Science.gov

Sample records for human trna synthetase

  1. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol.

    PubMed

    Sajish, Mathew; Schimmel, Paul

    2015-03-19

    Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, anti-diabetic, and anti-cancer effects by initiating a stress response that induces survival genes. Because human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS) translocates to the nucleus under stress conditions, we considered the possibility that the tyrosine-like phenolic ring of resveratrol might fit into the active site pocket to effect a nuclear role. Here we present a 2.1 Å co-crystal structure of resveratrol bound to the active site of TyrRS. Resveratrol nullifies the catalytic activity and redirects TyrRS to a nuclear function, stimulating NAD(+)-dependent auto-poly-ADP-ribosylation of poly(ADP-ribose) polymerase 1 (PARP1). Downstream activation of key stress signalling pathways are causally connected to TyrRS-PARP1-NAD(+) collaboration. This collaboration is also demonstrated in the mouse, and is specifically blocked in vivo by a resveratrol-displacing tyrosyl adenylate analogue. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites, here a non-spliced TyrRS catalytic null reveals a new PARP1- and NAD(+)-dependent dimension to the physiological mechanism of resveratrol. PMID:25533949

  2. tRNA synthetase: tRNA Aminoacylation and beyond

    PubMed Central

    Pang, Yan Ling Joy; Poruri, Kiranmai; Martinis, Susan A.

    2014-01-01

    The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases have also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases. PMID:24706556

  3. Gain-Of-Function Mutational Activation of Human TRNA Synthetase Procytokine

    SciTech Connect

    Yang, X.L.; Kapoor, M.; Otero, F.J.; Slike, B.M.; Tsuruta, H.; Frausto, R.; Bates, A.; Ewalt, K.L.; Cheresh, D.A.; Schimmel, P.; /Scripps Res. Inst. /SLAC, SSRL

    2009-04-30

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.

  4. Gain-of-function mutational activation of human tRNA synthetase procytokine.

    PubMed

    Yang, Xiang-Lei; Kapoor, Mili; Otero, Francella J; Slike, Bonnie M; Tsuruta, Hiro; Frausto, Ricardo; Bates, Alison; Ewalt, Karla L; Cheresh, David A; Schimmel, Paul

    2007-12-01

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases. PMID:18096501

  5. Gain-of-Function Mutational Activation of Human tRNA Synthetase Procytokine

    PubMed Central

    Yang, Xiang-Lei; Kapoor, Mili; Otero, Francella J.; Slike, Bonnie M.; Tsuruta, Hiro; Frausto, Ricardo; Bates, Alison; Ewalt, Karla L.; Cheresh, David A.; Schimmel, Paul

    2008-01-01

    Summary Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain-of-function. Native tRNA synthetases, like TyrRS and TrpRS, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis we hypothesized that a steric block of a critical ELR motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases. PMID:18096501

  6. Induced tRNA Import into Human Mitochondria: Implication of a Host Aminoacyl-tRNA-Synthetase

    PubMed Central

    Gowher, Ali; Smirnov, Alexandre; Tarassov, Ivan; Entelis, Nina

    2013-01-01

    In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNALysCUU into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNALysCUU and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms. PMID:23799079

  7. Long-Range Structural Effects of a Charcot-Marie-Tooth Disease-Causing Mutation in Human Glycyl-TRNA Synthetase

    SciTech Connect

    Xie, W.; Nangle, L.A.; Zhang, W.; Schimmel, P.; Yang, X.-L.

    2009-06-04

    Functional expansion of specific tRNA synthetases in higher organisms is well documented. These additional functions may explain why dominant mutations in glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase cause Charcot-Marie-Tooth (CMT) disease, the most common heritable disease of the peripheral nervous system. At least 10 disease-causing mutant alleles of GlyRS have been annotated. These mutations scatter broadly across the primary sequence and have no apparent unifying connection. Here we report the structure of wild type and a CMT-causing mutant (G526R) of homodimeric human GlyRS. The mutation is at the site for synthesis of glycyl-adenylate, but the rest of the two structures are closely similar. Significantly, the mutant form diffracts to a higher resolution and has a greater dimer interface. The extra dimer interactions are located {approx}30 {angstrom} away from the G526R mutation. Direct experiments confirm the tighter dimer interaction of the G526R protein. The results suggest the possible importance of subtle, long-range structural effects of CMT-causing mutations at the dimer interface. From analysis of a third crystal, an appended motif, found in higher eukaryote GlyRSs, seems not to have a role in these long-range effects.

  8. Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth disease

    SciTech Connect

    Xie, Wei; Schimmel, Paul; Yang, Xiang-Lei

    2006-12-01

    Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth Disease. Glycyl-tRNA synthetase (GlyRS) is one of a group of enzymes that catalyze the synthesis of aminoacyl-tRNAs for translation. Mutations of human and mouse GlyRSs are causally associated with Charcot–Marie–Tooth disease, the most common genetic disorder of the peripheral nervous system. As the first step towards a structure–function analysis of this disease, native human GlyRS was expressed, purified and crystallized. The crystal belonged to space group P4{sub 3}2{sub 1}2 or its enantiomorphic space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 91.74, c = 247.18 Å, and diffracted X-rays to 3.0 Å resolution. The asymmetric unit contained one GlyRS molecule and had a solvent content of 69%.

  9. A new γ-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase

    PubMed Central

    Liu, Jianming; Shue, Eveline; Ewalt, Karla L.; Schimmel, Paul

    2004-01-01

    Two forms of human tryptophanyl-tRNA synthetase (TrpRS) are produced in vivo through alternative mRNA splicing. The two forms, full-length TrpRS and mini TrpRS, are catalytically active, but are distinguished by the striking anti-proliferative and anti-angiogenic activity specific to mini TrpRS. Here we describe two new splice variants of human TrpRS mRNA. Their production was strongly regulated by γ-interferon (IFN-γ), an anti-proliferative cytokine known to stimulate the expression of other anti-angiogenic factors. A new IFN-γ-sensitive promoter was demonstrated to drive production of these splice variants. In human endothelial cells, both the newly discovered and a previously reported promoter were shown to respond specifically to IFN-γ and not to other cytokines such as tumor necrosis factor-α, transforming growth factor-β, interleukin-4 or erythropoietin. In addition, both promoters were stimulated by the ‘downstream’ interferon regulatory factor 1 that, in turn, is known to be regulated by the ‘upstream’ signal transducer and activator of transcription 1α subunit. Thus, the tandem promoters provide a dual system to regulate expression and alternative splicing of human TrpRS in vivo. PMID:14757836

  10. Escherichia coli proline tRNA: structure and recognition sites for prolyl-tRNA synthetase.

    PubMed

    Hasegawa, T; Yokogawa, T

    2000-01-01

    A major proline tRNA was purified from bulk Escherichia coli A19 tRNA by affinity chromatography with a biotinylated DNA probe. Its nucleotide sequence including modified nucleotides was determined by the post-labelling technique. In order to study the recognition sites of this proline tRNA for prolyl-tRNA synthetase, various mutant transcripts were prepared using an in vitro transcription system with T7 RNA polymerase. Based on the results of in vitro kinetic analyses of mutant transcripts, it was concluded that the second and third letters, G35 and G36, of the anticodon, G37 of the anticodon loop, the discriminator base A73, G72 of the acceptor stem, G49 and U17A that existed in the corner of an L-shaped structure are the recognition sites of proline tRNA for prolyl-tRNA synthetase. PMID:12903242

  11. Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase.

    PubMed

    Burke, B; Lipman, R S; Shiba, K; Musier-Forsyth, K; Hou, Y M

    2001-06-01

    Analysis of prolyl-tRNA synthetase (ProRS) across all three taxonomic domains (Eubacteria, Eucarya, and Archaea) reveals that the sequences are divided into two distinct groups. Recent studies show that Escherichia coli ProRS, a member of the "prokaryotic-like" group, recognizes specific tRNA bases at both the acceptor and anticodon ends, whereas human ProRS, a member of the "eukaryotic-like" group, recognizes nucleotide bases primarily in the anticodon. The archaeal Methanococcus jannaschii ProRS is a member of the eukaryotic-like group, although its tRNA(Pro) possesses prokaryotic features in the acceptor stem. We show here that, in some respects, recognition of tRNA(Pro) by M. jannaschii ProRS parallels that of human, with a strong emphasis on the anticodon and only weak recognition of the acceptor stem. However, our data also indicate differences in the details of the anticodon recognition between these two eukaryotic-like synthetases. Although the human enzyme places a stronger emphasis on G35, the M. jannaschii enzyme places a stronger emphasis on G36, a feature that is shared by E. coli ProRS. These results, interpreted in the context of an extensive sequence alignment, provide evidence of divergent adaptation by M. jannaschii ProRS; recognition of the tRNA acceptor end is eukaryotic-like, whereas the details of the anticodon recognition are prokaryotic-like. This divergence may be a reflection of the unusual dual function of this enzyme, which catalyzes specific aminoacylation with proline as well as with cysteine. PMID:11342535

  12. Dominant lethality by expression of a catalytically inactive class I tRNA synthetase.

    PubMed Central

    Schmidt, E; Schimmel, P

    1993-01-01

    Alignment-guided mutagenesis was used to create an inactive, but toxic, aminoacyl-tRNA synthetase. An Asp-96-->Ala (D96A) replacement in the nucleotide binding fold of the class I Escherichia coli isoleucyl-tRNA synthetase inactivates the enzyme without disrupting its competence for binding isoleucine tRNA. Expression of plasmid-encoded mutant enzyme in a cell with a wild-type ileS chromosomal allele resulted in cell death. Introduction of a second K732T substitution previously shown to weaken tRNA binding gives an inactive D96A/K732T double mutant. Expression of the double mutant is not lethal to E. coli. D96A but not the double mutant significantly inhibited in vitro charging of isoleucine tRNA by the wild-type enzyme. The results suggest a dominant tRNA binding-dependent arrest of cell growth caused by a reduction in the pool of a specific tRNA. Specific tRNA binding drugs may have therapeutic applications for treatment of microbial pathogens. Images Fig. 1 Fig. 3 PMID:8346197

  13. Structural basis of improved second-generation 3-nitro-tyrosine tRNA synthetases.

    PubMed

    Cooley, Richard B; Feldman, Jessica L; Driggers, Camden M; Bundy, Taylor A; Stokes, Audrey L; Karplus, P Andrew; Mehl, Ryan A

    2014-04-01

    Genetic code expansion has provided the ability to site-specifically incorporate a multitude of noncanonical amino acids (ncAAs) into proteins for a wide variety of applications, but low ncAA incorporation efficiency can hamper the utility of this powerful technology. When investigating proteins containing the post-translational modification 3-nitro-tyrosine (nitroTyr), we developed second-generation amino-acyl tRNA synthetases (RS) that incorporate nitroTyr at efficiencies roughly an order of magnitude greater than those previously reported and that advanced our ability to elucidate the role of elevated cellular nitroTyr levels in human disease (e.g., Franco, M. et al. Proc. Natl. Acad. Sci. U.S.A 2013 , 110 , E1102 ). Here, we explore the origins of the improvement achieved in these second-generation RSs. Crystal structures of the most efficient of these synthetases reveal the molecular basis for the enhanced efficiencies observed in the second-generation nitroTyr-RSs. Although Tyr is not detectably incorporated into proteins when expression media is supplemented with 1 mM nitroTyr, a major difference between the first- and second-generation RSs is that the second-generation RSs have an active site more compatible with Tyr binding. This feature of the second-generation nitroTyr-RSs appears to be the result of using less stringent criteria when selecting from a library of mutants. The observation that a different selection strategy performed on the same library of mutants produced nitroTyr-RSs with dramatically improved efficiencies suggests the optimization of established selection protocols could lead to notable improvements in ncAA-RS efficiencies and thus the overall utility of this technology. PMID:24611875

  14. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.

    PubMed

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G; Grøtli, Morten; Torres-Larios, Alfredo

    2016-07-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  15. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  16. Short peptides from leucyl-tRNA synthetase rescue disease-causing mitochondrial tRNA point mutations

    PubMed Central

    Perli, Elena; Fiorillo, Annarita; Giordano, Carla; Pisano, Annalinda; Montanari, Arianna; Grazioli, Paola; Campese, Antonio F.; Di Micco, Patrizio; Tuppen, Helen A.; Genovese, Ilaria; Poser, Elena; Preziuso, Carmela; Taylor, Robert W.; Morea, Veronica; Colotti, Gianni; d'Amati, Giulia

    2016-01-01

    Mutations in mitochondrial (mt) genes coding for mt-tRNAs are responsible for a range of syndromes, for which no effective treatment is available. We recently showed that the carboxy-terminal domain (Cterm) of human mt-leucyl tRNA synthetase rescues the pathologic phenotype associated either with the m.3243A>G mutation in mt-tRNALeu(UUR) or with mutations in the mt-tRNAIle, both of which are aminoacylated by Class I mt-aminoacyl-tRNA synthetases (mt-aaRSs). Here we show, by using the human transmitochondrial cybrid model, that the Cterm is also able to improve the phenotype caused by the m.8344A>G mutation in mt-tRNALys, aminoacylated by a Class II aaRS. Importantly, we demonstrate that the same rescuing ability is retained by two Cterm-derived short peptides, β30_31 and β32_33, which are effective towards both the m.8344A>G and the m.3243A>G mutations. Furthermore, we provide in vitro evidence that these peptides bind with high affinity wild-type and mutant human mt-tRNALeu(UUR) and mt-tRNALys, and stabilize mutant mt-tRNALeu(UUR). In conclusion, we demonstrate that small Cterm-derived peptides can be effective tools to rescue cellular defects caused by mutations in a wide range of mt-tRNAs. PMID:26721932

  17. A cognate tRNA specific conformational change in glutaminyl-tRNA synthetase and its implication for specificity.

    PubMed Central

    Mandal, A. K.; Bhattacharyya, A.; Bhattacharyya, S.; Bhattacharyya, T.; Roy, S.

    1998-01-01

    Conformational changes that occur upon substrate binding are known to play crucial roles in the recognition and specific aminoacylation of cognate tRNA by glutaminyl-tRNA synthetase. In a previous study we had shown that glutaminyl-tRNA synthetase labeled selectively in a nonessential sulfhydryl residue by an environment sensitive probe, acrylodan, monitors many of the conformational changes that occur upon substrate binding. In this article we have shown that the conformational change that occurs upon tRNA(Gln) binding to glnRS/ATP complex is absent in a noncognate tRNA tRNA(Glu)-glnRS/ATP complex. CD spectroscopy indicates that this cognate tRNA(Gln)-induced conformational change may involve only a small change in secondary structure. The Van't Hoff plot of cognate and noncognate tRNA binding in the presence of ATP is similar, suggesting similar modes of interaction. It was concluded that the cognate tRNA induces a local conformational change in the synthetase that may be one of the critical elements that causes enhanced aminoacylation of the cognate tRNA over the noncognate ones. PMID:9568911

  18. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.

    PubMed

    Sherman, J M; Thomann, H U; Söll, D

    1996-03-15

    The structure of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) in complex with tRNAGln and ATP has identified a number a sequence-specific protein-tRNA interactions. The contribution to glutamine identity has previously been determined for the nucleotides in tRNAGln. Here, we report the mutational analysis of residues in all three tRNA recognition domains of GlnRS, thus completing a survey of the major sequence-specific contacts between GlnRS and tRNAGln. Specifically, we analyzed the GlnRS determinants involved in recognition of the anticodon which is essential for glutamine identity and in the communication of anticodon recognition to the acceptor binding domain in GlnRS. A combined in vivo and in vitro approach has demonstrated that Arg341, which makes a single sequence-specific hydrogen bond with U35 in the anticodon of tRNAGln, is involved in initial RNA recognition and is an important positive determinant for this base in both cognate and non- cognate tRNA contexts. However, Arg341, as well as Arg402, which interacts with G36 in the anticodon, are negative determinants for non-cognate nucleotides at their respective positions. Analysis of acceptor-anticodon binding double mutants and of a mutation of Glu323 in the loop-strand-helix connectivity subdomain in GlnRS has further implicated this domain in the functional communication of anticodon recognition. The better than expected activity (anticooperativity) of these double mutants has led us to propose an "anticodon-independent" mechanism, in which the removal of certain synthetase interactions with the anticodon eliminates structural constraints, thus allowing the relaxed specificity mutants in the acceptor binding domain ot make more productive interactions. PMID:8601833

  19. A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase

    PubMed Central

    Holmbeck, Marissa A.; Donner, Julia R.; Villa-Cuesta, Eugenia; Rand, David M.

    2015-01-01

    ABSTRACT Communication between the mitochondrial and nuclear genomes is vital for cellular function. The assembly of mitochondrial enzyme complexes, which produce the majority of cellular energy, requires the coordinated expression and translation of both mitochondrially and nuclear-encoded proteins. The joint genetic architecture of this system complicates the basis of mitochondrial diseases, and mutations both in mitochondrial DNA (mtDNA)- and nuclear-encoded genes have been implicated in mitochondrial dysfunction. Previously, in a set of mitochondrial-nuclear introgression strains, we characterized a dual genome epistasis in which a naturally occurring mutation in the Drosophila simulans simw501 mtDNA-encoded transfer RNA (tRNA) for tyrosine (tRNATyr) interacts with a mutation in the nuclear-encoded mitochondrially localized tyrosyl-tRNA synthetase from Drosophila melanogaster. Here, we show that the incompatible mitochondrial-nuclear combination results in locomotor defects, reduced mitochondrial respiratory capacity, decreased oxidative phosphorylation (OXPHOS) enzyme activity and severe alterations in mitochondrial morphology. Transgenic rescue strains containing nuclear variants of the tyrosyl-tRNA synthetase are sufficient to rescue many of the deleterious phenotypes identified when paired with the simw501 mtDNA. However, the severity of this defective mito-nuclear interaction varies across traits and genetic backgrounds, suggesting that the impact of mitochondrial dysfunction might be tissue specific. Because mutations in mitochondrial tRNATyr are associated with exercise intolerance in humans, this mitochondrial-nuclear introgression model in Drosophila provides a means to dissect the molecular basis of these, and other, mitochondrial diseases that are a consequence of the joint genetic architecture of mitochondrial function. PMID:26035388

  20. Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase.

    PubMed

    Kapoor, Mili; Otero, Francella J; Slike, Bonnie M; Ewalt, Karla L; Yang, Xiang-Lei

    2009-05-29

    Aminoacyl tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix, next to the active site, was recruited for interleukin-8-like cytokine signaling. Taking advantage of our high resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine-structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of interleukin-8-like CXC cytokines. PMID:19477417

  1. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation.

    PubMed

    Storkebaum, Erik

    2016-09-01

    Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot-Marie-Tooth (CMT) peripheral neuropathy, characterized by length-dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic-gain-of-function mechanism underlies CMT-aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT-aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT-mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases. PMID:27352040

  2. Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase.

    PubMed

    Evilia, Caryn; Hou, Ya-Ming

    2006-06-01

    Enzymes of halophilic organisms contain unusual peptide motifs that are absent from their mesophilic counterparts. The functions of these halophile-specific peptides are largely unknown. Here we have identified an unusual peptide that is unique to several halophile archaeal cysteinyl-tRNA synthetases (CysRS), which catalyze attachment of cysteine to tRNA(Cys) to generate the essential cysteinyl-tRNA(Cys) required for protein synthesis. This peptide is located near the active site in the catalytic domain and is highly enriched with acidic residues. In the CysRS of the extreme halophile Halobacterium species NRC-1, deletion of the peptide reduces the catalytic efficiency of aminoacylation by a factor of 100 that largely results from a defect in kcat, rather than the Km for tRNA(Cys). In contrast, maintaining the peptide length but substituting acidic residues in the peptide with neutral or basic residues has no major deleterious effect, suggesting that the acidity of the peptide is not important for the kcat of tRNA aminoacylation. Analysis of general protein structure under physiological high salt concentrations, by circular dichroism and by fluorescence titration of tRNA binding, indicates little change due to deletion of the peptide. However, the presence of the peptide confers tolerance to lower salt levels, and fluorescence analysis in 30% sucrose reveals instability of the enzyme without the peptide. We suggest that the stability associated with the peptide can be used to promote proper enzyme conformation transitions in various stages of tRNA aminoacylation that are associated with catalysis. The acquisition of the peptide by the halophilic CysRS suggests an enzyme adaptation to high salinity. PMID:16734420

  3. Structure and Activity of an Aminoacyl-tRNA Synthetase that Charges tRNA with Nitro-Tryptophan

    SciTech Connect

    Buddha,M.; Crane, B.

    2005-01-01

    The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNATrp with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.

  4. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.

    PubMed

    Dutta, Saheb; Nandi, Nilashis

    2015-08-27

    Aminoacyl tRNA synthetases (aaRSs) carry out the first step of protein biosynthesis. Several aaRSs are multimeric, and coordination between the dynamics of active sites present in each monomer is a prerequisite for the fast and accurate aminoacylation. However, important lacunae of understanding exist concerning the conformational dynamics of multimeric aaRSs. Questions remained unanswered pertaining to the dynamics of the active site. Little is known concerning the conformational dynamics of the active sites in response to the substrate binding, reorganization of the catalytic residues around reactants, time-dependent changes at the reaction center, which are essential for facilitating the nucleophilic attack, and interactions at the interface of neighboring monomers. In the present work, we carried out all-atom molecular dynamics simulation of dimeric (mk)SerRS from Methanopyrus kandleri bound with tRNA using an explicit solvent system. Two dimeric states of seryl tRNA synthetase (open, substrate bound, and adenylate bound) and two monomeric states (open and substrate bound) are simulated with bound tRNA. The aim is to understand the conformational dynamics of (mk)SerRS during its reaction cycle. While the present results provide a clear dynamical perspective of the active sites of (mk)SerRS, they corroborate with the results from the time-averaged experimental data such as crystallographic and mutation analysis of methanogenic SerRS from M. kandleri and M. barkeri. It is observed from the present simulation that the motif 2 loop gates the active site and its Glu351 and Arg360 stabilizes ATP in a bent state favorable for nucleophilic attack. The flexibility of the walls of the active site gradually reduces near reaction center, which is a more organized region compared to the lid region. The motif 2 loop anchors Ser and ATP using Arg349 in a hydrogen bonded geometry crucial for nucleophilic attack and favorably influences the electrostatic potential at the

  5. In silico detection of tRNA sequence features characteristic to aminoacyl-tRNA synthetase class membership

    PubMed Central

    Jakó, Éena; Ittzés, Péter; Szenes, Áron; Kun, Ádám; Szathmáry, Eörs; Pál, Gábor

    2007-01-01

    Aminoacyl tRNA synthetases (aaRS) are grouped into Class I and II based on primary and tertiary structure and enzyme properties suggesting two independent phylogenetic lineages. Analogously, tRNA molecules can also form two respective classes, based on the class membership of their corresponding aaRS. Although some aaRS–tRNA interactions are not extremely specific and require editing mechanisms to avoid misaminoacylation, most aaRS–tRNA interactions are rather stereospecific. Thus, class-specific aaRS features could be mirrored by class-specific tRNA features. However, previous investigations failed to detect conserved class-specific nucleotides. Here we introduce a discrete mathematical approach that evaluates not only class-specific ‘strictly present’, but also ‘strictly absent’ nucleotides. The disjoint subsets of these elements compose a unique partition, named extended consensus partition (ECP). By analyzing the ECP for both Class I and II tDNA sets from 50 (13 archaeal, 30 bacterial and 7 eukaryotic) species, we could demonstrate that class-specific tRNA sequence features do exist, although not in terms of strictly conserved nucleotides as it had previously been anticipated. This finding demonstrates that important information was hidden in tRNA sequences inaccessible for traditional statistical methods. The ECP analysis might contribute to the understanding of tRNA evolution and could enrich the sequence analysis tool repertoire. PMID:17704131

  6. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery

    PubMed Central

    Li, Rongzhong; Macnamara, Lindsay M.; Leuchter, Jessica D.; Alexander, Rebecca W.; Cho, Samuel S.

    2015-01-01

    While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes. PMID:26184179

  7. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery.

    PubMed

    Li, Rongzhong; Macnamara, Lindsay M; Leuchter, Jessica D; Alexander, Rebecca W; Cho, Samuel S

    2015-01-01

    While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes. PMID:26184179

  8. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification

    PubMed Central

    Fang, Pengfei; Guo, Min

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories. PMID:26670257

  9. The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.

    PubMed

    Sissler, M; Giegé, R; Florentz, C

    1998-06-01

    Arginylation of tRNA transcripts by yeast arginyl-tRNA synthetase can be triggered by two alternate recognition sets in anticodon loops: C35 and U36 or G36 in tRNA(Arg) and C36 and G37 in tRNA(Asp) (Sissler M, Giegé R, Florentz C, 1996, EMBO J 15:5069-5076). Kinetic studies on tRNA variants were done to explore the mechanisms by which these sets are expressed. Although the synthetase interacts in a similar manner with tRNA(Arg) and tRNA(Asp), the details of the interaction patterns are idiosyncratic, especially in anticodon loops (Sissler M, Eriani G, Martin F, Giegé R, Florentz C, 1997, Nucleic Acids Res 25:4899-4906). Exchange of individual recognition elements between arginine and aspartate tRNA frameworks strongly blocks arginylation of the mutated tRNAs, whereas full exchange of the recognition sets leads to efficient arginine acceptance of the transplanted tRNAs. Unpredictably, the similar catalytic efficiencies of native and transplanted tRNAs originate from different k(cat) and Km combinations. A closer analysis reveals that efficient arginylation results from strong anticooperative effects between individual recognition elements. Nonrecognition nucleotides as well as the tRNA architecture are additional factors that tune efficiency. Altogether, arginyl-tRNA synthetase is able to utilize different context-dependent mechanistic routes to be activated. This confers biological advantages to the arginine aminoacylation system and sheds light on its evolutionary relationship with the aspartate system. PMID:9622124

  10. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  11. Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase.

    PubMed

    Wakasugi, Keisuke; Slike, Bonnie M; Hood, John; Ewalt, Karla L; Cheresh, David A; Schimmel, Paul

    2002-06-01

    The first step of protein synthesis is catalyzed by aminoacyl-tRNA synthetases. In addition, certain mammalian tRNA synthetases link protein synthesis to cytokine signaling pathways. In particular, human tyrosyl-tRNA synthetase (TyrRS) can be split by proteolysis into two fragments having distinct cytokine activities. One of the TyrRS fragments (mini TyrRS) contains features identical to those in CXC chemokines (like interleukin-8) that also act as angiogenic factors. Here mini TyrRS (but not full-length TyrRS) is shown to stimulate chemotaxis of endothelial cells in vitro and stimulate angiogenesis in each of two in vivo animal models. The angiogenic activity of mini TyrRS can be opposed by anti-angiogenic chemokines like IP-10. Thus, a biological fragment of human tyrosyl-tRNA synthetase links protein synthesis to regulation of angiogenesis. PMID:11956181

  12. The Roles of Compensatory Evolution and Constraint in Aminoacyl tRNA Synthetase Evolution

    PubMed Central

    Adrion, Jeffrey R.; White, P. Signe; Montooth, Kristi L.

    2016-01-01

    Mitochondrial protein translation requires interactions between transfer RNAs encoded by the mitochondrial genome (mt-tRNAs) and mitochondrial aminoacyl tRNA synthetase proteins (mt-aaRS) encoded by the nuclear genome. It has been argued that animal mt-tRNAs have higher deleterious substitution rates relative to their nuclear-encoded counterparts, the cytoplasmic tRNAs (cyt-tRNAs). This dynamic predicts elevated rates of compensatory evolution of mt-aaRS that interact with mt-tRNAs, relative to aaRS that interact with cyt-tRNAs (cyt-aaRS). We find that mt-aaRS do evolve at significantly higher rates (exemplified by higher dN and dN/dS) relative to cyt-aaRS, across mammals, birds, and Drosophila. While this pattern supports a model of compensatory evolution, the level at which a gene is expressed is a more general predictor of protein evolutionary rate. We find that gene expression level explains 10–56% of the variance in aaRS dN/dS, and that cyt-aaRS are more highly expressed in addition to having lower dN/dS values relative to mt-aaRS, consistent with more highly expressed genes being more evolutionarily constrained. Furthermore, we find no evidence of positive selection acting on either class of aaRS protein, as would be expected under a model of compensatory evolution. Nevertheless, the signature of faster mt-aaRS evolution persists in mammalian, but not bird or Drosophila, lineages after controlling for gene expression, suggesting some additional effect of compensatory evolution for mammalian mt-aaRS. We conclude that gene expression is the strongest factor governing differential amino acid substitution rates in proteins interacting with mitochondrial versus cytoplasmic factors, with important differences in mt-aaRS molecular evolution among taxonomic groups. PMID:26416980

  13. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.

