Science.gov

Sample records for human trophoblast differentiation

  1. Punicalagin promotes human villous trophoblast differentiation.

    PubMed

    Chen, Baosheng; Longtine, Mark S; Costa, Maria Laura; Nelson, D Michael

    2016-08-01

    Poor differentiation of trophoblasts is associated with placental dysfunction, predisposing women to multiple pregnancy disorders. Punicalagin, a prominent ellagitannin in pomegranate juice has been shown to exert anti-apoptosis and anti-oxidative effects in human trophoblasts. We hypothesized that punicalagin modulates trophoblast differentiation. We found that punicalagin-treated primary trophoblast showed reduced E-cadherin, higher Syncytin 1, more β-hCG, and increased GCM1, an upstream regulator of β-hCG. Punicalagin exposure of villous explants enhanced the number of cytotrophoblasts expressing the proliferation marker Ki67. We conclude that punicalagin enhances trophoblast differentiation and speculate that punicalagin might be used therapeutically in pregnancies at risk for placental dysfunction. PMID:27452441

  2. BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL TROPHOBLAST DIFFERENTIATION

    EPA Science Inventory

    BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL
    TROPHOBLAST DIFFERENTIATION
    Jiangang Chen, Twanda L. Thirkill, Peter N. Lohstroh, Susan R. Bielmeier, Michael
    G. Narotsky, Deborah S. Best, Randy A. Harrison, Kala Natarajan, Rex A. Pegram,
    Bill L. Lasley, and Gordon C. Do...

  3. Bromodichloromethane inhibits human placental trophoblast differentiation.

    PubMed

    Chen, Jiangang; Thirkill, Twanda L; Lohstroh, Peter N; Bielmeier, Susan R; Narotsky, Michael G; Best, Deborah S; Harrison, Randy A; Natarajan, Kala; Pegram, Rex A; Overstreet, James W; Lasley, Bill L; Douglas, Gordon C

    2004-03-01

    Epidemiological data suggest an association between exposures to bromodichloromethane (BDCM), a trihalomethane found in drinking water as a result of drinking water disinfection, and an increased risk of spontaneous abortion. We previously hypothesized that BDCM targets the placenta and showed that the secretion of chorionic gonadotrophin (CG) was reduced in primary cultures of human term syncytiotrophoblasts exposed to BDCM. In the present study we extend this observation by evaluating the effects of BDCM on the morphological differentiation of mononucleated cytotrophoblast cells to multinucleated syncytiotrophoblast-like colonies. Addition of BDCM to cytotrophoblast cultures inhibited the subsequent formation of multinucleated colonies in a dose-dependent manner, as determined by immunocytochemical staining for desmosomes and nuclei. The effect was seen at BDCM concentrations between 0.02 and 2 mM and was confirmed by quantitative image analysis. Secretion of bioactive and immunoreactive chorionic gonadotropin was also significantly inhibited in a dose-dependent manner under these culture conditions, and cellular levels of CG were also reduced. Trophoblast viability was not compromised by exposure to BDCM. We conclude that BDCM disrupts syncytiotrophoblast formation and inhibits CG secretion in vitro. Although other tissue targets are not ruled out, these data substantiate the idea that BDCM targets the placenta and could have implications for understanding the adverse pregnancy outcomes associated with BDCM exposure in humans. PMID:14691210

  4. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling

    PubMed Central

    Knöfler, Martin; Pollheimer, Jürgen

    2013-01-01

    Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signaling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorioallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signaling in the human placenta and discuss its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β -catenin and induction of Wnt-dependent T-cell factor 4 suggesting that canonical Wnt signaling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signaling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β -catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signaling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodeling. Moreover, changes in Wnt signaling have been observed upon cytomegalovirus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signaling in physiological and abnormal trophoblast function. PMID

  5. Formaldehyde Crosses the Human Placenta and Affects Human Trophoblast Differentiation and Hormonal Functions

    PubMed Central

    Pidoux, Guillaume; Gerbaud, Pascale; Guibourdenche, Jean; Thérond, Patrice; Ferreira, Fatima; Simasotchi, Christelle; Evain-Brion, Danièle; Gil, Sophie

    2015-01-01

    The chorionic villus of the human placenta is the source of specific endocrine functions and nutrient exchanges. These activities are ensured by the syncytiotrophobast (ST), which bathes in maternal blood. The ST arises and regenerates throughout pregnancy by fusion of underlying cytotrophoblasts (CT). Any anomaly of ST formation or regeneration can affect pregnancy outcome and fetal growth. Because of its direct interaction with maternal blood, the ST is sensitive to drugs, pollutants and xenohormones. Ex vivo assays of perfused cotyledon show that formaldehyde, a common pollutant present in furniture, paint and plastics, can accumulate in the human placenta and cross to the fetal compartment. By means of RT-qPCR, immunoblot and immunocytochemistry experiments, we demonstrate in vitro that formaldehyde exerts endocrine toxicity on human trophoblasts, including a decrease in the production of protein hormones of pregnancy. In addition, formaldehyde exposure triggered human trophoblast fusion by upregulating syncitin-1 receptor expression (ASC-type amino-acid transporter 2: ASCT2). Moreover, we show that formaldehyde-exposed trophoblasts present an altered redox status associated with oxidative stress, and an increase in ASCT2 expression intended to compensate for this stress. Finally, we demonstrate that the adverse effects of formaldehyde on trophoblast differentiation and fusion are reversed by N-acetyl-L-cysteine (Nac), an antioxidant. PMID:26186596

  6. Effect of microcystin-LR on human placental villous trophoblast differentiation in vitro.

    PubMed

    Douglas, Gordon C; Thirkill, Twanda L; Kumar, Priyadarsini; Loi, Minerva; Hilborn, Elizabeth D

    2016-04-01

    Microcystin-LR is a cyanobacterial toxin found in surface and recreational waters that inhibits protein phosphatases and may disrupt the cytoskeleton. Microcystins induce apoptosis in hepatocytes at ≤2.0 µM. Nothing is known about the effects of microcystins on human placental trophoblast differentiation and function. The differentiation of villous trophoblasts to form syncytiotrophoblast occurs throughout pregnancy and is essential for normal placental and fetal development. To investigate the effects of microcystin, villous cytotrophoblasts were isolated from term placentas using an established method and exposed to microcystin-LR. Microcystin-LR below the cytotoxic dose of 25 µM did not cause cell rounding or detachment, had no effect on apoptosis, and no effect on the morphological differentiation of mononucleated cytotrophoblasts to multinucleated syncytiotrophoblast. However, secretion of human chorionic gonadotropin (hCG) increased in a microcystin-LR dose-dependent manner. When incubated with l-buthionine sulphoximine (BSO) to deplete glutathione levels, trophoblast morphological differentiation proceeded normally in the presence of microcystin-LR. Microcystin-LR did not disrupt the trophoblast microtubule cytoskeleton, which is known to play a role in trophoblast differentiation. Immunofluorescence studies showed that trophoblasts express organic anion transport protein 1B3 (OATP1B3), a known microcystin transport protein. In comparison to hepatocytes, trophoblasts appear to be more resistant to the toxic effects of microcystin-LR. The physiological implications of increased hCG secretion in response to microcystin-LR exposure remain to be determined. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 427-439, 2016. PMID:25346179

  7. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease.

    PubMed

    Horii, Mariko; Li, Yingchun; Wakeland, Anna K; Pizzo, Donald P; Nelson, Katharine K; Sabatini, Karen; Laurent, Louise Chang; Liu, Ying; Parast, Mana M

    2016-07-01

    Trophoblast is the primary epithelial cell type in the placenta, a transient organ required for proper fetal growth and development. Different trophoblast subtypes are responsible for gas/nutrient exchange (syncytiotrophoblasts, STBs) and invasion and maternal vascular remodeling (extravillous trophoblasts, EVTs). Studies of early human placental development are severely hampered by the lack of a representative trophoblast stem cell (TSC) model with the capacity for self-renewal and the ability to differentiate into both STBs and EVTs. Primary cytotrophoblasts (CTBs) isolated from early-gestation (6-8 wk) human placentas are bipotential, a phenotype that is lost with increasing gestational age. We have identified a CDX2(+)/p63(+) CTB subpopulation in the early postimplantation human placenta that is significantly reduced later in gestation. We describe a reproducible protocol, using defined medium containing bone morphogenetic protein 4 by which human pluripotent stem cells (hPSCs) can be differentiated into CDX2(+)/p63(+) CTB stem-like cells. These cells can be replated and further differentiated into STB- and EVT-like cells, based on marker expression, hormone secretion, and invasive ability. As in primary CTBs, differentiation of hPSC-derived CTBs in low oxygen leads to reduced human chorionic gonadotropin secretion and STB-associated gene expression, instead promoting differentiation into HLA-G(+) EVTs in an hypoxia-inducible, factor-dependent manner. To validate further the utility of hPSC-derived CTBs, we demonstrated that differentiation of trisomy 21 (T21) hPSCs recapitulates the delayed CTB maturation and blunted STB differentiation seen in T21 placentae. Collectively, our data suggest that hPSCs are a valuable model of human placental development, enabling us to recapitulate processes that result in both normal and diseased pregnancies. PMID:27325764

  8. Direct Involvement of HERV-W Env Glycoprotein in Human Trophoblast Cell Fusion and Differentiation

    PubMed Central

    Frendo, Jean-Louis; Olivier, Delphine; Cheynet, Valérie; Blond, Jean-Luc; Bouton, Olivier; Vidaud, Michel; Rabreau, Michèle; Evain-Brion, Danièle; Mallet, François

    2003-01-01

    We recently demonstrated that the product of the HERV-W env gene, a retroviral envelope protein also dubbed syncytin, is a highly fusogenic membrane glycoprotein inducing the formation of syncytia on interaction with the type D mammalian retrovirus receptor. In addition, the detection of HERV-W Env protein (Env-W) expression in placental tissue sections led us to propose a role for this fusogenic glycoprotein in placenta formation. To evaluate this hypothesis, we analyzed the involvement of Env-W in the differentiation of primary cultures of human villous cytotrophoblasts that spontaneously differentiate by cell fusion into syncytiotrophoblasts in vitro. First, we observed that HERV-W env mRNA and glycoprotein expression are colinear with primary cytotrophoblast differentiation and with expression of human chorionic gonadotropin (hCG), a marker of syncytiotrophoblast formation. Second, we observed that in vitro stimulation of trophoblast cell fusion and differentiation by cyclic AMP is also associated with a concomitant increase in HERV-W env and hCG mRNA and protein expression. Finally, by using specific antisense oligonucleotides, we demonstrated that inhibition of Env-W protein expression leads to a decrease of trophoblast fusion and differentiation, with the secretion of hCG in culture medium of antisense oligonucleotide-treated cells being decreased by fivefold. Taken together, these results strongly support a direct role for Env-W in human trophoblast cell fusion and differentiation. PMID:12724415

  9. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts

    PubMed Central

    Zhao, Lei; Shao, Qianqian; Zhang, Yun; Zhang, Lin; He, Ying; Wang, Lijie; Kong, Beihua; Qu, Xun

    2016-01-01

    Maternal immune adaptation is required for a successful pregnancy to avoid rejection of the fetal–placental unit. Dendritic cells within the decidual microenvironment lock in a tolerogenic profile. However, how these tolerogenic DCs are induced and the underlying mechanisms are largely unknown. In this study, we show that human extravillous trophoblasts redirect the monocyte-to-DC transition and induce regulatory dendritic cells. DCs differentiated from blood monocytes in the presence of human extravillous trophoblast cell line HTR-8/SVneo displayed a DC-SIGN+CD14+CD1a− phenotype, similar with decidual DCs. HTR8-conditioned DCs were unable to develop a fully mature phenotype in response to LPS, and altered the cytokine secretory profile significantly. Functionally, conditioned DCs poorly induced the proliferation and activation of allogeneic T cells, whereas promoted CD4+CD25+Foxp3+ Treg cells generation. Furthermore, the supernatant from DC and HTR-8/SVneo coculture system contained significant high amount of M-CSF and MCP-1. Using neutralizing antibodies, we discussed the role of M-CSF and MCP-1 during monocyte-to-DCs differentiation mediated by extravillous trophoblasts. Our data indicate that human extravillous trophoblasts play an important role in modulating the monocyte-to-DC differentiation through M-CSF and MCP-1, which facilitate the establishment of a tolerogenic microenvironment at the maternal–fetal interface. PMID:26857012

  10. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts.

    PubMed

    Zhao, Lei; Shao, Qianqian; Zhang, Yun; Zhang, Lin; He, Ying; Wang, Lijie; Kong, Beihua; Qu, Xun

    2016-01-01

    Maternal immune adaptation is required for a successful pregnancy to avoid rejection of the fetal-placental unit. Dendritic cells within the decidual microenvironment lock in a tolerogenic profile. However, how these tolerogenic DCs are induced and the underlying mechanisms are largely unknown. In this study, we show that human extravillous trophoblasts redirect the monocyte-to-DC transition and induce regulatory dendritic cells. DCs differentiated from blood monocytes in the presence of human extravillous trophoblast cell line HTR-8/SVneo displayed a DC-SIGN(+)CD14(+)CD1a(-) phenotype, similar with decidual DCs. HTR8-conditioned DCs were unable to develop a fully mature phenotype in response to LPS, and altered the cytokine secretory profile significantly. Functionally, conditioned DCs poorly induced the proliferation and activation of allogeneic T cells, whereas promoted CD4(+)CD25(+)Foxp3(+) Treg cells generation. Furthermore, the supernatant from DC and HTR-8/SVneo coculture system contained significant high amount of M-CSF and MCP-1. Using neutralizing antibodies, we discussed the role of M-CSF and MCP-1 during monocyte-to-DCs differentiation mediated by extravillous trophoblasts. Our data indicate that human extravillous trophoblasts play an important role in modulating the monocyte-to-DC differentiation through M-CSF and MCP-1, which facilitate the establishment of a tolerogenic microenvironment at the maternal-fetal interface. PMID:26857012

  11. TGF-β1 up-regulates connexin43 expression: a potential mechanism for human trophoblast cell differentiation.

    PubMed

    Cheng, Jung-Chien; Chang, Hsun-Ming; Fang, Lanlan; Sun, Ying-Pu; Leung, Peter C K

    2015-07-01

    Connexin43 (Cx43)-mediated gap junctional intercellular communication (GJIC) are required for human trophoblast differentiation. To date, whether Cx43 mediates TGF-β1-induced trophoblast differentiation has not been determined. We showed that treatment with TGF-β1 increased Cx43 expression and GJIC in HTR-8/SVneo human trophoblast cells. In addition, Smad and ERK1/2 signaling pathways were involved in TGF-β1-induced up-regulation of Cx43. Moreover, TGF-β1 increased the expression of the syncytiotrophoblast marker, β-hCG. Importantly, knockdown of Cx43 abolished the TGF-β1-induced up-regulation of β-hCG. Furthermore, overexpression of Cx43 up-regulated β-hCG expression. These results provide evidence that Cx43 and GJIC activity are up-regulated by TGF-β1 in human trophoblast cells, which subsequently contributes to TGF-β1-induced trophoblast differentiation. PMID:25560303

  12. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  13. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+ influx

    PubMed Central

    da Conceição, Aline O.; von Poser, Gilsane Lino; Barbeau, Benoit; Lafond, Julie

    2014-01-01

    Objective To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. Methods BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by 45Ca2+ influx evaluation. Results The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance; however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca2+ influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. Conclusions The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+ influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants. PMID:25182721

  14. Localization of transforming growth factor-beta at the human fetal-maternal interface: role in trophoblast growth and differentiation.

    PubMed

    Graham, C H; Lysiak, J J; McCrae, K R; Lala, P K

    1992-04-01

    We examined the localization of transforming growth factor (TGF)-beta in first-trimester and term human decidua and chorionic villi and explored the role of this factor on the proliferation and differentiation of cultured trophoblast cells. Two antibodies, 1D11.16.8, a mouse monoclonal neutralizing antibody capable of recognizing both TGF-beta 1 and TGF-beta 2 and CL-B1/29, a rabbit polyclonal antibody capable of recognizing TGF-beta 2, were used to immunolocalize TGF-beta in fixed, paraffin-embedded, or fixed, frozen sections of placenta and decidua, providing similar results. Intense labeling was observed in the extracellular matrix (ECM) of the first-trimester decidua and cytoplasm of term decidual cells. Syncytiotrophoblast cell cytoplasm as well as the ECM in the core of the chorionic villi of both first-trimester and term placentas exhibited a moderate degree of labeling. Strong cytoplasmic labeling was observed in the cytotrophoblastic shell of the term placenta. To examine the role of TGF-beta on trophoblast proliferation and differentiation, early passage cultures of first-trimester and primary cultures of term trophoblast cells were established and characterized on the basis of numerous immunocytochemical and functional markers. These cells expressed cytokeratin, placental alkaline phosphatase, urokinase-type plasminogen activator, and pregnancy-specific beta glycoprotein, but not factor VIII or 63D3; they also produced hCG and collagenase type IV. Exposure of first-trimester trophoblast cultures to TGF-beta 1 significantly inhibited proliferation in a dose-dependent manner. An antiproliferative effect was also noted in the presence of TGF-beta 2. These effects were abrogated in the presence of the neutralizing anti-TGF-beta antibody (1D11.16.8) in a concentration-dependent manner. In a 3-day culture, exogenous TGF-beta 1 stimulated formation of multinucleated cells by the first trimester as well as term trophoblast cells. Addition of neutralizing anti

  15. Estrogen-related receptor γ (ERRγ) regulates oxygen-dependent expression of voltage-gated potassium (K+) channels and tissue kallikrein during human trophoblast differentiation.

    PubMed

    Luo, Yanmin; Kumar, Premlata; Mendelson, Carole R

    2013-06-01

    Estrogen-related receptor γ (ERRγ) serves a critical O2-dependent regulatory role in the differentiation of human cytotrophoblasts to syncytiotrophoblast. In this study, we investigated expression of genes encoding tissue kallikrein (KLK1) and voltage-gated K(+) channels (KV7) during differentiation of human trophoblasts in culture and the roles of ERRγ and O2 tension in their regulation. Expression of KLK1 and the KV7 channel subunits, KCNQ1, KCNE1, KCNE3, and KCNE5, increased during differentiation of cultured human trophoblast cells in a 20% O2 environment. Notably, together with ERRγ, expression of KLK1, KCNQ1, KCNE1, KCNE3, and KCNE5 was markedly reduced when cells were cultured in a hypoxic environment (2% O2). Moreover, upon transduction of trophoblast cells with short hairpin RNAs for endogenous ERRγ, KLK1, KCNQ1, KCNE1, and KCNE3 expression was significantly decreased. Promoter and site-directed mutagenesis studies in transfected cells identified putative ERRγ response elements within the KLK1 and KCNE1 5'-flanking regions required for ERRγ-stimulated transcriptional activity. Binding of endogenous ERRγ to these ERRγ response elements increased during trophoblast differentiation in culture and was inhibited by hypoxia. The KV7 blocker linopirdine reduced human chorionic gonadotropin secretion and aggregation of cultured human trophoblasts, suggesting a possible role of KV7 channels in cell fusion and differentiation. Illumina gene expression arrays of cultured human trophoblast cells revealed several genes upregulated during syncytiotrophoblast differentiation and downregulated upon ERRγ knockdown involved in cell differentiation, adhesion, and synthesis of steroid and peptide hormones required for placental development and function. Collectively, these findings suggest that ERRγ mediates O2-dependent expression of genes involved in human trophoblast differentiation, function, and vascular homeostasis. PMID:23584901

  16. Estrogen-Related Receptor γ (ERRγ) Regulates Oxygen-Dependent Expression of Voltage-gated Potassium (K+) Channels and Tissue Kallikrein during Human Trophoblast Differentiation

    PubMed Central

    Luo, Yanmin; Kumar, Premlata

    2013-01-01

    Estrogen-related receptor γ (ERRγ) serves a critical O2-dependent regulatory role in the differentiation of human cytotrophoblasts to syncytiotrophoblast. In this study, we investigated expression of genes encoding tissue kallikrein (KLK1) and voltage-gated K+ channels (KV7) during differentiation of human trophoblasts in culture and the roles of ERRγ and O2 tension in their regulation. Expression of KLK1 and the KV7 channel subunits, KCNQ1, KCNE1, KCNE3, and KCNE5, increased during differentiation of cultured human trophoblast cells in a 20% O2 environment. Notably, together with ERRγ, expression of KLK1, KCNQ1, KCNE1, KCNE3, and KCNE5 was markedly reduced when cells were cultured in a hypoxic environment (2% O2). Moreover, upon transduction of trophoblast cells with short hairpin RNAs for endogenous ERRγ, KLK1, KCNQ1, KCNE1, and KCNE3 expression was significantly decreased. Promoter and site-directed mutagenesis studies in transfected cells identified putative ERRγ response elements within the KLK1 and KCNE1 5′-flanking regions required for ERRγ-stimulated transcriptional activity. Binding of endogenous ERRγ to these ERRγ response elements increased during trophoblast differentiation in culture and was inhibited by hypoxia. The KV7 blocker linopirdine reduced human chorionic gonadotropin secretion and aggregation of cultured human trophoblasts, suggesting a possible role of KV7 channels in cell fusion and differentiation. Illumina gene expression arrays of cultured human trophoblast cells revealed several genes upregulated during syncytiotrophoblast differentiation and downregulated upon ERRγ knockdown involved in cell differentiation, adhesion, and synthesis of steroid and peptide hormones required for placental development and function. Collectively, these findings suggest that ERRγ mediates O2-dependent expression of genes involved in human trophoblast differentiation, function, and vascular homeostasis. PMID:23584901

  17. Identification of Epigenetic Factor Proteins Expressed in Human Embryonic Stem Cell-Derived Trophoblasts and in Human Placental Trophoblasts.

    PubMed

    Sarkar, Prasenjit; Mischler, Adam; Randall, Shan M; Collier, Timothy S; Dorman, Karen F; Boggess, Kim A; Muddiman, David C; Rao, Balaji M

    2016-08-01

    Human embryonic stem cells (hESCs) have been used to derive trophoblasts through differentiation in vitro. Intriguingly, mouse ESCs are prevented from differentiation to trophoblasts by certain epigenetic factor proteins such as Dnmt1, thus necessitating the study of epigenetic factor proteins during hESC differentiation to trophoblasts. We used stable isotope labeling by amino acids in cell culture and quantitative proteomics to study changes in the nuclear proteome during hESC differentiation to trophoblasts and identified changes in the expression of 30 epigenetic factor proteins. Importantly, the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B were downregulated. Additionally, we hypothesized that nuclear proteomics of hESC-derived trophoblasts may be used for screening epigenetic factor proteins expressed by primary trophoblasts in human placental tissue. Accordingly, we conducted immunohistochemistry analysis of six epigenetic factor proteins identified from hESC-derived trophoblasts-DNMT1, DNMT3B, BAF155, BAF60A, BAF57, and ING5-in 6-9 week human placentas. Indeed, expression of these proteins was largely, though not fully, consistent with that observed in 6-9 week placental trophoblasts. Our results support the use of hESC-derived trophoblasts as a model for placental trophoblasts, which will enable further investigation of epigenetic factors involved in human trophoblast development. PMID:27378238

  18. Differential expression of ADAM (a disintegrin and metalloproteinase) genes between human first trimester villous and extravillous trophoblast cells.

    PubMed

    Takahashi, Hironori; Yuge, Kazuya; Matsubara, Shigeki; Ohkuchi, Akihide; Kuwata, Tomoyuki; Usui, Rie; Suzuki, Mitsuaki; Takizawa, Toshihiro

    2014-01-01

    A disintegrin and metalloproteinases (ADAMs) are members of the metzincin family of zinc-dependent metalloproteinases that play pivotal roles in the proteolytic degradation of the extracellular matrix for cell invasion. Few studies have investigated the ADAM subtypes that are expressed in first trimester trophoblast cells. The purpose of this study was to elucidate the differential expression profiles of ADAMs between first trimester villous trophoblast cells (VTs) and extravillous trophoblast cells (EVTs). We isolated EVTs from explanted human first trimester chorionic villi and investigated the mRNA expression levels of five members of the ADAM family (ADAMTS1, ADAMTS2, ADAM10, ADAM12, and ADAM17) using real-time PCR. Chorionic villous tips were defined as first trimester VTs. Of the differentially expressed ADAM genes between first trimester VTs and EVTs, ADAMTS1 was expressed at a significantly higher level in EVTs than in VTs. In contrast, both ADAM10 and ADAM12 were expressed at significantly higher levels in VTs than in EVTs. No differences were found in the mRNA levels of ADAMTS2 and ADAM17 between the two cell types. Moreover, we demonstrated that in VTs, the expression level of ADAM12 was significantly downregulated in the late first trimester (10-13 gestational weeks) compared to the middle first trimester (7-8 weeks). These results suggest that first trimester trophoblast cells express ADAM genes in cell type- and gestational age-dependent manners. Our data provide additional insight into the functions of ADAMs in the human placenta. PMID:24998958

  19. Human Cytomegalovirus Infection Interferes with the Maintenance and Differentiation of Trophoblast Progenitor Cells of the Human Placenta

    PubMed Central

    Tabata, Takako; Petitt, Matthew; Zydek, Martin; Fang-Hoover, June; Larocque, Nicholas; Tsuge, Mitsuru; Gormley, Matthew; Kauvar, Lawrence M.

