidin deficiency was found in disorders presenting with concurrent elevation of GDF-15 and soluble transferrin receptor (sTfR), a biomarker of erythropoiesis, and sTfR had the strongest correlation with hepcidin (r(s) = 0.584, P < 0.0001). Our data show that high concentrations of GDF-15 in vivo are not necessarily associated with pathological hepcidin reduction, and hepcidin deficiency was only found when associated with sTfR overproduction. sTfR elevation may be a necessary common denominator of erythropoiesis-driven mechanisms to favor iron absorption in anemic states and appears a suitable target for investigative approaches to iron disorders. PMID:24860871

  11. Receptor-mediated uptake of labeled transferrin by embryonic chicken dorsal root ganglion neurons in culture.

    PubMed

    Markelonis, G J; Oh, T H; Park, L P; Azari, P; Max, S R

    1985-01-01

    Transferrin is a growth-promoting plasma protein which is known to occur within developing neurons. Since little information exists on the process by which transferrin is internalized by neurons, we studied this process using dissociated embryonic chicken dorsal root ganglion neurons in culture. Cultured dorsal root ganglion neurons were incubated in the presence of 3.75 nM (125)I-transferrin at 37°C, the cultures were extensively washed, the neurons were solubilized in a Triton-containing buffer and internalized (125)I-transferrin was quantified with a gamma counter. (125)I-transferrin was internalized in a linear fashion for at least 60 min, and this uptake was abolished by the presence of 1.25 μM unlabeled transferrin. No competition for the uptake of (125)I-transferrin was observed in the presence of 1.25 μM ovalbumin, cytochrome c, hemoglobin, insulin, horseradish peroxidase, aldolase or the carboxyl-terminal fragment ('half-site') of transferrin. By contrast, uptake was inhibited by approximately 50% in the presence of the ammo-terminal fragment ('half-site') of transferrin (1.25 μM) or in the presence of concanavalin A (1.25 μM). The binding of transferrin conjugated to fluorescein isothiocyanate to neurons at 4°C and its subsequent internalization at 37°C was demonstrated by fluorescence microscopy of unfixed cells following incubation of the neurons in the presence of the fluorescently labeled protein. Furthermore, the transferrin receptors were visualized immunocytochemically on the surface membranes of dorsal root ganglion neurons using rabbit antibodies directed against transferrin receptors from chicken reticulocytes. From these data, we conclude that transferrin is internalized by neurons via receptor-mediated endocytosis, and suggest that this protein may serve an important role in the development and survival of dorsal root ganglion neurons. PMID:24874753

  12. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors.

    PubMed

    Cornelissen, C N; Biswas, G D; Tsai, J; Paruchuri, D K; Thompson, S A; Sparling, P F

    1992-09-01

    The pathogenic Neisseria species are capable of utilizing transferrin as their sole source of iron. A neisserial transferrin receptor has been identified and its characteristics defined; however, the biochemical identities of proteins which are required for transferrin receptor function have not yet been determined. We identified two iron-repressible transferrin-binding proteins in Neisseria gonorrhoeae, TBP1 and TBP2. Two approaches were taken to clone genes required for gonococcal transferrin receptor function. First, polyclonal antiserum raised against TBP1 was used to identify clones expressing TBP1 epitopes. Second, a wild-type gene copy was cloned that repaired the defect in a transferrin receptor function (trf) mutant. The clones obtained by these two approaches were shown to overlap by DNA sequencing. Transposon mutagenesis of both clones and recombination of mutagenized fragments into the gonococcal chromosome generated mutants that showed reduced binding of transferrin to whole cells and that were incapable of growth on transferrin. No TBP1 was produced in these mutants, but TBP2 expression was normal. The DNA sequence of the gene encoding gonococcal TBP1 (tbpA) predicted a protein sequence homologous to the Escherichia coli and Pseudomonas putida TonB-dependent outer membrane receptors. Thus, both the function and the predicted protein sequence of TBP1 were consistent with this protein serving as a transferrin receptor. PMID:1325963

  13. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    NASA Astrophysics Data System (ADS)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  14. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    PubMed Central

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to un-targeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging. PMID:25519743

  15. Transferrin receptor expression by stimulated cells in mixed lymphocyte culture.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Walton, K W

    1985-01-01

    Transferrin receptor (TRFr) expression by cells in mixed lymphocyte culture increases steadily for the first 5 days, but then reaches a plateau. By the sixth day in culture, about 20% of viable cells express TRFr in two-way mixed lymphocyte reactions. This subpopulation of TRFr-positive cells represents the proliferating population; it is heterogeneous, containing T-cell blasts and smaller cells which are a mixture of T and non-T cells. A small group of non-T cells have phenotypic similarity to natural killer (NK) cells. T cells appear to divide earlier in the course of the response than non-T cells. The biphasic nature of this response and the slower non-T reactivity may be due to a secondary stimulation of non-T cells by factors released from activated T cells (such as interleukin-2). PMID:2982734

  16. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle

    PubMed Central

    Barrientos, Tomasa; Laothamatas, Indira; Koves, Timothy R.; Soderblom, Erik J.; Bryan, Miles; Moseley, M. Arthur; Muoio, Deborah M.; Andrews, Nancy C.

    2015-01-01

    Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid β oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders. PMID:26870796

  17. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart.

    PubMed

    Xu, Wenjing; Barrientos, Tomasa; Mao, Lan; Rockman, Howard A; Sauve, Anthony A; Andrews, Nancy C

    2015-10-20

    Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1) might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure. PMID:26456827

  18. Bacterial receptors for host transferrin and lactoferrin: molecular mechanisms and role in host-microbe interactions.

    PubMed

    Morgenthau, Ari; Pogoutse, Anastassia; Adamiak, Paul; Moraes, Trevor F; Schryvers, Anthony B

    2013-12-01

    Iron homeostasis in the mammalian host limits the availability of iron to invading pathogens and is thought to restrict iron availability for microbes inhabiting mucosal surfaces. The presence of surface receptors for the host iron-binding glycoproteins transferrin (Tf) and lactoferrin (Lf) in globally important Gram-negative bacterial pathogens of humans and food production animals suggests that Tf and Lf are important sources of iron in the upper respiratory or genitourinary tracts, where they exclusively reside. Lf receptors have the additional function of protecting against host cationic antimicrobial peptides, suggesting that the bacteria expressing these receptors reside in a niche where exposure is likely. In this review we compare Tf and Lf receptors with respect to their structural and functional features, their role in colonization and infection, and their distribution among pathogenic and commensal bacteria. PMID:24266357

  19. Nonrandom distribution of iron in circulating human transferrin.

    PubMed

    Zak, O; Aisen, P

    1986-07-01

    By combining the urea gel electrophoresis technique of Makey and Seal with Western immunoblotting, a method has been developed for analyzing the distribution of iron between the two sites of circulating human transferrin. The new method avoids exposure of samples to a nonphysiologic pH that may promote removal or redistribution of iron from the protein; this facilitates examination of multiple samples at one time. Analysis of 21 freshly drawn specimens from normal human subjects confirms previous reports that iron is not randomly distributed in the specific sites of transferrin. Rather, there is a considerable range in the ratio of occupancies of N-terminal and C-terminal sites (N:C ratio), from 0.31 to 6.87 in the present study, with the N-terminal site predominantly occupied in most subjects. The N:C ratio correlates modestly with serum iron concentration (r = .54). Possible flaws in studies indicating a random occupancy of the specific sites of circulating transferrin may lie in the low pH to which samples may be exposed during procedures based on isoelectric focusing or in drawing inferences from data considering only total monoferric transferrin rather than the two distinguishable monoferric species. PMID:3719094

  20. Killing of human tumor cells in culture with adriamycin conjugates of human transferrin

    SciTech Connect

    Yeh, C.J.; Faulk, W.P.

    1984-07-01

    Receptors for human transferrin (Trf) in high density are found on reticulocytes and syncytiotrophoblast, but most unstimulated, normal adult cells do not bind Trf. In contrast, leukemia and breast adenocarcinoma cells have been shown to manifest Trf receptors, raising the possibility that these receptors might be employed to bind cytotoxic Trf conjugates. Trf was conjugated with adriamycin (Adr) and it was shown that the conjugates are bound by Trf receptors on plasma membranes of Daudi and HL-60 cells, following which Adr is identified in the nuclei of these cells. The biological effect of Adr is quantitated by the inhibition of tritiated thymidine uptake, and subsequent cell death is measured by trypan blue exclusion. The killing correlates directly with both the time of exposure and the amount of conjugate employed. These results suggest that such cytotoxic Trf conjugates hold promise for selective in vivo killing of some malignant cells.

  1. Transferrin receptor and ferritin-H are developmentally regulated in oligodendrocyte lineage cells.

    PubMed

    Li, Yunxia; Guan, Qiang; Chen, Yuhui; Han, Hongjie; Liu, Wuchao; Nie, Zhiyu

    2013-01-01

    Iron is an essential trophic element that is required for cell viability and differentiation, especially in oligodendrocytes, which consume relatively high rates of energy to produce myelin. Multiple iron metabolism proteins are expressed in the brain including transferrin receptor and ferritin-H. However, it is still unknown whether they are developmentally regulated in oligodendrocyte lineage cells for myelination. Here, using an in vitro cultured differentiation model of oligodendrocytes, we found that both transferrin receptor and ferritin-H are significantly upregulated during oligodendrocyte maturation, implying the essential role of iron in the development of oligodendrocytes. Additional different doses of Fe(3+) in the cultured medium did not affect oligodendrocyte precursor cell maturation or ferritin-H expression but decreased the expression of the transferrin receptor. These results indicate that upregulation of both transferrin receptor and ferritin-H contributes to maturation and myelination of oligodendrocyte precursor cells. PMID:25206366

  2. The structural basis of transferrin sequestration by transferrin-binding protein B

    SciTech Connect

    Calmettes, Charles; Alcantara, Joenel; Yu, Rong-Hua; Schryvers, Anthony B.; Moraes, Trevor F.

    2012-03-28

    Neisseria meningitidis, the causative agent of bacterial meningitis, acquires the essential element iron from the host glycoprotein transferrin during infection through a surface transferrin receptor system composed of proteins TbpA and TbpB. Here we present the crystal structures of TbpB from N. meningitidis in its apo form and in complex with human transferrin. The structure reveals how TbpB sequesters and initiates iron release from human transferrin.

  3. Expression of curcin-transferrin receptor binding peptide fusion protein and its anti-tumor activity.

    PubMed

    Zheng, Qing; Xiong, Yao-Ling; Su, Zhi-Jian; Zhang, Qi-Hao; Dai, Xiao-Yong; Li, Lin-Yan; Xiao, Xue; Huang, Ya-Dong

    2013-06-01

    Curcin can inhibit the proliferation of tumor cells and promote tumor cell apoptosis, but the cytotoxicity of curcin is not selective for tumors or normal cells. In order to enhance the targeting of the anti-tumor ability of curcin, a transferrin receptor (TfR) binding peptide, TfRBP9, was fused with curcin. The curcin-TfRBP9 gene was cloned into pQE-30 and the recombinant vector pQE-30-curcin-TfRBP9 was established. Then the recombinant vector pQE-30-curcin-TfRBP9 was transferred into Escherichia coli M15. After being induced by 0.5mM IPTG for 6h at 37°C, the expressed quantity of the recombinant protein was about 30% of the total protein. Recombinant curcin-TfRBP9 was expressed in the form of an inclusion body. After dissolution, purification and renaturation, the purity of the recombinant curcin-TfRBP9 reached 95%. Immunofluorescence analysis showed that the TfRBP9 significantly enhanced the ability of the curcin binding to HepG2, and was enriched in the cytoplasm. The curcin-TfRBP9 fusion protein had significant proliferation inhibition effects on the HepG2 cells that over-expressed transferrin receptors, had lower inhibitory effects on the SKBR-3 cells that expressed low transferrin receptors, and had the lowest inhibitory effects on the LO-2 cells that were normal human liver cells. Compared with curcin, the curcin-TfRBP9 induced higher apoptosis rates in the HepG2 cells. PMID:23545225

  4. Transferrin Receptor 1 Facilitates Poliovirus Permeation of Mouse Brain Capillary Endothelial Cells.

    PubMed

    Mizutani, Taketoshi; Ishizaka, Aya; Nihei, Coh-Ichi

    2016-02-01

    As a possible route for invasion of the CNS, circulating poliovirus (PV) in the blood is believed to traverse the blood-brain barrier (BBB), resulting in paralytic poliomyelitis. However, the underlying mechanism is poorly understood. In this study, we demonstrated that mouse transferrin receptor 1 (mTfR1) is responsible for PV attachment to the cell surface, allowing invasion into the CNS via the BBB. PV interacts with the apical domain of mTfR1 on mouse brain capillary endothelial cells (MBEC4) in a dose-dependent manner via its capsid protein (VP1). We found that F-G, G-H, and H-I loops in VP1 are important for this binding. However, C-D, D-E, and E-F loops in VP1-fused Venus proteins efficiently penetrate MBEC4 cells. These results imply that the VP1 functional domain responsible for cell attachment is different from that involved in viral permeation of the brain capillary endothelium. We observed that co-treatment of MBEC4 cells with excess PV particles but not dextran resulted in blockage of transferrin transport into cells. Using the Transwell in vitro BBB model, transferrin co-treatment inhibited permeation of PV into MBEC4 cells and delayed further viral permeation via mTfR1 knockdown. With mTfR1 as a positive mediator of PV-host cell attachment and PV permeation of MBEC4 cells, our results indicate a novel role of TfR1 as a cellular receptor for human PV receptor/CD155-independent PV invasion of the CNS. PMID:26637351

  5. A New Transferrin Receptor Aptamer Inhibits New World Hemorrhagic Fever Mammarenavirus Entry.

    PubMed

    Maier, Keith E; Jangra, Rohit K; Shieh, Kevin R; Cureton, David K; Xiao, Hui; Snapp, Erik L; Whelan, Sean P; Chandran, Kartik; Levy, Matthew

    2016-01-01

    Pathogenic New World hemorrhagic fever mammarenaviruses (NWM) utilize Glycoprotein 1 (GP1) to target the apical domain of the human transferrin receptor (hTfR) for facilitating cell entry. However, the conservation between their GP1s is low. Considering this and the slow evolutionary progression of mammals compared to viruses, therapeutic targeting of hTfR provides an attractive avenue for cross-strain inhibition and diminishing the likelihood of escape mutants. Aptamers present unique advantages for the development of inhibitors to vial entry, including ease of synthesis, lack of immunogenicity, and potentially cold-chain breaking solutions to diseases endemic to South America. Here, recognizing that in vivo competition with the natural ligand, transferrin (Tf), likely drove the evolution of GP1 to recognize the apical domain, we performed competitive in vitro selections against hTfR-expressing cells with supplemented Tf. The resultant minimized aptamer, Waz, binds the apical domain of the receptor and inhibits infection of human cells by recombinant NWM in culture (EC50 ~400 nmol/l). Aptamer multimerization further enhanced inhibition >10-fold (EC50 ~30 nmol/l). Together, our results highlight the ability to use a competitor to bias the outcome of a selection and demonstrate how avidity effects can be leveraged to enhance both aptamer binding and the potency of viral inhibition. PMID:27219515

  6. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  7. Endocytosis of a Functionally Enhanced GFP-Tagged Transferrin Receptor in CHO Cells

    PubMed Central

    Chu, Chong; Jiang, Qing; Zhu, Huifen; He, Yong; Yue, Tingting; Wang, Ruibo; Lei, Ping; Shen, Guanxin

    2015-01-01

    The endocytosis of transferrin receptor (TfR) has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP)-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81±3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs. PMID:25803700

  8. A variant of human transferrin with abnormal properties.

    PubMed Central

    Evans, R W; Williams, J; Moreton, K

    1982-01-01

    Screening of human serum samples by polyacrylamide-gel electrophoresis in the presence of 6 M-urea revealed an individual who is heterozygous for a variant transferrin. The variant transferrin is able to bind two atoms of iron, but the iron in the C-terminal binding site is bound abnormally, as judged by its spectral properties, and is dissociated from the protein on electrophoresis in the presence of 6 M-urea. The iron-free C-terminal domain of the variant protein is less stable than normal to thermal and urea denaturation. Structural changes in the variant protein have not yet been characterized. Images Fig. 1. Fig. 2. Fig. 6. Fig. 9. PMID:7082283

  9. Physical characteristics of human transferrin from small angle neutron scattering.

    PubMed Central

    Martel, P; Kim, S M; Powell, B M

    1980-01-01

    The technique of small angle neutron scattering has been used to determine the molecular shape, the volume, and the molecular weight of pooled human transferrin in an aqueous solution isotonic with blood. Analysis of the measurements assuming a spheroidal molecular shape indicates that an oblate spheroid with semi-axes of length 46.6 +/- 1.4, 46.6 +/- 1.4 and 15.8 +/- 3.8 A, and a molecular volume of (144 +/- 45) X 10(3) A3 is the best simple approximation to the shape of the transferrin molecule. The radius of gyration, Rg, determined from a Guinier plot is 30.25 +/- 0.49 A, in agreement with Rg calculated for the oblate spheroidal shape. The molecular weight is determined to be (75 +/- 5) X 10(3). The shape-independent molecular volume is found to be (98 +/- 10) X 10(3) A3. The difference in the two volumes suggests that transferrin is not a uniform spheroid but may have a more complex shape. PMID:7260293

  10. Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Zhen; Yu, Rong-Na; Chen, Jun; Ma, Zhi-Ya; Zhao, Yuan-Di

    2012-12-01

    Quantum dots (QDs) fluorescent probes based on oligonucleotide aptamers and peptides with specific molecular recognition have attracted much attention. In this paper, CdSe/ZnS QDs probes for targeted delivery to mouse and human cells using aptamer GS24 and peptide T7 specific to mouse/human transferrin receptors were developed. Capillary electrophoresis analyses indicated that the optimal molar ratios of QDs to aptamer or peptide were 1:5. Fluorescence and confocal microscope imaging revealed QD-GS24 and QD-T7 probes were able to specifically recognize B16 cells and HeLa cells respectively. Quantitative flow cytometry analysis indicated the transportation of QD-GS24 or QD-T7 into cells could be promoted by corresponding free transferrin. Transmission electron microscopy confirmed the uptake of probes in cells and the effective intracellular delivery. MTT assay suggested the cytotoxicity of probes was related to the surface ligand, and aptamer GS24 (or peptide T7) could reduce the cytotoxicity of probes to a certain degree. The study has great significance for preparing QDs fluorescent probes using non-antibody target molecules.

  11. Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide.

    PubMed

    Oh, Steve; Kim, Byung Ju; Singh, Narendra P; Lai, Henry; Sasaki, Tomikazu

    2009-02-01

    Artemisinin, a natural product isolated from Artemisia annua L., shows a unique anti-cancer activity by an iron dependent mechanism. Artemisinin was covalently conjugated to a transferrin-receptor targeting peptide, HAIYPRH that binds to a cavity on the surface of transferrin receptor. This enables artemisinin to be co-internalized with receptor-bound transferrin. The iron released from transferrin can activate artemisinin to generate toxic radical species to kill cells. The artemisinin-peptide conjugates showed potent anti-cancer activity against Molt-4 leukemia cells with a significantly improved cancer/normal cells selectivity. PMID:18838215

  12. Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis

    PubMed Central

    Chen, Alan C.; Donovan, Adriana; Ned-Sykes, Renee; Andrews, Nancy C.

    2015-01-01

    Transferrin receptor 1 (Tfr1) facilitates cellular iron uptake through receptor-mediated endocytosis of iron-loaded transferrin. It is expressed in the intestinal epithelium but not involved in dietary iron absorption. To investigate its role, we inactivated the Tfr1 gene selectively in murine intestinal epithelial cells. The mutant mice had severe disruption of the epithelial barrier and early death. There was impaired proliferation of intestinal epithelial cell progenitors, aberrant lipid handling, increased mRNA expression of stem cell markers, and striking induction of many genes associated with epithelial-to-mesenchymal transition. Administration of parenteral iron did not improve the phenotype. Surprisingly, however, enforced expression of a mutant allele of Tfr1 that is unable to serve as a receptor for iron-loaded transferrin appeared to fully rescue most animals. Our results implicate Tfr1 in homeostatic maintenance of the intestinal epithelium, acting through a role that is independent of its iron-uptake function. PMID:26324903

  13. Patterns of structural and sequence variation within isotype lineages of the Neisseria meningitidis transferrin receptor system

    PubMed Central

    Adamiak, Paul; Calmettes, Charles; Moraes, Trevor F; Schryvers, Anthony B

    2015-01-01

    Neisseria meningitidis inhabits the human upper respiratory tract and is an important cause of sepsis and meningitis. A surface receptor comprised of transferrin-binding proteins A and B (TbpA and TbpB), is responsible for acquiring iron from host transferrin. Sequence and immunological diversity divides TbpBs into two distinct lineages; isotype I and isotype II. Two representative isotype I and II strains, B16B6 and M982, differ in their dependence on TbpB for in vitro growth on exogenous transferrin. The crystal structure of TbpB and a structural model for TbpA from the representative isotype I N. meningitidis strain B16B6 were obtained. The structures were integrated with a comprehensive analysis of the sequence diversity of these proteins to probe for potential functional differences. A distinct isotype I TbpA was identified that co-varied with TbpB and lacked sequence in the region for the loop 3 α-helix that is proposed to be involved in iron removal from transferrin. The tightly associated isotype I TbpBs had a distinct anchor peptide region, a distinct, smaller linker region between the lobes and lacked the large loops in the isotype II C-lobe. Sequences of the intact TbpB, the TbpB N-lobe, the TbpB C-lobe, and TbpA were subjected to phylogenetic analyses. The phylogenetic clustering of TbpA and the TbpB C-lobe were similar with two main branches comprising the isotype 1 and isotype 2 TbpBs, possibly suggesting an association between TbpA and the TbpB C-lobe. The intact TbpB and TbpB N-lobe had 4 main branches, one consisting of the isotype 1 TbpBs. One isotype 2 TbpB cluster appeared to consist of isotype 1 N-lobe sequences and isotype 2 C-lobe sequences, indicating the swapping of N-lobes and C-lobes. Our findings should inform future studies on the interaction between TbpB and TbpA and the process of iron acquisition. PMID:25800619

  14. Determination of human transferrin concentrations in mouse models of neisserial infection.

    PubMed

    Perera, Yasser; Cobas, Karen; Garrido, Yainelis; Nazabal, Consuelo; Brown, Enma; Pajon, Rolando

    2006-04-20

    Transferrin constitutes the major protein involved in the transport of iron from the sites of absorption to the sites of storage and utilization. Despite the high affinity of transferrin for iron, most bacterial pathogens, such as the human restricted Neisseria meningitidis, have developed iron acquisition mechanisms. Several animal models of bacterial infection that include the exogenous supply of human transferrin have been implemented, and tests using transgenic mouse models are underway. Here we describe an ELISA sandwich procedure based on two monoclonal antibodies with negligible cross-reactivity to murine transferrin, to estimate human transferrin concentrations in mouse sera. The assay can detect as little as 10 ng/ml of human transferrin with coefficients of variation ranging from 1.6% to 4.4% (intra-assay) and 3.8% to 5% (inter-assay). The recovery values range from 90% to 110% in the assay working range (25-400 ng/ml). Human transferrin concentrations estimated in sera from 41 human transferrin transgenic mice ranged from 2 to 14 microg/ml. Further estimations of human transferrin levels in mouse sera of a previously described mouse model of N. meningitidis were also carried out. The intraperitoneal injection of 8 mg of human transferrin achieved a sustained value of human transferrin in mouse sera in the range of 1-2mg/ml over the first 24h, indicating that bacteria reaching the blood stream during this time would be exposed to levels of hTf found in normal human serum. PMID:16529768

  15. Inhibition of transferrin receptor 1 transcription by a cell density response element

    PubMed Central

    2005-01-01

    TfR1 (transferrin receptor 1) mediates the uptake of transferrin-bound iron and thereby plays a critical role in cellular iron metabolism. Its expression is coupled to cell proliferation/differentiation and controlled in response to iron levels and other signals by transcriptional and post-transcriptional mechanisms. It is well established that TfR1 levels decline when cultured cells reach a high density and in the present study we have investigated the underlying mechanisms. Consistent with previous findings, we demonstrate that TfR1 expression is attenuated in a cell-density-dependent manner in human lung cancer H1299 cells and in murine B6 fibroblasts as the result of a marked decrease in mRNA content. This response is not associated with alterations in the RNA-binding activity of iron regulatory proteins that are indicative of a transcriptional mechanism. Reporter assays reveal that the human TfR1 promoters contains sequences mediating cell-density-dependent transcriptional inhibition. Mapping of the human and mouse TfR1 promoters identified a conserved hexa-nucleotide 5′-GAGGGC-3′ motif with notable sequence similarity to a previously described element within the IGF-2 (insulin-like growth factor-2) promoter. We show that this motif is necessary for the formation of specific complexes with nuclear extracts and for cell-density-dependent regulation in reporter gene assays. Thus the TfR1 promoter contains a functional ‘cell density response element’ (CDRE). PMID:16092918

  16. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis.

    PubMed

    Kindrat, Iryna; Tryndyak, Volodymyr; de Conti, Aline; Shpyleva, Svitlana; Mudalige, Thilak K; Kobets, Tetyana; Erstenyuk, Anna M; Beland, Frederick A; Pogribny, Igor P

    2016-01-12

    Over-expression of transferrin receptor 1 (TFRC) is observed in hepatocellular carcinoma (HCC); however, there is a lack of conclusive information regarding the mechanisms of this dysregulation. In the present study, we demonstrated a significant increase in the levels of TFRC mRNA and protein in preneoplastic livers from relevant experimental models of human hepatocarcinogenesis and in human HCC cells. Additionally, using the TCGA database, we demonstrated an over-expression of TFRC in human HCC tissue samples and a markedly decreased level of microRNA-152 (miR-152) when compared to non-tumor liver tissue. The results indicated that the increase in levels of TFRC in human HCC cells and human HCC tissue samples may be attributed, in part, to a post-transcriptional mechanism mediated by a down-regulation of miR-152. This was evidenced by a strong inverse correlation between the level of TFRC and the expression of miR-152 in human HCC cells (r = -0.99, p = 4. 7 × 10-9), and was confirmed by in vitro experiments showing that transfection of human HCC cell lines with miR-152 effectively suppressed TFRC expression. This suggests that miR-152-specific targeting of TFRC may provide a selective anticancer therapeutic approach for the treatment of HCC. PMID:26657500

  17. Occupancy of the iron binding sites of human transferrin.

    PubMed Central

    Huebers, H A; Josephson, B; Huebers, E; Csiba, E; Finch, C A

    1984-01-01

    The in vivo distribution of iron between the binding sites of transferrin was examined. Plasma was obtained from normal subjects under basal conditions and after in vitro and in vivo iron loading. Independent methods, including measurement of the transferrin profile after isoelectric focusing and cross immunoelectrophoresis, and determination of the iron content in the separated fractions were in agreement that there was a random distribution of iron on binding sites. This held true with in vitro loading, when iron was increased by intestinal absorption and with loading from the reticuloendothelial system. The data indicate that the distribution of apo-, monoferric, and diferric transferrins is predictable on the basis of the plasma transferrin saturation and negate the concept that iron loading of transferrin in vitro is a selective process with possible functional consequences in tissue iron delivery. PMID:6589596

  18. Cleavage of Human Transferrin by Porphyromonas gingivalis Gingipains Promotes Growth and Formation of Hydroxyl Radicals

    PubMed Central

    Goulet, Véronique; Britigan, Bradley; Nakayama, Koji; Grenier, Daniel

    2004-01-01

    Porphyromonas gingivalis, a gram-negative anaerobic bacterium associated with active lesions of chronic periodontitis, produces several proteinases which are presumably involved in host colonization, perturbation of the immune system, and tissue destruction. The aims of this study were to investigate the degradation of human transferrin by gingipain cysteine proteinases of P. gingivalis and to demonstrate the production of toxic hydroxyl radicals (HO·) catalyzed by the iron-containing transferrin fragments generated or by release of iron itself. Analysis by polyacrylamide gel electrophoresis and Western immunoblotting showed that preparations of Arg- and Lys-gingipains of P. gingivalis cleave transferrin (iron-free and iron-saturated forms) into fragments of various sizes. Interestingly, gingival crevicular fluid samples from diseased periodontal sites but not samples from healthy periodontal sites contained fragments of transferrin. By using 55Fe-transferrin, it was found that degradation by P. gingivalis gingipains resulted in the production of free iron, as well as iron bound to lower-molecular-mass fragments. Subsequent to the degradation of transferrin, bacterial cells assimilated intracellularly the radiolabeled iron. Growth of P. gingivalis ATCC 33277, but not growth of an Arg-gingipain- and Lys-gingipain-deficient mutant, was possible in a chemically defined medium containing 30% iron-saturated transferrin as the only source of iron and peptides, suggesting that gingipains play a critical role in the acquisition of essential growth nutrients. Finally, the transferrin degradation products generated by Arg-gingipains A and B were capable of catalyzing the formation of HO·, as determined by a hypoxanthine/xanthine oxidase system and spin trapping-electron paramagnetic resonance spectrometry. Our study indicates that P. gingivalis gingipains degrade human transferrin, providing sources of iron and peptides. The iron-containing transferrin fragments or the

  19. Receptor recognition of transferrin bound to lanthanides and actinides: a discriminating step in cellular acquisition of f-block metals

    PubMed Central

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Mason, Anne B.; Abergel, Rebecca J.

    2013-01-01

    Following an internal contamination event, the transport of actinide and lanthanide metal ions through the body is facilitated by endogenous ligands such as the human iron-transport protein transferrin (Tf). The recognition of resulting metallo-transferrin complexes (M2Tf) by the cognate transferrin receptor (TfR) is therefore a critical step for cellular uptake of these metal ions. A high performance liquid chromatography-based method has been used to probe the binding of M2Tf with TfR, yielding a direct measurement of the successive thermodynamic constants that correspond to the dissociation of TfR(M2Tf)2 and TfR(M2Tf) complexes for Fe3+, Ga3+, La3+, Nd3+, Gd3+, Yb3+, Lu3+, 232Th4+, 238UO22+, and 242Pu4+. Important features of this method are (i) its ability to distinguish both 1:1 and 1:2 complexes formed between the receptor and the metal-bound transferrin, and (ii) the requirement for very small amounts of each binding partner (<1 nmol of protein per assay). Consistent with previous reports, the strongest receptor affinity is found for Fe2Tf (Kd1 = 5 nM and Kd2 = 20 nM), while the lowest affinity was measured for Pu2Tf (Kd1 = 0.28 µM and Kd2 = 1.8 µM) binding to the TfR. Other toxic metal ions such as ThIV and UVI, when bound to Tf, are well recognized by the TfR. Under the described experimental conditions, the relative stabilities of TfR:(MxTf)y adducts follow the order Fe3+ >> Th4+ □ UO22+ □ Cm3+ > Ln3+ □ Ga3+ >>> Yb3+ □ Pu4+. This study substantiates a role for Tf in binding lanthanide fission products and actinides, and transporting them into cells by receptor mediated endocytosis. PMID:23446908

  20. Receptor recognition of transferrin bound to lanthanides and actinides: a discriminating step in cellular acquisition of f-block metals.

    PubMed

    Deblonde, Gauthier J-P; Sturzbecher-Hoehne, Manuel; Mason, Anne B; Abergel, Rebecca J

    2013-06-01

    Following an internal contamination event, the transport of actinide (An) and lanthanide (Ln) metal ions through the body is facilitated by endogenous ligands such as the human iron-transport protein transferrin (Tf). The recognition of resulting metallo-transferrin complexes (M2Tf) by the cognate transferrin receptor (TfR) is therefore a critical step for cellular uptake of these metal ions. A high performance liquid chromatography-based method has been used to probe the binding of M2Tf with TfR, yielding a direct measurement of the successive thermodynamic constants that correspond to the dissociation of TfR(M2Tf)2 and TfR(M2Tf) complexes for Fe(3+), Ga(3+), La(3+), Nd(3+), Gd(3+), Yb(3+), Lu(3+), (232)Th(4+), (238)UO2(2+), and (242)Pu(4+). Important features of this method are (i) its ability to distinguish both 1 : 1 and 1 : 2 complexes formed between the receptor and the metal-bound transferrin, and (ii) the requirement for very small amounts of each binding partner (<1 nmol of protein per assay). Consistent with previous reports, the strongest receptor affinity is found for Fe2Tf (Kd1 = 5 nM and Kd2 = 20 nM), while the lowest affinity was measured for Pu2Tf (Kd1 = 0.28 μM and Kd2 = 1.8 μM) binding to the TfR. Other toxic metal ions such as Th(IV) and U(VI), when bound to Tf, are well recognized by the TfR. Under the described experimental conditions, the relative stabilities of TfR:(MxTf)y adducts follow the order Fe(3+) > Th(4+) ~ UO2(2+) ~ Cm(3+) > Ln(3+) ~ Ga(3+) > Yb(3+) ~ Pu(4+). This study substantiates a role for Tf in binding lanthanide fission products and actinides, and transporting them into cells by receptor-mediated endocytosis. PMID:23446908

  1. Construction and Characterization of Moraxella catarrhalis Mutants Defective in Expression of Transferrin Receptors

    PubMed Central

    Luke, Nicole R.; Campagnari, Anthony A.

    1999-01-01

    We have previously reported the construction of an isogenic mutant defective in expression of OmpB1, the TbpB homologue, in Moraxella catarrhalis 7169. In this report, we have extended these studies by constructing and characterizing two new isogenic mutants in this clinical isolate. One mutant is defective in expression of TbpA, and the other mutant is defective in expression of both TbpA and TbpB. These isogenic mutants were confirmed by using PCR analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and sequencing. In vitro growth studies, comparing all three mutants, demonstrated that the tbpA mutant and the tbpAB mutant were severely limited in their ability to grow with human holotransferrin as the sole source of iron. In contrast, the ompB1 (tbpB) mutant was capable of utilizing iron from human transferrin, although not to the extent of the parental strain. While affinity chromatography with human holotransferrin showed that each Tbp was capable of binding independently to transferrin, solid-phase transferrin binding studies using whole cells demonstrated that the tbpA mutant exhibited binding characteristics similar to those seen with the wild-type bacteria. However, the ompB1 (tbpB) mutant exhibited a diminished capacity for binding transferrin, and no binding was detected with the double mutant. These data suggest that the M. catarrhalis TbpA is necessary for the acquisition of iron from transferrin. In contrast, TbpB is not essential but may serve as a facilitory protein that functions to optimize this process. Together these mutants are essential to provide a more thorough understanding of iron acquisition mechanisms utilized by M. catarrhalis. PMID:10531234

  2. Plant-derived recombinant human serum transferrin demonstrates multiple functions.

    PubMed

    Brandsma, Martin E; Diao, Hong; Wang, Xiaofeng; Kohalmi, Susanne E; Jevnikar, Anthony M; Ma, Shengwu

    2010-05-01

    Human serum transferrin (hTf) is the major iron-binding protein in human plasma, having a vital role in iron transport. Additionally, hTf has many other uses including antimicrobial functions and growth factor effects on mammalian cell proliferation and differentiation. The multitask nature of hTf makes it highly valuable for different therapeutic and commercial applications. However, the success of hTf in these applications is critically dependent on the availability of high-quality hTf in large amounts. In this study, we have developed plants as a novel platform for the production of recombinant (r)hTf. We show here that transgenic plants are an efficient system for rhTf production, with a maximum accumulation of 0.25% total soluble protein (TSP) (or up to 33.5 microg/g fresh leaf weight). Furthermore, plant-derived rhTf retains many of the biological activities synonymous with native hTf. In particular, rhTf reversibly binds iron in vitro, exhibits bacteriostatic activity, supports cell proliferation in serum-free medium and can be internalized into mammalian cells in vitro. The success of this study validates the future application of plant rhTf in a variety of fields. Of particular interest is the use of plant rhTf as a novel carrier for cell-specific or oral delivery of protein/peptide drugs for the treatment of human diseases such as diabetes.To demonstrate this hypothesis, we have additionally expressed an hTf fusion protein containing glucagon-like peptide 1 (GLP-1) or its derivative in plants. Here, we show that plant-derived hTf-GLP-1 fusion proteins retain the ability to be internalized by mammalian cells when added to culture medium in vitro. PMID:20432512

  3. Ferristatin II Promotes Degradation of Transferrin Receptor-1 In Vitro and In Vivo

    PubMed Central

    Kim, Jonghan; Luo, Flora; Sanford, Jack; Chen, Juxing; Enns, Caroline; Wessling-Resnick, Marianne

    2013-01-01

    Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression. PMID:23894616

  4. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency

    PubMed Central

    Jabara, Haifa H.; Boyden, Steven E.; Chou, Janet; Ramesh, Narayanaswamy; Massaad, Michel J.; Benson, Halli; Bainter, Wayne; Fraulino, David; Rahimov, Fedik; Sieff, Colin; Liu, Zhi-Jian; Alshemmari, Salem H.; Al-Ramadi, Basel K.; Al-Dhekri, Hasan; Arnaout, Rand; Abu-Shukair, Mohammad; Vatsayan, Anant; Silver, Eli; Ahuja, Sanjay; Davies, E. Graham; Sola-Visner, Martha; Ohsumi, Toshiro K.; Andrews, Nancy C.; Notarangelo, Luigi D.; Fleming, Mark D.; Al-Herz, Waleed; Kunkel, Louis M.; Geha, Raif S.

    2015-01-01

    Patients with a combined immunodeficiency characterized by normal numbers, but impaired function, of T and B cells had a homozygous p.Tyr20His mutation in transferrin receptor 1 (TfR1), encoded by TFRC. The mutation disrupts the TfR1 internalization motif, resulting in defective receptor endocytosis and markedly increased TfR1 surface expression. Iron citrate rescued the lymphocyte defects and transduction of wild type, but not mutant, TfR1 rescued impaired transferrin uptake in patient fibroblasts. TfrcY20H/Y20H mice recapitulated the patients’ immunologic defects. Despite the critical role of TfR1 in erythrocyte development and function, the patients had only mild anemia and only slightly increased TfR1 expression in erythroid precursors. We show that STEAP3, a metalloreductase expressed in erythroblasts, associates with TfR1 and partially rescues transferrin uptake in patient fibroblasts, suggesting that STEAP3 may provide an accessory TfR1 endocytosis signal that spares the patients from severe anemia. These findings demonstrate the importance of TfR1 in adaptive immunity. PMID:26642240

  5. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency.

    PubMed

    Jabara, Haifa H; Boyden, Steven E; Chou, Janet; Ramesh, Narayanaswamy; Massaad, Michel J; Benson, Halli; Bainter, Wayne; Fraulino, David; Rahimov, Fedik; Sieff, Colin; Liu, Zhi-Jian; Alshemmari, Salem H; Al-Ramadi, Basel K; Al-Dhekri, Hasan; Arnaout, Rand; Abu-Shukair, Mohammad; Vatsayan, Anant; Silver, Eli; Ahuja, Sanjay; Davies, E Graham; Sola-Visner, Martha; Ohsumi, Toshiro K; Andrews, Nancy C; Notarangelo, Luigi D; Fleming, Mark D; Al-Herz, Waleed; Kunkel, Louis M; Geha, Raif S

    2016-01-01

    Patients with a combined immunodeficiency characterized by normal numbers but impaired function of T and B cells had a homozygous p.Tyr20His substitution in transferrin receptor 1 (TfR1), encoded by TFRC. The substitution disrupts the TfR1 internalization motif, resulting in defective receptor endocytosis and markedly increased TfR1 expression on the cell surface. Iron citrate rescued the lymphocyte defects, and expression of wild-type but not mutant TfR1 rescued impaired transferrin uptake in patient-derived fibroblasts. Tfrc(Y20H/Y20H) mice recapitulated the immunological defects of patients. Despite the critical role of TfR1 in erythrocyte development and function, patients had only mild anemia and only slightly increased TfR1 expression in erythroid precursors. We show that STEAP3, a metalloreductase expressed in erythroblasts, associates with TfR1 and partially rescues transferrin uptake in patient-derived fibroblasts, suggesting that STEAP3 may provide an accessory TfR1 endocytosis signal that spares patients from severe anemia. These findings demonstrate the importance of TfR1 in adaptive immunity. PMID:26642240

  6. TDPAC studies of the metal-binding sites in serum transferrin: comparison between 181Hf-labeled human- and rat-serum transferrin.

    PubMed

    Appel, H; Duffield, J; Taylor, D M; Then, G M; Thies, W G

    1987-12-01

    The binding of hafnium to human serum transferrin was studied using the time differential perturbed angular correlation (TDPAC-) technique. The samples were prepared in vitro by adding 181Hf-NTA solution to human serum. Two specific electric quadrupole interactions were observed, which correspond to two well-defined binding configurations. Their relative intensities depend on the pH, salt- and hafnium-concentrations, and on the incubation time. The present data may be compared with the results of a previous rat serum study, where the hafnium binding to transferrin behaved rather similarly. Small but significant differences, however, can be deduced from the TDPAC-parameters for these human and rat transferrin species. For either binding configuration, the electric field gradient (EFG) is slightly higher in the case of rat transferrin. The most characteristic difference, however, concerns the asymmetry parameter eta 2 of the second binding configuration, which is about 10% smaller for rat serum transferrin. The TDPAC-technique might be used as a sensitive and reliable analytical method to study the metal-binding sites of different transferrin species. PMID:3437277

  7. TDPAC studies of the metal-binding sites in serum transferrin: comparison between /sup 181/Hf-labeled human- and rat-serum transferrin

    SciTech Connect

    Appel, H.; Duffield, J.; Taylor, D.M.; Then, G.M.; Thies, W.G.

    1987-12-01

    The binding of hafnium to human serum transferrin was studied using the time differential perturbed angular correlation (TDPAC-) technique. The samples were prepared in vitro by adding /sup 181/Hf-NTA solution to human serum. Two specific electric quadrupole interactions were observed, which correspond to two well-defined binding configurations. Their relative intensities depend on the pH, salt- and hafnium-concentrations, and on the incubation time. The present data may be compared with the results of a previous rat serum study, where the hafnium binding to transferrin behaved rather similarly. Small but significant differences, however, can be deduced from the TDPAC-parameters for these human and rat transferrin species. For either binding configuration, the electric field gradient (EFG) is slightly higher in the case of rat transferrin. The most characteristic difference, however, concerns the asymmetry parameter eta 2 of the second binding configuration, which is about 10% smaller for rat serum transferrin. The TDPAC-technique might be used as a sensitive and reliable analytical method to study the metal-binding sites of different transferrin species.

  8. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  9. The mRNA-binding protein which controls ferritin and transferrin receptor expression is conserved during evolution.

    PubMed Central

    Rothenberger, S; Müllner, E W; Kühn, L C

    1990-01-01

    A post-transcriptional regulatory protein, termed iron regulatory factor (IRF), that binds specifically to the iron-responsive elements of ferritin and transferrin receptor mRNA, has recently been identified in the cytoplasm of human and mouse cells. Activation of this factor by low intracellular iron levels leads to inhibition of ferritin translation and an increase of TR mRNA stability. To investigate whether these feedback regulatory mechanisms are conserved during evolution, we analysed cytoplasmic extracts from 12 different species for a specific IRE-binding activity. We found mRNA-binding proteins in chicken, frog, fish and fly, which are equivalent to human and mouse IRF in gel-retardation assays with radiolabeled RNA transcripts. Competition experiments, molecular weight determinations, and modulation of the mRNA-binding activity in response to intracellular iron levels or reduction by beta-mercaptoethanol indicate that IRF has similar structural and functional properties in these different species. Images PMID:2157191

  10. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  11. Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor.

    PubMed Central

    Barnewall, R E; Rikihisa, Y; Lee, E H

    1997-01-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium which infects macrophages and monocytes. Double immunofluorescence labeling was used to characterize the nature of E. chaffeensis inclusion in the human promyelocytic leukemia cell line THP-1. E. chaffeensis was labeled with dog anti-E. chaffeensis serum and fluorescein isothiocyanate-conjugated anti-dog immunoglobulin G (IgG). Lissamine rhodamine-conjugated anti-mouse IgG was used to label various mouse monoclonal antibodies. Ehrlichial inclusions did not fuse with lysosomes, since they were not labeled with anti-CD63 or anti-LAMP-1. The ehrlichial inclusions were slightly acidic, since they weakly accumulated 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine and stained weakly positive for vacuolar type H+ ATPase. Some ehrlichial inclusions were labeled positive with antibodies against HLA-DR, HLA-ABC, and beta2 microglobulin, while other inclusions in the same cell were labeled negative. The inclusions were labeled strongly positive for transferrin receptors (TfRs) and negative for the clathrin heavy chain. Time course labeling for TfRs showed that up to 3 h postinfection, most of the ehrlichial inclusions were negative for TfRs. After 6 h postinfection, 100% of the ehrlichial inclusions became TfR positive and the intensity of labeling was increased during the subsequent 3 days. Reverse transcription-PCR showed a gradual increase in the level of TfR mRNA postinfection, which reached a peak at 24 h postinfection. These results suggest that ehrlichial inclusions are early endosomes which selectively accumulate TfRs and that the ehrlichiae up-regulate TfR mRNA expression. PMID:9119487

  12. Anaemia in Systemic Lupus Erythematosus Based on Iron Studies and Soluble Transferrin Receptor Levels

    PubMed Central

    Agarwal, Preeti; Wakhlu, Anupam; Kumar, Ashutosh; Mehrotra, Raj; Mittal, Saumya

    2016-01-01

    Introduction Haematological alterations such as anaemia, neutropenia and thrombocytopenia are frequent in Systemic Lupus Erythematosus (SLE). Ferritin being an acute phase reactant can be falsely elevated in lupus cases. Aim To evaluate the haematological alterations and to re-categorise the types of anemia by soluble transferrin receptor levels in diagnosed cases of SLE. Materials and Methods A sample of 30 newly diagnosed ANA positive SLE patients was taken. Complete blood counts, ESR, reticulocyte count, coagulation studies, diluted Russel Viper Venom Test (dRVVT), mixing studies, serological tests, high sensitivity CRP along with iron profile, transferrin saturation, soluble transferrin receptor (sol TFR) levels, anti-beta2 glycoprotein1, direct and indirect Coomb’s test were estimated in cases diagnosed as SLE. Clinical symptoms were co-related with and Systemic Lupus Erythaematosus Disease Activity Index (SLEDAI) was estimated. Results Anaemia was the most prevalent haematological alteration followed by thrombocytopenia. Further sub typing of anaemia was done by serum ferritin levels and using sol TFR assays. Ferritin is an acute phase reactant; it underestimated iron deficiency in patients of SLE. When sol TFR was used; patients with pure Anaemia of Chronic Disease (ACD) reduced from 68% to 26%, those with pure IDA reduced from 32% to 16% and a group with co-existing IDA & ACD (58%) was defined {Agreement=53%, p=0.09} by sol TFR which co-related with clinical response to Iron therapy in these patients. CRP was significantly raised in association with disease activity. Fever (p<0.0001), arthritis (p<0.03) were significantly related and CRP was elevated (p<0.04) in cases with high SLEDAI (severe flare). Conclusion Thus, in SLE, anaemia is the most frequent hematological alteration; iron deficiencies supercede in contrast to ACD and further autoimmune haemolytic anaemia. Sol TFR emerged as a better parameter to detect iron deficiency in patients of non

  13. Biochemical and structural characterization of recombinant human serum transferrin from rice (Oryza sativa L.).

    PubMed

    Steere, Ashley N; Bobst, Cedric E; Zhang, Deshui; Pettit, Steve C; Kaltashov, Igor A; Huang, Ning; Mason, Anne B

    2012-11-01

    The Fe(3+) binding protein human serum transferrin (hTF) is well known for its role in cellular iron delivery via the transferrin receptor (TFR). A new application is the use of hTF as a therapy and targeted drug delivery system for a number of diseases. Recently, production of hTF in plants has been reported; such systems provide a relatively inexpensive, animal-free (eliminating potential contamination by animal pathogens) method to produce large amounts of recombinant proteins for such biopharmaceutical applications. Specifically, the production of Optiferrin (hTF produced in rice, Oryza sativa, from InVitria) has been shown to yield large amounts of functional protein for use in culture medium for cellular iron delivery to promote growth. In the present work we describe further purification (by gel filtration) and characterization of hTF produced in rice (purified Optiferrin) to determine its suitability in biopharmaceutical applications. The spectral, mass spectrometric, urea gel and kinetic analysis shows that purified Optiferrin is similar to recombinant nonglycosylated N-His tagged hTF expressed by baby hamster kidney cells and/or serum derived glycosylated hTF. Additionally, in a competitive immunoassay, iron-loaded Optiferrin is equivalent to iron-loaded N-His hTF in its ability to bind to the soluble portion of the TFR immobilized in an assay plate. As an essential requirement for any functional hTF, both lobes of purified Optiferrin bind Fe(3+) tightly yet reversibly. Although previously shown to be capable of delivering Fe(3+) to cells, the kinetics of iron release from iron-loaded Optiferrin™/sTFR and iron-loaded N-His hTF/sTFR complexes differ somewhat. We conclude that the purified Optiferrin might be suitable for consideration in biopharmaceutical applications. PMID:23010327

  14. Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe

    PubMed Central

    Yang, Nan; Zhang, Hongmin; Wang, Minji; Hao, Quan; Sun, Hongzhe

    2012-01-01

    Human serum transferrin (hTF) binds Fe(III) tightly but reversibly, and delivers it to cells via a receptor-mediated endocytosis process. The metal-binding and release result in significant conformational changes of the protein. Here, we report the crystal structures of diferric-hTF (FeNFeC-hTF) and bismuth-bound hTF (BiNFeC-hTF) at 2.8 and 2.4 Å resolutions respectively. Notably, the N-lobes of both structures exhibit unique “partially-opened” conformations between those of the apo-hTF and holo-hTF. Fe(III) and Bi(III) in the N-lobe coordinate to, besides anions, only two (Tyr95 and Tyr188) and one (Tyr188) tyrosine residues, respectively, in contrast to four residues in the holo-hTF. The C-lobe of both structures are fully closed with iron coordinating to four residues and a carbonate. The structures of hTF observed here represent key conformers captured in the dynamic nature of the transferrin family proteins and provide a structural basis for understanding the mechanism of metal uptake and release in transferrin families. PMID:23256035

  15. Human granulocyte/pollen-binding protein. Recognition and identification as transferrin.

    PubMed Central

    Sass-Kuhn, S P; Moqbel, R; Mackay, J A; Cromwell, O; Kay, A B

    1984-01-01

    Normal human serum was found to contain a heat-stable protein which promoted the binding of granulocytes to timothy grass pollen (granulocyte/pollen-binding protein [GPBP]). GPBP was purified by gel filtration, anion exchange, and affinity chromatography. Virtually all of the granulocyte/pollen-binding activity was associated with a beta-1-protein having a molecular mass of approximately 77,000 D and an isoelectric point of between 5.5 and 6.1. By immunoelectrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein was identified as transferrin. Monospecific antisera raised against either GPBP or transferrin removed biological activity from GPBP preparations, and GPBP and transferrin gave lines of identity with these two antisera. The apparent heterogeneity in the molecular size and charge of GPBP observed during progressive purification was minimal when GPBP was saturated with ferric ions before the separation procedures. These experiments indicate that granulocyte/pollen binding is a hitherto unrecognized property of transferrin which appears to be unrelated to iron transport and raises the possibility that transferrin might have a physiological role in the removal of certain organic matter. Images PMID:6690479

  16. Evaluation of serum transferrin receptor assay in a centralized iron screening service.

    PubMed

    O'Broin, S; Kelleher, B; Balfe, A; Mc Mahon, C

    2005-06-01

    This study assesses the impact of permitting unrestricted access to requests for soluble transferrin receptor (sTfR) analysis in screening for iron deficiency (ID). Biochemical data including sTfR, serum ferritin (sFn), transferrin saturation, zinc protoporphyrins (ZPP) and also erythrocyte indices are used to highlight the differences between hospital (H) and general practitioner (GP) patient groups. A significantly higher number of abnormal sFn values (40%) over abnormal sTfR values (25%) occurred in GP patients. This trend was reversed in the H patient group where high sTfR values predominated. Consequently, screening with sFn, exclusively, missed ID (sTfR > 28.1 nmol/l) in 5% of GP patients and in 20% of H patients. Some 40% of H patients had elevated CRP values (CRP > 10 mg/l) indicating inflammatory disease, however, ZPP was more efficient than CRP at screening the validity of normal sFn values in the group. Unrestricted access to sTfR, sFn and ZPP analyses should expedite diagnosis in all patients, particularly H patients, but may be costly. The high specificity (>90%) of the mean cell haemoglobin for ID may be under-utilized diagnostically. PMID:15938725

  17. Structure of the Membrane Proximal Oxioreductase Domain of Human Steap3, the Dominant Ferrireductase of the Erythroid Transferrin Cycle

    SciTech Connect

    Sendamarai, A.K.; Ohgami, R.S.; Fleming, M.D.; Lawrence, C.M.