    PubMed

    Dutta, Saheb; Choudhury, Kaberi; Banik, Sindrila Dutta; Nandi, Nilashis

    2014-03-01

    The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the

  14. p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish.

    PubMed

    Song, Youngzee; Shi, Yi; Carland, Tristan M; Lian, Shanshan; Sasaki, Tomoyuki; Schork, Nicholas J; Head, Steven R; Kishi, Shuji; Schimmel, Paul

    2016-07-26

    Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small amounts of mistranslation of components of the replication apparatus, we investigated the sensitivity to editing of the vertebrate genome. We show here that in zebrafish embryos, transient overexpression of editing-defective valyl-tRNA synthetase (ValRS(ED)) activated DNA break-responsive H2AX and p53-responsive downstream proteins, such as cyclin-dependent kinase (CDK) inhibitor p21, which promotes cell-cycle arrest at DNA damage checkpoints, and Gadd45 and p53R2, with pivotal roles in DNA repair. In contrast, the response of these proteins to expression of ValRS(ED) was abolished in p53-deficient fish. The p53-activated downstream signaling events correlated with suppression of abnormal morphological changes caused by the editing defect and, in adults, reversed a shortened life span (followed for 2 y). Conversely, with normal editing activities, p53-deficient fish have a normal life span and few morphological changes. Whole-fish deep sequencing showed genomic mutations associated with the editing defect. We suggest that the sensitivity of p53 to expression of an editing-defective tRNA synthetase has a critical role in promoting genome integrity and organismal homeostasis. PMID:27402763

  15. Mutational Separation of Aminoacylation and Cytokine Activities of Human Tyrosyl-tRNA Synthetase

    PubMed Central

    Kapoor, Mili; Otero, Francella J.; Slike, Bonnie M.; Ewalt, Karla L.; Yang, Xiang-Lei

    2009-01-01

    SUMMARY Aminoacyl-tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix—next to the active site—was recruited for IL-8-like cytokine signaling. Taking advantage of our high-resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine–structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of IL-8-like CXC cytokines. PMID:19477417

  16. Introduction of a leucine half-zipper engenders multiple high-quality crystals of a recalcitrant tRNA synthetase

    SciTech Connect

    Guo, Min; Shapiro, Ryan; Schimmel, Paul; Yang, Xiang-Lei

    2010-03-01

    E. coli alanyl-tRNA synthetase is recalcitrant to crystallization. A group of leucine substitutions has transformed the protein. Although Escherichia coli alanyl-tRNA synthetase was among the first tRNA synthetases to be sequenced and extensively studied by functional analysis, it has proved to be recalcitrant to crystallization. This challenge remained even for crystallization of the catalytic fragment. By mutationally introducing three stacked leucines onto the solvent-exposed side of an α-helix, an engineered catalytic fragment of the synthetase was obtained that yielded multiple high-quality crystals and cocrystals with different ligands. The engineered α-helix did not form a leucine zipper that interlocked with the same α-helix from another molecule. Instead, using the created hydrophobic spine, it interacted with other surfaces of the protein as a leucine half-zipper (LHZ) to enhance the crystal lattice interactions. The LHZ made crystal lattice contacts in all crystals of different space groups. These results illustrate the power of introducing an LHZ into helices to facilitate crystallization. The authors propose that the method can be unified with surface-entropy reduction and can be broadly used for protein-surface optimization in crystallization.

  17. Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase

    PubMed Central

    Tian, Qingnan; Wang, Caiyan; Liu, Yuhuan; Xie, Wei

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play a crucial role in protein translation by linking tRNAs with cognate amino acids. Among all the tRNAs, only tRNAHis bears a guanine base at position -1 (G-1), and it serves as a major recognition element for histidyl-tRNA synthetase (HisRS). Despite strong interests in the histidylation mechanism, the tRNA recognition and aminoacylation details are not fully understood. We herein present the 2.55 Å crystal structure of HisRS complexed with tRNAHis, which reveals that G-1 recognition is principally nonspecific interactions on this base and is made possible by an enlarged binding pocket consisting of conserved glycines. The anticodon triplet makes additional specific contacts with the enzyme but the rest of the loop is flexible. Based on the crystallographic and biochemical studies, we inferred that the uniqueness of histidylation system originates from the enlarged binding pocket (for the extra base G-1) on HisRS absent in other aaRSs, and this structural complementarity between the 5′ extremity of tRNA and enzyme is probably a result of coevolution of both. PMID:25722375

  18. Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase.

    PubMed

    Tian, Qingnan; Wang, Caiyan; Liu, Yuhuan; Xie, Wei

    2015-03-11

    Aminoacyl-tRNA synthetases (aaRSs) play a crucial role in protein translation by linking tRNAs with cognate amino acids. Among all the tRNAs, only tRNA(His) bears a guanine base at position -1 (G-1), and it serves as a major recognition element for histidyl-tRNA synthetase (HisRS). Despite strong interests in the histidylation mechanism, the tRNA recognition and aminoacylation details are not fully understood. We herein present the 2.55 Å crystal structure of HisRS complexed with tRNA(His), which reveals that G-1 recognition is principally nonspecific interactions on this base and is made possible by an enlarged binding pocket consisting of conserved glycines. The anticodon triplet makes additional specific contacts with the enzyme but the rest of the loop is flexible. Based on the crystallographic and biochemical studies, we inferred that the uniqueness of histidylation system originates from the enlarged binding pocket (for the extra base G-1) on HisRS absent in other aaRSs, and this structural complementarity between the 5' extremity of tRNA and enzyme is probably a result of coevolution of both. PMID:25722375

  19. Origin and Evolution of Glutamyl-prolyl tRNA Synthetase WHEP Domains Reveal Evolutionary Relationships within Holozoa

    PubMed Central

    Ray, Partho Sarothi; Fox, Paul L.

    2014-01-01

    Repeated domains in proteins that have undergone duplication or loss, and sequence divergence, are especially informative about phylogenetic relationships. We have exploited divergent repeats of the highly structured, 50-amino acid WHEP domains that join the catalytic subunits of bifunctional glutamyl-prolyl tRNA synthetase (EPRS) as a sequence-informed repeat (SIR) to trace the origin and evolution of EPRS in holozoa. EPRS is the only fused tRNA synthetase, with two distinct aminoacylation activities, and a non-canonical translation regulatory function mediated by the WHEP domains in the linker. Investigating the duplications, deletions and divergence of WHEP domains, we traced the bifunctional EPRS to choanozoans and identified the fusion event leading to its origin at the divergence of ichthyosporea and emergence of filozoa nearly a billion years ago. Distribution of WHEP domains from a single species in two or more distinct clades suggested common descent, allowing the identification of linking organisms. The discrete assortment of choanoflagellate WHEP domains with choanozoan domains as well as with those in metazoans supported the phylogenetic position of choanoflagellates as the closest sister group to metazoans. Analysis of clustering and assortment of WHEP domains provided unexpected insights into phylogenetic relationships amongst holozoan taxa. Furthermore, observed gaps in the transition between WHEP domain groupings in distant taxa allowed the prediction of undiscovered or extinct evolutionary intermediates. Analysis based on SIR domains can provide a phylogenetic counterpart to palaentological approaches of discovering “missing links” in the tree of life. PMID:24968216

  20. Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNA

    SciTech Connect

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S.

    1987-08-25

    Periodate-oxidized tRNA/sup Phe/ (tRNA/sub ox//sup Phe/) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the ..cap alpha../sub 2/..beta../sub 2/ enzyme with tRNA/sub ox//sup Phe/ results in the loss of tRNA/sup Phe/ aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-(/sup 14/C)tRNA/sub ox//sup Phe/ covalent complex indicates that the large (..cap alpha.., M/sub r/ 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA/sub ox//sup Phe/. The (/sup 14/C)tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys(Ado)-Phe, Ala-Asp-Lys(Ado)-Leu, and Lys-Ile-Lys(Ado)-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the ..cap alpha.. subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases.

  1. Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro.

    PubMed

    Liu, H; Peterson, R; Kessler, J; Musier-Forsyth, K

    1995-01-11

    In this study, we identify a subset of nucleotides that specify aminoacylation of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro. Twenty-two tRNA(Pro) variants were prepared by in vitro transcription and their efficiency of aminoacylation with proline (kcat/KM) was measured. From this analysis, we conclude that recognition elements for tRNA(Pro) aminoacylation by ProRS are located in at least three domains of the tRNA molecule. The largest decreases in the kinetic parameters for aminoacylation resulted from single substitutions at position G72 of the acceptor stem and position G36 of the anticodon. Anticodon nucleotide G35 and position A73 in the acceptor stem were also identified as major recognition elements. Moreover, bases that are believed to be important for maintaining the tertiary structure of the tRNA (G15 and C48) appear to be important for efficient recognition of tRNA(Pro) by ProRS in vitro. PMID:7870582

  2. Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases

    PubMed Central

    Niehues, Sven; Bussmann, Julia; Steffes, Georg; Erdmann, Ines; Köhrer, Caroline; Sun, Litao; Wagner, Marina; Schäfer, Kerstin; Wang, Guangxia; Koerdt, Sophia N.; Stum, Morgane; RajBhandary, Uttam L.; Thomas, Ulrich; Aberle, Hermann; Burgess, Robert W.; Yang, Xiang-Lei; Dieterich, Daniela; Storkebaum, Erik

    2015-01-01

    Dominant mutations in five tRNA synthetases cause Charcot–Marie–Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNAGly aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT. PMID:26138142

  3. Nucleotide sequence of a human tRNA gene heterocluster

    SciTech Connect

    Chang, Y.N.; Pirtle, I.L.; Pirtle, R.M.

    1986-05-01

    Leucine tRNA from bovine liver was used as a hybridization probe to screen a human gene library harbored in Charon-4A of bacteriophage lambda. The human DNA inserts from plaque-pure clones were characterized by restriction endonuclease mapping and Southern hybridization techniques, using both (3'-/sup 32/P)-labeled bovine liver leucine tRNA and total tRNA as hybridization probes. An 8-kb Hind III fragment of one of these ..gamma..-clones was subcloned into the Hind III site of pBR322. Subsequent fine restriction mapping and DNA sequence analysis of this plasmid DNA indicated the presence of four tRNA genes within the 8-kb DNA fragment. A leucine tRNA gene with an anticodon of AAG and a proline tRNA gene with an anticodon of AGG are in a 1.6-kb subfragment. A threonine tRNA gene with an anticodon of UGU and an as yet unidentified tRNA gene are located in a 1.1-kb subfragment. These two different subfragments are separated by 2.8 kb. The coding regions of the three sequenced genes contain characteristic internal split promoter sequences and do not have intervening sequences. The 3'-flanking region of these three genes have typical RNA polymerase III termination sites of at least four consecutive T residues.

  4. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.

    PubMed

    Brevet, Annie; Chen, Josiane; Commans, Stéphane; Lazennec, Christine; Blanquet, Sylvain; Plateau, Pierre

    2003-08-15

    The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases. PMID:12766171

  5. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase.

    PubMed Central

    Sissler, M; Eriani, G; Martin, F; Giegé, R; Florentz, C

    1997-01-01

    Gene cloning, overproduction and an efficient purification protocol of yeast arginyl-tRNA synthetase (ArgRS) as well as the interaction patterns of this protein with cognate tRNAArgand non-cognate tRNAAspare described. This work was motivated by the fact that the in vitro transcript of tRNAAspis of dual aminoacylation specificity and is not only aspartylated but also efficiently arginylated. The crystal structure of the complex between class II aspartyl-tRNA synthetase (AspRS) and tRNAAsp, as well as early biochemical data, have shown that tRNAAspis recognized by its variable region side. Here we show by footprinting with enzymatic and chemical probes that transcribed tRNAAspis contacted by class I ArgRS along the opposite D arm side, as is homologous tRNAArg, but with idiosyncratic interaction patterns. Besides protection, footprints also show enhanced accessibility of the tRNAs to the structural probes, indicative of conformational changes in the complexed tRNAs. These different patterns are interpreted in relation to the alternative arginine identity sets found in the anticodon loops of tRNAArgand tRNAAsp. The mirror image alternative interaction patterns of unmodified tRNAAspwith either class I ArgRS or class II AspRS, accounting for the dual identity of this tRNA, are discussed in relation to the class defining features of the synthetases. This study indicates that complex formation between unmodified tRNAAspand either ArgRS and AspRS is solely governed by the proteins. PMID:9396794

  6. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.

    PubMed

    Ibba, M; Hong, K W; Sherman, J M; Sever, S; Söll, D

    1996-07-01

    Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases. PMID:8692925

  7. Rational protein engineering in action: The first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus

    SciTech Connect

    Evdokimov, Artem G.; Mekel, Marlene; Hutchings, Kim; Narasimhan, Lakshmi; Holler, Tod; McGrath, Teresa; Beattie, Bryan; Fauman, Eric; Yan, Chunhong; Heaslet, Holly; Walter, Richard; Finzel, Barry; Ohren, Jeffrey; McConnell, Patrick; Braden, Timothy; Sun, Fang; Spessard, Cindy; Banotai, Craig; Al-Kassim, Loola; Ma, Weijun; Wengender, Paul; Kole, Denis; Garceau, Norman; Toogood, Peter; Liu, Jia

    2008-07-08

    In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality -- they only diffracted X-rays to 3--5 {angstrom} resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2 {angstrom} or better. This methodology is discussed and contrasted with the more traditional domain truncation approach.

  8. Brugia malayi Asparaginyl - tRNA Synthetase Stimulates Endothelial Cell Proliferation, Vasodilation and Angiogenesis

    PubMed Central

    D, Jeeva Jothi; Dhanraj, Muthu; Solaiappan, Shanmugam; Sivanesan, Sanjana; Kron, Michael; Dhanasekaran, Anuradha

    2016-01-01

    A hallmark of chronic infection with lymphatic filarial parasites is the development of lymphatic disease which often results in permanent vasodilation and lymphedema, but all of the mechanisms by which filarial parasites induce pathology are not known. Prior work showed that the asparaginyl-tRNA synthetase (BmAsnRS) of Brugia malayi, an etiological agent of lymphatic filariasis, acts as a physiocrine that binds specifically to interleukin-8 (IL-8) chemokine receptors. Endothelial cells are one of the many cell types that express IL-8 receptors. IL-8 also has been reported previously to induce angiogenesis and vasodilation, however, the effect of BmAsnRS on endothelial cells has not been reported. Therefore, we tested the hypothesis that BmAsnRS might produce physiological changes in endothelial by studying the in vitro effects of BmAsnRS using a human umbilical vein cell line EA.hy926 and six different endothelial cell assays. Our results demonstrated that BmAsnRS produces consistent and statistically significant effects on endothelial cells that are identical to the effects of VEGF, vascular endothelial growth factor. This study supports the idea that new drugs or immunotherapies that counteract the adverse effects of parasite-derived physiocrines may prevent or ameliorate the vascular pathology observed in patients with lymphatic filariasis. PMID:26751209

  9. Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics.

    PubMed

    Uter, Nathan T; Perona, John J

    2004-10-01

    Pre-steady-state kinetic studies of Escherichia coli glutaminyl-tRNA synthetase conclusively demonstrate the existence of long-distance pathways of communication through the protein-RNA complex. Measurements of aminoacyl-tRNA synthesis reveal a rapid burst of product formation followed by a slower linear increase corresponding to k(cat). Thus, a step after chemistry but before regeneration of active enzyme is rate-limiting for synthesis of Gln-tRNA(Gln). Single-turnover kinetics validates these observations, confirming that the rate of the chemical step for tRNA aminoacylation (k(chem)) exceeds the steady-state rate by nearly 10-fold. The concentration dependence of the single-turnover reaction further reveals that the glutamine K(d) is significantly higher than the steady-state K(m) value. The separation of binding from catalytic events by transient kinetics now allows precise interpretation of how alterations in tRNA structure affect the aminoacylation reaction. Mutation of U35 in the tRNA anticodon loop decreases k(chem) by 30-fold and weakens glutamine binding affinity by 20-fold, demonstrating that the active-site configuration depends on enzyme-tRNA contacts some 40 A distant. By contrast, mutation of the adjacent G36 has very small effects on k(chem) and K(d) for glutamine. Together with x-ray crystallographic data, these findings allow a comparative evaluation of alternative long-range signaling pathways and lay the groundwork for systematic exploration of how induced-fit conformational transitions may control substrate selection in this model enzyme-RNA complex. PMID:15452355

  10. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding

    PubMed Central

    Frugier, Magali; Moulinier, Luc; Giegé, Richard

    2000-01-01

    Cytoplasmic aspartyl-tRNA synthetase (AspRS) from Saccharomyces cerevisiae is a homodimer of 64 kDa subunits. Previous studies have emphasized the high sensitivity of the N-terminal region to proteolytic cleavage, leading to truncated species that have lost the first 20–70 residues but that retain enzymatic activity and dimeric structure. In this work, we demonstrate that the N-terminal extension in yeast AspRS participates in tRNA binding and we generalize this finding to eukaryotic class IIb aminoacyl-tRNA synthetases. By gel retardation studies and footprinting experiments on yeast tRNAAsp, we show that the extension, connected to the anticodon-binding module of the synthetase, contacts tRNA on the minor groove side of its anticodon stem. Sequence comparison of eukaryotic class IIb synthetases identifies a lysine-rich 11 residue sequence (29LSKKALKKLQK39 in yeast AspRS with the consensus xSKxxLKKxxK in class IIb synthetases) that is important for this binding. Direct proof of the role of this sequence comes from a mutagenesis analysis and from binding studies using the isolated peptide. PMID:10811628

  11. The Enzymatic Paradox of Yeast Arginyl-tRNA Synthetase: Exclusive Arginine Transfer Controlled by a Flexible Mechanism of tRNA Recognition.

    PubMed

    McShane, Ariel; Hok, Eveline; Tomberlin, Jensen; Eriani, Gilbert; Geslain, Renaud

    2016-01-01

    Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings. PMID:26844776

  12. The Enzymatic Paradox of Yeast Arginyl-tRNA Synthetase: Exclusive Arginine Transfer Controlled by a Flexible Mechanism of tRNA Recognition

    PubMed Central

    Eriani, Gilbert; Geslain, Renaud

    2016-01-01

    Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings. PMID:26844776

  13. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase

    PubMed Central

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J.; Nangle, Leslie A.; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-01-01

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2–4 SV gave an alternative, neomorphic dimer interface ‘orthogonal’ to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2–3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  14. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase.

    PubMed

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-02-18

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2-4 SV gave an alternative, neomorphic dimer interface 'orthogonal' to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2-3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  15. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.

    PubMed Central

    Rogers, M J; Adachi, T; Inokuchi, H; Söll, D

    1994-01-01

    Wild-type Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) poorly aminoacylates opal suppressors (GLN) derived from tRNA(Gln). Mutations in glnS (the gene encoding GlnRS) that compensate for impaired aminoacylation were isolated by genetic selection. Two glnS mutants were obtained by using opal suppressors differing in the nucleotides composing the base pair at 3.70: glnS113 with an Asp-235-->Asn change selected with GLNA3U70 (GLN carrying G3-->A and C70-->U changes), and glnS114 with a Gln-318-->Arg change selected with GLNU70 (GLN carrying a C70-->U change). The Asp-235-->Asn change was identified previously by genetic selection. Additional mutants were isolated by site-directed mutagenesis followed by genetic selection; the mutant enzymes have single amino acid changes (Lys-317-->Arg and Gln-318-->Lys). A number of mutants with no phenotype also were obtained randomly. In vitro aminoacylation of a tRNA(Gln) transcript by GlnRS enzymes with Lys-317-->Arg, Gln-318-->Lys, or Gln-318-->Arg changes shows that the enzyme's kinetic parameters are not greatly affected by the mutations. However, aminoacylation of a tRNA(Gln) transcript with an opal (UCA) anticodon shows that the specificity constants (kcat/Km) for the mutant enzymes were 5-10 times above that of the wild-type GlnRS. Interactions between Lys-317 and Gln-318 with the inside of the L-shaped tRNA and with the side chain of Gln-234 provide a connection between the acceptor end-binding and anticodon-binding domains of GlnRS. The GlnRS mutants isolated suggest that perturbation of the interactions with the inside of the tRNA L shape results in relaxed anticodon recognition. Images Fig. 3 PMID:7506418

  16. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment

    SciTech Connect

    Ling, Jiqiang; Peterson, Kaitlyn M.; Simonovic, Ivana; Cho, Chris; Soll, Dieter; Simonovic, Miljan

    2014-03-12

    Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular ?? with a threonine (Thr) anticodon, MST1 also recognizes an unusual ??, which contains an enlarged anticodon loop and an anticodon triplet that reassigns the CUN codons from leucine to threonine. Our data show that MST1 recognizes the anticodon loop in both tRNAs, but employs distinct recognition mechanisms. The size but not the sequence of the anticodon loop is critical for ?? recognition, whereas the anticodon sequence is essential for aminoacylation of ??. The crystal structure of MST1 reveals that, while lacking the N-terminal editing domain, the enzyme closely resembles the bacterial threonyl-tRNA synthetase (ThrRS). A detailed structural comparison with Escherichia coli ThrRS, which is unable to aminoacylate ??, reveals differences in the anticodon-binding domain that probably allow recognition of the distinct anticodon loops. Finally, our mutational and modeling analyses identify the structural elements in MST1 (e.g., helix {alpha}11) that define tRNA selectivity. Thus, MTS1 exemplifies that a single aaRS can recognize completely divergent anticodon loops of natural isoacceptor tRNAs and that in doing so it facilitates the reassignment of the genetic code in yeast mitochondria.

  17. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.

    PubMed

    Meinnel, T; Mechulam, Y; Fayat, G; Blanquet, S

    1992-09-25

    The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met). PMID:1408786

  18. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  19. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage.

    PubMed

    Wei, Na; Shi, Yi; Truong, Lan N; Fisch, Kathleen M; Xu, Tao; Gardiner, Elisabeth; Fu, Guangsen; Hsu, Yun-Shiuan Olivia; Kishi, Shuji; Su, Andrew I; Wu, Xiaohua; Yang, Xiang-Lei

    2014-10-23

    Tyrosyl-tRNA synthetase (TyrRS) is known for its essential aminoacylation function in protein synthesis. Here we report a function for TyrRS in DNA damage protection. We found that oxidative stress, which often downregulates protein synthesis, induces TyrRS to rapidly translocate from the cytosol to the nucleus. We also found that angiogenin mediates or potentiates this stress-induced translocalization. The nuclear-localized TyrRS activates transcription factor E2F1 to upregulate the expression of DNA damage repair genes such as BRCA1 and RAD51. The activation is achieved through direct interaction of TyrRS with TRIM28 to sequester this vertebrate-specific epigenetic repressor and its associated HDAC1 from deacetylating and suppressing E2F1. Remarkably, overexpression of TyrRS strongly protects against UV-induced DNA double-strand breaks in zebrafish, whereas restricting TyrRS nuclear entry completely abolishes the protection. Therefore, oxidative stress triggers an essential cytoplasmic enzyme used for protein synthesis to translocate to the nucleus to protect against DNA damage. PMID:25284223

  20. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms

    PubMed Central

    Tsunoda, Masaru; Kusakabe, Yoshio; Tanaka, Nobutada; Ohno, Satoshi; Nakamura, Masashi; Senda, Toshiya; Moriguchi, Tomohisa; Asai, Norio; Sekine, Mitsuo; Yokogawa, Takashi; Nishikawa, Kazuya; Nakamura, Kazuo T.

    2007-01-01

    The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNATyrs. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNATyr(GΨA). Structural information for TyrRS–tRNATyr complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs–tRNATyrs pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNATyr recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNATyr pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNATyr. On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms. PMID:17576676

  1. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    SciTech Connect

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  2. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  3. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  4. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Francis, M A; Rajbhandary, U L

    1990-01-01

    We showed previously that the human initiator tRNA gene, in the context of its own 5'- and 3'-flanking sequences, was not expressed in Saccharomyces cerevisiae. Here we show that switching its 5'-flanking sequence with that of a yeast arginine tRNA gene allows its functional expression in yeast cells. The human initiator tRNA coding sequence was either cloned downstream of the yeast arginine tRNA gene, with various lengths of intergenic spacer separating them, or linked directly to the 5'-flanking sequence of the yeast arginine tRNA coding sequence. The human initiator tRNA made in yeast cells can be aminoacylated with methionine, and it was clearly separated from the yeast initiator and elongator methionine tRNAs by RPC-5 column chromatography. It was also functional in yeast cells. Expression of the human initiator tRNA in transformants of a slow-growing mutant yeast strain, in which three of the four endogenous initiator tRNA genes had been inactivated by gene disruption, resulted in enhancement of the growth rate. The degree of growth rate enhancement correlated with the steady-state levels of human tRNA in the transformants. Besides providing a possible assay for in vivo function of mutant human initiator tRNAs, this work represents the only example of the functional expression of a vertebrate RNA polymerase III-transcribed gene in yeast cells. Images PMID:2201892

  5. Molecular recognition of proline tRNA by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.

    PubMed

    Yokozawa, Junji; Okamoto, Koji; Kawarabayasi, Yutaka; Kuno, Atsushi; Hasegawa, Tsunemi

    2003-01-01

    To investigate the recognition mechanism of tRNA(Pro) by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1, various tRNA(Pro) transcripts were prepared by in vitro transcription system. These transcripts were aminoacylated with proline by overexpressed A. pernix prolyl-tRNA synthetase. From prolylation experiments, recognition elements of A. pernix tRNA(Pro) were determined to be G35 and G36 of anticodon, discriminator base A73, and G1-C72 base pair at acceptor stem end. PMID:14510473

  6. ANALYSIS OF RILERS, AN ISOLEUCYL-TRNA SYNTHETASE GENE ASSOCIATED WITH MUPIROCIN PRODUCTION BY PSUEDOMONAS FLUORESCENS NCIMB 10586

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some strains of Pseudomonas fluorescens produce the antibiotic mupirocin, which functions as a competitive inhibitor of isoleucyl-tRNA synthetase (ILERS). Mupirocin-producing strains of P. fluorescens must overcome the inhibitory effects of the antibiotic to avoid self-suicide. However, it is not c...

  7. Crystallogenesis in tRNA aminoacylation systems: how packing accounts for crystallization drawbacks with yeast aspartyl-tRNA synthetase

    NASA Astrophysics Data System (ADS)

    Sauter, C.; Lorber, B.; Théobald-Dietrich, A.; Giegé, R.

    2001-11-01

    Two active forms of homodimeric aspartyl-tRNA synthetase from Saccharomyces cerevisiae differing in length at their N-terminus crystallize in the same orthorhombic space group (P4 12 12) with identical cell parameters. Initial studies were hampered by the poor and anisotropic diffraction of the crystals of enzyme extracted from yeast cells. Isotropic diffraction at higher resolution was obtained when crystals were grown from an engineered protein deprived of its 70 N-terminal amino acids. The present work describes the packing contacts in crystals of the shortened protein whose structure was solved at 2.3 Å resolution. Each subunit of the enzyme develops two lattice interactions covering a surface of 670 Å 2, about 7-fold smaller than that of the interface between monomers. The smallest lattice interaction, covering 150 Å 2, brings the anticodon binding domain adjacent to the N-terminus of one monomer in contact with a loop from the active-site domain of a neighboring monomer. Modeling of the extension in the solvent channels shows that the 150 Å 2 intermolecular contact is perturbed in protein molecules possessing a floppy appendix while their second and larger 520 Å 2 contact area is unaffected. Altogether the packing organization explains the poor diffraction properties of the native enzyme crystals and the enhanced diffraction of the crystals of shortened synthetase.