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is a major cause of birth defects that include severe neurological deficits, hearing and vision loss, and intrauterine growth restriction. Viral infection of the placenta leads to development of avascular villi, edema, and hypoxia associated with symptomatic congenital infection. Studies of primary cytotrophoblasts (CTBs) revealed that HCMV infection impedes terminal stages of differentiation and invasion by various molecular mechanisms. We recently discovered that HCMV arrests earlier stages involving development of human trophoblast progenitor cells (TBPCs), which give rise to the mature cell types of chorionic villi—syncytiotrophoblasts on the surfaces of floating villi and invasive CTBs that remodel the uterine vasculature. Here, we show that viral proteins are present in TBPCs of the chorion in cases of symptomatic congenital infection. In vitro studies revealed that HCMV replicates in continuously self-renewing TBPC lines derived from the chorion and alters expression and subcellular localization of proteins required for cell cycle progression, pluripotency, and early differentiation. In addition, treatment with a human monoclonal antibody to HCMV glycoprotein B rescues differentiation capacity, and thus, TBPCs have potential utility for evaluation of the efficacies of novel antiviral antibodies in protecting and restoring placental development. Our results suggest that HCMV replicates in TBPCs in the chorion in vivo, interfering with the earliest steps in the growth of new villi, contributing to virus transmission and impairing compensatory development. In cases of congenital infection, reduced responsiveness of the placenta to hypoxia limits the transport of substances from maternal blood and contributes to fetal growth restriction. IMPORTANCE Human cytomegalovirus (HCMV) is a leading cause of birth defects in the United States. Congenital infection can result in permanent neurological defects, mental retardation

  20. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta

    PubMed Central

    Kohan-Ghadr, Hamid-Reza; Kadam, Leena; Jain, Chandni; Armant, D. Randall; Drewlo, Sascha

    2016-01-01

    ABSTRACT The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies. PMID:26745760

  1. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta.

    PubMed

    Kohan-Ghadr, Hamid-Reza; Kadam, Leena; Jain, Chandni; Armant, D Randall; Drewlo, Sascha

    2016-03-01

    The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies. PMID:26745760

  2. Neuregulin-1-mediated ErbB2-ErbB3 signalling protects human trophoblasts against apoptosis to preserve differentiation.

    PubMed

    Fock, Valerie; Plessl, Kerstin; Draxler, Peter; Otti, Gerlinde Regina; Fiala, Christian; Knöfler, Martin; Pollheimer, Jürgen

    2015-12-01

    During placentation, foetal trophoblasts invade deeply into maternal tissue to establish a foeto-maternal circulation. We have previously shown that extravillous trophoblast (EVT) lineage cells express ErbB2 and ErbB3, of which the potential as an oncogenic unit is well established. However, a physiological function of this receptor combination in humans remains a puzzling question. Here, we demonstrate neuregulin 1 (NRG1) expression and secretion by human decidual stromal cells. Stimulation of human primary trophoblasts with exogenous NRG1 induced phosphorylation of ErbB2, ErbB3 and related downstream effectors. Co-immunoprecipitation experiments confirmed the formation of ErbB2-ErbB3 dimers upon ligand engagement. Along this line, receptor knockdown and ErbB3 neutralization strongly diminished NRG1-dependent activation of the signalling complex. Functional studies revealed that NRG1 promotes EVT formation in placental explant cultures. Although, in the presence of NRG1, basal and camptothecin-induced trophoblast apoptosis was significantly repressed, this effect was abolished upon ErbB3 inhibition. Notably, camptothecin provoked a strong reduction of trophoblast cell column size, whereas NRG1-treated explants were refractory to the compound. Taken together, our findings newly identify a physiological function of the NRG1-ErbB2-ErbB3 axis in trophoblast survival during human placental development. PMID:26490994

  3. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation

    PubMed Central

    2010-01-01

    Background The trophoblast lineage arises as the first differentiation event during embryogenesis. Trophoblast giant cells are one of several end-stage products of trophoblast cell differentiation in rodents. These cells are located at the maternal-fetal interface and are capable of invasive and endocrine functions, which are necessary for successful pregnancy. Rcho-1 trophoblast stem cells can be effectively used as a model for investigating trophoblast cell differentiation. In this report, we evaluated the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in the regulation of trophoblast cell differentiation. Transcript profiles from trophoblast stem cells, differentiated trophoblast cells, and differentiated trophoblast cells following disruption of PI3K signaling were generated and characterized. Results Prominent changes in gene expression accompanied the differentiation of trophoblast stem cells. PI3K modulated the expression of a subset of trophoblast cell differentiation-dependent genes. Among the PI3K-responsive genes were those encoding proteins contributing to the invasive and endocrine phenotypes of trophoblast giant cells. Conclusions Genes have been identified with differential expression patterns associated with trophoblast stem cells and trophoblast cell differentiation; a subset of these genes are regulated by PI3K signaling, including those impacting the differentiated trophoblast giant cell phenotype. PMID:20840781

  4. What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast

    PubMed Central

    Lee, Cheryl Q.E.; Gardner, Lucy; Turco, Margherita; Zhao, Nancy; Murray, Matthew J.; Coleman, Nicholas; Rossant, Janet; Hemberger, Myriam; Moffett, Ashley

    2016-01-01

    Summary Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast. PMID:26862703

  5. What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast.

    PubMed

    Lee, Cheryl Q E; Gardner, Lucy; Turco, Margherita; Zhao, Nancy; Murray, Matthew J; Coleman, Nicholas; Rossant, Janet; Hemberger, Myriam; Moffett, Ashley

    2016-02-01

    Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast. PMID:26862703

  6. Triploid human embryonic stem cells derived from tripronuclear zygotes displayed pluripotency and trophoblast differentiation ability similar to the diploid human embryonic stem cells

    PubMed Central

    RUNGSIWIWUT, Ruttachuk; NUMCHAISRIKA, Pranee; AHNONKITPANIT, Vichuda; VIRUTAMASEN, Pramuan; PRUKSANANONDA, Kamthorn

    2016-01-01

    Because the diploid human embryonic stem cells (hESCs) can be successfully derived from tripronuclear zygotes thus, they can serve as an alternative source of derivation of normal karyotype hESC lines. The aim of the present study was to compare the pluripotency and trophoblast differentiation ability of hESCs derived from tripronuclear zygotes and diploid hESCs. In the present study, a total of 20 tripronuclear zygotes were cultured; 8 zygotes developed to the blastocyst stage and 1 hESC line was generated. Unlike the previous studies, chromosomal correction of tripronuclear zygotes during derivation of hESCs did not occur. The established line carries 3 sets of chromosomes and showed a numerical aberration. Although the cell line displayed an abnormal chromosome number, it was found the cell line has been shown to be pluripotent with the ability to differentiate into 3 embryonic germ layers both in vitro and in vivo. The expression of X inactive specific transcript (XIST) in mid-passage (passage 42) of undifferentiated triploid hESCs was detected, indicating X chromosome inactivation of the cell line. Moreover, when this cell line was induced to differentiate toward the trophoblast lineage, morphological and functional trophoblast cells were observed, similar to the diploid hESC line. PMID:26821869

  7. Triploid human embryonic stem cells derived from tripronuclear zygotes displayed pluripotency and trophoblast differentiation ability similar to the diploid human embryonic stem cells.

    PubMed

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-04-22

    Because the diploid human embryonic stem cells (hESCs) can be successfully derived from tripronuclear zygotes thus, they can serve as an alternative source of derivation of normal karyotype hESC lines. The aim of the present study was to compare the pluripotency and trophoblast differentiation ability of hESCs derived from tripronuclear zygotes and diploid hESCs. In the present study, a total of 20 tripronuclear zygotes were cultured; 8 zygotes developed to the blastocyst stage and 1 hESC line was generated. Unlike the previous studies, chromosomal correction of tripronuclear zygotes during derivation of hESCs did not occur. The established line carries 3 sets of chromosomes and showed a numerical aberration. Although the cell line displayed an abnormal chromosome number, it was found the cell line has been shown to be pluripotent with the ability to differentiate into 3 embryonic germ layers both in vitro and in vivo. The expression of X inactive specific transcript (XIST) in mid-passage (passage 42) of undifferentiated triploid hESCs was detected, indicating X chromosome inactivation of the cell line. Moreover, when this cell line was induced to differentiate toward the trophoblast lineage, morphological and functional trophoblast cells were observed, similar to the diploid hESC line. PMID:26821869

  8. Estrogen-related receptor gamma (ERRgamma) mediates oxygen-dependent induction of aromatase (CYP19) gene expression during human trophoblast differentiation.

    PubMed

    Kumar, Premlata; Mendelson, Carole R

    2011-09-01

    Differentiation of human cytotrophoblasts to syncytiotrophoblast and the associated induction of aromatase/hCYP19 gene expression are dependent upon a critical O(2) tension; however, the underlying molecular mechanisms remain undefined. In this study, we provide compelling evidence that expression of the orphan nuclear receptor, estrogen-related receptor γ (ERRγ), is also O(2) dependent, induced during human syncytiotrophoblast differentiation, and plays an obligatory role in the induction of placenta-specific hCYP19I.1 gene expression. Treatment with the selective ERRγ agonist, DY131, or overexpression of ERRγ, stimulated hCYP19 expression in syncytiotrophoblast. Overexpression of ERRγ prevented effects of hypoxia to repress hCYP19 gene expression in cultured trophoblasts. Conversely, small interfering RNA-mediated knockdown of endogenous ERRγ in primary trophoblasts markedly inhibited hCYP19 expression. Promoter and site-directed mutagenesis studies in transfected placental cells identified a nuclear receptor element within placenta-specific hCYP19 promoter I.1 required for ERRγ-stimulated activity. Recruitment of endogenous ERRγ to the nuclear receptor element region in hCYP19 promoter during trophoblast differentiation, assessed by chromatin immunoprecipitation, was prevented by hypoxia. Deferoxamine-induced hypoxia-inducible factor-1α (HIF-1α) levels decreased ERRγ expression, whereas knockdown of endogenous HIF-1α prevented ERRγ suppression by hypoxia. Chromatin immunoprecipitation analysis of trophoblasts cultured in hypoxia revealed recruitment of HIF-1α to one of two putative hypoxia response elements in the ERRγ promoter, providing in vivo evidence of a direct HIF-1α involvement in ERRγ expression. Collectively, these novel findings identify ERRγ as an O(2)-dependent transcription factor and HIF-1α target gene that serves a critical role in the induction of hCYP19 expression during human trophoblast differentiation. PMID:21757507

  9. Estrogen-Related Receptor γ (ERRγ) Mediates Oxygen-Dependent Induction of Aromatase (CYP19) Gene Expression during Human Trophoblast Differentiation

    PubMed Central

    Kumar, Premlata

    2011-01-01

    Differentiation of human cytotrophoblasts to syncytiotrophoblast and the associated induction of aromatase/hCYP19 gene expression are dependent upon a critical O2 tension; however, the underlying molecular mechanisms remain undefined. In this study, we provide compelling evidence that expression of the orphan nuclear receptor, estrogen-related receptor γ (ERRγ), is also O2 dependent, induced during human syncytiotrophoblast differentiation, and plays an obligatory role in the induction of placenta-specific hCYP19I.1 gene expression. Treatment with the selective ERRγ agonist, DY131, or overexpression of ERRγ, stimulated hCYP19 expression in syncytiotrophoblast. Overexpression of ERRγ prevented effects of hypoxia to repress hCYP19 gene expression in cultured trophoblasts. Conversely, small interfering RNA-mediated knockdown of endogenous ERRγ in primary trophoblasts markedly inhibited hCYP19 expression. Promoter and site-directed mutagenesis studies in transfected placental cells identified a nuclear receptor element within placenta-specific hCYP19 promoter I.1 required for ERRγ-stimulated activity. Recruitment of endogenous ERRγ to the nuclear receptor element region in hCYP19 promoter during trophoblast differentiation, assessed by chromatin immunoprecipitation, was prevented by hypoxia. Deferoxamine-induced hypoxia-inducible factor-1α (HIF-1α) levels decreased ERRγ expression, whereas knockdown of endogenous HIF-1α prevented ERRγ suppression by hypoxia. Chromatin immunoprecipitation analysis of trophoblasts cultured in hypoxia revealed recruitment of HIF-1α to one of two putative hypoxia response elements in the ERRγ promoter, providing in vivo evidence of a direct HIF-1α involvement in ERRγ expression. Collectively, these novel findings identify ERRγ as an O2-dependent transcription factor and HIF-1α target gene that serves a critical role in the induction of hCYP19 expression during human trophoblast differentiation. PMID:21757507

  10. Gene targeting in primary human trophoblasts

    PubMed Central

    Rosario, Fredrick J; Sadovsky, Yoel; Jansson, Thomas

    2012-01-01

    Studies in primary human trophoblasts provide critical insights into placental function in normal and complicated pregnancies. Mechanistic studies in these cells require experimental tools to modulate gene expression. Lipid-based methods to transfect primary trophoblasts are fairly simple to use and allow for the efficient delivery of nucleic acids, but potential toxic effects limit these methods. Viral vectors are versatile transfection tools of native trophoblastic or foreign cDNAs, providing high transfection efficiency, low toxicity and stable DNA integration into the trophoblast genome. RNA interference (RNAi), using small interfering RNA (siRNA) or microRNA, constitutes a powerful approach to silence trophoblast genes. However, off-target effects, such as regulation of unintended complementary transcripts, inflammatory responses and saturation of the endogenous RNAi machinery, are significant concerns. Strategies to minimize off-target effects include using multiple individual siRNAs, elimination of pro-inflammatory sequences in the siRNA construct and chemical modification of a nucleotide in the guide strand or of the ribose moiety. Tools for efficient gene targeting in primary human trophoblasts are currently available, albeit not yet extensively validated. These methods are critical for exploring the function of human trophoblast genes and may provide a foundation for the future application of gene therapy that targets placental trophoblasts. PMID:22831880

  11. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Gong, Yun Guo; Khoo, Sok Kean; Leach, Richard

    2013-02-08

    Highlights: ► CDX2 and EOMES play critical roles in human induced trophoblast progenitors (iTP). ► iTP cells directly transformed from fibroblasts. ► Differentiation of iTP cells into extravillous trophoblasts and syncytiotrophoblasts. -- Abstract: Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, can be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and

  12. Effect of Microcystin-LR on human placental villous trophoblast differentiation in vitro

    EPA Science Inventory

    Microcystin-LR is a cyanobacterial toxin found in surface and recreational waters that inhibits protein phosphatases and may disrupt the cytoskeleton. Microcystins induce apoptosis in hepatocytes at ≤2.0 μM. Nothing is known about the effects of microcystins on human placental tr...

  13. Evidence for Differential Glycosylation of Trophoblast Cell Types.

    PubMed

    Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E; Longtine, Mark S; Schust, Danny J; Haslam, Stuart M; Blois, Sandra M; Dell, Anne; Clark, Gary F

    2016-06-01

    Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. PMID:26929217

  14. Differential susceptibility of human trophoblastic (BeWo) and uterine cervical (HeLa) cells to Neospora caninum infection.

    PubMed

    Carvalho, Julianne V; Alves, Celene M O S; Cardoso, Mariana R D; Mota, Caroline M; Barbosa, Bellisa F; Ferro, Eloísa A V; Silva, Neide M; Mineo, Tiago W P; Mineo, José R; Silva, Deise A O

    2010-12-01

    Neospora caninum is an apicomplexan parasite, closely related to Toxoplasma gondii, and causes abortion and congenital neosporosis in cattle worldwide. Trophoblast cells act in mechanisms of innate immune defense at the fetal-maternal interface and no data are available about the interaction of Neospora with human trophoblasts. Thus, this study aimed to verify the susceptibility of human trophoblastic (BeWo) compared with uterine cervical (HeLa) cell lines to N. caninum. BeWo and HeLa cells were infected with different parasite:cell ratios of N. caninum tachyzoites and analyzed at different times after infection for cell viability using thiazolyl blue tetrazole and lactate dehydrogenase assays. Both cell lines were also evaluated for cytokine production and parasite infection/replication assays when pre-treated or not with Neospora lysate antigen (NLA) or human recombinant IFN-γ. Cell viability was increased up to 48 h of infection in both types of cells, suggesting that infection could inhibit early cell death and/or induce cell proliferation. Neospora infection induced up-regulation of the macrophage migration inhibitory factor (MIF), mainly in HeLa cells, which was enhanced by cell pre-treatment by NLA or IFN-γ. Conversely, parasite infection induced down-regulation of the transforming growth factor (TGF-β), mostly in BeWo cells, which was decreased with NLA or IFN-γ pre-treatment. HeLa cells were more susceptible to Neospora infection than BeWo cells and IFN-γ pre-treatment resulted in reduced infection indices in both cell lines. Control of parasite growth was mediated by IFN-γ through an indoleamine-2,3-dioxygenase-dependent mechanism in HeLa cells alone. Based on these results, we concluded that BeWo and HeLa cells are readily infected by N. caninum, although presenting differences in susceptibility to infection, cytokine production and cell viability. Thus, these host cells can be considered in comparative approaches to understand strategies used by N

  15. Isolation and characterization of human placental trophoblast subpopulations from first-trimester chorionic villi.

    PubMed Central

    Aboagye-Mathiesen, G; Laugesen, J; Zdravkovic, M; Ebbesen, P

    1996-01-01

    A method for the simultaneous preparation of highly enriched human placental trophoblast populations (villous and extravillous) from first-trimester placental villi (5 to 12 weeks) by using sequential trypsinization, percoll gradient centrifugation, and negative selection with anti-CD9 immunomagnetic separation is described. The purification method resulted in the isolation of four distinct trophoblast populations identified on the basis of morphology and phenotyping: (i) mononuclear villous cytotrophoblast cells which, through differentiation, become committed to syncytium formation; (ii) an extravillous trophoblast population which appeared as a "crazy pavement" and, with subsequent subculturing, differentiated morphologically to mononuclear cells; (iii) an extravillous trophoblast fraction which fused to form multinucleated trophoblast giant cells; and (iv) floating intermediate extravillous trophoblast cells which fused together to form cell clumps and which further differentiated to a mononuclear anchoring intermediate extravillous trophoblast. Short-term cultures of the freshly isolated cell fractions consisted of heterogeneous trophoblasts at different differentiation stages as determined by their varied biochemical and morphological properties. All the isolated trophoblast populations expressed the cytokeratin intermediate filament and the epithelium-specific cell-cell adhesion molecule E-cadherin. The isolated villous trophoblasts in culture expressed integrins alpha 6 and beta 4 and reduced levels of beta 1 subunits, whereas the proliferating extravillous trophoblast cultures expressed alpha 1, alpha 3, and alpha 5 and high levels of beta 1 integrin subunits, vitronectin receptor (alpha V beta 3/beta 5), and major histocompatibility complex class 1 molecules. Furthermore, the isolated trophoblast populations secreted metalloproteases (such as type IV collagenases [mainly 72- and 92-kDa enzymes, i.e., gelatinases A and B]) and urokinase plasminogen

  16. Preimplantation factor (PIF) promotes human trophoblast invasion.

    PubMed

    Moindjie, Hadia; Santos, Esther Dos; Loeuillet, Laurence; Gronier, Héloise; de Mazancourt, Philippe; Barnea, Eytan R; Vialard, François; Dieudonne, Marie-Noëlle

    2014-11-01

    Preimplantation factor (PIF) is a peptide secreted by viable mammalian embryos. Moreover, it can be detected in the circulation of pregnant women. Recently, it was shown that PIF promotes invasion in trophoblast cell lines in vitro. Successful human embryo implantation depends on a deep and highly controlled invasion of extravillous trophoblast (EVT) in the maternal endometrium. Trophoblast invasion is regulated in part by matrix metalloproteinase (MMP) activity and integrin expression. The present study demonstrates the presence of PIF in early pregnancy and characterizes its effects on primary human trophoblast invasion. At the fetomaternal interface, intense PIF labeling by immunohistochemistry was present during early gestation in villous trophoblasts and EVTs. A decrease of labeling was observed at term. Furthermore, PIF significantly promoted invasion of human EVT isolated from first-trimester placenta. The proinvasive regulatory effect of PIF in EVT was associated with 1) increased MMP9 activity and 2) reduced tissue inhibitor of metalloproteinase-1 (TIMP1) mRNA expression. PIF also regulated alpha v and alpha 1 integrin mRNA expressions. Last, the proinvasive effect of PIF appeared to be mediated by the mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K), and Janus-kinase signal transducer and activator of transcription (JAK-STAT) signaling pathways. In summary, this work describes the direct, positive effect of PIF on the control of human trophoblastic cell invasion by modulation of MMP/TIMP balance and integrin expression. Moreover, these results suggest that PIF is involved in pathological pregnancies characterized by insufficient or excessive trophoblast invasion. PMID:25232018

  17. Neuregulin-1-mediated ErbB2–ErbB3 signalling protects human trophoblasts against apoptosis to preserve differentiation

    PubMed Central

    Fock, Valerie; Plessl, Kerstin; Draxler, Peter; Otti, Gerlinde Regina; Fiala, Christian; Knöfler, Martin; Pollheimer, Jürgen

    2015-01-01

    ABSTRACT During placentation, foetal trophoblasts invade deeply into maternal tissue to establish a foeto–maternal circulation. We have previously shown that extravillous trophoblast (EVT) lineage cells express ErbB2 and ErbB3, of which the potential as an oncogenic unit is well established. However, a physiological function of this receptor combination in humans remains a puzzling question. Here, we demonstrate neuregulin 1 (NRG1) expression and secretion by human decidual stromal cells. Stimulation of human primary trophoblasts with exogenous NRG1 induced phosphorylation of ErbB2, ErbB3 and related downstream effectors. Co-immunoprecipitation experiments confirmed the formation of ErbB2–ErbB3 dimers upon ligand engagement. Along this line, receptor knockdown and ErbB3 neutralization strongly diminished NRG1-dependent activation of the signalling complex. Functional studies revealed that NRG1 promotes EVT formation in placental explant cultures. Although, in the presence of NRG1, basal and camptothecin-induced trophoblast apoptosis was significantly repressed, this effect was abolished upon ErbB3 inhibition. Notably, camptothecin provoked a strong reduction of trophoblast cell column size, whereas NRG1-treated explants were refractory to the compound. Taken together, our findings newly identify a physiological function of the NRG1–ErbB2–ErbB3 axis in trophoblast survival during human placental development. PMID:26490994

  18. Antigens of human trophoblasts: A working hypothesis for their role in normal and abnormal pregnancies

    PubMed Central

    Faulk, W. Page; Temple, Anne; Lovins, R. E.; Smith, Nancy

    1978-01-01

    This report describes the preparation and characterization of antisera to human trophoblast membranes. Rabbit antisera were raised to trophoblast microvilli prepared by differential ultracentrifugation. Antibodies to serum proteins were removed by solid-phase immunoabsorption with normal human serum, and indirect immunofluorescence experiments with cryostat sections of human placentas showed that the absorbed anti-trophoblast sera reacted with trophoblasts as well as with stromal cells and endothelium of chorionic villi. The antisera also produced membrane fluorescence when studied on viable lymphocytes and certain human cell lines. These anti-trophoblast sera were also lymphocytotoxic, and this reaction was abolished by prior absorption of the antisera with leukocytes. The leukocyte-absorbed anti-trophoblast sera retained their ability to react with trophoblasts and certain human cell lines, but no longer reacted with lymphocytes or placental stromal cells and endothelium. Two categories of trophoblast membrane antigens are thus defined: one present on trophoblasts and certain human cells lines (tentatively designated TA1), and the other on trophoblasts and lymphocytes, villous fibroblasts, and endothelium (tentatively designated TA2). A working hypothesis is proposed stating that normal pregnancy involves the generation of anti-TA2 subsequent to blastocyst implantation and entrance of trophoblasts into the maternal circulation. This involves a mechanism similar to allogeneic cell stimulation and results in antibodies that block either the recognition or cytotoxicity of TA1. Failure to mount this response allows TA1 recognition and trophoblast immunopathology. Experimental and clinical studies in support of this working hypothesis, particularly involving abortion and toxemia, are cited from published reports. Images PMID:273921

  19. Estrogen-related receptor gamma modulates energy metabolism target genes in human trophoblast.

    PubMed

    Poidatz, D; Dos Santos, E; Brulé, A; De Mazancourt, P; Dieudonné, M N

    2012-09-01

    Placenta growth and functions depend on correct trophoblast migration, proliferation, and differentiation. The placenta has a critical role in gas and nutrient transport. To accomplish these numerous functions, the placenta depends on a highly efficient energy metabolism control. Recent studies showed that the orphan nuclear receptor Estrogen-Related Receptor gamma (ERRγ) is highly expressed in human placentas. As ERRγ has been described as a major energy metabolism regulator, we investigated ERRγ expression and putative roles on energy homeostasis in human trophoblast from first trimester placentas. First, we showed that ERRγ expression level increased during pregnancy and that ERRγ was more abundant in villous than in extravillous trophoblasts. We also observed that ERRγ expression increased during trophoblast differentiation. Second, we demonstrated that mitochondrial biogenesis and expression of some energy metabolism target genes decreased when ERRγ expression was impaired. Altogether, these results suggest that ERRγ could be implicated in the energy metabolism regulation of human trophoblasts. PMID:22763271

  20. Expression of uPAR in human trophoblast and its role in trophoblast invasion

    PubMed Central

    Liu, Shuai; Zheng, Qin; Cui, Xin-Yuan; Dai, Kui-Xing; Yang, Xue-Song; Li, Fa-Sheng; Yan, Qiu

    2015-01-01

    Placental trophoblast cells differentiate into invasive trophoblasts or syncytiotrophoblasts. Abnormal trophoblast invasion results in pregnancy-associated disease and abortion. uPAR is a cell membrane-bound glycosylated protein, involved in physiological and pathological processes. However, uPAR expression in villi during threatened abortion and its role in trophoblast differentiation are unclear. We determined that, uPAR expression in the villi was reduced in threatened abortion patients than that in normal pregnancy. uPARsiRNA inhibited the potential for trophoblast migration and invasion in explants culture and HTR8/SVneo cells. It also enhanced forskolin-induced fusion of HTR8/SVneo cells. Overall, this study provides a possible reason for abortion. PMID:26823748

  1. Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts.