    2009-05-27

    The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe{sup 2+} by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.

  18. Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle

    PubMed Central

    Sendamarai, Anoop K.; Ohgami, Robert S.; Fleming, Mark D.; Lawrence, C. Martin

    2008-01-01

    The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe2+ by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane. PMID:18495927

  19. Transferrin receptor bearing cells in the peripheral blood of patients with rheumatoid arthritis.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Blann, A D

    1985-01-01

    Activated, proliferating lymphocytes are a feature of rheumatoid arthritis. They are present both in the synovial membrane and in the peripheral circulation. The expression of transferrin receptors(TFR) is a good marker of cellular proliferation. This study shows increased levels of circulating TFR-bearing lymphocytes in patients with rheumatoid arthritis (RA). The TFR+ population contains a disproportionately large number of T4+ cells, leading to a high T4:T8 ratio (5:1 in the TFR+ population, compared to 2:1 in the total circulating pool of lymphocytes). This reflects the pattern found in the rheumatoid synovium and suggests that lymphocyte activation in RA may be an extra-articular phenomenon. The TFR+ population also contains a range of non-T cells, including B cells, and a population bearing phenotypic similarities to natural killer (NK) cells. PMID:3002686

  20. Maxi-circles, glycosomes, gene transposition, expression sites, transsplicing, transferrin receptors and base J.

    PubMed

    Borst, Piet

    2016-01-01

    This is a personal story of the author of his research on trypanosomatids, covering a period of 1970-2015. Some of the highlights include the discovery of new aspects of kDNA, the mini-circle heterogeneity and the maxi-circle; the glycosome; the discovery of gene transposition as a major mechanism for antigenic variation; trans-splicing as an essential step in the synthesis of all trypanosome mRNAs; Pulsed Field Gradient gels to size-fractionate chromosome-sized DNA molecules of protozoa; the sequence of trypanosome telomeres and their growth and contraction; the first ABC-transporter of trypanosomatids, LtpgpA; the variable transferrin receptor of T. brucei and its role in Fe uptake; and base J, its structure, biosynthesis and function. PMID:27021571

  1. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  2. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse.

    PubMed

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  3. Seasonal changes in haematology, lymphocyte transferrin receptors and intracellular iron in Ironman triathletes and untrained men.

    PubMed

    Broadbent, Suzanne

    2011-01-01

    We investigated whether 12 months of chronic endurance training would affect haematology, CD4(+) lymphocyte transferrin receptor (CD71) expression, CD4(+) intracellular iron and the incidence of upper respiratory tract illnesses (URTI) in Ironman triathletes compared with untrained men. Resting venous blood samples were taken from 15 Ironman triathletes (TR 30 ± 5 year) and 12 untrained men (UT 30 ± 6 year) every 4 weeks for 12 months. Erythrocyte, leukocyte and platelet concentration, haematocrit, haemoglobin (Hb) and mean corpuscular haemoglobin (MCHC) were measured with a full blood count. CD4(+) lymphocytes were analysed for changes in transferrin receptor (CD71) expression (CD4(+)CD71(+)), and intracellular iron (Fe(3+)), by flow cytometry. The TR group had significantly lower Hb, MCHC, and platelets for 10, 9 and 11 months, respectively; lower CD4(+)CD71(+) (3 months) and Fe(3+) (1 month), respectively; higher CD4(+)CD71(+) (1 month); a higher lymphocyte count for 4 months. There were no between-group differences in other variables. In both groups haematology and lymphocytes increased during spring, early summer and winter and decreased during late summer/late winter, with an inverse relationship between CD4(+)CD71(+) and Fe(3+). The TR group reported significantly fewer URTI than the UT. Low Hb and MCHC suggest an iron deficiency which may affect triathlete performance. Monthly changes in lymphocytes, CD4(+)CD71(+) and Fe(3+) suggested that spring, summer and late autumn are associated with CD4(+) proliferation. There may be seasonal relationships between haematology and lymphocyte function, independent of endurance training, possibly affecting performance but not the incidence of URTI. PMID:20821024

  4. Human Serum Transferrin Fibrils: Nanomineralisation in Bacteria and Destruction of Red Blood Cells

    PubMed Central

    Mukherjee, Arindam; Barnett, Mark A; Venkatesh, V; Verma, Sandeep; Sadler, Peter J

    2015-01-01

    Fibrils formed by human serum transferrin [(1–3 μm) apo-Tf, partially iron-saturated (Fe0.6-Tf) and holo-Tf (Fe2-Tf) forms], from dilute bicarbonate solutions, were deposited on formvar surfaces and studied by electron microscopy. We observed that possible bacterial contamination appears to give rise to long, pea-pod-like (PPL) structures for Fe2-Tf, attributable to the formation of polyhydroxybutyrate (PHB) storage granules, under the nutrient-limiting conditions used. These PPL structures contained periodic nanomineralisation sites susceptible to uranyl stain. Extended incubation of transferrin solutions (about four days) gave rise to extensive transferrin fibril structures. Optical microscopy and AFM studies showed that red blood cells (RBCs) readily adhere to these fibrils. Moreover, the fibrils appear to penetrate RBC membranes and to induce rapid cell destruction (within about 5 h). It is speculated that in situations in vivo where transferrin fibrils can form, such interactions might have adverse physiological consequences, and further studies could aid the understanding of related pathological events. PMID:25476866

  5. Bionano interactions of mcf-7 breast tumor cells with a transferrin receptor targeted nanoparticle.

    PubMed

    Du, Wenwen; Fan, Yuchen; He, Bing; Zheng, Nan; Yuan, Lan; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

    2015-05-01

    Although transferrin receptor (TfR) is widely accepted as a target for cancer therapy, few studies have elaborated on delivery efficiency of TfR upon interactions with TfR-targeted nanomedicine. Here, a micellar system employing TfR-specific 7peptide (histidine-alanine-isoleucine-tyrosine- proline-arginine-histidine, HAIYPRH, 7pep) as the targeting moiety was constructed; and its endocytosis, intracellular trafficking as well as influence on TfR expression and in vivo tumor targeting were explored in the MCF-7 tumor model. In contrast to unmodified micelles, 7pep modification enhanced the cellular uptake of micelles without altering endocytic pathways, and slowed down the trafficking of micelles to lysosomes without changing the final intracellular colocalization. Interestingly, cellular TfR level was increased by 7pep-modified micelles. Furthermore, receptor saturation and recovery was observed in vivo. In conclusion, this study comprehensively investigated the bionano interaction between TfR positive tumors and 7pep-modified micelles, and provided scientific information for cancer therapy with receptor-mediated nanomedicines. PMID:25811613

  6. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation.

    PubMed Central

    Vostrejs, M; Moran, P L; Seligman, P A

    1988-01-01

    Since transferrin is required for cellular proliferation, we investigated transferrin synthesis by a small cell lung cancer line (NCI-H510) that survives in serum-free media without added transferrin. Immunoassays for human transferrin demonstrated that these cells contained immunoreactive human transferrin. Immunofluorescence studies showed that the protein is expressed on the surface of cells, presumably bound to transferrin receptor. Media conditioned by NCI-H510 cells support proliferation of human leukemic cells that would not survive in media lacking transferrin. [35S]Methionine incorporation documented transferrin synthesis by NCI-H510 cells as well as three other small cell lines. Transferrin synthesis by NCI-H510 cells increased more than 10-fold when cells entered active phases of the cell cycle, and this increase was seen before large increases in transferrin-receptor expression. Further experiments examining the effects of agents that affect iron metabolism show that the addition of transferrin-iron or hemin to the media is associated with a more rapid initial rate of proliferation and lower rates of transferrin synthesis than control cells. Gallium salts, which inhibit iron uptake, inhibited proliferation of these cells. If the cells recovered from this effect, transferrin synthesis remained greatly increased compared to control. We conclude that transferrin synthesis by these malignant cells is ultimately related to an iron requirement for cellular proliferation. It appears that this synthesized transferrin acts as part of an important autocrine mechanism permitting proliferation of these cells, and perhaps permitting tumor cell growth in vivo in areas not well vascularized. Images PMID:2839550

  7. X-ray small angle scattering of the human transferrin protein aggregates. A fractal study.

    PubMed Central

    Castellano, A C; Barteri, M; Bianconi, A; Borghi, E; Cassiano, L; Castagnola, M; Della Longa, S

    1993-01-01

    X-ray small angle scattering experiments, using a pin hole SAXS camera with Synchrotron radiation source, have been performed to study the conformational changes of lyophilized samples of Apo-, Mono-, and Diferric- human transferrin. We report the experimental evidence that the analysis of the scattered intensity through the fractal theory may give information on the particle size and its variation upon iron binding. PMID:8457675

  8. The Endocytic Fate of the Transferrin Receptor Is Regulated by c-Abl Kinase.

    PubMed

    Cao, Hong; Schroeder, Barbara; Chen, Jing; Schott, Micah B; McNiven, Mark A

    2016-08-01

    Clathrin-mediated endocytosis of transferrin (Tf) and its cognate receptor (TfR1) is a central pathway supporting the uptake of trophic iron. It has generally been assumed that this is a constitutive process. However, we have reported that the non-receptor tyrosine kinase, Src, is activated by Tf to facilitate the internalization of the Tf-TfR1 ligand-receptor complex. As an extension of these findings, we have tested whether subsequent trafficking steps might be regulated by additional kinase-dependent cascades, and we observed a significant endocytic block by inhibiting c-Abl kinase by a variety of methods. Importantly, Tf internalization was reduced significantly in all of these cell models and could be restored by re-expression of WT c-Abl. Surprisingly, this attenuated Tf-TfR1 endocytosis was due to a substantial drop in both the surface and total cellular receptor levels. Additional studies with the LDL receptor showed a similar effect. Surprisingly, immunofluorescence microscopy of imatinib-treated cells revealed a marked colocalization of internalized TfR1 with late endosomes/lysosomes, whereas attenuating the lysosome function with several inhibitors reduced this receptor loss. Importantly, inhibition of c-Abl resulted in a striking redistribution of the chaperone Hsc70 from a diffuse cytosolic localization to an association with the TfR1 at the late endosome-lysosome. Pharmacological inhibition of Hsc70 ATPase activity in cultured cells by the drug VER155008 prevents this chaperone-receptor interaction, resulting in an accumulation of the TfR1 in the early endosome. Thus, inhibition of c-Abl minimizes receptor recycling pathways and results in chaperone-dependent trafficking of the TfR1 to the lysosome for degradation. These findings implicate a novel role for c-Abl and Hsc70 as an unexpected regulator of Hsc70-mediated transport of trophic receptor cargo between the early and late endosomal compartments. PMID:27226592

  9. The second transferrin receptor regulates red blood cell production in mice

    PubMed Central

    Nai, Antonella; Lidonnici, Maria Rosa; Rausa, Marco; Mandelli, Giacomo; Pagani, Alessia; Silvestri, Laura; Ferrari, Giuliana

    2015-01-01

    Transferrin receptor 2 (TFR2) contributes to hepcidin regulation in the liver and associates with erythropoietin receptor in erythroid cells. Nevertheless, TFR2 mutations cause iron overload (hemochromatosis type 3) without overt erythroid abnormalities. To clarify TFR2 erythroid function, we generated a mouse lacking Tfr2 exclusively in the bone marrow (Tfr2BMKO). Tfr2BMKO mice have normal iron parameters, reduced hepcidin levels, higher hemoglobin and red blood cell counts, and lower mean corpuscular volume than normal control mice, a phenotype that becomes more evident in iron deficiency. In Tfr2BMKO mice, the proportion of nucleated erythroid cells in the bone marrow is higher and the apoptosis lower than in controls, irrespective of comparable erythropoietin levels. Induction of moderate iron deficiency increases erythroblasts number, reduces apoptosis, and enhances erythropoietin (Epo) levels in controls, but not in Tfr2BMKO mice. Epo-target genes such as Bcl-xL and Epor are highly expressed in the spleen and in isolated erythroblasts from Tfr2BMKO mice. Low hepcidin expression in Tfr2BMKO is accounted for by erythroid expansion and production of the erythroid regulator erythroferrone. We suggest that Tfr2 is a component of a novel iron-sensing mechanism that adjusts erythrocyte production according to iron availability, likely by modulating the erythroblast Epo sensitivity. PMID:25499454

  10. Aluminum access to the brain: A role for transferrin and its receptor

    SciTech Connect

    Roskams, A.J.; Connor, J.R. )

    1990-11-01

    The toxicity of aluminum in plant and animal cell biology is well established, although poorly understood. Several recent studies have identified aluminum as a potential, although highly controversial, contributory factor in the pathology of Alzheimer's disease, amyotrophic lateral sclerosis, and dialysis dementia. For example, aluminum has been found in high concentrations in senile plaques and neurofibrillary tangles, which occur in the brains of subjects with Alzheimer's disease. However, a mechanism for the entry of aluminum (Al{sup 3+}) into the cells of the central nervous system (CNS) has yet to be found. Here the authors describe a possible route of entry for aluminum into the cells of the CNS via the same high-affinity receptor-ligand system that has been postulated for iron (Fe{sup 3}) aluminum is able to gain access to the central nervous system under normal physiological conditions. Furthermore, these data suggest that the interaction between transferrin and its receptor may function as a general metal ion regulatory system in the CNS, extending beyond its postulated role in iron regulation.

  11. The second transferrin receptor regulates red blood cell production in mice.

    PubMed

    Nai, Antonella; Lidonnici, Maria Rosa; Rausa, Marco; Mandelli, Giacomo; Pagani, Alessia; Silvestri, Laura; Ferrari, Giuliana; Camaschella, Clara

    2015-02-12

    Transferrin receptor 2 (TFR2) contributes to hepcidin regulation in the liver and associates with erythropoietin receptor in erythroid cells. Nevertheless, TFR2 mutations cause iron overload (hemochromatosis type 3) without overt erythroid abnormalities. To clarify TFR2 erythroid function, we generated a mouse lacking Tfr2 exclusively in the bone marrow (Tfr2(BMKO)). Tfr2(BMKO) mice have normal iron parameters, reduced hepcidin levels, higher hemoglobin and red blood cell counts, and lower mean corpuscular volume than normal control mice, a phenotype that becomes more evident in iron deficiency. In Tfr2(BMKO) mice, the proportion of nucleated erythroid cells in the bone marrow is higher and the apoptosis lower than in controls, irrespective of comparable erythropoietin levels. Induction of moderate iron deficiency increases erythroblasts number, reduces apoptosis, and enhances erythropoietin (Epo) levels in controls, but not in Tfr2(BMKO) mice. Epo-target genes such as Bcl-xL and Epor are highly expressed in the spleen and in isolated erythroblasts from Tfr2(BMKO) mice. Low hepcidin expression in Tfr2(BMKO) is accounted for by erythroid expansion and production of the erythroid regulator erythroferrone. We suggest that Tfr2 is a component of a novel iron-sensing mechanism that adjusts erythrocyte production according to iron availability, likely by modulating the erythroblast Epo sensitivity. PMID:25499454

  12. Effect of synthetic carrier ampholytes on saturation of human serum transferrin.

    PubMed Central

    Oratore, A; D'Alessandro, A M; D'Andrea, G

    1989-01-01

    We have investigated the effect in solution of synthetic carrier ampholytes on the saturation of human serum transferrin. By spectrophotometric titrations of human serum transferrin with various Fe3+-carrier ampholyte solutions, we demonstrated that under these conditions carrier ampholytes behave as typical chelators, their binding curves being very similar to that obtained with disodium nitrilotriacetate. On performing titration experiments at three different pH values, carrier ampholytes act like nitrilotriacetate at pH 7.5, but the former are more effective iron donors at pH 8.4 and worse iron donors at pH 5.2. Spectrophotometric titrations of isolated C-terminal and N-terminal fragments obtained from human serum transferrin by thermolysin cleavage show no differences between them, and no differences with respect to the whole protein except that they contain half the number of binding sites. In order to determine a site-specificity of iron in the presence of ampholytes, the classical urea/polyacrylamide-gel-electrophoresis technique was adopted. Under saturating conditions carrier ampholyte solutions act mostly on the C-terminal site, whereas desaturating agents remove iron preferentially from the N-terminal site. Our findings support the hypothesis that Ampholine may chelate Fe3+ as well as many other compounds. Images Fig. 3. PMID:2730592

  13. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index

    PubMed Central

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-01-01

    Abstract Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD. Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin <30 ng/mL or TfR-F >2 in the presence of inflammation. One-hundred fifty patients with median age 38 years (16–78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin <30 ng/mL. Thirty-two patients (21.3%) had ferritin levels from 30 to 100 ng/ml and inflammation: 2 had vitamin B12 deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients. TfR-F in addition to ferritin <30 ng/mL criterion increased by 36% diagnosis rates of iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD. PMID:26131803

  14. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index.

    PubMed

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-07-01

    Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD.Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin <30 ng/mL or TfR-F >2 in the presence of inflammation.One-hundred fifty patients with median age 38 years (16-78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin <30 ng/mL. Thirty-two patients (21.3%) had ferritin levels from 30 to 100 ng/ml and inflammation: 2 had vitamin B12 deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients.TfR-F in addition to ferritin <30 ng/mL criterion increased by 36% diagnosis rates of iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD. PMID:26131803

  15. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/Transferrin Receptor Complex.

    PubMed

    Kang, Ting; Jiang, Mengyin; Jiang, Di; Feng, Xingye; Yao, Jianhui; Song, Qingxiang; Chen, Hongzhuan; Gao, Xiaoling; Chen, Jun

    2015-08-01

    Treatment of glioblastoma (GBM) remains to be the most formidable challenge because of the hindrance of the blood-brain barrier (BBB) along with the poor drug penetration into the glioma parenchyma. Nanoparticulate drug delivery systems (DDS) utilizing transferrin (Tf) as the targeting ligand to target the glioma-associated transferrin receptor (TfR) had met the problem of loss of specificity in biological environment due to the high level of endogenous Tf. Here we conjugated CRT peptide, an iron-mimicry moiety targeting the whole complex of Tf/TfR, to poly(ethylene glycol)-poly(l-lactic-co-glycolic acid) nanoparticles (CRT-NP), to open a new route to overcome such obstacle. High cellular associations, advanced transport ability through the BBB model, and penetration in 3-dimensional C6 glioma spheroids in vitro had preliminarily proved the advantages of CRT-NP over Tf-nanoparticle conjugates (Tf-NP). Compared with Tf-NP, NP, and Taxol, paclitaxel-loaded CRT-NP (CRT-NP-PTX) displayed a superior antiproliferation effect on C6 glioma cells and stronger inhibitory effect on glioma spheroids. Favored pharmacokinetics behavior and enhanced accumulation in glioma foci was observed, together with a much deeper distribution pattern in glioma parenchyma compared with unmodified nanoparticles and Tf-NP. Eventually, mice treated with CRT-NP-PTX showed a remarkably prolonged median survival compared to those treated with Taxol, NP, or Tf-NP. In conclusion, the modification of CRT to nanoparticles holds great promise for enhancement of antiglioma therapy. PMID:26149889

  16. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2

    PubMed Central

    Schmidt, Paul J.; Fleming, Mark D.

    2012-01-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2Y245X/Y245X mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, co-immunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. PMID:22460705

  17. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier

    SciTech Connect

    Friden, P.M.; Walus, L.R.; Musso, G.F.; Taylor, M.A.; Malfroy, B.; Starzyk, R.M. )

    1991-06-01

    Delivery of nonlipophilic drugs to the brain is hindered by the tightly apposed capillary endothelial cells that make up the blood-brain barrier. The authors have examined the ability of a monoclonal antibody (OX-26), which recognizes the rat transferrin receptor, to function as a carrier for the delivery of drugs across the blood-brain barrier. This antibody, which was previously shown to bind preferentially to capillary endothelial cells in the brain after intravenous administration, labels the entire cerebrovascular bed in a dose-dependent manner. The initially uniform labeling of brain capillaries becomes extremely punctate {approximately} 4 hr after injection, suggesting a time-dependent sequestering of the antibody. Capillary-depletion experiments, in which the brain is separated into capillary and parenchymal fractions, show a time-dependent migration of radiolabeled antibody from the capillaries into the brain parenchyma, which is consistent with the transcytosis of compounds across the blood-brain barrier. Antibody-methotrexate conjugates were tested in vivo to assess the carrier ability of this antibody. Immunohistochemical staining for either component of an OX-26-methotrexate conjugate revealed patterns of cerebrovascular labeling identical to those observed with the unaltered antibody. Accumulation of radiolabeled methotrexate in the brain parenchyma is greatly enhanced when the drug is conjugated to OX-26.

  18. Binding and release of iron by gel-encapsulated human transferrin: Evidence for a conformational search

    PubMed Central

    Navati, Mahantesh S.; Samuni, Uri; Aisen, Philip; Friedman, Joel M.

    2003-01-01

    Human transferrin is a single-chain bilobal protein with each of the two similar but not identical lobes in turn composed of two domains. Each lobe may assume one of two stable structural conformations, open or closed, determined by a rigid rotation of the domains with respect to each other. In solution, the transformation of a lobe between open and closed conformations is associated with the release or binding of an Fe(III) ion. The results of the present study indicate that encapsulation of transferrin within a porous sol-gel matrix allows for a dramatic expansion, to days or weeks, of this interconversion time period, thus providing an opportunity to probe heretofore inaccessible transient intermediates. Sol-gel-encapsulated iron-free transferrin samples are prepared by using two protocols. In the first protocol, the equilibrium form of apotransferrin is encapsulated in the sol-gel matrix, whereas in the second protocol holotransferrin is first encapsulated and then iron is removed from the protein. Results of kinetic and spectroscopic studies allow for distinguishing between two models for iron binding. In the first, iron is assumed to bind to amino acid ligands of one domain, inducing a rigid rotation of the second domain to effect closure of the interdomain cleft. In the second, iron undertakes a conformational search among the thermally accessible states of the lobe, “choosing” the state which most nearly approximates the stable closed state when iron is bound. Our experimental results support the second mechanism. PMID:12486226

  19. Equilibrium studies on the binding of cadmium(II) to human serum transferrin

    SciTech Connect

    Harris, W.R.; Madsen, L.J.

    1988-01-12

    The binding of cadmium(II) to human serum transferrin in 0.01 M N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid with 5 mM bicarbonate at 25/sup 0/C has been evaluated by difference ultraviolet spectroscopy. Equilibrium constants were determined by competition versus three different low molecular weight chelating agents: nitrilotriacetic acid, ethylenediamine-N,N'-diacetic acid, and triethylenetetramine. Conditional equilibrium constants for the sequential binding of two cadmium ions to transferrin under the stated experimental conditions are log K/sub 1/ = 5.95 +/- 0.10 and log K/sub 2/ = 4.86 +/- 0.13. A linear free energy relationship for the complexation of cadmium and zinc has been prepared by using equilibrium data on 243 complexes of these metal ions with low molecular weight ligands. The transferrin binding constants for cadmium and zinc are in good agreement with this linear free energy relationship. This indicates that the larger size of the cadmium(II) ion does not significantly hinder its binding to the protein.

  20. In vitro interaction between ceruloplasmin and human serum transferrin.

    PubMed

    Ha-Duong, Nguyêt-Thanh; Eid, Chantal; Hémadi, Miryana; El Hage Chahine, Jean-Michel

    2010-12-01

    The thermodynamics of the interactions of serum apotransferrin (T) and holotransferrin (TFe(2)) with ceruloplasmin (Cp), as well as those of human lactoferrin (Lf), were assessed by fluorescence emission spectroscopy. Cp interacts with two Lf molecules. The first interaction depends on pH and μ, whereas the second does not. Dissociation constants were as follows: K(11Lf) = 1.5 ± 0.2 μM, and K(12Lf) = 11 ± 2 μM. Two slightly different interactions of T or TFe(2) with Cp are detected for the first time. They are both independent of pH and μ and occur with 1:1 stoichiometry: K(1T) = 19 ± 7 μM, and K(1TFe2) = 12 ± 4 μM. These results can improve our understanding of the probable process of the transfer of iron from Cp to T in iron and copper transport and homeostasis. PMID:21049900

  1. Evaluation of serum transferrin receptor for iron deficiency in women of child-bearing age.

    PubMed

    Lin, Xiao-Ming; Zhang, Juan; Zou, Zhi-Yong; Long, Zhu; Tian, Wei

    2008-11-01

    The objective was to study the evaluation of serum transferrin receptor (sTfR) for Fe deficiency in women of child-bearing age. Primary screening was performed in 942 women ranging in child-bearing age. Serum ferritin (SF), Zn protoporphyrin (ZPP) and Hb were determined. Then the subjects were divided into four groups: normal, Fe store depletion (IDs), Fe-deficiency erythropoiesis and Fe-deficiency anaemia. sTfR was determined and sTfR/SF (sTfR/logSF and log(sTfR/SF)) was calculated. Changes of sTfR in women of different Fe status were observed. A receiver-operating characteristic (ROC) curve was used to evaluate whether sTfR had proper diagnostic efficacy for functional Fe deficiency. The levels of sTfR increased significantly along with the aggravation of Fe deficiency. Increase of STfR/SF along with the aggravation of Fe deficiency was more significant than that of sTfR. STfR had a significant negative correlation with SF and Hb, while it had a significant positive correlation with ZPP. The ROC curve showed that the diagnostic effective rate of sTfR for Fe deficiency could reach 83 %. At this point, the sensitivity was 79 % and the specificity was 63 %. Log(sTfR/SF) could be considered to have the highest effective ratio in detecting IDs, since it reached 99 %. STfR and sTfR/SF could both reflect body Fe-deficiency status specifically. They could be used as reliable indicators for evaluating Fe status and diagnosing Fe deficiency in women of child-bearing age. PMID:18377683

  2. Transferrin Receptor-Targeted Lipid Nanoparticles for Delivery of an Antisense Oligodeoxyribonucleotide against Bcl-2

    PubMed Central

    Yang, Xiaojuan; Koh, Chee Guan; Liu, Shujun; Pan, Xiaogang; Santhanam, Ramasamy; Yu, Bo; Peng, Yong; Pang, Jiuxia; Golan, Sharon; Talmon, Yeshayahu; Jin, Yan; Muthusamy, Natarajan; Byrd, John C.; Chan, Kenneth K.; Lee, L. James; Marcucci, Guido; Lee, Robert J.

    2013-01-01

    Antisense oligonucleotide G3139-mediated down-regulation of Bcl-2 is a potential strategy for overcoming chemoresistance in leukemia. However, the limited efficacy shown in recent clinical trials calls attention to the need for further development of novel and more efficient delivery systems. In order to address this issue, transferrin receptor (TfR)-targeted, protamine-containing lipid nanoparticles (Tf-LNs) were synthesized as delivery vehicles for G3139. The LNs were produced by an ethanol dilution method and lipid-conjugated Tf ligand was then incorporated by a post-insertion method. The resulting Tf-LNs had a mean particle diameter of ~ 90 nm and G3139 loading efficiency of 90.4%. Antisense delivery efficiency of Tf-LNs was evaluated in K562, MV4-11 and Raji leukemia cell lines. The results showed that Tf-LNs were more effective than non-targeted LNs and free G3139 (p <0.05) in decreasing Bcl-2 expression (by up to 62% at the mRNA level in K562 cells) and in inducing caspase-dependent apoptosis. In addition, Bcl-2 down-regulation and apoptosis induced by Tf-LN G3139 were shown to be blocked by excess free Tf and thus were TfR-dependent. Cell lines with higher TfR expression also showed greater Bcl-2 down-regulation. Furthermore, upregulation of TfR expression in leukemia cells by iron chelator deferoxamine resulted in a further increase in antisense effect (up to 79% Bcl-2 reduction in K562 at the mRNA level) and in caspase-dependent apoptosis (by ~ 3-fold) by Tf-LN. Tf-LN mediated delivery combined with TfR up-regulation by deferoxamine appears to be a potentially promising strategy for enhancing the delivery efficiency and therapeutic efficacy of antisense oligonucleotides. PMID:19183107

  3. Functional consequences of transferrin receptor-2 mutations causing hereditary hemochromatosis type 3.

    PubMed

    Joshi, Ricky; Shvartsman, Maya; Morán, Erica; Lois, Sergi; Aranda, Jessica; Barqué, Anna; de la Cruz, Xavier; Bruguera, Miquel; Vagace, José Manuel; Gervasini, Guillermo; Sanz, Cristina; Sánchez, Mayka

    2015-05-01

    Hereditary hemochromatosis (HH) type 3 is an autosomal recessive disorder of iron metabolism characterized by excessive iron deposition in the liver and caused by mutations in the transferrin receptor 2 (TFR2) gene. Here, we describe three new HH type 3 Spanish families with four TFR2 mutations (p.Gly792Arg, c.1606-8A>G, Gln306*, and Gln672*). The missense variation p.Gly792Arg was found in homozygosity in two adult patients of the same family, and in compound heterozygosity in an adult proband that also carries a novel intronic change (c.1606-8A>G). Two new nonsense TFR2 mutations (Gln306* and Gln672*) were detected in a pediatric case. We examine the functional consequences of two TFR2 variants (p.Gly792Arg and c.1606-8A>G) using molecular and computational methods. Cellular protein localization studies using immunofluorescence demonstrated that the plasma membrane localization of p.Gly792Arg TFR2 is impaired. Splicing studies in vitro and in vivo reveal that the c.1606-8A>G mutation leads to the creation of a new acceptor splice site and an aberrant TFR2 mRNA. The reported mutations caused HH type 3 by protein truncation, altering TFR2 membrane localization or by mRNA splicing defect, producing a nonfunctional TFR2 protein and a defective signaling transduction for hepcidin regulation. TFR2 genotyping should be considered in adult but also in pediatric cases with early-onset of iron overload. PMID:26029709

  4. Glutaminolysis and Transferrin Regulate Ferroptosis.

    PubMed

    Gao, Minghui; Monian, Prashant; Quadri, Nosirudeen; Ramasamy, Ravichandran; Jiang, Xuejun

    2015-07-16

    Ferroptosis has emerged as a new form of regulated necrosis that is implicated in various human diseases. However, the mechanisms of ferroptosis are not well defined. This study reports the discovery of multiple molecular components of ferroptosis and its intimate interplay with cellular metabolism and redox machinery. Nutrient starvation often leads to sporadic apoptosis. Strikingly, we found that upon deprivation of amino acids, a more rapid and potent necrosis process can be induced in a serum-dependent manner, which was subsequently determined to be ferroptosis. Two serum factors, the iron-carrier protein transferrin and amino acid glutamine, were identified as the inducers of ferroptosis. We further found that the cell surface transferrin receptor and the glutamine-fueled intracellular metabolic pathway, glutaminolysis, played crucial roles in the death process. Inhibition of glutaminolysis, the essential component of ferroptosis, can reduce heart injury triggered by ischemia/reperfusion, suggesting a potential therapeutic approach for treating related diseases. PMID:26166707

  5. Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway.

    PubMed

    Schaffert, David H; Okholm, Anders H; Sørensen, Rasmus S; Nielsen, Jesper S; Tørring, Thomas; Rosen, Christian B; Kodal, Anne Louise B; Mortensen, Michael R; Gothelf, Kurt V; Kjems, Jørgen

    2016-05-01

    DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface. PMID:27032044

  6. Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa.

    PubMed

    Reyes-López, Magda; Piña-Vázquez, Carolina; Serrano-Luna, Jesús

    2015-01-01

    Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites. PMID:26090431

  7. Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa

    PubMed Central

    Serrano-Luna, Jesús

    2015-01-01

    Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites. PMID:26090431

  8. SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles

    PubMed Central

    Kubo, Keiji; Kobayashi, Minako; Nozaki, Shohei; Yagi, Chikako; Hatsuzawa, Kiyotaka; Katoh, Yohei; Shin, Hye-Won; Takahashi, Senye; Nakayama, Kazuhisa

    2015-01-01

    ABSTRACT We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25. PMID:26092867

  9. SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles.

    PubMed

    Kubo, Keiji; Kobayashi, Minako; Nozaki, Shohei; Yagi, Chikako; Hatsuzawa, Kiyotaka; Katoh, Yohei; Shin, Hye-Won; Takahashi, Senye; Nakayama, Kazuhisa

    2015-01-01

    We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)-transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn-TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn-TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25. PMID:26092867

  10. Escape from bacterial iron piracy through rapid evolution of transferrin

    PubMed Central

    Barber, Matthew F.; Elde, Nels C.

    2015-01-01

    Iron sequestration provides an innate defense termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens. PMID:25504720

  11. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non–transferrin-bound iron

    PubMed Central

    Brittenham, Gary M.; Billote, Genia B.; Francis, Richard O.; Ginzburg, Yelena Z.; Hendrickson, Jeanne E.; Jhang, Jeffrey; Schwartz, Joseph; Sharma, Shruti; Sheth, Sujit; Sireci, Anthony N.; Stephens, Hannah L.; Stotler, Brie A.; Wojczyk, Boguslaw S.; Zimring, James C.; Spitalnik, Steven L.

    2011-01-01

    Transfusions of RBCs stored for longer durations are associated with adverse effects in hospitalized patients. We prospectively studied 14 healthy human volunteers who donated standard leuko-reduced, double RBC units. One unit was autologously transfused “fresh” (3-7 days of storage), and the other “older” unit was transfused after 40 to 42 days of storage. Of the routine laboratory parameters measured at defined times surrounding transfusion, significant differences between fresh and older transfusions were only observed in iron parameters and markers of extravascular hemolysis. Compared with fresh RBCs, mean serum total bilirubin increased by 0.55 mg/dL at 4 hours after transfusion of older RBCs (P = .0003), without significant changes in haptoglobin or lactate dehydrogenase. In addition, only after the older transfusion, transferrin saturation increased progressively over 4 hours to a mean of 64%, and non–transferrin-bound iron appeared, reaching a mean of 3.2μM. The increased concentrations of non–transferrin-bound iron correlated with enhanced proliferation in vitro of a pathogenic strain of Escherichia coli (r = 0.94, P = .002). Therefore, circulating non–transferrin-bound iron derived from rapid clearance of transfused, older stored RBCs may enhance transfusion-related complications, such as infection. The trial was registered with www.clinicaltrials.gov as #NCT01319552. PMID:22021369

  12. Immunoregulation by low density lipoproteins in man. Inhibition of mitogen-induced T lymphocyte proliferation by interference with transferrin metabolism.

    PubMed Central

    Cuthbert, J A; Lipsky, P E

    1984-01-01

    Human low density lipoprotein (LDL, d = 1.020-1.050 g/ml) inhibits mitogen-stimulated T lymphocyte DNA synthesis. Because both LDL and transferrin bind to specific cell surface receptors and enter cells by the similar means of receptor-mediated endocytosis, and because transferrin is necessary for lymphocyte DNA synthesis, we investigated the possibility that LDL may inhibit mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL inhibited mitogen-stimulated lymphocyte [3H]thymidine incorporation in a concentration-dependent manner. The degree of inhibition was most marked in serum-free cultures, but was also observed in serum-containing cultures. The addition of transferrin not only augmented mitogen-induced lymphocyte [3H]thymidine incorporation in serum-free medium but also completely reversed the inhibitory effect of LDL in both serum-free and serum-containing media. Similar results were obtained when lymphocyte proliferation was assayed by counting the number of cells in culture. Transferrin also reversed the inhibition of lymphocyte responses caused by very low density lipoproteins and by cholesterol. The ability of transferrin to reverse the inhibitory effect of lipoproteins was specific, in that native but not denatured transferrin was effective whereas a variety of other proteins were ineffective. These results indicate that LDL inhibits mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL only inhibited lymphocyte responses after a 48-h incubation if present from the initiation of the culture. By contrast, transferrin reversed inhibition when added after 24 h of the 48-h incubation. LDL did not inhibit lymphocyte responses by nonspecifically associating with transferrin. In addition, the acquisition of specific lymphocyte transferrin receptors was not blocked by LDL. Moreover, transferrin did not prevent the binding and uptake of fluorescent-labeled LDL by activated lymphocytes

  13. Transferrin-bearing maghemite nano-constructs for biomedical applications

    NASA Astrophysics Data System (ADS)

    Piraux, H.; Hai, J.; Gaudisson, T.; Ammar, S.; Gazeau, F.; El Hage Chahine, J. M.; Hémadi, M.

    2015-05-01

    Superparamagnetic nanoparticles (NPs) are widely used in biomedicine for hyperthermia and magnetic resonance imagery. Targeting them to specific cancerous cells is, therefore, of a great value for therapy and diagnostic. Transferrin and its receptor constitute the major iron-acquisition system in human. The former crosses the plasma membrane within a few minutes by receptor-mediated endocytosis. Thus, transferrin can be a valuable vector for the delivery of NPs to specific cells and across the blood brain barrier. For such a purpose, three different sizes of maghemite NPs (5, 10, and 15 nm) were synthesized by the polyol method, coated with 3-aminopropyltriethoxysilane, and coupled to transferrin by amide bonds. The number of transferrins per nanoparticle was determined. Raw nanoparticles and the "transferrin-nanoparticle" constructs were characterized. The magnetic properties and the colloidal stability of raw NPs and transferrin-NP constructs were measured and analyzed in relation to their inorganic core size variation. They all proved to be good candidates for nanoparticle targeting for biomedical application.

  14. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia

    PubMed Central

    Perez Bay, Andres E; Schreiner, Ryan; Mazzoni, Francesca; Carvajal-Gonzalez, Jose M; Gravotta, Diego; Perret, Emilie; Lehmann Mantaras, Gullermo; Zhu, Yuan-Shan; Rodriguez-Boulan, Enrique J

    2013-01-01

    Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis. PMID:23749212

  15. Evidence for the interaction of the hereditary haemochromatosis protein, HFE, with the transferrin receptor in endocytic compartments.

    PubMed Central

    Davies, Paige S; Zhang, An-Sheng; Anderson, Emily L; Roy, Cindy N; Lampson, Michael A; McGraw, Timothy E; Enns, Caroline A

    2003-01-01

    HFE, the protein mutated in hereditary haemochromatosis type 1, is known to interact with the transferrin receptor (TfR) on the cell surface and during endocytosis [Gross, Irrinki, Feder and Enns (1998) J. Biol. Chem. 273, 22068-22074; Roy, Penny, Feder and Enns (1999) J. Biol. Chem. 274, 9022-9028]. However, whether they are capable of interacting with each other once inside the cell is not known. In the present study we present several lines of evidence that they do interact in endosome compartments. Cells expressing a chimaera of HFE protein with the cytoplasmic domain of lysosomal-associated membrane protein 1 (LAMP1) in place of its own (HFE-LAMP) show a decrease in the half-life of the TfR. This implies that the interaction between HFE and TfR in endosomes targets the TfR to lysosomal compartments. The interaction between TfR and HFE-LAMP was confirmed by immunoprecipitation, in addition to immunofluorescence studies. Addition of transferrin (Tf) to HFE-LAMP-expressing cells competes with HFE for binding to the TfR, thereby increasing the half-life of TfR and confirming that the HFE-LAMP-TfR complex reaches the cell surface prior to entering the endosomal vesicles and trafficking to the lysosome. These results raise the possibility that interaction of HFE and TfR in intracellular vesicles may play an important role in determining the function of HFE in iron homoeostasis, which is still unknown. Analysis of endosomal pH and the iron content of internalized Tf indicated that HFE does not appear to alter the unloading of iron from Tf in the endosome. PMID:12667138

  16. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes.

    PubMed

    Chiu, Shih-Jiuan; Liu, Shujun; Perrotti, Danilo; Marcucci, Guido; Lee, Robert J

    2006-05-15

    A novel transferrin receptor (TfR)-targeted liposomal formulation was synthesized and evaluated for the delivery of a phosphorothioate antisense oligodeoxyribonucleotide (ODN) (G3139, oblimerson sodium, or Genasense) to Bcl-2 in K562 leukemia cells. Liposomes composed of DC-Chol/egg PC/PEG-DSPE (25:73.5:1.5, mol/mol/mol) were loaded with G3139 with high efficiency (70-80%). To prepare targeted liposomes, transferrin was first coupled to PEG-DSPE and then incorporated into the bilayer by post-insertion. The liposomes had a mean diameter of 100 to 150 nm and exhibited colloidal stability for up to 8 weeks. Uptake of Tf-conjugated G3139-containing liposomes in TfR positive K562 cells was found to be more efficient than that of the non-targeted control formulation and could be blocked by excess free Tf. Treatment with Tf-conjugated liposomes resulted in Bcl-2 protein downregulation in K562 cells that was approximately 2-fold greater than with non-targeted liposomes (p<0.05) and 10-fold greater than with free G3139. Treatment with 2 microM G3139 in Tf-conjugated liposomes resulted in >80% reduction in Bcl-2 transcript. In addition, Tf-conjugated liposomal G3139-sensitized K562 cells to daunorubicin, lowering IC50 from 1.8 microM to 0.18 microM. In conclusion, Tf-conjugated liposomes are effective delivery vehicles for G3139 antisense oligos in TfR positive K562 cells and warrant further investigation as an in vivo oligo delivery vehicle. PMID:16564596

  17. The distribution of iron between the metal-binding sites of transferrin human serum.

    PubMed

    Williams, J; Moreton, K

    1980-02-01

    The Makey & Seal [(1976) Biochim. Biophys. Acta 453, 250--256] method of polyacrylamide-gel electrophoresis in buffer containing 6 M-urea was used to determine the distribution of iron between the N-terminal and C-terminal iron-binding sites of transferrin in human serum. In fresh serum the two sites are unequally occupied; there is preferential occupation of the N-terminal site. On incubation of the serum at 37 degrees C the preference of iron for the N-terminal site becomes more marked. On storage of serum at -15 degrees C the iron distribution changes so that there is a marked preference for the C-terminal site. Dialysis of serum against buffer at pH 7.4 also causes iron to be bound much more strongly by the C-terminal than by the N-terminal site. The original preference for the N-terminal site can be resroted to the dialysed serum by addition of the diffusible fraction. PMID:7396826

  18. The distribution of iron between the metal-binding sites of transferrin human serum.

    PubMed Central

    Williams, J; Moreton, K

    1980-01-01

    The Makey & Seal [(1976) Biochim. Biophys. Acta 453, 250--256] method of polyacrylamide-gel electrophoresis in buffer containing 6 M-urea was used to determine the distribution of iron between the N-terminal and C-terminal iron-binding sites of transferrin in human serum. In fresh serum the two sites are unequally occupied; there is preferential occupation of the N-terminal site. On incubation of the serum at 37 degrees C the preference of iron for the N-terminal site becomes more marked. On storage of serum at -15 degrees C the iron distribution changes so that there is a marked preference for the C-terminal site. Dialysis of serum against buffer at pH 7.4 also causes iron to be bound much more strongly by the C-terminal than by the N-terminal site. The original preference for the N-terminal site can be resroted to the dialysed serum by addition of the diffusible fraction. Images Fig. 1. PMID:7396826

  19. Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells.

    PubMed Central

    Mwanjewe, James; Grover, Ashok K

    2004-01-01

    Cells take up transferrin-bound iron or NTBI (non-transferrin-bound iron). After treatment with NGF (nerve growth factor), PC12 cells exhibited a neuronal phenotype and an increase in the NTBI uptake (55Fe2+ or 55Fe3+). We loaded the cells with the dye calcein, whose fluorescence increases in the presence of Ca2+ but is quenched with Fe2+ or Fe3+. When examined using calcein fluorescence or radioactive iron, DAG (diacylglycerol)-stimulated NTBI entry was more in NGF-treated PC12 cells compared with untreated cells. All experiments were performed at 1.5 mM extracellular Ca2+. Nramp2 (natural-resistance-associated macrophage protein 2) mRNA expression did not change after the NGF treatment. Expression of the bivalent cation entry protein TRPC6 (transient receptor potential canonical 6) was detected only in the NGF-treated cells. To verify that increased NTBI uptake depended on TRPC6, we examined whether transfecting HEK-293 (human embryonic kidney 293) cells with TRPC6 also increased the NTBI (55Fe) uptake. We also cotransfected HEK-293 cells with two plasmids, one expressing TRPC6 and the other expressing the fluorescent protein DsRED2 to identify the transfected cells. Challenging the calcein-loaded HEK-293 cells (which intrinsically express the a1-adrenergic receptors) with phenylephrine or a cell-permeant DAG increased the fluorescence signal more rapidly in transfected cells compared with untransfected cells. However, when iron (Fe2+ and Fe3+) was added before adding phenylephrine or DAG, the fluorescence intensity decreased more rapidly in transfected cells compared with untransfected cells, thereby indicating a greater stimulation of the NTBI uptake in cells expressing TRPC6. We postulate that the increase in the NTBI entry into neuronal PC12 cells is through TRPC6, a pathway that is unique since it is receptor-stimulated. Since neuronal cells express TRPC6, this pathway may have a role in neurotoxicity. PMID:14640978

  20. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation

    PubMed Central

    Tillotson, Benjamin J.; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.

    2015-01-01

    The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870

  1. Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1.

    PubMed

    Daniels-Wells, Tracy R; Helguera, Gustavo; Rodríguez, José A; Leoh, Lai Sum; Erb, Michael A; Diamante, Graciel; Casero, David; Pellegrini, Matteo; Martínez-Maza, Otoniel; Penichet, Manuel L

    2013-02-01

    We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin. PMID:23085102

  2. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa.

    PubMed Central

    Wolz, C; Hohloch, K; Ocaktan, A; Poole, K; Evans, R W; Rochel, N; Albrecht-Gary, A M; Abdallah, M A; Döring, G

    1994-01-01

    Pseudomonas aeruginosa produces the siderophores pyoverdin and pyochelin as well as receptors for siderophores in response to iron deprivation. Previously, it has been shown in vitro that at neutral pH purified pyoverdin acquires iron from transferrin only in the presence of P. aeruginosa elastase (LasB), which proteolytically degrades transferrin. We constructed a LasB-negative mutant, PAO1E, by insertional mutagenesis to investigate whether this mutant differs in growth from the parental strain PAO1 in an iron-depleted medium supplemented with transferrin or human serum. PAO1 and PAO1E did not differ in growth with 1.25 microM Fe2-transferrin as the only iron source. Urea gel electrophoresis indicated iron release from intact transferrin during the logarithmic growth phase of PAO1 and PAO1E. A total of 333 microM LasB was synthesized from PAO1 after onset of stationary-phase growth. Quantification of pyoverdin by spectroscopy revealed that up to 900 microM pyroverdin was produced during growth of the strains in medium supplemented with Fe2-transferrin or 10% human serum. Incubation of Fe2-transferrin and purified pyoverdin in concentrations similar to those found in the culture supernatant resulted in release iron from transferrin after 10 h at 37 degrees C. However, LasB significantly enhanced the rate constant for iron acquisition of pyoverdin from transferrin. We conclude that P. aeruginosa can use transferrin as an iron source without further need of LasB or pH changes. This is further supported by experiments with P. aeruginosa K437, which has a defective iron uptake system, and its LasB-negative mutant, K437E. Though K437 and K437E did not differ in growth with Fe2-transferrin as the only iron source, their growth was significantly reduced relative to that of PAO1 and PAO1E. Images PMID:8063422

  3. Anti-transferrin receptor-modified amphotericin B-loaded PLA–PEG nanoparticles cure Candidal meningitis and reduce drug toxicity

    PubMed Central

    Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Xie, Chunmei; Yao, Aixia; Chen, Li; Jiang, Qinglin; Liu, Tingting; Wang, Xiaoyu; Qian, Yunyun; Wei, Jia; Ni, Wenxuan; Dai, Jingjing; Jiang, Zhenyou; Hou, Wei

    2015-01-01

    Fatal fungal infections in central nervous system (CNS) can occur through hematogenous spread or direct extension. At present, hydrophobic amphotericin B (AMB) is the most effective antifungal drug in clinical trials. However, AMB is hydrophobic and therefore penetrates poorly into the CNS, and therapeutic levels of AMB are hard to achieve. The transferrin receptor (TfR/CD71) located at the blood–brain barrier mediates transferrin transcytosis. In order to enhance the receptor-mediated delivery of AMB into CNS with therapeutic level, an anti-TfR antibody (OX26)-modified AMB-loaded PLA (poly[lactic acid])–PEG (polyethylene glycol)-based micellar drug delivery system was constructed. The prepared OX26-modified AMB-loaded nanoparticles (OX26-AMB-NPs) showed significant reduction of CNS fungal burden and an increase of mouse survival time. In conclusion, OX26-AMB-NPs represent a promising novel drug delivery system for intracerebral fungal infection. PMID:26491294

  4. Fungistatic mechanism of human transferrin for Rhizopus oryzae and Trichophyton mentagrophytes: alternative to simple iron deprivation.

    PubMed Central

    Artis, W M; Patrusky, E; Rastinejad, F; Duncan, R L

    1983-01-01

    Human serum, human transferrin (TF), and the iron chelator 1,10-phenanthroline (OP) produce iron-reversible fungistatic activity which has been attributed to simple iron deprivation. In this study, the influence of the size of the inoculum on the inhibitory activity of serum, TF, and OP prepared with the same iron-binding capacity (2.5 micrograms/ml) for Rhizopus oryzae and Trichophyton mentagrophytes was examined. Inhibition was monitored in liquid microcultures maintained at 37 degrees C and pH 7.4 to 7.5 by measuring the change in absorbance density. Increasing the number of spores in the inoculum disrupted the fungistatic activity of serum and TF, but not that of OP. The dilution at which OP lost fungistatic activity was not affected by the number of spores in the inoculum and was the same for both fungi. The dilution at which TF and serum lost fungistatic activity was dependent upon both the quantity of the inoculum and the species of fungus. The number of viable spores, rather than the total number of spores in the inoculum, was determined to be important in overcoming the inhibition of fungal growth by serum and TF. The fungistatic activity of serum and TF could be diminished by the preexposure of the serum to viable but nongrowing spores. Direct and indirect fluorescence studies indicated that both T. mentagrophytes and R. oryzae absorbed TF. Glucose uptake by R. oryzae was inhibited by a 4-h exposure to 5.0 to 0.15 mg of apotransferrin per ml. These results suggest that the fungistatic activity of TF for R. oryzae and T. mentagrophytes may not be attributable to simple iron deprivation and raise the possibility of a requirement for a direct interaction. Images PMID:6885162

  5. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors.