  8. Human cytoplasmic isoleucyl-tRNA synthetase: selective divergence of the anticodon-binding domain and acquisition of a new structural unit.

    PubMed Central

    Shiba, K; Suzuki, N; Shigesada, K; Namba, Y; Schimmel, P; Noda, T

    1994-01-01

    We show here that the class I human cytoplasmic isoleucyl-tRNA synthetase is an exceptionally large polypeptide (1266 aa) which, unlike its homologues in lower eukaryotes and prokaryotes, has a third domain of two repeats of an approximately 90-aa sequence appended to its C-terminal end. While extracts of Escherichia coli do not aminoacrylate mammalian tRNA with isoleucine, expression of the cloned human gene in E. coli results in charging of the mammalian tRNA substrate. The appended third domain is dispensable for detection of this aminoacylation activity and may be needed for assembly of a multisynthetase complex in mammalian cells. Alignment of the sequences of the remaining two domains shared by isoleucyl-tRNA synthetases from E. coli to human reveals a much greater selective pressure on the domain needed for tRNA acceptor helix interactions and catalysis than on the domain needed for interactions with the anticodon. This result may have implications for the historical development of an operational RNA code for amino acids. Images PMID:8052601

  9. Nucleotide composition analysis of tRNA from leukemia patient cell samples and human cell lines.

    PubMed Central

    Agris, P F

    1975-01-01

    A technique developed for analysis of less than microgram quantities of tRNA has been applied to the study of human leukemia. Leucocytes from peripheal blood and bone marrow samples of six, untreated leukemia patients and cells of five different established human cell lines were maintained for 18 hours in media containing (32P)-phosphate. Incorporation of radioactive phosphate into the cells from the patient samples was slightly less than that of the cell lines. Likewise, incorporation of (32P)-phosphate into the tRNA of the patient samples (approximately 5 x 106 DPM/mug tRNA) was also less then that incorporated into the tRNA of the cell lines. The major and minor nucleotide compositions of the unfractionated tRNA preparations from each patient sample and each cell line were determined and compared. Similarities and differences in the major and minor nucleotide compositions of the tRNA preparations are discussed with reference to types of leukemia and the importance of patient sample analysis versus analysis of cultured human cells. PMID:1057159

  10. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    SciTech Connect

    Levin, Inna; Kessler, Naama; Moor, Nina; Klipcan, Liron; Koc, Emine; Templeton, Paul; Spremulli, Linda; Safro, Mark

    2007-09-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55, b = 90, c = 96 Å.

  11. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites☆

    PubMed Central

    Pham, James S.; Dawson, Karen L.; Jackson, Katherine E.; Lim, Erin E.; Pasaje, Charisse Flerida A.; Turner, Kelsey E.C.; Ralph, Stuart A.

    2013-01-01

    Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases. PMID:24596663

  12. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.

    PubMed

    Ye, Qing; Wang, Meng; Fang, Zhi-Peng; Ruan, Zhi-Rong; Ji, Quan-Quan; Zhou, Xiao-Long; Wang, En-Duo

    2015-10-01

    The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS's catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency. PMID:26272616

  13. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Swetha, Rayapadi G.; Anbarasu, Anand; Ramaiah, Sudha; Sambandamurthy, Vasan K.

    2016-01-01

    Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis. PMID:26794499

  14. A Loss-of-Function Variant in the Human Histidyl-tRNA Synthetase (HARS) Gene is Neurotoxic In Vivo

    PubMed Central

    Vester, Aimee; Velez-Ruiz, Gisselle; McLaughlin, Heather M.; Lupski, James R.; Talbot, Kevin; Vance, Jeffery M.; Züchner, Stephan; Roda, Ricardo H.; Fischbeck, Kenneth H.; Biesecker, Leslie G.; Nicholson, Garth; Beg, Asim; Antonellis, Anthony

    2012-01-01

    Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for ligating amino acids to cognate tRNA molecules. Mutations in four genes encoding an ARS have been implicated in inherited peripheral neuropathy with an axonal pathology, suggesting that all ARS genes are relevant candidates for disease in patients with related phenotypes. Here, we present results from a mutation screen of the histidyl-tRNA synthetase (HARS) gene in a large cohort of patients with peripheral neuropathy. These efforts revealed a rare missense variant (p.Arg137Gln) that resides at a highly conserved amino acid, represents a loss-of-function allele when evaluated in yeast complementation assays, and is toxic to neurons when expressed in a worm model. In addition to the patient with peripheral neuropathy, p.Arg137Gln HARS was detected in three individuals by genome-wide exome sequencing. These findings suggest that HARS is the fifth ARS locus associated with axonal peripheral neuropathy. Implications for identifying ARS alleles in human populations and assessing them for a role in neurodegenerative phenotypes are discussed. PMID:22930593

  15. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    SciTech Connect

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard Rudinger-Thirion, Joëlle; Sauter, Claude

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  16. Unexpected functions of tRNA and tRNA processing enzymes.

    PubMed

    Hurto, Rebecca L

    2011-01-01

    tRNA and tRNA processing enzymes impact more than protein production. Studies have uncovered roles for tRNA in the regulation of transcription, translation and protein turnover. Induced by stress or as a programmed part of development, nonrandom tRNA fragments can guide mRNA cleavage, inhibit translation and promote morphological changes. Similarly, tRNA processing enzymes, such as RNaseP and tRNA aminoacyl-synthetases participate in tasks affecting more than tRNA function (i.e., mRNA function and cellular signaling). Unraveling the complexities of their functions will increase our understanding of how mutations associated with disease impact these functions and the downstream consequences. This chapter focuses on how tRNA and tRNA processing enzymes influence cellular function and RNA-infrastructure via pathways beyond the decoding activities that tRNA are known for. PMID:21915787

  17. Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: Identification of amino acid residues labeled by periodate-oxidized tRNA sup fMet molecules having modified lengths at the 3 prime -acceptor end

    SciTech Connect

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S. )

    1990-09-04

    Initiator tRNA molecules modified at the 3{prime}-end and lacking either A{sub 76} (tRNA-C{sub 75}), the C{sub 75}-A{sub 76} (tRNA-C{sub 74}), the C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 73}), or the A{sub 73}-C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 72}) nucleotides were prepared stepwise by repeated periodate, lysine, and alkaline phosphatase treatments. When incubated with trypsin-modified methionyl-tRNA synthetase (MTS{sub T}), excess amounts of the dialdehyde derivative of each of these shortened tRNAs (tRNA-C{sub 75}ox, tRNA-A{sub 73}ox, and tRNA-A{sub 72}ox) abolished both the isotopic ({sup 32}P)PP{sub i}ATP exchange and the tRNA aminoacylation activities of the enzyme. In the presence of limiting concentrations of the various tRNAox species, the relative extents of inactivation of the enzyme were consistent with the formation of 1:1 complexes of the reacting tRNAs with the monomeric modified synthetase. Specificity of the labeling was further established by demonstrating that tRNA-C{sub 75}ox binds the enzyme with an equilibrium constant and stoichiometry values in good agreement with those for the binding of nonoxidized tRNA-C{sub 75}. The peptides of MTS{sub T} labeled with either tRNA-C{sub 75}ox or tRNA-C{sub 74}ox were identified. In a previous work all these peptides but one (peptide D) had been already found labeled upon MTS{sub T} incubation with ({sup 14}C)tRNA-A{sub 76}ox. According to the crystallographic structure of MTS{sub T}, the labeled residues K335, K61, K142, K147, and K149 are within a sphere of about 5.5-{angstrom} radius. The present results therefore argue for a marked flexibility of the 3{prime}-end of the enzyme-bound tRNA, enabling it to contact any of the identified reacting residues. Such a cluster of basic amino acids may reflect ionic requirements in the guiding of the negatively charged CCA arm of tRNA toward enzyme-bound methionyl-adenylate.

  18. Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells

    PubMed Central

    Han, Jung Min; Kim, Sunghoon; Celada, Antonio; Ribas de Pouplana, Lluís

    2011-01-01

    Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity. PMID:22140588

  19. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases.

    PubMed

    Schwenzer, Hagen; Zoll, Joffrey; Florentz, Catherine; Sissler, Marie

    2014-01-01

    Mitochondria are considered as the powerhouse of eukaryotic cells. They host several central metabolic processes fueling the oxidative phosphorylation pathway (OXPHOS) that produces ATP from its precursors ADP and inorganic phosphate Pi (PPi). The respiratory chain complexes responsible for the OXPHOS pathway are formed from complementary sets of protein subunits encoded by the nuclear genome and the mitochondrial genome, respectively. The expression of the mitochondrial genome requires a specific and fully active translation machinery from which aminoacyl-tRNA synthetases (aaRSs) are key actors. Whilst the macromolecules involved in mammalian mitochondrial translation have been under investigation for many years, there has been an explosion of interest in human mitochondrial aaRSs (mt-aaRSs) since the discovery of a large (and growing) number of mutations in these genes that are linked to a variety of neurodegenerative disorders. Herein we will review the present knowledge on mt-aaRSs in terms of their biogenesis, their connection to mitochondrial respiration, i.e., the respiratory chain (RC) complexes, and to the mitochondrial translation machinery. The pathology-related mutations detected so far are described, with special attention given to their impact on mt-aaRSs biogenesis, functioning, and/or subsequent activities. The collected data to date shed light on the diverse routes that are linking primary molecular possible impact of a mutation to its phenotypic expression. It is envisioned that a variety of mechanisms, inside and outside the translation machinery, would play a role on the heterogeneous manifestations of mitochondrial disorders. PMID:23824528

  20. Comparative proteomics as a new tool for exploring human mitochondrial tRNA disorders.

    PubMed

    Rabilloud, Thierry; Strub, Jean-Marc; Carte, Nathalie; Luche, Sylvie; Van Dorsselaer, Alain; Lunardi, Joël; Giegé, Richard; Florentz, Catherine

    2002-01-01

    More than 70 different point mutations in human mitochondrial tRNA genes are correlated with severe disorders, including fatal cardiopathies, encephalopathies, myopathies, and others. So far, investigation of the molecular impact(s) of mutations has focused on the affected tRNA itself by seeking structural and/or functional perturbations capable of interfering with synthesis of the 13 mitochondrion-encoded subunits of respiratory chain complexes. Here, a proteomic approach was used to investigate whether such mutations would affect the pattern of mitochondrial proteins at a broader level. Analysis of several hundred mitochondrial proteins from sibling cybrid cell lines by two-dimensional electrophoresis, an approach that takes into account all regulatory steps of mitochondrial and nuclear gene expression, indeed reveals a number of up- and downregulated proteins when healthy and single-point-mutation-carrying mitochondria representative of either MELAS or MERRF syndrome were compared. Assignment by mass spectrometry of the two proteins which exhibit obvious large quantitative decreases in the levels of both pathologic mitochondria identified nuclear-encoded subunits of cytochrome c oxidase, a respiratory chain complex. This clearly shows a linkage between the effects of mutations in mitochondrial tRNA genes and the steady-state level of nuclear-encoded proteins in mitochondria. It opens new routes toward a large-scale exploration of potential proteic partners involved in the genotype-phenotype correlation of mitochondrial disorders. PMID:11772011

  1. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    SciTech Connect

    Webb, G.C.; Vaska, V.L.; Ford, J.H.

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  2. A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection.

    PubMed Central

    Biasolo, M A; Radaelli, A; Del Pup, L; Franchin, E; De Giuli-Morghen, C; Palu, G

    1996-01-01

    Different strategies proposed in the literature to attempt gene therapy of AIDS are based mainly on the intracellular production of RNA and protein therapeutics. This report describes the construction and the anti-human immunodeficiency virus type 1 (HIV-1) activity of a new type of antisense tRNA directed against a nucleotide region in the first coding exon of HIV-1 tat (nucleotides 5924 to 5943; Los Alamos data bank) which is conserved among many HIV-1 clones. The anti-tat antisense sequence was inserted into a tRNA(Pro) backbone by replacement of the anticodon loop, without altering the tRNA canonic tetraloop structure. The antisense tRNA was able to interact effectively with its target in vitro. Jurkat cells that constitutively expressed the anti-tat tRNA following retroviral vector transduction exhibited significant resistance to HIV-1 de novo infection. Resistance seemed to correlate with the level of antisense expression. This is the first time that such a tRNA antisense strategy has been shown to be effective as a genetic treatment of HIV-1 infection in tissue culture. The construct design proposed in this report has some intrinsic advantages: the transcript is driven by a polymerase III promoter, the short length of the RNA minimizes effects of intramolecular base pairing that may impair target recognition, and the antisense RNA has the stability and intracellular fate of a native tRNA molecule. PMID:8642637

  3. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA

    PubMed Central

    Baleva, Maria; Gowher, Ali; Kamenski, Piotr; Tarassov, Ivan; Entelis, Nina; Masquida, Benoît

    2015-01-01

    In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2). PMID:25918939

  4. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis.

    PubMed

    Wakasugi, Keisuke; Slike, Bonnie M; Hood, John; Otani, Atsushi; Ewalt, Karla L; Friedlander, Martin; Cheresh, David A; Schimmel, Paul

    2002-01-01

    Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis. It was shown recently that human tyrosyl-tRNA synthetase (TyrRS) can be split into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. Tryptophanyl-tRNA synthetase (TrpRS) is a close homologue of TyrRS. A natural fragment, herein designated as mini TrpRS, was shown by others to be produced by alternative splicing. Production of this fragment is reported to be stimulated by IFN-gamma, a cytokine that also stimulates production of angiostatic factors. Mini TrpRS is shown here to be angiostatic in a mammalian cell culture system, the chicken embryo, and two independent angiogenesis assays in the mouse. The full-length enzyme is inactive in the same assays. Thus, protein synthesis may be linked to the regulation of angiogenesis by a natural fragment of TrpRS. PMID:11773626

  5. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis

    PubMed Central

    Wakasugi, Keisuke; Slike, Bonnie M.; Hood, John; Otani, Atsushi; Ewalt, Karla L.; Friedlander, Martin; Cheresh, David A.; Schimmel, Paul

    2002-01-01

    Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis. It was shown recently that human tyrosyl-tRNA synthetase (TyrRS) can be split into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. Tryptophanyl-tRNA synthetase (TrpRS) is a close homologue of TyrRS. A natural fragment, herein designated as mini TrpRS, was shown by others to be produced by alternative splicing. Production of this fragment is reported to be stimulated by IFN-γ, a cytokine that also stimulates production of angiostatic factors. Mini TrpRS is shown here to be angiostatic in a mammalian cell culture system, the chicken embryo, and two independent angiogenesis assays in the mouse. The full-length enzyme is inactive in the same assays. Thus, protein synthesis may be linked to the regulation of angiogenesis by a natural fragment of TrpRS. PMID:11773626

  6. Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase chromosomes.

    PubMed

    Yamauchi, M; Yamauchi, N; Meuth, M

    1990-07-01

    Successive rounds of chromosome-mediated gene transfer were used to complement a hamster cytidine auxotroph deficient in CTP synthetase activity and eventually to clone human genomic and cDNA fragments coding for the structural gene. Our approach was to isolate human Alu+ fragments from a tertiary transfectant and to utilize these fragments to screen a panel of primary transfectants. In this manner two DNA fragments, both mapping within the structural gene, were identified and used to clone a partial length cDNA. The remaining portion of the open reading frame was obtained through the RACE polymerase chain reaction technique. The open reading frame encodes 591 amino acids having a striking degree of similarity to the Escherichia coli structural gene (48% identical amino acids with 76% overall similarity including conservative substitutions) with the glutamine amide transfer domain being particularly conserved. As regulatory mutations of CTP synthetase confer both multi-drug resistance to agents widely used in cancer chemotherapy and a mutator phenotype, the cloning of the structural gene will be important in assessing the relevance of such phenotypes to the development of cellular drug resistance. PMID:2113467

  7. Formation of tRNA granules in the nucleus of heat-induced human cells

    SciTech Connect

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  8. Human CLP1 mutations alter tRNA biogenesis affecting both peripheral and central nervous system function

    PubMed Central

    Karaca, Ender; Weitzer, Stefan; Pehlivan, Davut; Shiraishi, Hiroshi; Gogakos, Tasos; Hanada, Toshikatsu; Jhangiani, Shalini N.; Wiszniewski, Wojciech; Withers, Marjorie; Campbell, Ian M.; Erdin, Serkan; Isikay, Sedat; Franco, Luis M.; Gonzaga-Jauregui, Claudia; Gambin, Tomasz; Gelowani, Violet; Hunter, Jill V.; Yesil, Gozde; Koparir, Erkan; Yilmaz, Sarenur; Brown, Miguel; Briskin, Daniel; Hafner, Markus; Morozov, Pavel; Farazi, Thalia A.; Bernreuther, Christian; Glatzel, Markus; Trattnig, Siegfried; Friske, Joachim; Kronnerwetter, Claudia; Bainbridge, Matthew N.; Gezdirici, Alper; Seven, Mehmet; Muzny, Donna M.; Boerwinkle, Eric; Ozen, Mustafa; Clausen, Tim; Tuschl, Thomas; Yuksel, Adnan; Hess, Andreas; Gibbs, Richard A.; Martinez, Javier; Penninger, Josef M.; Lupski, James R.

    2014-01-01

    CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a novel neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis. PMID:24766809

  9. Assignment of the cysteinyl-tRNA synthetase gene (CARS) to 11p15. 5

    SciTech Connect

    Cruzen, M.E.; Bengtsson, U.; McMahon, J.; Wasmuth, J.J.; Arfin, S.M. )

    1993-03-01

    The attachment of each of the 20 naturally occurring amino acids to their cognate tRNA isoaccepting families is catalyzed by a specific aminoacyl-tRNA synthetase. The structural genes encoding 10 of these enzymes have been assigned to specific human chromosomes. The HARS, LARS, RARS, and TARS genes, encoding histidyl-, leucyl-, arginyl-, and threonyl-tRNA synthetases, respectively, are all located on chromosome 5( 1, 5, 7, 9, 14). The MARS (methionyl-tRNA synthetase), NARS (asparaginyl-tRNA synthetase), VARS (valyl-tRNA synthetase), and WARS (tryptophanyl-tRNA synthetase) genes have been assigned to chromosomes 12, 18, 6, and 14, respectively (3, 4, 6, 8). A gene originally identified as encoding glutaminyl-tRNA synthetase was mapped to chromosome 1q32-q42 (10). However, a recent study suggests that the product of this gene is, in fact, a multifunctional enzyme with both glutamyl- and prolyl-tRNA synthetase activities (2). The fact that 4 of the 10 aminoacyl-tRNA synthetase genes already mapped are located on chromosome 5 may be fortuitous but might also indicate an evolutionary or regulatory relatedness. It is therefore, of interest to map genes encoding other aminoacyl-tRNA synthetases to determine if additional examples of synteny exist. The recent isolation of cDNA and genomic DNA clones for human cysteinyl-tRNA synthetase has now enabled us to map the CARS gene to segment p15.5 on chromosome 11 by fluorescence in situ hybridization.

  10. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  11. Structure of Human Phosphopantothenoylcysteine Synthetase at 2.3 Å Resolution

    SciTech Connect

    Manoj, N.; Strauss, E.; Begley, T.P.; Ealick, S.E.

    2010-12-01

    The structure of human phosphopantothenoylcysteine (PPC) synthetase was determined at 2.3 {angstrom} resolution. PPC synthetase is a dimer with identical monomers. Some features of the monomer fold resemble a group of NAD-dependent enzymes, while other features resemble the ribokinase fold. The ATP, phosphopantothenate, and cysteine binding sites were deduced from modeling studies. Highly conserved ATP binding residues include Gly43, Ser61, Gly63, Gly66, Phe230, and Asn258. Highly conserved phosphopantothenate binding residues include Asn59, Ala179, Ala180, and Asp183 from one monomer and Arg55 from the adjacent monomer. The structure predicts a ping pong mechanism with initial formation of an acyladenylate intermediate, followed by release of pyrophosphate and attack by cysteine to form the final products PPC and AMP.

  12. Understanding species-specific differences in substrate recognition by Escherichia coli and human prolyl-tRNA synthetases.

    PubMed

    Musier-Forsyth, K; Stehlin, C; Burke, B; Liu, H

    1997-01-01

    Class II human prolyl-tRNA synthetase (ProRS) aminoacylates in vitro transcribed human tRNA(Pro) with kinetic parameters that are similar to those previously determined for aminoacylation of Escherichia coli tRNA(Pro) by its cognate synthetase. As in the bacterial system, large decreases in aminoacylation by human ProRS occur upon mutating anticodon positions G35 and G36 of human tRNA(Pro). The N73 'discriminator' base and the first and third base pairs of the acceptor stem vary between the E.coli and human isoacceptor groups. In contrast to the E. coli synthetase, the human enzyme does not appear to recognize these elements, since mutations at these positions do not significantly affect cognate synthetase charging. E. coli ProRS does not cross-aminoacylate human tRNA(Pro), and the bacterial tRNA(Pro) is a poor substrate for the human enzyme. Mutations in both the tRNAs and the synthetases have been made in an effort to identify elements in each system responsible for blocking cross-species aminoacylation. Alignment of all known ProRS primary sequences from different species reveals particularly low overall sequence homology, as well as two distinct groups of enzymes. The sequence divergence between E. coli and human ProRSs helps to explain the species-specific differences in the RNA code for aminoacylation of tRNA(Pro). PMID:9478190

  13. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis

    PubMed Central

    Vilardo, Elisa; Nachbagauer, Christa; Buzet, Aurélie; Taschner, Andreas; Holzmann, Johann; Rossmanith, Walter

    2012-01-01

    Transfer RNAs (tRNAs) reach their mature functional form through several steps of processing and modification. Some nucleotide modifications affect the proper folding of tRNAs, and they are crucial in case of the non-canonically structured animal mitochondrial tRNAs, as exemplified by the apparently ubiquitous methylation of purines at position 9. Here, we show that a subcomplex of human mitochondrial RNase P, the endonuclease removing tRNA 5′ extensions, is the methyltransferase responsible for m1G9 and m1A9 formation. The ability of the mitochondrial tRNA:m1R9 methyltransferase to modify both purines is uncommon among nucleic acid modification enzymes. In contrast to all the related methyltransferases, the human mitochondrial enzyme, moreover, requires a short-chain dehydrogenase as a partner protein. Human mitochondrial RNase P, thus, constitutes a multifunctional complex, whose subunits moonlight in cascade: a fatty and amino acid degradation enzyme in tRNA methylation and the methyltransferase, in turn, in tRNA 5′ end processing. PMID:23042678

  14. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine.

    PubMed

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman; Ottenwälder, Birgit; Schnölzer, Martina; Kartenbeck, Jürgen; Lyer, Stefan; Autschbach, Frank; Poustka, Annemarie; Otto, Herwart F; Mollenhauer, Jan

    2004-02-01

    Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology. Screening of antibodies from a hybridoma library led to the identification of an acyl-CoA synthetase 5-specific monoclonal antibody. Protein synthesis, mRNA expression, and the enzyme activity of acyl-CoA synthetase 5 were studied by several methods in human small intestinal tissues with Crohn's disease or coeliac disease, respectively. Acyl-CoA synthetase 5 mRNA and protein levels were substantially reduced in injured small intestinal mucosa. Moreover, impaired synthesis of the acyl-CoA synthetase 5 protein was reflected by a decrease in intramucosal enzyme activity. Subtle changes of the acyl-CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine. PMID:14743501

  15. Localization of two human autoantigen genes by PCR screening and in situ hybridization-glycyl-tRNA synthetase locates to 7p15 and Alanyl-tRNA synthetase locates to 16q22

    SciTech Connect

    Nichols, R.C.; Pai, S.I.; Liu, P.; Ge, Q.; Targoff, I.N.

    1995-11-01

    Aminoacyl-tRNA synthetases (aminoacyl-RS) catalyze the attachment of an amino acid to its cognate tRNA. Five of 20 human aminoacyl-RS (histidyl-RS, threonyl-RS, isoleucyl-RS, glycyl-RS, and alanyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis (PM/DM; 9). A sixth autoantigenic amino-acyl-RS, lysyl-RS, was recently reported. The genes for histidyl-RS and threonyl-RS have been assigned to chromosome 5, as have the genes for leucyl-RS and arginyl-RS. Six other aminoacyl-RS (glutamyl-prolyl-RS, valyl-RS, cysteinyl-RS, methionyl-RS, tryptophanyl-RS, and asparaginyl-RS) were assigned to chromosomes 1, 6, 11, 12, 14, and 18, respectively. The reason for a preponderance of aminoacyl-RS genes on chromosome 5 is unknown, but it has been suggested that regulatory relatedness might be a factor. Recently the entire or partial cDNA sequences for two autoantigenic aminoacyl-RS genes, glycyl-RS (gene symbol GARS; 4) and alanyl-RS (gene symbol AARS; 1), were reported. To understand further the genesis of autoimmune responses to aminoacyl-RS and to determine whether genes for autoantigenic aminoacyl-RS colocalize to chromosome 5, we have determined the chromosomal site of the GARS and AARS genes by PCR-based screening of somatic cell hybrid panels and by fluorescence in situ hybridization (FISH) analysis. 10 refs., 1 fig.

  16. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases.

    PubMed

    Jeitner, Thomas M; Cooper, Arthur J L

    2014-12-01

    At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine (MSO) is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase by MSO is shown to be biphasic-an initial reversible competitive inhibition (K i 1.19 mM) is followed by rapid irreversible inactivation. This K i value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans. PMID:24136581

  17. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine – relevance to the treatment of neurological diseases

    PubMed Central

    Jeitner, Thomas M.; Cooper, Arthur J. L.

    2013-01-01

    At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase with MSO is shown to be biphasic – an initial reversible competitive inhibition (Ki 1.19 mM) is followed by rapid irreversible inactivation. This Ki value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans. PMID:24136581

  18. Characterization of Human GTPBP3, a GTP-Binding Protein Involved in Mitochondrial tRNA Modification▿ †

    PubMed Central

    Villarroya, Magda; Prado, Silvia; Esteve, Juan M.; Soriano, Miguel A.; Aguado, Carmen; Pérez-Martínez, David; Martínez-Ferrandis, José I.; Yim, Lucía; Victor, Victor M.; Cebolla, Elvira; Montaner, Asunción; Knecht, Erwin; Armengod, M.-Eugenia

    2008-01-01

    Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases. PMID:18852288

  19. The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway.

    PubMed

    Hasler, Daniele; Lehmann, Gerhard; Murakawa, Yasuhiro; Klironomos, Filippos; Jakob, Leonhard; Grässer, Friedrich A; Rajewsky, Nikolaus; Landthaler, Markus; Meister, Gunter

    2016-07-01

    The Lupus autoantigen La is an RNA-binding protein that stabilizes RNA polymerase III (Pol III) transcripts and supports RNA folding and has in addition been implicated in the mammalian microRNA (miRNA) pathway. Here, we have analyzed effects of La depletion on Argonaute (Ago)-bound small RNAs in human cells. We find that in the absence of La, distinct tRNA fragments are loaded into Ago proteins. Thus, La functions as gatekeeper ensuring correct tRNA maturation and protecting the miRNA pathway from potentially functional tRNA fragments. However, one specific isoleucin pre-tRNA produces both a functional tRNA and a miRNA even when La is present. We demonstrate that the fully complementary 5' leader and 3' trailer of the pre-tRNA-Ile form a double-stranded RNA molecule that has low affinity to La. Instead, Exportin-5 (Xpo5) recognizes it as miRNA precursor and transports it into the cytoplasm for Dicer processing and Ago loading. PMID:27345152

  20. Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis.