    PubMed

    Sarkar, Prasenjit; Randall, Shan M; Collier, Timothy S; Nero, Anthony; Russell, Teal A; Muddiman, David C; Rao, Balaji M

    2015-04-01

    Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs. PMID:25670856

  2. Activin/Nodal Signaling Switches the Terminal Fate of Human Embryonic Stem Cell-derived Trophoblasts*

    PubMed Central

    Sarkar, Prasenjit; Randall, Shan M.; Collier, Timothy S.; Nero, Anthony; Russell, Teal A.; Muddiman, David C.; Rao, Balaji M.

    2015-01-01

    Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs. PMID:25670856

  3. Characterization of urokinase receptor expression by human placental trophoblasts.

    PubMed

    Zini, J M; Murray, S C; Graham, C H; Lala, P K; Karikó, K; Barnathan, E S; Mazar, A; Henkin, J; Cines, D B; McCrae, K R

    1992-06-01

    The processes of implantation and placentation are both dependent on the invasion and remodeling of the uterine endometrium and vasculature by trophoblasts. Because the secretion and autocrine binding of urokinase (uPA) appears to be a common mechanism used by cells to facilitate plasmin-dependent tissue invasion, we measured the production of uPA and expression of uPA receptors by trophoblasts. Prourokinase bound specifically, reversibly, and with high affinity to cultured trophoblasts, via the uPA epidermal growth factor-like domain. Trophoblasts derived from two first-trimester placentae bound more prourokinase than cells isolated from term placentae. Furthermore, in vitro differentiation of cultured cytotrophoblasts into syncytiotrophoblasts was associated with diminished expression of urokinase receptors and a parallel decrease in the cellular content of uPA receptor mRNA. Trophoblasts also secreted prourokinase and plasminogen activator inhibitors types 1 and 2 (PAI-1 and PAI-2). Although prourokinase was secreted in amounts sufficient to endogenously saturate trophoblast uPA receptors, trophoblasts secreted greater amounts of PAI-1 and PAI-2 than uPA, and no net plasminogen activator activity was detected in trophoblast conditioned medium. In contrast, plasminogen added directly to cultured trophoblasts was readily converted to plasmin. Although the invasion and remodeling of uterine tissues by trophoblasts is a complex process dependent on several proteases of varying specificity, our findings suggest that the expression and modulation of urokinase receptors on the trophoblast cell surface may play an important role in this process. PMID:1316787

  4. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    PubMed Central

    Huang, Yajing; Wu, Yanming; Chang, Xinwen; Li, Yan; Wang, Kai; Duan, Tao

    2016-01-01

    Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs) are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy. PMID:26949402

  5. Human trophoblasts confer resistance to viruses implicated in perinatal infection

    PubMed Central

    BAYER, Avraham; DELORME-AXFORD, Elizabeth; SLEIGHER, Christie; FREY, Teryl K.; TROBAUGH, Derek W.; KLIMSTRA, William B.; EMERT-SEDLAK, Lori A.; SMITHGALL, Thomas E.; KINCHINGTON, Paul R.; VADIA, Stephen; SEVEAU, Stephanie; Boyle, Jon P.

    2014-01-01

    Objective(s) Primary human trophoblasts were previously shown to be resistant to viral infection, and able to confer this resistance to non-trophoblast cells. Can trophoblasts protect non-trophoblastic cells from infection by viruses or other intracellular pathogens that are implicated in perinatal infection? Study Design Isolated primary term human trophoblasts were cultured for 72 h. Diverse non-placental human cell lines (U2OS, HFF, TZM-bl, MeWo, and Caco-2) were pre-exposed to either trophoblast conditioned, non-conditioned medium, or miR-517-3p for 24 h. Cells were infected with several viral and non-viral pathogens known to be associated with perinatal infections. Cellular infection was defined and quantified by plaque assays, luciferase assays, microscopy, and/or colonization assays. Differences in infection were assessed by Student's t-test or ANOVA with Bonferroni's correction. Results Infection by rubella and other togaviruses, HIV-1, and varicella zoster, was attenuated in cells pre-exposed to trophoblast conditioned medium (p <0.05), and a partial effect by the Ch.19 microRNA miR-517-3p on specific pathogens. The conditioned medium had no effect on infection by Toxoplasma gondii or Listeria monocytogenes. Conclusion Our findings indicate that medium conditioned by primary human trophoblasts attenuate viral infection in non-trophoblastic cells. Our data point to a trophoblast-specific antiviral effect that may be exploited therapeutically. PMID:25108145

  6. The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy.

    PubMed

    James, J L; Stone, P R; Chamley, L W

    2006-01-01

    In the first trimester of human pregnancy villous cytotrophoblasts are able to differentiate to form either the overlying syncytiotrophoblast layer or, in anchoring villi, extravillous trophoblasts which grow out from the villi and invade into the maternal decidua, acting to both physically attach the placenta to the decidua, and modify the maternal spiral arteries to sustain pregnancy. During the first 10-12 weeks of gestation, extravillous trophoblast plugs block the spiral arteries and prevent maternal blood flow entering the intervillous space, thereby creating an environment of physiological hypoxia in which placental and fetal development occur. As extravillous trophoblasts migrate away from the villus they differentiate from a proliferative to an invasive phenotype. The hypoxic environment of the first trimester is believed to play an important role in the regulation of trophoblast differentiation. However, there is currently a large body of conflicting experimental evidence concerning this topic. This review examines the experimental evidence to date on the role of oxygen in trophoblast differentiation. PMID:16234296

  7. MSX2 Induces Trophoblast Invasion in Human Placenta

    PubMed Central

    Lu, Junjie; Yang, Genling; Tian, Na; Wang, Xiaojie; Tan, Yi; Tan, Dongmei

    2016-01-01

    Normal implantation depends on appropriate trophoblast growth and invasion. Inadequate trophoblast invasion results in pregnancy-related disorders, such as early miscarriage and pre-eclampsia, which are dangerous to both the mother and fetus. Msh Homeobox 2 (MSX2), a member of the MSX family of homeobox proteins, plays a significant role in the proliferation and differentiation of various cells and tissues, including ectodermal organs, teeth, and chondrocytes. Recently, MSX2 was found to play important roles in the invasion of cancer cells into adjacent tissues via the epithelial-mesenchymal transition (EMT). However, the role of MSX2 in trophoblastic invasion during placental development has yet to be explored. In the present study, we detected MSX2 expression in cytotrophoblast, syncytiotrophoblast, and extravillous cytotrophoblast cells of first or third trimester human placentas via immunohistochemistry analysis. Furthermore, we found that the in vitro invasive ability of HTR8/SVneo cells was enhanced by exogenous overexpression of MSX2, and that this effect was accompanied by increased protein expression of matrix metalloproteinase-2 (MMP-2), vimentin, and β-catenin. Conversely, treatment of HTR8/SVneo cells with MSX2-specific siRNAs resulted in decreased protein expression of MMP-2, vimentin, and β-catenin, and reduced invasion levels in a Matrigel invasion test. Notably, however, treatment with the MSX2 overexpression plasmid and the MSX2 siRNAs had no effect on the mRNA expression levels of β-catenin. Meanwhile, overexpression of MSX2 and treatment with the MSX2-specific siRNA resulted in decreased and increased E-cadherin expression, respectively, in JEG-3 cells. Lastly, the protein expression levels of MSX2 were significantly lower in human pre-eclamptic placental villi than in the matched control placentas. Collectively, our results suggest that MSX2 may induce human trophoblast cell invasion, and dysregulation of MSX2 expression may be associated

  8. MSX2 Induces Trophoblast Invasion in Human Placenta.

    PubMed

    Liang, Hao; Zhang, Qian; Lu, Junjie; Yang, Genling; Tian, Na; Wang, Xiaojie; Tan, Yi; Tan, Dongmei

    2016-01-01

    Normal implantation depends on appropriate trophoblast growth and invasion. Inadequate trophoblast invasion results in pregnancy-related disorders, such as early miscarriage and pre-eclampsia, which are dangerous to both the mother and fetus. Msh Homeobox 2 (MSX2), a member of the MSX family of homeobox proteins, plays a significant role in the proliferation and differentiation of various cells and tissues, including ectodermal organs, teeth, and chondrocytes. Recently, MSX2 was found to play important roles in the invasion of cancer cells into adjacent tissues via the epithelial-mesenchymal transition (EMT). However, the role of MSX2 in trophoblastic invasion during placental development has yet to be explored. In the present study, we detected MSX2 expression in cytotrophoblast, syncytiotrophoblast, and extravillous cytotrophoblast cells of first or third trimester human placentas via immunohistochemistry analysis. Furthermore, we found that the in vitro invasive ability of HTR8/SVneo cells was enhanced by exogenous overexpression of MSX2, and that this effect was accompanied by increased protein expression of matrix metalloproteinase-2 (MMP-2), vimentin, and β-catenin. Conversely, treatment of HTR8/SVneo cells with MSX2-specific siRNAs resulted in decreased protein expression of MMP-2, vimentin, and β-catenin, and reduced invasion levels in a Matrigel invasion test. Notably, however, treatment with the MSX2 overexpression plasmid and the MSX2 siRNAs had no effect on the mRNA expression levels of β-catenin. Meanwhile, overexpression of MSX2 and treatment with the MSX2-specific siRNA resulted in decreased and increased E-cadherin expression, respectively, in JEG-3 cells. Lastly, the protein expression levels of MSX2 were significantly lower in human pre-eclamptic placental villi than in the matched control placentas. Collectively, our results suggest that MSX2 may induce human trophoblast cell invasion, and dysregulation of MSX2 expression may be associated

  9. Intrauterine trophoblast migration: A comparative view of humans and rodents.

    PubMed

    Silva, Juneo F; Serakides, Rogéria

    2016-03-01

    Trophoblast migration and invasion through the decidua and maternal uterine spiral arteries are crucial events in placentation. During this process, invasive trophoblast replace vascular endothelial cells as the uterine arteries are remodeled to form more permissive vessels that facilitate adequate blood flow to the growing fetus. Placentation failures resulting from either extensive or shallow trophoblastic invasion can cause pregnancy complications such as preeclampsia, intrauterine growth restriction, placenta creta, gestational trophoblastic disease and even maternal or fetal death. Consequently, the use of experimental animal models such as rats and mice has led to great progress in recent years with regards to the identification of mechanisms and factors that control trophoblast migration kinetics. This review aims to perform a comparative analysis of placentation and the mechanisms and factors that coordinate intrauterine trophoblast migration in humans, rats and mice under physiological and pathological conditions. PMID:26743330

  10. Gestational diabetic transcriptomic profiling of microdissected human trophoblast.

    PubMed

    Bari, Muhammad Furqan; Ngo, Sherry; Bastie, Claire C; Sheppard, Allan M; Vatish, Manu

    2016-04-01

    Gestational diabetes mellitus (GDM), the most common metabolic complication of pregnancy, is influenced by the placenta, and its prevalence directly increases with obesity. Therefore, to define the aetiology of GDM requires that the confounding influence of obesity and the heterogeneous nature of the placenta impairing accurate quantitative studies be accounted for. Using laser capture microdissection (LCM), we optimized RNA extraction from human placental trophoblast, the metabolic cellular interface between mother and foetus. This allowed specific transcriptomic profiling of trophoblast isolated from GDM, and obese and normal human placentae. Genome-wide gene expression analysis was performed on the RNA extracted from the trophoblast of GDM and obese and normal placentae. Forty-five differentially expressed genes (DEGs) specifically discriminated GDM from matched obese subjects. Two genes previously linked with GDM, pregnancy specific beta-1 glycoprotein 6 (PSG6) and placental system A sodium-dependent transporter system (SLC38A1), were significantly increased in GDM. A number of these DEGs (8 ubiquitin-conjugating enzymes (UBE) splice variants (UBE2D3 variants 1, 3, 4, 5, 6, 7, and 9) and UBE2V1 variant 4)) were involved in RNA processing and splicing, and a significant number of the DEGs, including the UBE variants, were associated with increased maternal fasting plasma glucose.It is concluded that DEGs discriminating GDM from obese subjects were pinpointed. Our data indicate a biological link between genes involved in RNA processing and splicing, ubiquitination, and fasting plasma glucose in GDM taking into account obesity as the confounder. PMID:26869332

  11. Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control.

    PubMed

    Velicky, Philipp; Knöfler, Martin; Pollheimer, Jürgen

    2016-03-01

    The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs. PMID:26418186

  12. Human placental trophoblasts confer viral resistance to recipient cells

    PubMed Central

    Delorme-Axford, Elizabeth; Donker, Rogier B.; Mouillet, Jean-Francois; Chu, Tianjiao; Bayer, Avraham; Ouyang, Yingshi; Wang, Tianyi; Stolz, Donna B.; Sarkar, Saumendra N.; Morelli, Adrian E.; Sadovsky, Yoel; Coyne, Carolyn B.

    2013-01-01

    Placental trophoblasts form the interface between the fetal and maternal environments and serve to limit the maternal–fetal spread of viruses. Here we show that cultured primary human placental trophoblasts are highly resistant to infection by a number of viruses and, importantly, confer this resistance to nonplacental recipient cells by exosome-mediated delivery of specific microRNAs (miRNAs). We show that miRNA members of the chromosome 19 miRNA cluster, which are almost exclusively expressed in the human placenta, are packaged within trophoblast-derived exosomes and attenuate viral replication in recipient cells by the induction of autophagy. Together, our findings identify an unprecedented paracrine and/or systemic function of placental trophoblasts that uses exosome-mediated transfer of a unique set of placental-specific effector miRNAs to directly communicate with placental or maternal target cells and regulate their immunity to viral infections. PMID:23818581

  13. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions.

    PubMed

    Zhou, Jinghua; Zhang, Jianyun; Li, Feixue; Liu, Jing

    2016-05-01

    Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy. PMID:26852204

  14. Glucose metabolism in cultured trophoblasts from human placenta

    SciTech Connect

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. )

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  15. Trophoblast Cell Fusion and Differentiation Are Mediated by Both the Protein Kinase C and A Pathways

    PubMed Central

    Omata, Waka; Ackerman, William E.; Vandre, Dale D.; Robinson, John M.

    2013-01-01

    The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation. PMID:24236208

  16. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...

  17. EFFECT OF BROMODICHLOROMETHANE ON HUMAN TROPHOBLAST CHORIONIC GONADOTROPHIN SECRETION

    EPA Science Inventory

    Effect of Bromodichloromethane on Human Trophoblast Chorionic Gonadotrophin Secretion

    Jiangang Chen1, Twanda L. Thirkill1, Peter N. Lohstroh1, Susan R. Bielmeier2, Michael G. Narotsky3, Deborah S. Best3, Randy A. Harrison3, Kala Natarajan1, Rex A. Pegram3, Gordon C. Dougla...

  18. Aberrant TGFβ Signaling Contributes to Altered Trophoblast Differentiation in Preeclampsia.

    PubMed

    Xu, Jing; Sivasubramaniyam, Tharini; Yinon, Yoav; Tagliaferro, Andrea; Ray, Jocelyn; Nevo, Ori; Post, Martin; Caniggia, Isabella

    2016-02-01

    TGFβ has been implicated in preeclampsia, but its intracellular signaling via phosphorylated mothers against decapentaplegic (SMADs) and SMAD-independent proteins in the placenta remains elusive. Here we show that TGFβ receptor-regulated SMAD2 was activated (Ser(465/467) phosphorylation) in syncytiotrophoblast and proliferating extravillous trophoblast cells of first-trimester placenta, whereas inhibitory SMAD7 located primarily to cytotrophoblast cells. SMAD2 phosphorylation decreased with advancing gestation, whereas SMAD7 expression increased and shifted to syncytiotrophoblasts toward term. Additionally, we found that the TGFβ SMAD-independent signaling via partitioning defective protein 6 (PARD6)/Smad ubiquitylation regulatory factor was activated at approximately 10-12 weeks of gestation in cytotrophoblast and extravillous trophoblast cells comprising the anchoring column. Placentae from early-onset, but not late-onset, preeclampsia exhibited elevated SMAD2 phosphorylation and SMAD7 levels. Whereas PARD6 expression increased and SMURF1 levels decreased in preeclamptic placentae, their association increased. SMAD2 phosphorylation by TGFβ in villous explants and BeWo cells resulted in a reduction of Glial cell missing-1 (GCM1) and fusogenic protein syncytin-1 while increasing cell cycle regulators cyclin E-1 (CCNE1) and cyclin-dependent kinase 4. SMAD7 abrogated the proliferative effects of TGFβ. CCNE1 levels were increased in preeclamptic placentae, whereas GCM1 was markedly reduced. In addition, TGFβ treatment increased the association of PARD6 and SMURF1 and down-regulated Ras homolog gene family, member A (RHOA) GTPase in JEG3 cells. In a wound assay, TGFβ treatment increased the association of PARD6 and SMURF1 and triggered JEG3 cell migration through increased cellular protrusions. Taken together, our data indicate that TGFβ signaling via both SMAD2/7 and PARD6/SMURF1 pathways plays a role in trophoblast growth and differentiation. Altered SMAD

  19. Membrane potential difference and intracellular cation concentrations in human placental trophoblast cells in culture.

    PubMed Central

    Greenwood, S L; Clarson, L H; Sides, M K; Sibley, C P

    1996-01-01

    1. The electrochemical gradients for Na+ and K+ were assessed in a cell culture model of trophoblast differentiation. 2. Membrane potential difference (Em), intracellular water and Na+ and K+ contents were measured in choriocarcinoma cells (JAr cell line; 96% of which are undifferentiated trophoblast cells) and in mononucleate and multinucleate (differentiated) cytotrophoblast cells isolated from the human placenta at term. 3. There was a significant fall in Em from -57 mV in JAr cells, to -48 and -40 mV in mono-and multinucleate cytotrophoblast cells, respectively. Treatment with ouabain (1 mM for 15 min) depolarized the JAr cell membrane by 15 mV but did not affect cytotrophoblast cell membrane potential. 4. Intracellular K+ concentration was similar in JAr, mono- and multinucleate cytotrophoblast cells but Na+ concentration was higher in mononucleate cytotrophoblast cells compared with JAr cells. 5. Ouabain treatment (3 mM for 15 min) caused a small increase (4.5%) in cell water in mononucleate cytotrophoblast cells but lowered K+ (approximately 30%) and increased Na+ concentration (approximately 125%) in all the trophoblast cells studied. 6. The K+ equilibrium potential (EK) was more negative than Em in all cells and the difference between EK and Em was smaller in JAr cells (-25 mV) than in mono- and multinucleate cytotrophoblast cells (-33 and -43 mV, respectively). 7. The Na+ equilibrium potential (ENa) was positive in the trophoblast cells and the difference between ENa and Em was 122, 100 and 100 mV in JAr, mono- and multinucleate cytotrophoblast cells, respectively. 8. These results suggest that the electrochemical gradient for K+ is affected by the stage of trophoblast cell differentiation. In contrast, the electrochemical gradient for Na+ is similar in mono- and multinucleate cytotrophoblast cells. Images Figure 1 PMID:8734977

  20. DNA methyltransferases and TETs in the regulation of differentiation and invasiveness of extra-villous trophoblasts

    PubMed Central

    Logan, Philip C.; Mitchell, Murray D.; Lobie, Peter E.

    2013-01-01

    Specialized cell types of trophoblast cells form the placenta in which each cell type has particular properties of proliferation and invasion. The placenta sustains the growth of the fetus throughout pregnancy and any aberrant trophoblast differentiation or invasion potentially affects the future health of the child and adult. Recently, the field of epigenetics has been applied to understand differentiation of trophoblast lineages and embryonic stem cells (ESC), from fertilization of the oocyte onward. Each trophoblast cell-type has a distinctive epigenetic profile and we will concentrate on the epigenetic mechanism of DNA methyltransferases and TETs that regulate DNA methylation. Environmental factors affecting the mother potentially regulate the DNA methyltransferases in trophoblasts, and so do steroid hormones, cell cycle regulators, such as p53, and cytokines, especially interlukin-1β. There are interesting questions of why trophoblast genomes are globally hypomethylated yet specific genes can be suppressed by hypermethylation (in general, tumor suppressor genes, such as E-cadherin) and how invasive cell-types are liable to have condensed chromatin, as in metastatic cancer cells. Future work will attempt to understand the interactive nature of all epigenetic mechanisms together and their effect on the complex biological system of trophoblast differentiation and invasion in normal as well as pathological conditions. PMID:24363660

  1. Low concentrations of Bisphenol A and para-Nonylphenol affect extravillous pathway of human trophoblast cells.

    PubMed

    Spagnoletti, Antonella; Paulesu, Luana; Mannelli, Chiara; Ermini, Leonardo; Romagnoli, Roberta; Cintorino, Marcella; Ietta, Francesca

    2015-09-01

    Bisphenol A (BPA) and para-Nonylphenol (p-NP) are chemicals of industrial origin which may influence human reproductive health. The effects of these substances in the prenatal life is an important topic that is receiving greater attention in the developed countries. In this study, human trophoblast cells HTR-8/SVneo were exposed to BPA and p-NP (1 × 10(-15), 1 × 10(-13), 1 × 10(-11), 1 × 10(-9) and 1 × 10(-7) M) and incubated for 24, 48 and/or 72 h then, examined for the main physiological processes which characterize the extravillous trophoblast. Cell proliferation showed no changes while the processes of cell migration and invasion were both reduced by BPA and p-NP. For each chemical, the activity was higher at lower concentrations with a maximum activity between 1 × 10(-13) and 1 × 10(-11) M (p < 0.05 for 1 × 10(-9) and p < 0.001 for 1 × 10(-11) M). Co-culture studies with human umbilical cord endothelial cells (HUVEC) revealed that trophoblast/endothelial interaction was significantly reduced by p-NP at 1 × 10(-11) M. Moreover, both chemicals were inducing differentiation of HTR-8/SVneo toward polyploidy by the process of endoreduplication. The estrogen-receptor antagonist ICI significantly reduced p-NP action, while it had no effect on BPA treated cells. In conclusion, p-NP and BPA act on trophoblast cells altering key physiological processes in placenta development. The exact mechanism of action of the chemicals in human trophoblast still needs to be clarified. PMID:26027920

  2. Activation of Protein C in Human Trophoblasts in Culture and Downregulation of Trophoblast Endothelial Protein C Receptor by TNF-α.