    PubMed

    Lee, Donald W; Allison, Andrew B; Bacon, Kaitlyn B; Parrish, Colin R; Daniel, Susan

    2016-05-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons-a newly recognized CPV host-to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity. PMID:26889026

  6. Separation of tryptophan-derivative enantiomers with iron-free human serum transferrin by capillary zone electrophoresis.

    PubMed

    Kilár, F; Fanali, S

    1995-08-01

    Enantiomers can be separated by using human serum transferrin as a chiral phase. With the help of the native protein we were able to separate enantiomers with high efficiency, using a low ionic strength 2-(N-morpholino)ethanesulfonic acid (MES) buffer, pH 6, in capillary zone electrophoresis. Tryptophan methyl, ethyl and butyl ester enantiomers-moving towards the cathode at pH 6-were resolved by passing through an iron-free transferrin zone in coated capillaries. Since the isoelectric point of the iron-free transferrin is a little higher than 6, the protein zone is either not moving in the experiment or is slowly moving towards the anode. Under the simplest experimental conditions the highest resolution was obtained for the butyl ester enantiomers and the lowest for the methyl ester ones. By changing the experimental conditions, however, this order could be reversed. The results indicate that the lengths of the alkyl chains in the enantiomers have a significant effect on the resolution, i.e., on the interaction between the protein and the separands. PMID:8529623

  7. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment.

    PubMed

    Loureiro, Joana A; Gomes, Bárbara; Fricker, Gert; Coelho, Manuel A N; Rocha, Sandra; Pereira, Maria Carmo

    2016-09-01

    During the last few decades, relevant efforts have been reported to design nanocarriers for drug transport through the blood brain barrier (BBB). New drugs, such as peptide iAβ5, capable to inhibit the aggregates associated with Alzheimeŕs disease (AD) are being tested but the most frequent drawback is to reach the brain in the desired concentrations due to the low BBB permeability-surface area. Our approach, as a proof of concept to improve drug transport through the BBB, is based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles with surface functionalized with anti-transferrin receptor monoclonal antibody (OX26) and anti-Aβ (DE2B4) to deliver encapsulated iAβ5 into the brain. Porcine brain capillary endothelial cells (PBCECs) were used as a BBB model to evaluate the system efficacy and toxicity. The uptake of immune nanoparticles with a controlled delivery of the peptide iAβ5 was substantially increased compared to the nanoparticles (NPs) without monoclonal antibody functionalization. PMID:27131092

  8. Transferrin Receptor Targeted Lipopolyplexes for Delivery of Antisense Oligonucleotide G3139 in a Murine K562 Xenograft Model

    PubMed Central

    Zhang, Xulang; Koh, Chee Guan; Yu, Bo; Liu, Shujun; Piao, Longzhu; Marcucci, Guido; Lee, Robert J.; Lee, L. James

    2013-01-01

    Purpose Transferrin (Tf) conjugated lipopolyplexes (LPs) carrying G3139, an antisense oligonucleotide for Bcl-2, were synthesized and evaluated in Tf receptor positive K562 erythroleukemia cells and then in a murine K562 xenograft model. Materials and Methods Particle size and Zeta potentials of transferrin conjugated lipopolyplexs containing G3139 (Tf-LP-G3139) were measured by Dynamic Light Scattering and ZetaPALS. In vitro and in vivo sample’s Bcl-2 downregulation was analyzed using Western blot and tumor tissue samples also exhibited by immunohistochemistry method. For athymic mice bearing with K562 xenograft tumors, tumor growth inhibition and survival rate were investigated. Nanoparticle distribution in 3-D cell cluster was observed by Laser scan confocal microscopy. IL-12 production in the plasma was measured by ELISA kit. Results In vitro, Tf-LP-G3139 was more effective in inducing down regulation of Bcl-2 in K562 cells than non-targeted LP-G3139, free G3139 and mismatched control ODN-G4126 in the same formulation. In vivo Tf-LP-G3139 was less effective than free G3139 in Bcl-2 down regulation. 3-D cell cluster model diffusion results indeed indicated limited penetration of the LPs into the cell cluster. Finally, the therapeutic efficacies of Tf-LP-G3139 and free G3139 were determined in the K562 xenograft model. Tf-LP-G3139 showed slower plasma clearance, higher AUC, and greater accumulation in the tumor compared to free G3139. In addition, Tf-LP-G3139 was found to be more effective in tumor growth inhibition and prolonging mouse survival than free G3139. This was associated with increased spleen weight and IL-12 production in the plasma. Conclusion The role of the immune system in the therapeutic response obtained with the Tf-LPs is necessary and in vitro 3-D cell cluster model can be a potential tool to evaluate the nanoparticle distribution. PMID:19291371

  9. Immune responses in humans and animals to meningococcal transferrin-binding proteins: implications for vaccine design.

    PubMed Central

    Ala'Aldeen, D A; Stevenson, P; Griffiths, E; Gorringe, A R; Irons, L I; Robinson, A; Hyde, S; Borriello, S P

    1994-01-01

    The results reported here show that the two meningococcal transferrin-binding proteins (TBP1 and TBP2) generate different immune responses in different host species and that there is variation in response dependent on the method of antigen preparation and possibly the route of administration. Mice immunized with either whole cells of Neisseria meningitidis SD (B:15:P1.16) or the isolated TBP1-TBP2 complex from the same strain produced antisera which, when tested against a representative panel of meningococcal isolates by Western blotting (immunoblotting), recognized some but not all heterologous TBP2 molecules. In contrast, rabbit antisera raised to the same preparations were cross-reactive with almost all the TBP2 molecules. The immune response to TBP1 was also host species dependent. Western blot analysis with denatured TBP1 failed to detect antibodies in antisera raised in mice to whole cells or in a rabbit to the TBP1-TBP2 complex but detected broadly cross-reactive antibodies in mouse anti-TBP1-TBP2 complex sera and strain-specific antibodies in rabbit anti-whole-cell serum. Human convalescent-phase sera obtained from five patients infected with meningococci of different serogroups and serotypes contained fully cross-reactive antibodies to TBP2 but no anti-TBP1 antibodies, when examined on Western blots. However, on dot immunoblots, the same patients' sera, as well as the mouse anti-whole cell and the rabbit anti-TBP1-TBP2 complex sera, reacted with purified biologically active TBP1 of strain SD. This indicates that native TBP1, a protein which loses its biological and some of its immunological activities when denatured, is immunogenic and that humans generate cross-reactive antibodies to native epitopes. These observations have important implications for assessing the vaccine potential of TBPs and other meningococcal antigens. Conclusions regarding the usefulness of TBPs as candidate components of meningococcal serogroup B vaccines based on results from

  10. Distinct cellular responses induced by saporin and a transferrin-saporin conjugate in two different human glioblastoma cell lines.

    PubMed

    Cimini, A; Mei, S; Benedetti, E; Laurenti, G; Koutris, I; Cinque, B; Cifone, M G; Galzio, R; Pitari, G; Di Leandro, L; Giansanti, F; Lombardi, A; Fabbrini, M S; Ippoliti, R

    2012-03-01

    Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ~12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A (IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternative intracellular pathways. PMID:21503892

  11. Identification of new binding sites of human transferrin incubated with organophosphorus agents via Q Exactive LC-MS/MS.

    PubMed

    Sun, Fengjuan; Ding, Junjie; Yu, Huilan; Gao, Runli; Wang, Hongmei; Pei, Chengxin

    2016-06-01

    Organophosphorus agents (OPs) like sarin, VX, or soman could inhibit acetylcholinesterase activity and cause poisoning. OPs could bind many proteins, such as butyrylcholinesterase and albumin, and the adducts formed could identify the exposure. In this paper, we studied human transferrin, which was one of the proteins that could be labeled by OPs. Pure human transferrin was incubated with an overdose of organophosphorus agents, including sarin, soman, VX, tabun, cyclosarin, ethyl tabun, and propyl tabun, and then additional OPs was removed through dialysis. Trypsin was used to cleave the OP-treated proteins and Q Exactive liquid chromatography tandem mass spectrometry (Q Exactive LC-MS/MS) was used to identify them. The present study set out to accomplish two goals. The first goal was to find a good method for identifying multiple binding sites on a given protein through Q Exactive LC-MS/MS. The second goal was to investigate the labeled peptides when transferrin was incubated with a numerous molar excess of OPs. Results showed that tyrosine, lysine, and serine formed covalent bonds with OPs. Twenty OP-labeled sites were found: ten tyrosine sites (including two reported sites), seven lysine sites, and three serine sites. Characteristic fragments for labeled-tyrosine and labeled-lysine adducts were summarized in detail. In conclusion, the method by Q Exactive LC-MS/MS using in this present work is a good way to diagnose exposure to OPs accurately when the binding sites of OPs are uncertain. Novel modified peptides and the characteristic ions found in this work could help investigators assess exposure to OPs. PMID:27128859

  12. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    SciTech Connect

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori; Masuko, Kazue; Hashimoto, Yoshiyuki; Masuko, Takashi

    2008-03-21

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in the cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.

  13. Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during iron-deficient anemia.

    PubMed

    Rishi, Gautam; Secondes, Eriza S; Wallace, Daniel F; Subramaniam, V Nathan

    2016-08-01

    Iron metabolism and erythropoiesis are inherently interlinked physiological processes. Regulation of iron metabolism is mediated by the iron-regulatory hormone hepcidin. Hepcidin limits the amount of iron released into the blood by binding to and causing the internalization of the iron exporter, ferroportin. A number of molecules and physiological stimuli, including erythropoiesis, are known to regulate hepcidin. An increase in erythropoietic demand decreases hepcidin, resulting in increased bioavailable iron in the blood. Transferrin receptor 2 (TFR2) is involved in the systemic regulation of iron metabolism. Patients and mice with mutations in TFR2 develop hemochromatosis due to inappropriate hepcidin levels relative to body iron. Recent studies from our laboratory and others have suggested an additional role for TFR2 in response to iron-restricted erythropoiesis. These studies used mouse models with perturbed systemic iron metabolism: anemic mice lacking matriptase-2 and Tfr2, or bone marrow transplants from iron-loaded Tfr2 null mice. We developed a novel transgenic mouse model which lacks Tfr2 in the hematopoietic compartment, enabling the delineation of the role of Tfr2 in erythroid development without interfering with its role in systemic iron metabolism. We show that in the absence of hematopoietic Tfr2 immature polychromatic erythroblasts accumulate with a concordant reduction in the percentage of mature erythroid cells in the spleen and bone marrow of anemic mice. These results demonstrate that erythroid Tfr2 is essential for an appropriate erythropoietic response in iron-deficient anemia. These findings may be of relevance in clinical situations in which an immediate and efficient erythropoietic response is required. Am. J. Hematol. 91:812-818, 2016. © 2016 Wiley Periodicals, Inc. PMID:27169626

  14. Conjugation of an anti transferrin receptor IgG3-avidin fusion protein with biotinylated saporin results in significant enhancement of its cytotoxicity against malignant hematopoietic cells.

    PubMed

    Daniels, Tracy R; Ng, Patrick P; Delgado, Tracie; Lynch, Maureen R; Schiller, Gary; Helguera, Gustavo; Penichet, Manuel L

    2007-11-01

    We have previously developed an antibody fusion protein composed of a mouse/human chimeric IgG3 specific for the human transferrin receptor genetically fused to avidin (anti-hTfR IgG3-Av) as a universal delivery system for cancer therapy. This fusion protein efficiently delivers biotinylated FITC into cancer cells via TfR-mediated endocytosis. In addition, anti-hTfR IgG3-Av alone exhibits intrinsic cytotoxic activity and interferes with hTfR recycling, leading to the rapid degradation of the TfR and lethal iron deprivation in certain malignant B-cell lines. We now report on the cytotoxic effects of a conjugate composed of anti-hTfR IgG3-Av and biotinylated saporin 6 (b-SO6), a toxin derived from the plant Saponaria officinalis that inhibits protein synthesis. Conjugation of anti-hTfR IgG3-Av with b-SO6 enhances the cytotoxic effect of the fusion protein in sensitive cells and also overcomes the resistance of malignant cells that show low sensitivity to the fusion protein alone. Our results show for the first time that loading anti-hTfR IgG3-Av with a biotinylated toxin enhances the cytotoxicity of the fusion protein alone. These results suggest that anti-hTfR IgG3-Av has great potential as a therapeutic agent for a wide range of applications due to its intrinsic cytotoxic activity plus its ability to deliver biotinylated molecules into cancer cells. PMID:18025284

  15. Real-time observation of the effect of iron on receptor-mediated endocytosis of transferrin conjugated with quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Li; Li, Yong-Qiang; Zhang, Ming-Zhen; Zhao, Yuan-Di

    2010-07-01

    The optical properties of antiphotobleaching and the advantage of long-term fluorescence observation of quantum dots are fully adopted to study the effects of iron on the endocytosis of transferrin. Quantum dots are labeled for transferrin and endocytosis of transferrin in HeLa cells is observed under the normal state, iron overloading, and an iron-deficient state. In these three states, the fluorescence undergoes a gradual process of first dark, then light, and finally dark, indicating the endocytosis of transferrin. The fluorescence intensity analysis shows that a platform emerges when fluorescence changes to a certain degree in the three states. Experienced a same period of time after platform, the fluorescence strength of cells in the normal state is 1.2 times the first value, and the iron-deficiency state is 1.4 times, but the iron overloading state was 0.85 times. We also find that the average fluorescence intensity in cells detected by the spectrophotometer in the iron-deficiency state is almost 7 times than that in a high iron state. All this proves that iron overloading would slow the process, but iron deficiency would accelerate endocytosis. We advance a direct observational method that may contribute to further study of the relationship of iron and transferrin.

  16. Transferrin-Polycation Conjugates as Carriers for DNA Uptake into Cells

    NASA Astrophysics Data System (ADS)

    Wagner, Ernst; Zenke, Martin; Cotten, Matt; Beug, Hartmut; Birnstiel, Max L.

    1990-05-01

    We have developed a high-efficiency nucleic acid delivery system that uses receptor-mediated endocytosis to carry DNA macromolecules into cells. We accomplished this by conjugating the iron-transport protein transferrin to polycations that bind nucleic acids. Human transferrin, as well as the chicken homologue conalbumin, has been covalently linked to the small DNA-binding protein protamine or to polylysines of various sizes through a disulfide linkage. These modified transferrin molecules maintain their ability to bind their cognate receptor and to mediate efficient iron transport into the cell. The transferrin-polycation molecules form electrophoretically stable complexes with double-stranded DNA, single-stranded DNA, and modified RNA molecules independent of nucleic acid size (from short oligonucleotides to DNA of 21 kilobase pairs). When complexes of transferrin-polycation and a bacterial plasmid DNA containing the gene for Photinus pyralis luciferase are supplied to eukaryotic cells, high-level expression of the luciferase gene occurs, demonstrating transferrin receptor-mediated endocytosis and expression of the imported DNA. We refer to this delivery system as "transferrinfection."

  17. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    SciTech Connect

    Jensen, M. P.; Gorman-Lewis, D.; Aryal, B. P.; Paunesku, T.; Vogt, S.; Rickert, P. G.; Seifert, S.; Lai, B.; Woloschak, G. E.; Soderholm, L.

    2011-08-01

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway -- receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu{sub c}Fe{sub N}Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  18. Transferrin-polycation conjugates as carriers for DNA uptake into cells.

    PubMed Central

    Wagner, E; Zenke, M; Cotten, M; Beug, H; Birnstiel, M L

    1990-01-01

    We have developed a high-efficiency nucleic acid delivery system that uses receptor-mediated endocytosis to carry DNA macromolecules into cells. We accomplished this by conjugating the iron-transport protein transferrin to polycations that bind nucleic acids. Human transferrin, as well as the chicken homologue conalbumin, has been covalently linked to the small DNA-binding protein protamine or to polylysines of various sizes through a disulfide linkage. These modified transferrin molecules maintain their ability to bind their cognate receptor and to mediate efficient iron transport into the cell. The transferrin-polycation molecules form electrophoretically stable complexes with double-stranded DNA, single-stranded DNA, and modified RNA molecules independent of nucleic acid size (from short oligonucleotides to DNA of 21 kilobase pairs). When complexes of transferrin-polycation and a bacterial plasmid DNA containing the gene for Photinus pyralis luciferase are supplied to eukaryotic cells, high-level expression of the luciferase gene occurs, demonstrating transferrin receptor-mediated endocytosis and expression of the imported DNA. We refer to this delivery system as "transferrinfection." Images PMID:2333290

  19. NGF and anti-transferrin receptor antibody conjugate: short and long-term effects on survival of cholinergic neurons in intraocular septal transplants.

    PubMed

    Granholm, A C; Bäckman, C; Bloom, F; Ebendal, T; Gerhardt, G A; Hoffer, B; Mackerlova, L; Olson, L; Söderström, S; Walus, L R

    1994-01-01

    We describe a new molecular carrier system that allows for the transport of nerve growth factor (NGF) across the blood-brain barrier (BBB), as assessed by trophic effects on intraocular forebrain transplants that contain central cholinergic neurons. The carrier system involves monoclonal antibodies (OX-26) directed against the transferrin receptor, to which NGF molecules are covalently linked. Transferrin receptors are highly concentrated on brain blood vessels and participate in the transport of iron across the BBB. Host rats with septal transplants were divided into four groups, which received OX-26-NGF, OX-26, NGF or saline intravenously at 2, 4, 6 and 8 weeks after grafting. Half of the animals were killed directly after the final injection, whereas the other half were allowed to survive for an additional 5 months. Control experiments revealed that blood vessels in mature brain grafts in oculo contained large amounts of transferrin receptors. Covalent binding of NGF to the OX-26 antibodies did not impede OX-26 binding to CNS transferrin receptors, nor did conjugation affect the bioactivity of NGF. A time-dependent increase in host brain NGF levels was found after injection of OX-26-NGF into the tail vein. Host serum contained some NGF antibodies in the short-term OX-26-NGF group that had disappeared in the long-term group; host adrenals showed no differences in wet weight or norepinephrine or epinephrine whole tissue levels in any of the groups. As previously reported, the overall growth of intraocular septal transplants was approximately twice as great in the OX-26-NGF group relative to all other groups. This difference in final size persisted unabated for at least 5 months after the last injection. Furthermore, the significantly higher numbers of choline acetyl transferase immunoreactive neurons in transplants of OX-26-NGF-treated hosts also persisted during the 5-month postinjection interval. Taken together, the data suggest that the OX-26 conjugate may be a

  20. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats.

    PubMed

    Sonali; Agrawal, Poornima; Singh, Rahul Pratap; Rajesh, Chellappa V; Singh, Sanjay; Vijayakumar, Mahalingam R; Pandey, Bajrangprasad L; Muthu, Madaswamy Sona

    2016-06-01

    The effective treatment of brain cancer is hindered by the poor transport across the blood-brain barrier (BBB) and the low penetration across the blood-tumor barrier (BTB). The objective of this work was to formulate transferrin-conjugated docetaxel (DTX)-loaded d-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for targeted brain cancer therapy. The micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, drug encapsulation efficiency, drug loading, in vitro release study and brain distribution study. Particle sizes of prepared micelles were determined at 25 °C by dynamic light scattering technique. The external surface morphology was determined by transmission electron microscopy analysis and atomic force microscopy. The encapsulation efficiency was determined by spectrophotometery. In vitro release studies of micelles and control formulations were carried out by dialysis bag diffusion method. The particle sizes of the non-targeted and targeted micelles were <20 nm. About 85% of drug encapsulation efficiency was achieved with micelles. The drug release from transferrin-conjugated micelles was sustained for >24 h with 50% of drug release. The in vivo results indicated that transferrin-targeted TPGS micelles could be a promising carrier for brain targeting due to nano-sized drug delivery, solubility enhancement and permeability which provided an improved and prolonged brain targeting of DTX in comparison to the non-targeted micelles and marketed formulation. PMID:26431064

  1. Nutritional immunity. Escape from bacterial iron piracy through rapid evolution of transferrin.

    PubMed

    Barber, Matthew F; Elde, Nels C

    2014-12-12

    Iron sequestration provides an innate defense, termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens. PMID:25504720

  2. Ferritin and Soluble Transferrin Receptors in Type 2 Diabetic and Non-diabetic Post-menopausal Women in Dhaka, Bangladesh.

    PubMed

    Md Ruhul, A; Sharmin, H; Luthfor, A; Farzana, S; Liaquat, A

    2010-12-01

    This cross-sectional comparative study was aimed at investigating the iron status of a group of post-menopausal women with and without diabetes. Thirty-five post-menopausal women in each group were selected purposively from among patients attending the out-patient department of Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), a specialist hospital, and two of its satellite clinics, all in Dhaka. Patients were enrolled based on their existing records. The subjects were matched on age, menstrual status and fasting status at blood draw. Ferritin, serum soluble transferrin receptors (sTfR) and fasting plasma glucose were measured by standard methods. Dietary information was collected by a specific food frequency questionnaire. No significant difference in plasma ferritin [62.02 ng/ml, (range: 4.68-288.89) vs 54.25 ng/ml (range: 4.58-137.17); p=0.28] was observed between the groups. But a higher level of plasma sTfR was found in diabetic women [(21.12 nmol/l (range: 7.91-39.79) vs 17.63 nmol/l (range: 10.30-110.00); p<0.01]. TFR-F index showed no difference between diabetic and control (p=0.25). Significantly a lower hemoglobin level [10.58±0.67 g/dl vs11.76±1.5 g/dl; p<0.01] was detected in diabetic women. Plasma sTfR (log) did not show any significant association with the dietary parameters and iron indices. No significant association between fasting glucose, ferritin and sTfR was seen except for haemoglobin (r=0.39, p=0.05). Total iron intake recorded was more than the requirement, and was significantly higher in control group [38.11mg/day (range: 19.83-105.63) vs 56.65 mg/day (range: 29.75-109.54); p<0.01)]. More than 97 % of total iron was of plant origin. No differences in heme iron [0.85 mg/day (range: 0.09-4.07) vs. 0.96 mg/day (range: 0.04-4.34), p= 0.17] and vitamin C intake was observed between the groups. Iron indices of non-diabetic women were within the normal range. A higher level of sTfR and a

  3. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway

    PubMed Central

    Hai, Jun; Serradji, Nawal; Mouton, Ludovic; Redeker, Virginie; Cornu, David; El Hage Chahine, Jean-Michel

    2016-01-01

    Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies. PMID:26919720

  4. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway.

    PubMed

    Hai, Jun; Serradji, Nawal; Mouton, Ludovic; Redeker, Virginie; Cornu, David; El Hage Chahine, Jean-Michel; Verbeke, Philippe; Hémadi, Miryana

    2016-01-01

    Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies. PMID:26919720

  5. Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Shao, Mingwang; Que, Ronghui; Cheng, Liang; Zhuo, Shujuan; Tong, Yanhua; Lee, Shuit-Tong

    2011-05-01

    Silver vanadate nanoribbons were synthesized via a hydrothermal process, which exhibited surface-enhanced Raman scattering effect. This surface-enhanced substrate was stable and reproducible for identifying human serum transferrin and human serum apotransferrin in the concentration of 1×10-5 M, which further exhibited significant sensitivity in monitoring the conversion of these two proteins in turn. This result showed that the silver vanadate nanoribbon might be employed as biomonitor in such systems.

  6. 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide.

    PubMed Central

    Kalivendi, Shasi V; Kotamraju, Srigiridhar; Cunningham, Sonya; Shang, Tiesong; Hillard, Cecilia J; Kalyanaraman, B

    2003-01-01

    1-Methyl-4-phenylpyridinium (MPP(+)) is a neurotoxin used in cellular models of Parkinson's Disease. Although intracellular iron plays a crucial role in MPP(+)-induced apoptosis, the molecular signalling mechanisms linking iron, reactive oxygen species (ROS) and apoptosis are still unknown. We investigated these aspects using cerebellar granule neurons (CGNs) and human SH-SY5Y neuroblastoma cells. MPP(+) enhanced caspase 3 activity after 24 h with significant increases as early as 12 h after treatment of cells. Pre-treatment of CGNs and neuroblastoma cells with the metalloporphyrin antioxidant enzyme mimic, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), completely prevented the MPP(+)-induced caspase 3 activity as did overexpression of glutathione peroxidase (GPx1) and pre-treatment with a lipophilic, cell-permeable iron chelator [N, N '-bis-(2-hydroxybenzyl)ethylenediamine-N, N '-diacetic acid, HBED]. MPP(+) treatment increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labelling)-positive cells which was completely blocked by pre-treatment with FeTBAP. MPP(+) treatment significantly decreased the aconitase and mitochondrial complex I activities; pre-treatment with FeTBAP, HBED and GPx1 overexpression reversed this effect. MPP(+) treatment increased the intracellular oxidative stress by 2-3-fold, as determined by oxidation of dichlorodihydrofluorescein and dihydroethidium (hydroethidine). These effects were reversed by pre-treatment of cells with FeTBAP and HBED and by GPx1 overexpression. MPP(+)-treatment enhanced the cell-surface transferrin receptor (TfR) expression, suggesting a role for TfR-induced iron uptake in MPP(+) toxicity. Treatment of cells with anti-TfR antibody (IgA class) inhibited MPP(+)-induced caspase activation. Inhibition of nitric oxide synthase activity did not affect caspase 3 activity, apoptotic cell death or ROS generation by MPP(+). Overall, these results suggest that MPP(+)-induced cell death

  7. Receptor-based differences in human aortic smooth muscle cell membrane stiffness

    NASA Technical Reports Server (NTRS)

    Huang, H.; Kamm, R. D.; So, P. T.; Lee, R. T.

    2001-01-01

    Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleton-associated receptors. To test the hypothesis that the mechanical properties of a cell are dependent on the receptor on which the stress is applied, human aortic smooth muscle cells were plated, and magnetic beads, targeted either to the integrins via fibronectin or to the transferrin receptor by use of an IgG antibody, were attached to the cell surface. The resistance of the cell to deformation ("stiffness") was estimated by oscillating the magnetic beads at 1 Hz by use of single-pole magnetic tweezers at 2 different magnitudes. The ratio of bead displacements at different magnitudes was used to explore the mechanical properties of the cells. Cells stressed via the integrins required approximately 10-fold more force to obtain the same bead displacements as the cells stressed via the transferrin receptors. Cells stressed via integrins showed stiffening behavior as the force was increased, whereas this stiffening was significantly less for cells stressed via the transferrin receptor (P<0.001). Mechanical characteristics of vascular smooth muscle cells depend on the receptor by which the stress is applied, with integrin-based linkages demonstrating cell-stiffening behavior.

  8. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium

    PubMed Central

    Jensen, Mark P.; Gorman-Lewis, Drew; Aryal, Baikuntha; Paunesku, Tatjana; Vogt, Stefan; Rickert, Paul G.; Seifert, Soenke; Lai, Barry; Woloschak, Gayle E.; Soderholm, L.

    2012-01-01

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small angle X-ray scattering, receptor binding assays, and synchrotron X-ray fluorescence microscopy we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway, receptor-mediated endocytosis of the iron transport protein serum transferrin; however only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small angle scattering demonstrate that only transferrin with plutonium bound in the protein’s C-terminal lobe and iron bound in the N-lobe (PuCFeNTf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin’s two lobes act to restrict, but not eliminate, cellular Pu uptake. PMID:21706034

  9. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether

    PubMed Central

    1995-01-01

    Our previous results indicated that the plasma membrane of cultured normal rat kidney fibroblastic cell is compartmentalized for diffusion of receptor molecules, and that long-range diffusion is the result of successive intercompartmental jumps (Sako, Y. and Kusumi, A. 1994. J. Cell Biol. 125:1251-1264). In the present study, we characterized the properties of intercompartmental boundaries by tagging transferrin receptor (TR) with either 210-nm-phi latex or 40-nm-phi colloidal gold particles, and by dragging the particle-TR complexes laterally along the plasma membrane using laser tweezers. Approximately 90% of the TR- particle complexes showed confined-type diffusion with a microscopic diffusion coefficient (Dmicro) of approximately 10(-9) cm2/s and could be dragged past the intercompartmental boundaries in their path by laser tweezers at a trapping force of 0.25 pN for gold-tagged TR and 0.8 pN for latex-tagged TR. At lower dragging forces between 0.05 and 0.1 pN, particle-TR complexes tended to escape from the laser trap at the boundaries, and such escape occurred in both the forward and backward directions of dragging. The average distance dragged was half of the confined distance of TR, which further indicates that particle- TR complexes escape at the compartment boundaries. Since variation in the particle size (40 and 210 nm, the particles are on the extracellular surface of the plasma membrane) hardly affects the diffusion rate and behavior of the particle-TR complexes at the compartment boundaries, and since treatment with cytochalasin D or vinblastin affects the movements of TR (Sako and Kusumi as cited above), argument has been advanced that the boundaries are present in the cytoplasmic domain. Rebound of the particle-TR complexes when they escape from the laser tweezers at the compartment boundaries suggests that the boundaries are elastic structures. These results are consistent with the proposal that the compartment boundaries consist of membrane

  10. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence.

    PubMed

    Beasley, Federico C; Marolda, Cristina L; Cheung, Johnson; Buac, Suzana; Heinrichs, David E

    2011-06-01

    Staphylococcus aureus is a frequent cause of bloodstream, respiratory tract, and skin and soft tissue infections. In the bloodstream, the iron-binding glycoprotein transferrin circulates to provide iron to cells throughout the body, but its iron-binding properties make it an important component of innate immunity. It is well established that siderophores, with their high affinity for iron, in many instances can remove iron from transferrin as a means to promote proliferation of bacterial pathogens. It is also established that catecholamine hormones can interfere with the iron-binding properties of transferrin, thus allowing infectious bacteria access to this iron pool. The present study demonstrates that S. aureus can use either of two carboxylate-type siderophores, staphyloferrin A and staphyloferrin B, via the transporters Hts and Sir, respectively, to access the transferrin iron pool. Growth of staphyloferrin-producing S. aureus in serum or in the presence of holotransferrin was not enhanced in the presence of catecholamines. However, catecholamines significantly enhanced the growth of staphyloferrin-deficient S. aureus in human serum or in the presence of human holotransferrin. It was further demonstrated that the Sst transporter was essential for this activity as well as for the utilization of bacterial catechol siderophores. The substrate binding protein SstD was shown to interact with ferrated catecholamines and catechol siderophores, with low to submicromolar affinities. Experiments involving mice challenged intravenously with wild-type S. aureus and isogenic mutants demonstrated that the combination of Hts, Sir, and Sst transport systems was required for full virulence of S. aureus. PMID:21402762

  11. Evolutionary Reconstructions of the Transferrin Receptor of Caniforms Supports Canine Parvovirus Being a Re-emerged and Not a Novel Pathogen in Dogs

    PubMed Central

    Kaelber, Jason T.; Demogines, Ann; Harbison, Carole E.; Allison, Andrew B.; Goodman, Laura B.; Ortega, Alicia N.; Sawyer, Sara L.; Parrish, Colin R.

    2012-01-01

    Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host. PMID:22570610

  12. Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe.

    PubMed Central

    He, Q Y; Mason, A B; Lyons, B A; Tam, B M; Nguyen, V; MacGillivray, R T; Woodworth, R C

    2001-01-01

    Human serum transferrin N-lobe (hTF/2N) contains three conserved tryptophan residues, Trp(8), Trp(128) and Trp(264), located in three different environments. The present report addresses the different contributions of the three tryptophan residues to the UV-visible, fluorescence and NMR spectra of hTF/2N and the effect of the mutations at each tryptophan residue on the iron-binding properties of the protein. Trp(8) resides in a hydrophobic box containing a cluster of three phenylalanine side chains and is H bonded through the indole N to an adjacent water cluster lying between two beta-sheets containing Trp(8) and Lys(296) respectively. The fluorescence of Trp(8) may be quenched by the benzene rings. The apparent increase in the rate of iron release from the Trp(8)-->Tyr mutant could be due to the interference of the mutation with the H-bond linkage resulting in an effect on the second shell network. The partial quenching in the fluorescence of Trp(128) results from the nearby His(119) residue. Difference-fluorescence spectra reveal that any protein containing Trp(128) shows a blue shift upon binding metal ion, and the NMR signal of Trp(128) broadens out and disappears upon the binding of paramagnetic metals to the protein. These data imply that Trp(128) is a major fluorescent and NMR reporter group for metal binding, and possibly for cleft closure in hTF/2N. Trp(264) is located on the surface of the protein and does not connect to any functional residues. This explains the facts that Trp(264) is the major contributor to both the absorbance and fluorescence spectra, has a strong NMR signal and the mutation at Trp(264) has little effect on the iron-binding and release behaviours of the protein. PMID:11171122

  13. Structural and functional consequences of the substitution of glycine 65 by arginine in the N-lobe of human transferrin

    PubMed Central

    Mason, Anne B.; Halbrooks, Peter J.; James, Nicholas G.; Byrne, Shaina L.; Grady, John K.; Chasteen, N. Dennis; Bobst, Cedric E.; Kaltashov, Igor A.; Smith, Valerie C.; MacGillivray, Ross T. A.; Everse, Stephen J.

    2009-01-01

    The G65R mutation in the N-lobe of human transferrin was created to mimic a naturally occurring variant (G394R) found in the homologous C-lobe. Because Gly65 is hydrogen-bonded to the iron-binding ligand Asp63, it comprises part of the second shell hydrogen bond network surrounding the iron within the metal binding cleft of the protein. Substitution with an arginine residue at this position disrupts the network, resulting in much more facile removal of iron from the G65R mutant. As shown by UV-vis and EPR spectroscopy, and by kinetic assays measuring the release of iron, the G65R mutant can exist in three forms. Two of the forms (yellow and pink in color) are inter-convertible. The yellow form predominates in 1 M bicarbonate; the pink form is generated from the yellow form upon exchange into 1 M HEPES buffer, pH 7.4. The third form (also pink in color) is produced by the addition of Fe3+-(nitrilotriacetate)2 to apo-G65R. Hydrogen/deuterium exchange experiments are consistent with all forms of the G65R mutant assuming a more open conformation. Additionally, mass spectroscopic analysis reveals the presence of nitrilotriacetate in the third form. The inability to obtain crystals of the G65R mutant, led to development of a novel crystallization strategy in which the double mutation G65R/K206E stabilizes a single closed pink conformer and captures Arg65 in a single position. Collectively, these studies highlight the importance of the hydrogen bond network in the cleft, as well as the inherent flexibility of the N-lobe which although able to adapt to accommodate the large arginine substitution exists in multiple conformations. PMID:19219998

  14. Transferrin-a modulates hepcidin expression in zebrafish embryos

    PubMed Central

    Gibert, Yann; Holzheimer, Jason L.; Lattanzi, Victoria J.; Burnett, Sarah F.; Dooley, Kimberly A.; Wingert, Rebecca A.; Zon, Leonard I.

    2009-01-01

    The iron regulatory hormone hepcidin is transcriptionally up-regulated in response to iron loading, but the mechanisms by which iron levels are sensed are not well understood. Large-scale genetic screens in the zebrafish have resulted in the identification of hypochromic anemia mutants with a range of mutations affecting conserved pathways in iron metabolism and heme synthesis. We hypothesized that transferrin plays a critical role both in iron transport and in regulating hepcidin expression in zebrafish embryos. Here we report the identification and characterization of the zebrafish hypochromic anemia mutant, gavi, which exhibits transferrin deficiency due to mutations in transferrin-a. Morpholino knockdown of transferrin-a in wild-type embryos reproduced the anemia phenotype and decreased somite and terminal gut iron staining, while coinjection of transferrin-a cRNA partially restored these defects. Embryos with transferrin-a or transferrin receptor 2 (TfR2) deficiency exhibited low levels of hepcidin expression, however anemia, in the absence of a defect in the transferrin pathway, failed to impair hepcidin expression. These data indicate that transferrin-a transports iron and that hepcidin expression is regulated by a transferrin-a–dependent pathway in the zebrafish embryo. PMID:19047682

  15. Uptake of Al3+ into the N-lobe of human serum transferrin.

    PubMed Central

    Kubal, G; Mason, A B; Sadler, P J; Tucker, A; Woodworth, R C

    1992-01-01

    We have studied the binding of Al3+ to human serum apotransferrin (80 kDa) and recombinant N-lobe human apotransferrin (40 kDa) in 0.1 M-sodium bicarbonate solution at a pH meter reading in 2H2O (pH*) of 8.8 using 1H n.m.r. spectroscopy. The results show that for the intact protein, preferential binding of Al3+ to the N-lobe occurs. Molecular modelling combined with an analysis of ring-current-induced shifts suggest that n.m.r. spectroscopy can be used to probe hinge bending processes which accompany metal uptake in solution. PMID:1497609

  16. The human olfactory receptor repertoire

    PubMed Central

    Zozulya, Sergey; Echeverri, Fernando; Nguyen, Trieu

    2001-01-01

    Background The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. Results The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. Conclusions The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction. PMID:11423007

  17. The Next Generation Non-competitive Active Polyester Nanosystems for Transferrin Receptor-mediated Peroral Transport Utilizing Gambogic Acid as a Ligand.

    PubMed

    Saini, P; Ganugula, R; Arora, M; Kumar, M N V Ravi

    2016-01-01

    The current methods for targeted drug delivery utilize ligands that must out-compete endogenous ligands in order to bind to the active site facilitating the transport. To address this limitation, we present a non-competitive active transport strategy to overcome intestinal barriers in the form of tunable nanosystems (NS) for transferrin receptor (TfR) utilizing gambogic acid (GA), a xanthanoid, as its ligand. The NS made using GA conjugated poly(lactide-co-glycolide) (PLGA) have shown non-competitive affinity to TfR evaluated in cell/cell-free systems. The fluorescent PLGA-GA NS exhibited significant intestinal transport and altered distribution profile compared to PLGA NS in vivo. The PLGA-GA NS loaded with cyclosporine A (CsA), a model peptide, upon peroral dosing to rodents led to maximum plasma concentration of CsA at 6 h as opposed to 24 h with PLGA-NS with at least 2-fold higher levels in brain at 72 h. The proposed approach offers new prospects for peroral drug delivery and beyond. PMID:27388994

  18. The Next Generation Non-competitive Active Polyester Nanosystems for Transferrin Receptor-mediated Peroral Transport Utilizing Gambogic Acid as a Ligand

    PubMed Central

    Saini, P.; Ganugula, R.; Arora, M.; Kumar, M. N. V. Ravi

    2016-01-01

    The current methods for targeted drug delivery utilize ligands that must out-compete endogenous ligands in order to bind to the active site facilitating the transport. To address this limitation, we present a non-competitive active transport strategy to overcome intestinal barriers in the form of tunable nanosystems (NS) for transferrin receptor (TfR) utilizing gambogic acid (GA), a xanthanoid, as its ligand. The NS made using GA conjugated poly(lactide-co-glycolide) (PLGA) have shown non-competitive affinity to TfR evaluated in cell/cell-free systems. The fluorescent PLGA-GA NS exhibited significant intestinal transport and altered distribution profile compared to PLGA NS in vivo. The PLGA-GA NS loaded with cyclosporine A (CsA), a model peptide, upon peroral dosing to rodents led to maximum plasma concentration of CsA at 6 h as opposed to 24 h with PLGA-NS with at least 2-fold higher levels in brain at 72 h. The proposed approach offers new prospects for peroral drug delivery and beyond. PMID:27388994

  19. Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration.

    PubMed

    Zhang, Ruoyu; Feng, Guangxue; Zhang, Chong-Jing; Cai, Xiaolei; Cheng, Xiamin; Liu, Bin

    2016-05-01

    Transferrin receptor (TfR) represents a unique target for specific imaging of cancer cells and targeted delivery of therapeutic reagents. Detection and qualification of TfR is thus of great importance for cancer diagnosis and therapy. In this contribution, a light-up probe TPETH-2T7 was developed by conjugating a red-emissive photosensitizer with aggregation-induced emission (AIE) characteristics to a TfR-targeting peptide T7. The probe is almost nonemissive by itself, but it gives turn-on fluorescence in the presence of TfR with a detection limit of 0.45 μg/mL. Cellular experiments show that the probe specifically binds to TfR-overexpressed cancer cells. Real-time imaging results reveal that the probe stains the MDA-MB-231 cell membrane in 30 min, which is followed by probe internalization. Experiments on image-guided photodynamic cancer ablation show that the therapeutic performance is better when TPETH-2T7 is localized on the cell membrane as compared to that being internalized into cells. Confocal laser scanning microscopy (CLSM) study reveals that cytomembrane disintegration allows quick ablation of MDA-MB-231 cells. PMID:27049534

  20. Serum erythropoietin and its relation with soluble transferrin receptor in patients with different types of anaemia in a locally defined reference population.

    PubMed

    Roque, M E; Sandoval, M J; Aggio, M C

    2001-10-01

    Serum erythropoietin (Epo) and soluble transferrin receptor (sTR) were measured in a locally defined reference population (n=100): healthy volunteers (n=50); iron- deficiency anaemia (n=41) and haemolytic anaemia (n=9) (beta-thalassaemia, n = 4; autoimmune, n=5). Our data demonstrated an inverse relationship between erythroid activity and Epo levels. The regression line between Ln Epo and haemoglobin (Hb) was highly significant: P < 0.0001, r2=0.8275, Ln Epo=8.5346-0.04275 Hb, confidence limit 95%. The mean observed/predicted (O/P) ratio of Ln (Epo) was 1.01 +/- 0.11. We demonstrated that the serum Epo concentration in this particular population correlated consistently with clinical measures of erythropoietic activity. sTR, a new index of erythropoiesis, varied from 16.1 to 148 nmol/l, mean 62.0 nmol/l in the anaemic patients' group. The relationship between Ln Epo and Ln sTR was highly significant: P < 0.0001. We conclude that locally defined regression analyses are crucial for correct data interpretation and can indicate whether or not Epo production is appropriate or inappropriate. Serial determinations of sTR could help in the assessment of response to therapeutic doses of Epo. PMID:11703410

  1. Combined radiolabel-binding and immunocytochemical evaluation of receptor–ligand interactions. Studies of transferrin receptors on activated lymphocytes

    PubMed Central

    Galbraith, Gillian M. P.; Galbraith, Robert M.

    1981-01-01

    A protocol that involved both immunohistological and radiolabel-binding procedures was devised for the study of transferrin–receptor interactions. This composite approach yielded considerably more information than did either technique used alone, and also provided a simple means for exclusion of several common potential sources of error. PMID:6277297

  2. TIBC, UIBC and Transferrin

    MedlinePlus

    ... suspected of having either iron deficiency or iron overload. These two tests are used to calculate the ... thus transferrin saturation becomes very low. In iron overload states, such as hemochromatosis , the iron level will ...

  3. Iron, transferrin and myelinogenesis

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  4. Transferrin Promotes Endothelial Cell Migration and Invasion: Implication in Cartilage Neovascularization

    PubMed Central

    Carlevaro, Mariella F.; Albini, Adriana; Ribatti, Domenico; Gentili, Chiara; Benelli, Roberto; Cermelli, Silvia; Cancedda, Ranieri; Cancedda, Fiorella Descalzi

    1997-01-01

    During endochondral bone formation, avascular cartilage differentiates to hypertrophic cartilage that then undergoes erosion and vascularization leading to bone deposition. Resting cartilage produces inhibitors of angiogenesis, shifting to production of angiogenic stimulators in hypertrophic cartilage. A major protein synthesized by hypertrophic cartilage both in vivo and in vitro is transferrin. Here we show that transferrin is a major angiogenic molecule released by hypertrophic cartilage. Endothelial cell migration and invasion is stimulated by transferrins from a number of different sources, including hypertrophic cartilage. Checkerboard analysis demonstrates that transferrin is a chemotactic and chemokinetic molecule. Chondrocyte-conditioned media show similar properties. Polyclonal anti-transferrin antibodies completely block endothelial cell migration and invasion induced by purified transferrin and inhibit the activity produced by hypertrophic chondrocytes by 50–70% as compared with controls. Function-blocking mAbs directed against the transferrin receptor similarly reduce the endothelial migratory response. Chondrocytes differentiating in the presence of serum produce transferrin, whereas those that differentiate in the absence of serum do not. Conditioned media from differentiated chondrocytes not producing transferrin have only 30% of the endothelial cell migratory activity of parallel cultures that synthesize transferrin. The angiogenic activity of transferrins was confirmed by in vivo assays on chicken egg chorioallantoic membrane, showing promotion of neovascularization by transferrins purified from different sources including conditioned culture medium. Based on the above results, we suggest that transferrin is a major angiogenic molecule produced by hypertrophic chondrocytes during endochondral bone formation. PMID:9087450

  5. Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles.

    PubMed

    Wei, Lin; Guo, Xi-Ying; Yang, Ting; Yu, Min-Zhi; Chen, Da-Wei; Wang, Jian-Cheng

    2016-08-20

    Treatment of brain tumor remains a great challenge worldwide. Development of a stable, safe, and effective siRNA delivery system which is able to cross the impermeable blood-brain barrier (BBB) and target glioma cells is necessary. This study aims to investigate the therapeutic effects of intravenous administration of T7 peptide modified core-shell nanoparticles (named T7-LPC/siRNA NPs) on brain tumors. Layer-by-layer assembling of protamine/chondroitin sulfate/siRNA/cationic liposomes followed by T7 peptide modification has been carried out in order to obtain a targeted siRNA delivery system. In vitro cellular uptake experiments demonstrated a higher intracellular fluorescence intensity of siRNA in brain microvascular endothelial cells (BMVECs) and U87 glioma cells when treated with T7-LPC/siRNA NPs compared with PEG-LPC/siRNA NPs. In the co-culture model of BMVECs and U87 cells, a significant down-regulation of EGFR protein expression occurred in the U87 glioma cells after treatment with the T7-LPC/siEGFR NPs. Moreover, the T7-LPC/siRNA NPs had an advantage in penetrating into a deep region of the tumor spheroid compared with PEG-LPC/siRNA NPs. In vivo imaging revealed that T7-LPC/siRNA NPs accumulated more specifically in brain tumor tissues than the non-targeted NPs. Also, in vivo tumor therapy experiments demonstrated that the longest survival period along with the greatest downregulation of EGFR expression in tumor tissues was observed in mice with an intracranial U87 glioma treated with T7-LPC/siEGFR NPs compared with mice receiving other formulations. Therefore, we believe that these transferrin receptor-mediated core-shell nanoparticles are an important potential siRNA delivery system for brain tumor-targeted therapy. PMID:27374198

  6. Calorimetric, spectroscopic, and model studies provide insight into the transport of Ti(IV) by human serum transferrin.

    PubMed

    Tinoco, Arthur D; Incarvito, Christopher D; Valentine, Ann M

    2007-03-21

    Evidence suggests that transferrin can bind Ti(IV) in an unhydrolyzed form (without bound hydroxide or oxide) or in a hydrolyzed form. Ti(IV) coordination by N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) at different pH values models the two forms of Ti(IV)-loaded transferrin spectrally and structurally. 13C NMR and stopped-flow kinetic experiments reveal that when the metal is delivered to the protein using an unhydrolyzed source, Ti(IV) can coordinate in the typical distorted octahedral environment with a bound synergistic anion. The crystal structure of TiHBED obtained at low pH models this type of coordination. The solution structure of the complex compares favorably with the solid state from pH 3.0 to 4.0, and the complex can be reduced with E1/2 = -641 mV vs NHE. Kinetic and thermodynamic competition studies at pH 3.0 reveal that Ti(citrate)3 reacts with HBED via a dissociative mechanism and that the stability of TiHBED (log beta = 34.024) is weaker than that of the Fe(III) complex. pH stability studies show that Ti(IV) hydrolyzes ligand waters at higher pH but still remains bound to HBED until pH 9.5. Similarly, at a pH greater than 8.0 the synergistic anion that binds Ti(IV) in transferrin is readily displaced by irreversible metal hydrolysis although the metal remains bound to the protein until pH 9.5. Thermal denaturation studies conducted optically and by differential scanning calorimetry reveal that Ti(IV)-bound transferrin experiences only minimal enhanced thermal stability unlike when Fe(III) is bound. The C- and N-lobe transition Tm values shift to a few degrees higher. The stability, competition, and redox studies performed provide insight into the possible mechanism of Ti2-Tf transport in cells. PMID:17315875

  7. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae.

    PubMed

    Noto, Jennifer M; Cornelissen, Cynthia Nau

    2008-05-01

    Neisseria gonorrhoeae requires iron for survival in the human host and therefore expresses high-affinity receptors for iron acquisition from host iron-binding proteins. The gonococcal transferrin-iron uptake system is composed of two transferrin binding proteins, TbpA and TbpB. TbpA is a TonB-dependent, outer membrane transporter critical for iron acquisition, while TbpB is a surface-exposed lipoprotein that increases the efficiency of iron uptake. The precise mechanism by which TbpA mediates iron acquisition has not been elucidated; however, the process is distinct from those of characterized siderophore transporters. Similar to these TonB-dependent transporters, TbpA is proposed to have two distinct domains, a beta-barrel and a plug domain. We hypothesize that the TbpA plug coordinates iron and therefore potentially functions in multiple steps of transferrin-mediated iron acquisition. To test this hypothesis, we targeted a conserved motif within the TbpA plug domain and generated single, double, and triple alanine substitution mutants. Mutagenized TbpAs were expressed on the gonococcal cell surface and maintained wild-type transferrin binding affinity. Single alanine substitution mutants internalized iron at wild-type levels, while the double and triple mutants showed a significant decrease in iron uptake. Moreover, the triple alanine substitution mutant was unable to grow on transferrin as a sole iron source; however, expression of TbpB compensated for this defect. These data indicate that the conserved motif between residues 120 and 122 of the TbpA plug domain is critical for transferrin-iron utilization, suggesting that this region plays a role in iron acquisition that is shared by both TbpA and TbpB. PMID:18347046

  8. Transferrin D1: identity in Australian aborigines and American Negroes.

    PubMed

    Wang, A C; Sutton, H E; Scott, I D

    1967-05-19

    Human transferrin D(1) obtained from an Australian aborigine was found to have the same substitution of glycine for aspartic acid in peptide 1C previously shown in transferrin D(1) from an American Negro. This finding is relevant to formation of distinct Australoid and African populations. PMID:6023254

  9. Antigenic and sequence diversity in gonococcal transferrin-binding protein A.

    PubMed

    Cornelissen, C N; Anderson, J E; Boulton, I C; Sparling, P F

    2000-08-01

    Neisseria gonorrhoeae is a gram-negative pathogen that is capable of satisfying its iron requirement with human iron-binding proteins such as transferrin and lactoferrin. Transferrin-iron utilization involves specific binding of human transferrin at the cell surface to what is believed to be a complex of two iron-regulated, transferrin-binding proteins, TbpA and TbpB. The genes encoding these proteins have been cloned and sequenced from a number of pathogenic, gram-negative bacteria. In the current study, we sequenced four additional tbpA genes from other N. gonorrhoeae strains to begin to assess the sequence diversity among gonococci. We compared these sequences to those from other pathogenic bacteria to identify conserved regions that might be important for the structure and function of these receptors. We generated polyclonal mouse sera against synthetic peptides deduced from the TbpA sequence from gonococcal strain FA19. Most of these synthetic peptides were predicted to correspond to surface-exposed regions of TbpA. We found that, while most reacted with denatured TbpA in Western blots, only one antipeptide serum reacted with native TbpA in the context of intact gonococci, consistent with surface exposure of the peptide to which this serum was raised. In addition, we evaluated a panel of gonococcal strains for antigenic diversity using these antipeptide sera. PMID:10899879

  10. Studies of the binding of different iron donors to human serum transferrin and isolation of iron-binding fragments from the N- and C-terminal regions of the protein.