    PubMed

    de Cima, Sergio; Polo, Luis M; Díez-Fernández, Carmen; Martínez, Ana I; Cervera, Javier; Fita, Ignacio; Rubio, Vicente

    2015-01-01

    Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35 Å-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations. PMID:26592762

  1. Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis

    PubMed Central

    de Cima, Sergio; Polo, Luis M.; Díez-Fernández, Carmen; Martínez, Ana I.; Cervera, Javier; Fita, Ignacio; Rubio, Vicente

    2015-01-01

    Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35 Å-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations. PMID:26592762

  2. Argininosuccinate synthetase as a plasma biomarker of liver injury after acetaminophen overdose in rodents and humans

    PubMed Central

    McGill, Mitchell R.; Cao, Mengde; Svetlov, Archie; Sharpe, Matthew R.; Williams, C. David; Curry, Steven C.; Farhood, Anwar; Jaeschke, Hartmut; Svetlov, Stanislav I.

    2014-01-01

    Context New biomarkers are needed in acetaminophen (APAP) hepatotoxicity. Plasma argininosuccinate synthetase (ASS) is a promising candidate. Objective Characterize ASS in APAP hepatotoxicity. Methods ASS was measured in plasma from rodents and humans with APAP hepatotoxicity. Results In mice, ASS increased before injury, peaked before ALT, and decreased rapidly. Fischer rats had a greater increase in ASS relative to ALT. Patients with abnormal liver test results had very high ASS compared to controls. ASS appeared to increase early in some patients, and declined rapidly in all. Conclusions : ASS may be a useful biomarker of acute cell death in APAP hepatotoxicity. PMID:24597531

  3. A human leucyl-tRNA synthetase as an anticancer target

    PubMed Central

    Gao, Guangwei; Yao, Ying; Li, Kun; Mashausi, Dhahiri Saidi; Li, Dongsheng; Negi, Hema; Kamle, Suchitra; Chen, Hao; Wu, Zhenghua; Zhou, Huchen; Li, Dawei

    2015-01-01

    Several aminoacyl-tRNA synthetases have been reported to be overexpressed for charging essential aminoacyl-tRNAs in many cancer types. In this study, we aimed to explore the potential role of leucyl-tRNA synthetase (LARS) as an anticancer target. MTT assay was performed to screen inhibitors to human LARS (hsLARS) from compounds AN2690 and its derivatives, compounds 1–6, in U2OS and SKOV3 cells. The compound with the strongest inhibitory ability was further investigated for its inhibitory effect in cancer cell lines and in an animal tumor model. Additionally, a LARS-rescue experiment was performed to explore the potential target in U2OS using Western blot and flow cytometry. Luciferase reporter assay was designed to analyze the effect of of hsLARS inhibitor on p21 activation. We identified an hsLARS inhibitor (compound 2) that suppressed the proliferation of U2OS and SKOV3 cells in vitro. A LARS-rescue experiment demonstrated that the proliferation inhibition was induced by targeting intracellular LARS. In addition, the hsLARS inhibition was shown to activate the p21 early transcription and promote cell apoptosis, as well as reduce implanted EMT6 tumor progression in mice. Our results suggest that LARS might serve as a potential anticancer target through the p21 signaling pathway and that the nutritional signaling pathway may provide a valuable anticancer strategy for further investigation. PMID:26508878

  4. Bimodular Peptide Synthetase SidE Produces Fumarylalanine in the Human Pathogen Aspergillus fumigatus

    PubMed Central

    Steinchen, Wieland; Lackner, Gerald; Yasmin, Sabiha; Schrettl, Markus; Dahse, Hans-Martin

    2013-01-01

    The filamentous mold Aspergillus fumigatus causes invasive aspergillosis, a potentially life-threatening infectious disease, in humans. The sidE gene encodes a bimodular peptide synthetase and was shown previously to be strongly upregulated during initiation of murine lung infection. In this study, we characterized the two adenylation domains of SidE with the ATP-[32P]pyrophosphate exchange assay in vitro, which identified fumarate and l-alanine, respectively, as the preferred substrates. Using full-length holo-SidE, fumarylalanine (FA) formation was observed in vitro. Furthermore, FA was identified in A. fumigatus culture supernatants under inducing conditions, unless sidE was genetically inactivated. As FA is structurally related to established pharmaceutical products exerting immunomodulatory activity, this work may contribute to our understanding of the virulence of A. fumigatus. PMID:23974138

  5. Expression of acyl-CoA synthetase 5 in human epidermis.

    PubMed

    Gaisa, N T; Köster, J; Reinartz, A; Ertmer, K; Ehling, J; Raupach, K; Perez-Bouza, A; Knüchel, R; Gassler, N

    2008-04-01

    The human epidermis is characterized by a constant renewal of keratinocytes embedded in a matrix enriched with lipids. Numerous proteins involved in lipid metabolism are found in human epidermis, especially in keratinocytes. Long-chain acyl-CoA derivatives, which are catalyzed by human ACSL5, are important metabolites in several biochemical pathways, including ceramide de novo synthesis. The aim of the present study was to investigate expression of acyl-CoA synthetase isoform 5 (ACSL5) in human epidermis by an in situ, as well as a molecular approach. We show that ACSL5 mRNA and protein are found in human epidermis, as well as in non-differentiated and differentiated HaCaT cells. Keratinocytes of stratum spinosum are the main source for ACSL5 expression in both meshed facial or abdominal skin and ridged skin of upper or lower extremities including TUNEL-positive cells in upper cellular layers. Single keratinocytes of chronic solar-exposed meshed facial epidermis occasionally display a stronger ACSL5 immunostaining. In conclusion, our study indicates that epidermal ACSL5 expression might be involved in differentiation and the stress response of keratinocytes. PMID:18228202

  6. A critical electrostatic interaction mediates inhibitor recognition by human asparagine synthetase.

    PubMed

    Ikeuchi, Hideyuki; Meyer, Megan E; Ding, Yun; Hiratake, Jun; Richards, Nigel G J

    2009-09-15

    The first sulfoximine-based inhibitor of human asparagine synthetase (ASNS) with nanomolar potency has been shown to suppress proliferation of asparaginase-resistant MOLT-4 cells in the presence of L-asparaginase. This validates literature hypotheses concerning the viability of human ASNS as a target for new drugs against acute lymphoblastic leukemia and ovarian cancer. Developing structure-function relationships for this class of human ASNS inhibitors has proven difficult, however, primarily because of the absence of rapid synthetic procedures for constructing highly functionalized sulfoximines. We now report conditions for the efficient preparation of these compounds by coupling sulfoxides and sulfamides in the presence of a rhodium catalyst. Access to this methodology has permitted the construction of two new adenylated sulfoximines, which were expected to exhibit similar binding affinity and better bioavailability than the original human ASNS inhibitor. Steady-state kinetic characterization of these compounds, however, has revealed the importance of a localized negative charge on the inhibitor that mimics that of the phosphate group in a key acyl-adenylate reaction intermediate. These experiments place an important constraint on the design of sulfoximine libraries for screening experiments to obtain ASNS inhibitors with increased potency and bioavailability. PMID:19683931

  7. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    SciTech Connect

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria . E-mail: m.barile@biologia.uniba.it

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.

  8. Cyclic Peptide Inhibitors of HIV-1 Capsid-Human Lysyl-tRNA Synthetase Interaction

    PubMed Central

    2012-01-01

    The human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) plays a critical role in the viral life cycle. The C-terminal domain (CTD) of CA binds to human lysyl-tRNA synthetase (hLysRS), and this interaction facilitates packaging of host cell tRNALys,3, which serves as the primer for reverse transcription. Here, we report the library synthesis, high-throughput screening, and identification of cyclic peptides (CPs) that bind HIV-1 CA. Scrambling or single-residue changes of the selected peptide sequences eliminated binding, suggesting a sequence-specific mode of interaction. Two peptides (CP2 and CP4) subjected to detailed analysis also inhibited hLysRS/CA interaction in vitro. Nuclear magnetic resonance spectroscopy and mutagenesis studies revealed that both CPs bind to a site proximal to helix 4 of the CA-CTD, which is the known site of hLysRS interaction. These results extend the current repertoire of CA-binding molecules to a new class of peptides targeting a novel site with potential for development into novel antiviral agents. PMID:22276994

  9. Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns

    SciTech Connect

    Kim, Jin Young; Lee, Kwang Hee; Shim, Myoung Sup; Shin, Hyein; Xu, Xue-Ming; Carlson, Bradley A.; Hatfield, Dolph L.; Lee, Byeong Jae

    2010-06-18

    Selenophosphate synthetase 1 (SPS1) is an essential cellular gene in higher eukaryotes. Five alternative splice variants of human SPS1 (major type, {Delta}E2, {Delta}E8, +E9, +E9a) were identified wherein +E9 and +E9a make the same protein. The major type was localized in both the nuclear and plasma membranes, and the others in the cytoplasm. All variants form homodimers, and in addition, the major type forms a heterodimer with {Delta}E2, and {Delta}E8 with +E9. The level of expression of each splice variant was different in various cell lines. The expression of each alternative splice variant was regulated during the cell cycle. The levels of the major type and {Delta}E8 were gradually increased until G2/M phase and then gradually decreased. {Delta}E2 expression peaked at mid-S phase and then gradually decreased. However, +E9/+E9a expression decreased gradually after cell cycle arrest. The possible involvement of SPS1 splice variants in cell cycle regulation is discussed.

  10. Neurodegenerative disease-associated mutants of a human mitochondrial aminoacyl-tRNA synthetase present individual molecular signatures

    PubMed Central

    Sauter, Claude; Lorber, Bernard; Gaudry, Agnès; Karim, Loukmane; Schwenzer, Hagen; Wien, Frank; Roblin, Pierre; Florentz, Catherine; Sissler, Marie

    2015-01-01

    Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation. PMID:26620921

  11. N- and C-terminal domains in human holocarboxylase synthetase participate in substrate recognition

    PubMed Central

    Hassan, Yousef I.; Moriyama, Hideaki; Olsen, Lars J.; Bi, Xin; Zempleni, Janos

    2009-01-01

    Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to carboxylases and histones. Carboxylases mediate essential steps in macronutrient metabolism. For example, propionyl-CoA carboxylase (PCC) catalyzes the carboxylation of propionyl-CoA in the metabolism of odd-chain fatty acids. HCS comprises four putative domains, i.e., the N-terminus, the biotin transfer/ATP binding domain, a putative linker domain, and the C-terminus. Both N- and C-termini are essential for biotinylation of carboxylases by HCS, but the exact functions of these two domains in enzyme catalysis are unknown. Here we tested the hypothesis that N- and C-termini play roles in substrate recognition by HCS. Yeast-two-hybrid (Y2H) assays were used to study interactions between the four domains of human HCS with p67, a PCC-based polypeptide and HCS substrate. Both N- and C-termini interacted with p67 in Y2H assays, whereas the biotin transfer/ATP-binding and the linker domains did not interact with p67. The essentiality of N- and C-termini for interactions with carboxylases was confirmed in rescue experiments with mutant Saccharomyces cerevisiae, using constructs of truncated human HCS. Finally, a computational biology approach was used to model the 3D structure of human HCS and identify amino acid residues that interact with p67. In silico predictions were consistent with observations from Y2H assays and yeast rescue experiments, and suggested docking of p67 near Arg508 and Ser515 within the central domain of HCS. PMID:19157941

  12. Methionine synthetase activity of human lymphocytes both replete in and depleted of vitamin B12.

    PubMed

    Hall, C A; Begley, J A; Chu, R C

    1986-10-01

    The activity of the enzyme methionine synthetase (MS) (methyltetrahydrofolate:homocysteine methyltransferase) (EC 2.1.1.13) was measured in human lymphocytes of various types and cobalamin (vitamin B12) status. Total and holo MS activity was low in unstimulated peripheral blood lymphocytes from persons with tissue deficiency of cobalamin, but not in cells from those with low serum cobalamin levels for other reasons. The MS activity of the lymphocyte was increased by treatment of the patients with vitamin B12. The number of lymphocytes was often low or low normal in the circulation of those deficient in cobalamin. Holo MS activity was low in an established line of human B cells, RPMI 6410 cells, depleted of cobalamin. The total and holo MS activity of both RPMI 6410 cells, replete or depleted, and lymphocytes stimulated in culture was increased by cobalamin in vitro; 222 nmol/L free cobalamin was roughly the equivalent of 0.22 nmol/L cobalamin bound to transcobalamin II. Both lymphocytes and RPMI 6410 cells required folate for growth and could meet these needs via methylfolate, homocysteine, and the cobalamin-dependent MS reaction. Depleted RPMI 6410 cells, however, used cobalamin in some way in addition to the provision of available folate from methylfolate. The consequences of the reduced MS activity in deficient cells could include a reduction in available folate with diminished capacity for clonal expansion of lymphocytes in reaction to infection and impairment of essential methylations including those of protein synthesis. The prompt induction of MS activity by cobalamin, especially in the in vitro model, suggests an effect of therapeutic vitamin B12 well in advance of the numerical increase in cells of the blood. PMID:3760673

  13. Crystal structure of tetrameric form of human lysyl-tRNA synthetase: Implications for multisynthetase complex formation

    SciTech Connect

    Guo, Min; Ignatov, Michael; Musier-Forsyth, Karin; Schimmel, Paul; Yang, Xiang-Lei

    2008-09-17

    In mammals, many aminoacyl-tRNA synthetases are bound together in a multisynthetase complex (MSC) as a reservoir of procytokines and regulation molecules for functions beyond aminoacylation. The {alpha}{sub 2} homodimeric lysyl-tRNA synthetase (LysRS) is tightly bound in the MSC and, under specific conditions, is secreted to trigger a proinflammatory response. Results by others suggest that {alpha}{sub 2} LysRS is tightly bound into the core of the MSC with homodimeric {beta}{sub 2} p38, a scaffolding protein that itself is multifunctional. Not understood is how the two dimeric proteins combine to make a presumptive {alpha}{sub 2}{beta}{sub 2} heterotetramer and, in particular, the location of the surfaces on LysRS that would accommodate the p38 interactions. Here we present a 2.3-{angstrom} crystal structure of a tetrameric form of human LysRS. The relatively loose (as seen in solution) tetramer interface is assembled from two eukaryote-specific sequences, one in the catalytic- and another in the anticodon-binding domain. This same interface is predicted to provide unique determinants for interaction with p38. The analyses suggest how the core of the MSC is assembled and, more generally, that interactions and functions of synthetases can be built and regulated through dynamic protein-protein interfaces. These interfaces are created from small adaptations to what is otherwise a highly conserved (through evolution) polypeptide sequence.

  14. N114S mutation causes loss of ATP-induced aggregation of human phosphoribosylpyrophosphate synthetase 1

    SciTech Connect

    Liu Honglin; Peng, Xiaohui; Zhao Fang; Zhang Guobin; Tao Ye; Luo Zhaofeng; Li Yang; Teng Maikun; Li Xu Wei Shiqiang

    2009-02-20

    This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of {alpha}-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicated that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO{sub 4}{sup 3-} allosteric site where PO{sub 4}{sup 3-} functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.

  15. Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl-tRNA synthetases.

    PubMed Central

    Tarassov, I; Entelis, N; Martin, R P

    1995-01-01

    Cytoplasmic tRNA(Lys)CUU is the only nuclear-encoded tRNA of Saccharomyces cerevisiae found to be associated with mitochondria. Selective import of this tRNA into isolated organelles requires cytoplasmic factors. Here we identify two of these factors as the cytoplasmic and mitochondrial lysyl-tRNA synthetases. The cytoplasmic enzyme is obligatory for in vitro import of the deacylated, but not of the aminoacylated tRNA. We thus infer that it is needed for aminoacylation of the tRNA, which is a prerequisite for its import. The mitochondrial synthetase, which cannot aminoacylate tRN(Lys)CUU, is required for import of both aminoacylated and deacylated forms. Its depletion leads to a total arrest of tRNA import, in vitro and in vivo. The mitochondrial lysyl-tRNA synthetase is able to form specific and stable RNP complexes with the amino-acylated tRNA. Furthermore, an N-terminal truncated form of the synthetase which cannot be targeted into mitochondria is unable to direct the import of the tRNA. We therefore hypothesize that the cytosolic precursor form of the mitochondrial synthetase has a carrier function for translocation of the tRNA across the mitochondrial membranes. However, cooperation of the two synthetases is not sufficient to direct tRNA import, suggesting the need of additional factor(s). Images PMID:7628447

  16. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α.

    PubMed

    Begley, Ulrike; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Patil, Ashish; Endres, Lauren; Estrada, Yeriel; Chan, Clement T Y; Su, Dan; Dedon, Peter C; Aguirre-Ghiso, Julio A; Begley, Thomas

    2013-03-01

    Emerging evidence points to aberrant regulation of translation as a driver of cell transformation in cancer. Given the direct control of translation by tRNA modifications, tRNA modifying enzymes may function as regulators of cancer progression. Here, we show that a tRNA methyltransferase 9-like (hTRM9L/KIAA1456) mRNA is down-regulated in breast, bladder, colorectal, cervix and testicular carcinomas. In the aggressive SW620 and HCT116 colon carcinoma cell lines, hTRM9L is silenced and its re-expression and methyltransferase activity dramatically suppressed tumour growth in vivo. This growth inhibition was linked to decreased proliferation, senescence-like G0/G1-arrest and up-regulation of the RB interacting protein LIN9. Additionally, SW620 cells re-expressing hTRM9L did not respond to hypoxia via HIF1-α-dependent induction of GLUT1. Importantly, hTRM9L-negative tumours were highly sensitive to aminoglycoside antibiotics and this was associated with altered tRNA modification levels compared to antibiotic resistant hTRM9L-expressing SW620 cells. Our study links hTRM9L and tRNA modifications to inhibition of tumour growth via LIN9 and HIF1-α-dependent mechanisms. It also suggests that aminoglycoside antibiotics may be useful to treat hTRM9L-deficient tumours. PMID:23381944

  17. Conservation of structure in the human gene encoding argininosuccinate synthetase and the argG genes of the archaebacteria Methanosarcina barkeri MS and Methanococcus vannielii

    SciTech Connect

    Morris, C.J.; Reeve, J.N.

    1988-07-01

    The DNA sequences of the argG genes of Methanosarcina barkeri MS and Methanococcus vannielii were determined. The polypeptide products of these methanogen genes have amino acid sequences which are 50% identical to each other and 38% identical to the amino acid sequence encoded by the exons of the human argininosuccinate synthetase gene. Introns in the human chromosomal gene separate regions which encode amino acids conserved in both the archaebacterial and human gene products. An open reading frame immediately upstream of argG in Methanosarcina barkeri MS codes for an amino acid sequence which is 45 and 31% identical to the sequences of the large subunits of carbamyl phosphate synthetase in Escherichia coli and Saccharomyces cerevisiae, respectively. If this gene encodes carbamyl phosphate synthetase in Methanosarcina barkeri, this is the first example, in an archaebacterium, of physical linkage of genes that encode enzymes which catalyze reactions in the same amino acid biosynthetic pathway.

  18. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis.

    PubMed

    Duce, A M; Ortíz, P; Cabrero, C; Mato, J M

    1988-01-01

    We have measured the activity S-adenosyl-L-methionine synthetase in liver biopsies from a group of controls (n = 17) and in 26 cirrhotics (12 alcoholic and 14 posthepatic). The activity of this enzyme was markedly reduced in the group of cirrhotics (285 +/- 32 pmoles per min per mg protein) when compared with that observed in controls (505 +/- 37 pmoles per min per mg protein). No differences in S-adenosyl-L-methionine synthetase was observed between both groups of cirrhotics. Similarly, a marked reduction in the activity phospholipid methyltransferase was also observed in liver biopsies from the same group of cirrhotics (105 +/- 12 pmoles per min per mg protein) when compared with the control subjects (241 +/- 13 pmoles per min per mg protein). Again, no difference in the activity of this enzyme was observed between both groups of cirrhotics. These results indicated a marked deficiency in the metabolism of S-adenosyl-L-methionine in cirrhosis. PMID:3338721

  19. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability.

    PubMed

    Copela, Laura A; Chakshusmathi, Ghadiyaram; Sherrer, R Lynn; Wolin, Sandra L

    2006-04-01

    Although the La protein stabilizes nascent pre-tRNAs from nucleases, influences the pathway of pre-tRNA maturation, and assists correct folding of certain pre-tRNAs, it is dispensable for growth in both budding and fission yeast. Here we show that the Saccharomyces cerevisiae La shares functional redundancy with both tRNA modification enzymes and other proteins that contact tRNAs during their biogenesis. La is important for growth in the presence of mutations in either the arginyl tRNA synthetase or the tRNA modification enzyme Trm1p. In addition, two pseudouridine synthases, PUS3 and PUS4, are important for growth in strains carrying a mutation in tRNA(Arg)(CCG) and are essential when La is deleted in these strains. Depletion of Pus3p results in accumulation of the aminoacylated mutant tRNA(Arg)(CCG) in nuclei, while depletion of Pus4p results in decreased stability of the mutant tRNA. Interestingly, the degradation of mutant unstable forms of tRNA(Arg)(CCG) does not require the Trf4p poly(A) polymerase, suggesting that yeast cells possess multiple pathways for tRNA decay. These data demonstrate that La functions redundantly with both tRNA modifications and proteins that associate with tRNAs to achieve tRNA structural stability and efficient biogenesis. PMID:16581807

  20. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog*

    PubMed Central

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  1. Identification of lethal mutations in yeast threonyl-tRNA synthetase revealing critical residues in its human homolog.

    PubMed

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-16

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  2. Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase

    PubMed Central

    Alexandrova, Jana; Paulus, Caroline; Rudinger-Thirion, Joëlle; Jossinet, Fabrice; Frugier, Magali

    2015-01-01

    The canonical activity of glycyl-tRNA synthetase (GARS) is to charge glycine onto its cognate tRNAs. However, outside translation, GARS also participates in many other functions. A single gene encodes both the cytosolic and mitochondrial forms of GARS but 2 mRNA isoforms were identified. Using immunolocalization assays, in vitro translation assays and bicistronic constructs we provide experimental evidence that one of these mRNAs tightly controls expression and localization of human GARS. An intricate regulatory domain was found in its 5′-UTR which displays a functional Internal Ribosome Entry Site and an upstream Open Reading Frame. Together, these elements hinder the synthesis of the mitochondrial GARS and target the translation of the cytosolic enzyme to ER-bound ribosomes. This finding reveals a complex picture of GARS translation and localization in mammals. In this context, we discuss how human GARS expression could influence its moonlighting activities and its involvement in diseases. PMID:26327585

  3. The phenotypic expression of mitochondrial tRNA-mutations can be modulated by either mitochondrial leucyl-tRNA synthetase or the C-terminal domain thereof

    PubMed Central

    Giordano, Carla; Morea, Veronica; Perli, Elena; d’Amati, Giulia

    2015-01-01

    Mutations in mitochondrial (mt) DNA determine important human diseases. The majority of the known pathogenic mutations are located in transfer RNA (tRNA) genes and are responsible for a wide range of currently untreatable disorders. Experimental evidence both in yeast and in human cells has shown that the detrimental effects of mt-tRNA point mutations can be attenuated by increasing the expression of the cognate mt-aminoacyl-tRNA synthetases (aaRSs). In addition, constitutive high levels of isoleucyl-tRNA syntethase have been shown to reduce the penetrance of a homoplasmic mutation in mt-tRNAIle in a small kindred. More recently, we showed that the isolated carboxy-terminal domain of human mt-leucyl tRNA synthetase (LeuRS-Cterm) localizes to mitochondria and ameliorates the energetic defect in transmitochondrial cybrids carrying mutations either in the cognate mt-tRNALeu(UUR) or in the non-cognate mt-tRNAIle gene. Since the mt-LeuRS-Cterm does not possess catalytic activity, its rescuing ability is most likely mediated by a chaperon-like effect, consisting in the stabilization of the tRNA structure altered by the mutation. All together, these observations open potential therapeutic options for mt-tRNA mutations-associated diseases. PMID:25852750

  4. Origins and Early Evolution of the tRNA Molecule

    PubMed Central

    Tamura, Koji

    2015-01-01

    Modern transfer RNAs (tRNAs) are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs). Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA) can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC). The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome. PMID:26633518

  5. A Human Disease-causing Point Mutation in Mitochondrial Threonyl-tRNA Synthetase Induces Both Structural and Functional Defects.

    PubMed

    Wang, Yong; Zhou, Xiao-Long; Ruan, Zhi-Rong; Liu, Ru-Juan; Eriani, Gilbert; Wang, En-Duo

    2016-03-18

    Mitochondria require all translational components, including aminoacyl-tRNA synthetases (aaRSs), to complete organelle protein synthesis. Some aaRS mutations cause mitochondrial disorders, including human mitochondrial threonyl-tRNA synthetase (hmtThrRS) (encoded by TARS2), the P282L mutation of which causes mitochondrial encephalomyopathies. However, its catalytic and structural consequences remain unclear. Herein, we cloned TARS2 and purified the wild-type and P282L mutant hmtThrRS. hmtThrRS misactivates non-cognate Ser and uses post-transfer editing to clear erroneously synthesized products. In vitro and in vivo analyses revealed that the mutation induces a decrease in Thr activation, aminoacylation, and proofreading activities and a change in the protein structure and/or stability, which might cause reduced catalytic efficiency. We also identified a splicing variant of TARS2 mRNA lacking exons 8 and 9, the protein product of which is targeted into mitochondria. In HEK293T cells, the variant does not dimerize and cannot complement the ThrRS knock-out strain in yeast, suggesting that the truncated protein is inactive and might have a non-canonical function, as observed for other aaRS fragments. The present study describes the aminoacylation and editing properties of hmtThrRS, clarifies the molecular consequences of the P282L mutation, and shows that the yeast ThrRS-deletion model is suitable to test pathology-associated point mutations or alternative splicing variants of mammalian aaRS mRNAs. PMID:26811336

  6. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs

    PubMed Central

    Arakaki, Tracy L; Carter, Megan; Napuli, Alberto J; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J; Merritt, Ethan A

    2010-01-01

    The 2.1 Å crystal structure of tryptophanyl-tRNA synthetase (TrpRS) from the diplomonad Giardia lamblia reveals that the N-terminus of this class I aminoacyl-tRNA synthetase forms a 16-residue α-helix. This helix replaces a β-hairpin that is required by human TrpRS for normal activity and has been inferred to play a similar role in all eukaryotic TrpRS. The primary sequences of TrpRS homologs from several basal eukaryotes including Giardia lack a set of three residues observed to stabilize interactions with this β-hairpin in the human TrpRS. Thus the present structure suggests that the activation reaction mechanism of TrpRS from the basal eukaryote G. lamblia differs from that of higher eukaryotes. Furthermore, the protein as observed in the crystal forms an (α2)2 homotetramer. The canonical dimer interface observed in all previous structures of tryptophanyl-tRNA synthetases is maintained, but in addition each N-terminal α-helix reciprocally interlocks with the equivalent helix from a second dimer to form a dimer of dimers. Although we have no evidence for tetramer formation in vivo, modeling indicates that the crystallographically observed tetrameric structure would be compatible with the tRNA binding mode used by dimeric TrpRS and TyrRS. PMID:20438846

  7. Assignment of two human autoantigen genes-isoleucyl-tRNA synthetase locates to 9q21 and lysyl-tRNA synthetase locates to 16q23-q24

    SciTech Connect

    Nichols, R.C.; Blinder, J.; Pai, S.I.

    1996-08-15

    Protein synthesis is initiated by the attachment of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (aaRS). Five of twenty human aaRS (histidyl-RS, threonyl-RS, alanyl-RS, glycyl-RS, and isoleucyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis. Autoantibodies to human lysyl-RS, a sixth autoantigenic aminoacyl-RS, were recently identified. The genes for histidyl-RS and threonyl-RS have been localized to chromosome 5, and we recently reported that the genes for alanyl-RS and glycyl-RS localize to chromosomes 16 and 7, respectively. To understand the genesis of autoimmune responses to aaRS better, we have used PCR-based screening of somatic cell hybrid panels and fluorescence in situ hybridization (FISH) to assign the genes for isoleucyl-RS and lysyl-RS. 19 refs., 1 fig.