    PubMed

    Faioni, E M; Fontana, G; Razzari, C; Avagliano, L; Bulfamante, G; Calvi, E; Doi, P; Marconi, A M

    2015-08-01

    In mice, trophoblasts are equipped with a potent anticoagulant mechanism, the protein C pathway. In human placenta, no functional studies of the protein C pathway are available. Human first-trimester trophoblasts (CK(++) HLA-G(+/-) Vim(-)) were isolated and kept in culture for a maximum of 48 hours. Activation of protein C on trophoblasts was at least as efficient as in endothelial cells (4.43 × 10 (-) (7) nmol/L/min/cell). Endothelial protein C receptor (EPCR) was expressed in syncytiotrophoblasts and extravillous trophoblasts. Downregulation of the messenger RNA of trophoblast EPCR occurred when trophoblasts were challenged with tumor necrosis factor α, and it could be prevented by unfractionated heparin but not by low-molecular-weight heparin at therapeutic doses. In conclusion, there is a functional protein C pathway on human first-trimester trophoblasts which can be modulated by inflammation. This finding has implications for the pathogenesis and prevention of placenta-mediated obstetric complications. PMID:25667200

  3. Expression of PAPPA2 in human fetomaternal interface and involvement in trophoblast invasion and migration.

    PubMed

    Wang, H Y; Zhang, Z; Yu, S

    2016-01-01

    Pregnancy-associated plasma protein-A 2 (PAPPA2) is a placental-enriched gene that is important for normal human placentation and defects in the gene can cause complications in pregnancy. Yet the exact expression pattern and role of PAPPA2 in the human fetomaternal interface are not clear. In this study, in situ hybridization (ISH) and immunohistochemistry (IHC) were employed to examine the spatial and temporal expression of PAPPA2 in the human fetomaternal interface. IHC results exhibited wide expression of PAPPA2 in the fetomaternal interface, with placental syncytiatrophoblast (STB) and extravillous trophoblast (EVT) showing strong expression and the cytotrophoblast (CTB) showing weak expression of PAPPA2. These results were confirmed by ISH. Quantitative reverse transcription-polymerase chain reaction and western blot showed the elevation of PAPPA2 in first trimester EVT differentiation and term CTB spontaneous syncytialization. PAPPA2-siRNA transfection significantly depressed the invasion and migration ability of a trophoblast cell line (HTR8/SVneo) in a transwell migration and Matrigel invasion model compared to a negative control siRNA (P < 0.05), also revealing that matrix metalloproteinase 9 (MMP9) secretion is downregulated. This was confirmed using a human first trimester placental villi explant culture model. Our results reveal the spatial and temporal expression of PAPPA2 in the human fetomaternal interface and show the positive regulatory role of PAPPA2 in human trophoblast invasion and migration through the secretion of MMP9. PMID:27525857

  4. Effect of bromodichloromethane on chorionic gonadotrophin secretion by human placental trophoblast cultures.

    PubMed

    Chen, Jiangang; Douglas, Gordon C; Thirkill, Twanda L; Lohstroh, Peter N; Bielmeier, Susan R; Narotsky, Michael G; Best, Deborah S; Harrison, Randy A; Natarajan, Kala; Pegram, Rex A; Overstreet, James W; Lasley, Bill L

    2003-11-01

    Bromodichloromethane (BDCM) is a trihalomethane found in drinking water as a by-product of disinfection processes. BDCM is hepatotoxic and nephrotoxic in rodents and has been reported to cause strain-specific full-litter resorption in F344 rats during the luteinizing hormone-dependent phase of pregnancy. In humans, epidemiological studies suggest an association between exposure to BDCM in drinking water and increased risk of spontaneous abortion. To begin to address the mechanism(s) of BDCM-induced spontaneous abortion, we hypothesized that BDCM targets the placenta. Primary cultures of human term trophoblast cells were used as an in vitro model to test this hypothesis. Trophoblasts were allowed to differentiate into multinucleated syncytiotrophoblast-like colonies, after which they were incubated for 24 h with different concentrations of BDCM (20 nM to 2 mM). Culture media were collected and assayed for immunoreactive and bioactive chorionic gonadotropin (CG). Cultures exposed to BDCM showed a dose-dependent decrease in the secretion of immunoreactive CG as well as bioactive CG. The lowest effective BDCM concentration was 20 nM, approximately 35-times higher than the maximum concentration reported in human blood (0.57 nM). Trophoblast morphology and viability were similar in controls and cultures exposed to BDCM. We conclude that BDCM perturbs CG secretion by differentiated trophoblasts in vitro. This suggests that the placenta is a likely target of BDCM toxicity in the human and that this could be related to the adverse pregnancy outcomes associated with BDCM. PMID:12970577

  5. Pericellular oxygen concentration of cultured primary human trophoblasts

    PubMed Central

    Chen, Baosheng; Longtine, Mark S.; Nelson, D. Michael

    2012-01-01

    Introduction Oxygen is pivotal in placental development and function. In vitro culture of human trophoblasts provides a useful model to study this phenomenon, but a hotly debated issue is whether or not the oxygen tension of the culture conditions mimics in vivo conditions. We tested the hypothesis that ambient oxygen tensions in culture reflect the pericellular oxygen levels. Methods We used a microelectrode oxygen sensor to measure the concentration of dissolved oxygen in the culture medium equilibrated with 21%, 8% or <0.5% oxygen. Results The concentration of oxygen in medium without cells resembled that in the ambient atmosphere. The oxygen concentration present in medium bathing trophoblasts was remarkably dependent on the depth within the medium where sampling occurred, and the oxygen concentration within the overlying atmosphere was not reflected in medium immediately adjacent to the cells. Indeed, the pericellular oxygen concentration was in a range that most would consider severe hypoxia, at ≤ 0.6% oxygen or about 4.6 mm Hg, when the overlying atmosphere was 21% oxygen. Conclusions We conclude that culture conditions of 21% oxygen are unable to replicate the pO2 of 40–60 mm Hg commonly attributed to the maternal blood in the intervillous space in the second and third trimesters of pregnancy. We further surmise that oxygen atmospheres in culture conditions between 0.5% and 21% provide different oxygen fluxes in the immediate pericellular environment yet can still yield insights into the responses of human trophoblast to different oxygen conditions. PMID:23211472

  6. SALL4 expression in gestational trophoblastic tumors: a useful tool to distinguish choriocarcinoma from placental site trophoblastic tumor and epithelioid trophoblastic tumor.

    PubMed

    Stichelbout, Morgane; Devisme, Louise; Franquet-Ansart, Hélène; Massardier, Jérôme; Vinatier, Denis; Renaud, Florence; Kerdraon, Olivier

    2016-08-01

    SALL4 has important functions in embryonic stem cells. The aim of this study was to investigate SALL4 expression in gestational trophoblastic neoplasia. We hypothesized that it could help to distinguish choriocarcinoma, the presumed most primitive form of gestational trophoblastic neoplasia, from placental site trophoblastic tumor and epithelioid trophoblastic tumor, which would be more differentiated variants. This study included 31 gestational trophoblastic neoplasias: 19 choriocarcinomas, 9 placental site trophoblastic tumors, 1 epithelioid trophoblastic tumor, and 2 mixed tumors comprising a placental site trophoblastic tumor and an epithelioid trophoblastic tumor. Unlike usual markers of gestational trophoblastic neoplasia (p63, human chorionic gonadotrophin and human placental lactogen), SALL4 was expressed in 100% of choriocarcinomas and it was not detected in any placental site trophoblastic tumor and epithelioid trophoblastic tumor. However, the proportion of positive cells varied in a wide range, from 10% to 70%, reflecting the fact that SALL4 was specifically present in mononuclear cells consistent with neoplastic cytotrophoblast. So, SALL4 may be helpful in the differential diagnosis of gestational trophoblastic neoplasias. PMID:27068524

  7. The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts

    PubMed Central

    Shi, Xiao-Hua; Larkin, Jacob C.; Chen, Baosheng; Sadovsky, Yoel

    2013-01-01

    The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1’s subcellular distribution. PMID:24066183

  8. Plet1 is an epigenetically regulated cell surface protein that provides essential cues to direct trophoblast stem cell differentiation.

    PubMed

    Murray, Alexander; Sienerth, Arnold R; Hemberger, Myriam

    2016-01-01

    Gene loci that are hypermethylated and repressed in embryonic (ESCs) but hypomethylated and expressed in trophoblast (TSCs) stem cells are very rare and may have particularly important roles in early developmental cell fate decisions, as previously shown for Elf5. Here, we assessed another member of this small group of genes, Placenta Expressed Transcript 1 (Plet1), for its function in establishing trophoblast lineage identity and modulating trophoblast differentiation. We find that Plet1 is tightly repressed by DNA methylation in ESCs but expressed on the cell surface of TSCs and trophoblast giant cells. In hypomethylated ESCs that are prone to acquire some trophoblast characteristics, Plet1 is required to confer a trophoblast-specific gene expression pattern, including up-regulation of Elf5. Plet1 displays an unusual biphasic expression profile during TSC differentiation and thus may be pivotal in balancing trophoblast self-renewal and differentiation. Furthermore, overexpression and CRISPR/Cas9-mediated knockout in TSCs showed that high Plet1 levels favour differentiation towards the trophoblast giant cell lineage, whereas lack of Plet1 preferentially induces syncytiotrophoblast formation. Thus, the endogenous dynamics of Plet1 expression establish important patterning cues within the trophoblast compartment by promoting differentiation towards the syncytiotrophoblast or giant cell pathway in Plet1-low and Plet1-high cells, respectively. PMID:27121762

  9. Plet1 is an epigenetically regulated cell surface protein that provides essential cues to direct trophoblast stem cell differentiation

    PubMed Central

    Murray, Alexander; Sienerth, Arnold R.; Hemberger, Myriam

    2016-01-01

    Gene loci that are hypermethylated and repressed in embryonic (ESCs) but hypomethylated and expressed in trophoblast (TSCs) stem cells are very rare and may have particularly important roles in early developmental cell fate decisions, as previously shown for Elf5. Here, we assessed another member of this small group of genes, Placenta Expressed Transcript 1 (Plet1), for its function in establishing trophoblast lineage identity and modulating trophoblast differentiation. We find that Plet1 is tightly repressed by DNA methylation in ESCs but expressed on the cell surface of TSCs and trophoblast giant cells. In hypomethylated ESCs that are prone to acquire some trophoblast characteristics, Plet1 is required to confer a trophoblast-specific gene expression pattern, including up-regulation of Elf5. Plet1 displays an unusual biphasic expression profile during TSC differentiation and thus may be pivotal in balancing trophoblast self-renewal and differentiation. Furthermore, overexpression and CRISPR/Cas9-mediated knockout in TSCs showed that high Plet1 levels favour differentiation towards the trophoblast giant cell lineage, whereas lack of Plet1 preferentially induces syncytiotrophoblast formation. Thus, the endogenous dynamics of Plet1 expression establish important patterning cues within the trophoblast compartment by promoting differentiation towards the syncytiotrophoblast or giant cell pathway in Plet1-low and Plet1-high cells, respectively. PMID:27121762

  10. The psychoactive compound of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC) inhibits the human trophoblast cell turnover.

    PubMed

    Costa, M A; Fonseca, B M; Marques, F; Teixeira, N A; Correia-da-Silva, G

    2015-08-01

    The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation. PMID:26070387

  11. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells

    PubMed Central

    Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K.; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  12. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells.

    PubMed

    Tsai, Eing-Mei; Wang, Yu-Chih; Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-Nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson's disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  13. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells.

    PubMed

    Jones, Anna J; Gokhale, Paul J; Allison, Thomas F; Sampson, Barry; Athwal, Sharan; Grant, Simon; Andrews, Peter W; Allen, Nicholas D; Case, C Patrick

    2015-01-01

    Maternal exposure during pregnancy to toxins can occasionally lead to miscarriage and malformation. It is currently thought that toxins pass through the placental barrier, albeit bi-layered in the first trimester, and damage the fetus directly, albeit at low concentration. Here we examined the responses of human embryonic stem (hES) cells in tissue culture to two metals at low concentration. We compared direct exposures with indirect exposures across a bi-layered model of the placenta cell barrier. Direct exposure caused increased DNA damage without apoptosis or a loss of cell number but with some evidence of altered differentiation. Indirect exposure caused increased DNA damage and apoptosis but without loss of pluripotency. This was not caused by metal ions passing through the barrier. Instead the hES cells responded to signalling molecules (including TNF-α) secreted by the barrier cells. This mechanism was dependent on connexin 43 mediated intercellular 'bystander signalling' both within and between the trophoblast barrier and the hES colonies. These results highlight key differences between direct and indirect exposure of hES cells across a trophoblast barrier to metal toxins. It offers a theoretical possibility that an indirectly mediated toxicity of hES cells might have biological relevance to fetal development. PMID:26170169

  14. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells

    PubMed Central

    Jones, Anna J; Gokhale, Paul J; Allison, Thomas F; Sampson, Barry; Athwal, Sharan; Grant, Simon; Andrews, Peter W; Allen, Nicholas D; Patrick Case, C

    2015-01-01

    Maternal exposure during pregnancy to toxins can occasionally lead to miscarriage and malformation. It is currently thought that toxins pass through the placental barrier, albeit bi-layered in the first trimester, and damage the fetus directly, albeit at low concentration. Here we examined the responses of human embryonic stem (hES) cells in tissue culture to two metals at low concentration. We compared direct exposures with indirect exposures across a bi-layered model of the placenta cell barrier. Direct exposure caused increased DNA damage without apoptosis or a loss of cell number but with some evidence of altered differentiation. Indirect exposure caused increased DNA damage and apoptosis but without loss of pluripotency. This was not caused by metal ions passing through the barrier. Instead the hES cells responded to signalling molecules (including TNF-α) secreted by the barrier cells. This mechanism was dependent on connexin 43 mediated intercellular ‘bystander signalling’ both within and between the trophoblast barrier and the hES colonies. These results highlight key differences between direct and indirect exposure of hES cells across a trophoblast barrier to metal toxins. It offers a theoretical possibility that an indirectly mediated toxicity of hES cells might have biological relevance to fetal development. PMID:26170169

  15. Bisphenol A disrupts gene expression in human placental trophoblast cells.

    PubMed

    Rajakumar, Chandrew; Guan, Haiyan; Langlois, David; Cernea, Maria; Yang, Kaiping

    2015-06-01

    This study examined the effect of bisphenol A (BPA) on human placental gene expression using primary trophoblast cells as an in vitro model system. Trophoblast cells were isolated from human placentas at term, cultured and then exposed to environmentally relevant concentrations of BPA (0.1-2 μg/ml) for up to 24h, after which levels of 11β-HSD2 mRNA, protein and activity were determined by standard radiometric conversion assay, western blotting, and qRT-PCR, respectively. The mRNA levels of several other prominent placental hormones/factors were also assessed by qRT-PCR. BPA dramatically increased levels of 11β-HSD2 activity, protein and mRNA in a time- and concentration-dependent manner (> 4-fold). BPA also augmented aromatase, glucose transporter-1, CRH, and hCG mRNA levels while reducing the level of leptin mRNA. These findings demonstrate that BPA severely disrupts human placental gene expression in vitro, which suggests that exposure to BPA may contribute to altered placental function and consequent pregnancy complications. PMID:25784278

  16. Bradykinin promotes migration and invasion of human immortalized trophoblasts

    PubMed Central

    2011-01-01

    Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies. PMID:21729302

  17. SMAD1/5 Signaling in the Early Equine Placenta Regulates Trophoblast Differentiation and Chorionic Gonadotropin Secretion

    PubMed Central

    Cabrera-Sharp, Victoria; Read, Jordan E.; Richardson, Stephanie; Kowalski, Alycia A.; Antczak, Douglas F.; Cartwright, Judith E.; Mukherjee, Abir

    2014-01-01

    TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27–34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta. PMID:24848867

  18. Human extravillous trophoblast invasion: intrinsic and extrinsic regulation.

    PubMed

    Menkhorst, E; Winship, A; Van Sinderen, M; Dimitriadis, E

    2016-03-01

    During the establishment of pregnancy, a human blastocyst implants into the uterine endometrium to facilitate the formation of a functional placenta. Implantation involves the blastocyst adhering to the uterine luminal epithelium before the primitive syncytiotrophoblast and subsequently specialised cells, the extravillous trophoblast (EVT), invade into the decidua in order to engraft and remodel uterine spiral arteries, creating the placental blood supply at the end of the first trimester. Defects in EVT invasion lead to abnormal placentation and thus adverse pregnancy outcomes. The local decidual environment is thought to play a key role in regulating trophoblast invasion. Here we describe the major cell types present in the decidua during the first trimester of pregnancy and review what is known about their regulation of EVT invasion. Overall, the evidence suggests that in a healthy pregnancy almost all cell types in the decidua actively promote EVT invasion and, further, that reduced EVT invasion towards the end of the first trimester is regulated, in part, by the reduced invasive capacity of EVTs shown at this time. PMID:25163485

  19. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    PubMed

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-01

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  20. Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells.

    PubMed

    Francis, Víctor A; Abera, Aron B; Matjila, Mushi; Millar, Robert P; Katz, Arieh A

    2014-01-01

    The precise regulation of extravillous trophoblast invasion of the uterine wall is a key process in successful pregnancies. Kisspeptin (KP) has been shown to inhibit cancer cell metastasis and placental trophoblast cell migration. In this study primary cultures of first trimester human trophoblast cells have been utilized in order to study the regulation of invasion and angiogenesis-related genes by KP. Trophoblast cells were isolated from first trimester placenta and their identity was confirmed by immunostaining for cytokeratin-7. Real-time quantitative RT-PCR demonstrated that primary trophoblast cells express higher levels of GPR54 (KP receptor) and KP mRNA than the trophoblast cell line HTR8Svneo. Furthermore, trophoblast cells also expressed higher GPR54 and KP protein levels. Treating primary trophoblast cells with KP induced ERK1/2 phosphorylation, while co-treating the cells with a KP antagonist almost completely blocked the activation of ERK1/2 and demonstrated that KP through its cognate GPR54 receptor can activate ERK1/2 in trophoblast cells. KP reduced the migratory capability of trophoblast cells in a scratch-migration assay. Real-time quantitative RT-PCR demonstrated that KP treatment reduced the expression of matrix metalloproteinase 1, 2, 3, 7, 9, 10, 14 and VEGF-A, and increased the expression of tissue inhibitors of metalloproteinases 1 and 3. These results suggest that KP can inhibit first trimester trophoblast cells invasion via inhibition of cell migration and down regulation of the metalloproteinase system and VEGF-A. PMID:24923321

  1. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption.

    PubMed

    Sagrillo-Fagundes, Lucas; Clabault, Hélène; Laurent, Laetitia; Hudon-Thibeault, Andrée-Anne; Salustiano, Eugênia Maria Assunção; Fortier, Marlène; Bienvenue-Pariseault, Josianne; Wong Yen, Philippe; Sanderson, J Thomas; Vaillancourt, Cathy

    2016-01-01

    This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation. PMID:27500522

  2. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification

    PubMed Central

    Zdravkovic, Tamara; Nazor, Kristopher L.; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S.; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T.; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C.; Loring, Jeanne F.; Fisher, Susan J.

    2015-01-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines. PMID:26483210

  3. The influence of ligand-activated LXR on primary human trophoblasts

    PubMed Central

    Larkin, Jacob C.; Sears, Sarah B.; Sadovsky, Yoel

    2014-01-01

    Introduction The Liver X Receptors (LXRs) are critical transcriptional regulators of cellular metabolism that promote cholesterol efflux and lipogenesis in response to excess intracellular cholesterol. In contrast, the Sterol Response Element Binding Protein-2 (SREBP2) promotes the synthesis and uptake of cholesterol. Oxysterols are products of cholesterol oxidation that accumulate in conditions associated with increased cellular levels of reactive oxygen species, such as hypoxia and oxidative stress, activating LXR and inhibiting SREBP2. While hypoxia and oxidative stress are commonly implicated in placental injury, the impact of the transcriptional regulation of cholesterol homeostasis on placental function is not well characterized. Methods We measured the effects of the synthetic LXR ligand T0901317 and the endogenous oxysterol 25-hydroxycholesterol (25OHC) on differentiation, cytotoxicity, progesterone synthesis, lipid droplet formation, and gene expression in primary human trophoblasts. Results Exposure to T0901317 promoted lipid droplet formation and inhibited differentiation, while 25OHC induced trophoblast toxicity, promoted hCG and progesterone release at lower concentrations with inhibition at higher concentrations, and had no effect on lipid droplet formation. The discrepant effect of these ligands was associated with distinct changes in expression of LXR and SREBP2 target genes, with upregulation of ABCA1 following 25OHC and T090317 exposure, exclusive activation of the lipogenic LXR targets SREBP1c, ACC1 and FAS by T0901317, and exclusive inhibition of the SREBP2 targets LDLR and HMGCR by 25OHC. Conclusion These findings implicate cholesterol oxidation as a determinant of trophoblast function and activity, and suggest that placental gene targets and functional pathways are selectively regulated by specific LXR ligands. PMID:25255963

  4. Angiogenin distribution in human term placenta, and expression by cultured trophoblastic cells

    PubMed Central

    Pavlov, Nadine; Hatzi, Elissavet; Bassaglia, Yann; Frendo, Jean-Louis; Evain-Brion, Danièle; Badet, Josette

    2003-01-01

    Human angiogenin is a 14-kDa secreted protein with angiogenic and ribonucleolytic activities. Angiogenin is associated with tumour development but is also present in normal biological fluids and tissues. To further address the physiological role of angiogenin, we studied its expression in situ and in vitro, using the human term placenta as a model of physiological angiogenesis. Angiogenin was immunodetected by light and transmission electron microscopy, and its cellular distribution was established by double immunolabelling with cell markers including von Willebrand factor, platelet/endothelial cell adhesion molecule-1 (PECAM-1), CD34, Tie-2, vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Angiogenin immunoreactivity was detected in villous and extravillous trophoblasts, the trophoblast basement membrane, the endothelial basal lamina, foetal blood vessels, foetal and maternal red blood cells, and amnionic cells. Its expression was confirmed by in situ hybridisation with a digoxygenin-labelled cDNA probe and reverse transcriptase-polymerase chain reaction amplification. Villous cytotrophoblasts, isolated and differentiated in vitro into a functional syncytiotrophoblast, expressed and secreted angiogenin. Given its known biological activities in vitro and its observed pattern of expression, these data suggest that, in human placenta, angiogenin has a role not only in angiogenesis but also in vascular and tissue homeostasis, maternal immune tolerance of the foetus, and host defences. PMID:15166501

  5. Oxidative stress produced by xanthine oxidase induces apoptosis in human extravillous trophoblast cells.

    PubMed

    Murata, Masaharu; Fukushima, Kotaro; Takao, Tomoka; Seki, Hiroyuki; Takeda, Satoru; Wake, Norio

    2013-01-01

    Oxidative stress has been recognized as an important factor in the pathophysiology of preeclampsia. It has been reported that the expression of xanthine oxidase (XO) in the cytotrophoblast and plasma hydrogen peroxide (H(2)O(2)) level are significantly higher in preeclamptics than in control women. The aim of this study was to clarify the biological influence of reactive oxygen species (ROS) produced by XO on extravillous trophoblast (EVT) cells. TCL1 cells, a human immortalized EVT cell line, were incubated with xanthine and XO (X/XO). We then measured the cell number, urate level of the culture media and the apoptotic cell ratio. Similar experiments were performed with additional administration of allopurinol, catalase, L-NAME or D-NAME, and with administration of H(2)O(2) in substitution for X/XO. We assessed the effects of H(2)O(2) on invasion ability, tube-like formation and protein expression of HIF1A and ITGAV of TCL1. Finally, the apoptotic cell ratio using primary cultured trophoblasts was measured following exposure to H(2)O(2). X/XO decreased the relative cell number and increased the urate level and apoptotic cell ratio significantly. Elevation of the urate level and apoptotic cell ratio was attenuated by allopurinol and catalase, respectively. L-NAME and D-NAME had no influence on these effects. H(2)O(2) also decreased the relative cell number. Pretreatment with H(2)O(2) significantly inhibited the invasion ability, tube-like formation and HIF1A and ITGAV of TCL1. H(2)O(2) also induced apoptosis in primary cultured trophoblasts. In conclusion, ROS produced by XO induced apoptosis and affected EVT function including invasion and differentiation. PMID:22986926

  6. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells.

    PubMed

    Arikawa, Tomohiro; Liao, Shengjun; Shimada, Hiroki; Inoue, Tomoki; Sakata-Haga, Hiromi; Nakamura, Takanori; Hatta, Toshihisa; Shoji, Hiroki

    2016-01-01

    Placental development and trophoblast invasion of the maternal endometrium establish the maternal-fetal interface, which is critical for the developing embryo and fetus. Herein we show that overexpression of Galectin-4 (Gal-4) during trophoblast differentiation inhibited the enlargement of Rcho-1 cells (a model for rat trophoblast differentiation) and promoted cell-cell adhesion, whereas trophoblast specific markers and MMP-9 activity were not affected. In the rat placenta, microtubule associated protein 1 light chain 3 alpha (LC3) protein, an autophagy marker, is highly expressed on the maternal side of the decidua where Gal-4 expression is weak. In vitro assays showed that the expression of trophoblast-specific differentiation markers was reduced by 3-Methyladenine (3-MA) and Bafilomycin A1, known as autophagy inhibitors, compared to control cells. Furthermore, Gal-4 expression in Rcho-1 cells, which is normally down-regulated during differentiation, was not attenuated in the presence of autophagy inhibitors, suggesting that autophagy is upstream of Gal-4 expression. We herein describe a possible mechanism by which autophagy regulates trophoblast differentiation via regulation of Gal-4 expression in order to establish the maternal-fetal interface. PMID:27572741

  7. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells

    PubMed Central

    Arikawa, Tomohiro; Liao, Shengjun; Shimada, Hiroki; Inoue, Tomoki; Sakata-Haga, Hiromi; Nakamura, Takanori; Hatta, Toshihisa; Shoji, Hiroki

    2016-01-01

    Placental development and trophoblast invasion of the maternal endometrium establish the maternal-fetal interface, which is critical for the developing embryo and fetus. Herein we show that overexpression of Galectin-4 (Gal-4) during trophoblast differentiation inhibited the enlargement of Rcho-1 cells (a model for rat trophoblast differentiation) and promoted cell-cell adhesion, whereas trophoblast specific markers and MMP-9 activity were not affected. In the rat placenta, microtubule associated protein 1 light chain 3 alpha (LC3) protein, an autophagy marker, is highly expressed on the maternal side of the decidua where Gal-4 expression is weak. In vitro assays showed that the expression of trophoblast-specific differentiation markers was reduced by 3-Methyladenine (3-MA) and Bafilomycin A1, known as autophagy inhibitors, compared to control cells. Furthermore, Gal-4 expression in Rcho-1 cells, which is normally down-regulated during differentiation, was not attenuated in the presence of autophagy inhibitors, suggesting that autophagy is upstream of Gal-4 expression. We herein describe a possible mechanism by which autophagy regulates trophoblast differentiation via regulation of Gal-4 expression in order to establish the maternal-fetal interface. PMID:27572741

  8. Epithelial-mesenchymal transition during extravillous trophoblast differentiation.

    PubMed

    E Davies, Jessica; Pollheimer, Jürgen; Yong, Hannah E J; Kokkinos, Maria I; Kalionis, Bill; Knöfler, Martin; Murthi, Padma

    2016-05-01

    A successful pregnancy depends on the intricate and timely interactions of maternal and fetal cells. Placental extravillous cytotrophoblast invasion involves a cellular transition from an epithelial to mesenchymal phenotype. Villous cytotrophoblasts undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts and gain the capacity to migrate and invade. This review summarizes our current knowledge regarding known regulators of EMT in the human placenta, including the inducers of EMT, upstream transcription factors that control EMT and the downstream effectors, cell adhesion molecules and their differential expression and functions in pregnancy pathologies, preeclampsia (PE) and fetal growth restriction (FGR). The review also describes the research strategies that were used for the identification of the functional role of EMT targets in vitro. A better understanding of molecular pathways driven by placental EMT and further elucidation of signaling pathways underlying the developmental programs may offer novel strategies of targeted therapy for improving feto-placental growth in placental pathologies including PE and FGR. PMID:27070187

  9. Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes.