    PubMed Central

    Evans, R W; Williams, J

    1978-01-01

    1. Trypsin digestion of human serum transferrin partially saturated with iron(III)-nitrilotriacetate at pH 5.5 or pH 8.5 produces a carbohydrate-containing iron-binding fragment of mol.wt. 43000. 2. When iron(III) citrate, FeCl3, iron (III) ascorabate and (NH4)2SO4,FeSO4 are used as iron donors to saturate the protein partially, at pH8.5, proteolytic digestion yields a fragment of mol.wt. 36000 that lacks carbohydrate. 3. The two fragments differ in their antigenic structures, amino acid compositions and peptide 'maps'. 4. The fragment with mol.wt. 36000 was assigned to the N-terminal region of the protein and the other to the C-terminal region. 5. The distribution of iron in human serum transferrin partially saturated with various iron donors was examined by electrophoresis in urea/polyacrylamide gels and the two possible monoferric forms were unequivocally identified. 6. The site designated A on human serum transferrin [Harris (1977) Biochemistry 16, 560--564] was assigned to the C-terminal region of the protein and the B site to the N-terminal region. 7. The distribution of iron on transferrin in human plasma was determined. Images Fig. 1. Fig. 3. Fig. 5. Fig. 6. PMID:100104

  11. Role of hemoglobin and transferrin in multi-wall carbon nanotube-induced mesothelial injury and carcinogenesis.

    PubMed

    Wang, Yue; Okazaki, Yasumasa; Shi, Lei; Kohda, Hiro; Tanaka, Minoru; Taki, Kentaro; Nishioka, Tomoki; Hirayama, Tasuku; Nagasawa, Hideko; Yamashita, Yoriko; Toyokuni, Shinya

    2016-03-01

    Multi-wall carbon nanotubes (MWCNT) are a form of flexible fibrous nanomaterial with high electrical and thermal conductivity. However, 50-nm MWCNT in diameter causes malignant mesothelioma (MM) in rodents and, thus, the International Agency of Research on Cancer has designated them as a possible human carcinogen. Little is known about the molecular mechanism through which MWCNT causes MM. To elucidate the carcinogenic mechanisms of MWCNT in mesothelial cells, we used a variety of lysates to comprehensively identify proteins specifically adsorbed on pristine MWCNT of different diameters (50 nm, NT50; 100 nm, NT100; 150 nm, NT150; and 15 nm/tangled, NTtngl) using mass spectrometry. We identified >400 proteins, which included hemoglobin, histone, transferrin and various proteins associated with oxidative stress, among which we selected hemoglobin and transferrin for coating MWCNT to further evaluate cytotoxicity, wound healing, intracellular catalytic ferrous iron and oxidative stress in rat peritoneal mesothelial cells (RPMC). Cytotoxicity to RPMC was observed with pristine NT50 but not with NTtngl. Coating NT50 with hemoglobin or transferrin significantly aggravated cytotoxicity to RPMC, with an increase in cellular catalytic ferrous iron and DNA damage also observed. Knockdown of transferrin receptor with ferristatin II decreased not only NT50 uptake but also cellular catalytic ferrous iron. Our results suggest that adsorption of hemoglobin and transferrin on the surface of NT50 play a role in causing mesothelial iron overload, contributing to oxidative damage and possibly subsequent carcinogenesis in mesothelial cells. Uptake of NT50 at least partially depends on transferrin receptor 1. Modifications of NT50 surface may decrease this human risk. PMID:26679080

  12. Thermodynamic binding constants for gallium transferrin

    SciTech Connect

    Harris, W.R.; Pecoraro, V.L.

    1983-01-18

    Gallium-67 is widely used as an imaging agent for tumors and inflammatory abscesses. It is well stablished that Ga/sup 3 +/ travels through the circulatory system bound to the serum iron transport protein transferrin and that this protein binding is an essential step in tumor localization. However, there have been conflicting reports on the magnitude of the gallium-transferrin binding constants. Therefore, thermodynamic binding constants for gallium complexation at the two specific metal binding sites of human serum transferrin at pH 7.4 and 5 mM NaHCO/sub 3/ have been determined by UV difference spectroscopy. The conditional constants calculated for 27 mM NaHCO/sub 3/ are log K/sub 1/* = 20.3 and log K/sub 2/* = 19.3. These results are discussed in relation to the thermodynamics of transferrin binding of Fe/sup 3 +/ and to previous reports on gallium binding. The strength of transferrin complexation is also compared to that of a series of low molecular weight ligands by using calculated pM values (pM = -log (Ga(H/sub 2/O)/sub 6/)) to express the effective binding strength at pH 7.4.

  13. Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor.

    PubMed

    Peterson, Ross D; Chen, Weili; Cunningham, Brian T; Andrade, Juan E

    2015-12-15

    Iron deficiency anemia (IDA) has detrimental effects on individuals and societies worldwide. A standard sandwich assay (SA) for the detection of soluble transferrin receptor (sTfR), a biomarker of IDA, on a photonic crystal (PC) biosensor was established, but it was susceptible to non-specific signals from complex matrixes. In this study, iron-oxide nanoparticles (fAb-IONs) were used as magnetic immuno-probes to bind sTfR and minimize non-specific signals, while enhancing detection on the PC biosensor. This inverse sandwich assay (IA) method completely bound sTfR with low variability (<4% RSD) in buffer and allowed for its accurate and precise detection in sera (Liquichek™ control sera) on the PC biosensor using two certified ELISAs as reference methods. A linear dose-response curve was elicited at the fAb-IONs concentration in which the theoretical binding ratio (sTfR:fAb-IONs) was calculated to be <1 on the IA. The LoDs for sTfR in the SA and IA were similar (P>0.05) at 14 and 21 μg/mL, respectively. The inherent imprecision of the IA and reference ELISAs was σ(δ)=0.45 µg/mL and the mean biases for Liquichek™ 1, 2 and 3 were 0.18, 0.19 and -0.04 µg/mL, respectively. Whereas the inherent imprecision of the SA and reference ELISAs was σ(δ)=0.52 µg/mL and the biases for Liquichek™ 1, 2 and 3 were 0.66, 0.14 and -0.67 µg/mL, respectively. Thus, unlike the SA, the IA method measures sTfR with the same bias as the reference ELISAs. Combined magnetic separation and detection of nutrition biomarkers on PC biosensors represents a facile method for their accurate and reliable quantification in complex matrixes. PMID:26232676

  14. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood-CSF barrier in vitro

    SciTech Connect

    Li, G. Jane; Zhao Qiuqu; Zheng Wei . E-mail: wzheng@purdue.edu

    2005-06-01

    Manganese exposure alters iron homeostasis in blood and cerebrospinal fluid (CSF), possibly by acting on iron transport mechanisms localized at the blood-brain barrier and/or blood-CSF barrier. This study was designed to test the hypothesis that manganese exposure may change the binding affinity of iron regulatory proteins (IRPs) to mRNAs encoding transferrin receptor (TfR), thereby influencing iron transport at the blood-CSF barrier. A primary culture of choroidal epithelial cells was adapted to grow on a permeable membrane sandwiched between two culture chambers to mimic blood-CSF barrier. Trace {sup 59}Fe was used to determine the transepithelial transport of iron. Following manganese treatment (100 {mu}M for 24 h), the initial flux rate constant (K {sub i}) of iron was increased by 34%, whereas the storage of iron in cells was reduced by 58%, as compared to controls. A gel shift assay demonstrated that manganese exposure increased the binding of IRP1 and IRP2 to the stem loop-containing mRNAs. Consequently, the cellular concentrations of TfR proteins were increased by 84% in comparison to controls. Assays utilizing RT-PCR, quantitative real-time reverse transcriptase-PCR, and nuclear run off techniques showed that manganese treatment did not affect the level of heterogeneous nuclear RNA (hnRNA) encoding TfR, nor did it affect the level of nascent TfR mRNA. However, manganese exposure resulted in a significantly increased level of TfR mRNA and reduced levels of ferritin mRNA. Taken together, these results suggest that manganese exposure increases iron transport at the blood-CSF barrier; the effect is likely due to manganese action on translational events relevant to the production of TfR, but not due to its action on transcriptional, gene expression of TfR. The disrupted protein-TfR mRNA interaction in the choroidal epithelial cells may explain the toxicity of manganese at the blood-CSF barrier.

  15. Changes in Soluble Transferrin Receptor and Hemoglobin Concentrations in Malawian Mothers Are Associated with Those Values in their Exclusively Breastfed, HIV-Exposed Infants123

    PubMed Central

    Widen, Elizabeth M.; Bentley, Margaret E.; Kayira, Dumbani; Chasela, Charles S.; Daza, Eric J.; Kacheche, Zebrone K.; Tegha, Gerald; Jamieson, Denise J.; Kourtis, Athena P.; van der Horst, Charles M.; Allen, Lindsay H.; Shahab-Ferdows, Setareh; Adair, Linda S.

    2014-01-01

    Infant iron status at birth is influenced by maternal iron status during pregnancy; however, there are limited data on the extent to which maternal iron status is associated with infant iron status during exclusive breastfeeding. We evaluated how maternal and infant hemoglobin and iron status [soluble transferrin receptors (TfR) and ferritin] were related during exclusive breastfeeding in HIV-infected women and their infants. The Breastfeeding, Antiretrovirals, and Nutrition Study was a randomized controlled trial in Lilongwe, Malawi, in which HIV-infected women were assigned with a 2 × 3 factorial design to a lipid-based nutrient supplement (LNS), or no LNS, and maternal, infant, or no antiretroviral drug, and followed for 24 wk. Longitudinal models were used to relate postpartum maternal hemoglobin (n = 1926) to concurrently measured infant hemoglobin, adjusting for initial infant hemoglobin values. In a subsample, change in infant iron status (hemoglobin, log ferritin, log TfR) between 2 (n = 352) or 6 wk (n = 167) and 24 wk (n = 519) was regressed on corresponding change in the maternal indicator, adjusting for 2 or 6 wk values. A 1 g/L higher maternal hemoglobin at 12, 18, and 24 wk was associated with a 0.06 g/L (P = 0.01), 0.10 g/L (P < 0.001), and 0.06 g/L (P = 0.01), respectively, higher infant hemoglobin. In the subsample, a reduction in maternal log TfR and an increase in hemoglobin from initial measurement to 24 wk were associated with the same pattern in infant values (log TfR β = −0.18 mg/L, P < 0.001; hemoglobin β = 0.13 g/L, P = 0.01). Given the observed influence of maternal and initial infant values, optimizing maternal iron status in pregnancy and postpartum is important to protect infant iron status. This trial was registered at clinicaltrials.gov as NCT00164736. PMID:24381222

  16. Crossing the blood-brain-barrier with transferrin conjugated carbon dots: A zebrafish model study.

    PubMed

    Li, Shanghao; Peng, Zhili; Dallman, Julia; Baker, James; Othman, Abdelhameed M; Blackwelder, Patrica L; Leblanc, Roger M

    2016-09-01

    Drug delivery to the central nervous system (CNS) in biological systems remains a major medical challenge due to the tight junctions between endothelial cells known as the blood-brain-barrier (BBB). Here we use a zebrafish model to explore the possibility of using transferrin-conjugated carbon dots (C-Dots) to ferry compounds across the BBB. C-Dots have previously been reported to inhibit protein fibrillation, and they are also used to deliver drugs for disease treatment. In terms of the potential medical application of C-Dots for the treatment of CNS diseases, one of the most formidable challenges is how to deliver them inside the CNS. To achieve this in this study, human transferrin was covalently conjugated to C-Dots. The conjugates were then injected into the vasculature of zebrafish to examine the possibility of crossing the BBB in vivo via transferrin receptor-mediated endocytosis. The experimental observations suggest that the transferrin-C-Dots can enter the CNS while C-Dots alone cannot. PMID:27187189

  17. Iterative endocytosis of transferrin by K562 cells.

    PubMed Central

    Young, S P; Bomford, A

    1994-01-01

    The effect of iron on the exocytosis of transferrin by K562 cells was studied by first allowing the cells to endocytose apotransferrin or diferric transferrin. Subsequent release of the apotransferrin was very rapid with a t 1/2 of 3.01 min, compared with 5.5 min for diferric transferrin. Release of apotransferrin was slowed by the weak base methylamine, t 1/2 8.0 min, but the effect of this agent was substantially greater when iron-transferrin was used, t 1/2 18.65 min, suggesting that methylamine affects both iron removal and receptor recycling. Release of iron-transferrin could be accelerated to a rate comparable with that of apotransferrin by addition of the permeant iron-chelator desferrioxamine. The difference in the rates of release of different forms of the protein could be explained by the re-endocytosis of the iron-rich protein, a process detected by the accelerated release of transferrin when the cells were washed in medium at pH 5.5 containing an iron-chelator or treated with a protease-containing medium to digest transferrin accessible at the cell surface. It appears that in cells incubated under control conditions, re-endocytosis of transferrin, which is incompletely depleted of iron, occurs and that a transferrin molecule may make two passes through the cell before all the iron is removed. This mechanism helps to explain why very little iron-transferrin is released from cells and why the efficiency of the iron uptake process is so high. PMID:8129715

  18. Insights into endosomal maturation of human holo-transferrin in the enteric parasite Entamoeba histolytica: essential roles of Rab7A and Rab5 in biogenesis of giant early endocytic vacuoles.

    PubMed

    Verma, Kuldeep; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi; Datta, Sunando

    2015-12-01

    The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba. The parasite has developed multiple ways to import, sequester and utilize iron from various iron-binding proteins from its host. In spite of its central role in pathogenesis, the mechanism of iron uptake by the parasite is largely unknown. Here, we carried out a systematic study to understand the role of some of the amoebic homologues of mammalian endocytic Rab GTPases (Rab5 and Rab21, Rab7A and Rab7B) in intracellular transport of human holo-transferrin by the parasite. Flow cytometry and quantitative microscopic image analysis revealed that Rab5 and Rab7A are required for the biogenesis of amoebic giant endocytic vacuoles (GEVs) and regulate the early phase of intracellular trafficking of transferrin. Rab7B is involved in the late phase, leading to the degradation of transferrin in the amoebic lysosome-like compartments. Using time-lapse fluorescence imaging in fixed trophozoites, we determined the kinetics of the vesicular transport of transferrin through Rab5-, Rab7A- and Rab7B-positive compartments. The involvement of Rab7A in the early phase of endocytosis by the parasite marks a significant divergence from its host in terms of spatiotemporal regulation by the Rab GTPases. PMID:26096601

  19. Endocytosis and Intracellular Trafficking of Human Natural Killer Cell Receptors

    PubMed Central

    Masilamani, Madhan; Peruzzi, Giovanna; Borrego, Francisco; Coligan, John E.

    2009-01-01

    Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor, and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking. PMID:19719476

  20. Using Soluble Transferrin Receptor and Taking Inflammation into Account When Defining Serum Ferritin Cutoffs Improved the Diagnosis of Iron Deficiency in a Group of Canadian Preschool Inuit Children from Nunavik

    PubMed Central

    Turgeon O'Brien, Huguette; Blanchet, Rosanne; Gagné, Doris; Vézina, Carole

    2016-01-01

    The prevalence of iron depletion, iron deficient erythropoiesis (IDE), and iron deficiency anemia (IDA) was assessed in preschool Inuit children using soluble transferrin receptor (sTfR) and traditional indicators of iron status while disregarding or taking inflammation into account when defining SF cutoffs. Iron depletion was defined as follows: (1) SF < 15 μg/L regardless of the C-reactive protein (CRP) level and (2) SF < 15 or <50 μg/L with CRP ≤ 5 or >5 mg/L, respectively. IDE corresponded to iron depletion combined with total iron binding capacity > 72 μmol/L and/or transferrin saturation < 16%. Iron depletion and IDE affected almost half of the children when accounting for inflammation, compared to one-third when the SF cutoff was defined regardless of CRP level (P < 0.0001). The prevalence of IDE adjusted for inflammation (45.1%) was very similar to the prevalence observed when sTfR was used as a sole marker of IDE (47.4%). The prevalence of anemia was 15%. The prevalence of IDA (IDE + hemoglobin < 110 g/L) was higher when accounting for than when disregarding inflammation (8.0% versus 6.2%, P = 0.083). Using sTfR and different SF cutoffs for children with versus without inflammation improved the diagnosis of iron depletion and IDE. Our results confirm that Inuit children are at particularly high risk for iron deficiency. PMID:27382488

  1. Using Soluble Transferrin Receptor and Taking Inflammation into Account When Defining Serum Ferritin Cutoffs Improved the Diagnosis of Iron Deficiency in a Group of Canadian Preschool Inuit Children from Nunavik.

    PubMed

    Turgeon O'Brien, Huguette; Blanchet, Rosanne; Gagné, Doris; Lauzière, Julie; Vézina, Carole

    2016-01-01

    The prevalence of iron depletion, iron deficient erythropoiesis (IDE), and iron deficiency anemia (IDA) was assessed in preschool Inuit children using soluble transferrin receptor (sTfR) and traditional indicators of iron status while disregarding or taking inflammation into account when defining SF cutoffs. Iron depletion was defined as follows: (1) SF < 15 μg/L regardless of the C-reactive protein (CRP) level and (2) SF < 15 or <50 μg/L with CRP ≤ 5 or >5 mg/L, respectively. IDE corresponded to iron depletion combined with total iron binding capacity > 72 μmol/L and/or transferrin saturation < 16%. Iron depletion and IDE affected almost half of the children when accounting for inflammation, compared to one-third when the SF cutoff was defined regardless of CRP level (P < 0.0001). The prevalence of IDE adjusted for inflammation (45.1%) was very similar to the prevalence observed when sTfR was used as a sole marker of IDE (47.4%). The prevalence of anemia was 15%. The prevalence of IDA (IDE + hemoglobin < 110 g/L) was higher when accounting for than when disregarding inflammation (8.0% versus 6.2%, P = 0.083). Using sTfR and different SF cutoffs for children with versus without inflammation improved the diagnosis of iron depletion and IDE. Our results confirm that Inuit children are at particularly high risk for iron deficiency. PMID:27382488

  2. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b.

    PubMed

    Stevenson, P; Williams, P; Griffiths, E

    1992-06-01

    There is now considerable evidence to show that in the Neisseria and Haemophilus species, membrane receptors specific for either transferrin or lactoferrin are involved in the acquisition of iron from these glycoproteins. In Neisseria meningitidis, the transferrin receptor appears to consist of two proteins, one of which (TBP 1) has an M(r) of 95,000 and the other of which (TBP 2) has an M(r) ranging from 68,000 to 85,000, depending on the strain; TBP 2 binds transferrin after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting, but TBP 1 does not do so. The relative contributions of these two proteins to the binding reaction observed with intact cells and to iron uptake are presently unknown. However, they are being considered as potential components of a group B meningococcal vaccine. Analogous higher- and lower-molecular-weight proteins associated with transferrin binding have been found in N. gonorrhoeae and Haemophilus influenzae. Previous work with polyclonal antibodies raised in mice with whole cells of iron-restricted N. meningitidis showed that the meningococcal TBP 2 exhibits considerable antigenic heterogeneity. Here, we report that antiserum against purified TBP 2 from one strain of N. meningitidis cross-reacts on immunoblotting with the TBP 2 of all meningococcal isolates examined, as well as with the TBP 2 of N. gonorrhoeae. This antiserum also cross-reacted with the TBP 2 of several strains of H. influenzae type b, thus showing the presence of common antigenic domains among these functionally equivalent proteins in different pathogens; no cross-reaction was detected with a purified sample of the human transferrin receptor. PMID:1587606

  3. The electrophoresis of transferrins in urea/polyacrylamide gels.

    PubMed Central

    Evans, R W; Williams, J

    1980-01-01

    The denaturation of transferrin by urea has been studied by (a) electrophoresis in polyacrylamide gels incorporating a urea gradient, (b) measurements of the loss of iron-binding capacity and (c) u.v. difference spectrometry. In human serum transferrin and hen ovotransferrin the N-terminal and C-terminal domains of the iron-free protein were found to denature at different urea concentrations. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. PMID:7213345

  4. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  5. Human olfactory receptor responses to odorants

    PubMed Central

    Mainland, Joel D; Li, Yun R; Zhou, Ting; Liu, Wen Ling L; Matsunami, Hiroaki

    2015-01-01

    Although the human olfactory system is capable of discriminating a vast number of odors, we do not currently understand what chemical features are encoded by olfactory receptors. In large part this is due to a paucity of data in a search space covering the interactions of hundreds of receptors with billions of odorous molecules. Of the approximately 400 intact human odorant receptors, only 10% have a published ligand. Here we used a heterologous luciferase assay to screen 73 odorants against a clone library of 511 human olfactory receptors. This dataset will allow other researchers to interrogate the combinatorial nature of olfactory coding. PMID:25977809

  6. Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant.

    PubMed

    Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B

    2015-02-01

    Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. PMID:25528477

  7. Hafnium binding to rat serum transferrin

    NASA Astrophysics Data System (ADS)

    Then, G.; Zell, I.; Appel, H.; Thies, W.-G.; Duffield, J.; Taylor, D. M.

    1983-12-01

    Using the TDPAC-technique binding parameters for Hf were determined after in vivo uptake of181Hf in rat plasma. As much as 98.5% of the metal ions proved to be bound to protein, essentially to transferrin. The main fraction of the181Hf ions experiences a well defined electric quadrupole perturbation frequency (vQ1=(1516 ± 15)MHz, δ1=(5.3 ± 0.8)%) connected with a marked relaxation damping (λ = (46 ± 8)MHz). The remaining Hf nuclei are subject to a fairly broad distribution of electric field gradients (vQ2=(1014 ± 37)MHz, δ2=(16±3)%). The results are compared with data obtained with in vitro 181Hf-labeled human transferrin.

  8. The association between fructosamine-3 kinase 900C/G polymorphism, transferrin polymorphism and human herpesvirus-8 infection in diabetics living in South Kivu.

    PubMed

    Cikomola, Justin C; Vandepoele, Karl; Katchunga, Philippe B; Kishabongo, Antoine S; Padalko, Elizaveta Y; Speeckaert, Marijn M; Delanghe, Joris R

    2016-11-01

    Prevalences of human herpesvirus-8 (HHV-8) infection and diabetes mellitus are very common in certain parts of Africa, containing iron-rich soils. We hypothesized that some genetic factors could have a link with susceptibility to HHV-8 infection. We focused on ferroportin Q248H mutation (rs11568350), transferrin (TF) polymorphism and fructosamine-3 kinase (FN3K) 900C/G polymorphism (rs1056534). The study population consisted of 210 type 2 diabetic adults and 125 healthy controls recruited in Bukavu (South Kivu). In the whole study population (diabetics+healthy controls), ferroportin Q248H mutation was detected in 47 subjects (14.0%) with 43 heterozygotes and 4 homozygotes. TF phenotype frequencies were 88.1% (CC), 10.4% (CD) and 1.5% (BC). Genotype frequencies of FN3K 900C/G polymorphism were respectively 9,3% (CC), 43.3% (GC) and 47.4% (GG). Prevalence of HHV8-infection in the study population was 77.3%. HHV-8 infection rate and HHV-8 IgG antibody titer were significantly higher in diabetics then in controls (p<0.0001). Significant differences were observed in HHV-8 infection rate and in HHV-8 IgG antibody titer according to FN3K rs1056534 (p<0.05 and p<0.05, respectively) and TF polymorphism (p<0.05 and p=0.005, respectively). No significant differences in HHV-8 infection rate and in HHV-8 IgG antibody titer were observed in the ferroportin Q248H mutation carriers (rs11568350) in comparison with ferroportin wild type. In a multiple regression analysis, FN3K rs1056534, TF polymorphism and presence of diabetes mellitus were predictors for HHV-8 infection. In contrast to these findings, ferroportin Q248H mutation (rs11568350) did not influence the susceptibility for an HHV-8 infection in sub-Saharan Africans. PMID:27461879

  9. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Feng, Liuxing; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with (34)S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and (34)S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m(sp)/m(sam)) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5-3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the application of species-unspecific isotope dilution GE-LA-ICP-MS has the potential to offer reliable, direct and simultaneous quantification of proteins after conventional 1D and 2D gel electrophoretic separations. PMID:26073803

  10. Structural Allostery and Binding of the Transferring Receptor Complex

    SciTech Connect

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  11. Human neuroepithelial cells express NMDA receptors.

    PubMed

    Sharp, Christopher D; Fowler, M; Jackson, T H; Houghton, J; Warren, A; Nanda, A; Chandler, I; Cappell, B; Long, A; Minagar, A; Alexander, J S

    2003-11-13

    L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1) cerebral endothelial barrier and 2) cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells) have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR) expression via immunohistochemistry and murine neuroepithelial cell line (V1) were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease. PMID:14614784

  12. Humanization of immunotoxins.

    PubMed

    Rybak, S M; Hoogenboom, H R; Meade, H M; Raus, J C; Schwartz, D; Youle, R J

    1992-04-15

    The construction and expression of a chimeric gene encoding a mouse/human antibody to the human transferrin receptor fused to the gene for angiogenin, a human homolog of pancreatic RNase, are described. F(ab')2-like antibody-enzyme fusions were prepared by linking the gene for human angiogenin to a chimeric anti-transferrin receptor heavy chain gene. The antibody-enzyme fusion gene was introduced into a transfectoma that secretes the chimeric light chain of the same antibody, and cell lines were cloned that synthesize and secrete the antibody-enzyme fusion protein of the expected size at a concentration of 1-5 ng/ml. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis of K562 cells that express the human transferrin receptor but not toward a non-human-derived cell line that lacks this receptor. Whereas excess antibody to the same receptor did not itself inhibit protein synthesis, it was able to completely prevent the protein synthesis inhibition caused by the fusion protein. These results indicate that the cytotoxicity is due to a transferrin receptor-mediated mechanism involving the angiogenin portion of the fusion protein and demonstrate the feasibility of constructing recombinant antibody-RNase molecules capable of killing tumor cells bearing the transferrin receptor. The significance of the acquired cytotoxicity of a mouse/human chimeric antibody linked to a human protein may bear importantly in human therapeutic strategies that use mouse antibodies linked to toxins from plants or bacteria to target tumor cells. It is expected that the humanization of immunotoxins will lead to less toxicity and immunogenicity than currently available reagents. PMID:1565609

  13. Conservation and antigenic cross-reactivity of the transferrin-binding proteins of Haemophilus influenzae, Actinobacillus pleuropneumoniae and Neisseria meningitidis.

    PubMed

    Holland, J; Parsons, T R; Hasan, A A; Cook, S M; Stevenson, P; Griffiths, E; Williams, P

    1996-12-01

    Haemophilus influenzae acquires iron from the iron-transporting glycoprotein transferrin via a receptor-mediated process. This involves two outer-membrane transferrin-binding proteins (Tbps) termed Tbp1 and Tbp2 which show considerable preference for the human form of transferrin. Since the Tbps are attracting considerable attention as potential vaccine components, we used transferrin affinity chromatography to examine their conservation amongst 28 H. influenzae type b strains belonging to different outer-membrane-protein subtypes as well as six non-typable strains. Whole cells of all type b and non-typable strains examined bound human transferrin; whilst most strains possessed a Tbp1 of approximately 105 kDa, the molecular mass of Tbp2 varied from 79 to 94 kDa. Antisera raised against affinity-purified native H. influenzae Tbp1/Tbp2 receptor complex cross-reacted on Western blots with the respective Tbps of all the Haemophilus strains examined. When used to probe Neisseria meningitidis Tbps, sera from each of four mice immunized with the Haemophilus Tbp1/2 complex recognized the 68 kDa Tbp2 of N. meningitidis strain B16B6 but not the 78 kDa Tbp2 of N. meningitidis strain 70942. Serum from one mouse also reacted weakly with Tbp1 of strain B16B6. Apart from a weak reaction with the Tbp2 of a serotype 5 strain, this mouse antiserum failed to recognize the Tbps of the porcine pathogen A. pleuropneumoniae. However, a monospecific polyclonal antiserum raised against the denatured Tbp2 of Neisseria meningitidis B16B6 recognized the Tbps of all Haemophilus and Actinobacillus strains examined. Since H. influenzae forms part of the natural flora of the upper respiratory tract, human sera were screened for the presence of antibodies to the Tbps. Sera from healthy adults contained antibodies which recognized both Tbp1 and Tbp2 from H. influenzae but not N. meningitidis. Convalescent sera from meningococcal meningitis patients contained antibodies which, on Western blots

  14. Expression of Hepcidin and Ferroportin in the Placenta, and Ferritin and Transferrin Receptor 1 Levels in Maternal and Umbilical Cord Blood in Pregnant Women with and without Gestational Diabetes

    PubMed Central

    Yang, Anqiang; Zhao, Jun; Lu, Minhua; Gu, Ying; Zhu, Yunlong; Chen, Daozhen; Fu, Jinyan

    2016-01-01

    Background: Regulation of iron transfer from mother to fetus via the placenta is not fully understood and the relationship between stored iron status in the mothers’ serum and gestational diabetes (GDM) in case–control studies is controversial. The present study aimed to detect circulating soluble transferrin receptor (sTfR) and ferritin levels in maternal and umbilical cord blood. We also examined the expression of hepcidin (Hep), transferrin receptor (TfR1), and ferroportin (FPN) in the placenta in pregnant women with and without GDM at full term. Methods: Eighty-two women participated (42 with GDM and 40 without GDM [controls]). Maternal samples were collected at 37–39 weeks’ gestation. Umbilical cord blood was collected at birth. Ferritin and sTfR levels in maternal serum and umbilical cord blood, and Hep, TfR1, and FPN protein expression in plac enta were compared between the GDM and non-GDM groups. Serum ferritin (SF) was measured by electrochemiluminescence assay and sTfR was measured by ELISA. Hep, TfR1, and FPN expression was measured by immunohistochemistry. Results: Maternal serum sTfR levels were significantly elevated in the GDM group compared with the non-GDM group (p = 0.003). SF levels in cord blood in the GDM group were significantly higher than those in the non-GDM group (p = 0.003). However, maternal hemoglobin and SF, and umbilical cord sTfR levels were not different between the groups. In placental tissue, FPN expression was higher and hepcidin expression was lower in the GDM group compared with the non-GDM group (p = 0.000 and p = 0.044, respectively). There was no significant difference in TfR1 between the groups (p = 0.898). Conclusions: Women with GDM transport iron more actively than those without GDM at term pregnancy. Maternal iron metabolism in GDM may play a role in fetal/placental iron demand and in the overall outcome of pregnancy. PMID:27483296

  15. Ghrelin Receptor Mutations and Human Obesity.

    PubMed

    Wang, W; Tao, Y-X

    2016-01-01

    Growth hormone secretagogue receptor (GHSR) was originally identified as an orphan receptor in porcine and rat anterior pituitary membranes. In 1999, GHSR was deorphanized and shown to be a receptor for ghrelin, a peptide hormone secreted from the stomach. Therefore, GHSR is also called ghrelin receptor. In addition to regulating growth hormone secretion, ghrelin receptor regulates various physiological processes, including food intake and energy expenditure, glucose metabolism, cardiovascular functions, gastric acid secretion and motility, and immune function. Several human genetic studies conducted in populations originated from Europe, Africa, South America, and East Asia identified rare mutations and single nucleotide polymorphisms that might be associated with human obesity and short stature. Functional analyses of mutant GHSRs reveal multiple defects, including cell surface expression, ligand binding, and basal and stimulated signaling. With growing understanding in the functionality of naturally occurring GHSR mutations, potential therapeutic strategies including pharmacological chaperones and novel ligands could be used to correct the GHSR mutants. PMID:27288828

  16. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes.

    PubMed Central

    Young, S P; Bomford, A; Williams, R

    1984-01-01

    Polyacrylamide-gel electrophoresis in urea was used to prepare the four molecular species of transferrin:diferric transferrin, apotransferrin and the two monoferric transferrins with either the C-terminal or the N-terminal metal-binding site occupied. The interaction of these 125I-labelled proteins with rabbit reticulocytes was investigated. At 4 degrees C the average value for the association constant for the binding of transferrin to reticulocytes was found to increase with increasing iron content of the protein. The association constant for apotransferrin binding was 4.6 X 10(6)M-1, for monoferric (C-terminal iron) 2.5 X 10(7)M-1, for monoferric (N-terminal iron) 2.8 X 10(7)M-1 and for diferric transferrin, 1.1 X 10(8)M-1. These differences in the association constants did not affect the processing of the transferrin species by the cells at 37 degrees C. Accessibility of the proteins to extracellular proteinase indicated that the transferrin was internalized by the cells regardless of the iron content of the protein, since in each case 70% was inaccessible. Cycling of the cellular receptors may also occur in the absence of bound transferrin. PMID:6743230

  17. Transferrin treatment corrects aging-related immunologic and hormonal decay in old mice.

    PubMed

    Pierpaoli, W; Bulian, D; Arrighi, S

    2000-05-01

    Experiments were conducted to study the effect of heterologous plasma transferrins separated and purified from human plasma pools on endocrine and immune functions of old, aging mice. Two similar experiments have shown that parenteral treatment with iron and zinc-free human transferrins produces a significant improvement of immunological and endocrine functions in the aging mice toward more juvenile values. Those changes occur in the thymus and its cell subsets, in peripheral blood lymphocytes, in the restoration of juvenile levels of thyroxine, in the increase of testis weight, and in the normalization of plasma zinc levels. These totally unsuspected effects of transferrin in aging mice suggest a most important role of endogenous transferrins in the maintenance of neuroendocrine and immune functions. The mechanism remains unexplained although the basic immunoenhancing and anti-apoptotic effect of transferrin-vehiculated zinc may be relevant. PMID:10832059

  18. Systematic prediction of human membrane receptor interactions

    PubMed Central

    Qi, Yanjun; Dhiman, Harpreet K.; Bhola, Neil; Budyak, Ivan; Kar, Siddhartha; Man, David; Dutta, Arpana; Tirupula, Kalyan; Carr, Brian I.; Grandis, Jennifer; Bar-Joseph, Ziv; Klein-Seetharaman, Judith

    2010-01-01

    Membrane receptor-activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins. We predict specific interactions based on statistical integration of biological data containing highly informative direct and indirect evidences together with feedback from experts. The predicted membrane receptor interactome provides a system-wide view, and generates new biological hypotheses regarding interactions between membrane receptors and other proteins. We have experimentally validated a number of these interactions. The results suggest that a framework of systematically integrating computational predictions, global analyses, biological experimentation and expert feedback is a feasible strategy to study the human membrane receptor interactome. PMID:19798668

  19. The transferrin-iron import system from pathogenic Neisseria species.

    PubMed

    Noinaj, Nicholas; Buchanan, Susan K; Cornelissen, Cynthia Nau

    2012-10-01

    Two pathogenic species within the genus Neisseria cause the diseases gonorrhoea and meningitis. While vaccines are available to protect against four N. meningitidis serogroups, there is currently no commercial vaccine to protect against serogroup B or against N. gonorrhoeae. Moreover, the available vaccines have significant limitations and with antibiotic resistance becoming an alarming issue, the search for effective vaccine targets to elicit long-lasting protection against Neisseria species is becoming more urgent. One strategy for vaccine development has targeted the neisserial iron import systems. Without iron, the Neisseriae cannot survive and, therefore, these iron import systems tend to be relatively well conserved and are promising vaccine targets, having the potential to offer broad protection against both gonococcal and meningococcal infections. These efforts have been boosted by recent reports of the crystal structures of the neisserial receptor proteins TbpA and TbpB, each solved in complex with human transferrin, an iron binding protein normally responsible for delivering iron to human cells. Here, we review the recent structural reports and put them into perspective with available functional studies in order to derive the mechanism(s) for how the pathogenic Neisseriae are able to hijack human iron transport systems for their own survival and pathogenesis. PMID:22957710

  20. Nonbinding Site-Directed Mutants of Transferrin Binding Protein B Exhibit Enhanced Immunogenicity and Protective Capabilities

    PubMed Central

    Frandoloso, Rafael; Martínez-Martínez, Sonia; Calmettes, Charles; Fegan, Jamie; Costa, Estela; Curran, Dave; Yu, Rong-hua; Gutiérrez-Martín, César B.; Rodríguez-Ferri, Elías F.; Moraes, Trevor F.

    2014-01-01

    Host-adapted Gram-negative bacterial pathogens from the Pasteurellaceae, Neisseriaceae, and Moraxellaceae families normally reside in the upper respiratory or genitourinary tracts of their hosts and rely on utilizing iron from host transferrin (Tf) for growth and survival. The surface receptor proteins that mediate this critical iron acquisition pathway have been proposed as ideal vaccine targets due to the critical role that they play in survival and disease pathogenesis in vivo. In particular, the surface lipoprotein component of the receptor, Tf binding protein B (TbpB), had received considerable attention as a potential antigen for vaccines in humans and food production animals but this has not translated into the series of successful vaccine products originally envisioned. Preliminary immunization experiments suggesting that host Tf could interfere with development of the immune response prompted us to directly address this question with site-directed mutant proteins defective in binding Tf. Site-directed mutants with dramatically reduced binding of porcine transferrin and nearly identical structure to the native proteins were prepared. A mutant Haemophilus parasuis TbpB was shown to induce an enhanced B-cell and T-cell response in pigs relative to native TbpB and provide superior protection from infection than the native TbpB or a commercial vaccine product. The results indicate that binding of host transferrin modulates the development of the immune response against TbpBs and that strategies designed to reduce or eliminate binding can be used to generate superior antigens for vaccines. PMID:25547790

  1. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  2. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1984-05-15

    A novel ruthenium-transferrin complex is disclosed which is prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40 C for about 2 hours. The complex is purified by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex. No Drawings

  3. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, Powell; Srivastava, Suresh C.; Meinken, George E.

    1984-05-15

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40.degree. C. for about 2 hours, and purifying said complex by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  4. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    PubMed

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-01

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. PMID:27235585

  5. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-binding and transporting serum protein) in serum, plasma, and other body fluids. Measurement...

  6. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-binding and transporting serum protein) in serum, plasma, and other body fluids. Measurement...

  7. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-binding and transporting serum protein) in serum, plasma, and other body fluids. Measurement...

  8. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-binding and transporting serum protein) in serum, plasma, and other body fluids. Measurement...

  9. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-binding and transporting serum protein) in serum, plasma, and other body fluids. Measurement...

  10. Cannabinoid-receptor expression in human leukocytes.

    PubMed

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  11. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  12. Cellular receptors for human enterovirus species a.

    PubMed

    Nishimura, Yorihiro; Shimizu, Hiroyuki

    2012-01-01

    Human enterovirus species A (HEV-A) is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are the major causative agents of hand, foot, and mouth disease (HFMD). Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis. Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1) and scavenger receptor class B, member 2 (SCARB2), were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level. PMID:22470371

  13. Solubilization of human platelet vasopressin receptors

    SciTech Connect

    Thibonnier, M.

    1987-02-02

    The human platelet membrane receptor for vasopressin (AVP) has been solubilized with the cholic acid derivative detergent 3-((3-cholamidopropyl)-dimethylammonio)-1-propane sulfonate. Rapid and simple separation of free tritiated AVP ((/sup 3/H)AVP) from the solubilized receptor-hormone complex was done by filtration through polyethylenimine-treated filters. (/sup 3/H)AVP binds to this soluble receptor with an equilibrium dissociation constant of 11.03 +/- 1.86 nM and a maximal number of binding sites = 288 +/- 66 fmol/mg protein while the corresponding values of the membrane-bound receptor are 1.62 +/- 0.21 nM and 237 +/- 38 fmol/mg of protein, respectively. The Ki value for native AVP derived from competition experiments is 11.02 +/- 20.5 nM for the soluble receptor. Competition experiments with specific vascular and renal antagonists confirm that the solubilized receptor belongs to the V1-vascular subtype. 10 references, 5 figures.

  14. Crystal structures of the human adiponectin receptors.

    PubMed

    Tanabe, Hiroaki; Fujii, Yoshifumi; Okada-Iwabu, Miki; Iwabu, Masato; Nakamura, Yoshihiro; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-04-16

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  15. Applying 89Zr-Transferrin To Study the Pharmacology of Inhibitors to BET Bromodomain Containing Proteins

    PubMed Central

    2016-01-01

    Chromatin modifying proteins are attractive drug targets in oncology, given the fundamental reliance of cancer on altered transcriptional activity. Multiple transcription factors can be impacted downstream of primary target inhibition, thus making it challenging to understand the driving mechanism of action of pharmacologic inhibition of chromatin modifying proteins. This in turn makes it difficult to identify biomarkers predictive of response and pharmacodynamic tools to optimize drug dosing. In this report, we show that 89Zr-transferrin, an imaging tool we developed to measure MYC activity in cancer, can be used to identify cancer models that respond to broad spectrum inhibitors of transcription primarily due to MYC inhibition. As a proof of concept, we studied inhibitors of BET bromodomain containing proteins, as they can impart antitumor effects in a MYC dependent or independent fashion. In vitro, we show that transferrin receptor biology is inhibited in multiple MYC positive models of prostate cancer and double hit lymphoma when MYC biology is impacted. Moreover, we show that bromodomain inhibition in one lymphoma model results in transferrin receptor expression changes large enough to be quantified with 89Zr-transferrin and positron emission tomography (PET) in vivo. Collectively, these data further underscore the diagnostic utility of the relationship between MYC and transferrin in oncology, and provide the rationale to incorporate transferrin-based PET into early clinical trials with bromodomain inhibitors for the treatment of solid tumors. PMID:26725682

  16. Hafnium binding to comparison: comparison between lactoferrin and other transferrins

    NASA Astrophysics Data System (ADS)

    Becker, G.; Appel, H.; Neu, M.; Schwab, F. J.; Thies, W.-G.

    1993-03-01

    The TDPAC method was used to study the electric field gradients at the metal sites of human and bovine lactoferrin. Two specific binding configurations were observed. The distribution between these configurations depends on the phosphate content, the pH, and the temperature of the samples. The electric field gradients are compared with the results of previous studies for human and rat serum transferrin, and hen ovotransferrin.

  17. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  18. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  19. IL-21 Receptor Expression in Human Tendinopathy

    PubMed Central

    Campbell, Abigail L.; Smith, Nicola C.; Reilly, James H.; Kerr, Shauna C.; Leach, William J.; Fazzi, Umberto G.; Rooney, Brian P.; Murrell, George A. C.; Millar, Neal L.

    2014-01-01

    The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β) in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy. PMID:24757284

  20. Transferrin: structure, function and potential therapeutic actions.

    PubMed

    Gomme, Peter T; McCann, Karl B; Bertolini, Joseph

    2005-02-15

    There are many proteins that can multi-task. Transferrin, widely known as an iron-binding protein, is one such example of a multi-tasking protein. In this review, the multiple biological actions of transferrin, including its growth and cytoprotective activities, are discussed with the view of highlighting the potential therapeutic applications of this protein. PMID:15708745

  1. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  2. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site.

    PubMed

    He, Q Y; Mason, A B; Tam, B M; MacGillivray, R T; Woodworth, R C

    1999-07-27

    The unique structural feature of the dilysine (Lys206-Lys296) pair in the transferrin N-lobe (hTF/2N) has been postulated to serve a special function in the release of iron from the protein. These two lysines, which are located in opposite domains, hydrogen bond to each other in the iron-containing hTF/2N at neutral pH but are far apart in the apo-form of the protein. It has been proposed that charge repulsion resulting from the protonation of the dilysines at lower pH may be the trigger to open the cleft and facilitate iron release. The fact that the dilysine pair is positively charged and resides in a location close to the metal-binding center has also led to the suggestion that the dilysine pair is an anion-binding site for chelators. The present report provides comprehensive evidence to confirm that the dilysine pair plays this dual role in modulating release of iron. When either of the lysines is mutated to glutamate or glutamine or when both are mutated to glutamate, release of iron is much slower compared to the wild-type protein. This is due to the fact that the driving force for cleft opening is absent in the mutants or is converted to a lock-like interaction (in the case of the K206E and K296E mutants). Direct titration of the apo-proteins with anions as well as anion-dependent iron release studies show that the dilysine pair is part of an active anion-binding site which exists with the Lys296-Tyr188 interaction as a core. At this site, Lys296 serves as the primary anion-binding residue and Tyr188 is the main reporter for electronic spectral change, with smaller contributions from Lys206, Tyr85, and Tyr95. In iron-loaded hTF/2N, anion binding becomes invisible as monitored by UV-vis difference spectra since the spectral reporters Tyr188 and Tyr95 are bound to iron. Our data strongly support the hypothesis that the apo-hTF/2N exists in equilibrium between the open and closed conformations, because only in the closed form is Lys296 in direct contact with

  3. Enhanced human receptor binding by H5 haemagglutinins.

    PubMed

    Xiong, Xiaoli; Xiao, Haixia; Martin, Stephen R; Coombs, Peter J; Liu, Junfeng; Collins, Patrick J; Vachieri, Sebastien G; Walker, Philip A; Lin, Yi Pu; McCauley, John W; Gamblin, Steven J; Skehel, John J

    2014-05-01

    Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between Asn-186 and Gln-226. In contrast, a double mutant, Δ133/Ile155Thr, isolated in Egypt has greater avidity for human receptor while retaining wild-type avidity for avian receptor. Despite these increases in human receptor binding, none of the mutants prefers human receptor, unlike aerosol transmissible H5N1 viruses. Nevertheless, mutants with high avidity for both human and avian receptors may be intermediates in the evolution of H5N1 viruses that could infect both humans and poultry. PMID:24889237

  4. Enhanced human receptor binding by H5 haemagglutinins

    PubMed Central

    Xiong, Xiaoli; Xiao, Haixia; Martin, Stephen R.; Coombs, Peter J.; Liu, Junfeng; Collins, Patrick J.; Vachieri, Sebastien G.; Walker, Philip A.; Lin, Yi Pu; McCauley, John W.; Gamblin, Steven J.; Skehel, John J.

    2014-01-01

    Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between Asn-186 and Gln-226. In contrast, a double mutant, Δ133/Ile155Thr, isolated in Egypt has greater avidity for human receptor while retaining wild-type avidity for avian receptor. Despite these increases in human receptor binding, none of the mutants prefers human receptor, unlike aerosol transmissible H5N1 viruses. Nevertheless, mutants with high avidity for both human and avian receptors may be intermediates in the evolution of H5N1 viruses that could infect both humans and poultry. PMID:24889237

  5. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  6. Delivery of Transferrin-Conjugated Polysaccharide Nanoparticles in 9L Gliosacoma Cells.

    PubMed

    Jeong, Young-Il; Kim, Young-Wook; Jung, Shin; Pei, Jian; Wen, Min; Li, Song-Yuan; Ryu, Hyang-Hwa; Lim, Jung Cheol; Jang, Woo-Youl; Kim, In-Young; Moon, Kyung-Sub; Jung, Tae-Young

    2015-01-01

    To investigate the possibility of drug targeting via the transferrin receptor-mediated pathway, iron-saturated transferrin was conjugated with chitosan (Tr-chitosan) and complexed with doxorubicin-conjugated methoxy poly(ethylene glycol)-b-dextran succinate (DEX-DOX). DEX-DOX nanoparticles have spherical morphologies with less than 150 nm particle sizes. When Tr-chitosan was complexed with DEX-DOX nanoparticles (TR nanoparticle), particle sizes were increased to higher than 200 nm. Viability of 9L cells with treatment of doxorubicin (DOX) or DEX-DOX nanoparticle was dose-dependently decreased regardless of transferrin receptor blocking. However, cytotoxicity of TR nanoparticles was reduced by blocking of transferrin receptor. Flow cytometric analysis and confocal microscopic observation showed that fluorescence intensity of tumor cells with treatment of TR nanoparticles was significantly decreased by blocking of transferring receptor while DEX-DOX nanoparticles were not affected by blocking of transferring receptor. These results indicated that TR nanoparticles are promising candidates for brain tumor drug delivery. PMID:26328315

  7. Estrogen receptors and human disease: an update

    PubMed Central

    Burns, Katherine A.

    2016-01-01

    A myriad of physiological processes in mammals are influenced by estrogens and the estrogen receptors (ERs), ERα and ERβ. As we reviewed previously, given the widespread role for estrogen in normal human physiology, it is not surprising that estrogen is implicated in the development or progression of a number of diseases. In this review, we are giving a 5-year update of the literature regarding the influence of estrogens on a number of human cancers (breast, ovarian, colorectal, prostate, and endometrial), endometriosis, fibroids, and cardiovascular disease. A large number of sophisticated experimental studies have provided insights into human disease, but for this review, the literature citations were limited to articles published after our previous review (Deroo and Korach in J Clin Invest 116(3):561–570, 2006) and will focus in most cases on human data and clinical trials. We will describe the influence in which estrogen’s action, through one of or both of the ERs, mediates the aforementioned human disease states. PMID:22648069

  8. Bitter Taste Receptor Polymorphisms and Human Aging

    PubMed Central

    Carrai, Maura; Crocco, Paolina; Montesanto, Alberto; Canzian, Federico; Rose, Giuseppina; Rizzato, Cosmeri

    2012-01-01

    Several studies have shown that genetic factors account for 25% of the variation in human life span. On the basis of published molecular, genetic and epidemiological data, we hypothesized that genetic polymorphisms of taste receptors, which modulate food preferences but are also expressed in a number of organs and regulate food absorption processing and metabolism, could modulate the aging process. Using a tagging approach, we investigated the possible associations between longevity and the common genetic variation at the three bitter taste receptor gene clusters on chromosomes 5, 7 and 12 in a population of 941 individuals ranging in age from 20 to 106 years from the South of Italy. We found that one polymorphism, rs978739, situated 212 bp upstream of the TAS2R16 gene, shows a statistically significant association (p = 0.001) with longevity. In particular, the frequency of A/A homozygotes increases gradually from 35% in subjects aged 20 to 70 up to 55% in centenarians. These data provide suggestive evidence on the possible correlation between human longevity and taste genetics. PMID:23133589

  9. The Intracellular Trafficking Pathway of Transferrin

    PubMed Central

    Mayle, Kristine M.; Le, Alexander M.; Kamei, Daniel T.

    2011-01-01

    Background Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. Scope of Review We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Major Conclusions Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. General Significance Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. PMID:21968002

  10. Human native kappa opioid receptor functions not predicted by recombinant receptors: Implications for drug design.

    PubMed

    Broad, John; Maurel, Damien; Kung, Victor W S; Hicks, Gareth A; Schemann, Michael; Barnes, Michael R; Kenakin, Terrence P; Granier, Sébastien; Sanger, Gareth J

    2016-01-01

    If activation of recombinant G protein-coupled receptors in host cells (by drugs or other ligands) has predictive value, similar data must be obtained with native receptors naturally expressed in tissues. Using mouse and human recombinant κ opioid receptors transfected into a host cell, two selectively-acting compounds (ICI204448, asimadoline) equi-effectively activated both receptors, assessed by measuring two different cell signalling pathways which were equally affected without evidence of bias. In mouse intestine, naturally expressing κ receptors within its nervous system, both compounds also equi-effectively activated the receptor, inhibiting nerve-mediated muscle contraction. However, whereas ICI204448 acted similarly in human intestine, where κ receptors are again expressed within its nervous system, asimadoline was inhibitory only at very high concentrations; instead, low concentrations of asimadoline reduced the activity of ICI204448. This demonstration of species-dependence in activation of native, not recombinant κ receptors may be explained by different mouse/human receptor structures affecting receptor expression and/or interactions with intracellular signalling pathways in native environments, to reveal differences in intrinsic efficacy between receptor agonists. These results have profound implications in drug design for κ and perhaps other receptors, in terms of recombinant-to-native receptor translation, species-dependency and possibly, a need to use human, therapeutically-relevant, not surrogate tissues. PMID:27492592

  11. Human native kappa opioid receptor functions not predicted by recombinant receptors: Implications for drug design

    PubMed Central

    Broad, John; Maurel, Damien; Kung, Victor W. S.; Hicks, Gareth A.; Schemann, Michael; Barnes, Michael R.; Kenakin, Terrence P.; Granier, Sébastien; Sanger, Gareth J.