  8. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    PubMed

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. PMID:25858017

  9. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells

    PubMed Central

    Golej, Deidre L.; Askari, Bardia; Kramer, Farah; Barnhart, Shelley; Vivekanandan-Giri, Anuradha; Pennathur, Subramaniam; Bornfeldt, Karin E.

    2011-01-01

    Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall. PMID:21242590

  10. The roles of the human immunodeficiency virus type 1 Pol protein and the primer binding site in the placement of primer tRNA(3Lys) onto viral genomic RNA.

    PubMed Central

    Liang, C; Rong, L; Morin, N; Cherry, E; Huang, Y; Kleiman, L; Wainberg, M A

    1997-01-01

    Factors that modulate the placement of primer tRNA(3Lys) onto the viral RNA genome in human immunodeficiency virus type 1 (HIV-1) were investigated through analysis of reverse-transcribed products that are extended from the tRNA(3Lys) primer. Mutations were introduced into the HIV-1 pol gene to result in the appearance of a stop codon in the open reading frame of the reverse transcriptase (RT) gene. These constructs, BH10-RT1 and BH10-RT2, yielded viruses with truncated Pol proteins. Alternatively, we altered the sequences involved in frameshifting by generating the construct BH10-FS. With each of these mutated viruses, we found that the primer tRNA(3Lys) that was placed onto viral genomic RNA was present in an unextended state. In contrast, as expected, tRNA(3Lys) in the case of wild-type BH10 virus had been extended by 2 bases. Furthermore, the amount of tRNA(3Lys) that was placed onto viral RNA in mutated viruses was significantly less than that placed in the wild-type virus. We also generated a mutant within the polymerase-active site of RT (D185H) (Asp-->His) that eliminated RT polymerase activity. We found that the placement of primer tRNA(3Lys) onto viral genomic RNA was independent of enzyme function; however, the tRNA(3Lys) that was placed was present in an unextended state due to the loss of RT activity. In contrast, the elimination of protease activity through a D25A (Asp-->Ala) point mutation in the protease-active site (construct BH10-PR) did cause a drop in the efficiency of tRNA(3Lys) placement. In this situation, a proportion of the placed tRNA(3Lys) was found to be extended by 2 bases, although not to the extent found with wild-type virus (BH10), due to a decrease in RT activity associated with unprocessed Gag-Pol protein that could not be cleaved because of the loss of protease activity. We also investigated the role of the primer binding site (PBS) in the placement of tRNA(3Lys) through a series of 2-, 4-, and 8-nucleotide (nt) deletions at the 3

  11. Lipid-induced up-regulation of human acyl-CoA synthetase 5 promotes hepatocellular apoptosis.

    PubMed

    Reinartz, Andrea; Ehling, Josef; Leue, Andrea; Liedtke, Christian; Schneider, Ursula; Kopitz, Jürgen; Weiss, Thomas; Hellerbrand, Claus; Weiskirchen, Ralf; Knüchel, Ruth; Gassler, Nikolaus

    2010-09-01

    In the pathogenesis of nonalcoholic fatty liver disease, accumulation of lipids in hepatocytes and hepatocyte apoptosis are strongly implicated in disease progression from the potentially reversible condition of steatosis to severe acute and chronic liver injury. Acyl-CoA synthetase 5, a member of the ACSL gene family that catalyzes the activation of long-chain fatty acids for lipid biosynthesis, is the only ACSL isoform that is both, located on mitochondria and functionally involved in enterocyte apoptosis. In this study, the regulation of human ACSL5 in hepatocellular fatty acid degeneration and its involvement in hepatocyte apoptosis was investigated using models of in vitro and in vivo steatosis as well as plasmid-mediated stable gene transfer and RNAi-mediated gene silencing. ACSL5 mRNA and protein were strongly increased by uptake of dietary derived fatty acids in primary human hepatocytes, HepG2 cells and human steatotic liver. Over-expression of ACSL5 decreased HepG2 cell viability and increased susceptibility to TRAIL- and TNFalpha-, but not FAS- induced apoptosis, whereas knock down of ACSL5 reduced apoptosis susceptibility. High ACSL5 activity resulted in enhanced caspase-3/7 activity, but was not accompanied by up-regulation of death receptors, DR4, DR5 or TNF-R1. This study gives evidence that hepatocyte steatosis is associated with ACSL5 up-regulation resulting in increased susceptibility to hepatic cell death. We propose that ACSL5 could play a role in promoting fatty acid-induced lipoapoptosis in hepatocytes as important mechanism in fatty liver-related disorders. PMID:20470896

  12. Shaping tRNA

    ERIC Educational Resources Information Center

    Priano, Christine

    2013-01-01

    This model-building activity provides a quick, visual, hands-on tool that allows students to examine more carefully the cloverleaf structure of a typical tRNA molecule. When used as a supplement to lessons that involve gene expression, this exercise reinforces several concepts in molecular genetics, including nucleotide base-pairing rules, the…

  13. A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase.

    PubMed Central

    Edwards, H; Schimmel, P

    1990-01-01

    Little is known about the conservation of determinants for the identities of tRNAs between organisms. We showed previously that Escherichia coli tyrosine tRNA synthetase can charge the Saccharomyces cerevisiae mitochondrial tyrosine tRNA in vivo, even though there are substantial sequence differences between the yeast mitochondrial and bacterial tRNAs. The S. cerevisiae cytoplasmic tyrosine tRNA differs in sequence from both its yeast mitochondrial and E. coli counterparts. To test whether the yeast cytoplasmic tyrosyl-tRNA synthetase recognizes the E. coli tRNA, we expressed various amounts of an E. coli tyrosine tRNA amber suppressor in S. cerevisiae. The bacterial tRNA did not suppress any of three yeast amber alleles, suggesting that the yeast enzymes retain high specificity in vivo for their homologous tRNAs. Moreover, the nucleotides in the sequence of the E. coli suppressor that are not shared with the yeast cytoplasmic tyrosine tRNA do not create determinants which are efficiently recognized by other yeast charging enzymes. Therefore, at least some of the determinants that influence in vivo recognition of the tyrosine tRNA are specific to the cell compartment and organism. In contrast, expression of the cognate bacterial tyrosyl-tRNA synthetase together with the bacterial suppressor tRNA led to suppression of all three amber alleles. The bacterial enzyme recognized its substrate in vivo, even when the amount of bacterial tRNA was less than about 0.05% of that of the total cytoplasmic tRNA. Images PMID:1690848

  14. The T box mechanism: tRNA as a regulatory molecule

    PubMed Central

    Green, Nicholas J.; Grundy, Frank J.; Henkin, Tina M.

    2009-01-01

    The T box mechanism is widely used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase genes and genes involved in amino acid biosynthesis and uptake. Binding of a specific uncharged tRNA to a riboswitch element in the nascent transcript causes a structural change in the transcript that promotes expression of the downstream coding sequence. In most cases, this occurs by stabilization of an antiterminator element that competes with formation of a terminator helix. Specific tRNA recognition by the nascent transcript results in increased expression of genes important for tRNA aminoacylation in response to decreased pools of charged tRNA. PMID:19932103

  15. Mutations of Human NARS2, Encoding the Mitochondrial Asparaginyl-tRNA Synthetase, Cause Nonsyndromic Deafness and Leigh Syndrome

    PubMed Central

    Shahzad, Mohsin; Huang, Vincent H.; Qaiser, Tanveer A.; Potluri, Prasanth; Mahl, Sarah E.; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-sheqaih, Nada; Newman, William G.; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N.; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B.; Wu, Doris K.; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C.; Ahmed, Zubair M.; Huang, Taosheng; Riazuddin, Saima

    2015-01-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. PMID:25807530

  16. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome.

    PubMed

    Simon, Mariella; Richard, Elodie M; Wang, Xinjian; Shahzad, Mohsin; Huang, Vincent H; Qaiser, Tanveer A; Potluri, Prasanth; Mahl, Sarah E; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-Sheqaih, Nada; Newman, William G; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B; Wu, Doris K; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C; Ahmed, Zubair M; Huang, Taosheng; Riazuddin, Saima

    2015-03-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. PMID:25807530

  17. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry.

    PubMed

    Carter, Charles W; Wolfenden, Richard

    2016-01-01

    The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  18. Human endomembrane H sup + pump strongly resembles the ATP-synthetase of Archaebacteria

    SciTech Connect

    Suedhof, T.C.; Stone, D.K.; Johnston, P.A.; Xie, Xiaosong ); Fried, V.A. )

    1989-08-01

    Preparations of mammalian H{sup +} pumps that acidify intracellular vesicles contain eight or nine polypeptides, ranging in size from 116 to 17 kDa. Biochemical analysis indicates that the 70- and 58-kDa polypeptides are subunits critical for ATP hydrolysis. The amino acid sequences of the major catalytic subunits (58 and 70 kDa) of the endomembrane H{sup +} pump are unknown from animal cells. The authors report here the complete sequence of the 58-kDa subunit derived from a human kidney cDNA clone and partial sequences of the 70- and 58-kDa subunits purified from clathrin-coated vesicles of bovine brain. The amino acid sequences of both proteins strongly resemble the sequences of the corresponding subunits of the vacuolar H{sup +} pumps of Archaebacteria, plants, and fungi. The archaebacterial enzyme is believed to use a H{sup +} gradient to synthesize ATP. Thus, a common ancestral protein has given rise to a H{sup +} pump that synthesizes ATP in one organism and hydrolyzes it in another and is highly conserved from prokaryotes to humans. The same pump appears to mediate the acidification of intracellular organelles, including coated vesicles, lysosomes, and secretory granules, as well as extracellular fluids such as urine.

  19. Diversity in mechanism and function of tRNA methyltransferases

    PubMed Central

    Swinehart, William E; Jackman, Jane E

    2015-01-01

    tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed. PMID:25626150

  20. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse.

    PubMed

    Darrow, Emily M; Chadwick, Brian P

    2014-06-01

    The human genome contains numerous large tandem repeats, many of which remain poorly characterized. Here we report a novel transfer RNA (tRNA) tandem repeat on human chromosome 1q23.3 that shows extensive copy number variation with 9-43 repeat units per allele and displays evidence of meiotic and mitotic instability. Each repeat unit consists of a 7.3 kb GC-rich sequence that binds the insulator protein CTCF and bears the chromatin hallmarks of a bivalent domain in human embryonic stem cells. A tRNA containing tandem repeat composed of at least three 7.6-kb GC-rich repeat units reside within a syntenic region of mouse chromosome 1. However, DNA sequence analysis reveals that, with the exception of the tRNA genes that account for less than 6% of a repeat unit, the remaining 7.2 kb is not conserved with the notable exception of a 24 base pair sequence corresponding to the CTCF binding site, suggesting an important role for this protein at the locus. PMID:24753417

  1. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse

    PubMed Central

    Darrow, Emily M.; Chadwick, Brian P.

    2014-01-01

    The human genome contains numerous large tandem repeats, many of which remain poorly characterized. Here we report a novel transfer RNA (tRNA) tandem repeat on human chromosome 1q23.3 that shows extensive copy number variation with 9–43 repeat units per allele and displays evidence of meiotic and mitotic instability. Each repeat unit consists of a 7.3 kb GC-rich sequence that binds the insulator protein CTCF and bears the chromatin hallmarks of a bivalent domain in human embryonic stem cells. A tRNA containing tandem repeat composed of at least three 7.6-kb GC-rich repeat units reside within a syntenic region of mouse chromosome 1. However, DNA sequence analysis reveals that, with the exception of the tRNA genes that account for less than 6% of a repeat unit, the remaining 7.2 kb is not conserved with the notable exception of a 24 base pair sequence corresponding to the CTCF binding site, suggesting an important role for this protein at the locus. PMID:24753417

  2. Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes

    PubMed Central

    Mix, Heiko; Zhang, Yan; Saira, Kazima; Glass, Richard S; Berry, Marla J; Gladyshev, Vadim N; Hatfield, Dolph L

    2007-01-01

    Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA[Ser]Sec as substrates to generate selenocysteyl-tRNA[Ser]Sec. Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, O-phosphoseryl-tRNA[Ser]Sec kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA[Ser]Sec kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins. PMID:17194211

  3. Neddylation requires glycyl-tRNA synthetase to protect activated E2.

    PubMed

    Mo, Zhongying; Zhang, Qian; Liu, Ze; Lauer, Janelle; Shi, Yi; Sun, Litao; Griffin, Patrick R; Yang, Xiang-Lei

    2016-08-01

    Neddylation is a post-translational modification that controls the cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme in protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not knockdown of a different tRNA synthetase, decreased the global level of neddylation and caused cell-cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds the APPBP1 subunit of E1 and captures and protects activated E2 (NEDD8-conjugated Ubc12) before the activated E2 reaches a downstream target. Therefore, GlyRS functions as a chaperone that critically supports neddylation. This function is probably conserved in all eukaryotic GlyRS enzymes and may contribute to the strong association of GlyRS with cancer progression. PMID:27348078

  4. Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution

    PubMed Central

    Nakamoto, Terumasa; Miyanokoshi, Miki; Tanaka, Tomoaki; Wakasugi, Keisuke

    2016-01-01

    Human tryptophanyl-tRNA synthetase (TrpRS) exists in two forms: a full-length TrpRS and a mini TrpRS. We previously found that human mini, but not full-length, TrpRS is an angiostatic factor. Moreover, it was shown that the interaction between mini TrpRS and the extracellular domain of vascular endothelial (VE)-cadherin is crucial for its angiostatic activity. However, the molecular mechanism of the angiostatic activity of human mini TrpRS is only partly understood. In the present study, we investigated the effects of truncated (mini) form of TrpRS proteins from human, bovine, or zebrafish on vascular endothelial growth factor (VEGF)-stimulated chemotaxis of human umbilical vein endothelial cells (HUVECs). We show that both human and bovine mini TrpRSs inhibited VEGF-induced endothelial migration, whereas zebrafish mini TrpRS did not. Next, to identify residues crucial for the angiostatic activity of human mini TrpRS, we prepared several site-directed mutants based on amino acid sequence alignments among TrpRSs from various species and demonstrated that a human mini K153Q TrpRS mutant cannot inhibit VEGF-stimulated HUVEC migration and cannot bind to the extracellular domain of VE-cadherin. Taken together, we conclude that the Lys153 residue of human mini TrpRS is a VE-cadherin binding site and is therefore crucial for its angiostatic activity. PMID:27094087

  5. Isolation and Partial Characterization of Temperature-Sensitive Escherichia coli Mutants with Altered Leucyl- and Seryl-Transfer Ribonucleic Acid Synthetases

    PubMed Central

    Low, B.; Gates, F.; Goldstein, T.; Söll, D.

    1971-01-01

    Two temperature-sensitive mutants of Escherichia coli have been found in which the conditional growth is a result of a thermosensitive leucyl-transfer ribonucleic acid (tRNA) synthetase and seryl-tRNA synthetase, respectively. The corresponding genetic loci, leuS and serS, cotransduce with lip and serC, respectively. As a result of the mutationally altered leucyl-tRNA synthetase, some leucine-, valine-, and isoleucine-forming enzymes were derepressed. Thus, leucyl-tRNA synthetase is involved in the repression of the enzymes needed for the synthesis of branched-chain amino acids. PMID:4942762

  6. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis

    PubMed Central

    Guy, Michael P.; Young, David L.; Payea, Matthew J.; Zhang, Xiaoju; Kon, Yoshiko; Dean, Kimberly M.; Grayhack, Elizabeth J.; Mathews, David H.; Fields, Stanley

    2014-01-01

    Sequence variation in tRNA genes influences the structure, modification, and stability of tRNA; affects translation fidelity; impacts the activity of numerous isodecoders in metazoans; and leads to human diseases. To comprehensively define the effects of sequence variation on tRNA function, we developed a high-throughput in vivo screen to quantify the activity of a model tRNA, the nonsense suppressor SUP4oc of Saccharomyces cerevisiae. Using a highly sensitive fluorescent reporter gene with an ochre mutation, fluorescence-activated cell sorting of a library of SUP4oc mutant yeast strains, and deep sequencing, we scored 25,491 variants. Unexpectedly, SUP4oc tolerates numerous sequence variations, accommodates slippage in tertiary and secondary interactions, and exhibits genetic interactions that suggest an alternative functional tRNA conformation. Furthermore, we used this methodology to define tRNA variants subject to rapid tRNA decay (RTD). Even though RTD normally degrades tRNAs with exposed 5′ ends, mutations that sensitize SUP4oc to RTD were found to be located throughout the sequence, including the anti-codon stem. Thus, the integrity of the entire tRNA molecule is under surveillance by cellular quality control machinery. This approach to assess activity at high throughput is widely applicable to many problems in tRNA biology. PMID:25085423

  7. Distinct tRNA recognition strategies used by a homologous family of editing domains prevent mistranslation.

    PubMed

    Das, Mom; Vargas-Rodriguez, Oscar; Goto, Yuki; Suga, Hiroaki; Musier-Forsyth, Karin

    2014-04-01

    Errors in protein synthesis due to mispairing of amino acids with tRNAs jeopardize cell viability. Several checkpoints to prevent formation of Ala- and Cys-tRNA(Pro) have been described, including the Ala-specific editing domain (INS) of most bacterial prolyl-tRNA synthetases (ProRSs) and an autonomous single-domain INS homolog, YbaK, which clears Cys-tRNA(Pro) in trans. In many species where ProRS lacks an INS domain, ProXp-ala, another single-domain INS-like protein, is responsible for editing Ala-tRNA(Pro). Although the amino acid specificity of these editing domains has been established, the role of tRNA sequence elements in substrate selection has not been investigated in detail. Critical recognition elements for aminoacylation by bacterial ProRS include acceptor stem elements G72/A73 and anticodon bases G35/G36. Here, we show that ProXp-ala and INS require these same acceptor stem and anticodon elements, respectively, whereas YbaK lacks inherent tRNA specificity. Thus, these three related domains use divergent approaches to recognize tRNAs and prevent mistranslation. Whereas some editing domains have borrowed aspects of tRNA recognition from the parent aminoacyl-tRNA synthetase, relaxed tRNA specificity leading to semi-promiscuous editing may offer advantages to cells. PMID:24371276

  8. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  9. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    SciTech Connect

    Bao, Baolong; Wijeratne, Subhashinee S.K.; Rodriguez-Melendez, Rocio; Zempleni, Janos

    2011-08-19

    Highlights: {yields} Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). {yields} Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. {yields} HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  10. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.

    PubMed

    Richardson, Charles J; First, Eric A

    2016-03-15

    Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine. PMID:26890980

  11. Altered tRNA characteristics and 3' maturation in bacterial symbionts with reduced genomes.

    PubMed

    Hansen, Allison K; Moran, Nancy A

    2012-09-01

    Translational efficiency is controlled by tRNAs and other genome-encoded mechanisms. In organelles, translational processes are dramatically altered because of genome shrinkage and horizontal acquisition of gene products. The influence of genome reduction on translation in endosymbionts is largely unknown. Here, we investigate whether divergent lineages of Buchnera aphidicola, the reduced-genome bacterial endosymbiont of aphids, possess altered translational features compared with their free-living relative, Escherichia coli. Our RNAseq data support the hypothesis that translation is less optimal in Buchnera than in E. coli. We observed a specific, convergent, pattern of tRNA loss in Buchnera and other endosymbionts that have undergone genome shrinkage. Furthermore, many modified nucleoside pathways that are important for E. coli translation are lost in Buchnera. Additionally, Buchnera's A + T compositional bias has resulted in reduced tRNA thermostability, and may have altered aminoacyl-tRNA synthetase recognition sites. Buchnera tRNA genes are shorter than those of E. coli, as the majority no longer has a genome-encoded 3' CCA; however, all the expressed, shortened tRNAs undergo 3' CCA maturation. Moreover, expression of tRNA isoacceptors was not correlated with the usage of corresponding codons. Overall, our data suggest that endosymbiont genome evolution alters tRNA characteristics that are known to influence translational efficiency in their free-living relative. PMID:22689638

  12. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  13. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  14. The polypeptide Syn67 interacts physically with human holocarboxylase synthetase, but is not a target for biotinylation

    PubMed Central

    Hassan, Yousef I.; Moriyama, Hideaki; Zempleni, Janos

    2010-01-01

    Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysines in carboxylases and histones in two steps. First, HCS catalyzes the synthesis of biotinyl-5′-AMP; second, the biotinyl moiety is ligated to lysine residues. It has been proposed that step two is fairly promiscuous, and that protein biotinylation may occur in the absence of HCS as long as sufficient exogenous biotinyl-5′-AMP is provided. Here, we identified a novel polypeptide (Syn67) with a basic patch of lysines and arginines. Yeast-two-hybrid assays and limited proteolysis assays revealed that both N- and C-termini of HCS interact with Syn67. A potential target lysine in Syn67 was biotinylated by HCS only after arginine-to-glycine substitutions in Syn67 produced a histone-like peptide. We identified a Syn67 docking site near the active pocket of HCS by in silico modeling and site directed mutagenesis. Biotinylation of proteins by HCS is more specific than previously assumed. PMID:20026029

  15. Recoding Aminoacyl-tRNA Synthetases for Synthetic Biology by Rational Protein-RNA Engineering

    PubMed Central

    2015-01-01

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl–tRNA pairing specificities of bacterial glutaminyl–tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNAGln by over 105-fold compared to the wild-type enzyme. Better optimized designs of the protein–RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl–tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology. PMID:25310879

  16. Variant of human enzyme sequesters reactive intermediate.

    PubMed

    Ewalt, Karla L; Yang, Xiang-Lei; Otero, Francella J; Liu, Jianming; Slike, Bonnie; Schimmel, Paul

    2005-03-22

    In cellular environments, coupled hydrolytic reactions are used to force efficient product formation in enzyme-catalyzed reactions. In the first step of protein synthesis, aminoacyl-tRNA synthetases react with amino acid and ATP to form an enzyme-bound adenylate that, in the next step, reacts with tRNA to form aminoacyl-tRNA. The reaction liberates pyrophosphate (PP(i)) which, in turn, can be hydrolyzed by pyrophosphatase to drive efficient aminoacylation. A potential polymorphic variant of human tryptophanyl-tRNA synthetase is shown here to sequester tryptophanyl adenylate. The bound adenylate does not react efficiently with the liberated PP(i) that normally competes with tRNA to resynthesize ATP and free amino acid. Structural analysis of this variant showed that residues needed for binding ATP phosphates and thus PP(i) were reoriented from their conformations in the structure of the more common sequence variant. Significantly, the reorientation does not affect reaction with tRNA, so that efficient aminoacylation is achieved. PMID:15766249

  17. Derepression of Synthesis of the Aminoacyl-Transfer Ribonucleic Acid Synthetases for the Branched-Chain Amino Acids of Escherichia coli

    PubMed Central

    McGinnis, Etheleen; Williams, Ann C.; Williams, L. S.

    1974-01-01

    The kinetics of derepression of valyl-, isoleucyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined during valine-, isoleucine-, and leucine-limited growth. When valine was limiting growth, valyl-tRNA synthetase formation was maximally derepressed within 5 min, whereas the rates of synthesis of isoleucyl-, and leucyl-tRNA synthetases were unchanged. Isoleucine-restricted growth caused a maximal derepression of isoleucyl-tRNA synthetase formation in 5 min and derepression of valyl-tRNA synthetase formation in 15 min with no effect on leucyl-tRNA synthetase formation. When leucine was limiting growth, leucyl-tRNA synthetase formation was immediately derepressed, whereas valyl- and isoleucyl-tRNA synthetase formation was unaffected by manipulation of the leucine supply to the cells. These results support our previous findings that valyl-tRNA synthetase formation is subject to multivalent repression control by both isoleucine and valine. In contrast, repression control of iso-leucyl- and leucyl-tRNA synthetase formation is specifically mediated by the supply of the cognate amino acid. PMID:4604302

  18. Involvement of imported tRNA in intramitochondrial translation. [Tetrahymena

    SciTech Connect

    Suyama, Y.

    1981-01-01

    These studies show that only 10 out of 36 mitochondrial tRNAs hybridize to mtDNA. Consistent with previous observations, Arg, Ile, Lys, Val tRNAs must be imported cytoplasmic tRNAs, since these tRNAs do not hybridize to mtDNA. The evident indicates that these imported tRNAs in Tetrahymena mitochondria are not contaminating cytoplasmic tRNAs in our mitochondrial preparations. The conclusion that they function in intramitochondrial translation is based on the demonstration that all the native and imported tRNAs are associated with the functinal mitochondrial 80S monosome as well as with carefully washed 55S subunits. As expected if they function in translation, all these tRNAs on the ribosomes should become acylated when mitochondria are engaged in protein synthesis. From the codon recognition patterns determined previously, it is quite probable that Tetrahymena mitochondrial translation system differs from mammalian and fungal mitochondrial systems. The mechanisms for transporting tRNA into mitochondria is not known. However, it was proposed earlier that the corresponding tRNA synthetase may act as transport protein.

  19. Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans

    PubMed Central

    Jaiswal, Manish; Tétreault, Martine; Donti, Taraka; Sasarman, Florin; Bernard, Geneviève; Demers-Lamarche, Julie; Dicaire, Marie-Josée; Mathieu, Jean; Vanasse, Michel; Bouchard, Jean-Pierre; Rioux, Marie-France; Lourenco, Charles M.; Li, Zhihong; Haueter, Claire; Shoubridge, Eric A.; Graham, Brett H.; Brais, Bernard; Bellen, Hugo J.

    2012-01-01

    An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants. PMID:22448145

  20. Additive, cooperative and anti-cooperative effects between identity nucleotides of a tRNA.

    PubMed Central

    Pütz, J; Puglisi, J D; Florentz, C; Giegé, R

    1993-01-01

    We have investigated the functional relationship between nucleotides in yeast tRNAAsp that are important for aspartylation by yeast aspartyl-tRNA synthetase. Transcripts of tRNAAsp with two or more mutations at identity positions G73, G34, U35, C36 and base pair G10-U25 have been prepared and the steady-state kinetics of their aspartylation were measured. Multiple mutations affect the catalytic activities of the synthetase mainly at the level of the catalytic constant, kcat. Kinetic data were expressed as free energy variation at transition state of these multiple mutants and comparison of experimental values with those calculated from results on single mutants defined three types of relationships between the identity nucleotides of this tRNA. Nucleotides located far apart in the three-dimensional structure of the tRNA act cooperatively whereas nucleotides of the anticodon triplet act either additively or anti-cooperatively. These results are related to the specific interactions of functional groups on identity nucleotides with amino acids in the protein as revealed by the crystal structure of the tRNAAsp/aspartyl-tRNA synthetase complex. These relationships between identity nucleotides may play an important role in the biological function of tRNAs. Images PMID:8335008

  1. X-ray diffraction analysis of a human tRNAGly acceptor-stem microhelix isoacceptor at 1.18 Å resolution

    PubMed Central

    Eichert, André; Perbandt, Markus; Schreiber, Angela; Fürste, Jens P.; Betzel, Christian; Erdmann, Volker A.; Förster, Charlotte

    2009-01-01

    Interest has been focused on comparative X-ray structure analyses of different tRNAGly acceptor-stem helices. tRNAGly/glycyl-tRNA synthetase belongs to the so-called class II system, in which the tRNA identity elements consist of simple and unique determinants that are located in the tRNA acceptor stem and the discriminator base. Comparative structure investigations of tRNAGly microhelices provide insight into the role of tRNA identity elements. Predominant differences in the structures of glycyl-tRNA synthetases and in the tRNA identity elements between prokaryotes and eukaryotes point to divergence during the evolutionary process. Here, the crystallization and high-resolution X-­ray diffraction analysis of a human tRNAGly acceptor-stem microhelix with sequence 5′-G1C2A3U4U5G6G7-3′, 5′-C66C67A68A69U70G71C72-3′ is reported. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 37.32, b = 37.61, c = 30.47 Å, β = 112.60° and one molecule per asymmetric unit. A data set was collected using synchrotron radiation and data were processed within the resolution range 50.0–1.18 Å. The structure was solved by molecular replacement. PMID:19153458

  2. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.