    PubMed

    Tilburgs, Tamara; Crespo, Ângela C; van der Zwan, Anita; Rybalov, Basya; Raj, Towfique; Stranger, Barbara; Gardner, Lucy; Moffett, Ashley; Strominger, Jack L

    2015-06-01

    Invading human leukocyte antigen-G+ (HLA-G+) extravillous trophoblasts (EVT) are rare cells that are believed to play a key role in the prevention of a maternal immune attack on foreign fetal tissues. Here highly purified HLA-G+ EVT and HLA-G- villous trophoblasts (VT) were isolated. Culture on fibronectin that EVT encounter on invading the uterus increased HLA-G, EGF-Receptor-2, and LIF-Receptor expression on EVT, presumably representing a further differentiation state. Microarray and functional gene set enrichment analysis revealed a striking immune-activating potential for EVT that was absent in VT. Cocultures of HLA-G+ EVT with sample matched decidual natural killer cells (dNK), macrophages, and CD4+ and CD8+ T cells were established. Interaction of EVT with CD4+ T cells resulted in increased numbers of CD4+CD25(HI)FOXP3+CD45RA+ resting regulatory T cells (Treg) and increased the expression level of the Treg-specific transcription factor FOXP3 in these cells. However, EVT did not enhance cytokine secretion in dNK, whereas stimulation of dNK with mitogens or classical natural killer targets confirmed the distinct cytokine secretion profiles of dNK and peripheral blood NK cells (pNK). EVT are specialized cells involved in maternal-fetal tolerance, the properties of which are not imitated by HLA-G-expressing surrogate cell lines. PMID:26015573

  10. Corticotropin-releasing hormone stimulates expression of leptin, 11beta-HSD2 and syncytin-1 in primary human trophoblasts

    PubMed Central

    2012-01-01

    Background The placental syncytiotrophoblast is the major source of maternal plasma corticotropin-releasing hormone (CRH) in the second half of pregnancy. Placental CRH exerts multiple functions in the maternal organism: It induces the adrenal secretion of cortisol via the stimulation of adrenocorticotropic hormone, regulates the timing of birth via its actions in the myometrium and inhibits the invasion of extravillous trophoblast cells in vitro. However, the auto- and paracrine actions of CRH on the syncytiotrophoblast itself are unknown. Intrauterine growth restriction (IUGR) is accompanied by an increase in placental CRH, which could be of pathophysiological relevance for the dysregulation in syncytialisation seen in IUGR placentas. Methods We aimed to determine the effect of CRH on isolated primary trophoblastic cells in vitro. After CRH stimulation the trophoblast syncytialisation rate was monitored via syncytin-1 gene expression and beta-hCG (beta-human chorionic gonadotropine) ELISA in culture supernatant. The expression of the IUGR marker genes leptin and 11beta-hydroxysteroid dehydrogenase 2 (11beta-HSD2) was measured continuously over a period of 72 h. We hypothesized that CRH might attenuate syncytialisation, induce leptin, and reduce 11beta-HSD2 expression in primary villous trophoblasts, which are known features of IUGR. Results CRH did not influence the differentiation of isolated trophoblasts into functional syncytium as determined by beta-hCG secretion, albeit inducing syncytin-1 expression. Following syncytialisation, CRH treatment significantly increased leptin and 11beta-HSD2 expression, as well as leptin secretion into culture supernatant after 48 h. Conclusion The relevance of CRH for placental physiology is underlined by the present in vitro study. The induction of leptin and 11beta-HSD2 in the syncytiotrophoblast by CRH might promote fetal nutrient supply and placental corticosteroid metabolism in the phase before labour induction. PMID

  11. Methylation status and transcriptional expression of the MHC class I loci in human trophoblast cells from term placenta

    SciTech Connect

    Guillaudeux, T.; Rodriguez, A.M.; Girr, M.

    1995-04-01

    Of the various molecular regulatory mechanisms that may be used by human trophoblast cells to down-regulate expression of HLA class I genes, we chose to investigate the methylation of DNA, generally associated with inhibition of transcription. We analyzed the methylation status of different HLA class I loci in villous and extravillous cytotrophoblast cells and in vitro-differentiated syncytiotrophoblast, purified from human term placenta, as well as in the human trophoblast-derived JAR and JEG-3 cell lines. We then compared methylation status and transcriptional activity. An inverse relationship was established between JAR and JEG-3: HLA-A, -B, and -G are methylated and repressed in JAR, whereas in JEG-3, HLA-A is methylated and repressed but HLA-B and -G are partially methylated and transcribed. HLA-E is unmethylated and transcribed in both cell lines. Apart from HLA-E, which is always unmethylated and transcribed, no such relationship exists for the other class I loci in trophoblast cells. Whereas nonclassical HLA-G and classical HLA-A and -B class I genes are undermethylated in both cytotrophoblast and syncytiotrophoblast, they are clearly transcribed in the former but minimally transcribed in the latter subpopulation. Thus, the down-regulation of class I gene expression in the in vitro-differentiated synctiotrophoblast is unlikely to be caused by DNA methylation. Furthermore, there is no detectable expression of any class I molecule at the cell surface of either trophoblast cell subpopulation, suggesting a negative control on translation and/or on the secretory pathway to the plasma membrane. 50 refs., 11 figs., 1 tab.

  12. Mst1 and Mst2 Are Essential Regulators of Trophoblast Differentiation and Placenta Morphogenesis

    PubMed Central

    Du, Xingrong; Dong, Yongli; Shi, Hao; Li, Jiang; Kong, Shanshan; Shi, Donghua; Sun, Ling V.; Xu, Tian; Deng, Kejing; Tao, Wufan

    2014-01-01

    The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive. Here, we investigated the functions of Mst1/2 in mouse placental development using both conventional and conditional (endothelial) Mst1/2 double knockout mice. We found that the number of trophoblast giant cells dramatically increased while spongiotrophoblast cells almost completely disappeared in Mst1/2 deficient placentas. We showed that Mst1/2 deficiency down regulated the expression of Mash2, which is required for suppressing the differentiation of trophoblast giant cells. Furthermore, we demonstrated that endothelial-specific deletion of Mst1/2 led to impaired placental labyrinthine vasculature and embryonic lethality at E11.5, but neither affected vasculature in yolk sac and embryo proper nor endocardium development. Collectively, our findings suggest that Mst1/2 regulate placental development by control of trophoblast cell differentiation and labyrinthine vasculature at midgestation and Mst1/2 control labyrinth morphogenesis in trophoblast- and fetal endothelial-dependent manners. Thus, our studies have defined novel roles of Mst1/2 in mouse placental development. PMID:24595170

  13. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dongmei; Hölz, Stefanie; Metzger, Eric; Pavlovic, Mihael; Jandausch, Anett; Jilg, Cordula; Galgoczy, Petra; Herz, Corinna; Moser, Markus; Metzger, Daniel; Günther, Thomas; Arnold, Sebastian J.; Schüle, Roland

    2014-01-01

    Propagation and differentiation of stem cell populations are tightly regulated to provide sufficient cell numbers for tissue formation while maintaining the stem cell pool. Embryonic parts of the mammalian placenta are generated from differentiating trophoblast stem cells (TSCs) invading the maternal decidua. Here we demonstrate that lysine-specific demethylase 1 (Lsd1) regulates differentiation onset of TSCs. Deletion of Lsd1 in mice results in the reduction of TSC number, diminished formation of trophectoderm tissues and early embryonic lethality. Lsd1-deficient TSCs display features of differentiation initiation, including alterations of cell morphology, and increased migration and invasion. We show that increased TSC motility is mediated by the premature expression of the transcription factor Ovol2 that is directly repressed by Lsd1 in undifferentiated cells. In summary, our data demonstrate that the epigenetic modifier Lsd1 functions as a gatekeeper for the differentiation onset of TSCs, whereby differentiation-associated cell migration is controlled by the transcription factor Ovol2.

  14. Regulated expression of ADAMTS-12 in human trophoblastic cells: a role for ADAMTS-12 in epithelial cell invasion?

    PubMed

    Beristain, Alexander G; Zhu, Hua; Leung, Peter C K

    2011-01-01

    Metastatic carcinoma cells exploit the same molecular machinery that allows human placental cytotrophoblasts to develop an invasive phenotype. As altered expression levels of ADAMTS (ADisintegrin And Metalloproteinase with ThromboSpondin repeats) subtypes have been associated with cancer progression, we have examined the function and regulation of members of this gene family in epithelial cell invasion using cultures of highly invasive extravillous cytotrophoblasts and the poorly invasive JEG-3 cytotrophoblast cell line as model systems. Of the multiple ADAMTS subtypes identified in first trimester human placenta and these two trophoblastic cell types, only ADAMTS-12 was preferentially expressed by extravillous cytotrophoblasts. Transforming growth factor-β1 and interleukin-1β, two cytokines that promote and restrain cytotrophoblast invasion in vitro, were also found to differentially regulate trophoblastic ADAMTS-12 mRNA levels. Loss- or gain-of-function studies confirmed that ADAMTS-12, independent of its proteolytic activity, plays a specific, non-redundant role in trophoblast invasion. Furthermore, we demonstrated that ADAMTS-12 regulated cell-extracellular matrix adhesion and invasion through a mechanism involving the αvβ3 integrin heterodimer. This study identifies a novel biological role for ADAMTS-12, and highlights the importance and complexity of its non-proteolytic domain(s) pertaining to its function. PMID:21494557

  15. Regulated Expression of ADAMTS-12 in Human Trophoblastic Cells: A Role for ADAMTS-12 in Epithelial Cell Invasion?

    PubMed Central

    Beristain, Alexander G.; Zhu, Hua; Leung, Peter C. K.

    2011-01-01

    Metastatic carcinoma cells exploit the same molecular machinery that allows human placental cytotrophoblasts to develop an invasive phenotype. As altered expression levels of ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin repeats) subtypes have been associated with cancer progression, we have examined the function and regulation of members of this gene family in epithelial cell invasion using cultures of highly invasive extravillous cytotrophoblasts and the poorly invasive JEG-3 cytotrophoblast cell line as model systems. Of the multiple ADAMTS subtypes identified in first trimester human placenta and these two trophoblastic cell types, only ADAMTS-12 was preferentially expressed by extravillous cytotrophoblasts. Transforming growth factor-β1 and interleukin-1β, two cytokines that promote and restrain cytotrophoblast invasion in vitro, were also found to differentially regulate trophoblastic ADAMTS-12 mRNA levels. Loss- or gain-of-function studies confirmed that ADAMTS-12, independent of its proteolytic activity, plays a specific, non-redundant role in trophoblast invasion. Furthermore, we demonstrated that ADAMTS-12 regulated cell-extracellular matrix adhesion and invasion through a mechanism involving the αvβ3 integrin heterodimer. This study identifies a novel biological role for ADAMTS-12, and highlights the importance and complexity of its non-proteolytic domain(s) pertaining to its function. PMID:21494557

  16. Isolation and characterisation of a novel trophoblast side-population from first trimester placentae.

    PubMed

    James, J L; Hurley, D G; Gamage, T K J B; Zhang, T; Vather, R; Pantham, P; Murthi, P; Chamley, L W

    2015-11-01

    The placenta is responsible for all nutrient and gas exchange between mother and baby during pregnancy. The differentiation of specialised placental epithelial cells called trophoblasts is essential for placental function, but we understand little about how these populations arise. Mouse trophoblast stem cells have allowed us to understand many of the factors that regulate murine trophoblast lineage development, but the human placenta is anatomically very different from the mouse, and it is imperative to isolate a human trophoblast stem cell to understand human placental development. Here we have developed a novel methodology to isolate a Hoechst side-population of trophoblasts from early gestation placentae and compared their transcriptome to differentiated trophoblast populations (cytotrophoblasts and extravillous trophoblasts) using microarray technology. Side-population trophoblasts clustered as a transcriptomically distinct population but were more closely related to cytotrophoblasts than extravillous trophoblasts. Side-population trophoblasts up-regulated a number of genes characteristic of trophectoderm and murine trophoblast stem cells in comparison to cytotrophoblasts or extravillous trophoblasts and could be distinguished from both of these more mature populations by a unique set of 22 up-regulated genes, which were enriched for morphogenesis and organ development and the regulation of growth functions. Cells expressing two of these genes (LAMA2 and COL6A3) were distributed throughout the cytotrophoblast layer at the trophoblast/mesenchymal interface. Comparisons to previously published trophoblast progenitor populations suggest that the side-population trophoblasts isolated in this work are a novel human trophoblast population. Future work will determine whether these cells exhibit functional progenitor/stem cell attributes. PMID:26248480

  17. IFPA Meeting 2010 Workshops Report II: Placental pathology; Trophoblast invasion; Fetal sex; Parasites and the placenta; Decidua and embryonic or fetal loss; Trophoblast differentiation and syncytialisation

    PubMed Central

    Al-Khan, A; Aye, IL; Barsoum, I; Borbely, A; Cebral, E; Cerchi, G; Clifton, VL; Collins, S; Cotechini, T; Davey, A; Flores-Martin, J; Fournier, T; Franchi, AM; Fretes, RE; Graham, CH; Godbole, G; Hansson, SR; Headley, PL; Ibarra, C; Jawerbaum, A; Kemmerling, U; Kudo, Y; Lala, PK; Lassance, L; Lewis, RM; Menkhorst, E; Morris, C; Nobuzane, T; Ramos, G; Rote, N; Saffery, R; Salafia, C; Sarr, D; Schneider, H; Sibley, C; Singh, AT; Sivasubramaniyam, TS; Soares, MJ; Vaughan, O; Zamudio, S; Lash, GE

    2016-01-01

    Workshops are an important part of the IFPA annual meeting. At IFPA Meeting 2010 diverse topics were discussed in twelve themed workshops, six of which are summarized in this report. 1. The placental pathology workshop focused on clinical correlates of placenta accreta/percreta. 2. Mechanisms of regulation of trophoblast invasion and spiral artery remodeling were discussed in the trophoblast invasion workshop. 3. The fetal sex and intrauterine stress workshop explored recent work on placental sex differences and discussed them in the context of whether boys live dangerously in the womb. 4. The workshop on parasites addressed inflammatory responses as a sign of interaction between placental tissue and parasites. 5. The decidua and embryonic/fetal loss workshop focused on key regulatory mediators in the decidua, embryo and fetus and how alterations in expression may contribute to different diseases and adverse conditions of pregnancy. 6. The trophoblast differentiation and syncytialisation workshop addressed the regulation of villous cytotrophoblast differentiation and how variations may lead to placental dysfunction and pregnancy complications. PMID:21236487

  18. Expression of GALNT2 in human extravillous trophoblasts and its suppressive role in trophoblast invasion.

    PubMed

    Liao, W-C; Chen, C-H; Liu, C-H; Huang, M-J; Chen, C-W; Hung, J-S; Chou, C-H; Chen, C-H; Che, M-I; Chang, H-M; Lan, C-T; Huang, H-C; Tseng, G-F; Shyu, M-K; Huang, M-C

    2012-12-01

    Extravillus trophoblast (EVT) invasion plays a critical role in placental development. Integrins bind to extracellular matrix (ECM) proteins to mediate EVT cell adhesion, migration, and invasion. Changes in O-glycans on β1-integrin have been found to regulate cancer cell behavior. We hypothesize that O-glycosyltransferases can regulate EVT invasion through modulating the glycosylation and function of β1-integrin. Here, we found that the GALNT1 and GALNT2 mRNA were highly expressed in HTR8/SVneo and first trimester EVT cells. Immunohistochemstry and immunofluorescence staining showed that GALNT2 was expressed in subpopulations of EVT cells in deciduas, but not in syncytiotrophoblasts and cytotrophoblasts of placental villi. The percentage of GALNT2-positive EVT cells increased with gestational ages. Overexpression of GALNT2 in HTR8/SVneo cells significantly enhanced cell-collagen IV adhesion, but suppressed cell migration and invasion. Notably, we found that GALNT2 increased the expression of Tn antigen (GalNAc-Ser/Thr) on β1-integrin as revealed by Vicia Villosa agglutinin (VVA) binding. Furthermore, GALNT2 suppressed the phosphorylation of focal adhesion kinase (FAK), a crucial downstream signaling molecule of β1-integrin. Our findings suggest that GALNT2 is a critical initiating enzyme of O-glycosylation for regulating EVT invasion. PMID:23117232

  19. Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection.

    PubMed

    Bayer, Avraham; Lennemann, Nicholas J; Ouyang, Yingshi; Bramley, John C; Morosky, Stefanie; Marques, Ernesto Torres De Azeved; Cherry, Sara; Sadovsky, Yoel; Coyne, Carolyn B

    2016-05-11

    During mammalian pregnancy, the placenta acts as a barrier between the maternal and fetal compartments. The recently observed association between Zika virus (ZIKV) infection during human pregnancy and fetal microcephaly and other anomalies suggests that ZIKV may bypass the placenta to reach the fetus. This led us to investigate ZIKV infection of primary human trophoblasts (PHTs), which are the barrier cells of the placenta. We discovered that PHT cells from full-term placentas are refractory to ZIKV infection. In addition, medium from uninfected PHT cells protects non-placental cells from ZIKV infection. PHT cells constitutively release the type III interferon (IFN) IFNλ1, which functions in both a paracrine and autocrine manner to protect trophoblast and non-trophoblast cells from ZIKV infection. Our data suggest that for ZIKV to access the fetal compartment, it must evade restriction by trophoblast-derived IFNλ1 and other trophoblast-specific antiviral factors and/or use alternative strategies to cross the placental barrier. PMID:27066743

  20. Review: An overview of molecular events occurring in human trophoblast fusion.

    PubMed

    Gerbaud, P; Pidoux, G

    2015-04-01

    During human placentation, mononuclear cytotrophoblasts fuse to form a multinucleated syncytia ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation. Syncytia formation is essential for the maintenance of pregnancy and for fetal growth. The trophoblast cell fusion process first requires the acquisition of cell fusion properties, then cells set up plasma membrane protein macrocomplexes and fusogen machinery that trigger cell-cell fusion. Numerous proteins have been shown to be directly involved in the initiation of trophoblast cell fusion. These proteins must expressed at the right time and in the right place to trigger cell-cell fusion. In this review, we describe the role of certain fusogenic protein macrocomplexes that form the scaffold for the fusogen machinery underlying human trophoblastic-lipid mixing and merging of cell contents that lead to cell fusion in physiological conditions. PMID:25564303

  1. TCDD Induces the Hypoxia-Inducible Factor (HIF)-1α Regulatory Pathway in Human Trophoblastic JAR Cells

    PubMed Central

    Liao, Tien-Ling; Chen, Su-Chee; Tzeng, Chii-Reuy; Kao, Shu-Huei

    2014-01-01

    The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α) stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS) and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or N-acetylcysteine (a ROS scavenger). The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development. PMID:25272228

  2. TCDD induces the hypoxia-inducible factor (HIF)-1α regulatory pathway in human trophoblastic JAR cells.

    PubMed

    Liao, Tien-Ling; Chen, Su-Chee; Tzeng, Chii-Reuy; Kao, Shu-Huei

    2014-01-01

    The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α) stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS) and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or N-acetylcysteine (a ROS scavenger). The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development. PMID:25272228

  3. [Gestational trophoblastic neoplasia after spontaneous normalization of human chorionic gonadotropin in patient with partial hydatidiform mole].

    PubMed

    Matos, Michelle; Ferraz, Leda; Lopes, Patrícia de Fátima; Lozoya, Consuelo; Amim Junior, Joffre; Rezende-Filho, Jorge; Braga, Antonio

    2015-07-01

    We report here a case of gestational trophoblastic neoplasia after spontaneous normalization of human chorionic gonadotropin in a patient with a partial hydatidiform mole. This is the second occurrence of this event to be reported and the first one with proven immunohistochemical evidence. Besides showing the treatment for this pregnancy complication, this case report discusses the possibility of reducing the duration of post-molar follow-up, as well as strategies for early recognition of gestational trophoblastic neoplasia after spontaneous remission of molar pregnancy. PMID:26247255

  4. EFFECT OF BROMODICHLOROMETHANE ON CHORIONIC GONADOTROPHIN SECRETION BY HUMAN PLACENTAL TROPHOBLAST CULTURES

    EPA Science Inventory

    EFFECT OF BROMODICHLOROMETHANE ON CHORIONIC GONADOTROPHIN SECRETION BY HUMAN PLACENTAL TROPHOBLAST CULTURES

    Jiangang Chen1, Gordon C. Douglas1?,Twanda L. Thirkill1?, Peter N. Lohstroh1, Susan R. Bielmeier2, Michael G. Narotsky3, Deborah S. Best3, Randy A. Harrison3, Kala ...

  5. GATA3 inhibits GCM1 activity and trophoblast cell invasion

    PubMed Central

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  6. GATA3 inhibits GCM1 activity and trophoblast cell invasion.

    PubMed

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  7. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development.

    PubMed

    Ma, T; Li, Y; Yang, S T; Kniss, D A

    2000-12-20

    The effects of pore size in a 3-D polyethylene terephthalate (PET) nonwoven fibrous matrix on long-term tissue development of human trophoblast ED27 cells were studied. Thermal compression was used to modify the porosity and pore size of the PET matrix. The pore size distributions in PET matrices were quantified using a liquid extrusion method. Cell metabolic activities, estradiol production, and cell proliferation and differentiation were studied for ED27 cells cultured in the thermally compressed PET matrices with known pore structure characteristics. In general, metabolic activities and proliferation rate were higher initially for cultures grown in the low-porosity (LP) PET matrix (porosity of 0.849, average pore size of 30 microm in diameter) than those in the high-porosity (HP) matrix (porosity of 0.896, average pore size of 39 microm in diameter). However, 17beta-estradiol production and cell differentiation activity in the HP matrix surpassed those in the LP matrix after 12 days. The expression levels of cyclin B1 and p27kip1 in cells revealed progressively decreasing proliferation and increasing differentiation activities for cells grown in PET matrices. Also, difference in pore size controlled the cell spatial organization in the PET matrices and contributed to the tissue development in varying degrees of proliferation and differentiation. It was also found that cells grown on the 2-D surface behaved differently in cell cycle progression and did not show increased differentiation activities after growth had stopped and proliferation activities had lowered to a minimal level. The results from this study suggest that the 3-D cell organization guided by the tissue scaffold is important to tissue formation in vitro. PMID:11064329

  8. CXCL12 controls over-invasion of trophoblasts via upregulating CD82 expression in DSCs at maternal-fetal interface of human early pregnancy in a paracrine manner.

    PubMed

    Li, Ming-Qing; Tang, Chuan-Lin; Du, Mei-Rong; Fan, Deng-Xuan; Zhao, Hong-Bo; Xu, Bing; Li, Da-Jin

    2011-03-01

    Tetraspanin CD82 has been identified as a potential contributor to controlling trophoblast invasiveness in human first-trimester pregnancy. However, it is unclear how the regulation of CD82 expression at maternal-fetal interface. The present study is to investigate the effect of the trophoblast-derived CXCL12 on CD82 expression in decidual stromal cells (DSCs) that in turn controls trophoblast cell invasiveness. In-cell Western was used to evaluate the expression of CD82 in DSCs. A co-culture model was established to investigate the reciprocal interaction between trophoblasts and DSCs via CXCL12/CXCR4 and CD82 expression. We found that both anti-CXCL12 and anti-CXCR4 neutralizing antibody can eliminate increase of CD82 expression in DSCs induced by the trophoblasts supernatant. Moreover, the invasiveness of trophoblasts pre-treated with anti-CXCR4 neutralizing antibody was significantly decreased. Interestingly, when DSCs were pre-treated with anti-CXCR4 neutralizing antibody, the trophoblasts invasiveness in the co-culture was enhanced, and thus anti-CXCR4 neutralizing antibody can reverse the decrease of trophoblasts invasiveness induced by CD82. The trophoblast cell-derived CXCL12 does not only increase the invasiveness in an autocrine manner, but also control the over-invasion of trophoblasts through promoting CD82 expression in DSCs in a paracrine manner, which maintains a physiological balance of human trophoblasts invasiveness via the cross-talk between trophoblasts and DSCs. PMID:21487523

  9. Synthesis and release of fatty acids by human trophoblast cells in culture

    SciTech Connect

    Coleman, R.A.; Haynes, E.B.

    1987-11-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from (/sup 14/C)acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from (/sup 14/C)acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. (/sup 14/C)acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with (1-/sup 14/C)oleate; trophoblast cells then released /sup 14/C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the /sup 14/C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release.

  10. Vascular Endothelial Growth Factor-A (VEGF-A) Mediates Activin A-Induced Human Trophoblast Endothelial-Like Tube Formation.