    2016-01-01

    If activation of recombinant G protein-coupled receptors in host cells (by drugs or other ligands) has predictive value, similar data must be obtained with native receptors naturally expressed in tissues. Using mouse and human recombinant κ opioid receptors transfected into a host cell, two selectively-acting compounds (ICI204448, asimadoline) equi-effectively activated both receptors, assessed by measuring two different cell signalling pathways which were equally affected without evidence of bias. In mouse intestine, naturally expressing κ receptors within its nervous system, both compounds also equi-effectively activated the receptor, inhibiting nerve-mediated muscle contraction. However, whereas ICI204448 acted similarly in human intestine, where κ receptors are again expressed within its nervous system, asimadoline was inhibitory only at very high concentrations; instead, low concentrations of asimadoline reduced the activity of ICI204448. This demonstration of species-dependence in activation of native, not recombinant κ receptors may be explained by different mouse/human receptor structures affecting receptor expression and/or interactions with intracellular signalling pathways in native environments, to reveal differences in intrinsic efficacy between receptor agonists. These results have profound implications in drug design for κ and perhaps other receptors, in terms of recombinant-to-native receptor translation, species-dependency and possibly, a need to use human, therapeutically-relevant, not surrogate tissues. PMID:27492592

  12. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Sagar, Vidya; Agudelo, Marisela; Pilakka-Kanthikeel, Sudheesh; Subba Rao Atluri, Venkata; Raymond, Andrea; Samikkannu, Thangavel; Nair, Madhavan P.

    2014-02-01

    The blood-brain barrier (BBB) is considered as the primary impediment barrier for most drugs. Delivering therapeutic agents to the brain is still a big challenge to date. In our study, a dual mechanism, receptor mediation combined with external non-invasive magnetic force, was incorporated into ferrous magnet-based liposomes for BBB transmigration enhancement. The homogenous magnetic nanoparticles (MNPs), with a size of ˜10 nm, were synthesized and confirmed by TEM and XRD respectively. The classical magnetism assay showed the presence of the characteristic superparamagnetic property. These MNPs encapsulated in PEGylated fluorescent liposomes as magneto-liposomes (MLs) showed mono-dispersion, ˜130 ± 10 nm diameter, by dynamic laser scattering (DLS) using the lipid-extrusion technique. Remarkably, a magnetite encapsulation efficiency of nearly 60% was achieved. Moreover, the luminescence and hydrodynamic size of the MLs was stable for over two months at 4 ° C. Additionally, the integrity of the ML structure remained unaffected through 120 rounds of circulation mimicking human blood fluid. After biocompatibility confirmation by cytotoxicity evaluation, these fluorescent MLs were further embedded with transferrin and applied to an in vitro BBB transmigration study in the presence or absence of external magnetic force. Comparing with magnetic force- or transferrin receptor-mediated transportation alone, their synergy resulted in 50-100% increased transmigration without affecting the BBB integrity. Consequently, confocal microscopy and iron concentration in BBB-composed cells further confirmed the higher cellular uptake of ML particles due to the synergic effect. Thus, our multifunctional liposomal magnetic nanocarriers possess great potential in particle transmigration across the BBB and may have a bright future in drug delivery to the brain.

  13. Binding of Chromium(III) to Transferrin Could Be Involved in Detoxification of Dietary Chromium(III) Rather than Transport of an Essential Trace Element.

    PubMed

    Levina, Aviva; Pham, T H Nguyen; Lay, Peter A

    2016-07-01

    Cr(III) binding to transferrin (Tf; the main Fe(III) transport protein) has been postulated to mediate cellular uptake of Cr(III) to facilitate a purported essential role for this element. Experiments using HepG2 (human hepatoma) cells, which were chosen because of high levels of the transferrin receptor, showed that Cr(III) binding to vacant Fe(III) -binding sites of human Tf effectively blocks cellular Cr(III) uptake. Through bio-layer interferometry studies of the Tf cycle, it was found that both exclusion and efflux of Cr2 (III) Tf from cells was caused by 1) relatively low Cr2 Tf affinity to cell-surface Tf receptors compared to Fe2 Tf, and 2) disruption of metal release under endosomal conditions and post-endosomal Tf dissociation from the receptor. These data support mounting evidence that Cr(III) is not essential and that Tf binding is likely to be a natural protective mechanism against the toxicity and potential genotoxicity of dietary Cr through blocking Cr(III) cellular accumulation. PMID:27197571

  14. The human serotonin-7 receptor pseudogene: variation and chromosome location.

    PubMed Central

    Nam, D; Qian, I H; Kusumi, I; Ulpian, C; Tallerico, T; Liu, I S; Seeman, P

    1998-01-01

    We report a variation of the pseudogene for the serotonin-7 receptor in human DNA. Human genomic DNA was amplified, using the polymerase chain reaction method and degenerate oligonucleotide primers for serotonin receptor-like genes. A novel gene DNA sequence of 1325 bp was found. Based on nucleotides, this gene is 88% identical to the serotonin-7 receptor coding sequence. Compared with the previously known serotonin-7 receptor pseudogene, this pseudogene has 1 nucleotide deletion and 4 nucleotide mutations. The gene is located on human chromosome 12 at 12p12.3-p13.2. Images Fig. 1A PMID:9785699

  15. Transcytosis in the blood–cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    PubMed Central

    Méndez-Gómez, Héctor R; Galera-Prat, Albert; Meyers, Craig; Chen, Weijun; Singh, Jasbir; Carrión-Vázquez, Mariano; Muzyczka, Nicholas

    2015-01-01

    Crossing the blood–brain and the blood–cerebrospinal fluid barriers (BCSFB) is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side. PMID:26491705

  16. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  17. Reptilian transferrins: evolution of disulphide bridges and conservation of iron-binding center.

    PubMed

    Ciuraszkiewicz, Justyna; Biczycki, Marian; Maluta, Aleksandra; Martin, Samuel; Watorek, Wiesław; Olczak, Mariusz

    2007-07-01

    Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to

  18. Riluzole blocks human muscle acetylcholine receptors

    PubMed Central

    Deflorio, Cristina; Palma, Eleonora; Conti, Luca; Roseti, Cristina; Manteca, Alessia; Giacomelli, Elena; Catalano, Myriam; Limatola, Cristina; Inghilleri, Maurizio; Grassi, Francesca

    2012-01-01

    Riluzole, the only drug available against amyotrophic lateral sclerosis (ALS), has recently been shown to block muscle ACh receptors (AChRs), raising concerns about possible negative side-effects on neuromuscular transmission in treated patients. In this work we studied riluzole's impact on the function of muscle AChRs in vitro and on neuromuscular transmission in ALS patients, using electrophysiological techniques. Human recombinant AChRs composed of α1β1δ subunits plus the γ or ɛ subunit (γ- or ɛ-AChR) were expressed in HEK cells or Xenopus oocytes. In both preparations, riluzole at 0.5 μm, a clinically relevant concentration, reversibly reduced the amplitude and accelerated the decay of ACh-evoked current if applied before coapplication with ACh. The action on γ-AChRs was more potent and faster than on ɛ-AChRs. In HEK outside-out patches, riluzole-induced block of macroscopic ACh-evoked current gradually developed during the initial milliseconds of ACh presence. Single channel recordings in HEK cells and in human myotubes from ALS patients showed that riluzole prolongs channel closed time, but has no effect on channel conductance and open duration. Finally, compound muscle action potentials (CMAPs) evoked by nerve stimulation in ALS patients remained unaltered after a 1 week suspension of riluzole treatment. These data indicate that riluzole, while apparently safe with regard to synaptic transmission, may affect the function of AChRs expressed in denervated muscle fibres of ALS patients, with biological consequences that remain to be investigated. PMID:22431338

  19. Synthesis and in vitro efficacy of transferrin conjugates of the anticancer drug chlorambucil.

    PubMed

    Beyer, U; Roth, T; Schumacher, P; Maier, G; Unold, A; Frahm, A W; Fiebig, H H; Unger, C; Kratz, F

    1998-07-16

    One strategy for improving the selectivity and toxicity profile of antitumor agents is to design drug carrier systems employing soluble macromolecules or carrier proteins. Thus, five maleimide derivatives of chlorambucil were bound to thiolated human serum transferrin which differ in the stability of the chemical link between drug and spacer. The maleimide ester derivatives 1 and 2 were prepared by reacting 2-hydroxyethylmaleimide or 3-maleimidophenol with the carboxyl group of chlorambucil, and the carboxylic hydrazone derivatives 5-7 were obtained through reaction of 2-maleimidoacetaldehyde, 3-maleimidoacetophenone, or 3-maleimidobenzaldehyde with the carboxylic acid hydrazide derivative of chlorambucil. The alkylating activity of transferrin-bound chlorambucil was determined with the aid of 4-(4-nitrobenzyl)pyridine (NBP) demonstrating that on average 3 equivalents were protein-bound. Evaluation of the cytotoxicity of free chlorambucil and the respective transferrin conjugates in the MCF7 mammary carcinoma and MOLT4 leukemia cell line employing a propidium iodide fluorescence assay demonstrated that the conjugates in which chlorambucil was bound to transferrin through non-acid-sensitive linkers, i.e., an ester or benzaldehyde carboxylic hydrazone bond, were not, on the whole, as active as chlorambucil. In contrast, the two conjugates in which chlorambucil was bound to transferrin through acid-sensitive carboxylic hydrazone bonds were as active as or more active than chlorambucil in both cell lines. Especially, the conjugate in which chlorambucil was bound to transferrin through an acetaldehyde carboxylic hydrazone bond exhibited IC50 values which were approximately 3-18-fold lower than those of chlorambucil. Preliminary toxicity studies in mice showed that this conjugate can be administered at higher doses in comparison to unbound chlorambucil. The structure-activity relationships of the transferrin conjugates are discussed with respect to their p

  20. Investigation of transferrin polymorphism in Garole sheep.

    PubMed

    Yadav, Devesh K; Taraphder, Subhash; Sahoo, Ajit K; Dhara, K C

    2010-03-01

    The aim of this study was to determine the genetics of polymorph systems of Transferrin in Garole sheep breed. The present study was conducted on 95 adult Garole sheep comprising 52 ewes and 43 rams, maintained at Sheep and Goat Breeding Farm of West Bengal University of Animal and Fishery Sciences, West Bengal, during the period from April-September, 2009. The polymorphism of transferrin was determined through SDS-Polyacrylamide gel electrophoresis technique. It was found that the transferrin type was controlled by five codominant alleles (TfA, TfB, TfC TfD and TfE) in Garole sheep. These five alleles, because of co-dominant nature of inheritance, determined the occurrence of nine transferrin genotypes in the analyzed flock. Four (TfAA, TfBB, TfCC and TfDD) of these were homozygous and the remaining five (TfAD, TfBC, TfBD, TfCD and TfDE) heterozygous. It was found that the TfDD genotype (0.263) was predominant while TfDE genotype (0.042) was least common in the analyzed flock. Frequencies of other genotypes were as: TfCD(0.242), TfBD(0.126), TfCC(0.084), TfBB(0.074), TfAA(0.063), TfAD and TfBC (0.053 for each genotype ) in whole population. From the result it was found that in whole population combined, the heterozygotic genotypic frequency (0.516) was more than that of homozygotic genotypic frequency (0.484). Considerable variations were recognized in the frequencies of transferrin alleles. In the whole population frequencies of transferrin alleles were found to be TfA = 0.089, TfB = 0.163, TfC = 0.232, TfD = 0.495 and TfE = 0.021. Transferrin system has shown an absence of genetic equilibrium among the analyzed herd (chi2 value = 51.31). In conclusion, there were polymorphism in Transferrin types and the presence of differences among the frequencies of the five alleles by categories could be a source of genetic variation in Garole sheep. PMID:20349135

  1. Crystal structure of the human σ1 receptor.

    PubMed

    Schmidt, Hayden R; Zheng, Sanduo; Gurpinar, Esin; Koehl, Antoine; Manglik, Aashish; Kruse, Andrew C

    2016-04-28

    The human σ1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the σ1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the σ1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human σ1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like β-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein. PMID:27042935

  2. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery.

    PubMed

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Patne, Shashikant C U; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2016-10-01

    The aim of this study was to develop multi-walled carbon nanotubes (MWCNT) which were covalently conjugated with transferrin by carbodiimide chemistry and loaded with docetaxel as a model drug for effective treatment of lung cancer in comparison with the commercial docetaxel injection (Docel™). d-Alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was used as amphiphilic surfactant to improve the aqueous dispersity and biocompatibility of MWCNT. Human lung cancer cells (A549 cells) were employed as an in-vitro model to access cellular uptake, cytotoxicity, cellular apoptosis, cell cycle analysis, and reactive oxygen species (ROS) of the docetaxel/coumarin-6 loaded MWCNT. The cellular uptake results of transferrin conjugated MWCNT showed higher efficiency in comparison with free C6. The IC50 values demonstrated that the transferrin conjugated MWCNT could be 136-fold more efficient than Docel™ after 24h treatment with the A549 cells. Flow cytometry analysis confirmed that cancerous cells appeared significantly (P<0.05) in the sub-G1 phase for transferrin conjugated MWCNT in comparison with Docel™. Results of transferrin conjugated MWCNT have showed better efficacy with safety than Docel™. PMID:27287127

  3. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  4. Expression of the Endocannabinoid Receptors in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; Caro, R. De; Stecco, C.

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  5. Expression of the endocannabinoid receptors in human fascial tissue.

    PubMed

    Fede, C; Albertin, G; Petrelli, L; Sfriso, M M; Biz, C; De Caro, R; Stecco, C

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  6. Complex of transferrin with ruthenium for medical applications. [Ru 97, Ru 103

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1980-11-03

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40/sup 0/C for about 2 hours, and purifying said complex by means of gel chromatography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparitive results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  7. Multiple human D sub 5 dopamine receptor genes: A functional receptor and two pseudogenes

    SciTech Connect

    Grandy, D.K.; Yuan Zhang; Bouvier, C.; Qunyong Zhou; Johnson, R.A.; Allen, L.; Buck, K.; Bunzow, J.R.; Salon, J.; Civelli, O. )

    1991-10-15

    Three genes closely related to the D{sub 1} dopamine receptor were identified in the human genome. One of the genes lacks introns and encodes a functional human dopamine receptor, D{sub 5}, whose deduced amino acid sequence is 49% identical to that of the human D{sub 1} receptor. Compared with the human D{sub 1} dopamine receptor, the D{sub 5} receptor displayed a higher affinity for dopamine and was able to stimulate a biphasic rather than a monophasic intracellular accumulation of cAMP. Neither of the other two genes was able to direct the synthesis of a receptor. nucleotide sequence analysis revealed that these two genes are 98% identical to each other and 95% identical to the D{sub 5} sequence. Relative to the D{sub 5} sequence, both contain insertions and deletions that result in several in-frame termination codons. Premature termination of translation is the most likely explanation for the failure of these genes to produce receptors in COS-7 and 293 cells even though their messages are transcribed. The authors conclude that the two are pseudogenes. Blot hybridization experiments performed on rat genomic DNA suggest that there is one D{sub 5} gene in this species and that the pseudogenes may be the result of a relatively recent evolutionary event.

  8. Human receptor activation by aroclor 1260, a polychlorinated biphenyl mixture.

    PubMed

    Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Al-Eryani, Laila; Prough, Russell A; States, J Christopher; Coslo, Denise M; Omiecinski, Curtis J; Cave, Matthew C

    2014-08-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  9. Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture

    PubMed Central

    Wahlang, Banrida; Falkner, K. Cameron; Clair, Heather B.; Al-Eryani, Laila; Prough, Russell A.; States, J. Christopher; Coslo, Denise M.; Omiecinski, Curtis J.; Cave, Matthew C.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  10. Evidence for Alpha Receptors in the Human Ureter

    NASA Astrophysics Data System (ADS)

    Madeb, Ralph; Knopf, Joy; Golijanin, Dragan; Bourne, Patricia; Erturk, Erdal

    2007-04-01

    An immunohistochemical and western blot expression analysis of human ureters was performed in order to characterize the alpha-1-adrenergic receptor distribution along the length of the human ureteral wall. Mapping the distribution will assist in understanding the potential role alpha -1-adrenergic receptors and their subtype density might have in the pathophysiology of ureteral colic and stone passage. Patients diagnosed with renal cancer or bladder cancer undergoing nephrectomy, nephroureterectomy, or cystectomy had ureteral specimens taken from the proximal, mid, distal and tunneled ureter. Tissues were processed for fresh frozen examination and fixed in formalin. None of the ureteral specimens were involved with cancer. Serial histologic sections and immunohistochemical studies were performed using antibodies specific for alpha-1-adrenergic receptor subtypes (alpha 1a, alpha 1b, alpha 1d). The sections were examined under a light microscope and scored as positive or negative. In order to validate and quantify the alpha receptor subtypes along the human ureter. Western blotting techniques were applied. Human ureter stained positively for alpha -1-adrenergic receptors. Immunostaining appeared red, with intense reaction in the smooth muscle of the ureter and endothelium of the neighboring blood vessels. There was differential expression between all the receptors with the highest staining for alpha-1D subtype. The highest protein expression for all three subtypes was in the renal pelvis and decreased with advancement along the ureter to the distal ureter. At the distal ureter, there was marked increase in expression as one progressed towards the ureteral orifice. The same pattern of protein expression was exhibited for all three alpha -1-adrenergic receptor subtypes. We provide preliminary evidence for the ability to detect and quantify the alpha-1-receptor subtypes along the human ureter which to the best of our knowledge has never been done with

  11. Rapid internalization and recycling of the human neuropeptide Y Y(1) receptor.

    PubMed

    Gicquiaux, Hervé; Lecat, Sandra; Gaire, Mireille; Dieterlen, Alain; Mély, Yves; Takeda, Kenneth; Bucher, Bernard; Galzi, Jean-Luc

    2002-02-22

    Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors. PMID:11741903

  12. Targeting xenobiotic receptors PXR and CAR in human diseases

    PubMed Central

    Banerjee, Monimoy; Robbins, Delira; Chen, Taosheng

    2014-01-01

    Nuclear receptors such as the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenobiotic receptors regulating not only drug metabolism and disposition but also various human diseases such as cancer, diabetes, inflammatory disease, metabolic disease and liver diseases, suggesting that PXR and CAR are promising targets for drug discovery. Consequently, there is an urgent need to discover and develop small molecules that target these PXR- and/or CAR-mediated human-disease-related pathways for relevant therapeutic applications. This review proposes approaches to target PXR and CAR, either individually or simultaneously, in the context of various human diseases, taking into consideration the structural differences between PXR and CAR. PMID:25463033

  13. Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: Chromosomal assignment of the gene in the human, mouse, and rat genomes

    SciTech Connect

    Pausova, Z.; Bourdon, J.; Clayton, D.; Janicic, N.; Goltzman, D.; Hendy, G.N. ); Mattei, M.G. ); Seldin, M.F. ); Riviere, M.; Szpirer, J. )

    1994-03-01

    Complementary DNAs spanning the entire coding region of the rat parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) were isolated from a rat osteosarcoma (UMR 106) cell-line cDNA library. The longest of these clones (rPTHrec4) was used to chromosomally assign the PTHR gene in the human, rat, and mouse genomes. By somatic cell hybrid analysis, the gene was localized to human chromosome 3 and rat chromosome 8; by in situ hybridization, the gene was mapped to human chromosome 3p21.1-p22 and to mouse chromosome 9 band F; and by interspecific backcross analysis, the Pthr gene segregated with the transferrin (Trf) gene in chromosome 9 band F. Mouse chromosome 9 and rat chromosome 8 are known to be highly homologous and to also show synteny conservation with human chromosome 3. These three chromosomes share the transferrin gene (TF), the myosin light polypeptide 3 gene (MYL3), and the acelpeptide hydrolase gene (APEH). These results add a fourth gene, the PTHR gene, to the synteny group conserved in these chromosomes. 34 refs., 7 figs. 1 tab.

  14. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya

    2013-09-01

    Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. PMID:23631878

  15. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  16. Characterization and solubilization of the human platelet vasopressin receptor

    SciTech Connect

    Thibonnier, M.; Hinko, A.

    1986-03-01

    The authors recently showed that human platelets bear specific vasopressin (AVP) V1-vascular receptors. They now present the identification of AVP intra-platelet messenger and solubilization of AVP receptors. AVP binding to its platelet receptors is modulated by divalent cations but not TP or Gpp(NH)p, (10 /sup 3/M). AVP-induced reduction of adenylate cyclase activity is blocked by a phospholipase C inhibitor. In the presence of calcium (1 mM), AVP stimulates the phosphorylation of two endogenous proteins (M.W. = 40,000 and 20,000 daltons) which are substrates for protein kinase C and calcium calmodulin-dependent kinase, respectively. Phosphorylation is also stimulated by a V1-vascular agonist but not V2-renal agonists and is more potently blocked by a V1-vascular antagonist than by a V2-renal antagonist. AVP platelet membrane receptor is solubilized with 3-((3-cholamidopropyl)-dimethylammonio)-1-propane sulfonate. Separation of free (/sub 3/H)AVP from solubilized receptor-hormone complexes is done by filtration through polyethylenimine-treated filters. The solubilized receptor retains its binding characteristics (Kd = 11.03 +/- 1.86 nM, Bmax 288 +/- 66 fmol/mg protein, n = 6). In human platelets, AVP intra-cellular messengers are diacylglycerol and calcium, not adenylate cyclase. Solubilization of AVP human receptor opens the way to its purification.

  17. Expression of prostanoid receptors in human ductus arteriosus.

    PubMed

    Leonhardt, Andreas; Glaser, Alexander; Wegmann, Markus; Schranz, Dietmar; Seyberth, Hannsjörg; Nüsing, Rolf

    2003-02-01

    1. Prostaglandins play a major role in maintaining ductal patency in utero. Ductal tone is regulated by both locally released and circulating vasodilatory prostaglandins. In infants with ductus arteriosus-dependent congenital heart disease, ductal patency is maintained by intravenous administration of prostaglandin (PG) E(1). Little information is available regarding the expression of prostaglandin receptors in man. 2. By means of RT-PCR and immunohistochemistry we studied the expression of the PGI(2) receptor (IP), the four different PGE(2) receptors (EP1, EP2, EP3 and EP4), and the receptors for thromboxane (Tx) A(2) (TP), PGD(2) (DP) and PGF(2alpha) (FP) in the ductus arteriosus of three newborn infants with ductus arteriosus-dependent congenital heart disease and intravenous infusion of PGE(1) and of one 8 month old child with a patent ductus arteriosus. 3. The EP3, EP4, FP, IP and TP receptor were markedly expressed at the mRNA and protein level, whereas the EP2 receptor was weakly expressed and the EP1 receptor was detected in two out of four tissue specimens only. The DP receptor was not detected in any of the samples. The most pronounced expression, which was located in the media of the ductus arteriosus, was observed for the EP4 and TP receptors followed by IP and FP receptor protein. 4. These data indicate that ductal patency during the infusion of PGE(1) in infants with ductus arteriosus-dependent congenital heart disease might be mediated by the EP4 and IP receptor. The data further suggest that a heterogeneous population of prostanoid receptors may contribute to the regulation of ductus arteriosus tone in humans. PMID:12598419

  18. Enhancing surface interactions with colon cancer cells on a transferrin-conjugated 3D nanostructured substrate.

    PubMed

    Banerjee, Shashwat S; Paul, Debjani; Bhansali, Sujit G; Aher, Naval D; Jalota-Badhwar, Archana; Khandare, Jayant

    2012-06-11

    A transferrin-conjugated PEG-Fe(3) O(4) nanostructured matrix is developed to explore cellular responses in terms of enhanced cell adhesion, specific interactions between ligands in the matrix and molecular receptors on the cell membrane, comparison of cell shapes on 2D and 3D surfaces, and effect of polymer architecture on cell adhesion. Integration of such advanced synthetic nanomaterials into a functionalized 3D matrix to control cell behavior on surfaces will have implications in nanomedicine. PMID:22434693

  19. Conserved Regions of Gonococcal TbpB Are Critical for Surface Exposure and Transferrin Iron Utilization

    PubMed Central

    Ostberg, Karen L.; DeRocco, Amanda J.; Mistry, Shreni D.; Dickinson, Mary Kathryne

    2013-01-01

    The transferrin-binding proteins TbpA and TbpB enable Neisseria gonorrhoeae to obtain iron from human transferrin. The lipoprotein TbpB facilitates, but is not strictly required for, TbpA-mediated iron acquisition. The goal of the current study was to determine the contribution of two conserved regions within TbpB to the function of this protein. Using site-directed mutagenesis, the first mutation we constructed replaced the lipobox (LSAC) of TbpB with a signal I peptidase cleavage site (LAAA), while the second mutation deleted a conserved stretch of glycine residues immediately downstream of the lipobox. We then evaluated the resulting mutants for effects on TbpB expression, surface exposure, and transferrin iron utilization. Western blot analysis and palmitate labeling indicated that the lipobox, but not the glycine-rich motif, is required for lipidation of TbpB and tethering to the outer membrane. TbpB was released into the supernatant by the mutant that produces TbpB LSAC. Neither mutation disrupted the transport of TbpB across the bacterial cell envelope. When these mutant TbpB proteins were produced in a strain expressing a form of TbpA that requires TbpB for iron acquisition, growth on transferrin was either abrogated or dramatically diminished. We conclude that surface tethering of TbpB is required for optimal performance of the transferrin iron acquisition system, while the presence of the polyglycine stretch near the amino terminus of TbpB contributes significantly to transferrin iron transport function. Overall, these results provide important insights into the functional roles of two conserved motifs of TbpB, enhancing our understanding of this critical iron uptake system. PMID:23836816

  20. Fluorescent ligand for human progesterone receptor imaging in live cells.

    PubMed

    Weinstain, Roy; Kanter, Joan; Friedman, Beth; Ellies, Lesley G; Baker, Michael E; Tsien, Roger Y

    2013-05-15

    We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core. PMID:23600997

  1. The biology of human epidermal growth factor receptor 2.

    PubMed

    Sundaresan, S; Penuel, E; Sliwkowski, M X

    1999-09-01

    Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation. PMID:11122793

  2. Expression of prostanoid receptors in human lower segment pregnant myometrium.

    PubMed

    Leonhardt, Andreas; Glaser, Alexander; Wegmann, Markus; Hackenberg, Reinhard; Nüsing, Rolf M

    2003-11-01

    Prostanoids, especially prostaglandin (PG) E(2), are important mediators of uterine relaxation and contractions during gestation and parturition. Inhibitors of PG formation as well as PG analogues are used to modulate uterine tonus. So far, only limited data are available regarding the expression of prostanoid receptors in human pregnant myometrium. In the present study, the expression of the receptors for PGE(2) (EP1, EP2, EP3, EP4), PGF(2alpha) (FP), prostacyclin (IP), and thromboxane A(2) (TP) in human pregnant myometrium was studied by RT-PCR, in situ hybridization and immunohistochemistry. Myometrial tissue was obtained from five women at term and not in labour and from two women who delivered preterm. Tissue specimens were excised from the upper edge of the transverse lower uterine segment incision. In all tissues analysed, EP1, EP2, EP3, EP4, FP, TP and IP receptor mRNA and protein was detected. mRNA expression for PGD(2) (DP) receptor was not detected in the majority of tissue specimens. EP1, EP2, EP4, IP, TP and FP receptor protein was detected on myometrial smooth muscle cells, whereas EP3 receptor protein was only expressed by stromal and endothelial cells. In situ hybridization experiments yielded similar results. The expression of the EP2 receptor mRNA was inversely related to gestational age. We suggest that the contractile effect of PGE(2) at term is probably mediated directly by the EP1 receptor expressed in myometrial smooth muscle cells and indirectly by the EP3 receptor expressed in stromal cells and a decrease in EP2 receptor expression. PMID:14580364

  3. Imaging receptor changes in human drug abusers.

    PubMed

    Cosgrove, Kelly P

    2010-01-01

    This chapter will review the literature on differences in the brain chemistry of alcohol- and drug-dependent individuals compared to healthy controls as measured with positron emission tomography and single photon emission computed tomography. Specifically, alterations in dopamine, serotonin, opioid, and GABA systems in cocaine, alcohol, nicotine, and heroin dependence have been examined. These neurochemical systems are integrated and play significant roles in a final common pathway mediating addiction in the brain. One recurrent finding is that dopaminergic dysfunction is prevalent in both alcohol and drug dependent populations, and specifically there is a lower availability of dopamine type 2/3 receptors in cocaine-, alcohol-, nicotine-, and heroin-dependent individuals compared to healthy controls. The development of novel radiotracers that target additional receptor systems will further our understanding of the neurochemical basis of addiction. PMID:21161754

  4. Imaging Receptor Changes in Human Drug Abusers

    PubMed Central

    Cosgrove, Kelly P.

    2013-01-01

    This chapter will review the literature on differences in the brain chemistry of alcohol- and drug-dependent individuals compared to healthy controls as measured with positron emission tomography and single photon emission computed tomography. Specifically, alterations in dopamine, serotonin, opioid, and GABA systems in cocaine, alcohol, nicotine, and heroin dependence have been examined. These neurochemical systems are integrated and play significant roles in a final common pathway mediating addiction in the brain. One recurrent finding is that dopaminergic dysfunction is prevalent in both alcohol and drug dependent populations, and specifically there is a lower availability of dopamine type 2/3 receptors in cocaine-, alcohol-, nicotine-, and heroin-dependent individuals compared to healthy controls. The development of novel radiotracers that target additional receptor systems will further our understanding of the neurochemical basis of addiction. PMID:21161754

  5. Phylogenomic analysis of transferrin family from animals and plants.

    PubMed

    Bai, Lina; Qiao, Mu; Zheng, Rong; Deng, Changyan; Mei, Shuqi; Chen, Wanping

    2016-03-01

    Transferrins have been identified in animals and green algae, and they consist of a family of evolutionarily related proteins that play a central role in iron transport, immunity, growth and differentiation. This study assessed the transferrin genes among 100 genomes from a wide range of animal and plant kingdoms. The results showed that putative transferrins were widespread in animals, but their gene quantity and type differ greatly between animal groups. Generally, Mammalia possess abundant transferrin genes, whereas Trematoda contain few ones. Melanotransferrin and serotransferrin are widely distributed in vertebrates, while melanotransferrin-like and transferrin-like 1 are frequent in invertebrates. However, only a few plant species detected putative transferrins, and a novel transferrin member was first uncovered in Angiospermae and Pteridophyta. The structural comparison among transferrin family members revealed seven very well-repeated and conserved characteristic motifs, despite a considerable variation in the overall sequences. The phylogenetic analysis suggested that gene duplication, gene loss and horizontal transfer contributed to the diversification of transferrin family members, and their inferred evolutionary scenario was proposed. These findings help to the understanding of transferrin distribution, characteristic motifs and residues, and evolutionary process. PMID:26655280

  6. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  7. Luteinizing hormone/human chorionic gonadotropin receptors in breast cancer.

    PubMed

    Meduri, G; Charnaux, N; Loosfelt, H; Jolivet, A; Spyratos, F; Brailly, S; Milgrom, E

    1997-03-01

    Recent studies have suggested that human choriogonadotropin (hCG), in addition to its function in regulating steroidogenesis, may also play a role as a growth factor. Immunocytochemistry using two different monoclonal antibodies (LHR29 and LHR1055) raised against the human luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor allowed us to detect this receptor in breast cancer cell lines (T47D, MCF7, and ZR75) in individual cancer biopsies and in benign breast lesions. The receptor was also present in epithelial cells of normal human and sow breast. In the latter, its concentration increased after ovulation. The presence of LH/hCG receptor mRNA was confirmed by reverse transcription-PCR using primers extending over exons 2-4, 5-11, and 9-11. The proportion of LH/hCG-receptor positive cells and the intensity of the immunolabeling varied in individual biopsies, but there was no obvious correlation with the histological type of the cancer. These results are compatible with previous studies suggesting that during pregnancy, hCG is involved in the differentiation of breast glandular epithelium and that this hormone may play an inhibitory role in mammary carcinogenesis and in the growth of breast tumors. PMID:9041186

  8. Monoclonal Antibodies to the Human Insulin Receptor that Activate Glucose Transport but not Insulin Receptor Kinase Activity

    NASA Astrophysics Data System (ADS)

    Forsayeth, John R.; Caro, Jose F.; Sinha, Madhur K.; Maddux, Betty A.; Goldfine, Ira D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  9. High-level production of animal-free recombinant transferrin from saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background Animal-free recombinant proteins provide a safe and effective alternative to tissue or serum-derived products for both therapeutic and biomanufacturing applications. While recombinant insulin and albumin already exist to replace their human counterparts in cell culture media, until recently there has been no equivalent for serum transferrin. Results The first microbial system for the high-level secretion of a recombinant transferrin (rTf) has been developed from Saccharomyces cerevisiae strains originally engineered for the commercial production of recombinant human albumin (Novozymes' Recombumin® USP-NF) and albumin fusion proteins (Novozymes' albufuse®). A full-length non-N-linked glycosylated rTf was secreted at levels around ten-fold higher than from commonly used laboratory strains. Modification of the yeast 2 μm-based expression vector to allow overexpression of the ER chaperone, protein disulphide isomerase, further increased the secretion of rTf approximately twelve-fold in high cell density fermentation. The rTf produced was functionally equivalent to plasma-derived transferrin. Conclusions A Saccharomyces cerevisiae expression system has enabled the cGMP manufacture of an animal-free rTf for industrial cell culture application without the risk of prion and viral contamination, and provides a high-quality platform for the development of transferrin-based therapeutics. PMID:21083917

  10. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined. PMID:18852693

  11. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  12. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  13. Specific ligand binding attributable to individual epitopes of gonococcal transferrin binding protein A.

    PubMed

    Masri, Heather P; Cornelissen, Cynthia Nau

    2002-02-01

    The gonococcal transferrin receptor complex comprises two iron-regulated proteins, TbpA and TbpB. TbpA is essential for transferrin-iron uptake and is a TonB-dependent integral outer membrane protein. TbpB is thought to increase the efficiency of iron uptake from transferrin and is lipid modified and surface exposed. To evaluate the structure-function relationships in one of the components of the receptor, TbpA, we created constructs that fused individual putative loops of TbpA with amino-terminal affinity tags. The recombinant proteins were then overexpressed in Escherichia coli, and the fusions were recovered predominately from inclusion bodies. Inclusion body proteins were solubilized, and the epitope fusions were renatured by slow dialysis. To assess transferrin binding capabilities, the constructs were tested in a solid-phase dot blot assay followed by confirmatory quantitative chemiluminescent enzyme-linked immunosorbent assays. The constructs with only loop 5 and with loops 4 and 5 demonstrated dose-dependent specific ligand binding in spite of being out of the context of the intact receptor. The immunogenicities of individual TbpA-specific epitopes were investigated by generating rabbit polyclonal antisera against the fusion proteins. Most of the fusion proteins were immunogenic under these conditions, and the resulting sera recognized full-length TbpA in immunoblots. These results suggest that individual epitopes of TbpA are both immunogenic and functional with respect to ligand binding capabilities, and the vaccine implications of these findings are discussed. PMID:11796606

  14. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists. PMID:25449269

  15. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease.

    PubMed Central

    Faucheux, B A; Nillesse, N; Damier, P; Spik, G; Mouatt-Prigent, A; Pierce, A; Leveugle, B; Kubis, N; Hauw, J J; Agid, Y

    1995-01-01

    The degeneration of nigral dopaminergic neurons in Parkinson disease is believed to be associated with oxidative stress. Since iron levels are increased in the substantia nigra of parkinsonian patients and this metal catalyzes the formation of free radicals, it may be involved in the mechanisms of nerve cell death. The cause of nigral iron increase is not understood. Iron acquisition by neurons may occur from iron-transferrin complexes with a direct interaction with specific membrane receptors, but recent results have shown a low density of transferrin receptors in the substantia nigra. To investigate whether neuronal death in Parkinson disease may be associated with changes in a pathway supplementary to that of transferrin, lactoferrin (lactotransferrin) receptor expression was studied in the mesencephalon. In this report we present evidence from immunohistochemical staining of postmortem human brain tissue that lactoferrin receptors are localized on neurons (perikarya, dendrites, axons), cerebral microvasculature, and, in some cases, glial cells. In parkinsonian patients, lactoferrin receptor immunoreactivity on neurons and microvessels was increased and more pronounced in those regions of the mesencephalon where the loss of dopaminergic neurons is severe. Moreover, in the substantia nigra, the intensity of immunoreactivity on neurons and microvessels was higher for patients with higher nigral dopaminergic loss. These data suggest that lactoferrin receptors on vulnerable neurons may increase intraneuronal iron levels and contribute to the degeneration of nigral dopaminergic neurons in Parkinson disease. Images Fig. 1 Fig. 2 PMID:7568181

  16. Mechanisms of plasma non-transferrin bound iron generation: insights from comparing transfused diamond blackfan anaemia with sickle cell and thalassaemia patients.

    PubMed

    Porter, John B; Walter, Patrick B; Neumayr, Lynne D; Evans, Patricia; Bansal, Sukhvinder; Garbowski, Maciej; Weyhmiller, Marcela G; Harmatz, Paul R; Wood, John C; Miller, Jeffery L; Byrnes, Colleen; Weiss, Guenter; Seifert, Markus; Grosse, Regine; Grabowski, Dagmar; Schmidt, Angelica; Fischer, Roland; Nielsen, Peter; Niemeyer, Charlotte; Vichinsky, Elliott

    2014-12-01

    In transfusional iron overload, extra-hepatic iron distribution differs, depending on the underlying condition. Relative mechanisms of plasma non-transferrin bound iron (NTBI) generation may account for these differences. Markers of iron metabolism (plasma NTBI, labile iron, hepcidin, transferrin, monocyte SLC40A1 [ferroportin]), erythropoiesis (growth differentiation factor 15, soluble transferrin receptor) and tissue hypoxia (erythropoietin) were compared in patients with Thalassaemia Major (TM), Sickle Cell Disease and Diamond-Blackfan Anaemia (DBA), with matched transfusion histories. The most striking differences between these conditions were relationships of NTBI to erythropoietic markers, leading us to propose three mechanisms of NTBI generation: iron overload (all), ineffective erythropoiesis (predominantly TM) and low transferrin-iron utilization (DBA). PMID:25209728

  17. Mu opioid receptors in developing human spinal cord

    PubMed Central

    RAY, SUBRATA BASU; WADHWA, SHASHI

    1999-01-01

    The distribution of mu opioid receptors was studied in human fetal spinal cords between 12–13 and 24–25 wk gestational ages. Autoradiographic localisation using [3H] DAMGO revealed the presence of mu receptors in the dorsal horn at all age groups with a higher density in the superficial laminae (I–II). A biphasic expression was noted. Receptor density increased in the dorsal horn, including the superficial laminae, between 12–13 and 16–17 wk. This could be associated with a spurt in neurogenesis. The density increased again at 24–25 wk in laminae I–II which resembled the adult pattern of distribution. A dramatic proliferation of cells was noted from the region of the ventricular zone between 16–17 and 24–25 wk. These were considered to be glial cells from their histological features. Mu receptor expression was noted over a large area of the spinal cord including the lateral funiculus at 24–25 wk. This may be due to receptor expression by glial cells. The study presents evidence of mu receptor expression by both neurons and glia during early development of human spinal cord. PMID:10473288

  18. Role of Dopamine D2 Receptors in Human Reinforcement Learning

    PubMed Central

    Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W

    2014-01-01

    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well. PMID:24713613

  19. Chromosomal localization of the human retinoid X receptors

    SciTech Connect

    Almasan, A.; Mangelsdorf, D.J.; Ong, E.S.; Wahl, G.M.; Evans, R.M. )

    1994-04-01

    The recently described retinoid X receptors (RXRs) respond to the novel retinoid 9-cis-retinoic acid and also serve as heterodimeric partners for the vitamin D, thyroid hormone, and retinoic acid receptors (VDR, TR, and RAR, respectively). In this work, the authors report high-resolution localization of the human RXR genes within cytogenetic bands and also within a standard reference map of cosmid DNA markers on human chromosomes. They have determined the location of the human RXR genes by pairwise hybridization of the RXR cosmids and reference markers, using fluorescence in situ hybridization. They localized (i) RXR[alpha] (RXRA) to chromosome 9 band q34.3; (ii) RXR[beta] (RXRB) to chromosome 6 band 21.3; and (iii) RXR[gamma] (RXRG) to chromosome 1 band q22-q23. Six retinoid-responsive transcription factors have been identified so far, including three retinoic acid receptors in addition to the three RXRs. Interestingly, each of these receptors in human and mouse is encoded by genes located at distinct chromosomal loci and on separate chromosomes. The proximity of RXR genes to loci known to be associated with genetic disorders suggests that their location may be useful in establishing a link between RXRs and certain human diseases. 62 refs., 1 fig., 2 tabs.

  20. Identification of progesterone receptor in human subcutaneous adipose tissue.

    PubMed

    O'Brien, S N; Welter, B H; Mantzke, K A; Price, T M

    1998-02-01

    Sex steroids are postulated to play a role in adipose tissue regulation and distribution, because the amount and location of adipose tissue changes during puberty and menopause. Because of the nature of adipose tissue, receptors for the female sex steroids have been difficult to demonstrate. To date, estrogen receptor messenger RNA and protein have been identified in human subcutaneous adipose tissue, but the presence of progesterone receptor (PR) has not been reported. In this study, we demonstrate PR message by Northern blot analysis in RNA isolated from the abdominal subcutaneous adipose tissue of premenopausal women. These preliminary studies revealed that PR messenger RNA levels are higher in the stromal-vascular fraction as opposed to the adipocyte fraction. Western blot analysis demonstrates both PR protein isoforms (human PR-A and human PR-B) in human subcutaneous adipose tissue. Using an enzyme-linked immunosorbent assay, total PR could be quantitated. These studies substantiate that sex steroid receptors are present in human adipose tissue, thereby providing a direct route for regulation of adipose tissue by female sex steroids. PMID:9467566

  1. Biotinylated human. beta. -endorphins as probes for the opioid receptor

    SciTech Connect

    Hochhaus, G.; Gibson, B.W.; Sadee, W.

    1988-01-05

    The reaction of human ..beta..-endorphin and biotinyl N-hydroxysuccinimide with or without spacer arm, afforded a series of products that were separated by high performance liquid chromatography (HPLC). Liquid secondary ion mass spectrometry of the biotinylated products and their tryptic digests produced abundant protonated molecular ions (MH/sup +/), which specified the number and location of biotinylation. Between 1 and 4 biotinyl residues were incorporated per human ..beta..-endorphin molecule, at Lys-9, -19, -24, -28, and -29, but not at the amino-terminal Try-1. Three HPLC fractions were isolated for receptor binding studies monobiotinylation of Lys-9, Lys-19, and a mixture of Lys-24, Lys-28, and Lys-29 derivatives. IC/sub 50/ values for binding to ..mu.. and delta opioid receptor sites were 3-8 times higher for monobiotinylated derivatives than for the parent human ..beta..-endorphin. Association with avidin decreased opioid receptor affinities for the C/sub 6/ spacer derivative biotinylated at position Lys-9, which is close to the (1-5) enkephalin receptor region. In contrast, avidin did not affect or even increased apparent affinities to ..mu.. and delta sites for derivatives biotinylated at the ..cap alpha..-helical part of the molecule (Lys-19, -24, -28, and -29). Biotinylated human ..beta..-endorphins also bound to low affinity nonopioid binding sites on NG-108-15 cells; however, affinities to these sites were considerably reduced when derivatives were bound to avidin. The ability of biotinylated human ..beta..-endorphin to cross-link the ..mu.. and delta opioid receptors to avidin allows application of the biotin-avidin system as a molecular probe of the opioid receptor.

  2. The human fibroblast receptor for gp86 of human cytomegalovirus is a phosphorylated glycoprotein.

    PubMed Central

    Keay, S; Baldwin, B

    1992-01-01

    A human embryonic lung (HEL) cell receptor for gp86 of human cytomegalovirus that functions in virus-cell fusion was further characterized. Anti-idiotype antibodies that mimic gp86 were used to immunoprecipitate the 92.5-kDa fibroblast membrane receptor for gp86, which was preincubated with various endoglycosidases. The receptor, which has a pI ranging from 5.3 to 5.6, appears to be a glycoprotein with primarily N-linked sugar residues, some of which have high concentrations of mannose and some of which are complex oligosaccharides. Western blots (immunoblots) of electrophoretically transferred receptor incubated with various biotinylated lectins confirmed the presence of sugar moieties, including N-acetylglucosamine, glucose or mannose, and galactose, but not fucose or N-acetylgalactosamine. This gp86 receptor from uninfected HEL cells also incorporated radiolabeled phosphate from orthophosphoric acid, indicating that it is a constitutively phosphorylated receptor. Images PMID:1321272

  3. Galectins are human milk glycan receptors.

    PubMed

    Noll, Alexander J; Gourdine, Jean-Philippe; Yu, Ying; Lasanajak, Yi; Smith, David F; Cummings, Richard D

    2016-06-01

    The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin-HMG interactions may play a role in infant immunity. PMID:26747425

  4. P2Y Receptors Sensitize Mouse and Human Colonic Nociceptors

    PubMed Central

    Hockley, James R. F.; Tranter, Michael M.; McGuire, Cian; Boundouki, George; Cibert-Goton, Vincent; Thaha, Mohamed A.; Blackshaw, L. Ashley; Michael, Gregory J.; Baker, Mark D.; Knowles, Charles H.; Winchester, Wendy J.

    2016-01-01

    Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g., ATP and UTP) are strongly implicated in this process following their release from epithelial cells during mechanical stimulation of the gut, and from immune cells during inflammation. Actions of ATP are mediated through both ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptor activation causes excitation of visceral afferents; however, the impact of P2Y receptor activation on visceral afferents innervating the gut is unclear. Here we investigate the effects of stimulating P2Y receptors in isolated mouse colonic sensory neurons, and visceral nociceptor fibers in mouse and human nerve-gut preparations. Additionally, we investigate the role of Nav1.9 in mediating murine responses. The application of UTP (P2Y2 and P2Y4 agonist) sensitized colonic sensory neurons by increasing action potential firing to current injection and depolarizing the membrane potential. The application of ADP (P2Y1, P2Y12, and P2Y13 agonist) also increased action potential firing, an effect blocked by the selective P2Y1 receptor antagonist MRS2500. UTP or ADP stimulated afferents, including mouse and human visceral nociceptors, in nerve-gut preparations. P2Y1 and P2Y2 transcripts were detected in 80% and 56% of retrogradely labeled colonic neurons, respectively. Nav1.9 transcripts colocalized in 86% of P2Y1-positive and 100% of P2Y2-positive colonic neurons, consistent with reduced afferent fiber responses to UTP and ADP in Nav1.9−/− mice. These data demonstrate that P2Y receptor activation stimulates mouse and human visceral nociceptors, highlighting P2Y-dependent mechanisms in the generation of visceral pain during gastrointestinal disease. SIGNIFICANCE STATEMENT Chronic visceral pain is a debilitating symptom of many gastrointestinal disorders. The activation of

  5. The structural basis for receptor recognition of human interleukin-18

    PubMed Central

    Tsutsumi, Naotaka; Kimura, Takeshi; Arita, Kyohei; Ariyoshi, Mariko; Ohnishi, Hidenori; Yamamoto, Takahiro; Zuo, Xiaobing; Maenaka, Katsumi; Park, Enoch Y.; Kondo, Naomi; Shirakawa, Masahiro; Tochio, Hidehito; Kato, Zenichiro

    2014-01-01

    Interleukin (IL)-18 is a proinflammatory cytokine that belongs to the IL-1 family and plays an important role in inflammation. The uncontrolled release of this cytokine is associated with severe chronic inflammatory disease. IL-18 forms a signalling complex with the IL-18 receptor α (Rα) and β (Rβ) chains at the plasma membrane, which induces multiple inflammatory cytokines. Here, we present a crystal structure of human IL-18 bound to the two receptor extracellular domains. Generally, the receptors’ recognition mode for IL-18 is similar to IL-1β; however, certain notable differences were observed. The architecture of the IL-18 receptor second domain (D2) is unique among the other IL-1R family members, which presumably distinguishes them from the IL-1 receptors that exhibit a more promiscuous ligand recognition mode. The structures and associated biochemical and cellular data should aid in developing novel drugs to neutralize IL-18 activity. PMID:25500532

  6. The structural basis for receptor recognition of human interleukin-18

    DOE PAGESBeta

    Tsutsumi, Naotaka; Kimura, Takeshi; Arita, Kyohei; Ariyoshi, Mariko; Ohnishi, Hidenori; Yamamoto, Takahiro; Zuo, Xiaobing; Maenaka, Katsumi; Park, Enoch Y.; Kondo, Naomi; et al

    2014-12-15

    Interleukin (IL)-18 is a proinflammatory cytokine that belongs to the IL-1 family and plays an important role in inflammation. The uncontrolled release of this cytokine is associated with severe chronic inflammatory disease. IL-18 forms a signalling complex with the IL-18 receptor α (Rα) and β (Rβ) chains at the plasma membrane, which induces multiple inflammatory cytokines. Here, we present a crystal structure of human IL-18 bound to the two receptor extracellular domains. Generally, the receptors’ recognition mode for IL-18 is similar to IL-1β; however, certain notable differences were observed. The architecture of the IL-18 receptor second domain (D2) is uniquemore » among the other IL-1R family members, which presumably distinguishes them from the IL-1 receptors that exhibit a more promiscuous ligand recognition mode. The structures and associated biochemical and cellular data should aid in developing novel drugs to neutralize IL-8 activity.« less

  7. The structural basis for receptor recognition of human interleukin-18

    SciTech Connect

    Tsutsumi, Naotaka; Kimura, Takeshi; Arita, Kyohei; Ariyoshi, Mariko; Ohnishi, Hidenori; Yamamoto, Takahiro; Zuo, Xiaobing; Maenaka, Katsumi; Park, Enoch Y.; Kondo, Naomi; Shirakawa, Masahiro; Tochio, Hidehito; Kato, Zenichiro

    2014-12-15

    Interleukin (IL)-18 is a proinflammatory cytokine that belongs to the IL-1 family and plays an important role in inflammation. The uncontrolled release of this cytokine is associated with severe chronic inflammatory disease. IL-18 forms a signalling complex with the IL-18 receptor α (Rα) and β (Rβ) chains at the plasma membrane, which induces multiple inflammatory cytokines. Here, we present a crystal structure of human IL-18 bound to the two receptor extracellular domains. Generally, the receptors’ recognition mode for IL-18 is similar to IL-1β; however, certain notable differences were observed. The architecture of the IL-18 receptor second domain (D2) is unique among the other IL-1R family members, which presumably distinguishes them from the IL-1 receptors that exhibit a more promiscuous ligand recognition mode. The structures and associated biochemical and cellular data should aid in developing novel drugs to neutralize IL-8 activity.