    PubMed Central

    Cusack, S; Härtlein, M; Leberman, R

    1991-01-01

    Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain. Images PMID:1852601

  3. Small Noncoding RNAs in Cells Transformed by Human T-Cell Leukemia Virus Type 1: a Role for a tRNA Fragment as a Primer for Reverse Transcriptase

    PubMed Central

    Ruggero, Katia; Guffanti, Alessandro; Corradin, Alberto; Sharma, Varun Kumar; De Bellis, Gianluca; Corti, Giorgio; Grassi, Angela; Zanovello, Paola; Bronte, Vincenzo; D'Agostino, Donna M.

    2014-01-01

    ABSTRACT The present study employed mass sequencing of small RNA libraries to identify the repertoire of small noncoding RNAs expressed in normal CD4+ T cells compared to cells transformed with human T-cell leukemia virus type 1 (HTLV-1), the causative agent of adult T-cell leukemia/lymphoma (ATLL). The results revealed distinct patterns of microRNA expression in HTLV-1-infected CD4+ T-cell lines with respect to their normal counterparts. In addition, a search for virus-encoded microRNAs yielded 2 sequences that originated from the plus strand of the HTLV-1 genome. Several sequences derived from tRNAs were expressed at substantial levels in both uninfected and infected cells. One of the most abundant tRNA fragments (tRF-3019) was derived from the 3′ end of tRNA-proline. tRF-3019 exhibited perfect sequence complementarity to the primer binding site of HTLV-1. The results of an in vitro reverse transcriptase assay verified that tRF-3019 was capable of priming HTLV-1 reverse transcriptase. Both tRNA-proline and tRF-3019 were detected in virus particles isolated from HTLV-1-infected cells. These findings suggest that tRF-3019 may play an important role in priming HTLV-1 reverse transcription and could thus represent a novel target to control HTLV-1 infection. IMPORTANCE Small noncoding RNAs, a growing family of regulatory RNAs that includes microRNAs and tRNA fragments, have recently emerged as key players in many biological processes, including viral infection and cancer. In the present study, we employed mass sequencing to identify the repertoire of small noncoding RNAs in normal T cells compared to T cells transformed with human T-cell leukemia virus type 1 (HTLV-1), a retrovirus that causes adult T-cell leukemia/lymphoma. The results revealed a distinct pattern of microRNA expression in HTLV-1-infected cells and a tRNA fragment (tRF-3019) that was packaged into virions and capable of priming HTLV-1 reverse transcription, a key event in the retroviral life cycle

  4. Structure of Pyrrolysyl-tRNA Synthetase, an Archaeal Enzyme for Genetic Code Innovation

    SciTech Connect

    Kavran,J.; Gundllapalli, S.; O'Donoghue, P.; Englert, M.; Soll, D.; Steitz, T.

    2007-01-01

    Pyrrolysine (Pyl), the 22nd natural amino acid and genetically encoded by UAG, becomes attached to its cognate tRNA by pyrrolysyl-tRNA synthetase (PylRS). We have determined three crystal structures of the Methanosarcina mazei PylRS complexed with either AMP-PNP, Pyl-AMP plus pyrophosphate, or the Pyl analogue N-e-[(cylopentyloxy)carbonyl]-l-lysine plus ATP. The structures reveal that PylRS utilizes a deep hydrophobic pocket for recognition of the Pyl side chain. A comparison of these structures with previously determined class II tRNA synthetase complexes illustrates that different substrate specificities derive from changes in a small number of residues that form the substrate side-chain-binding pocket. The knowledge of these structures allowed the placement of PylRS in the aminoacyl-tRNA synthetase (aaRS) tree as the last known synthetase that evolved for genetic code expansion, as well as the finding that Pyl arose before the last universal common ancestral state. The PylRS structure provides an excellent framework for designing new aaRSs with altered amino acid specificity.

  5. Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2

    PubMed Central

    Qiu, Hongfang; Hu, Cuihua; Dong, Jinsheng; Hinnebusch, Alan G.

    2002-01-01

    The protein kinase GCN2 is activated in amino acid-starved cells on binding of uncharged tRNA to a histidyl-tRNA synthetase (HisRS)-related domain. We isolated two point mutations in the protein kinase (PK) domain, R794G and F842L, that permit strong kinase activity in the absence of tRNA binding. These mutations also bypass the requirement for ribosome binding, dimerization, and association with the GCN1/GCN20 regulatory complex, suggesting that all of these functions facilitate tRNA binding to wild-type GCN2. While the isolated wild-type PK domain was completely inert, the mutant PK was highly active in vivo and in vitro. These results identify an inhibitory structure intrinsic to the PK domain that must be overcome on tRNA binding by interactions with a regulatory region, most likely the N terminus of the HisRS segment. As Arg 794 and Phe 842 are predicted to lie close to one another and to the active site, they may participate directly in misaligning active site residues. Autophosphorylation of the activation loop was stimulated by R794G and F842L, and the autophosphorylation sites remained critical for GCN2 function in the presence of these mutations. Our results imply a two-step activation mechanism involving distinct conformational changes in the PK domain. PMID:12023305

  6. Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology.

    PubMed

    Fernández-Millán, Pablo; Schelcher, Cédric; Chihade, Joseph; Masquida, Benoît; Giegé, Philippe; Sauter, Claude

    2016-07-15

    Transfer RNAs (tRNAs) play a key role in protein synthesis as adaptor molecules between messenger RNA and protein sequences on the ribosome. Their discovery in the early sixties provoked a worldwide infatuation with the study of their architecture and their function in the decoding of genetic information. tRNAs are also emblematic molecules in crystallography: the determination of the first tRNA crystal structures represented a milestone in structural biology and tRNAs were for a long period the sole source of information on RNA folding, architecture, and post-transcriptional modifications. Crystallographic data on tRNAs in complex with aminoacyl-tRNA synthetases (aaRSs) also provided the first insight into protein:RNA interactions. Beyond the translation process and the history of structural investigations on tRNA, this review also illustrates the renewal of tRNA biology with the discovery of a growing number of tRNA partners in the cell, the involvement of tRNAs in a variety of regulatory and metabolic pathways, and emerging applications in biotechnology and synthetic biology. PMID:26968773

  7. Structures of Trypanosoma brucei Methionyl-tRNA Synthetase with Urea-Based Inhibitors Provide Guidance for Drug Design against Sleeping Sickness

    PubMed Central

    Koh, Cho Yeow; Kim, Jessica E.; Wetzel, Allan B.; de van der Schueren, Will J.; Shibata, Sayaka; Ranade, Ranae M.; Liu, Jiyun; Zhang, Zhongsheng; Gillespie, J. Robert; Buckner, Frederick S.; Verlinde, Christophe L. M. J.; Fan, Erkang; Hol, Wim G. J.

    2014-01-01

    Methionyl-tRNA synthetase of Trypanosoma brucei (TbMetRS) is an important target in the development of new antitrypanosomal drugs. The enzyme is essential, highly flexible and displaying a large degree of changes in protein domains and binding pockets in the presence of substrate, product and inhibitors. Targeting this protein will benefit from a profound understanding of how its structure adapts to ligand binding. A series of urea-based inhibitors (UBIs) has been developed with IC50 values as low as 19 nM against the enzyme. The UBIs were shown to be orally available and permeable through the blood-brain barrier, and are therefore candidates for development of drugs for the treatment of late stage human African trypanosomiasis. Here, we expand the structural diversity of inhibitors from the previously reported collection and tested for their inhibitory effect on TbMetRS and on the growth of T. brucei cells. The binding modes and binding pockets of 14 UBIs are revealed by determination of their crystal structures in complex with TbMetRS at resolutions between 2.2 Å to 2.9 Å. The structures show binding of the UBIs through conformational selection, including occupancy of the enlarged methionine pocket and the auxiliary pocket. General principles underlying the affinity of UBIs for TbMetRS are derived from these structures, in particular the optimum way to fill the two binding pockets. The conserved auxiliary pocket might play a role in binding tRNA. In addition, a crystal structure of a ternary TbMetRS•inhibitor•AMPPCP complex indicates that the UBIs are not competing with ATP for binding, instead are interacting with ATP through hydrogen bond. This suggests a possibility that a general ‘ATP-engaging’ binding mode can be utilized for the design and development of inhibitors targeting tRNA synthetases of other disease-causing pathogen. PMID:24743796

  8. Synthesis and activities of branched-chain aminoacyl-tRNA synthetases in threonine deaminase mutants of Escherichia coli.

    PubMed Central

    Williams, A L; Whitfield, S M; Williams, L S

    1978-01-01

    Valyl-, isoleucyl-, and leucyl-tRNA synthetase activities were examined in an Escherichia coli K-12 strain that possessed a deletion of three genes of the ilv gene cluster, ilvD, A, and C, and in a strain with the same deletion that also carried the lambdadilvCB bacteriophage. It was observed that the branched-chain tRNA synthetase activities of both strains were considerably less than those of the normal strain during growth in unrestricted medium. Furthermore, during an isoleucine limitation, there was a further reduction in isoleucyl-tRNA synthetase activity and an absence of the isoleucine-mediated derepression of valyl-tRNA synthetase formation in both of these mutants, as compared with the normal strain. In addition, it was observed that these branched-chain synthetase activities were reduced in steady-state cultures of several ilvA point mutants. However, upon the introduction of the ilv operon to these ilvA mutants by use of lambda bacteriophage, there was a specific increase in the branched-chain synthetase activities to levels comparable to those of the normal strain. These results support our previous findings that the stability and repression control of synthesis of these synthetases require some product(s) missing in the ilvDAC deletion strain and strongly suggest this component is some form of the ilvA gene product, threonine deaminase. PMID:348689

  9. Human 3'-phosphoadenosine 5'-phosphosulfate synthetase (isoform 1, brain): kinetic properties of the adenosine triphosphate sulfurylase and adenosine 5'-phosphosulfate kinase domains.

    PubMed

    Lansdon, Eric B; Fisher, Andrew J; Segel, Irwin H

    2004-04-13

    Recombinant human 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase, isoform 1 (brain), was purified to near-homogeneity from an Escherichia coli expression system and kinetically characterized. The native enzyme, a dimer with each 71 kDa subunit containing an adenosine triphosphate (ATP) sulfurylase and an adenosine 5'-phosphosulfate (APS) kinase domain, catalyzes the overall formation of PAPS from ATP and inorganic sulfate. The protein is active as isolated, but activity is enhanced by treatment with dithiothreitol. APS kinase activity displayed the characteristic substrate inhibition by APS (K(I) of 47.9 microM at saturating MgATP). The maximum attainable activity of 0.12 micromol min(-1) (mg of protein)(-1) was observed at an APS concentration ([APS](opt)) of 15 microM. The theoretical K(m) for APS (at saturating MgATP) and the K(m) for MgATP (at [APS](opt)) were 4.2 microM and 0.14 mM, respectively. At likely cellular levels of MgATP (2.5 mM) and sulfate (0.4 mM), the overall endogenous rate of PAPS formation under optimum assay conditions was 0.09 micromol min(-1) (mg of protein)(-1). Upon addition of pure Penicillium chrysogenum APS kinase in excess, the overall rate increased to 0.47 micromol min(-1) (mg of protein)(-1). The kinetic constants of the ATP sulfurylase domain were as follows: V(max,f) = 0.77 micromol min(-1) (mg of protein)(-1), K(mA(MgATP)) = 0.15 mM, K(ia(MgATP)) = 1 mM, K(mB(sulfate)) = 0.16 mM, V(max,r) = 18.7 micromol min(-1) (mg of protein)(-1), K(mQ(APS)) = 4.8 microM, K(iq(APS)) = 18 nM, and K(mP(PPi)) = 34.6 microM. The (a) imbalance between ATP sulfurylase and APS kinase activities, (b) accumulation of APS in solution during the overall reaction, (c) rate acceleration provided by exogenous APS kinase, and (d) availability of both active sites to exogenous APS all argue against APS channeling. Molybdate, selenate, chromate ("chromium VI"), arsenate, tungstate, chlorate, and perchlorate bind to the ATP sulfurylase domain, with the

  10. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity.

    PubMed Central

    Lloyd, A J; Thomann, H U; Ibba, M; Söll, D

    1995-01-01

    We describe a convenient, simple and novel continuous spectrophotometric method for the determination of aminoacyl-tRNA synthetase activity. The assay relies upon the measurement of inorganic pyrophosphate generated in the first step of the aminoacylation of a tRNA. Pyrophosphate release is coupled to inorganic pyrophosphatase, to generate phosphate, which in turn is used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methylpurine ribonucleoside. Of the reaction products, ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360 nm relative to the nucleoside and hence provides a spectrophotometric signal that can be continuously followed. The non-destructive nature of the spectrophotometric assay allowed the re-use of the tRNAs in question in successive experiments. The usefulness of this method was demonstrated for glutaminyl-tRNA synthetase (GlnRS) and tryptophanyl-tRNA synthetase. Initial velocities measured using this assay correlate closely with those assayed by quantitation of [3H]Gln-tRNA or [14C]Trp-tRNA formation respectively. In both cases amino acid transfer from the aminoacyl adenylate to the tRNA represents the rate determining step. In addition, aminoacyl adenylate formation by aspartyl-tRNA synthetase was followed and provided a more sensitive means of active site titration than existing techniques. Finally, this novel method was used to provide direct evidence for the cooperativity of tRNA and ATP binding to GlnRS. PMID:7659511

  11. Methylated nucleosides in tRNA and tRNA methyltransferases

    PubMed Central

    Hori, Hiroyuki

    2014-01-01

    To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed. PMID:24904644

  12. In Human Pseudouridine Synthase 1 (hPus1), a C-terminal Helical Insert Blocks tRNA From Binding in the Same Orientation as in the Pus1 Bacterial Homologue TruA, Consistent with their Different Target Selectivities

    PubMed Central

    Czudnochowski, Nadine; Wang, Amy Liya; Finer-Moore, Janet; Stroud, Robert M.

    2013-01-01

    Human pseudouridine (Ψ) synthase Pus1 (hPus1) modifies specific uridine residues in several non-coding RNAs; tRNA, U2 spliceosomal RNA and steroid receptor activator RNA. We report three structures of the catalytic core domain of hPus1 from two crystal forms, at 1.8 Å resolution. The structures are the first of a mammalian Ψ synthase from the set of five Ψ synthase families common to all kingdoms of life. hPus1 adopts a fold similar to bacterial Ψ synthases, with a central antiparallel ß-sheet flanked by helices and loops. A flexible hinge at the base of the sheet allows the enzyme to open and close around an electropositive active site cleft. In one crystal form a molecule of MES mimics the target uridine of an RNA substrate. A positively charged electrostatic surface extends from the active site towards the N-terminus of the catalytic domain suggesting an extensive binding site specific for target RNAs. Two alpha helices C-terminal to the core domain, but unique to hPus1, extend along the back and top of the central ß-sheet and form the walls of the RNA binding surface. Docking of tRNA to hPus1 in a productive orientation requires only minor conformational changes to enzyme and tRNA. The docked tRNA is bound by the electropositive surface of the protein employing a completely different binding mode than that seen for the tRNA complex of the E. coli homolog TruA. PMID:23707380

  13. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase.

    PubMed Central

    Cerini, C; Kerjan, P; Astier, M; Gratecos, D; Mirande, M; Sémériva, M

    1991-01-01

    In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed. Images PMID:1756734

  14. Structural plasticity of an aminoacyl-tRNA synthetase active site

    PubMed Central

    Turner, James M.; Graziano, James; Spraggon, Glen; Schultz, Peter G.

    2006-01-01

    Recently, tRNA aminoacyl-tRNA synthetase pairs have been evolved that allow one to genetically encode a large array of unnatural amino acids in both prokaryotic and eukaryotic organisms. We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine (NpAla). A comparison of these structures with the substrate-bound WT synthetase, as well as a mutant synthetase that charges p-acetylphenylalanine, shows that altered specificity is due to both side-chain and backbone rearrangements within the active site that modify hydrogen bonds and packing interactions with substrate, as well as disrupt the α8-helix, which spans the WT active site. The high degree of structural plasticity that is observed in these aminoacyl-tRNA synthetases is rarely found in other mutant enzymes with altered specificities and provides an explanation for the surprising adaptability of the genetic code to novel amino acids. PMID:16618920

  15. Identification of protein interfaces within the multi-aminoacyl-tRNA synthetase complex: the case of lysyl-tRNA synthetase and the scaffold protein p38.

    PubMed

    Rémion, Azaria; Khoder-Agha, Fawzi; Cornu, David; Argentini, Manuela; Redeker, Virginie; Mirande, Marc

    2016-07-01

    Human cytoplasmic lysyl-tRNA synthetase (LysRS) is associated within a multi-aminoacyl-tRNA synthetase complex (MSC). Within this complex, the p38 component is the scaffold protein that binds the catalytic domain of LysRS via its N-terminal region. In addition to its translational function when associated to the MSC, LysRS is also recruited in nontranslational roles after dissociation from the MSC. The balance between its MSC-associated and MSC-dissociated states is essential to regulate the functions of LysRS in cellular homeostasis. With the aim of understanding the rules that govern association of LysRS in the MSC, we analyzed the protein interfaces between LysRS and the full-length version of p38, the scaffold protein of the MSC. In a previous study, the cocrystal structure of LysRS with a N-terminal peptide of p38 was reported [Ofir-Birin Y et al. (2013) Mol Cell 49, 30-42]. In order to identify amino acid residues involved in interaction of the two proteins, the non-natural, photo-cross-linkable amino acid p-benzoyl-l-phenylalanine (Bpa) was incorporated at 27 discrete positions within the catalytic domain of LysRS. Among the 27 distinct LysRS mutants, only those with Bpa inserted in place of Lys356 or His364 were cross-linked with p38. Using mass spectrometry, we unambiguously identified the protein interface of the cross-linked complex and showed that Lys356 and His364 of LysRS interact with the peptide from Pro8 to Arg26 in native p38, in agreement with the published cocrystal structure. This interface, which in LysRS is located on the opposite side of the dimer to the site of interaction with its tRNA substrate, defines the core region of the MSC. The residues identified herein in human LysRS are not conserved in yeast LysRS, an enzyme that does not associate within the MSC, and contrast with the residues proposed to be essential for LysRS:p38 association in the earlier work. PMID:27398309

  16. tRNA acceptor stem and anticodon bases form independent codes related to protein folding

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2015-01-01

    Aminoacyl-tRNA synthetases recognize tRNA anticodon and 3′ acceptor stem bases. Synthetase Urzymes acylate cognate tRNAs even without anticodon-binding domains, in keeping with the possibility that acceptor stem recognition preceded anticodon recognition. Representing tRNA identity elements with two bits per base, we show that the anticodon encodes the hydrophobicity of each amino acid side-chain as represented by its water-to-cyclohexane distribution coefficient, and this relationship holds true over the entire temperature range of liquid water. The acceptor stem codes preferentially for the surface area or size of each side-chain, as represented by its vapor-to-cyclohexane distribution coefficient. These orthogonal experimental properties are both necessary to account satisfactorily for the exposed surface area of amino acids in folded proteins. Moreover, the acceptor stem codes correctly for β-branched and carboxylic acid side-chains, whereas the anticodon codes for a wider range of such properties, but not for size or β-branching. These and other results suggest that genetic coding of 3D protein structures evolved in distinct stages, based initially on the size of the amino acid and later on its compatibility with globular folding in water. PMID:26034281

  17. Mechanisms of the tRNA wobble cytidine modification essential for AUA codon decoding in prokaryotes.

    PubMed

    Numata, Tomoyuki

    2015-01-01

    Bacteria and archaea have 2-lysylcytidine (L or lysidine) and 2-agmatinylcytidine (agm(2)C or agmatidine), respectively, at the first (wobble) position of the anticodon of the AUA codon-specific tRNA(Ile). These lysine- or agmatine-conjugated cytidine derivatives are crucial for the precise decoding of the genetic code. L is synthesized by tRNA(Ile)-lysidine synthetase (TilS), which uses l-lysine and ATP as substrates. Agm(2)C formation is catalyzed by tRNA(Ile)-agm(2)C synthetase (TiaS), which uses agmatine and ATP for the reaction. Despite the fact that TilS and TiaS synthesize structurally similar cytidine derivatives, these enzymes belong to non-related protein families. Therefore, these enzymes modify the wobble cytidine by distinct catalytic mechanisms, in which TilS activates the C2 carbon of the wobble cytidine by adenylation, while TiaS activates it by phosphorylation. In contrast, TilS and TiaS share similar tRNA recognition mechanisms, in which the enzymes recognize the tRNA acceptor stem to discriminate tRNA(Ile) and tRNA(Met). PMID:25348586

  18. Mutants of Salmonella typhimurium with an Altered Leucyl-Transfer Ribonucleic Acid Synthetase

    PubMed Central

    Alexander, Renee R.; Calvo, J. M.; Freundlich, M.

    1971-01-01

    Two trifluoroleucine-resistant mutants of Salmonella typhimurium, strains CV69 and CV117, had an altered leucyl-transfer ribonucleic acid (tRNA) synthetase. The mutant enzymes had higher apparent Km values for leucine (ca. 10-fold) and lower specific activities (ca. twofold) than the parent enzyme when tested in crude extracts. Preparations of synthetase purified ca. 60-fold from the parent and strain CV117 differed sixfold in their leucine Km values. In addition, the mutant enzyme was inactivated faster than the parent enzyme at 50 C. The growth rates of strains CV69 and CV117 at 37 C were not significantly different from that of the parent, whereas at 42 C strain CV69 grew more slowly than the parent. Leucine-, valine-, and isoleucine-forming enzymes were partially derepressed when the mutants were grown in minimal medium; the addition of leucine repressed these enzymes to wild-type levels. During growth in minimal medium, the proportion of leucine tRNA that was charged in the mutants was about 75% of that in the parent. The properties of strain CV117 were shown to result from a single mutation located near gal at minute 18 on the genetic map. These studies suggest that leucyl-tRNA synthetase is involved in repression of the enzymes required for the synthesis of branched-chain amino acids. PMID:4928008

  19. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed

    PubMed Central

    Hausmann, Corinne D.; Ibba, Michael

    2008-01-01

    The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis. PMID:18522650

  20. tRNA biology charges to the front

    PubMed Central

    Phizicky, Eric M.; Hopper, Anita K.

    2010-01-01

    tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis. PMID:20810645

  1. Expression of gamma-glutamylcysteine synthetase (gamma-GCS) and multidrug resistance-associated protein (MRP), but not human canalicular multispecific organic anion transporter (cMOAT), genes correlates with exposure of human lung cancers to platinum drugs.

    PubMed Central

    Oguri, T.; Fujiwara, Y.; Isobe, T.; Katoh, O.; Watanabe, H.; Yamakido, M.

    1998-01-01

    We examined the steady-state levels of mRNA for gamma-glutamylcysteine synthetase (gamma-GCS), multidrug resistance-associated protein (MRP) and human canalicular multispecific organic anion transporter (cMOAT) in human lung cancer specimens to elucidate their roles in relation to platinum drug resistance in vivo. Seventy-six autopsy samples (38 primary tumours and their corresponding normal lung tissues) obtained from 38 patients were analysed using the quantitative reverse transcription polymerase chain reaction (RT-PCR) method. Both subunits (heavy and light subunits) of gamma-GCS expression levels of normal lung and tumour tissues exposed to platinum drugs during life were significantly higher than those of non-exposed tissues, whereas only the MRP expression levels of tumours were elevated in association with ante-mortem platinum drug exposure. The gamma-GCS and MRP expression levels correlated significantly. The cMOAT expression levels did not correlate with ante-mortem platinum drug exposure. Next, we monitored gamma-GCS heavy subunit expression levels in peripheral mononuclear cells of eight previously untreated lung cancer patients after platinum drug administration, which revealed that these drugs induced gamma-GCS expression in vivo. These results suggest that gamma-GCS expression is induced by platinum drugs in vivo and/or the physiological stress response to xenobiotics. PMID:9569044

  2. Structure of Leishmania major Methionyl-tRNA Synthetase in Complex with Intermediate Products Methionyladenylate and Pyrophosphate

    PubMed Central

    Larson, Eric T.; Kim, Jessica E.; Zucker, Frank H.; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J.; Verlinde, Christophe L.M.J.; Fan, Erkang; Buckner, Frederick S.; Van Voorhis, Wesley C.; Merritt, Ethan A.; Hol, Wim G.J.

    2011-01-01

    Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg2+ ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of E. coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNAMet complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme. PMID:21144880

  3. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  4. Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene Evolution.

    PubMed

    Kanai, Akio

    2015-01-01

    Transfer RNAs (tRNAs) are small non-coding RNAs with lengths of approximately 70-100 nt. They are directly involved in protein synthesis by carrying amino acids to the ribosome. In this sense, tRNAs are key molecules that connect the RNA world and the protein world. Thus, study of the evolution of tRNA molecules may reveal the processes that led to the establishment of the central dogma: genetic information flows from DNA to RNA to protein. Thanks to the development of DNA sequencers in this century, we have determined a huge number of nucleotide sequences from complete genomes as well as from transcriptomes in many species. Recent analyses of these large data sets have shown that particular tRNA genes, especially in Archaea, are disrupted in unique ways: some tRNA genes contain multiple introns and some are split genes. Even tRNA molecules themselves are fragmented post-transcriptionally in many species. These fragmented small RNAs are known as tRNA-derived fragments (tRFs). In this review, I summarize the progress of research into the disrupted tRNA genes and the tRFs, and propose a possible model for the molecular evolution of tRNAs based on the concept of the combination of fragmented tRNA halves. PMID:25629271

  5. Stereochemical mechanisms of tRNA methyltransferases

    PubMed Central

    Hou, Ya-Ming; Perona, John J.

    2009-01-01

    Methylation of tRNA on the four canonical bases adds structural complexity to the molecule, and improves decoding specificity and efficiency. While many tRNA methylases are known, detailed insight into the catalytic mechanism is only available in a few cases. Of interest among all tRNA methylases is the structural basis for nucleotide selection, by which the specificity is limited to a single site, or broadened to multiple sites. General themes in catalysis include the basis for rate acceleration at highly diverse nucleophilic centers for methyl transfer, using S-adenosylmethionine as a cofactor. Studies of tRNA methylases have also yielded insights into molecular evolution, particularly in the case of enzymes that recognize distinct structures to perform identical reactions at the same target nucleotide. PMID:19944101

  6. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  7. The crystal structure of yeast mitochondrial ThrRS in complex with the canonical threonine tRNA.

    PubMed

    Holman, Kaitlyn M; Wu, Jiang; Ling, Jiqiang; Simonović, Miljan

    2016-02-18

    In mitochondria of Saccharomyces cerevisiae, a single aminoacyl-tRNA synthetase (aaRS), MST1, aminoacylates two isoacceptor tRNAs, tRNA1(Thr) and tRNA2(Thr), that harbor anticodon loops of different size and sequence. As a result of this promiscuity, reassignment of the CUN codon box from leucine to threonine is facilitated. However, the mechanism by which a single aaRS binds distinct anticodon loops with high specificity is not well understood. Herein, we present the crystal structure of MST1 in complex with the canonical tRNA2(Thr) and non-hydrolyzable analog of threonyl adenylate. Our structure reveals that the dimeric arrangement of MST1 is essential for binding the 5'-phosphate, the second base pair of the acceptor stem, the first two base pairs of the anticodon stem and the first nucleotide of the variable arm. Further, in contrast to the bacterial ortholog that 'reads' the entire anticodon sequence, MST1 recognizes bases in the second and third position and the nucleotide upstream of the anticodon sequence. We speculate that a flexible loop linking strands β4 and β5 may be allosteric regulator that establishes cross-subunit communication between the aminoacylation and tRNA-binding sites. We also propose that structural features of the anticodon-binding domain in MST1 permit binding of the enlarged anticodon loop of tRNA1(Thr). PMID:26704982

  8. Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation.