    PubMed

    Li, Yan; Zhu, Hua; Klausen, Christian; Peng, Bo; Leung, Peter C K

    2015-11-01

    Remodeling of maternal spiral arteries during pregnancy requires a subpopulation of extravillous cytotrophoblasts (EVTs) to differentiate into endovascular EVTs. Activin A, which is abundantly expressed at the maternal-fetal interface, has been shown to promote trophoblast invasion, but its role in endovascular differentiation remains unknown. Vascular endothelial growth factor-A (VEGF-A) is well recognized as a key regulator in trophoblast endovascular differentiation. Whether and how activin A might regulate VEGF-A production in human trophoblasts and its relationship to endovascular differentiation have yet to be determined. In the present study, we found that activin A increased VEGF-A production in primary and immortalized (HTR8/SVneo) human EVT cells. In addition, activin A enhanced HTR8/SVneo endothelial-like tube formation, and these effects were attenuated by pretreatment with small interfering RNA targeting VEGF-A or the VEGF receptor 1/2 inhibitor SU4312. Pretreatment with the activin/TGF-β type 1 receptor (ALK4/5/7) inhibitor SB431542 abolished the stimulatory effects of activin A on phosphorylated mothers against decapentaplegic (SMAD)-2/3 phosphorylation, VEGF-A production, and endothelial-like tube formation. Moreover, small interfering RNA-mediated down-regulation of SMAD2, SMAD3, or common SMAD4 abolished the effects of activin A on VEGF-A production and endothelial-like tube formation. In conclusion, activin A may promote human trophoblast cell endothelial-like tube formation by up-regulating VEGF-A production in an SMAD2/3-SMAD4-dependent manner. These findings provide insight into the cellular and molecular events regulated by activin A during human implantation. PMID:26327470

  11. Human parvovirus B19 VP2 empty capsids bind to human villous trophoblast cells in vitro via the globoside receptor.

    PubMed Central

    Wegner, Carole C; Jordan, Jeanne A

    2004-01-01

    BACKGROUND: Pregnant women acutely infected with human parvovirus B19 (B19) may transmit the virus to the developing fetus. The mechanism whereby the virus interacts with the placenta is unknown. It is known that globoside receptor is required for successful infection of the target cells, which are the highly undifferentiated, actively dividing colony and burst-form units of the erythroid series. Globoside is present on trophoblast cells which have intimate contact with maternal blood, and may therefore serve as a potential route for B19 transmission into the fetal compartment. OBJECTIVES: The purpose of this study was to determine whether B19 VP2 capsids could bind to villous trophoblast cells in vitro and whether globoside was involved. METHODS: Binding of B19 VP2 empty capsid to first-trimester villous trophoblast cells was assessed by multiple approaches, including ICC using either biotinylated B19 VP2 empty capsid or unlabeled B19 VP2 empty capsid. Quantification of viral binding involved I125-labeled B19 VP2 empty capsid. Competition studies included excess unlabeled empty capsids or pretreatment with globoside-specific IgM antibody. RESULTS: Linear binding of B19 VP2 capsid to purified villous trophoblast cells in vitro was clearly demonstrated (R2= 0.9524). Competition studies revealed specificity of I125-labeled B19 VP2 capsid binding to villous trophoblast cells when pretreatment with either 60-fold excess unlabeled B19 capsid or globoside-specific IgM antibody took place. The results illustrated B19's ability to bind in a specific manner to globoside-containing villous trophoblast cells. CONCLUSION: We speculate that the globoside present on trophoblast cells may play a role in viral binding in vivo, which may facilitate B19 transmission across the maternal-fetal interface. PMID:15739820

  12. Antiproliferative and proapoptotic effects of bisphenol A on human trophoblastic JEG-3 cells.

    PubMed

    Morice, Lucie; Benaîtreau, Delphine; Dieudonné, Marie-Noëlle; Morvan, Corinne; Serazin, Valérie; de Mazancourt, Philippe; Pecquery, René; Dos Santos, Esther

    2011-07-01

    Different studies performed in rodents revealed that bisphenol-A (BPA), an environmental compound, altered early embryonic development. However, little is known concerning the direct effects of BPA on human implantation process. Thus, we decided to study in vitro BPA's effects on proliferative capacities of the human trophoblastic cell line, JEG-3. For this purpose, we first have shown that JEG-3 cells express the specific BPA receptor, namely estrogen-related receptor γ1 (ERRγ1). Secondly, we demonstrated that BPA did not exert any cytotoxic action in JEG-3 cells up to 10(-6)M. Moreover [(3)H]-thymidine incorporation experiments revealed that BPA significantly reduced cell proliferation. The results also showed that BPA induced JEG-3 apoptosis capacity as reflected by DNA fragmentation experiments. In conclusion, we describe here the direct impact of BPA on trophoblastic cell number mediated through both anti-proliferative and pro-apoptotic effects. PMID:21621606

  13. Context-dependent function of regulatory elements and a switch in chromatin occupancy between GATA3 and GATA2 regulate Gata2 transcription during trophoblast differentiation.

    PubMed

    Ray, Soma; Dutta, Debasree; Rumi, M A Karim; Kent, Lindsey N; Soares, Michael J; Paul, Soumen

    2009-02-20

    GATA transcription factors are important regulators of tissue-specific gene expression during development. GATA2 and GATA3 have been implicated in the regulation of trophoblast-specific genes. However, the regulatory mechanisms of GATA2 expression in trophoblast cells are poorly understood. In this study, we demonstrate that Gata2 is transcriptionally induced during trophoblast giant cell-specific differentiation. Transcriptional induction is associated with displacement of GATA3-dependent nucleoprotein complexes by GATA2-dependent nucleoprotein complexes at two regulatory regions, the -3.9- and +9.5-kb regions, of the mouse Gata2 locus. Analyses with reporter genes showed that, in trophoblast cells, -3.9- and +9.5-kb regions function as transcriptional enhancers in GATA motif independent and dependent fashions, respectively. We also found that knockdown of GATA3 by RNA interference induces GATA2 in undifferentiated trophoblast cells. Interestingly, three other known GATA motif-dependent Gata2 regulatory elements, the -1.8-, -2.8-, and -77-kb regions, which are important to regulate Gata2 in hematopoietic cells are not occupied by GATA factors in trophoblast cells. These elements do not show any enhancer activity and also possess inaccessible chromatin structure in trophoblast cells indicating a context-dependent function. Our results indicate that GATA3 directly represses Gata2 in undifferentiated trophoblast cells, and a switch in chromatin occupancy between GATA3 and GATA2 (GATA3/GATA2 switch) induces transcription during trophoblast differentiation. We predict that this GATA3/GATA2 switch is an important mechanism for the transcriptional regulation of other trophoblast-specific genes. PMID:19106099

  14. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo

    PubMed Central

    Wang, Zi-Yi; Lu, Jing; Zhang, Yuan-Zhen; Zhang, Ming; Liu, Teng; Qu, Xin-Lan

    2015-01-01

    Bisphenol A (BPA) is a kind of environmental endocrine disruptors (EEDs) that interfere embryo implantation. Trophoblast invasion plays a crucial role during embryo implantation. In this study, the effects of BPA on invasion ability of human trophoblastic cell line BeWo and its possible mechanism were investigated. BeWo cells were exposed to BPA and co-cultured with human endometrial cells to mimic embryo implantation in transwell model. The proliferation and invasion capability of BeWo cells were detected. The expression of E-cadherin, DNMT1, MMP-2, MMP-9, TIMP-1 and TIMP-2 were also analyzed. The results showed that the invasion capability of BeWo was reduced after daily exposure to BPA. BPA had biphasic effect on E-cadherin expression level in BeWo cells and expression level of DNMT1 was decreased when treated with BPA. Moreover, BPA treatment also changed the balance of MMPs/TIMPs in BeWo cells by down-regulating MMP-2, MMP-9 and up-regulating TIMP-1, TIMP-2 with increasing BPA concentration. Taken together, these results showed that BPA treatment could reduce the invasion ability of BeWo cells and alter the expression level of E-cadherin, DNMT1, TIMP-1, TIMP-2, MMP-2, and MMP-9. Our study would help us to understand the possible mechanism of BPA effect on invasion ability of human trophoblastic cell line BeWo. PMID:26823751

  15. Proinflammatory Response of Human Trophoblastic Cells to Brucella abortus Infection and upon Interactions with Infected Phagocytes.

    PubMed

    Fernández, Andrea G; Ferrero, Mariana C; Hielpos, M Soledad; Fossati, Carlos A; Baldi, Pablo C

    2016-02-01

    Trophoblasts are targets of infection by Brucella spp. but their role in the pathophysiology of pregnancy complications of brucellosis is unknown. Here we show that Brucella abortus invades and replicates in the human trophoblastic cell line Swan-71 and that the intracellular survival of the bacterium depends on a functional virB operon. The infection elicited significant increments of interleukin 8 (IL8), monocyte chemotactic protein 1 (MCP-1), and IL6 secretion, but levels of IL1beta and tumor necrosis factor-alpha (TNF-alpha) did not vary significantly. Such proinflammatory response was not modified by the absence of the Brucella TIR domain-containing proteins BtpA and BtpB. The stimulation of Swan-71 cells with conditioned medium (CM) from B. abortus-infected human monocytes (THP-1 cells) or macrophages induced a significant increase of IL8, MCP-1 and IL6 as compared to stimulation with CM from non-infected cells. Similar results were obtained when stimulation was performed with CM from infected neutrophils. Neutralization studies showed that IL1beta and/or TNF-alpha mediated the stimulating effects of CM from infected phagocytes. Reciprocally, stimulation of monocytes and neutrophils with CM from Brucella-infected trophoblasts increased IL8 and/or IL6 secretion. These results suggest that human trophoblasts may provide a local inflammatory environment during B. abortus infections either through a direct response to the pathogen or through interactions with monocytes/macrophages or neutrophils, potentially contributing to the pregnancy complications of brucellosis. PMID:26792938

  16. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC) Promote Trophoblast Cell Invasion

    PubMed Central

    Wang, Yaqin; Guo, Yue; Zhou, Danni; Xu, Mei; Ding, Jinli; Yang, Jing

    2015-01-01

    Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG) is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC) that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo–secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β) and leukemia inhibitory factor (LIF) expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR). The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion. PMID:26087261

  17. Effect of leptin on progesterone, human chorionic gonadotropin, and interleukin-6 secretion by human term trophoblast cells in culture.

    PubMed

    Cameo, Paula; Bischof, Paul; Calvo, Juan Carlos

    2003-02-01

    Leptin, the 16-kDa protein product of the obese gene, was originally seen as an adipocyte-derived signaling molecule. Recently, it has been suggested to be involved in some functions during pregnancy, particularly in the placenta. In the present study, we investigated the role of leptin in the secretion of hCG, progesterone, and interleukin-6 (IL-6) by human term trophoblast cells in culture. Placentae were obtained from cesarean sections following uncomplicated pregnancies and used immediately after delivery. Leptin, hCG, progesterone, and IL-6 were measured by ELISA, RIA, and immunoradiometric assay in the cultured media of trophoblast cells cultured for 48 and 96 h. Leptin mRNA expression in these cultures was determined by reverse transcription-polymerase chain reaction. Recombinant human leptin added to primary cultures of human term placental trophoblast cells showed a stimulatory effect on hCG and IL-6 secretion and an inhibitory effect on progesterone secretion. Primary cultures of term trophoblast cells expressed leptin mRNA. All these findings suggest a role for leptin in human placental endocrine function. PMID:12533410

  18. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    PubMed Central

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  19. Downregulation of SPARC Expression Inhibits the Invasion of Human Trophoblast Cells In Vitro

    PubMed Central

    Jiang, Yahong; Zhu, Yan; Shi, Yan; He, Yaping; Kuang, Zhichao; Sun, Zhaogui; Wang, Jian

    2013-01-01

    Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT) invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine) is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ), trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11), KISS1, insulin-like growth factor binding protein 4 (IGFBP4), collagen type I alpha 1 (COLIA1), matrix metallopeptidase 9 (MMP9), and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA), MMP1, gap junction protein alpha 1 (GJA1), et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua. PMID:23935929

  20. HLA-G expression in extravillous trophoblasts is an intrinsic property of cell differentiation: a lesson learned from ectopic pregnancies.

    PubMed

    Goldman-Wohl, D S; Ariel, I; Greenfield, C; Hanoch, J; Yagel, S

    2000-06-01

    Human leukocyte antigen (HLA)-G is a major histocompatibility gene expressed almost exclusively in extravillous trophoblasts at the fetal-maternal interface. HLA-G may play a role in protecting the fetus from attack by the maternal natural killer cells. The extravillous trophoblasts invade the decidua and maternal spiral arteries. The factors which regulate the cell-specific expression of HLA-G are unknown. In this study we asked if HLA-G is expressed in extravillous trophoblasts that develop outside of their normal cellular environment, as in the case of ectopic pregnancies. Since all ectopic pregnancies implant in the absence of underlying decidua we also used a placenta accreta as an experimental control. We found that HLA-G mRNA and protein were expressed in the extravillous trophoblasts in the 13 ectopic specimens studied. In a case of placenta accreta (which develops without decidua basalis and is therefore adherent to the underlying myometrium), HLA-G mRNA and protein were also expressed. These results suggest that HLA-G expression is induced in a cell autonomous manner rather than determined by appropriate environmental cues. PMID:10825371

  1. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    PubMed Central

    Zydek, Martin; Petitt, Matthew; Fang-Hoover, June; Adler, Barbara; Kauvar, Lawrence M.; Pereira, Lenore; Tabata, Takako

    2014-01-01

    Human cytomegalovirus (HCMV) is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs), the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs) give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs). Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A) showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb), TRL345, reactive with glycoprotein B (gB), but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease. PMID:24651029

  2. Human Cytomegalovirus Modulates Expression of Noncanonical Wnt Receptor ROR2 To Alter Trophoblast Migration

    PubMed Central

    van Zuylen, Wendy J.; Ford, Caroline E.; Wong, Diana D. Y.

    2015-01-01

    ABSTRACT Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal injury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic damage to the CMV-infected fetus but also from indirect effects through placental infection and dysfunction. CMV alters Wingless (Wnt) signaling, an essential cellular pathway involved in placentation, as evidenced by reduced transcription of canonical Wnt target genes and decreased Wnt3a-induced trophoblast migration. Whether CMV affects the noncanonical Wnt signaling pathway has been unclear. This study demonstrates for the first time that CMV infection inhibits Wnt5a-stimulated migration of human SGHPL-4 trophoblasts and that inhibition of the pathway restores normal migration of CMV-infected cells. Western blot and real-time PCR analyses show increased expression of noncanonical Wnt receptor ROR2 in CMV-infected trophoblasts. Mimicking the CMV-induced ROR2 protein expression via ectopic expression inhibited Wnt5a-induced trophoblast migration and reduced T cell-specific factor (TCF)/lymphoid enhancer-binding factor (LEF)-mediated transcription as measured using luciferase reporter assays. Gene silencing using small interfering RNA (siRNA) duplexes decreased ROR2 transcript and protein levels. In contrast, proliferation of SGHPL-4 trophoblasts, measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was not affected. The siRNA-mediated downregulation of ROR2 in trophoblasts rescued CMV-induced reduction in trophoblast migration. These data suggest a mechanism where CMV alters the expression of the Wnt receptor ROR2 to alter Wnt5a-mediated signaling and inhibit trophoblast motility. Inhibition of this mechanism may be a target for therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infections. IMPORTANCE Maternal

  3. Isolation and Characterization of Human Trophoblast Side-Population (SP) Cells in Primary Villous Cytotrophoblasts and HTR-8/SVneo Cell Line

    PubMed Central

    Takao, Tomoka; Asanoma, Kazuo; Kato, Kiyoko; Fukushima, Kotaro; Tsunematsu, Ryosuke; Hirakawa, Toshio; Matsumura, Sueo; Seki, Hiroyuki; Takeda, Satoru; Wake, Norio

    2011-01-01

    Recently, numerous studies have identified that immature cell populations including stem cells and progenitor cells can be found among “side-population” (SP) cells. Although SP cells isolated from some adult tissues have been reported elsewhere, isolation and characterization of human trophoblast SP remained to be reported. In this study, HTR-8/SVneo cells and human primary villous cytotrophoblasts (vCTBs) were stained with Hoechst 33342 and SP and non-SP (NSP) fractions were isolated using a cell sorter. A small population of SP cells was identified in HTR-8/SVneo cells and in vCTBs. SP cells expressed several vCTB-specific markers and failed to express syncytiotrophoblast (STB) or extravillous cytotrophopblast (EVT)-specific differentiation markers. SP cells formed colonies and proliferated on mouse embryonic fibroblast (MEF) feeder cells or in MEF conditioned medium supplemented with heparin/FGF2, and they also showed long-term repopulating property. SP cells could differentiate into both STB and EVT cell lineages and expressed several differentiation markers. Microarray analysis revealed that IL7R and IL1R2 were exclusively expressed in SP cells and not in NSP cells. vCTB cells sorted as positive for both IL7R and IL1R2 failed to express trophoblast differentiation markers and spontaneously differentiated into both STB and EVT in basal medium. These features shown by the SP cells suggested that IL7R and IL1R2 are available as markers to detect the SP cells and that vCTB progenitor cells and trophoblast stem cells were involved in the SP cell population. PMID:21760941

  4. Embryonic Trophoblasts Induce Decidual Regulatory T Cell Differentiation and Maternal–Fetal Tolerance through Thymic Stromal Lymphopoietin Instructing Dendritic Cells

    PubMed Central

    Du, Mei-Rong; Guo, Pei-Fen; Piao, Hai-Lan; Wang, Song-Cun; Sun, Chan; Jin, Li-Ping; Tao, Yu; Li, Yan-Hong; Zhang, Di; Zhu, Rui; Fu, Qiang

    2014-01-01

    Physiological pregnancy requires the maternal immune system to recognize and tolerate embryonic Ags. Although multiple mechanisms have been proposed, it is not yet clear how the fetus evades the maternal immune system. In this article, we demonstrate that trophoblast-derived thymic stromal lymphopoietin (TSLP) instructs decidual CD11c+ dendritic cells (dDCs)with increased costimulatory molecules; MHC class II; and Th2/3-type, but not Th1-type, cytokines. TSLP-activated dDCs induce proliferation and differentiation of decidual CD4+CD25− T cells into CD4+CD25+FOXP3+ regulatory T cells (Tregs) through TGF-β1. TSLP-activated dDC–induced Tregs display immunosuppressive features and express Th2-type cytokines. In addition, decidual CD4+CD25+FOXP3+ Tregs promote invasiveness and HLA-G expression of trophoblasts, resulting in preferential production of Th2 cytokines and reduced cytotoxicity in decidual CD56brightCD16− NK cells. Of interest, decreased TSLP expression and reduced numbers of Tregs were observed at the maternal–fetal interface during miscarriage. Our study identifies a novel feedback loop between embryo-derived trophoblasts and maternal decidual leukocytes, which induces a tolerogenic immune response to ensure a successful pregnancy. PMID:24453244

  5. CCN1 (CYR61) and CCN3 (NOV) signaling drives human trophoblast cells into senescence and stimulates migration properties.

    PubMed

    Kipkeew, Friederike; Kirsch, Manuela; Klein, Diana; Wuelling, Manuela; Winterhager, Elke; Gellhaus, Alexandra

    2016-03-01

    During placental development, continuous invasion of trophoblasts into the maternal compartment depends on the support of proliferating extravillous trophoblasts (EVTs). Unlike tumor cells, EVTs escape from the cell cycle before invasion into the decidua and spiral arteries. This study focused on the regulation properties of glycosylated and non-glycosylated matricellular CCN1 and CCN3, primarily for proliferation control in the benign SGHPL-5 trophoblast cell line, which originates from the first-trimester placenta. Treating SGHPL-5 trophoblast cells with the glycosylated forms of recombinant CCN1 and CCN3 decreased cell proliferation by bringing about G0/G1 cell cycle arrest, which was accompanied by the upregulation of activated Notch-1 and its target gene p21. Interestingly, both CCN proteins increased senescence-associated β-galactosidase activity and the expression of the senescence marker p16. The migration capability of SGHPL-5 cells was mostly enhanced in response to CCN1 and CCN3, by the activation of FAK and Akt kinase but not by the activation of ERK1/2. In summary, both CCN proteins play a key role in regulating trophoblast cell differentiation by inducing senescence and enhancing migration properties. Reduced levels of CCN1 and CCN3, as found in early-onset preeclampsia, could contribute to a shift from invasive to proliferative EVTs and may explain their shallow invasion properties in this disease. PMID:26744771

  6. Relaxin has anti-apoptotic effects on human trophoblast-derived HTR-8/SV neo cells.

    PubMed

    Lodhi, Romana S Z; Nakabayashi, Koji; Suzuki, Kaho; Yamada, Ai Y; Hazama, Rhoichi; Ebina, Yasuhiko; Yamada, Hideto

    2013-12-01

    The study was conducted to evaluate the effects of human relaxin on apoptosis in the human trophoblast derived HTR-8/SV neo cell line, which is a possible model of human extravillous trophoblasts (EVTs). HTR-8/SV neo cells, cultured in phenol red free RPMI1640 medium, were treated with different doses of human recombinant (rH2) relaxin in serum-deprived conditions. RT-PCR was used for evaluating relaxin receptor: RXFP1 and RXFP2 expression in HTR-8/SV neo cells. The cell death was examined by TUNEL assay. Furthermore, we investigated caspase-3, cleaved PARP and Bcl-2 expressions by Western blot analysis to recognize the translational effects of anti-apoptotic and pro-apoptotic proteins. RXFP1 and RXFP2 mRNA expression was observed in HTR-8/SV neo cells. Compared with untreated control cultures, treatment with rH2 relaxin, decreased TUNEL-positive rate in HTR-8/SV neo cells was observed. Western blot analysis revealed that treatment with rH2 relaxin decreased the expression of caspase-3 and cleaved PARP, but in contrast increased Bcl-2 expression in those cells. These results suggest that rH2 relaxin has anti-apoptotic effects on HTR8/SV neo cells by decreasing pro-apoptotic caspase-3 and cleaved PARP expression and up-regulating anti-apoptotic Bcl-2 expression. PMID:24070111

  7. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed Central

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-01-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. 1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. 2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. 3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. 4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia. PMID:26735221

  8. Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial-mesenchymal transition.

    PubMed

    DaSilva-Arnold, Sonia; James, Joanna L; Al-Khan, Abdulla; Zamudio, Stacy; Illsley, Nicholas P

    2015-12-01

    The transformation of cytotrophoblast (CTB) to extravillous trophoblast (EVT) is an essential process for placental implantation. EVT generated at the tips of the anchoring villi migrate away from the placenta and invade the endometrium and maternal spiral arteries, where they modulate maternal immune responses and remodel the arteries into high-volume conduits to facilitate uteroplacental blood flow. The process of EVT differentiation has several factors in common with the epithelial-to-mesenchymal transition (EMT) observed in embryonic development, wound healing and cancer metastasis. We hypothesized that the generation of invasive EVT from CTB was a form of EMT. We isolated paired CTB and EVT from first trimester placentae, and compared their gene expression using a PCR array comprising probes for genes involved in EMT. Out of 84 genes, 24 were down-regulated in EVT compared to CTB, including epithelial markers such as E-cadherin (-11-fold) and occludin (-75-fold). Another 30 genes were up-regulated in EVT compared to CTB including mesenchymal markers such as vimentin (235-fold) and fibronectin (107-fold) as well as the matrix metalloproteinases, MMP2 and MMP9 (357-fold, 129-fold). These alterations also included major increases in the ZEB2 (zinc finger E-box binding homeobox 2, 198-fold) and TCF4 (transcription factor 4, 18-fold) transcription factors, suggesting possible stimulatory mechanisms. There was substantial up-regulation of the genes encoding TGFβ1 and TGFβ2 (48-fold, 115-fold), which may contribute to the maintenance of the mesenchymal-like phenotype. We conclude that transformation of CTB to EVT is consistent with an EMT, although the differences with other types of EMT suggest this may be a unique form. PMID:26545962

  9. Factors regulating interaction between trophoblast and human endometrium.

    PubMed

    Flamigni, C; Bulletti, C; Polli, V; Ciotti, P M; Prefetto, R A; Galassi, A; Di Cosmo, E

    1991-01-01

    Implantation is a crucial step in human reproduction. Disturbances of this process are responsible for pregnancy failure after both in vivo and in vitro fertilization. The endometrium provides the implanting embryo with a unique substratum where the embryo communicates with biochemical signals, attaches itself, penetrates and grows without blood circulation. The highly proliferative phase of the cytotrophoblast, during early human embryogenesis, may be due to endogenous production of growth factors that may establish autocrine/short range paracrine stimulator loops which explain the tumor-like properties of these tissues. Endometrial BM penetration and stroma invasion may be due to the proteolytic capability of the human embryo. It is suggested that collagenase and the urokinase-like plasminogen activator are responsible for this activity. To clarify the molecular mechanisms involved in human embryo implantation several models are suggested: culture of blastocysts, culture of endometrial cells, and endometrial explant co-culture. Human blastocysts cultured with whole perfused human uteri make it possible to recognize some aspects of the entire implantation process and give us the possibility of improving the benefits provided by new technologies in reproductive medicine and reducing embryonic loss at an early stage. PMID:2064179

  10. Progesterone-induced blocking factor differentially regulates trophoblast and tumor invasion by altering matrix metalloproteinase activity.