  8. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity.

    PubMed

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-09-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π-cation motif of stacked residues KWRWRH, a NAG-W-NAG sandwich (where NAG stands for N-acetyl-D-glucosamine) and finally a helix formed by residues 78-85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  9. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  10. No evidence for histamine H4 receptor in human monocytes.

    PubMed

    Werner, Kristin; Neumann, Detlef; Buschauer, Armin; Seifert, Roland

    2014-12-01

    The histamine H4 receptor (H4R) is a classic pertussis toxin-sensitive Gi protein-coupled receptor that mediates increases in intracellular calcium concentration ([Ca(2+)]i). The presence of H4R in human eosinophils has been rigorously documented by several independent groups. It has also been suggested that H4R is expressed in human monocytes, but this suggestion hinges in part on H4R antibodies with questionable specificity. This situation prompted us to reinvestigate H4R expression in human monocytes. As positive control, we studied human embryonic kidney 293T cells stably expressing the human H4R (hH4R). In these cells, histamine (HA) and the H4R agonist UR-PI376 (2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine) induced pertussis toxin-sensitive [Ca(2+)]i increases. However, in quantitative real-time polymerase chain reaction studies we failed to detect hH4R mRNA in human monocytes and U937 promonocytes. In human monocytes, ATP and N-formyl-l-methionyl-l-leucyl-l-phenylalanine increased [Ca(2+)]i, but HA, UR-PI376, and 5-methylhistamine (a dual H4R/H2 receptor agonist) did not. In U937 promonocytes and differentiated U937 cells, HA increased [Ca(2+)]i, but this increase was mediated via HA H1 receptor. In conclusion, there is no evidence for the presence of H4R in human monocytes. PMID:25273276

  11. Crystal Structure of the Human Laminin Receptor Precursor

    SciTech Connect

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  12. Activation of human bitter taste receptors by polymethoxylated flavonoids.

    PubMed

    Kuroda, Yuki; Ikeda, Riko; Yamazaki, Toyomi; Ito, Keisuke; Uda, Kazunari; Wakabayashi, Keiji; Watanabe, Tatsuo

    2016-10-01

    Tangeretin and nobiletin are polymethoxylated flavonoids in citrus peel. Both tangeretin and nobiletin are bitter; however, their bitterness has not been evaluated using human bitter taste receptors (hTAS2Rs). We screened 25 kinds of hTAS2Rs and found that hTAS2R14 and hTAS2R46 received both compounds. PMID:27379685

  13. Transferrin conjugates of doxorubicin: synthesis, characterization, cellular uptake, and in vitro efficacy.

    PubMed

    Kratz, F; Beyer, U; Roth, T; Tarasova, N; Collery, P; Lechenault, F; Cazabat, A; Schumacher, P; Unger, C; Falken, U

    1998-03-01

    One strategy for improving the antitumor selectivity and toxicity profile of antitumor agents is to design drug carrier systems employing suitable carrier proteins. Thus, thiolated human serum transferrin was conjugated with four maleimide derivatives of doxorubicin that differed in the stability of the chemical link between drug and spacer. Of the maleimide derivatives, 3-maleimidobenzoic or 4-maleimidophenylacetic acid was bound to the 3'-amino position of doxorubicin through a benzoyl or phenylacetyl amide bond, and 3-maleimidobenzoic acid hydrazide or 4-maleimidophenylacetic acid hydrazide was bound to the 13-keto position through a benzoyl hydrazone or phenylacetyl hydrazone bond. The acid-sensitive transferrin conjugates prepared with the carboxylic hydrazone doxorubicin derivatives exhibited an inhibitory efficacy in the MDA-MB-468 breast cancer cell line and U937 leukemia cell line comparable to that of the free drug (employing the BrdU (5-bromo-2'-deoxyuridine) incorporation assay and tritiated thymidine incorporation assay, respectively, IC50 approximately 0.1-1 mM), whereas conjugates with the amide derivatives showed no activity. Furthermore, antiproliferative activity of the most active transferrin conjugate (i.e. the conjugate containing a benzoyl hydrazone link) was demonstrated in the LXFL 529 lung carcinoma cell line employing a sulforhodamine B assay. In contrast to in vitro studies in tumor cells, cell culture experiments performed with human endothelial cells (HUVEC) showed that the acid-sensitive transferrin conjugates of doxorubicin were significantly less active than free doxorubicin (IC50 values approximately 10-40 higher by the BrdU incorporation assay), indicating selectivity of the doxorubicin-transferrin conjugates for tumor cells. Fluorescence microscopy studies in the MDA-MB-468 breast cancer cell showed that free doxorubicin accumulates in the cell nucleus, whereas doxorubicin of the transferrin conjugates is found localized primarily

  14. Transferrin conjugated poly (γ-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticles for targeting drug delivery.

    PubMed

    Zhao, Caiyan; Liu, Xiaoguang; Liu, Junxing; Yang, Zhiwei; Rong, Xianghui; Li, Mingjun; Liang, Xingjie; Wu, Yan

    2014-11-01

    Targeted drug delivery strategies have shown great potential in solving some problems of chemotherapy, such as non-selectivity and severe side effects, thus enhancing the anti-tumor efficiency of chemotherapeutic agents. In this work, we have prepared a novel nanoparticle consisted of amphiphilic poly(γ-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine (γ-PGA-MAL-PLA-DPPE) copolymer decorated with transferrin (Tf), which can specifically deliver anti-cancer drug paclitaxel (PTX) to the tumor cells for targeting chemotherapy. These nanoparticles (NPs) have preferable particle size, high encapsulation efficiency and a pH-dependent release profile. As expected, The Tf modification mediate specific targeting to nasopharyngeal carcinoma (C666-1) cells and human cervical carcinoma (Hela) cells with the transferrin receptor (TfR) overexpressed and enhance cellular uptake of the NPs, as demonstrated by flow cytometry and confocal microscopy assays. In vitro cytotoxicity studies reveal that the NPs have excellent biocompatibility, and the presence of Tf enhance the activity of PTX to the targeted cells. All these results prove that Tf modified γ-PGA-MAL-PLA-DPPE NPs could facilitate the tumor-specific therapy. Therefore, such a targeting drug delivery system provides significant advances toward cancer therapy. PMID:25454663

  15. The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains.

    PubMed

    Ala'Aldeen, D A; Borriello, S P

    1996-01-01

    When grown in vivo, or under iron-restriction in vitro, Neisseria meningitidis expresses a number of iron-regulated outer membrane proteins, including two transferrin-binding proteins (Tbp1 and Tbp2). The Tbps are highly specific receptors for human transferrin and we have previously demonstrated their immunogenicity in humans and animals and their exposure on the surface of the organism. There is a growing interest in incorporating these Tbps in future outer membrane-based meningococcal vaccines. Protection against meningococcal infection has been correlated with serum bactericidal antibodies, therefore, it is important for these vaccine candidates to generate such antibodies. We have previously raised rabbit and murine polyclonal monospecific antisera against the Tbps of strain SD (B:15:P1.16) which showed varying degrees of cross-reactivity on immunoblots between the Tbp1 and/or Tbp2 molecules of different heterologous strains from various serogroups, types and subtypes. The ability of these antisera to kill meningococci were tested by incubating live organisms (grown to log phase under iron-restriction) with the antisera in the presence of a human complement source (serum from an agammaglobulinaemic patient). The antisera killed the homologous and the majority of the examined heterologous strains with varying efficiency, with no obvious correlation with the identity of the strains or the Tbp isotypes which vary between strains. Although the animal anti-Tbp antibodies failed to kill some meningococcal strains, it is not clear how human anti-Tbp antibodies would behave. The mouse antiserum was able to kill some heterologous stains against which it only had detectable anti-Tbp1 and not anti-Tbp2 antibodies, as seen on Western blots. Furthermore, the rabbit antiserum was able to kill both Tbp1 and Tbp2 mutants of strain B16B6 (B2a:P1.2) to almost the same level as the wild type strain, indicating that both components of the transferrin receptor (Tbp1 and Tbp2) are

  16. Characterization of the human platelet Fc sub. gamma. receptor

    SciTech Connect

    King, M.

    1988-01-01

    Thrombocytopenia is often associated with immune complex disease and may in part be due to the interaction of circulating (IgG) immune complexes with an Fc{sub {gamma}} receptor on the platelet surface. Characterization of the immune complex-platelet interaction should provide for a better understanding of the pathophysiology of immune thrombocytpenia. To this end, a ligand binding assay, employing {sup 125}I-IgG trimer, was established. Receptor expression was determined by measuring the saturable binding of radiolabeled trimer to platelets at equilibrium. Normal human platelets were observed to express 8559 {plus minus} 852 binding sites for IgG trimer with a Kd of 12.5 {plus minus} 1.7 {times} 10{sup {minus}8} M. Binding of IgG trimer to human platelets was blocked following preincubation of the cells with an anti-Fc{sub {gamma}}RII monoclonal antibody. Furthermore, this binding was ionic-strength dependent but was unaffected by the presence of Mg{sup ++} or cytochalasin B. Platelet Fc{sub {gamma}} receptor modulation was examined by assessing the effects of various physiologic and pharmacologic on the ability of platelets to bind IgG trimer. Platelet Fc{sub {gamma}} receptor expression was not affected by thrombin, ADP, or {gamma}-interferon. However, in 7/12 normal donors, treatment of platelets with dexamethasone resulted in a decrease in the number of Fc{sub {gamma}} receptors expressed.

  17. Fluorescent Human EP3 Receptor Antagonists.

    PubMed

    Tomasch, Miriam; Schwed, J Stephan; Kuczka, Karina; Meyer Dos Santos, Sascha; Harder, Sebastian; Nüsing, Rolf M; Paulke, Alexander; Stark, Holger

    2012-09-13

    Exchange of the lipophilc part of ortho-substituted cinnamic acid lead structures with different small molecule fluorophoric moieties via a dimethylene spacer resulted in hEP3R ligands with affinities in the nanomolar concentration range. Synthesized compounds emit fluorescence in the blue, green, and red range of light and have been tested concerning their potential as a pharmacological tool. hEP3Rs were visualized by confocal laser scanning microscopy on HT-29 cells, on murine kidney tissues, and on human brain tissues and functionally were characterized as antagonists on human platelets. Inhibition of PGE2 and collagen-induced platelet aggregation was measured after preincubation with novel hEP3R ligands. The pyryllium-labeled ligand 8 has been shown as one of the most promising structures, displaying a useful fluorescence and highly affine hEP3R antagonists. PMID:24900547

  18. Functional expression of human α7 nicotinic acetylcholine receptor in human embryonic kidney 293 cells.

    PubMed

    Gong, Yuan; Jiang, Ji-Hong; Li, Shi-Tong

    2016-09-01

    The functional expression of recombinant α7 nicotinic acetylcholine receptors in human embryonic kidney (HEK) 293 cells has presented a challenge. Resistance to inhibitors of cholinesterase 3 (RIC‑3) has been confirmed to act as a molecular chaperone of nicotinic acetylcholine receptors. The primary objectives of the present study were to investigate whether the co‑expression of human (h)RIC‑3 with human α7 nicotinic acetylcholine receptor in HEK 293 cells facilitates functional expression of the α7 nicotinic acetylcholine receptor. Subsequent to transfection, western blotting and polymerase chain reaction were used to test the expression of α7 nicotinic acetylcholine receptor and RIC-3. The α7 nicotinic acetylcholine receptor was expressed alone or co‑expressed with hRIC‑3 in the HEK 293 cells. Drug‑containing solution was then applied to the cells via a gravity‑driven perfusion system. Calcium influx in the cells was analyzed using calcium imaging. Nicotine did not induce calcium influx in the HEK 293 cells expressing human α7 nicotinic acetylcholine receptor only. However, in the cells co‑expressing human RIC‑3 and α7 nicotinic acetylcholine receptor, nicotine induced calcium influx via the α7 nicotinic acetylcholine receptor in a concentration‑dependent manner (concentration required to elicit 50% of the maximal effect=29.21 µM). Taken together, the results of the present study suggested that the co‑expression of RIC‑3 in HEK 293 cells facilitated the functional expression of the α7 nicotinic acetylcholine receptor. PMID:27430244

  19. Linking Functional Domains of the Human Insulin Receptor with the Bacterial Aspartate Receptor

    NASA Astrophysics Data System (ADS)

    Ellis, Leland; Morgan, David O.; Koshland, Daniel E.; Clauser, Eric; Moe, Gregory R.; Bollag, Gideon; Roth, Richard A.; Rutter, William J.

    1986-11-01

    A hybrid receptor has been constructed that is composed of the extracellular domain of the human insulin receptor fused to the transmembrane and cytoplasmic domains of the bacterial aspartate chemoreceptor. This hybrid protein can be expressed in rodent (CHO) cells and displays several functional features comparable to wild-type insulin receptor. It is localized to the cell surface, binds insulin with high affinity, forms oligomers, and is recognized by conformation-specific monoclonal antibodies. Although most of the expressed protein accumulates as a 180-kDa proreceptor, some processed 135-kDa receptor can be detected on the cell surface by covalent cross-linking. Expression of the hybrid receptor inhibits the insulin-activated uptake of 2-deoxyglucose by CHO cells. Thus, this hybrid is partially functional and can be processed; however, it is incapable of native transmembrane signaling. The results indicate that the intact domains of different types of receptors can retain some of the native features in a hybrid molecule but specific requirements will need to be satisfied for transmembrane signaling.

  20. Human Polyomavirus Receptor Distribution in Brain Parenchyma Contrasts with Receptor Distribution in Kidney and Choroid Plexus

    PubMed Central

    Haley, Sheila A.; O'Hara, Bethany A.; Nelson, Christian D.S.; Brittingham, Frances L.P.; Henriksen, Kammi J.; Stopa, Edward G.; Atwood, Walter J.

    2016-01-01

    The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy, a rare demyelinating disease that occurs in the setting of prolonged immunosuppression. After initial asymptomatic infection, the virus establishes lifelong persistence in the kidney and possibly other extraneural sites. In rare instances, the virus traffics to the central nervous system, where oligodendrocytes, astrocytes, and glial precursors are susceptible to lytic infection, resulting in progressive multifocal leukoencephalopathy. The mechanisms by which the virus traffics to the central nervous system from peripheral sites remain unknown. Lactoseries tetrasaccharide c (LSTc), a pentasaccharide containing a terminal α2,6–linked sialic acid, is the major attachment receptor for polyomavirus. In addition to LSTc, type 2 serotonin receptors are required for facilitating virus entry into susceptible cells. We studied the distribution of virus receptors in kidney and brain using lectins, antibodies, and labeled virus. The distribution of LSTc, serotonin receptors, and virus binding sites overlapped in kidney and in the choroid plexus. In brain parenchyma, serotonin receptors were expressed on oligodendrocytes and astrocytes, but these cells were negative for LSTc and did not bind virus. LSTc was instead found on microglia and vascular endothelium, to which virus bound abundantly. Receptor distribution was not changed in the brains of patients with progressive multifocal leukoencephalopathy. Virus infection of oligodendrocytes and astrocytes during disease progression is LSTc independent. PMID:26056932

  1. Human polyomavirus receptor distribution in brain parenchyma contrasts with receptor distribution in kidney and choroid plexus.

    PubMed

    Haley, Sheila A; O'Hara, Bethany A; Nelson, Christian D S; Brittingham, Frances L P; Henriksen, Kammi J; Stopa, Edward G; Atwood, Walter J

    2015-08-01

    The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy, a rare demyelinating disease that occurs in the setting of prolonged immunosuppression. After initial asymptomatic infection, the virus establishes lifelong persistence in the kidney and possibly other extraneural sites. In rare instances, the virus traffics to the central nervous system, where oligodendrocytes, astrocytes, and glial precursors are susceptible to lytic infection, resulting in progressive multifocal leukoencephalopathy. The mechanisms by which the virus traffics to the central nervous system from peripheral sites remain unknown. Lactoseries tetrasaccharide c (LSTc), a pentasaccharide containing a terminal α2,6-linked sialic acid, is the major attachment receptor for polyomavirus. In addition to LSTc, type 2 serotonin receptors are required for facilitating virus entry into susceptible cells. We studied the distribution of virus receptors in kidney and brain using lectins, antibodies, and labeled virus. The distribution of LSTc, serotonin receptors, and virus binding sites overlapped in kidney and in the choroid plexus. In brain parenchyma, serotonin receptors were expressed on oligodendrocytes and astrocytes, but these cells were negative for LSTc and did not bind virus. LSTc was instead found on microglia and vascular endothelium, to which virus bound abundantly. Receptor distribution was not changed in the brains of patients with progressive multifocal leukoencephalopathy. Virus infection of oligodendrocytes and astrocytes during disease progression is LSTc independent. PMID:26056932

  2. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  3. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  4. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-01

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. PMID:27443784

  5. Cytochrome P450 and Xenobiotic Receptor Humanized Mice*

    PubMed Central

    Gonzalez, Frank J.; Yu, Ai-Ming

    2006-01-01

    Most xenobiotics that enter the body are subjected to metabolism that functions primarily to facilitate their elimination. Metabolism of certain xenobiotics can also result in the production of electrophilic derivatives that can cause cell toxicity and transformation. Many xenobiotics can also activate receptors that in turn induce the expression of genes encoding xenobiotic-metabolizing enzymes and xenobiotic transporters. However, there are marked species differences in the way mammals respond to xenobiotics, which are due in large part to molecular differences in receptors and xenobiotic-metabolizing enzymes. This presents a problem in extrapolating data obtained with rodent model systems to humans. There are also polymorphisms in xenobiotic-metabolizing enzymes that can impact drug therapy and cancer susceptibility. In an effort to generate more reliable in vivo systems to study and predict human response to xenobiotics, humanized mice are under development. PMID:16402898

  6. Radiosequence analysis of the human progestin receptor charged with ( sup 3 H)promegestone. A comparison with the glucocorticoid receptor

    SciTech Connect

    Stroemstedt, P.E.B.; Berkenstam, A.; Joernvall, H.G.; Gustafsson, J.A.; Carlstedt-Duke, J. )

    1990-08-05

    Partially purified preparations of the human progestin receptor and the human and rat glucocorticoid receptor proteins were covalently charged with the synthetic progestin, ({sup 3}H)promegestone, by photoaffinity labeling. After labeling, the denaturated protein was cleaved and the mixture of peptides subjected to radiosequence analysis as previously described for the rat glucocorticoid receptor protein. The radioactivity labels identified, corresponded to Met-759 and Met-909 after photoaffinity labeling of the human progestin receptor, and Met-622 and Cys-754 after labeling of the rat glucocorticoid receptor. The residues labeled in the glucocorticoid receptor are the same as those previously reported to bind triamcinolone actonide. The corresponding residues were also labeled in the human glucocorticoid receptor. Met-759 of the progestin receptor and Met-622 of the rat glucocorticoid receptor are positioned within a segment with an overall high degree of sequence similarity and are equivalent. However, Met-909 (progestin receptor) and Cys-754 (glucocorticoid receptor) do not occur within equivalent segments of the two proteins. Thus, although the two classes of steroid hormone share a common structure within the A-ring, there are subtle differences in their interaction with the two separate receptor proteins.

  7. Human striatal dopamine receptors are organized in compartments

    SciTech Connect

    Joyce, J.N.; Sapp, D.W.; Marshall, J.F.

    1986-10-01

    Dopamine (D2) receptors visualized in postmortem human striatum by quantitative autoradiography of (/sup 3/H)spiroperidol binding are organized into circumscribed zones of low receptor density separated from other such zones by regions of higher D2 density. The D2-rich zones of the caudate nucleus and putamen contain twice the binding of D2-poor zones. The Hill coefficient, obtained from saturation analysis of (/sup 3/H)spiroperidol binding to thin sections of human striatum, gave a value near unity, indicating the binding was occurring to a single type of site. The patchiness of (/sup 3/H)spiroperidol binding was unaltered by postincubation removal of lipid from the tissue sections, indicating that a differential absorption of tritium in white and grey matter does not account for the heterogeneous distribution. The D2-rich and D2-poor regions appear to form labyrinths oriented in the anterior-posterior axis and are typically aligned with, respectively, acetylcholinesterase-rich and -poor compartments as visualized on stained adjacent sections. Thus, the distribution of dopamine D2 receptors conforms to the striosomal organization of the human caudate-putamen, a finding that suggests that this receptor subtype may mediate the influence of dopamine on distinct neurochemical compartments within the structure.

  8. Progesterone receptors in human breast cancer. Stoichiometric translocation and nuclear receptor processing.

    PubMed

    Mockus, M B; Horwitz, K B

    1983-04-25

    In a subline of T47D human breast cancer cells, progesterone receptors (PR) are synthesized at very high levels, but their synthesis is not estrogen-dependent. Despite the unusual control of synthesis, the physicochemical properties of PR are normal. These are, therefore, ideal cells to study PR regulation by progesterone, free of estrogen effects. In this paper, we show that nuclear translocation of PR is stoichiometric, and that an unusual and very rapid nuclear turnover, or processing step, characterizes receptor-DNA interactions. In intact T47D cells, PR are translocated to the nucleus only by progestins; 70-90% of cytoplasmic receptors are depleted at 37 degrees C within 5 min of progestin addition. After PR are translocated by 0.1 muM progesterone, they can be quantitatively recovered from nuclei only in the first 5 min; thereafter, a rapid nuclear processing step results in loss of 50-80% of the newly translocated sites. Rapid processing may be inherent to PR; it also occurs in PR of MCF-7 cells. The extent of receptor translocation and of nuclear receptor processing is dependent on the progesterone concentration and on the treatment time, and can be masked by endogenous hormones. Proteolytic enzyme inhibitors (leupeptin, antipain) do not prevent nuclear PR loss. G-C specific DNA intercalators that prevent nuclear estrogen receptor processing (actinomycin D, chromomycin A3) also fail to prevent PR loss, but some A-T specific DNA-binding dyes (chloroquine, primaquine, quinacrine) protect 50-75% of nuclear PR. We conclude that translocated nuclear PR can be quantitatively measured only at early time points because the nuclear receptors are rapidly processed. Furthermore, the processing step may involve an interaction of receptors with DNA since it can be partially blocked by DNA-binding agents. PMID:6833276

  9. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  10. Glycophorin and the concanavalin A receptor of human erythrocytes: their receptor function in lipid bilayers.

    PubMed Central

    Sharom, F J; Barratt, D G; Grant, C W

    1977-01-01

    Two integral glycoproteins from the human erythrocyte have been studied after their incorporation into lipid bilayer systems. Glycophorin (which is the M/N blood group determinant) and the concanavalin A receptor were isolated and purified prior to incorporation into model membranes by dialytic removal of detergent from lipid/protein solutions. Under the conditions described, glycoprotein receptors maintain their function in that they bind external agents specific for them, such as concanavalin A and immunoglobulins. So-called intramembranous particles are a feature of freeze-fractured preparations of lipid bilayers containing either (or both) glycoprotein(s), and to some extent each has a characteristic particle appearance. Liposomes containing the concanavalin A receptor (with or without glycophorin) are agglutinable by concanavalin A, whereas human erythrocytes are normally considered to be nonagglutinable by this lectin. Liposomes containing glycophorin alone are readily agglutinable by the appropriate glycophorin-directed M/N antiserum, as are human erythrocytes. The added presence of concanavalin A receptor in the liposomes can markedly inhibit agglutination by M/N antiserum without preventing immunoglobulin binding. Images PMID:268624

  11. Human eosinophils - potential pharmacological model applied in human histamine H4 receptor research.

    PubMed

    Grosicki, Marek; Kieć-Kononowicz, Katarzyna

    2015-01-01

    Histamine and histamine receptors are well known for their immunomodulatory role in inflammation. In this review we describe the role of histamine and histamine H4 receptor on human eosinophils. In the first part of article we provide short summary of histamine and histamine receptors role in physiology and histamine related therapeutics used in clinics. We briefly describe the human histamine receptor H4 and its ligands, as well as human eosinophils. In the second part of the review we provide detailed description of known histamine effects on eosinophils including: intracellular calcium concentration flux, actin polymerization, cellular shape change, upregulation of adhesion proteins and cellular chemotaxis. We provide proofs that these effects are mainly connected with the activation of histamine H4 receptor. When examining experimental data we discuss the controversial results and limitations of the studies performed on isolated eosinophils. In conclusion we believe that studies on histamine H4 receptor on human eosinophils can provide interesting new biomarkers that can be used in clinical studies of histamine receptors, that in future might result in the development of new strategies in the treatment of chronic inflammatory conditions like asthma or allergy, in which eosinophils are involved. PMID:25760088

  12. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus

    PubMed Central

    Mansour, Mena; Wohlbold, Teddy J.; Ermler, Megan E.; Hirsh, Ariana; Runstadler, Jonathan A.; Fernandez-Sesma, Ana

    2015-01-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  13. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus.

    PubMed

    Ramos, Irene; Mansour, Mena; Wohlbold, Teddy J; Ermler, Megan E; Hirsh, Ariana; Runstadler, Jonathan A; Fernandez-Sesma, Ana; Krammer, Florian

    2015-07-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  14. A third human retinoic acid receptor, hRAR-. gamma

    SciTech Connect

    Krust, A.; Kastner, Ph.; Petkovich, M.; Zelent, A.; Chambon, P. )

    1989-07-01

    Retinoic acid receptors (RARs) are retinoic acid (RA)-inducible enhancer factors belonging to the superfamily of steroid/thyroid nuclear receptors. The authors have previously characterized two human RAR (hRAR-{alpha} and hRAR-{beta}) cDNAs and have recently cloned their murine cognates (mRAR-{alpha} and mRAR-{beta}) together with a third RAR (mRAR-{gamma}) whose RNA was detected predominantly in skin, a well-known target for RA. mRAR-{gamma} cDNA was used here to clone its human counterpart (hRAR-{gamma}) from a T47D breast cancer cell cDNA library. Using a transient transfection assay in HeLa cells and a reporter gene harboring a synthetic RA responsive element, they demonstrate that hRAR-{gamma} cDNA indeed encodes a RA-inducible transcriptional trans-activator. Interestingly, comparisons of the amino acid sequences of all six human and mouse RARs indicate that the interspecies conservation of a given member of the RAR subfamily (either {alpha}, {beta}, or {gamma}) is much higher than the conservation of all three receptors within a given species. These observations indicate that RAR-{alpha}, -{beta}, and -{gamma} may perform specific functions. They show also that hRAR-{gamma} RNA is the predominant RAR RNA species in human skin, which suggests that hRAR-{gamma} mediates some of the retinoid effects in this tissue.

  15. Sigma and opioid receptors in human brain tumors

    SciTech Connect

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. )

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  16. Molecular characterization of human thyroid hormone receptor β isoform 4.

    PubMed

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus. PMID:26513165

  17. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  18. Alcohol- and alcohol antagonist-sensitive human GABAA receptors: tracking δ subunit incorporation into functional receptors.

    PubMed

    Meera, Pratap; Olsen, Richard W; Otis, Thomas S; Wallner, Martin

    2010-11-01

    GABA(A) receptors (GABA(A)Rs) have long been a focus as targets for alcohol actions. Recent work suggests that tonic GABAergic inhibition mediated by extrasynaptic δ subunit-containing GABA(A)Rs is uniquely sensitive to ethanol and enhanced at concentrations relevant for human alcohol consumption. Ethanol enhancement of recombinant α4β3δ receptors is blocked by the behavioral alcohol antagonist 8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester (Ro15-4513), suggesting that EtOH/Ro15-4513-sensitive receptors mediate important behavioral alcohol actions. Here we confirm alcohol/alcohol antagonist sensitivity of α4β3δ receptors using human clones expressed in a human cell line and test the hypothesis that discrepant findings concerning the high alcohol sensitivity of these receptors are due to difficulties incorporating δ subunits into functional receptors. To track δ subunit incorporation, we used a functional tag, a single amino acid change (H68A) in a benzodiazepine binding residue in which a histidine in the δ subunit is replaced by an alanine residue found at the homologous position in γ subunits. We demonstrate that the δH68A substitution confers diazepam sensitivity to otherwise diazepam-insensitive α4β3δ receptors. The extent of enhancement of α4β3δH68A receptors by 1 μM diazepam, 30 mM EtOH, and 1 μM β-carboline-3-carboxy ethyl ester (but not 1 μM Zn(2+) block) is correlated in individual recordings, suggesting that δ subunit incorporation into recombinant GABA(A)Rs varies from cell to cell and that this variation accounts for the variable pharmacological profile. These data are consistent with the notion that δ subunit-incorporation is often incomplete in recombinant systems yet is necessary for high ethanol sensitivity, one of the features of native δ subunit-containing GABA(A)Rs. PMID:20699325

  19. Alcohol- and Alcohol Antagonist-Sensitive Human GABAA Receptors: Tracking δ Subunit Incorporation into Functional Receptors

    PubMed Central

    Meera, Pratap; Olsen, Richard W.; Otis, Thomas S.

    2010-01-01

    GABAA receptors (GABAARs) have long been a focus as targets for alcohol actions. Recent work suggests that tonic GABAergic inhibition mediated by extrasynaptic δ subunit-containing GABAARs is uniquely sensitive to ethanol and enhanced at concentrations relevant for human alcohol consumption. Ethanol enhancement of recombinant α4β3δ receptors is blocked by the behavioral alcohol antagonist 8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester (Ro15-4513), suggesting that EtOH/Ro15-4513-sensitive receptors mediate important behavioral alcohol actions. Here we confirm alcohol/alcohol antagonist sensitivity of α4β3δ receptors using human clones expressed in a human cell line and test the hypothesis that discrepant findings concerning the high alcohol sensitivity of these receptors are due to difficulties incorporating δ subunits into functional receptors. To track δ subunit incorporation, we used a functional tag, a single amino acid change (H68A) in a benzodiazepine binding residue in which a histidine in the δ subunit is replaced by an alanine residue found at the homologous position in γ subunits. We demonstrate that the δH68A substitution confers diazepam sensitivity to otherwise diazepam-insensitive α4β3δ receptors. The extent of enhancement of α4β3δH68A receptors by 1 μM diazepam, 30 mM EtOH, and 1 μM β-carboline-3-carboxy ethyl ester (but not 1 μM Zn2+ block) is correlated in individual recordings, suggesting that δ subunit incorporation into recombinant GABAARs varies from cell to cell and that this variation accounts for the variable pharmacological profile. These data are consistent with the notion that δ subunit-incorporation is often incomplete in recombinant systems yet is necessary for high ethanol sensitivity, one of the features of native δ subunit-containing GABAARs. PMID:20699325

  20. Mapping the calcitonin receptor in human brain stem.

    PubMed

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J; Faull, Richard L M; Tajti, János; Edvinsson, Lars; Hay, Debbie L; Walker, Christopher S

    2016-05-01

    The calcitonin receptor (CTR) is relevant to three hormonal systems: amylin, calcitonin, and calcitonin gene-related peptide (CGRP). Receptors for amylin and calcitonin are targets for treating obesity, diabetes, and bone disorders. CGRP receptors represent a target for pain and migraine. Amylin receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract, the hypoglossal nucleus, the cuneate nucleus, spinal trigeminal nucleus, the gracile nucleus, and the inferior olivary nucleus. CTR staining was also observed in the area postrema, the lateral reticular nucleus, and the pyramidal tract. The extensive expression of CTR in the medulla suggests that CTR may be involved in a wider range of functions than currently appreciated. PMID:26911465

  1. Beta-receptor-mediated increase in venous return in humans.

    PubMed

    Leenen, F H; Reeves, R A

    1987-08-01

    To assess the involvement of beta 1- and beta 2-receptors in the regulation of venous return in humans, changes in left ventricular end-diastolic (LVED) dimension were determined during beta-receptor stimulation either by exogenous catecholamines or by increased endogenous sympathetic activity after hydralazine, after placebo and during nonselective versus beta 1-selective blockade. Taking changes in heart rate and LV emptying into account, the three beta-agonists (isoproterenol, terbutaline, and epinephrine) as well as hydralazine increased venous return as inferred from LVED dimension. After hydralazine, nonselective and beta 1-selective blockade were equally effective in blunting the increases in venous return, in heart rate, and in positive inotropic response. Beta 1-Selective blockade did not affect the increase in heart rate caused by epinephrine and partially inhibited the positive inotropic effect and the increase in venous return. Nonselective blockade not only blocked the increase in venous return owing to epinephrine but actually led to a decrease, as evidenced by a decrease in LVED dimension despite the marked bradycardia and high afterload with this combination. The present findings in healthy humans indicate that stimulation of both beta 1- and beta 2-receptors increases venous return, heart rate, and myocardial contractility. Beta 1-Receptors appear to predominate in the response to neuronal sympathetic activity. PMID:2825941

  2. Molecular and cellular analysis of human histamine receptor subtypes

    PubMed Central

    Seifert, Roland; Strasser, Andrea; Schneider, Erich H.; Neumann, Detlef; Dove, Stefan; Buschauer, Armin

    2013-01-01

    The human histamine receptors hH1R and hH2R constitute important drug targets, and hH3R and hH4R have substantial potential in this area. Considering the species-specificity of pharmacology of HxR orthologs, it is important to analyze hHxRs. Here,we summarize current knowledge of hHxRs endogenously expressed in human cells and hHxRs recombinantly expressed in mammalian and insect cells. We present the advantages and disadvantages of the various systems. We also discuss problems associated with the use of hHxR antibodies, an issue of general relevance for G-protein-coupled receptors (GPCRs). There is much greater overlap in activity of ‘selective’ ligands for other hHxRs than the cognate receptor subtype than generally appreciated. Studies with native and recombinant systems support the concept of ligand-specific receptor conformations, encompassing agonists and antagonists. It is emerging that for characterization of hHxR ligands, one cannot rely on a single test system and a single parameter. Rather, multiple systems and parameters have to be studied. Although such studies are time-consuming and expensive, ultimately, they will increase drug safety and efficacy. PMID:23254267

  3. Bisphenol A and Its Analogues Activate Human Pregnane X Receptor

    PubMed Central

    Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Rios-Pilier, Jennifer; Perkins, Jordan T.; Welsh, William J.

    2012-01-01

    Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism. However, the detailed mechanism by which these chemicals activate PXR remains unknown. Objective: We investigated the mechanism by which BPA interacts with and activates PXR and examined selected BPA analogues to determine whether they bind to and activate PXR. Methods: Cell-based reporter assays, in silico ligand–PXR docking studies, and site-directed mutagenesis were combined to study the interaction between BPA and PXR. We also investigated the influence of BPA and its analogues on the regulation of PXR target genes in human LS180 cells. Results: We found that BPA and several of its analogues are potent agonists for human PXR (hPXR) but do not affect mouse PXR activity. We identified key residues within hPXR’s ligand-binding pocket that constitute points of interaction with BPA. We also deduced the structural requirements of BPA analogues that activate hPXR. BPA and its analogues can also induce PXR target gene expression in human LS180 cells. Conclusions: The present study advances our understanding of the mechanism by which BPA interacts with and activates human PXR. Activation of PXR by BPA may explain some of the adverse effects of BPA in humans. PMID:22214767

  4. Human Xenobiotic Nuclear Receptor PXR Augments Mycobacterium tuberculosis Survival.

    PubMed

    Bhagyaraj, Ella; Nanduri, Ravikanth; Saini, Ankita; Dkhar, Hedwin Kitdorlang; Ahuja, Nancy; Chandra, Vemika; Mahajan, Sahil; Kalra, Rashi; Tiwari, Drishti; Sharma, Charu; Janmeja, Ashok Kumar; Gupta, Pawan

    2016-07-01

    Mycobacterium tuberculosis can evade host defense processes, thereby ensuring its survival and pathogenesis. In this study, we investigated the role of nuclear receptor, pregnane X receptor (PXR), in M. tuberculosis infection in human monocyte-derived macrophages. In this study, we demonstrate that PXR augments M. tuberculosis survival inside the host macrophages by promoting the foamy macrophage formation and abrogating phagolysosomal fusion, inflammation, and apoptosis. Additionally, M. tuberculosis cell wall lipids, particularly mycolic acids, crosstalk with human PXR (hPXR) by interacting with its promiscuous ligand binding domain. To confirm our in vitro findings and to avoid the reported species barrier in PXR function, we adopted an in vivo mouse model expressing hPXR, wherein expression of hPXR in mice promotes M. tuberculosis survival. Therefore, pharmacological intervention and designing antagonists to hPXR may prove to be a promising adjunct therapy for tuberculosis. PMID:27233963

  5. Dysregulation of Human Toll-like Receptor Function in Aging

    PubMed Central

    Shaw, Albert C.; Panda, Alexander; Joshi, Samit R.; Qian, Feng; Allore, Heather G.; Montgomery, Ruth R.

    2010-01-01

    Studies addressing immunosenescence in the immune system have expanded to focus on the innate as well as the adaptive responses. In particular, aging results in alterations in the function of Toll-like receptors (TLRs), the first described pattern recognition receptor family of the innate immune system. Recent studies have begun to elucidate the consequences of aging on TLR function in human cohorts and add to existing findings performed in animal models. In general, these studies show that human TLR function is impaired in the context of aging, and in addition there is evidence for inappropriate persistence of TLR activation in specific systems. These findings are consistent with an overarching theme of age-associated dysregulation of TLR signaling that likely contributes to the increased morbidity and mortality from infectious diseases found in geriatric patients. PMID:21074638

  6. Receptor Coactivators: Master Regulators of Human Health and Disease

    PubMed Central

    Dasgupta, Subhamoy; Lonard, David M.; O’Malley, Bert W.

    2015-01-01

    Transcriptional coregulators (coactivators and corepressors) have emerged as the principal modulators of the functions of nuclear receptors and other transcription factors. During the decade since the discovery of steroid receptor coactivator-1 (SRC-1), the first authentic coregulator, more than 400 coregulators have been identified and characterized, and deciphering their function has contributed significantly to our understanding of their role in human physiology. Deregulated expression of coregulators has been implicated in diverse disease states and related pathologies. The advancement of molecular technologies has enabled us to better characterize the molecular associations of the SRC family of coactivators with other protein complexes in the context of gene regulation. These continuing discoveries not only expand our knowledge of the roles of coactivators in various human diseases but allow us to discover novel coactivator-targeting strategies for therapeutic intervention in these diseases. PMID:24111892

  7. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed Central

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-01-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  8. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-11-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  9. Human G protein-coupled receptor studies in Saccharomyces cerevisiae.

    PubMed

    Liu, Rongfang; Wong, Winsy; IJzerman, Adriaan P

    2016-08-15

    G protein-coupled receptors (GPCRs) are one of the largest families of membrane proteins, with approximately 800 different GPCRs in the human genome. Signaling via GPCRs regulates many biological processes, such as cell proliferation, differentiation, and development. In addition, many receptors have a pivotal role in immunophysiology. Many hormones and neurotransmitters are ligands for these receptors, and hence it is not surprising that many drugs, either mimicking or blocking the action of the bodily substances, have been developed. It is estimated that 30-40% of current drugs on the market target GPCRs. Further identifying and elucidating the functions of GPCRs will provide opportunities for novel drug discovery, including for immunotherapy. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is a very important and useful platform in this respect. There are many advantages of using a yeast assay system, as it is cheap, safe and stable; it is also convenient for rapid feasibility and optimization studies. Moreover, it offers a "null" background when studying human GPCRs. New developments regarding human GPCRs expressed in a yeast platform are providing insight into GPCR activation and signaling, and facilitate agonist and antagonist identification. In this review we summarize the latest findings regarding human G-protein-coupled receptors in studies using S. cerevisiae, ever since the year 2005 when we last published a review on this topic. We describe 11 families of GPCRs in detail, while including the principles and developments of each yeast system applied to these different GPCRs and highlight and generalize the experimental findings of GPCR function in these systems. PMID:26920251

  10. Characterization of the Human Platelet α-Adrenergic Receptor

    PubMed Central

    Alexander, R. Wayne; Cooper, Barry; Handin, Robert I.

    1978-01-01

    Human platelets aggregate and undergo a release reaction when incubated with catecholamines. Indirect evidence indicates that these events are mediated through α-adrenergic receptors. We used [3H]dihydroergocryptine, an α-adrenergic antagonist, to identify binding sites on platelets that have the characteristics of α-adrenergic receptors. Catecholamines compete for the binding sites in a stereo-specific manner with the potency series of (−) epinephrine > (−) norepinephrine > (±) phenylephrine > (−) isoproterenol. The dissociation constant (Kd) of (−) epinephrine is 0.34 μM. Binding is saturable using a platelet particulate fraction but not with intact platelets. There are 0.130 pmol binding sites per milligram protein in fresh platelet membranes. This number represents approximately 100 binding sites per platelet. The Kd for [3H]-dihydroergocryptine was 0.003−0.01 μM. The α-adrenergic antagonist phentolamine (Kd = 0.0069 μM) was much more potent than the β-adrenergic antagonist (±) propranolol (Kd = 27 μM) in competing for the binding sites. The binding data were correlated with catecholamine-induced platelet aggregation and inhibition of basal and prostaglandin E1-stimulated adenylate cyclase. (−) Epinephrine was more potent than (−) norepinephrine in producing aggregation whereas (−) isoproterenol was ineffective. The threshold dose for inducing aggregation by (−) epinephrine was 0.46 μM. Phentolamine and dihydroergocyrptine blocked this response, whereas (±) propranolol had no effect. (−) Epinephrine and (−) norepinephrine inhibited basal and prostaglandin E1-stimulated adenylate cyclase in a dose-related manner. The concentration of (−) epinephrine inhibiting adenylate cyclase 50% was 0.7 μM. This inhibition was also blocked by phentolamine and dihydroergocryptine but not by (±) propranolol. The specificity of binding and the close correlation with α-adrenergic receptor-mediated biochemical and physiological responses

  11. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    PubMed Central

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  12. Functional atrial natriuretic peptide receptor in human adrenal tumor

    SciTech Connect

    Shionoiri, H.; Hirawa, N.; Takasaki, I.; Ishikawa, Y.; Oda, H.; Minamisawa, K.; Sugimoto, K.; Matsukawa, T.; Ueda, S.; Miyajima, E.

    1989-01-01

    The effects of synthetic human atrial natriuretic peptide (ANP) on the release of catecholamines, aldosterone, or cortisol were observed in human adrenal tumors obtained surgically from patients with pheochromocytoma, primary aldosteronism, or Cushing's syndrome, respectively. Each tumor tissue or adjacent normal cortical tissue was sectioned into slices, which were incubated in medium-199 in the presence or absence of adrenocorticotrophin (ACTH) and ANP. The amounts of epinephrine, norepinephrine, aldosterone, or cortisol released into the medium were measured. Existence of ANP receptors on the adrenal tissues was examined by binding assays, affinity labeling, and immunohistochemistry. Release of catecholamines from pheochromocytoma tissues was inhibited by ANP, and the presence of the ANP receptor on pheochromocytoma was further demonstrated by both binding assays and affinity labeling; Scatchard analysis revealed a single class of binding sites for ANP with a Kd of 1.0 nM and a Bmax of 0.4 pmol/mg of protein and the molecular size was estimated as 140 and a 70 kDa under nonreducing and reducing conditions, respectively. The presence of ANP receptors in pheochromocytoma was demonstrated by immunohistochemistry. ANP inhibited both basal and ACTH-stimulated aldosterone secretion in the slices of normal cortex, and localization of ANP receptors in zona glomerulosa cells was also demonstrated. However, ANP did not inhibit basal and ACTH-stimulated aldosterone and cortisol secretion in both tissue slices from aldosteronoma and Cushing's adenoma. Consistent with these observations, the absence of ANP receptors in adenoma tissues was determined by binding assays, affinity labeling, and immunohistochemistry.

  13. Post-translational modifications of nuclear receptors and human disease

    PubMed Central

    Anbalagan, Muralidharan; Huderson, Brandy; Murphy, Leigh; Rowan, Brian G.

    2012-01-01

    Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy’s Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments. PMID:22438791

  14. Expression and functional study of estrogen receptor-related receptors in human prostatic cells and tissues.

    PubMed

    Cheung, C P; Yu, Shan; Wong, K B; Chan, L W; Lai, Fernand M M; Wang, Xianghong; Suetsugi, Masatomo; Chen, Shiuan; Chan, Franky L

    2005-03-01

    Estrogen receptor-related receptors (ERRs; alpha, beta, gamma) are orphan nuclear receptors and constitutively active without binding to estrogen. Like estrogen receptors (ERs), ERRs bind to estrogen receptor elements and estrogen receptor element-related repeats. Growing evidence suggests that ERRs can cross-talk with ERs in different cell types via competition for DNA sites and coactivators. We hypothesize that ERRs might play regulatory roles in normal and neoplastic prostatic cells by sharing similar ER-mediated pathways or acting independently. In this study, we investigated mRNA and protein expression patterns of three ERR members in normal human prostate epithelial cells, established cell lines, cancer xenografts, and prostatic tissues. Additionally, effects of transient transfection of ERRs on prostatic cell proliferation and ER expression were also examined. RT-PCR showed that ERRalpha and ERRgamma transcripts were detected in most cell lines and xenografts, whereas ERRbeta was detected in normal epithelial cells and few immortalized cell lines but not in most cancer lines. Similar results were demonstrated in clinical prostatic specimens. Western blottings and immunohistochemistry confirmed similar expression patterns that ERR proteins were detected as nuclear proteins in epithelial cells, whereas their expressions became reduced or undetected in neoplastic prostatic cells. Transient transfection confirmed that ERRs were expressed in prostatic cells as nuclear proteins and transcriptionally active in the absence of estradiol. Transfection results showed that overexpression of ERRs inhibited cell proliferation and repressed ERalpha transcription in PC-3 cells. Our study shows that ERRs, which are coexpressed with ERs in prostatic cells, could regulate cell growth and modulate ER-mediated pathways via interference on ERalpha transcription in prostatic cells. PMID:15598686

  15. The role of GABAB receptors in human reinforcement learning.

    PubMed

    Ort, Andres; Kometer, Michael; Rohde, Judith; Seifritz, Erich; Vollenweider, Franz X

    2014-10-01

    Behavioral evidence from human studies suggests that the γ-aminobutyric acid type B receptor (GABAB receptor) agonist baclofen modulates reinforcement learning and reduces craving in patients with addiction spectrum disorders. However, in contrast to the well established role of dopamine in reinforcement learning, the mechanisms by which the GABAB receptor influences reinforcement learning in humans remain completely unknown. To further elucidate this issue, a cross-over, double-blind, placebo-controlled study was performed in healthy human subjects (N=15) to test the effects of baclofen (20 and 50mg p.o.) on probabilistic reinforcement learning. Outcomes were the feedback-induced P2 component of the event-related potential, the feedback-related negativity, and the P300 component of the event-related potential. Baclofen produced a reduction of P2 amplitude over the course of the experiment, but did not modulate the feedback-related negativity. Furthermore, there was a trend towards increased learning after baclofen administration relative to placebo over the course of the experiment. The present results extend previous theories of reinforcement learning, which focus on the importance of mesolimbic dopamine signaling, and indicate that stimulation of cortical GABAB receptors in a fronto-parietal network leads to better attentional allocation in reinforcement learning. This observation is a first step in our understanding of how baclofen may improve reinforcement learning in healthy subjects. Further studies with bigger sample sizes are needed to corroborate this conclusion and furthermore, test this effect in patients with addiction spectrum disorder. PMID:25194227

  16. Binding of the 68-kilodalton protein of Mycobacterium avium to alpha(v)beta3 on human monocyte-derived macrophages enhances complement receptor type 3 expression.

    PubMed Central

    Hayashi, T; Rao, S P; Catanzaro, A

    1997-01-01

    Attachment to and uptake by host cells are important early events in the pathogenesis of intracellular organisms such as Mycobacterium avium. Monocyte-derived macrophages (MDM) are known to express multiple surface receptors that play a role in binding to and uptake of M. avium. These include complement receptor type 3 (CR3), fibronectin receptor, mannose receptor, and transferrin receptor. In addition to these, we have previously reported that the integrin receptor alpha(v)beta3 also plays a role in binding to M. avium in a nonopsonic environment. Further, we have shown that a 68-kDa surface protein of M. avium binds to human monocytes and plays a role in attachment of M. avium to MDM. The present study provides direct evidence that this protein mediates attachment of M. avium to MDM by binding to alpha(v)beta3. Using the technique of cell surface enzyme-linked immunosorbent assay, we have shown that the M. avium 68-kDa protein inhibits the binding of monoclonal antibodies (MAb) against alpha(v)beta3 to MDM compared to control proteins such as ovalbumin and laminin (P < 0.05). Dual-labeling studies were performed to demonstrate that after phagocytosis, alpha(v)beta3 is present along with M. avium in phagosomes of M. avium-infected MDM. In addition, we have demonstrated that this interaction between alpha(v)beta3 and the M. avium 68-kDa protein resulted in enhancement of CR3 expression, which is known to play a role in complement-mediated uptake of M. avium. Attachment of MDM to wells coated with the M. avium 68-kDa protein resulted in a twofold increase in CR3 expression compared to attachment of MDM to wells coated with ovalbumin. This enhancement was completely inhibited by pretreatment of MDM with MAb against alpha(v)beta3. In summary, M. avium binds to MDM via alpha(v)beta3 with the help of the M. avium 68-kDa protein, and this ligation enhanced the expression of CR3 on MDM. Since CR3 has been known to play a role in M. avium uptake, enhanced expression of

  17. Differential effect of meclizine on the activity of human pregnane X receptor and constitutive androstane receptor.

    PubMed

    Lau, Aik Jiang; Yang, Guixiang; Rajaraman, Ganesh; Baucom, Christie C; Chang, Thomas K H

    2011-03-01

    Conflicting data exist as to whether meclizine is an activator of human pregnane X receptor (hPXR). Therefore, we conducted a detailed, systematic investigation to determine whether meclizine affects hPXR activity by performing a cell-based reporter gene assay, a time-resolved fluorescence resonance energy transfer competitive ligand-binding assay, a mammalian two-hybrid assay to assess coactivator recruitment, and a hPXR target gene expression assay. In pregnane X receptor (PXR)-transfected HepG2 cells, meclizine activated hPXR to a greater extent than rat PXR. It bound to hPXR ligand-binding domain and recruited steroid receptor coactivator-1 to the receptor. Consistent with its hPXR agonism, meclizine increased hPXR target gene expression (CYP3A4) in human hepatocytes. However, it did not increase but decreased testosterone 6β-hydroxylation, suggesting inhibition of CYP3A catalytic activity. Meclizine has also been reported to be an inverse agonist and antagonist of human constitutive androstane receptor (hCAR). Therefore, given that certain tissues (e.g., liver) express both hPXR and hCAR and that various genes are cross-regulated by them, we quantified the expression of a hCAR- and hPXR-regulated gene (CYP2B6) in cultured human hepatocytes treated with meclizine. This drug did not decrease constitutive CYP2B6 mRNA expression or attenuate hCAR agonist-mediated increase in CYP2B6 mRNA and CYP2B6-catalyzed bupropion hydroxylation levels. These observations reflect hPXR agonism and the lack of hCAR inverse agonism and antagonism by meclizine, which were assessed by a hCAR reporter gene assay and mammalian two-hybrid assay. In conclusion, meclizine is a hPXR agonist, and it does not act as a hCAR inverse agonist or antagonist in cultured human hepatocytes. PMID:21131266

  18. A human immunodeficiency virus protease inhibitor is a novel functional inhibitor of human pregnane X receptor.

    PubMed

    Healan-Greenberg, Christine; Waring, Jeffrey F; Kempf, Dale J; Blomme, Eric A G; Tirona, Rommel G; Kim, Richard B

    2008-03-01

    Drug-drug interactions involving induction of cytochrome P450 enzymes (P450s) can lead to loss of drug efficacy. Certain drugs, particularly those used to treat mycobacterial and human immunodeficiency virus (HIV) infections, are especially prone to induce P450s. During studies to examine drug-interaction potential of compounds in cultured human hepatocytes, exposure with (S)-1-[(1S,3S,4S)-4-[(S)-2-(3-benzyl-2-oxo-imidazolidin-1-yl)-3,3-dimethyl-butyrylamino]-3-hydroxy-5-phenyl-1-(4-pyridin-2-yl-benzyl)-pentylcarbamoyl]-2,2-dimethyl-propyl-carbamic acid methyl ester (A-792611), a novel HIV protease inhibitor (PI) previously under investigation for the treatment of HIV infection, resulted in significant down-regulation of constitutive CYP3A4 expression. Furthermore, coadministration of A-792611 was found to attenuate CYP3A4 induction mediated by known inducers rifampin and efavirenz. A-792611 also attenuated the rifampin and ritonavir-mediated activation of the human pregnane X receptor (PXR) in luciferase reporter assays. Microarray analysis on cultured human hepatocytes revealed that A-792611 treatment down-regulated the expression of PXR target genes CYP3A4, CYP2B6, CYP2C8, and CYP2C9, whereas there was a lack of inductive effect observed in treated rat hepatocytes. A-792611 did not interact with other ligand-activated nuclear receptors that regulate P450 expression such as constitutive androstane receptor, farnesoid X receptor, vitamin D receptor, and peroxisome proliferator-activated receptor alpha. These data suggest that A-792611 is a functional and effective human PXR inhibitor. Among the class of HIV-PIs, which are typically PXR activators, A-792611 seems to have a unique property for PXR antagonism and could be a useful tool for studying nuclear receptor pathway regulation. PMID:18096673

  19. Regulation of the human thromboxane A2 receptor gene in human megakaryoblastic MEG-01 cells.

    PubMed

    Saffak, T; Schäfer, S; Haas, C; Nüsing, R M

    2003-11-01

    Thromboxane A(2) (TXA(2)) is an important mediator for platelet aggregation and blood vessel constriction. TXA(2) receptor (TP receptor) is expressed in different cell types including smooth muscle cells, endothelial cells and platelets. Expression level of TP receptor may modulate the action of TXA(2) on target cells. In megakaryoblastic MEG-01 cells, a cell line representing a model for platelet precursor cells, addition of phorbolester 12-O-tetradecanoylphorbol-13-acetate (TPA) caused an increase in transcriptional activity of TP receptor gene promoter. Within 20 h a rise in expression of TP receptor mRNA and protein was observed. The effect of TPA was concentration-dependent and was blocked by specific inhibitors of protein kinase C. Flow cytometry analysis indicated that the increase in TP receptor expression appeared to be one of the earliest events in the course of TPA-induced maturation of MEG-01 cells. Stimulation of the protein kinase A pathway by incubation with forskolin or IBMX caused a decrease in transcriptional activity. Promoter deletion experiments indicated that the responsive elements for protein kinase A and C are located upstream and downstream, respectively, of -700 bp of the TP receptor gene. These experiments indicate that the expression of the human thromboxane receptor is differently regulated in platelet precursor cells by the protein kinase A and C pathway. PMID:14580363

  20. Characterization of interleukin-8 receptors in non-human primates

    SciTech Connect

    Alvarez, V.; Coto, E.; Gonzalez-Roces, S.; Lopez-Larrea, C.