    PubMed

    Zhang, Gong; Lukoszek, Radoslaw; Mueller-Roeber, Bernd; Ignatova, Zoya

    2011-04-01

    In eukaryotes, the transcription of tRNA genes is initiated by the concerted action of transcription factors IIIC (TFIIIC) and IIIB (TFIIIB) which direct the recruitment of polymerase III. While TFIIIC recognizes highly conserved, intragenic promoter elements, TFIIIB binds to the non-coding 5'-upstream regions of the tRNA genes. Using a systematic bioinformatic analysis of 11 multicellular eukaryotic genomes we identified a highly conserved TATA motif followed by a CAA-motif in the tRNA upstream regions of all plant genomes. Strikingly, the 5'-flanking tRNA regions of the animal genomes are highly heterogeneous and lack a common conserved sequence signature. Interestingly, in the animal genomes the tRNA species that read the same codon share conserved motifs in their upstream regions. Deep-sequencing analysis of 16 human tissues revealed multiple splicing variants of two of the TFIIIB subunits, Bdp1 and Brf1, with tissue-specific expression patterns. These multiple forms most likely modulate the TFIIIB-DNA interactions and explain the lack of a uniform signature motif in the tRNA upstream regions of animal genomes. The anticodon-dependent 5'-flanking motifs provide a possible mechanism for independent regulation of the tRNA transcription in various human tissues. PMID:21138970

  9. Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation

    PubMed Central

    Zhang, Gong; Lukoszek, Radoslaw; Mueller-Roeber, Bernd; Ignatova, Zoya

    2011-01-01

    In eukaryotes, the transcription of tRNA genes is initiated by the concerted action of transcription factors IIIC (TFIIIC) and IIIB (TFIIIB) which direct the recruitment of polymerase III. While TFIIIC recognizes highly conserved, intragenic promoter elements, TFIIIB binds to the non-coding 5′-upstream regions of the tRNA genes. Using a systematic bioinformatic analysis of 11 multicellular eukaryotic genomes we identified a highly conserved TATA motif followed by a CAA-motif in the tRNA upstream regions of all plant genomes. Strikingly, the 5′-flanking tRNA regions of the animal genomes are highly heterogeneous and lack a common conserved sequence signature. Interestingly, in the animal genomes the tRNA species that read the same codon share conserved motifs in their upstream regions. Deep-sequencing analysis of 16 human tissues revealed multiple splicing variants of two of the TFIIIB subunits, Bdp1 and Brf1, with tissue-specific expression patterns. These multiple forms most likely modulate the TFIIIB–DNA interactions and explain the lack of a uniform signature motif in the tRNA upstream regions of animal genomes. The anticodon-dependent 5′-flanking motifs provide a possible mechanism for independent regulation of the tRNA transcription in various human tissues. PMID:21138970

  10. Selection of functional tRNA primers and primer binding site sequences from a retroviral combinatorial library: identification of new functional tRNA primers in murine leukemia virus replication

    PubMed Central

    Lund, Anders H.; Duch, Mogens; Pedersen, Finn Skou

    2000-01-01

    Retroviral reverse transcription is initiated from a cellular tRNA molecule and all known exogenous isolates of murine leukemia virus utilise a tRNAPro molecule. While several studies suggest flexibility in murine leukemia virus primer utilisation, studies on human immunodeficiency virus and avian retroviruses have revealed evidence of molecular adaptation towards the specific tRNA isoacceptor used as replication primer. In this study, murine leukemia virus tRNA utilisation is investigated by in vivo screening of a retroviral vector combinatorial library with randomised primer binding sites. While most of the selected primer binding sites are complementary to the 3′-end of tRNAPro, we also retrieved PBS sequences matching four other tRNA molecules and demonstrate that Akv murine leukemia virus vectors may efficiently replicate using tRNAArg(CCU), tRNAPhe(GAA) and a hitherto unknown human tRNASer(CGA). PMID:10637332

  11. tRNA creation by hairpin duplication.

    PubMed

    Widmann, Jeremy; Di Giulio, Massimo; Yarus, Michael; Knight, Rob

    2005-10-01

    Many studies have suggested that the modern cloverleaf structure of tRNA may have arisen through duplication of a primordial hairpin, but the timing of this duplication event has been unclear. Here we measure the level of sequence identity between the two halves of each of a large sample of tRNAs and compare this level to that of chimeric tRNAs constructed either within or between groups defined by phylogeny and/or specificity. We find that actual tRNAs have significantly more matches between the two halves than do random sequences that can form the tRNA structure, but there is no difference in the average level of matching between the two halves of an individual tRNA and the average level of matching between the two halves of the chimeric tRNAs in any of the sets we constructed. These results support the hypothesis that the modern tRNA cloverleaf arose from a single hairpin duplication prior to the divergence of modern tRNA specificities and the three domains of life. PMID:16155749

  12. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs.

    PubMed

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-04-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  13. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs

    PubMed Central

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J.; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  14. MIST, a Novel Approach to Reveal Hidden Substrate Specificity in Aminoacyl-tRNA Synthetases

    PubMed Central

    Eriani, Gilbert; Karam, Joseph; Jacinto, Jomel; Morris Richard, Erin; Geslain, Renaud

    2015-01-01

    Aminoacyl-tRNA synthetases (AARSs) constitute a family of RNA-binding proteins, that participate in the translation of the genetic code, by covalently linking amino acids to appropriate tRNAs. Due to their fundamental importance for cell life, AARSs are likely to be one of the most ancient families of enzymes and have therefore been characterized extensively. Paradoxically, little is known about their capacity to discriminate tRNAs mainly because of the practical challenges that represent precise and systematic tRNA identification. This work describes a new technical and conceptual approach named MIST (Microarray Identification of Shifted tRNAs) designed to study the formation of tRNA/AARS complexes independently from the aminoacylation reaction. MIST combines electrophoretic mobility shift assays with microarray analyses. Although MIST is a non-cellular assay, it fully integrates the notion of tRNA competition. In this study we focus on yeast cytoplasmic Arginyl-tRNA synthetase (yArgRS) and investigate in depth its ability to discriminate cellular tRNAs. We report that yArgRS in submicromolar concentrations binds cognate and non-cognate tRNAs with a wide range of apparent affinities. In particular, we demonstrate that yArgRS binds preferentially to type II tRNAs but does not support their misaminoacylation. Our results reveal important new trends in tRNA/AARS complex formation and potential deep physiological implications. PMID:26067673

  15. Toward understanding phosphoseryl-tRNACys formation: The crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase

    PubMed Central

    Kamtekar, Satwik; Hohn, Michael J.; Park, Hee-Sung; Schnitzbauer, Michael; Sauerwald, Anselm; Söll, Dieter; Steitz, Thomas A.

    2007-01-01

    A number of archaeal organisms generate Cys-tRNACys in a two-step pathway, first charging phosphoserine (Sep) onto tRNACys and subsequently converting it to Cys-tRNACys. We have determined, at 3.2-Å resolution, the structure of the Methanococcus maripaludis phosphoseryl-tRNA synthetase (SepRS), which catalyzes the first step of this pathway. The structure shows that SepRS is a class II, α4 synthetase whose quaternary structure arrangement of subunits closely resembles that of the heterotetrameric (αβ)2 phenylalanyl-tRNA synthetase (PheRS). Homology modeling of a tRNA complex indicates that, in contrast to PheRS, a single monomer in the SepRS tetramer may recognize both the acceptor terminus and anticodon of a tRNA substrate. Using a complex with tungstate as a marker for the position of the phosphate moiety of Sep, we suggest that SepRS and PheRS bind their respective amino acid substrates in dissimilar orientations by using different residues. PMID:17301225

  16. Metazoan tRNA introns generate stable circular RNAs in vivo

    PubMed Central

    Lu, Zhipeng; Filonov, Grigory S.; Noto, John J.; Schmidt, Casey A.; Hatkevich, Talia L.; Wen, Ying; Jaffrey, Samie R.; Matera, A. Gregory

    2015-01-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating “designer” circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. PMID:26194134

  17. Properties and substrate specificities of the phenylalanyl-transfer-ribonucleic acid synthetases of Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Phenylalanyl-tRNA synthetases have been partially purified from cotyledons of seeds of Aesculus californica, which contains 2-amino-4-methylhex-4-enoic acid, and from four other species of Aesculus that do not contain this amino acid. The A. californica preparation was free from other aminoacyl-tRNA synthetases, and the contaminating synthetase activity in preparations from A. hippocastanum was decreased to acceptable limits by conducting assays of pyrophosphate exchange activity in 0.5m-potassium chloride. 2. The phenylalanyl-tRNA synthetase from each species activated 2-amino-4-methylhex-4-enoic acid with Km 30–40 times that for phenylalanine. The maximum velocity for 2-amino-4-methylhex-4-enoic acid was only 30% of that for phenylalanine with the A. californica enzyme, but the maximum velocities for the two substrates were identical for the other four species. 3. 2-Amino-4-methylhex-4-enoic acid was not found in the protein of A. californica, so discrimination against this amino acid probably occurs in the step of transfer to tRNA, though subcellular localization, or subsequent steps of protein synthesis could be involved. 4. Crotylglycine, methallylglycine, ethallylglycine, 2-aminohex-4,5-dienoic acid, 2-amino-5-methylhex-4-enoic acid, 2-amino-4-methylhex-4-enoic acid, β-(thien-2-yl)alanine, β-(pyrazol-1-yl)alanine, phenylserine and m-fluorophenylalanine were substrates for pyrophosphate exchange catalysed by the phenylalanyl-tRNA synthetases of A. californica or A. hippocastanum. Allylglycine, phenylglycine and 2-amino-4-phenylbutyric acid were inactive. PMID:5493504

  18. Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts.

    PubMed

    Freedman, R; Gibson, B; Donovan, D; Biemann, K; Eisenbeis, S; Parker, J; Schimmel, P

    1985-08-25

    Histidine-tRNA synthetase is one of the smallest bacterial aminoacyl-tRNA synthetases. It is less than one-half the size of the largest aminoacyl-tRNA synthetases. The entire nucleotide sequence of the Escherichia coli hisS locus was determined. The coding region is comprised of 424 codons, and the sequence was determined for 200 nucleotides on the 5'- and 3'-sides of the coding region. The translated nucleotide sequence was confirmed extensively by independent amino acid sequence information obtained by Edman degradations of purified peptides and by measurements of peptide masses by fast atom bombardment mass spectrometry. A significant sequence alignment of four bacterial aminoacyl-tRNA synthetases was reported recently (Webster, T., Tsai, H., Kula, M., Mackie, G., and Schimmel, P. (1984) Science 226, 1315-1317). Although the four enzymes vary considerably in length, this match occurs within the first 100 amino acids of each of the four enzymes and is in the segment believed to be part of the catalytic core. But no strong alignment could be found of the histidine sequence with these four tRNA synthetase sequences. This enzyme may be derived, therefore, from a different progenitor. Previous work suggested that three places in the hisS 5'-noncoding sequence could be promoter sites for RNA polymerase (Eisenbeis, S. J., and Parker, J. (1982) Gene 18, 107-114). We detected a 1400-nucleotide RNA species by RNA blot analysis with a hisS-specific probe. S1 nuclease mapping demonstrated a 5'-end to the RNA species occurs at -67 +/- 1, relative to the first nucleotide of the coding region. This position coincides with the predicted start site for transcription from one of the previously proposed promoter sites. PMID:2991272

  19. Tertiary structure of bacterial selenocysteine tRNA.

    PubMed

    Itoh, Yuzuru; Sekine, Shun-ichi; Suetsugu, Shiro; Yokoyama, Shigeyuki

    2013-07-01

    Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNA(Sec)) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNA(Sec) from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. The bacterial tRNA(Sec) assumes the L-shaped structure, from which the long extra arm protrudes. Although the D-arm conformation and the extra-arm orientation are similar to those of eukaryal/archaeal tRNA(Sec)s, A. aeolicus tRNA(Sec) has unique base triples, G14:C21:U8 and C15:G20a:G48, which occupy the positions corresponding to the U8:A14 and R15:Y48 tertiary base pairs of canonical tRNAs. Methanopyrus kandleri SerRS exhibited serine ligation activity toward A. aeolicus tRNA(Sec) in vitro. The SerRS N-terminal domain interacts with the extra-arm stem and the outer corner of tRNA(Sec). Similar interactions exist in the reported tRNA(Ser) and SerRS complex structure from the bacterium Thermus thermophilus. Although the catalytic C-terminal domain of M. kandleri SerRS lacks interactions with A. aeolicus tRNA(Sec) in the present complex structure, the conformational flexibility of SerRS is likely to allow the CCA terminal region of tRNA(Sec) to enter the SerRS catalytic site. PMID:23649835

  20. tRNA Biology in Mitochondria

    PubMed Central

    Salinas-Giegé, Thalia; Giegé, Richard; Giegé, Philippe

    2015-01-01

    Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation. PMID:25734984

  1. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase.

    PubMed

    Nakanishi, Kotaro; Bonnefond, Luc; Kimura, Satoshi; Suzuki, Tsutomu; Ishitani, Ryuichiro; Nureki, Osamu

    2009-10-22

    Maturation of precursor transfer RNA (pre-tRNA) includes excision of the 5' leader and 3' trailer sequences, removal of introns and addition of the CCA terminus. Nucleotide modifications are incorporated at different stages of tRNA processing, after the RNA molecule adopts the proper conformation. In bacteria, tRNA(Ile2) lysidine synthetase (TilS) modifies cytidine into lysidine (L; 2-lysyl-cytidine) at the first anticodon of tRNA(Ile2) (refs 4-9). This modification switches tRNA(Ile2) from a methionine-specific to an isoleucine-specific tRNA. However, the aminoacylation of tRNA(Ile2) by methionyl-tRNA synthetase (MetRS), before the modification by TilS, might lead to the misincorporation of methionine in response to isoleucine codons. The mechanism used by bacteria to avoid this pitfall is unknown. Here we show that the TilS enzyme specifically recognizes and modifies tRNA(Ile2) in its precursor form, thereby avoiding translation errors. We identified the lysidine modification in pre-tRNA(Ile2) isolated from RNase-E-deficient Escherichia coli and did not detect mature tRNA(Ile2) lacking this modification. Our kinetic analyses revealed that TilS can modify both types of RNA molecule with comparable efficiencies. X-ray crystallography and mutational analyses revealed that TilS specifically recognizes the entire L-shape structure in pre-tRNA(Ile2) through extensive interactions coupled with sequential domain movements. Our results demonstrate how TilS prevents the recognition of tRNA(Ile2) by MetRS and achieves high specificity for its substrate. These two key points form the basis for maintaining the fidelity of isoleucine codon translation in bacteria. Our findings also provide a rationale for the necessity of incorporating specific modifications at the precursor level during tRNA biogenesis. PMID:19847269

  2. Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii.

    PubMed

    van Rooyen, Jason M; Hakimi, Mohamed-Ali; Belrhali, Hassan

    2015-06-01

    Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex. PMID:25736594

  3. Crystal structure of a eukaryote/archaeon-like protyl-tRNA synthetase and its complex with tRNAPro(CGG).

    PubMed

    Yaremchuk, A; Cusack, S; Tukalo, M

    2000-09-01

    Prolyl-tRNA synthetase (ProRS) is a class IIa synthetase that, according to sequence analysis, occurs in different organisms with one of two quite distinct structural architectures: prokaryote-like and eukaryote/archaeon-like. The primary sequence of ProRS from the hypothermophilic eubacterium Thermus thermophilus (ProRSTT) shows that this enzyme is surprisingly eukaryote/archaeon-like. We describe its crystal structure at 2.43 angstom resolution, which reveals a feature that is unique among class II synthetases. This is an additional zinc-containing domain after the expected class IIa anticodon-binding domain and whose C-terminal extremity, which ends in an absolutely conserved tyrosine, folds back into the active site. We also present an improved structure of ProRSTT complexed with tRNAPro(CGG) at 2.85 angstom resolution. This structure represents an initial docking state of the tRNA in which the anticodon stem-loop is engaged, particularly via the tRNAPro-specific bases G35 and G36, but the 3' end does not enter the active site. Considerable structural changes in tRNA and/or synthetase, which are probably induced by small substrates, are required to achieve the conformation active for aminoacylation. PMID:10970866

  4. In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase.

    PubMed Central

    Geslain, R; Martin, F; Delagoutte, B; Cavarelli, J; Gangloff, J; Eriani, G

    2000-01-01

    Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination. PMID:10744027

  5. The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation

    PubMed Central

    Qiu, Hongfang; Dong, Jinsheng; Hu, Cuihua; Francklyn, Christopher S.; Hinnebusch, Alan G.

    2001-01-01

    GCN2 stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating translation initiation factor 2. GCN2 is activated by binding of uncharged tRNA to a domain related to histidyl-tRNA synthetase (HisRS). The HisRS-like region contains two dimerization domains (HisRS-N and HisRS-C) required for GCN2 function in vivo but dispensable for dimerization by full-length GCN2. Residues corresponding to amino acids at the dimer interface of Escherichia coli HisRS were required for dimerization of recombinant HisRS-N and for tRNA binding by full-length GCN2, suggesting that HisRS-N dimerization promotes tRNA binding and kinase activation. HisRS-N also interacted with the protein kinase (PK) domain, and a deletion impairing this interaction destroyed GCN2 function without reducing tRNA binding; thus, HisRS-N–PK interaction appears to stimulate PK function. The C-terminal domain of GCN2 (C-term) interacted with the PK domain in a manner disrupted by an activating PK mutation (E803V). These results suggest that the C-term is an autoinhibitory domain, counteracted by tRNA binding. We conclude that multiple domain interactions, positive and negative, mediate the activation of GCN2 by uncharged tRNA. PMID:11250908

  6. Two-step aminoacylation of tRNA without channeling in Archaea

    PubMed Central

    Bhaskaran, Hari; Perona, John J.

    2011-01-01

    Catalysis of sequential reactions is often envisaged to occur by channeling of substrate between enzyme active sites without release into bulk solvent. However, while there are compelling physiological rationales for direct substrate transfer, proper experimental support for the hypothesis is often lacking, particularly for metabolic pathways involving RNA. Here we apply transient kinetics approaches developed to study channeling in bienzyme complexes, to an archaeal protein synthesis pathway featuring the misaminoacylated tRNA intermediate Glu-tRNAGln. Experimental and computational elucidation of a kinetic and thermodynamic framework for two-step cognate Gln-tRNAGln synthesis demonstrates that the misacylating aminoacyl-tRNA synthetase (GluRSND) and tRNA-dependent amidotransferase (GatDE) function sequentially without channeling. Instead, rapid processing of the misacylated tRNA intermediate by GatDE, and preferential elongation factor binding to the cognate Gln-tRNAGln, together permit accurate protein synthesis without formation of a binary protein-protein complex between GluRSND and GatDE. These findings establish an alternate paradigm for protein quality control via two-step pathways for cognate aminoacyl-tRNA formation. PMID:21726564

  7. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.

    PubMed

    Yu, Da Young; Noh, Soo Min; Lee, Gyun Min

    2016-08-10

    To investigate the feasibility of glutamine synthetase (GS)-mediated gene amplification in HEK293 cells for the high-level stable production of therapeutic proteins, HEK293E cells were transfected by the GS expression vector containing antibody genes and were selected at various methionine sulfoximine (MSX) concentrations in 96-well plates. For a comparison, CHOK1 cells were transfected by the same GS expression vector and selected at various MSX concentrations. Unlike CHOK1 cells, HEK293E cells producing high levels of antibodies were not selected at all. For HEK293E cells, the number of wells with the cell pool did not decrease with an increase in the concentration of MSX up to 500μM MSX. A q-RT-PCR analysis confirmed that the antibody genes in the HEK293E cells, unlike the CHOK1 cells, were not amplified after increasing the MSX concentration. It was found that the GS activity in HEK293E cells was much higher than that in CHOK1 cells (P<0.05). In a glutamine-free medium, the GS activity of HEK293E cells was approximately 4.8 times higher than that in CHOK1 cells. Accordingly, it is inferred that high GS activity of HEK293E cells results in elevated resistance to MSX and therefore hampers GS-mediated gene amplification by MSX. Thus, in order to apply the GS-mediated gene amplification system to HEK293 cells, the endogenous GS expression level in HEK293 cells needs to be minimized by knock-out or down-regulation methods. PMID:27288593

  8. Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase

    PubMed Central

    Felden, Brice; Giegé, Richard

    1998-01-01

    Duplexes constituted by closed or open RNA circles paired to single-stranded oligonucleotides terminating with 3′-CCAOH form resected pseudoknots that are substrates of yeast histidyl-tRNA synthetase. Design of this RNA fold is linked to the mimicry of the pseudoknotted amino acid accepting branch of the tRNA-like domain from brome mosaic virus, known to be charged by tyrosyl-tRNA synthetases, with RNA minihelices recapitulating accepting branches of canonical tRNAs. Prediction of the histidylation function of the new family of minimalist tRNA-like structures relates to the geometry of resected pseudoknots that allows proper presentation to histidyl-tRNA synthetase of analogues of the histidine identity determinants N-1 and N73 present in tRNAs. This geometry is such that the analogue of the major N-1 histidine determinant in the RNA circles faces the analogue of the discriminator N73 nucleotide in the accepting oligonucleotides. The combination of identity elements found in tRNAHis species from archaea, eubacteria, and organelles (G-1/C73) is the most efficient for determining histidylation of the duplexes. The inverse combination (C-1/G73) leads to the worst histidine acceptors with charging efficiencies reduced by 2–3 orders of magnitude. Altogether, these findings open new perspectives for understanding evolution of tRNA identity and serendipitous RNA functions. PMID:9724720

  9. Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase.

    PubMed

    Felden, B; Giegé, R

    1998-09-01

    Duplexes constituted by closed or open RNA circles paired to single-stranded oligonucleotides terminating with 3'-CCAOH form resected pseudoknots that are substrates of yeast histidyl-tRNA synthetase. Design of this RNA fold is linked to the mimicry of the pseudoknotted amino acid accepting branch of the tRNA-like domain from brome mosaic virus, known to be charged by tyrosyl-tRNA synthetases, with RNA minihelices recapitulating accepting branches of canonical tRNAs. Prediction of the histidylation function of the new family of minimalist tRNA-like structures relates to the geometry of resected pseudoknots that allows proper presentation to histidyl-tRNA synthetase of analogues of the histidine identity determinants N-1 and N73 present in tRNAs. This geometry is such that the analogue of the major N-1 histidine determinant in the RNA circles faces the analogue of the discriminator N73 nucleotide in the accepting oligonucleotides. The combination of identity elements found in tRNAHis species from archaea, eubacteria, and organelles (G-1/C73) is the most efficient for determining histidylation of the duplexes. The inverse combination (C-1/G73) leads to the worst histidine acceptors with charging efficiencies reduced by 2-3 orders of magnitude. Altogether, these findings open new perspectives for understanding evolution of tRNA identity and serendipitous RNA functions. PMID:9724720

  10. Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis.

    PubMed Central

    Vander Horn, P B; Zahler, S A

    1992-01-01

    The leucyl-tRNA synthetase gene (leuS) of Bacillus subtilis was cloned and sequenced. A mutation in the gene, leuS1, increases the transcription and expression of the ilv-leu operion, permitting monitoring of leuS alleles. The leuS1 mutation was mapped to 270 degrees on the chromosome. Sequence analysis showed that the mutation is a single-base substitution, possibly in a monocistronic operon. The leader mRNA predicted by the sequence would contain a number of possible secondary structures and a T box, a sequence observed upstream of leader mRNA terminators of Bacillus tRNA synthetases and the B. subtilis ilv-leu operon. The DNA of the B. subtilis leuS open reading frame is 48% identical to the leuS gene of Escherichia coli and is predicted to encode a polypeptide with 46% identity to the leucyl-tRNA synthetase of E. coli. PMID:1317842

  11. A Comprehensive tRNA Genomic Survey Unravels the Evolutionary History of tRNA Arrays in Prokaryotes

    PubMed Central

    Tran, Tam T.T.; Belahbib, Hassiba; Bonnefoy, Violaine; Talla, Emmanuel

    2016-01-01

    Considering the importance of tRNAs in the translation machinery, scant attention has been paid to tRNA array units defined as genomic regions containing at least 20 tRNA genes with a minimal tRNA gene density of two tRNA genes per kilobase. Our analysis of Acidithiobacillus ferrivorans CF27 and Acidithiobacillus ferrooxidans ATCC 23270T genomes showed that both display a tRNA array unit with syntenic conservation which mainly contributed to the tRNA gene redundancy in these two organisms. Our investigations into the occurrence and distribution of tRNA array units revealed that 1) this tRNA organization is limited to few phyla and mainly found in Gram-positive bacteria; and 2) the presence of tRNA arrays favors the redundancy of tRNA genes, in particular those encoding the core tRNA isoacceptors. Finally, comparative array organization revealed that tRNA arrays were acquired through horizontal gene transfer (from Firmicutes or unknown donor), before being subjected to tRNA rearrangements, deletions, and duplications. In Bacilli, the most parsimonious evolutionary history involved two common ancestors and the acquisition of their arrays arose late in evolution, in the genera branches. Functional roles of the array units in organism lifestyle, selective genetic advantage and translation efficiency, as well as the evolutionary advantages of organisms harboring them were proposed. Our study offers new insight into the structural organization and evolution of tRNA arrays in prokaryotic organisms. PMID:26710853

  12. A Comprehensive tRNA Genomic Survey Unravels the Evolutionary History of tRNA Arrays in Prokaryotes.

    PubMed

    Tran, Tam T T; Belahbib, Hassiba; Bonnefoy, Violaine; Talla, Emmanuel

    2016-01-01

    Considering the importance of tRNAs in the translation machinery, scant attention has been paid to tRNA array units defined as genomic regions containing at least 20 tRNA genes with a minimal tRNA gene density of two tRNA genes per kilobase. Our analysis of Acidithiobacillus ferrivorans CF27 and Acidithiobacillus ferrooxidans ATCC 23270(T) genomes showed that both display a tRNA array unit with syntenic conservation which mainly contributed to the tRNA gene redundancy in these two organisms. Our investigations into the occurrence and distribution of tRNA array units revealed that 1) this tRNA organization is limited to few phyla and mainly found in Gram-positive bacteria; and 2) the presence of tRNA arrays favors the redundancy of tRNA genes, in particular those encoding the core tRNA isoacceptors. Finally, comparative array organization revealed that tRNA arrays were acquired through horizontal gene transfer (from Firmicutes or unknown donor), before being subjected to tRNA rearrangements, deletions, and duplications. In Bacilli, the most parsimonious evolutionary history involved two common ancestors and the acquisition of their arrays arose late in evolution, in the genera branches. Functional roles of the array units in organism lifestyle, selective genetic advantage and translation efficiency, as well as the evolutionary advantages of organisms harboring them were proposed. Our study offers new insight into the structural organization and evolution of tRNA arrays in prokaryotic organisms. PMID:26710853

  13. Molecular definition of bovine argininosuccinate synthetase deficiency.

    PubMed Central

    Dennis, J A; Healy, P J; Beaudet, A L; O'Brien, W E

    1989-01-01

    Citrullinemia is an inborn error of metabolism due to deficiency of the urea cycle enzyme, argininosuccinate synthetase [L-citrulline:L-aspartate ligase (AMP-forming), EC 6.3.4.5]. The disease was first described in humans but was recently reported in dairy cattle in Australia. Here we report the nucleotide sequence of the normal bovine cDNA for argininosuccinate synthetase and the mutation present in animals with citrullinemia. Analysis of DNA from affected animals by Southern blotting did not readily identify the mutation in the bovine gene. RNA (Northern) blotting revealed a major reduction in the steady-state amount of mRNA in the liver of affected animals to less than 5% of controls. The bovine cDNA was cloned and sequenced and revealed 96% identity with the deduced human sequence at the amino acid level. Starting with mutant bovine liver, the mRNA was reverse-transcribed; the cDNA product was amplified with the polymerase chain reaction, cloned, and sequenced. The sequence revealed a C----T transition converting arginine-86 (CGA) to a nonsense codon (TGA). A second C----T transition represented a polymorphism in proline-175 (CCC----CCT). The mutation and the polymorphism were confirmed by amplification of genomic DNA and demonstration with restriction endonuclease enzymes of both the loss of an Ava II site in DNA from mutant animals at codon 86 and the presence or absence of a Dde I site at codon 175. The loss of the Ava II site can be used for rapid, economical, nonradioactive detection of heterozygotes for bovine citrullinemia. Images PMID:2813370

  14. HIV-1 Modulates the tRNA Pool to Improve Translation Efficiency

    PubMed Central

    van Weringh, Anna; Ragonnet-Cronin, Manon; Pranckeviciene, Erinija; Pavon-Eternod, Mariana; Kleiman, Lawrence; Xia, Xuhua

    2011-01-01

    Despite its poorly adapted codon usage, HIV-1 replicates and is expressed extremely well in human host cells. HIV-1 has recently been shown to package non-lysyl transfer RNAs (tRNAs) in addition to the tRNALys needed for priming reverse transcription and integration of the HIV-1 genome. By comparing the codon usage of HIV-1 genes with that of its human host, we found that tRNAs decoding codons that are highly used by HIV-1 but avoided by its host are overrepresented in HIV-1 virions. In particular, tRNAs decoding A-ending codons, required for the expression of HIV's A-rich genome, are highly enriched. Because the affinity of Gag-Pol for all tRNAs is nonspecific, HIV packaging is most likely passive and reflects the tRNA pool at the time of viral particle formation. Codon usage of HIV-1 early genes is similar to that of highly expressed host genes, but codon usage of HIV-1 late genes was better adapted to the selectively enriched tRNA pool, suggesting that alterations in the tRNA pool are induced late in viral infection. If HIV-1 genes are adapting to an altered tRNA pool, codon adaptation of HIV-1 may be better than previously thought. PMID:21216840

  15. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins.