    PubMed

    Halasz, Melinda; Polgar, Beata; Berta, Gergely; Czimbalek, Livia; Szekeres-Bartho, Julia

    2013-12-01

    Invasiveness is a common feature of trophoblast and tumors; however, while tumor invasion is uncontrolled, trophoblast invasion is strictly regulated. Both trophoblast and tumor cells express high levels of the immunomodulatory progesterone-induced blocking factor (PIBF), therefore, we aimed to test the possibility that PIBF might be involved in invasion. To this aim, we used PIBF-silenced or PIBF-treated trophoblast (HTR8/Svneo, and primary trophoblast) and tumor (HT-1080, A549, HCT116, PC3) cell lines. Silencing of PIBF increased invasiveness as well as MMP-2,-9 secretion of HTR8/SVneo, and decreased those of HT-1080 cells. PIBF induced immediate STAT6 activation in both cell lines. Silencing of IL-4Rα abrogated all the above effects of PIBF, suggesting that invasion-related signaling by PIBF is initiated through the IL-4Rα/PIBF-receptor complex. In HTR-8/SVneo, PIBF induced fast, but transient Akt and ERK phosphorylation, whereas in tumor cells, PIBF triggered sustained Akt, ERK, and late STAT3 activation. The late signaling events might be due to indirect action of PIBF. PIBF induced the expression of EGF and HB-EGF in HT-1080 cells. The STAT3-activating effect of PIBF was reduced in HB-EGF-deficient HT-1080 cells, suggesting that PIBF-induced HB-EGF contributes to late STAT3 activation. PIBF binds to the promoters of IL-6, EGF, and HB-EGF; however, the protein profile of the protein/DNA complex is different in the two cell lines. We conclude that in tumor cells, PIBF induces proteins, which activate invasion signaling, while-based on our previous data-PIBF might control trophoblast invasion by suppressing proinvasive genes. PMID:23807209

  11. Progesterone and human placental lactogen inhibit leptin secretion on cultured trophoblast cells from human placentas at term.

    PubMed

    Coya, Raquel; Martul, Pedro; Algorta, Jaime; Aniel-Quiroga, Ma Angeles; Busturia, Ma Angeles; Señarís, Rosa

    2005-07-01

    The placenta is an important source of leptin production that contributes to the state of hyperleptinemia observed in pregnant women. Moreover, the synthesis of leptin and its receptors by syncytiotrophoblast cells suggests a potential paracrine or autocrine action of leptin in the placenta. In the present study we examined the effect of gestational hormones, human chorionic gonadotropin (hCG), human placental lactogen (hPL), progesterone and estradiol, on in vitro leptin release by human term trophoblast cells in culture. Placentas at term were obtained immediately after delivery from mothers with uncomplicated pregnancies. Leptin levels were measured by enzyme-linked immunosorbent assay in culture media of trophoblasts maintained in monolayer culture for 24, 48 and 72 h with different hormonal treatments or placebo. Treatment with hPL and progesterone led to a time- and dose-dependent decrease in leptin release that was statistically significant after 24 h, with a maximal effect after 72 h of incubation. In contrast, incubation with estradiol and hCG did not have exhibit any effect on leptin secretion at any of the doses and times assayed in this work. The results obtained in this study support that leptin can be considered a gestational hormone implied in the endocrine function of the placenta and that its secretion is at least partially regulated by steroid and peptidic reproductive hormones in trophoblast cells in vitro. PMID:16048798

  12. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro.

    PubMed

    Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun; Sun, Lizhou

    2015-01-01

    Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650

  13. Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion

    PubMed Central

    Gerbaud, Pascale; Taskén, Kjetil; Pidoux, Guillaume

    2015-01-01

    During human placentation, mononuclear cytotrophoblasts fuse to form multinucleated syncytia ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation. Syncytial formation is essential for the maintenance of pregnancy and for fetal growth. The cAMP signaling pathway is the major route to trigger trophoblast fusion and its activation results in phosphorylation of specific intracellular target proteins, in transcription of fusogenic genes and assembly of macromolecular protein complexes constituting the fusogenic machinery at the plasma membrane. Specificity in cAMP signaling is ensured by generation of localized pools of cAMP controlled by cAMP phosphodiesterases (PDEs) and by discrete spatial and temporal activation of protein kinase A (PKA) in supramolecular signaling clusters inside the cell organized by A-kinase-anchoring proteins (AKAPs) and by organization of signal termination by protein phosphatases (PPs). Here we present original observations on the available components of the cAMP signaling pathway in the human placenta including PKA, PDE, and PP isoforms as well as AKAPs. We continue to discuss the current knowledge of the spatiotemporal regulation of cAMP signaling triggering trophoblast fusion. PMID:26441659

  14. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy

    PubMed Central

    2014-01-01

    Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer. PMID:24438674

  15. The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast

    SciTech Connect

    Desforges, M.; Greenwood, S.L.; Glazier, J.D.; Westwood, M.; Sibley, C.P.

    2010-07-16

    Research highlights: {yields} mRNA levels for SNAT1 are higher than other system A subtype mRNAs in primary human cytotrophoblast. {yields} SNAT1 knockdown in cytotrophoblast cells significantly reduces system A activity. {yields} SNAT1 is a key contributor to system A-mediated amino acid transport in human placenta. -- Abstract: System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, {sup 14}C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of {sup 14}C-MeAIB uptake revealed two distinct transport systems; system 1: K{sub m} = 0.38 {+-} 0.12 mM, V{sub max} = 27.8 {+-} 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: K{sub m} = 45.4 {+-} 25.0 mM, V{sub max} = 1190 {+-} 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific si

  16. Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks

    PubMed Central

    Latos, Paulina A.; Sienerth, Arnold R.; Murray, Alexander; Senner, Claire E.; Muto, Masanaga; Ikawa, Masahito; Oxley, David; Burge, Sarah; Cox, Brian J.; Hemberger, Myriam

    2015-01-01

    Elf5 is a transcription factor with pivotal roles in the trophoblast compartment, where it reinforces a trophoblast stem cell (TSC)-specific transcriptional circuit. However, Elf5 is also present in differentiating trophoblast cells that have ceased to express other TSC genes such as Cdx2 and Eomes. In the present study, we aimed to elucidate the context-dependent role of Elf5 at the interface between TSC self-renewal and the onset of differentiation. We demonstrate that precise levels of Elf5 are critical for normal expansion of the TSC compartment and embryonic survival, as Elf5 overexpression triggers precocious trophoblast differentiation. Through integration of protein interactome, transcriptome, and genome-wide chromatin immunoprecipitation data, we reveal that this abundance-dependent function is mediated through a shift in preferred Elf5-binding partners; in TSCs, Elf5 interaction with Eomes recruits Tfap2c to triply occupied sites at TSC-specific genes, driving their expression. In contrast, the Elf5 and Tfap2c interaction becomes predominant as their protein levels increase. This triggers binding to double- and single-occupancy sites that harbor the cognate Tfap2c motif, causing activation of the associated differentiation-promoting genes. These data place Elf5 at the center of a stoichiometry-sensitive transcriptional network, where it acts as a molecular switch governing the balance between TSC proliferation and differentiation. PMID:26584622

  17. Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks.

    PubMed

    Latos, Paulina A; Sienerth, Arnold R; Murray, Alexander; Senner, Claire E; Muto, Masanaga; Ikawa, Masahito; Oxley, David; Burge, Sarah; Cox, Brian J; Hemberger, Myriam

    2015-12-01

    Elf5 is a transcription factor with pivotal roles in the trophoblast compartment, where it reinforces a trophoblast stem cell (TSC)-specific transcriptional circuit. However, Elf5 is also present in differentiating trophoblast cells that have ceased to express other TSC genes such as Cdx2 and Eomes. In the present study, we aimed to elucidate the context-dependent role of Elf5 at the interface between TSC self-renewal and the onset of differentiation. We demonstrate that precise levels of Elf5 are critical for normal expansion of the TSC compartment and embryonic survival, as Elf5 overexpression triggers precocious trophoblast differentiation. Through integration of protein interactome, transcriptome, and genome-wide chromatin immunoprecipitation data, we reveal that this abundance-dependent function is mediated through a shift in preferred Elf5-binding partners; in TSCs, Elf5 interaction with Eomes recruits Tfap2c to triply occupied sites at TSC-specific genes, driving their expression. In contrast, the Elf5 and Tfap2c interaction becomes predominant as their protein levels increase. This triggers binding to double- and single-occupancy sites that harbor the cognate Tfap2c motif, causing activation of the associated differentiation-promoting genes. These data place Elf5 at the center of a stoichiometry-sensitive transcriptional network, where it acts as a molecular switch governing the balance between TSC proliferation and differentiation. PMID:26584622

  18. Ceramide biosynthesis and metabolism in trophoblast syncytialization.

    PubMed

    Singh, Ambika T; Dharmarajan, Arunasalam; Aye, Irving L M H; Keelan, Jeffrey A

    2012-10-15

    Sphingolipid mediators such as ceramide are pleiotropic regulators of cellular growth, differentiation and apoptosis. We investigated the role of ceramide biosynthesis, metabolism and actions in term human cytotrophoblasts syncytialized over 7 days in culture. Intracellular C16 ceramide levels increased modestly after 3 days in culture, then declined. Ceramidase was present at particularly high levels in syncytialized trophoblasts; inhibition of ceramidase reduced the degree of cell fusion. Exposure to short chain C8 ceramide or aSMase enhanced secretion of the differentiation marker hCG without affecting fusion or cell viability. In contrast, pharmacological inhibition of ceramidase reduced the extent of fusion. Inhibition of the ceramide-responsive JNK and PP2A pathways did not abolish the effects of ceramide, and JNK phosphorylation was unresponsive to ceramide; however, ceramide significantly inhibited phosphorylation of Akt. This study suggests that changes in ceramide biosynthesis and metabolism play a differential role in the biochemical and morphological features of trophoblast differentiation. PMID:22652149

  19. Adiponectin promotes syncytialisation of BeWo cell line and primary trophoblast cells

    PubMed Central

    2010-01-01

    Background In human pregnancy, a correct placentation depends on trophoblast proliferation, differentiation, migration and invasion. These processes are highly regulated by placental hormones, growth factors and cytokines. Recently, we have shown that adiponectin, an adipokine, has anti-proliferative effects on trophoblastic cells. Here, we complete this study by demonstrating that adiponectin modulates BeWo and human villous cytotrophoblast cell differentiation. Results We showed that hCG secretion was up-regulated by adiponectin treatment in both BeWo cells and human cytotrophoblasts from very early placentas (5-6 weeks). The expression of two trophoblast differentiation markers, leptin and syncytin 2, was also up-regulated by adiponectin in BeWo cells. Moreover, adiponectin treatment induced a loss of E-cadherin staining in these cells. In parallel, we demonstrated that AdipoR1 and AdipoR2 are up-regulated during forskolin induced BeWo cell differentiation, reinforcing the role of adiponectin in trophoblast syncytialization. SiRNA mediated down-regulation of AdipoR1 and AdipoR2 was used to demonstrate that adiponectin effects on differentiation were essentially mediated by these receptors. Finally, using a specific inhibitor, we demonstrated that the PKA signalling pathway could be one pathway involved in adiponectin effects on trophoblast differentiation. Conclusion Adiponectin enhances the differentiation process of trophoblast cells and could thus be involved in functional syncytiotrophoblast formation. PMID:21034435

  20. Fibulin-5 is upregulated in decidualized human endometrial stromal cells and promotes primary human extravillous trophoblast outgrowth.

    PubMed

    Winship, Amy; Cuman, Carly; Rainczuk, Katarzyna; Dimitriadis, Evdokia

    2015-12-01

    Interactions between the highly invasive trophoblasts and the maternal uterine decidual extracellular matrix (ECM) are crucial in the determination of a successful pregnancy. Fibulin-5 (FBLN5) is a member of the fibulin family that alters cell adhesive and invasive properties and is expressed in human villous cytotrophoblasts. We aimed to determine the expression and immunolocalization of FBLN5 in human first trimester decidua and examine the effect of FBLN5 in trophoblast invasion in vitro using a first trimester placental villous outgrowth assay. We demonstrated that FBLN5 mRNA expression is upregulated in response to cAMP-mediated decidualization of primary human endometrial stromal cells, although FBLN5 itself does not enhance decidualization. We reported for the first time, FBLN5 protein production in first trimester decidual cells and also co-localization to HLAG-positive EVTs in first trimester decidua. Consequently, we investigated the effects of exogenous FBLN5 on placental villous outgrowth in vitro and demonstrated that FBLN5 promotes EVT migration/invasion. This is the first study to identify FBLN5 in decidualized human endometrial stromal cells, first trimester decidua and EVT and determine a functional role for FBLN5 in human EVTs, suggesting that decidual and or EVT-derived FBLN5 regulates EVT invasion and placentation in women. PMID:26506560

  1. Effect of different concentrations of neogenin on proliferation, apoptosis and related proliferative factors in human trophoblasts.

    PubMed

    Zhong, Shaoping; Zou, Li; Zhao, Yin; Hu, Bin; Xie, Han

    2010-08-01

    The underlying effect of different concentrations of neogenin on proliferation, apoptosis and the related proliferative factors in human trophoblasts was explored in order to understand the function of neogenin during placentation. TEV-1 cell line was cultured and the expression of netrin-1 was detected by using indirect cellular immunofluorescence. Exponentially growing TEV-1 cells were treated by different concentrations of neogenin (0, 1, 5, 10, 50 ng/mL) for 24 h. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. TEV-1 cell apoptosis was assessed by flow cytometry (FCM). The expression of netrin-1 mRNA and protein in TEV-1 cells was examined by using real-time PCR and Western blot, respectively. It was found that immunoreactivity for netrin-1 was observed in cytoplasm of the trophoblasts. Immediately after treatment with different concentrations of neogenin for 24 h, the netrin-1 expression began to increase. Real-time PCR revealed that the expression level of netrin-1 mRNA was 37.59+/-10.25 times higher than control group when TEV-1 cells were exposed to 50 ng/mL neogenin (P<0.01), and the same tendency was seen by using Western blot. MTT results showed that proliferation of TEV-1 cells was independent of neogenin. Meanwhile, apoptosis was significantly increased to (22.15+/-6.15)% at 50 ng/mL neogenin and (6.55+/-0.25)% without neogenin (P<0.01). It is suggested that neogenin regulates proliferation and apoptosis of TEV-1 cells. And it can enhance the ability of TEV-1 cells to express netrin-1 in a dose-dependent manner. Neogenin may play an important biological role in the normal human pregnancy and contribute to the physiological pregnancy process. PMID:20714878

  2. IFPA Meeting 2011 workshop report III: Placental immunology; epigenetic and microRNA-dependent gene regulation; comparative placentation; trophoblast differentiation; stem cells☆

    PubMed Central

    Ackerman, W.E.; Bulmer, J.N.; Carter, A.M.; Chaillet, J.R.; Chamley, L.; Chen, C.P.; Chuong, E.B.; Coleman, S.J.; Collet, G.P.; Croy, B.A.; de Mestre, A.M.; Dickinson, H.; Ducray, J.; Enders, A.C.; Fogarty, N.M.E.; Gauster, M.; Golos, T.; Haider, S.; Heazell, A.E.; Holland, O.J.; Huppertz, B.; Husebekk, A.; John, R.M.; Johnsen, G.M.; Jones, C.J.P.; Kalionis, B.; König, J.; Lorenzon, A.R.; Moffett, A.; de Mello, J.C. Moreira; Nuzzo, A.M.; Parham, P.; Parolini, O.; Petroff, M.G.; Pidoux, G.; Ramírez-Pinilla, M.P.; Robinson, W.P.; Rolfo, A.; Sadovsky, Y.; Soma, H.; Southcombe, J.H.; Tilburgs, T.; Lash, G.E.

    2014-01-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2011 there were twelve themed workshops, five of which are summarized in this report. These workshops related to various aspects of placental biology: 1) immunology; 2) epigenetics; 3) comparative placentation; 4) trophoblast differentiation; 5) stem cells. PMID:22154501

  3. Determination of hyperglycosylated human chorionic gonadotropin produced by malignant gestational trophoblastic neoplasias and male germ cell tumors using a lectin-based immunoassay and surface plasmon resonance

    PubMed Central

    Kelly, Lisa S.; Birken, Steven; Puett, David

    2007-01-01

    The ability to reliably detect aberrant glycosylation of human chorionic gonadotropin (hCG) may have profound implications for the diagnosis and monitoring of malignant gestational trophoblastic neoplasia, germ cell tumors, other malignancies, and pregnancy complications. To become a clinically useful assay, however, this discrimination of glycoforms should be possible on minimally treated biological specimens. Towards this end, we have developed a lectin-based sandwich-type immunoassay to compare the glycosylation patterns of hCG among urine specimens from patients presenting with a normal pregnancy, invasive mole, choriocarcinoma, and male germ cell tumors using carbohydrate-free antibody fragments as capture reagents and a panel of eight lectins, five recognizing neutral sugars and three recognizing sialic acid. There was no significant difference in the binding of any of the lectins to hCG in the urine of women over the gestational range of 6 – 38 weeks. Three lectins, however, exhibited differential binding to urinary hCG derived from these normal pregnant controls and that from patients with malignant forms of gestational trophoblastic disease and male germ cell tumors. Galanthus nivalis agglutinin and Maackia amurensis lectin, which bind terminal mannose and α(2–3)sialic acid, respectively, preferentially bound pregnancy-derived hCG, whereas the lectin, wheat germ agglutinin, which binds sialic acid and β(1–4)N-acetylglucosamine, exhibited decreased binding to pregnancy-derived hCG compared to that from patients with male germ cell tumors and malignant gestational trophoblastic neoplasia. The differential binding observed with these three promising lectins is most encouraging and warrants further examination. The experimental paradigm also holds promise for the development of comparable assays for other glycosylated tumor markers. PMID:17081681

  4. The molecular role of connexin 43 in human trophoblast cell fusion.

    PubMed

    Dunk, Caroline E; Gellhaus, Alexandra; Drewlo, Sascha; Baczyk, Dora; Pötgens, Andy J G; Winterhager, Elke; Kingdom, John C P; Lye, Steven J

    2012-04-01

    Connexin expression and gap junctional intercellular communication (GJIC) mediated by connexin 43 (Cx43)/gap junction A1 (GJA1) are required for cytotrophoblast fusion into the syncytium, the outer functional layer of the human placenta. Cx43 also impacts intracellular signaling through protein-protein interactions. The transcription factor GCM1 and its downstream target ERVW-1/SYNCYTIN-1 are key players in trophoblast fusion and exert their actions through the ERVW-1 receptor SLC1A5/ASCT-2/RDR/ATB(0). To investigate the molecular role of the Cx43 protein and its interaction with this fusogenic pathway, we utilized stable Cx43-transfected cell lines established from the choriocarcinoma cell line Jeg3: wild-type Jeg3, alphahCG/Cx43 (constitutive Cx43 expression), JpUHD/Cx43 (doxycyclin-inducible Cx43 expression), or JpUHD/trCx43 (doxycyclin-inducible Cx43 carboxyterminal deleted). We hypothesized that truncation of Cx43 at its C-terminus would inhibit trophoblast fusion and protein interaction with either ERVW-1 or SLC1A5. In the alphahCG/Cx43 and JpUHD/Cx43 lines, stimulation with cAMP caused 1) increase in GJA1 mRNA levels, 2) increase in percentage of fused cells, and 3) downregulation of SLC1A5 expression. Cell fusion was inhibited by GJIC blockade using carbenoxylone. Neither Jeg3, which express low levels of Cx43, nor the JpUHD/trCx43 cell line demonstrated cell fusion or downregulation of SLC1A5. However, GCM1 and ERVW-1 mRNAs were upregulated by cAMP treatment in both Jeg3 and all Cx43 cell lines. Silencing of GCM1 prevented the induction of GJA1 mRNA by forskolin in BeWo choriocarcinoma cells, demonstrating that GCM1 is upstream of Cx43. All cell lines and first-trimester villous explants also demonstrated coimmunoprecipitation of SLC1A5 and phosphorylated Cx43. Importantly, SLC1A5 and Cx43 gap junction plaques colocalized in situ to areas of fusing cytotrophoblast, as demonstrated by the loss of E-cadherin staining in the plasma membrane in first

  5. The histone variant H2A.Z is dynamically expressed in the developing mouse placenta and in differentiating trophoblast stem cells.

    PubMed

    Kafer, Georgia R; Carlton, Peter M; Lehnert, Sigrid A

    2015-11-01

    The histone variant H2A.Z is important in establishing new chromatin environments necessary for permitting changes in gene expression and thus differentiation in mouse embryonic stem (mES) cells. In this study we show that H2A.Z is highly expressed in the early mouse placenta, and is specifically limited to progenitor-like trophoblast cells. Using in vitro models, we revealed distinct differences in H2A.Z abundance between undifferentiated, differentiating and differentiated mouse trophoblast stem (mTS) cells. Our work supports the hypothesis that in addition to roles in differentiating mES cells, H2A.Z is also involved in the differentiation of extra-embryonic tissues. PMID:26363621

  6. Transcriptional and functional studies of Human Endogenous Retrovirus envelope EnvP(b) and EnvV genes in human trophoblasts

    SciTech Connect

    Vargas, Amandine Thiery, Maxime Lafond, Julie Barbeau, Benoit

    2012-03-30

    HERV (Human Endogenous Retrovirus)-encoded envelope proteins are implicated in the development of the placenta. Indeed, Syncytin-1 and -2 play a crucial role in the fusion of human trophoblasts, a key step in placentation. Other studies have identified two other HERV env proteins, namely EnvP(b) and EnvV, both expressed in the placenta. In this study, we have fully characterized both env transcripts and their expression pattern and have assessed their implication in trophoblast fusion. Through RACE analyses, standard spliced transcripts were detected, while EnvV transcripts demonstrated alternative splicing at its 3 Prime end. Promoter activity and expression of both genes were induced in forskolin-stimulated BeWo cells and in primary trophoblasts. Although we have confirmed the fusogenic activity of EnvP(b), overexpression or silencing experiments revealed no impact of this protein on trophoblast fusion. Our results demonstrate that both env genes are expressed in human trophoblasts but are not required for syncytialization.

  7. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage.

    PubMed

    Wang, Xiaofang; Lazorchak, Adam S; Song, Li; Li, Enqin; Zhang, Zhenwu; Jiang, Bin; Xu, Ren-He

    2016-02-01

    Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However, the generation methods reported so far vary greatly in quality and efficiency. Here, we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells "T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs, T-MSCs do not have increased expression of inflammatory mediators in response to IFNγ. Moreover, T-MSCs constitutively express a high level of the immune inhibitory ligand PD-L1 and elicit strong and durable efficacy in two distinct animal models of autoimmune disease, dextran sulfate sodium induced colitis, and experimental autoimmune encephalomyelitis, at doses near those approved for clinical trials. Together, we present a simple and fast derivation method to generate MSCs from hESCs, which possess potent immunomodulatory properties in vitro and in vivo and may serve as a novel and ideal candidate for MSC-based therapies. PMID:26523849

  8. p63 Inhibits Extravillous Trophoblast Migration and Maintains Cells in a Cytotrophoblast Stem Cell-Like State

    PubMed Central

    Li, Yingchun; Moretto-Zita, Matteo; Leon-Garcia, Sandra; Parast, Mana M.

    2015-01-01

    Proper differentiation of placental epithelial cells, called trophoblast, is required for implantation. Early during placentation, trophoblast cell columns help anchor the developing embryo in the uterine wall. Although proximally continuous with villous cytotrophoblast (CTB) distally, these cells differentiate into invasive extravillous trophoblast. We previously reported that p63, a p53 family member, is highly expressed in proliferative villous CTB and required for induction of the trophoblast lineage in human pluripotent stem cells. We now further explore its function in human trophoblast by using both primary CTB from the early placenta and established trophoblast cell lines. We show that p63 is expressed in epidermal growth factor receptor-positive CTB and that its expression decreases with differentiation into HLA-G+ extravillous trophoblast. In trophoblast cell lines, p63 is expressed in JEG3 cells but absent from HTR8 cells. Overexpression of p63 in both cell lines enhances cell proliferation and significantly reduces cell migration; conversely, down-regulation of p63 in JEG3 cells reduces cell proliferation and restores cell migration. Analysis of epithelial-to-mesenchymal transition, cell adhesion, and matrix degradation pathways shows that p63 blocks epithelial-to-mesenchymal transition, promotes a CTB-specific cell adhesion profile, and inhibits expression of matrix metalloproteinases. Taken together, these data show that p63 maintains the proliferative CTB state, at least partially through regulation of epithelial-to-mesenchymal transition, cell adhesion, and matrix degradation pathways. PMID:25307348

  9. Claudin-3, claudin-7, and claudin-10 show different distribution patterns during decidualization and trophoblast invasion in mouse and human.