    1996-09-01

    Interleukin-8 is a chemokine with a potent neutrophil chemoatractant activity. In humans, two different cDNAs encoding human IL8 receptors designated IL8RA and IL8RB have been cloned. IL8RA binds IL8, while IL8RB binds IL8 as well as other {alpha}-chemokines. Both human IL8Rs are encoded by two genes physically linked on chromosome 2. The IL8RA and IL8RB genes have open reading frames (ORF) lacking introns. By direct sequencing of the polymerase chain reaction products, we sequenced the IL8R genes of cell lines from four non-human primates: chimpanzee, gorilla, orangutan, and macaca. The IL8RB encodes an ORF in the four non-human primates, showing 95%-99% similarity to the human IL8RB sequence. The IL8RA homologue in gorilla and chimpanzee consisted of two ORF 98%-99% identical to the human sequence. The macaca and orangutan IL8RA homologues are pseudogenes: a 2 base pair insertion generated a sequence with several stop codons. In addition, we describe the physical linkage of these genes in the four non-human primates and discuss the evolutionary implications of these findings. 25 refs., 5 figs., 3 tabs.

  1. Human platelet vasopressin receptor identification by direct ultraviolet photoaffinity labeling

    SciTech Connect

    Thibonnier, M.

    1987-08-15

    Tritiated vasopressin ((/sup 3/H)AVP) was directly crosslinked to its human platelet receptor by using an ultraviolet irradiation procedure. After preincubation with (/sup 3/H)AVP, the hydrodynamic parameters of the hormone-receptor complexes solubilized with 3-((3-cholamidopropyl)dimethylammonio)-1-propane sulfonate were derived from Sephacryl S-300 superfine gel filtration and from sucrose density gradient ultracentrifugation experiments. The following values were obtained: Stoke's radius = 5.48 +/- 0.1 nm, apparent sedimentation coefficient = 5.55 +/- 0.1 S, and calculated molecular weight = 132,000. On sodium dodecyl sulfate-8% polyacrylamide slab gel electrophoresis under reducing conditions, (/sup 3/H)AVP preferentially and specifically labeled a 125,000-dalton protein. The labeling of this protein was suppressed by addition of excess cold vasopressin, whereas angiotensin II did not inhibit incorporation of tritiated vasopressin in this protein. These results suggest that direct UV-photoaffinity labelling with (/sup 3/H)AVP is a suitable tool for the purification of the human platelet vasopressin receptor.

  2. Distribution of adenosine receptors in human sclera fibroblasts

    PubMed Central

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines and in the frozen human scleral sections. ADOR protein expression in HSF and human sclera was confirmed by western blot analysis of cell lysates. Results ADORs were expressed in both HSF and human sclera. This was confirmed by western blot. ADORA1 expression was concentrated in the nucleus. ADORA2A was concentrated mainly in one side of the cytoplasm, and ADORA2B was found both in the nucleus and the cytoplasm. ADORA3 was expressed weakly in the cytoplasm. Conclusions All four subtypes of ADOR were found in HSF and may play a role in scleral remodeling. PMID:18385786

  3. Endothelin ETA receptor expression in human cerebrovascular smooth muscle cells.

    PubMed Central

    Yu, J. C.; Pickard, J. D.; Davenport, A. P.

    1995-01-01

    1. Endothelin (ET) has been implicated in cerebrovasospasm for example, following subarachnoid haemorrhage, and blocking the interaction of ET with its receptors on cerebral vessels, may be of therapeutic benefit. The aim of our study was to characterize endothelin receptor sub-types on medial smooth muscle cells of human cerebral vessels. Cultures of vascular smooth muscle cells were explanted from human cerebral resistance vessels and characterized as human brain smooth muscle cells (HBSMCs). 2. Over a 48 h incubation period, HBSMC cultures secreted comparable levels of immunoreactive (IR) big endothelin-1 (big ET-1) and IR endothelin (ET): 12.7 +/- 10.3 and 8.3 +/- 5.6 pmol/10(6) cells, respectively (mean +/- s.e. mean from three different individuals), into the culture medium. 3. Total RNA was extracted from cultures of human brain smooth muscle cells. Reverse-transcriptase polymerase chain reaction (RI-PCR) assays and subsequent product separation by agarose gel electrophoresis revealed single bands corresponding to the expected product sizes encoding cDNA for ETA (299 base pairs) and ETB (428 base pairs) (n = 3 different cultures). 4. Autoradiography demonstrated the presence of specific binding sites for [125I]-ET-1 which labels all ET receptors, and [125I]-PD151242, an ETA subtype-selective antagonist which exclusively labels ETA receptors, but no specific-binding was detected using ETB subtype-selective [125I]-BQ3020 (n = 3 different cultures, in duplicate). 5. In saturation binding assays, [123I]-ET-1 bound with high affinity: KD = 0.8 +/- 0.1 nM and Bmax = 690 +/- 108 fmol mg-1. A one-site fit was preferred and Hill slopes were close to unity over the concentration range (10(-12) to 10(-8) M). [125I]-PD151242 also bound with similar affinity: KD = 0.4 +/- 0.1 nM and Bmax = 388 +/- 68 fmol mg-1 (mean +/- s.e. mean, n = 3 different cultures). Again, a one-site fit was preferred and Hill slopes were close to unity over the concentration range. Unlabelled PD

  4. Monitoring pulmonary vascular permeability using radiolabeled transferrin

    SciTech Connect

    Basran, G.S.; Hardy, J.G.

    1988-07-01

    A simple, noninvasive technique for monitoring pulmonary vascular permeability in patients in critical care units is discussed. High vascular permeability is observed in patients with clinically defined adult respiratory distress syndrome (ARDS) but not in patients with hydrostatic pulmonary edema or in patients with minor pulmonary insults who are considered to be at risk of developing ARDS. The technique has been used in the field of therapeutics and pharmacology to test the effects of the putative antipermeability agents methylprednisolone and terbutaline sulfate. There appears to be a good correlation between the acute inhibitory effect of either drug on transferrin exudation and patient prognosis. Thus, a byproduct of such drug studies may be an index of survival in patients with established ARDS.

  5. Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons

    PubMed Central

    Ji, Changyi; Kosman, Daniel J.

    2015-01-01

    The molecular mechanisms of iron trafficking in neurons have not been elucidated. In this study, we characterized the expression and localization of ferrous iron transporters Zip8, Zip14 and DMT1, and ferrireductases Steap2 and SDR2 in primary rat hippocampal neurons. Steap2 and Zip8 partially co-localize, indicating these two proteins may function in Fe3+ reduction prior to Fe2+ permeation. Zip8, DMT1 and Steap2 co-localize with the transferrin receptor (TfR)/transferrin (Tf) complex, suggesting they may be involved in TfR/Tf-mediated iron assimilation. In brain interstitial fluid, transferring-bound iron (TBI) and non-transferrin-bound iron (NTBI) exist as potential iron sources. Primary hippocampal neurons exhibit significant iron uptake from TBI (Transferrin-59Fe3+) and NTBI, whether presented as 59Fe2+-citrate or 59Fe3+-citrate; reductase-independent 59Fe2+ uptake was the most efficient uptake pathway of the three. Kinetic analysis of Zn2+ inhibition of Fe2+ uptake indicated that DMT1 plays only a minor role in the uptake of NTBI. In contrast, localization and knockdown data indicate that Zip8 makes a major contribution. Data suggest also that cell accumulation of 59Fe from TBI relies at least in part on an endocytosis-independent pathway. These data suggest that Zip8 and Steap2 play a major role in iron accumulation from NTBI and TBI by hippocampal neurons. PMID:25649872

  6. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. PMID:27288827

  7. A humanized antibody that binds to the interleukin 2 receptor.

    PubMed Central

    Queen, C; Schneider, W P; Selick, H E; Payne, P W; Landolfi, N F; Duncan, J F; Avdalovic, N M; Levitt, M; Junghans, R P; Waldmann, T A

    1989-01-01

    The anti-Tac monoclonal antibody is known to bind to the p55 chain of the human interleukin 2 receptor and to inhibit proliferation of T cells by blocking interleukin 2 binding. However, use of anti-Tac as an immunosuppressant drug would be impaired by the human immune response against this murine antibody. We have therefore constructed a "humanized" antibody by combining the complementarity-determining regions (CDRs) of the anti-Tac antibody with human framework and constant regions. The human framework regions were chosen to maximize homology with the anti-Tac antibody sequence. In addition, a computer model of murine anti-Tac was used to identify several amino acids which, while outside the CDRs, are likely to interact with the CDRs or antigen. These mouse amino acids were also retained in the humanized antibody. The humanized anti-Tac antibody has an affinity for p55 of 3 x 10(9) M-1, about 1/3 that of murine anti-Tac. Images PMID:2513570

  8. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    PubMed Central

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  9. Evidence for a second receptor binding site on human prolactin.

    PubMed

    Goffin, V; Struman, I; Mainfroid, V; Kinet, S; Martial, J A

    1994-12-23

    The existence of a second receptor binding site on human prolactin (hPRL) was investigated by site-directed mutagenesis. First, 12 residues of helices 1 and 3 were mutated to alanine. Since none of the resulting mutants exhibit reduced bioactivity in the Nb2 cell proliferation bioassay, the mutated residues do not appear to be functionally necessary. Next, small residues surrounding the helix 1-helix 3 interface were replaced with Arg and/or Trp, the aim being to sterically hinder the second binding site. Several of these mutants exhibit only weak agonistic properties, supporting our hypothesis that the channel between helices 1 and 3 is involved in a second receptor binding site. We then analyzed the antagonistic and self-antagonistic properties of native hPRL and of several hPRLs analogs altered at binding site 1 or 2. Even at high concentrations (approximately 10 microM), no self-inhibition was observed with native hPRL; site 2 hPRL mutants self-antagonized while site 1 mutants did not. From these data, we propose a model of hPRL-PRL receptor interaction which slightly differs from that proposed earlier for the homologous human growth hormone (hGH) (Fuh, G., Cunningham, B. C., Fukunaga, R., Nagata, S., and Goeddel, D. V., and Well, J. A. (1992) Science 256, 1677-1680). Like hGH, hPRL would bind sequentially to two receptor molecules, first through site 1, then through site 2, but we would expect the two sites of hPRL to display, unlike the two binding sites of hGH, about the same binding affinity, thus preventing self-antagonism at high concentrations. PMID:7798264

  10. Dopamine Receptors in Human Embryonic Stem Cell Neurodifferentiation

    PubMed Central

    Belinsky, Glenn S.; Sirois, Carissa L.; Rich, Matthew T.; Short, Shaina M.; Moore, Anna R.; Gilbert, Sarah E.

    2013-01-01

    We tested whether dopaminergic drugs can improve the protocol for in vitro differentiation of H9 human embryonic stem cells (hESCs) into dopaminergic neurons. The expression of 5 dopamine (DA) receptor subtypes (mRNA and protein) was analyzed at each protocol stage (1, undifferentiated hESCs; 2, embryoid bodies [EBs]; 3, neuroepithelial rosettes; 4, expanding neuroepithelium; and 5, differentiating neurons) and compared to human fetal brain (gestational week 17–19). D2-like DA receptors (D2, D3, and D4) predominate over the D1-like receptors (D1 and D5) during derivation of neurons from hESCs. D1 was the receptor subtype with the lowest representation in each protocol stage (Stages 1–5). D1/D5-agonist SKF38393 and D2/D3/D4-agonist quinpirole (either alone or combined) evoked Ca2+ responses, indicating functional receptors in hESCs. To identify when receptor activation causes a striking effect on hESC neurodifferentiation, and what ligands and endpoints are most interesting, we varied the timing, duration, and drug in the culture media. Dopaminergic agonists or antagonists were administered either early (Stages 1–3) or late (Stages 4–5). Early DA exposure resulted in more neuroepithelial colonies, more neuronal clusters, and more TH+ clusters. The D1/D5 antagonist SKF83566 had a strong effect on EB morphology and the expression of midbrain markers. Late exposure to DA resulted in a modest increase in TH+ neuron clusters (∼75%). The increase caused by DA did not occur in the presence of dibutyryl cAMP (dbcAMP), suggesting that DA acts through the cAMP pathway. However, a D2-antagonist (L741) decreased TH+ cluster counts. Electrophysiological parameters of the postmitotic neurons were not significantly affected by late DA treatment (Stages 4–5). The mRNA of mature neurons (VGLUT1 and GAD1) and the midbrain markers (GIRK2, LMX1A, and MSX1) were lower in hESCs treated by DA or a D2-antagonist. When hESCs were neurodifferentiated on PA6 stromal cells, DA also

  11. Deorphanization and characterization of human olfactory receptors in heterologous cells.

    PubMed

    Chatelain, Pierre; Veithen, Alex; Wilkin, Françoise; Philippeau, Magali

    2014-11-01

    Olfaction plays an indispensable role in human and animals in self and environmental recognition, as well as intra- and interspecific communication. Following the discovery of a family of olfactory receptors (ORs) by Buck and Axel in 1991, it has been established that the sense of smell begins with the molecular recognition of a chemical odorant by one or more ORs expressed in the olfactory sensory neurons. Therefore, characterization of the molecular interactions between odorant molecules and ORs is a key step in the elucidation of the general properties of the olfactory system and in the development of applications, i.e., design of new odorants, search for blockers, etc. The process putted in place at ChemCom to improve the expression of ORs at the cytoplasmic membrane of the HEK293 cell and assays enabling large-scale deorphanization, and to characterize the interaction between chemical odorants and ORs is described. The family of human ORs includes ca. 400 putatively functional ORs which are GPCRs (G protein-coupled receptors); to date over 100 human ORs have been deorphanized. PMID:25408322

  12. Recombinant human betacellulin. Molecular structure, biological activities, and receptor interaction.

    PubMed

    Watanabe, T; Shintani, A; Nakata, M; Shing, Y; Folkman, J; Igarashi, K; Sasada, R

    1994-04-01

    Soluble forms of human betacellulin (BTC) were purified to homogeneity from the conditioned medium of mouse A9 cells transfected with the BTC precursor cDNA. Three types of soluble BTC, designated BTC-1a, BTC-1b and BTC-2, were resolved by cation-exchange and size-exclusion column chromatography. Physicochemical analysis has revealed that BTC-1a represents the glycosylated, intact molecule composed of 80 amino acid residues (Asp32 to Tyr111 of the precursor molecule). BTC-1b appears to be a truncated molecule lacking 12 amino acid residues from the amino terminus of BTC-1a. BTC-2 was found to be a 50-amino acid molecule (Arg62 to Tyr111) that corresponds to the epidermal growth factor (EGF) structural unit. The biological activities of these BTC molecules were essentially identical as judged by their mitogenicity on Balb/c 3T3 fibroblasts. BTC and EGF were equipotent in stimulating Balb/c 3T3 cell proliferation and rat mesangial cell Ca2+ mobilization as well as in inhibiting the growth of human epidermoid carcinoma A431 cells. BTC and EGF antagonized each other with similar dose dependence for binding to A431 cells, indicating that these factors bind the same receptor molecules with equivalent avidity. The Kd value of EGF receptor (EGFR) and BTC is 0.5 nM as determined on Balb/c 3T3 cells. In addition, human mammary carcinoma MDA-MB-453 cells, which express multiple members of the EGFR family, were found to possess 2.7 x 10(3) BTC binding sites/cell, and the binding was readily quenched by EGF. These results suggest that the primary receptor for BTC is EGFR. PMID:8144591

  13. Steroid specificity of the human sperm membrane progesterone receptor.

    PubMed

    Alexander, N J; Kim, H K; Blye, R R; Blackmore, P F

    1996-03-01

    The aim of this study was to evaluate the effect of several abeopregnane, steroidal heterocycles (A/B-transandrostano [2,3-d]isoxazole, and 17-spiroandrostano[2,3-c]furazan), and 6 alpha, 11 beta, 16 alpha-trisubstituted 19-norpregnadienedione on the influx of extracellular Ca2+ in human sperm. These steroidal compounds had minimal genomic progestational, androgenic, or estrogenic activity with the exception of 16 alpha-ethyl-6 alpha-methyl-11 beta-(4-N,N-dimethylaminophenyl)-19- norpregna-4,9-diene-3,20-dione which was four times more progestational than progesterone. Some of the steroidal compounds, e.g., 16 alpha-ethyl-6 alpha-methyl-11 beta-(4-N,N-dimethylaminophenyl)-19-nor- pregna-4,9-diene-3,20-dione and 2',3',4',5'-tetrahydrospiro[furan-2' beta, 17-androstano] [2,3-c]furazan produced an influx of Ca2+ into human spermatozoa. These studies indicate that high (10 microM) concentrations of certain steroidal compounds are selective for the sperm membrane progesterone receptor, since most of them have minimal genomic activity. The steroidal compounds that elicited an influx of Ca2+ caused an initial high influx but were not as potent as progesterone, since no effects were observed below 1 microM, whereas progesterone at 1 microM produced a maximum effect. Progesterone as well as the steroidal compounds caused a modest increase in the number of acrosome-reacted spermatozoa. Molecular modeling revealed that 5 alpha-dihydro-2,3-fused and 4,4-dimethyl-5-ene-2,3-fused steroidal heterocycles possessing different conformations compared to that of progesterone are responsible for elevation of Ca2+. In conclusion, a unique non-genomic progesterone receptor is present on human spermatozoa and several steroidal compounds that do not have progestational effects may activate this sperm membrane receptor, resulting in Ca2+ influx. PMID:8852828

  14. Biotinylated recombinant human erythropoietins: Bioactivity and utility as receptor ligand

    SciTech Connect

    Wojchowski, D.M.; Caslake, L. )

    1989-08-15

    Recombinant human erythropoietin labeled covalently with biotin at sialic acid moieties has been prepared, and has been shown to possess high biological activity plus utility as a receptor ligand. Initially, the effects on biological activity of covalently attaching biotin to erythropoietin alternatively at carboxylate, amino, or sialic acid groups were compared. Biotinylation of erythropoietin at carboxylate groups using biotin-amidocaproyl hydrazide plus 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide led to substantial biological inactivation, although biotinylated molecules retained detectable activity when prepared at low stoichiometries. Biotinylation at amino groups using sulfosuccinimidyl 6-(biotinamido) hexanoate resulted in a high level of biological inactivation with little, if any, retention of biological activity, regardless of labeling stoichiometries. Biotinylation at sialic acid moieties using periodate and biotinamidocaproyl hydrazide proceeded efficiently (greater than 95% and 80% labeling efficiencies for human urinary and recombinant erythropoietin, respectively) and yielded stably biotinylated erythropoietin molecules possessing comparably high biological activity (ie, 45% of the activity of unmodified hormone). Utility of recombinant biotin-(sialyl)-erythropoietin (in combination with 125I-streptavidin) in the assay of cell surface receptors was demonstrated using two distinct murine erythroleukemia cell lines, Friend 745 and Rauscher Red 1. The densities and affinities of specific hormone binding sites were 116 +/- 4 sites, 3.3 +/- 0.4 nmol/L kd and 164 +/- 5 sites, 2.7 +/- 0.4 nmol/L kd, respectively. It is predicted that the present development of biotin-(sialyl)-erythropoietin as a chemically and biologically stable, bioactive ligand will assist in advancing an understanding of the regulated expression and physicochemistry of the human and murine erythropoietin receptors.

  15. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  16. Liver X receptor (LXR) regulates human adipocyte lipolysis.

    PubMed

    Stenson, Britta M; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M L; Mairal, Aline; Aström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W E; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  17. Human antibody-Fc receptor interactions illuminated by crystal structures.

    PubMed

    Woof, Jenny M; Burton, Dennis R

    2004-02-01

    Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies. PMID:15040582

  18. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  19. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  20. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    SciTech Connect

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.; Eisner, Martin E.; Kakkis, Jane L.; Chittenden, Lucy; Agustin, Jeffrey; Lizarde, Jessica; Mesa, Albert V.; Macedo, Jorge C.; Ravera, John; Tokita, Kenneth M.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3: ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.

  1. Evolutionary Diversification of the Vertebrate Transferrin Multi-gene Family

    PubMed Central

    Hughes, Austin L.; Friedman, Robert

    2014-01-01

    In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (1) S, the mammalian serotransferrins; (2) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (3) L, the mammalian lactoferrins; (4) O, the ovotransferrins of birds and reptiles; (4) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (5) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (1) in the common ancestor of the M subfamily; (2) in the common ancestor of the M-like subfamily; and (3) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed a unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense. PMID:25142446

  2. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  3. Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes

    PubMed Central

    Kawakami, Yuki; Matsuo, Kosuke; Murata, Minako; Yudoh, Kazuo; Nakamura, Hiroshi; Shimizu, Hiroyuki; Beppu, Moroe; Inaba, Yutaka; Saito, Tomoyuki; Kato, Tomohiro; Masuko, Kayo

    2012-01-01

    Background. Besides its involvement in the cardiovascular system, the renin-angiotensin-aldosterone (RAS) system has also been suggested to play an important role in inflammation. To explore the role of this system in cartilage damage in arthritis, we investigated the expression of angiotensin II receptors in chondrocytes. Methods. Articular cartilage was obtained from patients with osteoarthritis, rheumatoid arthritis, and traumatic fractures who were undergoing arthroplasty. Chondrocytes were isolated and cultured in vitro with or without interleukin (IL-1). The expression of angiotensin II receptor types 1 (AT1R) and 2 (AT2R) mRNA by the chondrocytes was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). AT1R expression in cartilage tissue was analyzed using immunohistochemistry. The effect of IL-1 on AT1R/AT2R expression in the chondrocytes was analyzed by quantitative PCR and flow cytometry. Results. Chondrocytes from all patient types expressed AT1R/AT2R mRNA, though considerable variation was found between samples. Immunohistochemical analysis confirmed AT1R expression at the protein level. Stimulation with IL-1 enhanced the expression of AT1R/AT2R mRNA in OA and RA chondrocytes. Conclusions. Human articular chondrocytes, at least partially, express angiotensin II receptors, and IL-1 stimulation induced AT1R/AT2R mRNA expression significantly. PMID:23346400

  4. TRANSFERRIN: VARIATIONS IN BLOOD SERUM OF RED HOWLER MONKEYS.

    PubMed

    SCHOEN, M A; ARENDS, T

    1964-11-01

    Blood serum samples from 33 red howler monkeys (Alouatta seniculus) were examined. Three different phenotypes were found and denominated A, B, and C. Four serums could not be classified because their transferrin apparently did not bind iron-59, possibly owing to saturation. A difference was observed in the electrophoretic migration and pattern of the transferrins in these monkeys compared with those of other primates. PMID:14197564

  5. Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT).

    PubMed

    Helander, Anders; Wielders, Jos; Anton, Raymond; Arndt, Torsten; Bianchi, Vincenza; Deenmamode, Jean; Jeppsson, Jan-Olof; Whitfield, John B; Weykamp, Cas; Schellenberg, François

    2016-08-01

    Carbohydrate-deficient transferrin (CDT) is a glycoform profile of serum transferrin that increases in response to sustained high alcohol intake and over the last decades has become an important alcohol biomarker with clinical and forensic applications. However, the wide range of CDT measurement procedures has resulted in lack of uniform results and reference limits, and hampered comparison of results. In 2005, the IFCC therefore founded a special working group (WG) aiming for standardisation of CDT measurement. This review summarises the history of CDT and the actions taken by the WG-CDT. Initial steps included the definition of the measurand (serum disialotransferrin to total transferrin fraction expressed in %), and the determination of a well-defined anion-exchange HPLC procedure as the candidate reference measurement procedure (cRMP). Subsequent achievements were the establishment of a network of reference laboratories to perform the cRMP, setting a reference interval, and development of a reference material based on human serum for which the laboratory network assign values. Using a set of reference materials for calibration allowed for achieving equivalence of results of all present CDT measurement procedures. The final steps of the WG-CDT have been a full validation of the cRMP to make it an IFCC approved RMP, and providing guidance for international standardisation of all CDT measurement procedures. PMID:27221205

  6. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation.

    PubMed Central

    Britigan, B E; Edeker, B L

    1991-01-01

    In vivo most extracellular iron is bound to transferrin or lactoferrin in such a way as to be unable to catalyze the formation of hydroxyl radical from superoxide (.O2-) and hydrogen peroxide (H2O2). At sites of Pseudomonas aeruginosa infection bacterial and neutrophil products could possibly modify transferrin and/or lactoferrin forming catalytic iron complexes. To examine this possibility, diferrictransferrin and diferriclactoferrin which had been incubated with pseudomonas elastase, pseudomonas alkaline protease, human neutrophil elastase, trypsin, or the myeloperoxidase product HOCl were added to a hypoxanthine/xanthine oxidase .O2-/H2O2 generating system. Hydroxyl radical formation was only detected with pseudomonas elastase treated diferrictransferrin and, to a much lesser extent, diferriclactoferrin. This effect was enhanced by the combination of pseudomonas elastase with other proteases, most prominently neutrophil elastase. Addition of pseudomonas elastase-treated diferrictransferrin to stimulated neutrophils also resulted in hydroxyl radical generation. Incubation of pseudomonas elastase with transferrin which had been selectively iron loaded at either the NH2- or COOH-terminal binding site yielded iron chelates with similar efficacy for hydroxyl radical catalysis. Pseudomonas elastase and HOCl treatment also decreased the ability of apotransferrin to inhibit hydroxyl radical formation by a Fe-NTA supplemented hypoxanthine/xanthine oxidase system. However, apotransferrin could be protected from the effects of HOCl if bicarbonate anion was present during the incubation. Apolactoferrin inhibition of hydroxyl radical generation was unaffected by any of the four proteases or HOCl. Alteration of transferrin by enzymes and oxidants present at sites of pseudomonas and other bacterial infections may increase the potential for local hydroxyl radical generation thereby contributing to tissue injury. Images PMID:1655825

  7. Putative melatonin receptors in a human biological clock

    SciTech Connect

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G.

    1988-10-07

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.

  8. Obtaining of pure transferrins D, M and R from equine serum and determination of transferrin level in relation to phenotype.

    PubMed

    Didkowski, S; Kaminski, M; Kerjan, P; Tomaszewska-Guszkiewicz, K; Zurkowski, M

    1984-01-01

    By the method of precipitation with Rivanol (2-ethoxy-6,9-diaminoacridine lactate) and ammonium sulphate followed by chromatography on DEAE cellulose three genetic variants of transferrin were purified from equine serum: D, M and R. Their molecular mass determined in this study was 80 000, and it was identical for all three variants, which differed slightly in their amino acid composition. The protein level was determined in the serum of 535 two-year-old thoroughbred English horses by the method of rocket immunoelectrophoresis using antibodies obtained against three transferrins. The individual variability of the protein level in horses of the same phenotype was fairly high (variability index 9-15%). No differences were observed in the transferrin level related to sex. It was found that the presence of D, F and H alleles was connected with a higher serum transferrin level, while O and R alleles were connected with a lower level. PMID:6545995

  9. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    PubMed Central

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa. PMID:26483423

  10. Prostacyclin receptor/thromboxane receptor interactions and cellular responses in human atherothrombotic disease.

    PubMed

    Gleim, Scott; Kasza, Zsolt; Martin, Kathleen; Hwa, John

    2009-05-01

    Twenty-five years have passed since Vane and colleagues proposed a prostacyclin and thromboxane balance as critical to cardiovascular homeostasis. Prostacyclin prevents platelet aggregation and promotes vasodilatation, opposing the effects of thromboxane. Possible compensation by redundant functions, such as nitric oxide, long prevented appreciation of this balance. Effective use of low-dose aspirin in the secondary prevention of atherothrombosis suggested a clinical importance for the balance. However, it was not until the cyclooxygenase-2 inhibitor rofecoxib was withdrawn because of increased cardiovascular events that this critical balance was confirmed in humans. Moreover, clinical observations are supported by elegant animal receptor knockout experiments and subsequent human genetic variant studies. Combined, these findings provide valuable insight into the roles of these prostanoids in the development of atherothrombosis, emphasizing the need to reevaluate the use of selective prostacyclin- and thromboxane-based therapies in cardiovascular disease. PMID:19361355

  11. Insensitivity of Human Prolactin Receptors to Nonhuman Prolactins: Relevance for Experimental Modeling of Prolactin Receptor-Expressing Human Cells

    PubMed Central

    Utama, Fransiscus E.; Tran, Thai H.; Ryder, Amy; LeBaron, Matthew J.; Parlow, Albert F.; Rui, Hallgeir

    2009-01-01

    Prolactin (PRL) receptors are expressed in a broad range of human cell types and in a majority of human breast and prostate cancers. Experimentally, normal and malignant human cells are typically cultured in vitro in media containing bovine PRL (bPRL) from fetal bovine serum or as xenotransplants in vivo in the presence of murine PRL (mPRL). The biological efficacy of bPRL toward hPRL receptors (hPRLR) is controversial, and hPRLR are insensitive to mPRL, but the mechanism is not known. To clarify limitations of current in vitro and in vivo experimental model systems for studies of hPRLR-expressing cells, we tested human and relevant subprimate prolactins in multiple hPRLR bioassays. bPRL and ovine PRL were 10-fold less potent hPRLR agonists than hPRL, although maximal responses at high ligand concentrations (efficacies) equaled that of hPRL. mPRL and rat PRL had greater than 50-fold lower potencies toward hPRLR than hPRL and had 50% reduced efficacies. In fact, mPRL and rat PRL were less effective hPRLR agonists than murine GH. Unexpectedly, mPRL was an effective competitive inhibitor of hPRL binding to hPRLR with an inhibitory constant of 1.3 nm and showed partial antagonist activity, suggesting reduced site-2 binding. Collectively, low bioactivities of bPRL and mPRL toward hPRLR suggest that existing laboratory cancer cell lines grown in 10% bovine serum-supplemented media or in mice are selected for growth under lactogen-depleted conditions. The biology and drug responsiveness of existing human cell lines may therefore not be representative of clinical cancers that are sensitive to circulating PRL. PMID:19022890

  12. Expression of histamine H4 receptor in human epidermal tissues and attenuation of experimental pruritus using H4 receptor antagonist.

    PubMed

    Yamaura, Katsunori; Oda, Manabu; Suwa, Eriko; Suzuki, Masahiko; Sato, Hiromi; Ueno, Koichi

    2009-10-01

    Many medicines exist which can cause pruritus (itching) as "serious adverse events." Many severe pruritic conditions respond poorly to histamine H1 receptor antagonists; there is no generally accepted antipruritic treatment. Recently described histamine H4 receptors are expressed in haematopoietic cells and have been linked to the pathology of allergy and asthma. We previously reported their expression in human dermal fibroblasts; in this study we have investigated H4 receptor expression in human epidermal tissue and found it to be greater in keratinocytes in the epidermal upper layer than in the lower layer. We have also investigated the effect of histamine H4 receptor antagonists on histamine H1 receptor antagonist-resistant pruritus using a mouse model. Scratching behavior was induced by histamine (300 nmol) or substance P (100 nmol) injected intradermally into the rostral part of the back of each mouse. Fexofenadine, a histamine H1 receptor antagonist, reduced scratching induced by histamine but not by substance P, whereas JNJ7777120, a histamine H4 receptor antagonist, significantly reduced both histamine- and substance P-induced scratching. These results suggest that H4 receptor antagonists may be useful for treatment of H1 receptor antagonist-resistant pruritus. PMID:19652466

  13. A ruthenium(ii) based photosensitizer and transferrin complexes enhance photo-physical properties, cell uptake, and photodynamic therapy safety and efficacy.

    PubMed

    Kaspler, Pavel; Lazic, Savo; Forward, Sarah; Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2016-04-01

    Metal-based photosensitizers are of interest as their absorption and chemical binding properties can be modified via the use of different ligands. Ru(2+) based photosensitizers are known to be effective photodynamic therapy (PDT) agents against bacteria, whereas use for oncological indications in vivo has not been demonstrated with the same level of evidence. We present data showing that premixing the Ru(2+)-complex TLD1433 with transferrin increases the molar extinction coefficient, including longer activation wavelengths, reduces photobleaching rates, and reduces the toxicity of the complex improving overall PDT efficacy. As the transferrin receptor is upregulated in most malignancies, premixing the Ru(2+) complex with transferrin converts the active pharmaceutical ingredient TLD1433 into a drug of potentially considerable clinical utility. PMID:26947517

  14. SIDEROPHILIN METAL COORDINATION. 1. COMPLEXATION OF THORIUM BY TRANSFERRIN: STRUCTURE-FUNCTION IMPLICATIONS

    SciTech Connect

    Harris, Wesley R.; Carrano, Carl J.; Pecoraro, Vincent L.; Raymond, Kenneth N.

    1980-08-01

    As part of a program to develop actinide-specific sequestering agents, the coordination of actinide ions by human transferrin is being investigated. Therapeutically useful synthetic ligands must be able to compete with this iron-transport protein for the bound actinide ion. As in the Fe(III) complex of the native protein, two Th(IV) ions bind at pH 7. This coordination has been monitored at several pH values by using difference ultraviolet spectroscopy. The corresponding coordination of a phenolic ligand, ethylene-bis-(o-hydroxyphenylglycine) [EHPG], has been used to determine {Delta}{epsilon} for a tyrosyl group coordinated to Th(IV), in contrast to the common practice of assuming the {Delta}{epsilon} for protons and all metal ions is the same. This in turn is used to determine, from the observed {Delta}{epsilon} upon protein coordination, the number of transferrin tyrosine residues that coordinate. Maxima in the Th(IV) + EHPG difference UV spectra occur at 292 and 238 nm, with corresponding {Delta}{epsilon} values per phenolic group of 2330 and 8680 cm{sup -1} M{sup -1}, respectively. At pH 7.2, the Th(IV) transferrin spectrum is closely similar to the TH(IV) EHPG spectrum, with maxima at 292 and 240 nm. The {Delta}{epsilon} at 240 nm reaches a maximum of 24700 cm{sup -1} M{sup -1}, which corresponds to coordination of three tyrosine residues in the dithorium-transferrin complex; the stronger binding site (“A” or C-terminal) coordinates via two tyrosines and the weaker (“B” or N-terminal) via one. There is evidence suggesting that the N-terminal site is slightly smaller than the C-terminal site; while Th(IV) easily fits into the C-terminal site, the large ionic radius of Th(IV) makes this ion of borderline size to fit into the N-terminal site. This may be an important biological difference between Th(IV) and the slightly smaller Pu(IV), which should easily fit into both sites. At pH values below 7, the complexation of Th(IV) by transferrin decreases

  15. Endothelin B receptors on human endothelial and smooth-muscle cells show equivalent binding pharmacology.

    PubMed

    Flynn, M A; Haleen, S J; Welch, K M; Cheng, X M; Reynolds, E E

    1998-07-01

    We have described the pharmacologic profiles of endothelin B receptors in human endothelial cells and vascular and nonvascular smooth-muscle cells. First, by amplifying endothelin B receptor numbers through the use of phosphoramidon and intact cell-binding techniques, we demonstrated the presence of these receptors in human umbilical vein endothelial cells (100% endothelin B receptors), human aortic smooth-muscle cells (22% endothelin B, 78% endothelin A receptors), and human bronchial smooth-muscle cells (55% endothelin B, 45% endothelin A receptors) by using [125I]-endothelin-1 radioligand binding. The typical binding profiles of the endothelin B receptors were established through competition binding curve analysis with endothelin-1, endothelin-3, sarafotoxin 6c, and the endothelin A receptor-selective antagonist BQ-123. In the presence of BQ-123, a diverse group of antagonists, including PD 142893, BQ-788, SB 209670, and Ro 47-0203, were used to probe for binding differences indicative of multiple endothelin B-receptor subtypes. The results indicate a rank order of potency for the antagonists of BQ-788 > SB 209670 > PD 142893 > Ro 47-0203 for each cell line, and that between any of these human cell lines, measurements of [125I]-endothelin-1-binding antagonism for each of the four test compounds differed by less than twofold. Although this study cannot discount the possibility of more than one endothelin B-receptor subtype in humans, it does indicate that these tissues express receptors that show equivalent binding pharmacology. PMID:9676729

  16. Development of a Quantitative PCR Assay for Detection of Human Insulin-Like Growth Factor Receptor and Insulin Receptor Isoforms.

    PubMed

    Flannery, Clare A; Rowzee, Anne M; Choe, Gina H; Saleh, Farrah L; Radford, Caitlin C; Taylor, Hugh S; Wood, Teresa L

    2016-04-01

    The biological activity of insulin and the insulin-like growth factor (IGF) ligands, IGF-I and IGF-II, is based in part on the relative abundance and distribution of their target receptors: the insulin receptor (IR) splice variants A (IR-A) and B (IR-B) and IGF 1 receptor (IGF-1R). However, the relative quantity of all three receptors in human tissues has never been measured together on the same scale. Due to the high homology between insulin receptor (IR)-A and IR-B proteins and lack of antibodies that discern the two IR splice variants, their mRNA sequence is the most reliable means of distinguishing between the receptors. Hence, highly specific primers for IR-A, IR-B, and IGF-1R mRNA were designed to accurately detect all three receptors by quantitative RT-PCR and enable direct quantification of relative receptor expression levels. A standard concentration curve of cDNA from each receptor was performed. Assay specificity was tested using competition assays and postamplification analysis by gel electrophoresis and cloning. Forward and reverse primer concentrations were optimized to ensure equal efficiencies across primer pairs. This assay enables a specific molecular signature of IGF/insulin signaling receptors to be assayed in different tissues, cell types, or cancers. PMID:26862994

  17. Inactivation of the human vitamin D receptor by caspase-3.

    PubMed

    Malloy, Peter J; Feldman, David

    2009-02-01

    Calcitriol actions are mediated by the vitamin D receptor (VDR), a nuclear transcription factor of the steroid-retinoid-thyroid nuclear receptor gene superfamily. Calcitriol inhibits the growth of many cells including cancer cells by inducing cell cycle arrest. In some cancer cell lines, calcitriol also induces apoptosis. In the LNCaP prostate cancer cell line, induction of apoptosis and caspase-3/7 activities by staurosporine (STS) abolished [(3)H]1,25-dihydroxy vitamin D(3) binding and VDR protein, suggesting that the VDR may be targeted for inactivation by caspases during apoptosis. A potential caspase-3 site (D(195)MMD(198)S) was identified in the human VDR ligand-binding domain. Mutations D195A, D198A, and S199A were generated in the putative capase-3 cleavage site. In transfected COS-7 cells, STS treatment resulted in the cleavage of the wild-type (WT) VDR and S199A mutant VDR but not the D195A or D198A mutants. In in vitro assays, the WT VDR and S199A mutant VDR were cleaved by caspase-3, although the D195A and D198A mutants were resistant to caspase-3. In vitro, the WT VDR was also cleaved by caspase-6 and caspase-7 and in extracts of STS-treated LNCaP cells. In STS-treated LNCaP cells and human skin fibroblasts, the proteasome inhibitor MG-132 protected the VDR caspase cleavage fragment from further degradation by the 26S proteasome. The rat VDR that does not contain the caspase-3 cleavage site was not cleaved in STS-treated COS-7 cells. In conclusion, our results demonstrate that the human VDR is a target of caspase-3 and suggest that activation of caspase-3 may limit VDR activity. PMID:18832097

  18. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  19. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors.

    PubMed

    Jäntti, Maria H; Mandrika, Ilona; Kukkonen, Jyrki P

    2014-03-01

    Human OX1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX1, OX2 and CB1 receptors, C-terminally fused with either Renilla luciferase or GFP(2) green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP(2) to CB1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX1-OX2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors. PMID:24530395

  20. Functional characterization of the in vitro folded human y(1) receptor in lipid environment.

    PubMed

    Schimmer, S; Lindner, D; Schmidt, P; Beck-Sickinger, A G; Huster, D; Rudolph, R

    2010-05-01

    We describe the recombinant production of the human Y(1) receptor from inclusion bodies of E. coli cultures. The in vitro refolding was carried out in the presence of lipids from bovine brain extracts. Y(1) receptors in brain lipids compete for cellular receptors in competitive binding experiments. PMID:19689227

  1. The protective role of transferrin in Müller glial cells after iron-induced toxicity

    PubMed Central

    Fontaine, Isabelle; Jonet, Laurent; Guillou, Florian; Behar-Cohen, Francine; Courtois, Yves; Jeanny, Jean-Claude

    2008-01-01

    Purpose Transferrin (Tf) expression is enhanced by aging and inflammation in humans. We investigated the role of transferrin in glial protection. Methods We generated transgenic mice (Tg) carrying the complete human transferrin gene on a C57Bl/6J genetic background. We studied human (hTf) and mouse (mTf) transferrin localization in Tg and wild-type (WT) C57Bl/6J mice using immunochemistry with specific antibodies. Müller glial (MG) cells were cultured from explants and characterized using cellular retinaldehyde binding protein (CRALBP) and vimentin antibodies. They were further subcultured for study. We incubated cells with FeCl3-nitrilotriacetate to test for the iron-induced stress response; viability was determined by direct counting and measurement of lactate dehydrogenase (LDH) activity. Tf expression was determined by reverse transcriptase-quantitative PCR with human- or mouse-specific probes. hTf and mTf in the medium were assayed by ELISA or radioimmunoassay (RIA), respectively. Results mTf was mainly localized in retinal pigment epithelium and ganglion cell layers in retina sections of both mouse lines. hTf was abundant in MG cells. The distribution of mTf and hTf mRNA was consistent with these findings. mTf and hTf were secreted into the medium of MG cell primary cultures. Cells from Tg mice secreted hTf at a particularly high level. However, both WT and Tg cell cultures lose their ability to secrete Tf after a few passages. Tg MG cells secreting hTf were more resistant to iron-induced stress toxicity than those no longer secreted hTf. Similarly, exogenous human apo-Tf, but not human holo-Tf, conferred resistance to iron-induced stress on MG cells from WT mice. Conclusions hTf localization in MG cells from Tg mice was reminiscent of that reported for aged human retina and age-related macular degeneration, both conditions associated with iron deposition. The role of hTf in protection against toxicity in Tg MG cells probably involves an adaptive mechanism

  2. Human natural killer cells: origin, receptors, function, and clinical applications.

    PubMed

    Moretta, Lorenzo; Montaldo, Elisa; Vacca, Paola; Del Zotto, Genny; Moretta, Francesca; Merli, Pietro; Locatelli, Franco; Mingari, Maria Cristina

    2014-01-01

    Natural killer (NK) cells are important effectors playing a relevant role in innate immunity, primarily in tumor surveillance and in defenses against viruses. Human NK cells recognize HLA class I molecules through surface receptors (KIR and NKG2A) that inhibit NK cell function and kill target cells that have lost (or underexpress) HLA class I molecules as it occurs in tumors or virus-infected cells. NK cell activation is mediated by an array of activating receptors and co-receptors that recognize ligands expressed primarily on tumors or virus-infected cells. In vivo anti-tumor NK cell activity may be suppressed by tumor or tumor-associated cells. Alloreactive NK cells (i.e. those that are not inhibited by the HLA class I alleles of the patient) derived from HSC of haploidentical donors play a major role in the cure of high-risk leukemia, by killing leukemia blasts and patient's DC, thus preventing tumor relapses and graft-versus-host disease. The expression of the HLA-C2-specific activating KIR2DS1 may also contribute to NK alloreactivity in patients expressing C2 alleles. A clear correlation has been proven between the size of the alloreactive NK cell population and the clinical outcome. Recently, haplo-HSCT has been further improved with the direct infusion, together with HSC, of donor-derived, mature alloreactive NK cells and TCRγδ(+) T cells - both contributing to a prompt anti-leukemia effect together with an efficient defense against pathogens during the 6- to 8-week interval required for the generation of alloreactive NK cells from HSC. PMID:25323661

  3. Thermostabilization of the Human Endothelin Type B Receptor.

    PubMed

    Okuta, Akiko; Tani, Kazutoshi; Nishimura, Shoko; Fujiyoshi, Yoshinori; Doi, Tomoko

    2016-06-01

    The peptide hormone endothelin, produced by the vascular endothelium, is involved in several physiological functions, including maintenance of vascular tone and humoral homeostasis. Endothelin transmits signals through the endothelin receptor, a G-protein-coupled receptor. Structural studies of the endothelin type B receptor (ETBR) have been unsuccessful due to its structural flexibility and instability in detergent-solubilized solution. To overcome these problems, we explored thermostabilization of human ETBR by establishing an ETBR expression system in Escherichia coli, followed by systematic alanine scanning mutagenesis. Among 297 point mutations, 11 thermostabilizing residues were selected and further mutated to other amino acids. The thermostability indices of these residues, represented by the ratios of endothelin-1 (ET-1) binding activities with or without heat treatment at 27°C for 30min in a ligand-free form, were compared. The ligand affinity and apparent melting temperature (Tm) of the five most thermostable mutants, R124Y, D154A, K270A, S342A, and I381A, were then examined. The apparent Tm of three single mutants, R124Y, D154A, and K270A, was approximately 7°C higher than that of the wild type. The apparent Tm value of a combination of the five residues, named the Y5 ETBR mutant, was 17°C higher than that of the wild type. The Y5 ETBR mutant exhibited an affinity for ET-1 and activated Gq similar to the wild type. Further investigation of the pharmacological properties affected by combinatorial mutations of ET-1, ET-3, TxET-1, and K8794 suggested that Y5 ETBR is highly suitable for representing a ligand-free form of ETBR and is potentially applicable for studying an ET-1-bound form. PMID:27038509

  4. Structural Determinants Underlying Constitutive Dimerization of Unoccupied Human Follitropin Receptors

    PubMed Central

    Guan, Rongbin; Wu, Xueqing; Feng, Xiuyan; Zhang, Meilin; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr110 in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q. Fan and W. Hendrickson, Nature 433:269–277, 2005). Expressed individually, the serpentine region and a membrane-anchored form of the hFSHR ECD each exhibited homodimerization, suggesting that both domains contribute to dimerization of the full-length receptor. However, even in the context of only the membrane-anchored ECD, mutation of Tyr110 to alanine did not inhibit dimerization. The full-length hFSHR and the membrane-anchored ECD were then each engineered to introduce a consensus site for N-linked glycosylation at residue 110. Despite experimental validation of the presence of carbohydrate on residue 110, we failed to observe disruption of dimerization of either the full-length hFSHR or membrane-anchored ECD containing the inserted glycan wedge. Taken altogether, our data suggest that both the serpentine region and the ECD contribute to hFSHR dimerization and that the dimerization interface of the unoccupied hFSHR does not involve Tyr110 of the ECD. PMID:19800402

  5. Functional associations among G protein-coupled neurotransmitter receptors in the human brain

    PubMed Central

    2014-01-01

    Background The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual receptors. Experimental studies have investigated some receptor interactions, but currently little information is available about transcriptional associations among receptors at the whole-brain level. Results A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A large number of highly significant correlations were found, many of which have not been investigated in hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities, within each of which receptor mRNA levels were strongly cross-correlated. Conclusions The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However, the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar processes. Second, receptors appear to form two large functional communities, which might be differentially affected in brain disorders. PMID:24438157

  6. Facile preparation of hyaluronic acid and transferrin co-modified Fe3O4 nanoparticles with inherent biocompatibility for dual-targeting magnetic resonance imaging of tumors in vivo.