    PubMed

    Zuo, Dong-Yun; Yi, Shu-Yuan; Liu, Rong-Jing; Qu, Bo; Huang, Tao; He, Wei-Jie; Li, Cheng; Li, He-Ping; Liao, Yu-Cai

    2016-06-01

    Fusarium graminearum is the fungal pathogen that causes globally important diseases of cereals and produces mycotoxins such as deoxynivalenol (DON). Owing to the dearth of available sources of resistance to Fusarium pathogens, characterization of novel genes that confer resistance to mycotoxins and mycotoxin-producing fungi is vitally important for breeding resistant crop varieties. In this study, a wheat methionyl-tRNA synthetase (TaMetRS) gene was identified from suspension cell cultures treated with DON. It shares conserved aminoacylation catalytic and tRNA anticodon binding domains with human MetRS and with the only previously characterized plant MetRS, suggesting that it functions in aminoacylation in the cytoplasm. However, the TaMetRS comprises a typical nuclear localization signal and cellular localization studies with a TaMetRS::GFP fusion protein showed that TaMetRS is localized in the nucleus. Expression of TaMetRS was activated by DON treatment and by infection with a DON-producing F. graminearum strain in wheat spikes. No such activation was observed following infection with a non-DON-producing F. graminearum strain. Expression of TaMetRS in Arabidopsis plants conferred significant resistance to DON and F. graminearum. These results indicated that this DON-activated TaMetRS gene may encode a novel type of MetRS in plants that has a role in defense and detoxification. PMID:26882849

  16. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity.

    PubMed Central

    Borel, F; Vincent, C; Leberman, R; Härtlein, M

    1994-01-01

    Escherichia coli seryl-tRNA synthetase (SerRS) a dimeric class II aminoacyl-tRNA synthetase with two structural domains charges specifically the five iso-acceptor tRNA(ser) as well as the tRNA(sec) (selC product) of E. coli. The N-terminal domain is a 60 A long arm-like coiled coil structure built of 2 long antiparallel a-h helices, whereas the C-terminal domain is a alpha-beta structure. A deletion of the N-terminal arm of the enzyme does not affect the amino acid activation step of the reaction, but reduces dramatically amino-acylation activity. The Kcat/Km value for the mutant enzyme is reduced by more than 4 orders of magnitude, with a nearly 30 fold increased Km value for tRNA(ser). An only slightly truncated mutant form (16 amino acids of the tip of the arm replaced by a glycine) has an intermediate aminoacylation activity. Both mutant synthetases have lost their specificity for tRNA(ser) and charge also non-cognate type 1 tRNA(s). Our results support the hypothesis that class II synthetases have evolved from an ancestral catalytic core enzyme by adding non-catalytic N-terminal or C-terminal tRNA binding (specificity) domains which act as determinants for cognate and anti-determinants for non-cognate tRNAs. Images PMID:8065908

  17. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  18. Kinetic Analysis of tRNA Methylfransferases

    PubMed Central

    Hou, Ya-Ming; Masuda, Isao

    2016-01-01

    Transfer RNA (tRNA) molecules contain many chemical modifications that are introduced after transcription. A major form of these modifications is methyl transfer to bases and backbone groups, using S-adenosyl methionine (AdoMet) as the methyl donor. Each methylation confers a specific advantage to tRNA in structure or in function. A remarkable methylation is to the G37 base on the 3' side of the anticodon to generate m1G37-tRNA, which suppresses frameshift errors during protein synthesis and is therefore essential for cell growth in all three domains of life. This methylation is catalyzed by TrmD in bacteria and by Trm5 in eukaryotes and archaea. Although TrmD and Trm5 catalyze the same methylation reaction, kinetic analysis reveal that these two enzymes are unrelated to each other and are distinct in their reaction mechanism. This chapter summarizes the kinetic assays that are used to reveal the distinction between TrmD and Trm5. Three types of assays are described, the steady-state, the pre-steady-state, and the single turnover assays, which collectively provide the basis for mechanistic investigation of AdoMet-dependent methyl transfer reactions. PMID:26253967

  19. Nucleotide sequence of Neurospora crassa cytoplasmic initiator tRNA.

    PubMed Central

    Gillum, A M; Hecker, L I; Silberklang, M; Schwartzbach, S D; RajBhandary, U L; Barnett, W E

    1977-01-01

    Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs. Images PMID:146192

  20. Stochastic context-free grammars for tRNA modeling.

    PubMed Central

    Sakakibara, Y; Brown, M; Hughey, R; Mian, I S; Sjölander, K; Underwood, R C; Haussler, D

    1994-01-01

    Stochastic context-free grammars (SCFGs) are applied to the problems of folding, aligning and modeling families of tRNA sequences. SCFGs capture the sequences' common primary and secondary structure and generalize the hidden Markov models (HMMs) used in related work on protein and DNA. Results show that after having been trained on as few as 20 tRNA sequences from only two tRNA subfamilies (mitochondrial and cytoplasmic), the model can discern general tRNA from similar-length RNA sequences of other kinds, can find secondary structure of new tRNA sequences, and can produce multiple alignments of large sets of tRNA sequences. Our results suggest potential improvements in the alignments of the D- and T-domains in some mitochondrial tRNAs that cannot be fit into the canonical secondary structure. PMID:7800507

  1. Structural Insights into tRNA Dynamics on the Ribosome

    PubMed Central

    Agirrezabala, Xabier; Valle, Mikel

    2015-01-01

    High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation. PMID:25941930

  2. Structural Insights into tRNA Dynamics on the Ribosome.

    PubMed

    Agirrezabala, Xabier; Valle, Mikel

    2015-01-01

    High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation. PMID:25941930

  3. Mitochondrial tRNA mutations in patients with myelodysplastic syndromes.

    PubMed

    Wang, Hui-Rui; Li, Ya-Wei; Wu, Jun-Long; Guo, Shu-Li

    2016-07-01

    Increasing evidence showed that mitochondria play an important role in the development of myelodysplastic syndromes (MDS). Mitochondrial dysfunctions caused by mitochondrial DNA mutations, especially mitochondrial tRNA mutations, were found to be associated with MDS in many studies. However, the link between a candidate mitochondrial tRNA mutation and MDS was not clear. In this study, we investigated the role of some mitochondrial tRNA mutations, and their deleterious roles were further discussed. PMID:25812051

  4. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Echerichia coli by pseudomonic acid

    PubMed Central

    Hughes, Julia; Mellows, Graham

    1978-01-01

    The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA synthesis in vivo. Pseudomonic acid had little effect on RNA synthesis in a regulatory mutant, E. coli B AS19 RCrel, whereas protein synthesis was strongly inhibited. In pseudomonic acid-treated cells, increased concentrations of ppGpp, pppGpp and ATP were observed, but the GTP pool size decreased, suggesting that inhibition of RNA synthesis is a consequence of the stringent control mechanism imposed by pseudomonic acid-induced deprivation of an amino acid. Of the 20 common amino acids, only isoleucine reversed the inhibitory effect in vivo. The antibiotic was found to be a powerful inhibitor of isoleucyl-tRNA synthetase both in vivo and in vitro. Of seven other tRNA synthetases assayed, only a weak inhibitory effect on phenylalanyl-tRNA synthetase was observed; this presumably accounted for the weak effect on polyphenylalanine formation in a ribosomal preparation. Pseudomonic acid also significantly de-repressed threonine deaminase and transaminase B activity, but not dihydroxyacid dehydratase (isoleucine-biosynthetic enzymes) by decreasing the supply of aminoacylated tRNAIle. Pseudomonic acid is the second naturally occurring inhibitor of bacterial isoleucyl-tRNA synthetase to be discovered, furanomycin being the first. PMID:365175

  5. Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei.

    PubMed

    Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth; Phillips, Margaret A

    2014-04-01

    Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907

  6. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase.

    PubMed

    Chang, Chih-Yao; Chien, Chin-I; Chang, Chia-Pei; Lin, Bo-Chun; Wang, Chien-Chia

    2016-08-01

    WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme. PMID:27298321

  7. Neurospora crassa mutants deficient in asparagine synthetase.

    PubMed Central

    MacPhee, K G; Nelson, R E; Schuster, S M

    1983-01-01

    Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase. PMID:6137480

  8. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  9. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading

    PubMed Central

    Zhou, Xiao-Long; Ruan, Zhi-Rong; Wang, Meng; Fang, Zhi-Peng; Wang, Yong; Chen, Yun; Liu, Ru-Juan; Eriani, Gilbert; Wang, En-Duo

    2014-01-01

    Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNAThr2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNAThr1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNAThrs during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNAThr2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNAThr1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNAThr1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core. PMID:25414329

  10. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading.

    PubMed

    Zhou, Xiao-Long; Ruan, Zhi-Rong; Wang, Meng; Fang, Zhi-Peng; Wang, Yong; Chen, Yun; Liu, Ru-Juan; Eriani, Gilbert; Wang, En-Duo

    2014-12-16

    Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNA(Thr)2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNA(Thr)1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNA(Thr)s during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNA(Thr)2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNA(Thr)1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNA(Thr)1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core. PMID:25414329

  11. Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases.

    PubMed

    Lee, Joohee; Hendrickson, Tamara L

    2004-12-10

    The pathogenic bacterium Helicobacter pylori utilizes two essential glutamyl-tRNA synthetases (GluRS1 and GluRS2). These two enzymes are closely related in evolution and yet they aminoacylate contrasting tRNAs. GluRS1 is a canonical discriminating GluRS (D-GluRS) that biosynthesizes Glu-tRNA(Glu) and cannot make Glu-tRNA(Gln). In contrast, GluRS2 is non-canonical as it is only essential for the production of misacylated Glu-tRNA(Gln). The co-existence and evident divergence of these two enzymes was capitalized upon to directly examine how GluRS2 acquired tRNA(Gln) specificity. One key feature that distinguishes tRNA(Glu) from tRNA(Gln) is the third position in the anticodon of each tRNA (C36 versus G36, respectively). By comparing sequence alignments of different GluRSs, including GluRS1s and GluRS2s, to the crystal structure of the Thermus thermophilus D-GluRS:tRNA(Glu) complex, a divergent pattern of conservation in enzymes that aminoacylate tRNA(Glu)versus those specific for tRNA(Gln) emerged and was experimentally validated. In particular, when an arginine conserved in discriminating GluRSs and GluRS1s was inserted into Hp GluRS2 (Glu334Arg GluRS2), the catalytic efficiency of the mutant enzyme (k(cat)/K(Mapp)) was reduced by approximately one order of magnitude towards tRNA(Gln). However, this mutation did not introduce activity towards tRNA(Glu). In contrast, disruption of a glycine that is conserved in all GluRS2s but not in other GluRSs (Gly417Thr GluRS2) generated a mutant GluRS2 with weak activity towards tRNA(Glu1). Synergy between these two mutations was observed in the double mutant (Glu334Arg/Gly417Thr GluRS2), which specifically and more robustly aminoacylates tRNA(Glu1) instead of tRNA(Gln). As GluRS1 and GluRS2 are related by an apparent gene duplication event, these results demonstrate that we can experimentally map critical evolutionary events in the emergence of new tRNA specificities. PMID:15561136

  12. An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy

    PubMed Central

    Achilli, Francesca; Bros-Facer, Virginie; Williams, Hazel P.; Banks, Gareth T.; AlQatari, Mona; Chia, Ruth; Tucci, Valter; Groves, Michael; Nickols, Carole D.; Seburn, Kevin L.; Kendall, Rachel; Cader, Muhammed Z.; Talbot, Kevin; van Minnen, Jan; Burgess, Robert W.; Brandner, Sebastian; Martin, Joanne E.; Koltzenburg, Martin; Greensmith, Linda; Nolan, Patrick M.; Fisher, Elizabeth M. C.

    2009-01-01

    SUMMARY Mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system in humans, described clinically as Charcot-Marie-Tooth type 2D or distal spinal muscular atrophy type V. Here, we characterise a new mouse mutant, GarsC201R, with a point mutation that leads to a non-conservative substitution within GARS. Heterozygous mice with a C3H genetic background have loss of grip strength, decreased motor flexibility and disruption of fine motor control; this relatively mild phenotype is more severe on a C57BL/6 background. Homozygous mutants have a highly deleterious set of features, including movement difficulties and death before weaning. Heterozygous animals have a reduction in axon diameter in peripheral nerves, slowing of nerve conduction and an alteration in the recovery cycle of myelinated axons, as well as innervation defects. An assessment of GARS levels showed increased protein in 15-day-old mice compared with controls; however, this increase was not observed in 3-month-old animals, indicating that GARS function may be more crucial in younger animals. We found that enzyme activity was not reduced detectably in heterozygotes at any age, but was diminished greatly in homozygous mice compared with controls; thus, homozygous animals may suffer from a partial loss of function. The GarsC201R mutation described here is a contribution to our understanding of the mechanism by which mutations in tRNA synthetases, which are fundamentally important, ubiquitously expressed enzymes, cause axonopathy in specific sets of neurons. PMID:19470612

  13. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  14. Inactivation and dissociation of S-adenosylmethionine synthetase by modification of sulfhydryl groups and its possible occurrence in cirrhosis.

    PubMed

    Corrales, F; Cabrero, C; Pajares, M A; Ortiz, P; Martin-Duce, A; Mato, J M

    1990-02-01

    Catalytically active human and rat liver S-adenosylmethionine synthetase exists mainly in tetramer and dimer form. In liver biopsy samples from cirrhotic patients a marked reduction in total S-adenosylmethionine synthetase activity and a specific loss of the tetrameric form of the enzyme exist. We have investigated the possible role of sulfhydryl groups in maintaining the structure and activity of S-adenosylmethionine synthetase. Both forms of S-adenosylmethionine synthetase are rapidly inactivated by N-ethylmaleimide, and the loss of enzyme activity correlates with the incorporation of approximately 2 moles N-ethylmaleimide per mole of subunit. In addition, reaction with N-ethylmaleimide resulted in displacement of the tetramer-dimer equilibrium of the enzyme toward the dimer, but no monomer was detected under these conditions. A catalytically active monomeric S-adenosylmethionine synthetase was detected in the cytosolic extract from a liver biopsy sample from a cirrhotic patient, supporting our model for the structure of S-adenosylmethionine synthetase. Because treatment of S-adenosylmethionine synthetase with N-ethylmaleimide resembles the situation of this enzyme in cirrhotic patients, it is proposed that impaired protection of the enzyme from oxidizing agents caused by a decreased synthesis of glutathione can explain the diminished synthesis of S-adenosylmethionine in liver cirrhosis. PMID:2307400

  15. Handling tRNA introns, archaeal way and eukaryotic way

    PubMed Central

    Yoshihisa, Tohru

    2014-01-01

    Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages. PMID:25071838

  16. tRNA modifications regulate translation during cellular stress

    PubMed Central

    Gu, Chen; Begley, Thomas J.; Dedon, Peter C.

    2014-01-01

    The regulation of gene expression in response to stress is an essential cellular protection mechanism. Recent advances in tRNA modification analysis and genome-based codon bias analytics have facilitated studies that lead to a novel model for translational control, with translation elongation dynamically regulated during stress responses. Stress-induced increases in specific anticodon wobble bases are required for the optimal translation of stress response transcripts that are significantly biased in the use of degenerate codons keyed to these modified tRNA bases. These findings led us to introduce the notion of tRNA modification tunable transcripts (MoTTs – transcripts whose translation is regulated by tRNA modifications), which are identifiable using genome-wide codon counting algorithms. In support of this general model of translational control of stress response, studies making use of detailed measures of translation, tRNA methyltransferase mutants, and computational and mass spectrometry approaches reveal that stress reprograms tRNA modifications to translationally regulate MoTTs linked to arginine and leucine codons, which helps cells survive insults by damaging agents. These studies highlight how tRNA methyltransferase activities and MoTTs are key components of the cellular stress response. PMID:25304425

  17. Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain

    PubMed Central

    Charron, Christophe; Roy, Hervé; Blaise, Mickael; Giegé, Richard; Kern, Daniel

    2003-01-01

    In most organisms, tRNA aminoacylation is ensured by 20 aminoacyl-tRNA synthetases (aaRSs). In eubacteria, however, synthetases can be duplicated as in Thermus thermophilus, which contains two distinct AspRSs. While AspRS-1 is specific, AspRS-2 is non-discriminating and aspartylates tRNAAsp and tRNAAsn. The structure at 2.3 Å resolution of AspRS-2, the first of a non-discriminating synthetase, was solved. It differs from that of AspRS-1 but has resemblance to that of discriminating and archaeal AspRS from Pyrococcus kodakaraensis. The protein presents non-conventional features in its OB-fold anticodon-binding domain, namely the absence of a helix inserted between two β-strands of this fold and a peculiar L1 loop differing from the large loops known to interact with tRNAAsp identity determinant C36 in conventional AspRSs. In AspRS-2, this loop is small and structurally homologous to that in AsnRSs, including conservation of a proline. In discriminating Pyrococcus AspRS, the L1 loop, although small, lacks this proline and is not superimposable with that of AspRS-2 or AsnRS. Its particular status is demonstrated by a loop-exchange experiment that renders the Pyrococcus AspRS non-discriminating. PMID:12660169

  18. Recognition of guanosine by dissimilar tRNA methyltransferases.

    PubMed

    Sakaguchi, Reiko; Giessing, Anders; Dai, Qing; Lahoud, Georges; Liutkeviciute, Zita; Klimasauskas, Saulius; Piccirilli, Joseph; Kirpekar, Finn; Hou, Ya-Ming

    2012-09-01

    Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA. PMID:22847817

  19. L-arginine recognition by yeast arginyl-tRNA synthetase.

    PubMed Central

    Cavarelli, J; Delagoutte, B; Eriani, G; Gangloff, J; Moras, D

    1998-01-01

    The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs. PMID:9736621

  20. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: A fluorine-19 NMR study

    SciTech Connect

    Chu, Wenchy; Horowitz, J. )

    1991-02-12

    Interactions of 5-fluorouracil-substituted Escherichia coli tRNA{sup Val} with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene. Apparent K{sub M} and V{sub max} values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNA{sup Val}. Binding of VRS to (FUra)tRNA{sup Val} induces structural perturbations that are reflected in selective changes in the {sup 19}F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNA{sup Val} along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNA{sup Val}, suggesting conformational changes in this part of the molecule. No {sup 19}F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNA{sup Val} that has been proposed as a common intermediate in the aminoacylation reaction.

  1. Non-Conserved Residues in Clostridium acetobutylicum tRNAAla Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch

    PubMed Central

    Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination. PMID:26426057

  2. Crystal Structure of the Wild-Type Human GlyRS Bound with tRNA(Gly) in a Productive Conformation.

    PubMed

    Qin, Xiangjing; Deng, Xiangyu; Chen, Lei; Xie, Wei

    2016-09-11

    Aminoacyl-tRNA synthetases are essential components of the protein translational machinery in all living species, among which the human glycyl-tRNA synthetase (hGlyRS) is of great research interest because of its unique species-specific aminoacylation properties and noncanonical roles in the Charcot-Marie-Tooth neurological disease. However, the molecular mechanisms of how the enzyme carries out its classical and alternative functions are not well understood. Here, we report a complex structure of the wild-type hGlyRS bound with tRNA(Gly) at 2.95Å. In the complex, the flexible Whep-TRS domain is visible in one of the subunits of the enzyme dimer, and the tRNA molecule is also completely resolved. At the active site, a glycyl-AMP molecule is synthesized and is waiting for the transfer of the glycyl moiety to occur. This cocrystal structure provides us with new details about the recognition mechanism in the intermediate stage during glycylation, which was not well elucidated in the previous crystal structures where the inhibitor AMPPNP was used for crystallization. More importantly, the structural and biochemical work conducted in the current and previous studies allows us to build a model of the full-length hGlyRS in complex with tRNA(Gly), which greatly helps us to understand the roles that insertions and the Whep-TRS domain play in the tRNA-binding process. Finally, through structure comparison with other class II aminoacyl-tRNA synthetases bound with their tRNA substrates, we found some commonalities of the aminoacylation mechanism between these enzymes. PMID:27261259

  3. Molecular characterization of N-acetylaspartylglutamate synthetase.

    PubMed

    Becker, Ivonne; Lodder, Julia; Gieselmann, Volkmar; Eckhardt, Matthias

    2010-09-17

    The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system. PMID:20643647

  4. Identification and Functional Characterization of a Novel Bacterial Type Asparagine Synthetase A

    PubMed Central

    Manhas, Reetika; Tripathi, Pankaj; Khan, Sameena; Sethu Lakshmi, Bhavana; Lal, Shambhu Krishan; Gowri, Venkatraman Subramanian; Sharma, Amit; Madhubala, Rentala

    2014-01-01

    Asparagine is formed by two structurally distinct asparagine synthetases in prokaryotes. One is the ammonia-utilizing asparagine synthetase A (AsnA), and the other is asparagine synthetase B (AsnB) that uses glutamine or ammonia as a nitrogen source. In a previous investigation using sequence-based analysis, we had shown that Leishmania spp. possess asparagine-tRNA synthetase paralog asparagine synthetase A (LdASNA) that is ammonia-dependent. Here, we report the cloning, expression, and kinetic analysis of ASNA from Leishmania donovani. Interestingly, LdASNA was both ammonia- and glutamine-dependent. To study the physiological role of ASNA in Leishmania, gene deletion mutations were attempted via targeted gene replacement. Gene deletion of LdASNA showed a growth delay in mutants. However, chromosomal null mutants of LdASNA could not be obtained as the double transfectant mutants showed aneuploidy. These data suggest that LdASNA is essential for survival of the Leishmania parasite. LdASNA enzyme was recalcitrant toward crystallization so we instead crystallized and solved the atomic structure of its close homolog from Trypanosoma brucei (TbASNA) at 2.2 Å. A very significant conservation in active site residues is observed between TbASNA and Escherichia coli AsnA. It is evident that the absence of an LdASNA homolog from humans and its essentiality for the parasites make LdASNA a novel drug target. PMID:24610810

  5. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  6. Regulation of the Tyrosine Biosynthetic Enzymes in Salmonella typhimurium: Analysis of the Involvement of Tyrosyl-Transfer Ribonucleic Acid and Tyrosyl-Transfer Ribonucleic Acid Synthetase1

    PubMed Central

    Heinonen, J.; Artz, S. W.; Zalkin, H.

    1972-01-01

    Mutants of Salmonella typhimurium were isolated that require tyrosine for growth because of an altered tyrosyl-transfer ribonucleic acid (tRNA) synthetase. Extracts of one strain (JK10) contain a labile enzyme with decreased ability to transfer tyrosine to tRNATyr and a higher Km for tyrosine than the wild-type enzyme. Strain JK10 maintains repressed levels of the tyrosine biosynthetic enzymes when the growth rate is restricted due to limitation of charged tRNATyr. Several second-site revertants of strain JK10 exhibit temperature-sensitive growth due to partially repaired, heat-labile tyrosyl-tRNA synthetase. The tyrosine biosynthetic enzymes are not derepressed in thermosensitive strains grown at the restrictive temperature. A class of tyrosine regulatory mutants, designated tyrR, contains normal levels of tyrosyl-tRNA synthetase and tRNATyr. These results suggest that charging of tRNATyr is not necessary for repression. This conclusion is substantiated by the finding that 4-aminophenylalanine, a tyrosine analogue which causes repression of the tyrosine biosynthetic enzymes, is not attached to tRNATyr in vivo, nor does it inhibit the attachment reaction in vitro. A combined regulatory effect due to the simultaneous presence of tyrS and tyrR mutations in the same strain was detected. The possibility of direct participation of tyrosyl-tRNA synthetase in tyrosine regulation is discussed. PMID:4404819

  7. Stable tRNA precursors in HeLa cells.

    PubMed Central

    Harada, F; Matsubara, M; Kato, N

    1984-01-01

    Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several modified nucleosides such as m2G, t6A and ac4C in mature tRNAs were undermodified. Two additional hydrogen bonds were formed in the clover leaf structures of these tRNA precursors. These extra hydrogen bonds may be responsible for the stabilities of these tRNA precursors. Images PMID:6514577

  8. Conserved mechanism of tRNA splicing in eukaryotes.

    PubMed Central

    Zillmann, M; Gorovsky, M A; Phizicky, E M

    1991-01-01

    The ligation steps of tRNA splicing in yeast and vertebrate cells have been thought to proceed by fundamentally different mechanisms. Ligation in yeast cells occurs by incorporation of an exogenous phosphate from ATP into the splice junction, with concomitant formation of a 2' phosphate at the 5' junction nucleotide. This phosphate is removed in a subsequent step which, in vitro, is catalyzed by an NAD-dependent dephosphorylating activity. In contrast, tRNA ligation in vertebrates has been reported to occur without incorporation of exogenous phosphate or formation of a 2' phosphate. We demonstrate in this study the existence of a yeast tRNA ligase-like activity in HeLa cells. Furthermore, in extracts from these cells, the entire yeastlike tRNA splicing machinery is intact, including that for cleavage, ligation, and removal of the 2' phosphate in an NAD-dependent fashion to give mature tRNA. These results argue that the mechanism of tRNA splicing is conserved among eukaryotes. Images PMID:1922054

  9. tRNAfeature: An algorithm for tRNA features to identify tRNA genes in DNA sequences.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh

    2016-09-01

    The identification of transfer RNAs (tRNAs) is critical for a detailed understanding of the evolution of biological organisms and viruses. However, some tRNAs are difficult to recognize due to their unusual sub-structures and may result in the detection of the wrong anticodon. Therefore, the detection of unusual sub-structures of tRNA genes remains an important challenge. In this study, we propose a method to identify tRNA genes based on tRNA features. tRNAfeature attempts to refold the sequence with single-stranded regions longer than those found in the canonical and conventional structural models for tRNA. We predicted a set of 53926 archaeal, eubacterial and eukaryotic tRNA genes annotated in tRNADB-CE and scanned the tRNA genes in whole genome sequencing. The results indicate that tRNAfeature is more powerful than other existing methods for identifying tRNAs. PMID:27291467

  10. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    SciTech Connect

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.