    PubMed

    Pan, Jinbin; Sun, Shao-Kai; Wang, Yaqiong; Fu, Yan-Yan; Zhang, Xuejun; Zhang, Yi; Yu, Chunshui

    2015-12-14

    Clinical diagnosis of malignant tumors using nanoprobes needs severe improvements in the aspects of sensitivity and biocompatibility. Integrating a dual-targeting strategy with the selection of human-inherent elements and molecules as raw materials shows great potential in the development of a biosafe and sensitive nanoplatform. To carry out the proposed design, we constructed a biocompatible, dual-targeting MR imaging nanoprobe, based on Fe3O4 nanoparticles (NPs) co-modified with inherently innoxious hyaluronic acid (HA) and transferrin (Tf). HA was used as both a template and a targeting molecule to form Fe3O4@HA NPs through a one-step co-precipitation method, which were then further modified with Tf to obtain the dual-targeting Fe3O4@HA@Tf NPs at room temperature. The excellent biocompatibility of the nanoprobe was demonstrated via toxicity assays in vitro and in vivo. The desirable dual-targeting ability towards tumor cells was confirmed by a cellular uptake test (Hela cells, overexpressing both CD44 and transferrin receptors), and the developed nanoprobe was successfully applied in tumor-targeted MR imaging in vivo. In summation, we developed a dual-targeting Fe3O4 nanoprobe, following a facile procedure at room temperature. The nanoprobe showed a high targeting ability towards tumor cells and excellent biocompatibility, which showed its great potential to be applied in the clinical diagnosis of tumors. PMID:26507890

  7. Sulfonylurea Receptor 1 Expression in Human Cerebral Infarcts

    PubMed Central

    Mehta, Rupal I.; Ivanova, Svetlana; Tosun, Cigdem; Castellani, Rudy J.; Gerzanich, Volodymyr

    2013-01-01

    Abstract In animal models of stroke, sulfonylurea receptor 1 (Sur1), a member of the adenosine triphosphate binding cassette transporter gene family, is transcriptionally upregulated in neural and vascular cells in which it plays a leading role in edema formation and necrotic cell death. To date, expression of Sur1 in the brains of humans with cerebral infarcts has not been systematically evaluated. We examined Sur1 expression in postmortem specimens obtained from 13 patients within the first 31 days after focal infarcts, 5 patients with lacunar infarcts, and 6 normal control brains using immunohistochemistry. Elevated immunoreactivity for Sur1 was detected in all cases of focal infarcts, with 3 distinct temporal patterns of expression: 1) neurons and endothelium showed the greatest elevation during the first week, after which levels declined; 2) astrocytes and microglia/macrophages showed progressive increases during the first 31 days; and 3) neutrophils near the infarct showed prominent immunoreactivity that did not change over time. Upregulation of Sur1 was corroborated using in situ hybridization for Abcc8 mRNA. Sulfonylurea receptor 1 immunoreactivity in lacunar infarcts was less prominent and more sporadic than in nonlacunar infarcts. In conjunction with previous studies, these data suggest that Sur1 may be a promising treatment target in patients with acute cerebral infarction. PMID:23965746

  8. Functions of NOD-Like Receptors in Human Diseases

    PubMed Central

    Zhong, Yifei; Kinio, Anna; Saleh, Maya

    2013-01-01

    Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that perform critical functions in surveying the intracellular environment for the presence of infection, noxious substances, and metabolic perturbations. Sensing of these danger signals by NLRs leads to their oligomerization into large macromolecular scaffolds and the rapid deployment of effector signaling cascades to restore homeostasis. While some NLRs operate by recruiting and activating inflammatory caspases into inflammasomes, others trigger inflammation via alternative routes including the nuclear factor-κB, mitogen-activated protein kinase, and regulatory factor pathways. The critical role of NLRs in development and physiology is demonstrated by their clear implications in human diseases. Mutations in the genes encoding NLRP3 or NLRP12 lead to hereditary periodic fever syndromes, while mutations in CARD15 that encodes NOD2 are linked to Crohn’s disease or Blau’s syndrome. Genome-wide association studies (GWASs) have identified a number of risk alleles encompassing NLR genes in a host of diseases including allergic rhinitis, multiple sclerosis, inflammatory bowel disease, asthma, multi-bacillary leprosy, vitiligo, early-onset menopause, and bone density loss in elderly women. Animal models have allowed the characterization of underlying effector mechanisms in a number of cases. In this review, we highlight the functions of NLRs in health and disease and discuss how the characterization of their molecular mechanisms provides new insights into therapeutic strategies for the management of inflammatory pathologies. PMID:24137163

  9. Sulfonylurea receptor 1 expression in human cerebral infarcts.

    PubMed

    Mehta, Rupal I; Ivanova, Svetlana; Tosun, Cigdem; Castellani, Rudy J; Gerzanich, Volodymyr; Simard, J Marc

    2013-09-01

    In animal models of stroke, sulfonylurea receptor 1 (Sur1), a member of the adenosine triphosphate binding cassette transporter gene family, is transcriptionally upregulated in neural and vascular cells in which it plays a leading role in edema formation and necrotic cell death. To date, expression of Sur1 in the brains of humans with cerebral infarcts has not been systematically evaluated. We examined Sur1 expression in postmortem specimens obtained from 13 patients within the first 31 days after focal infarcts, 5 patients with lacunar infarcts, and 6 normal control brains using immunohistochemistry. Elevated immunoreactivity for Sur1 was detected in all cases of focal infarcts, with 3 distinct temporal patterns of expression: 1) neurons and endothelium showed the greatest elevation during the first week, after which levels declined; 2) astrocytes and microglia/macrophages showed progressive increases during the first 31 days; and 3) neutrophils near the infarct showed prominent immunoreactivity that did not change over time. Upregulation of Sur1 was corroborated using in situ hybridization for Abcc8 mRNA. Sulfonylurea receptor 1 immunoreactivity in lacunar infarcts was less prominent and more sporadic than in nonlacunar infarcts. In conjunction with previous studies, these data suggest that Sur1 may be a promising treatment target in patients with acute cerebral infarction. PMID:23965746

  10. Internalization and molecular interactions of human CD21 receptor.

    PubMed

    Tessier, Jacques; Cuvillier, Armelle; Glaudet, Florence; Khamlichi, Ahmed Amine

    2007-03-01

    The human CD21 is a receptor for cleavage fragments of the third complement component and for Epstein-Barr virus. Previous mutational studies showed that the cytoplasmic domain of CD21 is absolutely required for internalization of either ligand. With the exception of CD19, CD81, Leu-13 and CD35 that can form a complex with CD21 at the cell surface, no other partner that interacts with the hCD21 transmembrane or the cytoplasmic domain was identified. We investigated the internalization capacity of hCD21 tail mutants in the absence of B cell receptor cross-linking by using stable murine B cell transfectants. We provide evidence that at least two internalization motifs are activated when hCD21 binds a monoclonal antibody. In order to identify the cellular proteins that interact with the hCD21 transmembrane and cytoplasmic domains, we combined a mutational mapping with a two-hybrid system approach both in yeast and in mammalian cells. We identified four novel partners that are involved in intracellular trafficking, sorting or cytoskeleton remodeling and we mapped the hCD21 transmembrane and tail subdomains they interact with. We discuss the potential physiological significance of these findings in the context of hCD21 internalization and intracellular trafficking. PMID:17118449

  11. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes.

    PubMed Central

    Santulli, R J; Derian, C K; Darrow, A L; Tomko, K A; Eckardt, A J; Seiberg, M; Scarborough, R M; Andrade-Gordon, P

    1995-01-01

    Thrombin receptor activation was explored in human epidermal keratinocytes and human dermal fibroblasts, cells that are actively involved in skin tissue repair. The effects of thrombin, trypsin, and the receptor agonist peptides SFLLRN and TFRIFD were assessed in inositolphospholipid hydrolysis and calcium mobilization studies. Thrombin and SFLLRN stimulated fibroblasts in both assays to a similar extent, whereas TFRIFD was less potent. Trypsin demonstrated weak efficacy in these assays in comparison with thrombin. Results in fibroblasts were consistent with human platelet thrombin receptor activation. Keratinocytes, however, exhibited a distinct profile, with trypsin being a far better activator of inositolphospholipid hydrolysis and calcium mobilization than thrombin. Furthermore, SFLLRN was more efficacious than thrombin, whereas no response was observed with TFRIFD. Since our data indicated that keratinocytes possess a trypsin-sensitive receptor, we addressed the possibility that these cells express the human homologue of the newly described murine protease-activated receptor, PAR-2 [Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. (1994) Proc. Natl. Acad. Sci. USA 91, 9208-9212]. PAR-2 is activated by nanomolar concentrations of trypsin and possesses the tethered ligand sequence SLIGRL. SLIGRL was found to be equipotent with SFLLRN in activating keratinocyte inositolphospholipid hydrolysis and calcium mobilization. Desensitization studies indicated that SFLLRN, SLIGRL, and trypsin activate a common receptor, PAR-2. Northern blot analyses detected a transcript of PAR-2 in total RNA from keratinocytes but not fibroblasts. Levels of thrombin receptor message were equivalent in the two cell types. Our results indicate that human keratinocytes possess PAR-2, suggesting a potential role for this receptor in tissue repair and/or skin-related disorders. Images Fig. 6 PMID:7568091

  12. IL-6 functions in cynomolgus monkeys blocked by a humanized antibody to human IL-6 receptor.

    PubMed

    Imazeki, I; Saito, H; Hasegawa, M; Shinkura, H; Kishimoto, T; Ohsugi, Y

    1998-07-01

    A humanized antibody to the human interleukin-6 receptor (IL-6R), hPM-1, blocked the interleukin-6 (IL-6) functions in normal cynomolgus monkey lymphocytes in vitro. The binding activity of hPM-1 to non-human primate IL-6R was examined in peripheral blood lymphocytes by flow cytometry. PM-1 recognized the IL-6R on T lymphocytes of cynomolgus and rhesus monkeys, but did not on those of marmosets. The homology between human IL-6R and its cynomolgus monkey counterpart was 97.3% in the extracellular domain of the amino acid sequence, as determined by DNA sequencing of the PCR product from peripheral blood mononuclear cells. PM-1 inhibited two functional parameters in vitro in cynomolgus monkeys: (1), T-cell proliferation stimulated by phytohemaglutinin and human IL-6; (2), Immunoglobulin G-production evoked by Staphylococcus aureus Cowan-1- and human IL-6-stimulated B lymphocytes. These data show that hPM-1 binds to and functionally blocks the cynomolgus monkey IL-6 receptors. PMID:9756130

  13. A combined computational and structural model of the full-length human prolactin receptor

    PubMed Central

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg. PMID:27174498

  14. A combined computational and structural model of the full-length human prolactin receptor

    NASA Astrophysics Data System (ADS)

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-05-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.

  15. Identification of microsatellite markers linked to the human leptin receptor gene on chromosome 1

    SciTech Connect

    Winick, J.D.; Friedman, J.M.; Stoffel, M.

    1996-08-15

    This report describes the localization of the human leptin receptor gene to human chromosome 1 using polymerase chain reaction of somatic cell hybrids. Leptin is a secreted protein important in the regulation of body weight. 16 refs., 1 fig.

  16. Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation

    PubMed Central

    Lu, Ying; Wang, Zhao-hui; Li, Tonglei; McNally, Helen; Park, Kinam; Sturek, Michael

    2014-01-01

    The aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy. PMID:24378441

  17. Manganese Transport via the Transferrin Mechanism

    PubMed Central

    Gunter, Thomas E.; Gerstner, Brent; Gunter, Karlene K.; Malecki, Jon; Gelein, Robert; Valentine, William M.; Aschner, Michael; Yule, David I.

    2013-01-01

    Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn2+ is transported into cells via a number of mechanisms, while Mn3+ is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn2+, Mn3+ and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity. While uptake of Fe3+ via the Tf mechanism is well understood, uptake of Mn3+ via this mechanism has not been systematically studied. The stability of the Mn3+Tf complex allowed us to form and purify this complex and label it with a fluorescent (Alexa green) tag. Using purified and labeled Mn3+Tf and biophysical tools, we have developed a novel approach to study Mn3+Tf transport independently of other Mn transport mechanisms. This approach was used to compare the uptake of Mn3+Tf into neuronal cell lines with published descriptions of Fe3+ uptake via the Tf mechanism, and to obtain quantitative information on Mn uptake via the Tf mechanism. Results confirm that in these cell lines significant Mn3+ is transported by the Tf mechanism similarly to Fe3+Tf transport; although Mn3+Tf transport is markedly slower than other Mn transport mechanisms. This novel approach may prove useful for studying Mn toxicity in other systems and cell types. PMID:23146871

  18. Moesin Functions as a Lipopolysaccharide Receptor on Human Monocytes

    PubMed Central

    Tohme, Ziad N.; Amar, Salomon; Van Dyke, Thomas E.

    1999-01-01

    Bacterial endotoxin (lipopolysaccharide [LPS]), a glycolipid found in the outer membranes of gram-negative bacteria, induces the secretion of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), and IL-6 by monocytes/macrophages. The secretion of these biologically active compounds leads to multiple pathological conditions, such as septic shock. There is substantial evidence that chronic exposure to LPS mediates, at least in part, the tissue destruction associated with gram-negative infection. CD14, a 55-kDa protein, has been identified as an LPS receptor. In conjunction with a serum protein, LPS binding protein (LBP), LPS-CD14 interactions mediate many LPS functions in the inflammatory response. However, CD14 lacks a cytoplasmic domain, or any known signal transduction sequence motif, suggesting the existence of another cell surface domain capable of transducing signals. In this paper, we report a second, CD14-independent LPS binding site, which, based on biological activity, appears to be a functional LPS receptor. Cross-linking experiments were performed to identify LPS binding sites. Two molecules were identified: a 55-kDa protein (CD14) and a second, 78-kDa band. Sequencing of the 78-kDa protein by mass spectroscopic analysis revealed 100% homology with moesin (membrane-organizing extension spike protein). Antibody to CD14 induced partial blocking of the LPS response. However, antimoesin monoclonal antibody completely blocked the LPS-induced TNF-α response in human monocytes, without blocking CD14 binding of LPS. Irrelevant isotype controls had no effect. Additional experiments were performed to evaluate the specificity of the antimoesin blocking. Separate experiments evaluated antimoesin effects on monocyte chemotaxis, IL-1 production in response to IL-1 stimulation, and TNF-α secretion in response to Staphylococcus aureus stimulation. Antimoesin blocked only LPS-mediated events. The data suggest that moesin

  19. Assessment of dopamine receptor densities in the human brain with carbon-11-labeled N-methylspiperone

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstroem, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1984-01-01

    We describe the use of carbon-11-labeled 3-N-methylspiperone, a ligand that preferentially binds to dopamine receptors in vivo, to image the receptors by positron emission tomography scanning in baboons and, for the first time, in a human. The method has now been used in 58 humans for noninvasive assessment of the state of brain dopamine receptors under normal and pathological conditions.

  20. Sequence variation in the human T-cell receptor loci.

    PubMed

    Mackelprang, Rachel; Carlson, Christopher S; Subrahmanyan, Lakshman; Livingston, Robert J; Eberle, Michael A; Nickerson, Deborah A

    2002-12-01

    Identifying common sequence variations known as single nucleotide polymorphisms (SNPs) in human populations is one of the current objectives of the human genome project. Nearly 3 million SNPs have been identified. Analysis of the relative allele frequency of these markers in human populations and the genetic associations between these markers, known as linkage disequilibrium, is now underway to generate a high-density genetic map. Because of the central role T cells play in immune reactivity, the T-cell receptor (TCR) loci have long been considered important candidates for common disease susceptibility within the immune system (e.g., asthma, atopy and autoimmunity). Over the past two decades, hundreds of SNPs in the TCR loci have been identified. Most studies have focused on defining SNPs in the variable gene segments which are involved in antigenic recognition. On average, the coding sequence of each TCR variable gene segment contains two SNPs, with many more found in the 5', 3' and intronic sequences of these segments. Therefore, a potentially large repertoire of functional variants exists in these loci. Association between SNPs (linkage disequilibrium) extends approximately 30 kb in the TCR loci, although a few larger regions of disequilibrium have been identified. Therefore, the SNPs found in one variable gene segment may or may not be associated with SNPs in other surrounding variable gene segments. This suggests that meaningful association studies in the TCR loci will require the analysis and typing of large marker sets to fully evaluate the role of TCR loci in common disease susceptibility in human populations. PMID:12493004

  1. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid.

    PubMed

    Sriraman, Shravan Kumar; Salzano, Giusseppina; Sarisozen, Can; Torchilin, Vladimir

    2016-08-01

    Cancer-specific drug delivery represents an attractive approach to prevent undesirable side-effects and increase the accumulation of the drug in the tumor. Surface modification of nanoparticles such as liposomes with targeting moieties specific to the up-regulated receptors on the surface of tumor cells thus represents an effective strategy. Furthermore, since this receptor expression can be heterogeneous, using a dual-combination of targeting moieties may prove advantageous. With this in mind, the anti-cancer activity of PEGylated doxorubicin-loaded liposomes targeted with folic acid (F), transferrin (Tf) or both (F+Tf) was evaluated. The dual-targeted liposomes showed a 7-fold increase in cell association compared to either of the single-ligand targeted ones in human cervical carcinoma (HeLa) cell monolayers. The increased penetration and cell association of the dual-targeted liposomes were also demonstrated using HeLa cell spheroids. The in vitro cytotoxicity of the doxorubicin liposomes (LD) was then evaluated using HeLa and A2780-ADR ovarian carcinoma cell monolayers. In both these cell lines, the (F+Tf) LD showed significantly higher cytotoxic effects than the untargeted, or single-ligand targeted liposomes. In a HeLa xenograft model in nude mice, compared to the untreated group, though the untargeted LD showed 42% tumor growth inhibition, both the (F) LD and (F+Tf) LD showed 75% and 79% tumor growth inhibition respectively. These results thus highlight that though the dual-targeted liposomes represent an effective cytotoxic formulation in the in vitro setting, they were equally effective as the folic acid-targeted liposomes in reducing tumor burden in the more complex in vivo setting in this particular model. PMID:27264717

  2. His499 Regulates Dimerization and Prevents Oncogenic Activation by Asparagine Mutations of the Human Thrombopoietin Receptor.

    PubMed

    Leroy, Emilie; Defour, Jean-Philippe; Sato, Takeshi; Dass, Sharmila; Gryshkova, Vitalina; Shwe, Myat M; Staerk, Judith; Constantinescu, Stefan N; Smith, Steven O

    2016-02-01

    Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor. Second site mutational studies indicate that His(499) near the N terminus of the TM domain is responsible for protecting the human receptor from activation by Asn mutations. Structural studies reveal that the sequence preceding His(499) is helical in the murine receptor but non-helical in peptides corresponding to the TM domain of the inactive human receptor. The activating S505N mutation and the small molecule agonist eltrombopag both induce helix in this region of the TM domain and are associated with dimerization and activation of the human receptor. Thus, His(499) regulates the activation of human TpoR and provides additional protection against activating mutations, such as oncogenic Asn mutations in the TM domain. PMID:26627830

  3. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance.

    PubMed

    Song, Hyun Seok; Jin, Hye Jun; Ahn, Sae Ryun; Kim, Daesan; Lee, Sang Hun; Kim, Un-Kyung; Simons, Christopher T; Hong, Seunghun; Park, Tai Hyun

    2014-10-28

    The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. However, the detection capability of previous artificial taste sensors has been far inferior to that of animal tongues, in terms of its sensitivity and selectivity. Herein, we developed a bioelectronic tongue using heterodimeric human sweet taste receptors for the detection and discrimination of sweeteners with human-like performance, where single-walled carbon nanotube field-effect transistors were functionalized with nanovesicles containing human sweet taste receptors and used to detect the binding of sweeteners to the taste receptors. The receptors are heterodimeric G-protein-coupled receptors (GPCRs) composed of human taste receptor type 1 member 2 (hTAS1R2) and human taste receptor type 1 member 3 (hTAS1R3), which have multiple binding sites and allow a human tongue-like broad selectivity for the detection of sweeteners. This nanovesicle-based bioelectronic tongue can be a powerful tool for the detection of sweeteners as an alternative to labor-intensive and time-consuming cell-based assays and the sensory evaluation panels used in the food and beverage industry. Furthermore, this study also allows the artificial sensor to exam the functional activity of dimeric GPCRs. PMID:25126667

  4. Serum Immunoglobulin and Transferrin Levels After Childhood Splenectomy

    PubMed Central

    Schumacher, M. J.

    1970-01-01

    IgG, IgA, IgM, and transferrin levels were measured in sera from a group of children who had been subjected to splenectomy in the previous 10 years. In those children splenectomized for hereditary spherocytosis, idiopathic thrombocytopenic purpura, or traumatic rupture, mean IgM levels were significantly lower and mean transferrin levels were significantly higher than in sera from control children. Children splenectomized for thalassaemia major had a significantly raised mean IgG level, while children splenectomized for portal hypertension had a raised mean IgA level. However, IgG and IgA levels in patients who had suffered splenic rupture did not differ from control values. The finding of high transferrin levels after splenectomy supports the concept of an immunological function for this protein in addition to its iron-binding capacity. PMID:4191614

  5. Targeting human melanoma neoantigens by T cell receptor gene therapy.

    PubMed

    Leisegang, Matthias; Kammertoens, Thomas; Uckert, Wolfgang; Blankenstein, Thomas

    2016-03-01

    In successful cancer immunotherapy, T cell responses appear to be directed toward neoantigens created by somatic mutations; however, direct evidence that neoantigen-specific T cells cause regression of established cancer is lacking. Here, we generated T cells expressing a mutation-specific transgenic T cell receptor (TCR) to target different immunogenic mutations in cyclin-dependent kinase 4 (CDK4) that naturally occur in human melanoma. Two mutant CDK4 isoforms (R24C, R24L) similarly stimulated T cell responses in vitro and were analyzed as therapeutic targets for TCR gene therapy. In a syngeneic HLA-A2-transgenic mouse model of large established tumors, we found that both mutations differed dramatically as targets for TCR-modified T cells in vivo. While T cells expanded efficiently and produced IFN-γ in response to R24L, R24C failed to induce an effective antitumor response. Such differences in neoantigen quality might explain why cancer immunotherapy induces tumor regression in some individuals, while others do not respond, despite similar mutational load. We confirmed the validity of the in vivo model by showing that the melan-A-specific (MART-1-specific) TCR DMF5 induces rejection of tumors expressing analog, but not native, MART-1 epitopes. The described model allows identification of those neoantigens in human cancer that serve as suitable T cell targets and may help to predict clinical efficacy. PMID:26808500

  6. Interleukin-4 receptors on human blood mononuclear cells

    SciTech Connect

    Zuber, C.E.; Galizzi, J.P.; Harada, N.; Durand, I.; Banchereau, J. )

    1990-09-01

    We have studied regulation of the expression of the interleukin-4 receptor (IL-4R) on human blood mononuclear cells (PBMC) using both 125I-IL-4 binding assay and flow cytometric analysis of biotinylated IL-4 (B-IL-4) binding. PBMC express approximately 300 high-affinity IL-4R per cell (Kd = 25-100 pM). Activation of PBMC for 60-80 hr by phytohemagglutinin (PHA) or concanavalin A (Con A) results in a 2- to 4.5-fold increase of IL-4R number without alteration of IL-4R affinity for IL-4. Binding of B-IL-4 showed that IL-4R expression is upregulated on virtually all PHA-stimulated PBMC, whereas it mostly concerns larger cells among Con A-activated PBMC. Reculture of PHA-blasts with 1 nM IL-4 further upregulates IL-4R expression to a level approximately 10-fold higher than observed on freshly isolated PBMC. Interestingly, IL-4 is able to reinduce high IL-4R levels on cells that have been deprived of IL-4 for 20 hr and IL-2 is almost as efficient. Finally, SDS-PAGE analysis of IL-4-binding molecules on unstimulated, PHA- and PHA/IL-4-activated PBMC revealed the same three peptides of MW 140-130, 80-75, and 70-65 kDa, as shown on human cell lines.

  7. Identification of the mineralocorticoid receptor in human spermatozoa.

    PubMed

    Fiore, Cristina; Sticchi, Daniele; Pellati, Donatella; Forzan, Sante; Bonanni, Guglielmo; Bertoldo, Alessandro; Massironi, Michele; Calò, Lorenzo; Fassina, Ambrogio; Rossi, Gian Paolo; Armanini, Decio

    2006-10-01

    Aldosterone seems to play a role in the regulation of the electrolyte content of sperm and in the motility of spermatozoa. The aim of the study was to evaluate the presence of the mineralocorticoid receptor (MR) in human ejaculated spermatozoa. We have assayed MR on spermatozoa of freshly ejaculated sperm from healthy donors. The identification of MR was made by using immunohistochemistry and immunofluorescence analyses, while MR mRNA expression was evaluated by real-time PCR assay. The immunohistochemical and immunofluorescence analyses showed positive staining both in the midpiece and in the tail of the spermatozoa. Relative quantification of MR by using real-time PCR shows that the mRNA expression of MR in spermatozoa is lower than in mononuclear leukocytes (positive controls). Sequencing showed complete identity between the sequence obtained from spermatozoa and the human MR cDNA sequence. Further studies should be performed in order to elucidate a possible physiological role of aldosterone in regulating electrolyte concentration, and the pro-oxidant effect of excess aldosterone in this new target tissue. PMID:16964418

  8. Selective Toll-Like Receptor Expression in Human Fetal Lung

    PubMed Central

    Petrikin, Joshua E; Gaedigk, Roger; Leeder, J Steven; Truog, William E

    2010-01-01

    Toll-like receptors (TLRs) are critical components of the innate immune system, acting as pattern recognition molecules and triggering an inflammatory response. TLR associated gene products are of interest in modulating inflammatory related pulmonary diseases of the neonate. The ontogeny of TLR related genes in human fetal lung has not been previously described and could elucidate additional functions and identify strategies for attenuating the effects of fetal inflammation. We examined the expression of 84 TLR related genes on 23 human fetal lung samples from three groups with estimated ages of 60 (57-59d), 90 (89-91d), and 130 (117-154d) days. Using a false detection rate algorithm, we identified 32 genes displaying developmental regulation with TLR2 having the greatest up-regulation of TLR genes (9.2 fold increase) and TLR4 unchanged. We confirmed the TLR2 up-regulation by examining an additional 133 fetal lung tissue samples with a fluorogenic polymerase chain reaction assay (TaqMan®) and found an exponential best-fit curve over the time studied. The best-fit curve predicts a 6.1 fold increase from 60d to 130d. We conclude that TLR2 is developmentally expressed from the early pseudoglandular stage of lung development to the canalicular stage. PMID:20581745

  9. Characterization of iron uptake from transferrin by murine endothelial cells.

    PubMed

    Hallmann, R; Savigni, D L; Morgan, E H; Baker, E

    2000-01-01

    Iron is required by the brain for normal function, however, the mechanisms by which it crosses the blood-brain barrier (BBB) are poorly understood. The uptake and efflux of transferrin (Tf) and Fe by murine brain-derived (bEND3) and lymph node-derived (m1END1) endothelial cell lines was compared. The effects of iron chelators, metabolic inhibitors and the cellular activators, lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha), on Tf and Fe uptake were investigated. Cells were incubated with 59Fe-125I-Tf; Fe uptake was shown to increase linearly over time for both cell lines, while Tf uptake reached a plateau within 2 h. Both Tf and Fe uptake were saturable. bEND3 cells were shown to have half as many Tf receptors as m1END1 cells, but the mean cycling times of a Tf molecule were the same. Tf and Fe efflux from the cells were measured over time, revealing that after 2 h only 25% of the Tf but 80% of the Fe remained associated with the cells. Of 7 iron chelators, only deferriprone (L1) markedly decreased Tf uptake. However, Fe uptake was reduced by more than 50% by L1, pyridoxal isonicotinoyl hydrazone (PIH) and desferrithiocin (DFT). The cellular activators TNF-alpha or LPS had little effect on Tf turnover, but they accelerated Fe uptake in both endothelial cell types. Phenylarsenoxide (PhAsO) and N-ethyl maleimide (NEM), inhibitors of Tf endocytosis, reduced both Tf and Fe uptake in both cell lines, while bafilomycin A1, an inhibitor of endosomal acidification, reduced Fe uptake but did not affect Tf uptake. The results suggest that Tf and Fe uptake by both bEND3 and m1END1 is via receptor-mediated endocytosis with release of Fe from Tf within the cell and recycling of apo-Tf. On the basis of Tf- and Fe-metabolism both cell lines are similar and therefore well suited for use in in vitro models for Fe transport across the BBB. PMID:10865941

  10. Biological variability of transferrin saturation and unsaturated iron binding capacity

    PubMed Central

    Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH

    2007-01-01

    Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429

  11. The measurement of serum transferrin by iron-binding capacity

    PubMed Central

    Ramsay, W. N. M.

    1973-01-01

    Two criteria which ought to be satisfied by an acceptable method for the estimation of serum transferrin by iron-binding capacity are enunciated. A screening procedure is described which involves the sequential quantitative use of ion exchange and gel filtration. Its use in testing the extent to which two published methods fulfil the recommended criteria is described. Both methods give results for total iron-binding capacity which are 1-10% high because of the inclusion of non-transferrin iron. PMID:4752411

  12. Photoaffinity labeling of the progesterone receptor from human endometrial carcinoma

    SciTech Connect

    Clarke, C.L.; Satyaswaroop, P.G.

    1985-11-01

    A nude mouse model for the growth of human endometrial carcinoma and hormonal modulation of the progesterone receptor (PR) was established previously. This study describes the effect of 17 beta-estradiol and tamoxifen (TAM) on growth rate and PR concentration in a hormonally responsive human endometrial tumor (EnCa 101) grown in this experimental system and presents the first characterization of human endometrial carcinoma PR. EnCa 101 was transplanted subcutaneously into ovariectomized, BALB/c, nu/nu athymic mice and grown under 17 beta-estradiol-stimulated, TAM-stimulated, and control conditions. Both 17 beta-estradiol and TAM increased the growth rate of EnCa 101 in nude mice, and a parallel increase in the cytosol PR concentration was observed. PR was partially purified by phosphocellulose and DEAE cellulose chromatography, and the DEAE eluate was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and photoaffinity labeling with (17 alpha-methyl-TH)promegestone ((TH)R5020). Two PR-negative tumors (EnCa K and EnCa V) were also examined in parallel. Photolabeling and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of EnCa 101 grown in the presence of 17 beta-estradiol or TAM revealed incorporation of (3H)R5020 into proteins of molecular weight approximately 116,000 and 85,000. Labeled proteins of molecular weight 66,000, 45,000, and 35,000 were also observed. No incorporation of (TH)R5020 was observed in EnCa 101 grown in the absence of estrogen, nor was any observed in EnCa K or EnCa V.

  13. Isolation of human beta-interferon receptor by wheat germ lectin affinity and immunosorbent column chromatographies

    SciTech Connect

    Zhang, Z.Q.; Fournier, A.; Tan, Y.H.

    1986-06-15

    Radioiodinated human beta-interferon-Ser 17 (Betaseron) was reversibly cross-linked to Daudi cells by dithiobis(succinimidylpropionate). The radioactive ligand was cross-linked to three macromolecules forming labeled complexes of apparent Mr values of 130,000, 220,000, and 320,000. Betaseron, human alpha-interferon, human interleukin 2 but not recombinant human gamma-interferon competed with the labeled ligand for binding to these putative receptor(s). Human leukocyte-produced gamma-interferon competed weakly with /sup 125/I-Betaseron for binding to Daudi cells. The Betaseron-receptor complex(es) was purified by passage through a wheat germ lectin column followed by chromatography on an anti-interferon immunosorbent column and semipreparative gel electrophoresis. The cross-linked ligand-receptor complex was shown to be highly purified by sodium dodecyl sulfate and acetic acid:urea:Triton X-100 polyacrylamide gel electrophoresis. It can be dissociated into the labeled Betaseron (Mr = 17,000) ligand and a receptor moiety which has an apparent molecular weight of 110,000. The chromatographic behavior of the ligand-receptor complex on wheat germ lectin column suggests that the receptor is a glycoprotein. The described procedure yielded about 1 microgram of Betaseron receptor from 10(10) Daudi cells, estimated to contain a maximum of about 15 micrograms of the receptor.

  14. Structural requirements for the interaction of human IgA with the human polymeric Ig receptor.

    PubMed

    Lewis, Melanie J; Pleass, Richard J; Batten, Margaret R; Atkin, Julie D; Woof, Jenny M

    2005-11-15

    Transport of polymeric IgA onto mucosal surfaces to become secretory IgA is mediated by the polymeric Ig receptor (pIgR). To study the interaction of human dimeric IgA (dIgA) (the predominant form of IgA polymer) with the human pIgR (hpIgR), we generated recombinant wild-type dIgA1 and dIgA2m(1) and various mutant dIgA1 and analyzed their interaction with a recombinant human secretory component and membrane-expressed hpIgR. We found that wild-type dIgA1 and dIgA2m(1) bound to recombinant human secretory component with similar affinity and were transcytosed by the hpIgR to the same extent. Mutation of the IgA Calpha2 domain residue Cys311 to Ser reduced binding to hpIgR, possibly through disruption of noncovalent interactions between the Calpha2 domain and domain 5 of the receptor. Within the Calpha3 domain of IgA1, we found that combined mutation of residues Phe411, Val413, and Thr414, which lie close to residues previously implicated in hpIgR binding, abolished interaction with the receptor. Mutation of residue Lys377, located very close to this same region, perturbed receptor interaction. In addition, 4 aa (Pro440-Phe443), which lie on a loop at the domain interface and form part of the binding site for human FcalphaRI, appear to contribute to hpIgR binding. Lastly, use of a monomeric IgA1 mutant lacking the tailpiece revealed that the tailpiece does not occlude hpIgR-binding residues in IgA1 monomers. This directed mutagenesis approach has thus identified motifs lying principally across the upper surface of the Calpha3 domain (i.e., that closest to Calpha2) critical for human pIgR binding and transcytosis. PMID:16272325

  15. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    SciTech Connect

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  16. Nicotinic receptors in non-human primates: analysis of genetic and functional conservation with humans

    PubMed Central

    Shorey-Kendrick, Lyndsey E.; Ford, Matthew M.; Allen, Daicia C.; Kuryatov, Alexander; Lindstrom, Jon; Wilhelm, Larry; Grant, Kathleen A.; Spindel, Eliot R.

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. PMID:25661700

  17. Interaction of transferrin and its iron-binding fragments with heparin.

    PubMed Central

    Regoeczi, E; Chindemi, P A; Hu, W L

    1994-01-01

    The interaction of heparin with transferrin (Tf; bovine and rat) and the isolated iron-binding lobes of bovine Tf were investigated. Affinity chromatography of rat Tf on heparin-agarose showed that interaction depended on both the iron content of Tf and the pH of the medium. Both the iron-free and iron-saturated forms of Tf were strongly bound by the column at pH 5.6, but only the iron-free form revealed significant affinity at pH 7.4. Desialylation of Tf moderately promoted interaction, treatment with cyclohexanedione moderately reduced interaction, and succinylation abolished it altogether. In the presence of heparin, iron release from the N-terminal lobe of native bovine Tf was accelerated and from the C-terminal lobe it was slightly reduced. The heparin effect remained qualitatively the same on each lobe after their separation by tryptic digestion and DEAE-cellulose chromatography. The affinity of native bovine Tf for heparin was very close to that of its isolated N-terminal lobe, thus suggesting that it is this portion of the molecule that binds to the glycosaminoglycan. It is concluded that the consequences for iron-binding strength of the two transferrin lobes are diagonally opposite when Tf is bound to heparin as opposed to its natural cell-surface receptor. PMID:8192672

  18. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum

    SciTech Connect

    Voith, G.; Dingermann, T.

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I{gamma} promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I{gamma} promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. 36 refs., 4 figs.

  19. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum.

    PubMed

    Voith, G; Dingermann, T

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I gamma promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I gamma promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. PMID:9636297

  20. Neurotrophic factors and their receptors in human sensory neuropathies.

    PubMed

    Anand, Praveen

    2004-01-01

    Neurotrophic factors may play key roles in pathophysiological mechanisms of human neuropathies. Nerve growth factor (NGF) is trophic to small-diameter sensory fibers and regulates nociception. This review focuses on sensory dysfunction and the potential of neurotrophic treatments. Genetic neuropathy. Mutations of the NGF high-affinity receptor tyrosine kinase A (Trk A) have been found in congenital insensitivity to pain and anhidrosis; these are likely to be partial loss-of-function mutations, as axon-reflex vasodilatation and sweating can be elicited albeit reduced, suggesting rhNGF could restore nociception in some patients. Leprous neuropathy. Decreased NGF in leprosy skin may explain cutaneous hypoalgesia even with inflammation and rhNGF may restore sensation, as spared nerve fibers show Trk A-staining. Diabetic neuropathy. NGF is depleted in early human diabetic neuropathy skin, in correlation with dysfunction of nociceptor fibers. We proposed rhNGF prophylaxis may prevent diabetic foot ulceration. Clinical trials have been disappointed, probably related to difficulty delivering adequate doses and need for multiple trophic factors. NGF and glial cell line-derived neurotrophic factor (GDNF) are both produced by basal keratinocytes and neurotrophin (NT-3) by suprabasal keratinocytes: relative mRNA expression was significantly lower in early diabetic neuropathy skin compared to controls, for NGF (P < 0.02), BDNF (P < 0.05), NT-3 (P < 0.05), GDNF (< 0.02), but not NT4/5, Trk A or p75 neurotrophin receptor (all P > 0.05). Posttranslational modifications of mature and pro-NGF may also affect bioactivity and immunoreactivity. A 53 kD band that could correspond to a prepro-NGF-like molecule was reduced in diabetic skin. Traumatic neuropathy and pain. While NGF levels are acutely reduced in injured nerve trunks, neuropathic patients with chronic skin hyperalgesia and allodynia show marked local increases of NGF levels; here anti-NGF agents may provide analgesia

  1. Multiple loss-of-function variants of taste receptors in modern humans

    PubMed Central

    Fujikura, K.

    2015-01-01

    Despite recent advances in the knowledge of interindividual taste differences, the underlying genetic backgrounds have remained to be fully elucidated. Much of the taste variation among different mammalian species can be explained by pseudogenization of taste receptors. Here I investigated whether the most recent disruptions of taste receptor genes segregate with their intact forms in modern humans by analyzing 14 ethnically diverse populations. The results revealed an unprecedented prevalence of 25 segregating loss-of-function (LoF) taste receptor variants, identifying one of the most pronounced cases of functional population diversity in the human genome. LoF variant frequency in taste receptors (2.10%) was considerably higher than the overall LoF frequency in human genome (0.16%). In particular, molecular evolutionary rates of candidate sour (14.7%) and bitter (1.8%) receptors were far higher in humans than those of sweet (0.02%), salty (0.05%), and umami (0.17%) receptors compared with other carnivorous mammals, although not all of the taste receptors were identified. Many LoF variants are population-specific, some of which arose even after population differentiation, not before divergence of the modern and archaic human. I conclude that modern humans might have been losing some sour and bitter receptor genes because of high-frequency LoF variants. PMID:26307445

  2. Multiple loss-of-function variants of taste receptors in modern humans.

    PubMed

    Fujikura, Kohei

    2015-01-01

    Despite recent advances in the knowledge of interindividual taste differences, the underlying genetic backgrounds have remained to be fully elucidated. Much of the taste variation among different mammalian species can be explained by pseudogenization of taste receptors. Here I investigated whether the most recent disruptions of taste receptor genes segregate with their intact forms in modern humans by analyzing 14 ethnically diverse populations. The results revealed an unprecedented prevalence of 25 segregating loss-of-function (LoF) taste receptor variants, identifying one of the most pronounced cases of functional population diversity in the human genome. LoF variant frequency in taste receptors (2.10%) was considerably higher than the overall LoF frequency in human genome (0.16%). In particular, molecular evolutionary rates of candidate sour (14.7%) and bitter (1.8%) receptors were far higher in humans than those of sweet (0.02%), salty (0.05%), and umami (0.17%) receptors compared with other carnivorous mammals, although not all of the taste receptors were identified. Many LoF variants are population-specific, some of which arose even after population differentiation, not before divergence of the modern and archaic human. I conclude that modern humans might have been losing some sour and bitter receptor genes because of high-frequency LoF variants. PMID:26307445

  3. Cloning of the cDNA and gene for a human D sub 2 dopamine receptor

    SciTech Connect

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O. ); Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C. )

    1989-12-01

    A clone encoding a human D{sub 2} dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D{sub 2} receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed.

  4. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  5. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  6. Roles of nicotinic acetylcholine receptor β subunits in function of human α4-containing nicotinic receptors

    PubMed Central

    Wu, Jie; Liu, Qiang; Yu, Kewei; Hu, Jun; Kuo, Yen-Ping; Segerberg, Marsha; St John, Paul A; Lukas, Ronald J

    2006-01-01

    Naturally expressed nicotinic acetylcholine receptors (nAChR) containing α4 subunits (α4*-nAChR) in combination with β2 subunits (α4β2-nAChR) are among the most abundant, high-affinity nicotine binding sites in the mammalian brain. β4 subunits are also richly expressed and colocalize with α4 subunits in several brain regions implicated in behavioural responses to nicotine and nicotine dependence. Thus, α4β4-nAChR also may exist and play important functional roles. In this study, properties were determined of human α4β2- and α4β4-nAChR heterologously expressed de novo in human SH-EP1 epithelial cells. Whole-cell currents mediated via human α4β4-nAChR have ∼4-fold higher amplitude than those mediated via human α4β2-nAChR and exhibit much slower acute desensitization and functional rundown. Nicotinic agonists induce peak whole-cell current responses typically with higher functional potency at α4β4-nAChR than at α4β2-nAChR. Cytisine and lobeline serve as full agonists at α4β4-nAChR but are only partial agonists at α4β2-nAChR. However, nicotinic antagonists, except hexamethonium, have comparable affinities for functional α4β2- and α4β4-nAChR. Whole-cell current responses show stronger inward rectification for α4β2-nAChR than for α4β4-nAChR at a positive holding potential. Collectively, these findings demonstrate that human nAChR β2 or β4 subunits can combine with α4 subunits to generate two forms of α4*-nAChR with distinctive physiological and pharmacological features. Diversity in α4*-nAChR is of potential relevance to nervous system function, disease, and nicotine dependence. PMID:16825297

  7. Binding of serotonin and N1-benzenesulfonyltryptamine-related analogs at human 5-HT6 serotonin receptors: receptor modeling studies.

    PubMed

    Dukat, Małgorzata; Mosier, Philip D; Kolanos, Renata; Roth, Bryan L; Glennon, Richard A

    2008-02-14

    A population of 100 graphics models of the human 5-HT6 serotonin receptor was constructed based on the structure of bovine rhodopsin. The endogenous tryptamine-based agonist serotonin (5-HT; 1) and the benzenesulfonyl-containing tryptamine-derived 5-HT6 receptor antagonist MS-245 (4a) were automatically docked with each of the 100 receptor models using a genetic algorithm approach. Similar studies were conducted with the more selective 5-HT6 receptor agonist EMDT (5) and optical isomers of EMDT-related analog 8, as well as with optical isomers of MS-245 (4a)-related and benzenesulfonyl-containing pyrrolidine 6 and aminotetralin 7. Although associated with the same general aromatic/hydrophobic binding cluster, 5-HT (1) and MS-245 (4a) were found to preferentially bind with distinct receptor conformations, and did so with different binding orientations (i.e., poses). A 5-HT pose/model was found to be common to EMDT (5) and its analogs, whereas that identified for MS-245 (4a) was found common to benzenesulfonyl-containing compounds. Specific amino acid residues were identified that can participate in binding, and evaluation of a sulfenamide analog of MS-245 indicates for the first time that the presence of the sulfonyl oxygen atoms enhances receptor affinity. The results indicate that the presence or absence of an N1-benzenesulfonyl group is a major determinant of the manner in which tryptamine-related agents bind at 5-HT6 serotonin receptors. PMID:18201064

  8. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells.

    PubMed

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W

    2010-02-01

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity. PMID:19822186

  9. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells

    PubMed Central

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W.

    2009-01-01

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRα and ERRγ proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC50 and IC50 values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRα and ERRγ are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity. PMID:19822186

  10. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by (/sup 3/H) dihydroergocryptine binding

    SciTech Connect

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-07-15

    The radioactive alpha-adrenergic antagonist (/sup 3/H) dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). (/sup 3/H) Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for (/sup 3/H) dihydroergocryptine binding sites stereo-selectively ((-)-norepinephrine is 100 times as potent as (+)-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for (/sup 3/H) dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. (/sup 3/H) dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response.

  11. A search for functional histamine H4 receptors in the human, guinea pig and mouse brain.

    PubMed

    Feliszek, Monika; Speckmann, Valerie; Schacht, Daniel; von Lehe, Marec; Stark, Holger; Schlicker, Eberhard

    2015-01-01

    Histamine H4 receptors are expressed in immune cells, but their potential role in the brain is less clear. Although H4 transcripts have been identified in human and rat brain, the presence of H4 receptors on the protein level has so far not been proven since appropriate antibodies fulfilling the strict criteria for G protein-coupled receptors are missing. Here, we searched for functional H4 receptors in human, guinea pig and mouse cortex. We studied whether H4 receptor activation is associated with increased GTPγS binding and reduced noradrenaline release. The latter two effects have been previously shown for H3 receptors, which, like the H4 receptors, are coupled to G i/o protein. G protein activation was studied using (35)S-GTPγS binding in cortical membranes. The electrically induced (3)H-noradrenaline release was determined in superfused cortical slices. The H4 agonist 4-methylhistamine failed to affect (35)S-GTPγS binding and/or noradrenaline release in human, guinea pig and mouse cortex although an H 3 receptor-mediated increase in (35)S-GTPγS binding and inhibition of noradrenaline release occurred in parallel experiments. In conclusion, functional H4 receptors increasing (35)S-GTPγS binding and/or decreasing noradrenaline release are not found in human, guinea pig and mouse cortex. PMID:25300787

  12. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus.

    PubMed

    Tzarum, Netanel; de Vries, Robert P; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-03-11

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and human receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. This binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics. PMID:25766295

  13. Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions.

    PubMed Central

    Matsumoto, A; Naito, M; Itakura, H; Ikemoto, S; Asaoka, H; Hayakawa, I; Kanamori, H; Aburatani, H; Takaku, F; Suzuki, H

    1990-01-01

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), alpha-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis. Images PMID:2251254

  14. Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation.

    PubMed

    O'Boyle, Graeme; Fox, Christopher R J; Walden, Hannah R; Willet, Joseph D P; Mavin, Emily R; Hine, Dominic W; Palmer, Jeremy M; Barker, Catriona E; Lamb, Christopher A; Ali, Simi; Kirby, John A

    2012-03-20

    The recruitment of T lymphocytes during diseases such as rheumatoid arthritis is regulated by stimulation of the chemokine receptors expressed by these cells. This study was designed to assess the potential of a CXCR3-specific small-molecule agonist to inhibit the migration of activated human T cells toward multiple chemokines. Further experiments defined the molecular mechanism for this anti-inflammatory activity. Analysis in vitro demonstrated agonist induced internalization of both CXCR3 and other chemokine receptors coexpressed by CXCR3(+) T cells. Unlike chemokine receptor-specific antagonists, the CXCR3 agonist inhibited migration of activated T cells toward the chemokine mixture in synovial fluid from patients with active rheumatoid arthritis. A humanized mouse air-pouch model showed that intravenous treatment with the CXCR3 agonist prevented inflammatory migration of activated human T cells toward this synovial fluid. A potential mechanism for this action was defined by demonstration that the CXCR3 agonist induces receptor cross-phosphorylation within CXCR3-CCR5 heterodimers on the surface of activated T cells. This study shows that generalized chemokine receptor desensitization can be induced by specific stimulation of a single chemokine receptor on the surface of activated human T cells. A humanized mouse model was used to demonstrate that this receptor desensitization inhibits the inflammatory response that is normally produced by the chemokines present in synovial fluid from patients with active rheumatoid arthritis. PMID:22392992

  15. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  16. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications.

    PubMed

    Poniewierska-Baran, Agata; Suszynska, Malwina; Sun, Wenyue; Abdelbaset-Ismail, Ahmed; Schneider, Gabriela; Barr, Frederic G; Ratajczak, Mariusz Z

    2015-11-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  17. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves' Disease.

    PubMed

    Inaba, Hidefumi; De Groot, Leslie J; Akamizu, Takashi

    2016-01-01

    Graves' disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  18. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves’ Disease

    PubMed Central

    Inaba, Hidefumi; De Groot, Leslie J.; Akamizu, Takashi

    2016-01-01

    Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  19. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  20. An Oestrogen Receptor α-bound Human Chromatin Interactome

    PubMed Central

    Fullwood, Melissa J.; Liu, Mei Hui; Pan, You Fu; Liu, Jun; Han, Xu; Mohamed, Yusoff Bin; Orlov, Yuriy L.; Velkov, Stoyan; Ho, Andrea; Mei, Poh Huay; Chew, Elaine G. Y.; Huang, Phillips Yao Hui; Welboren, Willem-Jan; Han, Yuyuan; Ooi, Hong-Sain; Ariyaratne, Pramila N.; Vega, Vinsensius B.; Luo, Yanquan; Tan, Peck Yean; Choy, Pei Ye; Wansa, K. D. Senali Abayratna; Zhao, Bing; Lim, Kar Sian; Leow, Shi Chi; Yow, Jit Sin; Joseph, Roy; Li, Haixia; Desai, Kartiki V.; Thomsen, Jane S.; Lee, Yew Kok; Karuturi, R. Krishna Murthy; Herve, Thoreau; Bourque, Guillaume; Stunnenberg, Hendrik G.; Ruan, Xiaoan; Cacheux-Rataboul, Valere; Sung, Wing-Kin; Liu, Edison T.; Wei, Chia-Lin; Cheung, Edwin; Ruan, Yijun

    2009-01-01

    Genomes are organized into high-level 3-dimensional structures, and DNA elements separated by long genomic distances could functionally interact. Many transcription factors bind to regulatory DNA elements distant from gene promoters. While distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Therefore, we developed Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) for de novo detection of global chromatin interactions, and comprehensively mapped the chromatin interaction network bound by oestrogen receptor α (ERα) in the human genome. We found that most high-confidence remote ERα binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ERα functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes. PMID:19890323

  1. T cell receptor diversity in the human thymus.

    PubMed

    Vanhanen, Reetta; Heikkilä, Nelli; Aggarwal, Kunal; Hamm, David; Tarkkila, Heikki; Pätilä, Tommi; Jokiranta, T Sakari; Saramäki, Jari; Arstila, T Petteri

    2016-08-01

    A diverse T cell receptor (TCR) repertoire is essential for adaptive immune responses and is generated by somatic recombination of TCRα and TCRβ gene segments in the thymus. Previous estimates of the total TCR diversity have studied the circulating mature repertoire, identifying 1 to 3×10(6) unique TCRβ and 0.5×10(6) TCRα sequences. Here we provide the first estimate of the total TCR diversity generated in the human thymus, an organ which in principle can be sampled in its entirety. High-throughput sequencing of samples from four pediatric donors detected up to 10.3×10(6) unique TCRβ sequences and 3.7×10(6) TCRα sequences, the highest directly observed diversity so far for either chain. To obtain an estimate of the total diversity we then used three different estimators, preseq and DivE, which measure the saturation of rarefaction curves, and Chao2, which measures the size of the overlap between samples. Our results provide an estimate of a thymic repertoire consisting of 40 to 70×10(6) unique TCRβ sequences and 60 to 100×10(6) TCRα sequences. The thymic repertoire is thus extremely diverse. Moreover, extrapolation of the data and comparison with earlier estimates of peripheral diversity also suggest that the thymic repertoire is transient, with different clones produced at different times. PMID:27442982

  2. Kinesin molecular motors: Transport pathways, receptors, and human disease

    NASA Astrophysics Data System (ADS)

    Goldstein, Lawrence S. B.

    2001-06-01

    Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

  3. Structural basis of transcobalamin recognition by human CD320 receptor

    PubMed Central

    Alam, Amer; Woo, Jae-Sung; Schmitz, Jennif