    PubMed

    Schumann, S; Buck, V U; Classen-Linke, I; Wennemuth, G; Grümmer, R

    2015-12-01

    Implantation of the mammalian embryo requires profound endometrial changes for successful pregnancy, including epithelial-mesenchymal transition of the luminal epithelium and stromal-epithelial transition of the stromal cells resulting in decidualization. Claudins (Cldn) determine the variability in tight junction paracellular permeability and may play a role during these epithelial and decidual changes. We here localized Cldn3, Cldn7 and Cldn10 proteins in the different compartments of murine endometrium up to day 8.5 of pregnancy (dpc) as well as in human endometrium and first trimester decidua. In murine estrous endometrium, luminal and glandular epithelium exhibited Cldn3 and Cldn7, whereas Cldn10 was only detectable in glandular epithelium. At 4.5 dpc, Cldn3 protein shifted to an apical localization, whereas Cldn7 vanished in the epithelium of the implantation chamber. At this stage, there was no stromal signal for Cldn3 and Cldn7, but a strong induction of Cldn10 in the primary decidual zone. Cldn3 proteins emerged at 5.5 dpc spreading considerably from 6.5 dpc onward in the endothelial cells of the decidual blood sinusoids and in the decidual cells of the compact antimesometrial region. In addition to Cldn3, Cldn10 was identified in human endometrial epithelia. Both proteins were not detected in human first trimester decidual cells. Cldn3 was shown in murine trophoblast giant cells as well as in human extravillous trophoblast cells and thus may have an impact on trophoblast invasion in both species. We here showed a specific claudin signature during early decidualization pointing to a role in decidual angiogenesis and regulation of trophoblast invasion. PMID:26340953

  10. Endothelial nitric oxide synthase immunoreactivity in early gestation and in trophoblastic disease.

    PubMed Central

    Ariel, I; Hochberg, A; Shochina, M

    1998-01-01

    AIMS: To study the localisation of the endothelial nitric oxide synthase (eNOS) in the normal placenta, with special emphasis on the implantation site in the first trimester of pregnancy, and in the different subtypes of trophoblastic cells in gestational trophoblastic disease. METHODS: The immunoperoxidase technique with an antibody directed against eNOS was applied to paraffin sections from first and second trimester placentas, placenta accreta, partial and complete hydatidiform moles, and choriocarcinoma. Immunoperoxidase staining for human placental lactogen (hPL) was performed on parallel sections. RESULTS: Prominent immunoreactivity for eNOS was found to be present in the intermediate trophoblastic cells of the cell columns of the anchoring villi and in trophoblastic cells at the implantation site. Staining was also present in the syncytiotrophoblast, most conspicuous at the apical cell border. In trophoblastic disease, proliferating large mononuclear cells, which were strongly positive for hPL, were found to be immunoreactive for eNOS. CONCLUSIONS: eNOS immunoreactivity is strongly positive in the extravillous trophoblastic cells and to a lesser extent in the syncytiotrophoblast. In the former it may play a role in implantation and vascular invasion. Cells with differentiation to intermediate trophoblast in complete hydatidiform mole and choriocarcinoma also show high levels of eNOS, which may be associated with the haematogenous mode of spread of trophoblastic disease. Images PMID:9771440

  11. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation.

    PubMed

    van Dijk, Marie; Visser, Allerdien; Buabeng, Kwadwo M L; Poutsma, Ankie; van der Schors, Roel C; Oudejans, Cees B M

    2015-10-01

    LINC-HELLP, showing chromosomal linkage with the pregnancy-specific HELLP syndrome in Dutch families, reduces differentiation from a proliferative to an invasive phenotype of first-trimester extravillous trophoblasts. Here we show that mutations in LINC-HELLP identified in HELLP families negatively affect this trophoblast differentiation either by inducing proliferation rate or by causing cell cycle exit as shown by a decrease in both proliferation and invasion. As LincRNAs predominantly function through interactions with proteins, we identified the directly interacting proteins using chromatin isolation by RNA purification followed by protein mass spectrometry. We found 22 proteins predominantly clustering in two functional networks, i.e. RNA splicing and the ribosome. YBX1, PCBP1, PCBP2, RPS6 and RPL7 were validated, and binding to these proteins was influenced by the HELLP mutations carried. Finally, we show that the LINC-HELLP transcript levels are significantly upregulated in plasma of women in their first trimester of pregnancy compared with non-pregnant women, whereas this upregulation seems absent in a pilot set of patients later developing pregnancy complications, indicative of its functional significance in vivo. PMID:26173455

  12. Tube formation in the first trimester placental trophoblast cells: Differential effects of angiogenic growth factors and fatty acids.

    PubMed

    Pandya, Abhilash D; Das, Mrinal K; Sarkar, Arnab; Vilasagaram, Srinivas; Basak, Sanjay; Duttaroy, Asim K

    2016-06-01

    The study aims to investigate whether cytosolic fatty acid-binding protein-4 (FABP4) is involved in angiogenic growth factors- and fatty acid-induced tube formation in first trimester placental trophoblast cells, HTR8/SVneo. We determined the tube formation both at basal as well as stimulated levels in the absence and presence of inhibitors of FABP4 and VEGF signaling pathways. Basal level of tube formation was maximally reduced in the presence of 50 µM of FABP4 inhibitor compared with those by VEGF signaling pathway inhibitors (rapamycin, L-NAME, and p38 MAP kinase inhibitor). Whereas docosahexaenoic acid, 22:6n-3 (DHA)-, and VEGF-induced tube formation was maximally inhibited by p38 MAP kinase inhibitor (63.7 and 34.5%, respectively), however, leptin-induced tube formation was inhibited maximally by FABP4 inhibitor (50.7%). ANGPTL4 and oleic acid (OA)-induced tube formation was not blocked by any of these inhibitors. The FABP4 inhibitor inhibited cell growth stimulated by DHA, leptin, VEGF, and OA (P < 0.05) but was not affected by ANGPTL4. VEGF, leptin, and OA also increased FABP4 protein level in these cells, though the uptake of fatty acids by these cells was not affected by the presence of FABP4 inhibitor. Our data demonstrate that FABP4 may be involved in part in the basal level, and stimulated tube formation by VEGF, DHA, and leptin, whereas it has little or no effect in ANGPTL4- and OA-induced tube formation in these cells. Thus, FABP4 may play a differential role in fatty acids and angiogenic growth factors-mediated tube formation in the first trimester trophoblast cells in vitro. PMID:26992362

  13. The proprotein convertase furin is required for trophoblast syncytialization

    PubMed Central

    Zhou, Z; Zhang, Q; Lu, X; Wang, R; Wang, H; Wang, Y-L; Zhu, C; Lin, H-Y; Wang, H

    2013-01-01

    The multinucleated syncytial trophoblast, which forms the outermost layer of the placenta and serves multiple functions, is differentiated from and maintained by cytotrophoblast cell fusion. Deficiencies in syncytial trophoblast differentiation or maintenance likely contribute to intrauterine growth restriction and pre-eclampsia, two common gestational diseases. The cellular and molecular mechanisms governing trophoblast syncytialization are poorly understood. We report here that the proprotein convertase furin is highly expressed in syncytial trophoblast in the first trimester human placentas, and expression of furin in the syncytiotrophoblast is significantly lower in the placentas from pre-eclamptic patients as compared with their gestational age-matched control placentas. Using multiple experimental models including induced fusion of choriocarcinoma BeWo cells and spontaneous fusion of primary cultured cytotrophoblast cells or placental explants, we demonstrate that cytotrophoblast cell fusion and syncytialization are accompanied by furin expression. Furin-specific siRNAs or inhibitors inhibit cell fusion in BeWo cells, as well as trophoblast syncytialization in human placental explants. Furthermore, type 1 IGF receptor (IGF1R) is indicated in this study as a substrate of furin, and processing of IGF1R by furin is an essential mechanism for syncytialization. Finally, using lentivirus-mediated RNAi targeting to mouse trophectoderm, we demonstrate that furin function is required for the development of syncytiotrophoblast structure in the labyrinth layer, as well as for normal embryonic development. PMID:23598405

  14. Tetrabromobisphenol A Activates Inflammatory Pathways in Human First Trimester Extravillous Trophoblasts in vitro

    PubMed Central

    Park, Hae-Ryung; Kamau, Patricia W.; Korte, Cassandra; Loch-Caruso, Rita

    2014-01-01

    Tetrabromobisphenol A (TBBPA) is a widely used flame retardant. Despite the presence of TBBPA in gestational tissues and the importance of proper regulation of inflammatory networks for successful pregnancy, there is no prior study on the effects of TBBPA on inflammatory responses in gestational tissues. The present study aimed to investigate TBBPA activation of inflammatory pathways, specifically cytokine and prostaglandin production, in the human first trimester placental cell line HTR-8/SVneo. TBBPA enhanced release of interleukin (IL)-6, IL-8, and prostaglandin E2 (PGE2), and suppressed TGF-β release in HTR-8/SVneo cells. The lowest effective concentration was 10 μM TBBPA. A commercial immune response PCR array revealed increased expression of genes involved in inflammatory pathways stimulated by TBBPA in HTR-8/SVneo cells. Because proper regulation of inflammatory mediators in the gestational compartment is necessary for normal placental development and successful pregnancy, further investigation on the impact of TBBPA-stimulated responses on trophoblast function is warranted. PMID:25461914

  15. Trophoblast glycoprotein recognised by monoclonal antibody 5T4 maps to human chromosome 6q14-q15.

    PubMed

    Boyle, J M; Grzeschik, K H; Heath, P R; Morten, J E; Stern, P L

    1990-04-01

    Human X rodent hybrids were stained by indirect immunofluorescence with 5T4, a murine monoclonal antibody that recognises a 72 kdalton glycoprotein expressed by human trophoblasts and a very restricted range of adult tissues; they were analysed by flow cytometry. Concordance analysis supported by segregation data allowed assignment of the gene controlling glycoprotein expression (M6P1) to chromosome 6. Similar analysis with translocation hybrids gave a regional assignment to 6q14-q15. M6P1 is distinct from NT5, coding for 5' nucleotidase, which maps to the same region. PMID:2323778

  16. Effects of maternal diabetes on trophoblast cells.

    PubMed

    Aires, Marlúcia Bastos; Dos Santos, Anne Carolline Veríssimo

    2015-03-15

    Diabetes mellitus (DM) is a health condition characterized by hyperglycemia over a prolonged period. There are three main types of DM: DM type 1 (DM1), DM2 and gestational DM (GDM). Maternal diabetes, which includes the occurrence of DM1 and DM2 during pregnancy or GDM, increases the occurrence of gesttional complications and adverse fetal outcomes. The hyperglycemic intrauterine environment affects not only the fetus but also the placental development and function in humans and experimental rodents. The underlying mechanisms are still unclear, but some evidence indicates alterations in trophoblast proliferation, apoptosis and cell cycle control in diabetes. A proper coordination of trophoblast proliferation, differentiation and invasion is required for placental development. Initially, increased expression of proliferative markers in junctional and labyrinth zones of rat placentas and villous cytotrophoblast, syncytiotrophoblast, stromal cells and fetal endothelial cells in human placentas is reported among diabetics. Moreover, reduced apoptotic index and expression of some apoptotic genes are described in placentas of GDM women. In addition, cell cycle regulators including cyclins and cyclin-dependent kinase inhibitors seem to be affected by the hyperglycemic environment. More studies are necessary to check the balance between proliferation, apoptosis and differentiation in trophoblast cells during maternal diabetes. PMID:25789116

  17. Gestational trophoblastic disease

    MedlinePlus

    ... type of cancer) Hydatiform mole (also called a molar pregnancy) References Goldstein DP, Berkowitz RS. Gestational trophoblastic disease. ... 90. McGee J, Covens A. Gestational trophoblastic disease: hydatidiform mole, nonmetastatic and metastatic gestational trophoblastic tumor: diagnosis and ...

  18. Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo.

    PubMed

    Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko

    2016-01-01

    The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells. PMID:26223706

  19. Epithelioid Trophoblastic Tumor in a Postmenopausal Woman: A Case Report

    PubMed Central

    Park, Jung-Woo

    2016-01-01

    Epithelioid trophoblastic tumor (ETT) is a rare gestational trophoblastic neoplasm composed of intermediate trophoblasts. Most cases of ETT are reported in women of reproductive age following a prior gestation within 2 weeks to 30 years. ETT is extremely rare in postmenopausal women. It is commonly misdiagnosed as a poorly differentiated carcinoma or another type of gestational trophoblastic tumor. We report a case of ETT in a 56-year-old woman that developed 23 years after the patient's last pregnancy. PMID:27152314

  20. A role for uric acid and the Nalp3 inflammasome in antiphospholipid antibody-induced IL-1β production by human first trimester trophoblast.

    PubMed

    Mulla, Melissa J; Salmon, Jane E; Chamley, Larry W; Brosens, Jan J; Boeras, Crina M; Kavathas, Paula B; Abrahams, Vikki M

    2013-01-01

    Women with antiphospholipid syndrome (APS) are at risk of recurrent pregnancy loss and obstetrical disorders, such as preeclampsia and intrauterine growth restriction (IUGR). Antiphospholipid antibodies (aPL) directly target the placenta by binding beta2-glycoprotein I (β2GPI) expressed on the trophoblast. We recently demonstrated in human first trimester trophoblast cells that anti-β2GPI antibodies (Abs) induce the secretion of IL-1β in a Toll-like receptor 4 (TLR4)-dependent manner. IL-1β secretion requires processing of pro-IL-1β and this is mediated by the inflammasome, a complex of Nalp3, apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1. The objective of this study was to determine if aPL induce IL-1β production in trophoblast via the inflammasome. Using a human first trimester trophoblast cell line, we demonstrated that a mouse anti-β2GPI mAb and human polyclonal aPL-IgG induce IL-1β processing and secretion, which was partially blocked upon caspase-1 inhibition. Nalp3 and ASC knockdown also attenuated anti-β2GPI Ab-induced IL-1β secretion. Furthermore, aPL stimulated the production of uric acid in a TLR4-dependent manner; and inhibition of uric acid prevented aPL-induced IL-1β production by the trophoblast. These findings demonstrate that aPL, via TLR4 activation, induce a uric acid response in human trophoblast, which in turn activates the Nalp3/ASC inflammasome leading to IL-1β processing and secretion. This novel mechanism may account for the inflammation at the maternal-fetal interface, which causes placental dysfunction and increases the risk of adverse pregnancy outcome in patients with APS. PMID:23762324

  1. Interaction between human placental microvascular endothelial cells and a model of human trophoblasts: effects on growth cycle and angiogenic profile.

    PubMed

    Troja, Weston; Kil, Kicheol; Klanke, Charles; Jones, Helen N

    2014-01-01

    Abstract Intrauterine growth restriction (IUGR) is a leading cause of perinatal complications, and is commonly associated with reduced placental vasculature. Recent studies demonstrated over-expression of IGF-1 in IUGR animal models maintains placental vasculature. However, the cellular environment of the placental chorionic villous is unknown. The close proximity of trophoblasts and microvascular endothelial cells in vivo alludes to autocrine/paracrine regulation following Ad-HuIGF-1 treatment. We investigated the co-culturing of BeWo Choriocarcinoma and Human Placental Microvascular Endothelial Cells (HPMVECs) on the endothelial angiogenic profile and the effect Ad-HuIGF-1 treatment of one cell has on the other. HPMVECs were isolated from human term placentas and cultured in EGM-2 at 37°C with 5% CO2. BeWo cells were maintained in Ham's F12 nutrient mix with 10% FBS and 1% pen/strep. Co-cultured HPMVECS+BeWo cells were incubated in serum-free control media, Ad-HuIGF-1, or Ad-LacZ at MOI 0 and MOI 100:1 for 48 h. Non-treated cells and mono-cultured cells were compared to co-cultured cells. Angiogenic gene expression and proliferative and apoptotic protein expression were analysed by RT-qPCR and immunocytochemistry, respectively. Statistical analyses was performed using student's t-test with P < 0.05 considered significant. Direct Ad-HuIGF-1 treatment increased HPMVEC proliferation (n = 4) and reduced apoptosis (n = 3). Co-culturing HPMVECs+BeWo cells significantly altered RNA expression of the angiogenic profile compared to mono-cultured HPMVECs (n = 8). Direct Ad-HuIGF-1 treatment significantly increased Ang-1 (n = 4) in BeWo cells. Ad-HuIGF-1 treatment of HPMVECs did not alter the RNA expression of angiogenic factors. Trophoblastic factors may play a key role in placental vascular development and IGF-1 may have an important role in HPMVEC growth. PMID:24760505

  2. RhoGDI2 is expressed in human trophoblasts and involved in their migration by inhibiting the activation of RAC1.

    PubMed

    Liu, Sishi; Cui, Hong; Li, Qiuling; Zhang, Lijuan; Na, Quan; Liu, Caixia

    2014-04-01

    The invasion of placental trophoblast cells into the maternal decidua is an essential aspect of placental embedment. The process of placentation bears several striking similarities to tumor cell metastasis. However, trophoblastic migration during implantation and placentation is stringently controlled both in space and time. RhoGDI2 belongs to a family of Rho guanosine diphosphate dissociation inhibitors (RhoGDIs), and RhoGDI2 is a metastasis suppressor gene and a marker of aggressive human cancer. We evaluated whether RhoGDI2 has a physiological role in embryo implantation, particularly trophoblast migration. The mRNA and protein expression levels of RhoGDI2 were higher in term placentas compared with first-trimester placentas as detected by real-time PCR and Western blot. Immunohistochemical studies indicated that RhoGDI2 localized to the cytotrophoblast layer and extravillous trophoblast in first-trimester placentas and was distributed in the syncytiotrophoblast layers of term placentas. Overexpression of RhoGDI2 in HTR-8/SVneo cells was associated with reduced RAC1-guanosine triphosphate (GTP) levels and inhibited cell migration. Conversely, small interfering RNA-mediated downregulation of RhoGDI2 resulted in significantly increased RAC1-GTP levels. Altered RhoGDI2 expression had no significant effects on cell proliferation. In conclusion, RhoGDI2 inhibits trophoblast cell migration, and this function may involve suppression of RAC1 activation. PMID:24554735

  3. Maternal DNA Methylation Regulates Early Trophoblast Development

    PubMed Central

    Branco, Miguel R.; King, Michelle; Perez-Garcia, Vicente; Bogutz, Aaron B.; Caley, Matthew; Fineberg, Elena; Lefebvre, Louis; Cook, Simon J.; Dean, Wendy; Hemberger, Myriam; Reik, Wolf

    2016-01-01

    Summary Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. PMID:26812015

  4. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro

    SciTech Connect

    Park, Hae-Ryung Kamau, Patricia W.; Loch-Caruso, Rita

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15 μM and 9 fold at 20 μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20 μM) decreased the mitochondrial membrane potential by 47–64.5% at 4, 8 and 24 h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20 μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions

  5. Involvement of Reactive Oxygen Species in Brominated Diphenyl Ether-47-induced Inflammatory Cytokine Release from Human Extravillous Trophoblasts in vitro

    PubMed Central

    Park, Hae-Ryung; Kamau, Patricia W.; Loch-Caruso, Rita

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15 μM and 9 fold at 20 μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20 μM) decreased the mitochondrial membrane potential by 47–64.5% at 4, 8 and 24 h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20 μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24 h exposures: the greatest increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions

  6. Antisperm antibody-mediated alterations in the cellular activity of human trophoblast cells in culture.

    PubMed

    Sinha, D; Chattopadhyay, S

    1994-04-01

    Immune recognition of the fetus is well documented, yet the immunological basis of pregnancy loss awaits elucidation. Identification of trophoblast membrane epitopes as non-self either by preformed immunoglobulins or by circulating immunocompetent cells would lead to immunological rejection of the tissue. Such an event may occur in cases of cross-reacting antibodies developed as a consequence of exposure of sperm surface antigens. This hypothesis was tested by developing specific antibodies in rabbits against intact sperm surface antigens. These were subjected to different schedules of IgG purification and characterization. By means of nuclide precursor incorporation, the effect of antisperm antibody on DNA, RNA and protein synthesis of trophoblast cells in culture were studied. The results showed that the antibody inhibits incorporation into cells but after a delay of 72 hours some cells gradually recover. The interaction also led to a reduced rate of hCG production. Lysosomal enzyme activity was inhibited in the spent medium of antibody-treated cells but lysosome rich fractions showed no effect. This indicated that the major effect of the antibody was growth inhibitory rather than cytolytic. PMID:7520885

  7. Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection.

    PubMed

    Carrillo, Ileana; Droguett, Daniel; Castillo, Christian; Liempi, Ana; Muñoz, Lorena; Maya, Juan Diego; Galanti, Norbel; Kemmerling, Ulrike

    2016-09-01

    Congenital Chagas disease is caused by the protozoan parasite Trypanosoma cruzi that must cross the placental barrier during transmission. The trophoblast constitutes the first tissue in contact with the maternal-blood circulating parasite. Importantly, the congenital transmission rates are low, suggesting the presence of local placental defense mechanisms. Cellular proliferation and differentiation as well as apoptotic cell death are induced by the parasite and constitute part of the epithelial turnover of the trophoblast, which has been suggested to be part of those placental defenses. On the other hand, caspase-8 is an essential molecule in the modulation of trophoblast turnover by apoptosis and by epithelial differentiation. As an approach to study whether T. cruzi induced trophoblast turnover and infection is mediated by caspase-8, we infected BeWo cells (a trophoblastic cell line) with the parasite and determined in the infected cells the expression and enzymatic activity of caspase-8, DNA synthesis (as proliferation marker), β-human chorionic gonadotropin (β-hCG) (as differentiation marker) and activity of Caspase-3 (as apoptotic death marker). Parasite load in BeWo cells was measured by DNA quantification using qPCR and cell counting. Our results show that T. cruzi induces caspase-8 activity and that its inhibition increases trophoblast cells infection while decreases parasite induced cellular differentiation and apoptotic cell death, but not cellular proliferation. Thus, caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against T. cruzi infection. Together with our previous results, we suggest that the trophoblast turnover is part of local placental anti-parasite mechanisms. PMID:27328973

  8. mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3

    SciTech Connect

    Busch, Susann; Renaud, Stephen J.; Schleussner, Ekkehard; Graham, Charles H.; Markert, Udo R.

    2009-06-10

    The intracellular signaling molecule mammalian target of rapamycin (mTOR) is essential for cell growth and proliferation. It is involved in mouse embryogenesis, murine trophoblast outgrowth and linked to tumor cell invasiveness. In order to assess the role of mTOR in human trophoblast invasion we analyzed the in vitro invasiveness of HTR-8/SVneo immortalized first-trimester trophoblast cells in conjunction with enzyme secretion upon mTOR inhibition and knockdown of mTOR protein expression. Additionally, we also tested the capability of mTOR to trigger signal transducer and activator of transcription (STAT)-3 by its phosphorylation status. Rapamycin inhibited mTOR kinase activity as demonstrated with a lower phosphorylation level of the mTOR substrate p70 S6 kinase (S6K). With the use of rapamycin and siRNA-mediated mTOR knockdown we could show that cell proliferation, invasion and secretion of matrix-metalloproteinases (MMP)-2 and -9, urokinase-like plasminogen activator (uPA) and its major physiological uPA inhibitor (PAI)-1 were inhibited. While tyrosine phosphorylation of STAT3 was unaffected by mTOR inhibition and knockdown, serine phosphorylation was diminished. We conclude that mTOR signaling is one major mechanism in a tightly regulated network of intracellular signal pathways including the JAK/STAT system to regulate invasion in human trophoblast cells by secretion of enzymes that remodel the extra-cellular matrix (ECM) such as MMP-2, -9, uPA and PAI-1. Dysregulation of mTOR may contribute to pregnancy-related pathologies caused through impaired trophoblast invasion.

  9. Human invasive trophoblasts transformed with simian virus 40 provide a new tool to study the role of PPARgamma in cell invasion process.

    PubMed

    Pavan, Laëtitia; Tarrade, Anne; Hermouet, Axelle; Delouis, Claude; Titeux, Mattias; Vidaud, Michel; Thérond, Patrice; Evain-Brion, Daniele; Fournier, Thierry

    2003-08-01

    Invasive cytotrophoblasts play a key role in the development of human placenta and is therefore essential for subsequent development of the embryo. Human implantation is characterized by a major trophoblastic invasion that offers a unique model of a controlled and oriented tumor-like process. The ligand-activated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) modulates cell growth and differentiation and might be therefore considered as a tumor suppressor. We have recently reported that PPARgamma, in synergy with its dimerization partner retinoid X receptor (RXR)alpha, controls the invasion of human primary cytotrophoblasts. Because these cells are unable to replicate in culture, we have, in the present study, transformed these primary cells with the simian virus 40 large T antigen for studying the role of PPARgamma in cell invasion process. Our results show that the cell line human invasive proliferative extravillous cytotrophoblast (HIPEC) 65 expressed markers of human invasive primary cytotrophoblast as determined by immunocytochemistry, immunobloting and real-time RT-PCR, and were highly invasive in vitro. We have next studied the role of PPARgamma/RXRalpha heterodimers in cell proliferation and invasion. Our results show that PPARgamma and RXRalpha are co-expressed by HIPEC 65 and that, as commonly observed, activation of PPARgamma/RXRalpha heterodimers with the specific PPARgamma agonist rosiglitazone induced lipid droplet accumulation as revealed by oil red O staining. Treatment with rosiglitazone or with the natural PPARgamma agonist 15-deoxy-delta-(12,14) PGJ2 did not modify cell growth, but interestingly, activation of PPARgamma by this synthetic (rosiglitazone) or natural (15d-PGJ2) ligand markedly inhibited cell invasion in a concentration-dependent manner. Finally, we showed that other potential natural PPARgamma ligand such as oxidized-but not native-low-density lipoprotein inhibited cell invasion. This proliferative and

  10. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    PubMed Central

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy. PMID:25792832

  11. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    PubMed

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. PMID:22197627

  12. Oxygen-Sensitive K+ Channels Modulate Human Chorionic Gonadotropin Secretion from Human Placental Trophoblast.

    PubMed

    Díaz, Paula; Sibley, Colin P; Greenwood, Susan L

    2016-01-01

    Human chorionic gonadotropin (hCG) is a key autocrine/paracrine regulator of placental syncytiotrophoblast, the transport epithelium of the human placenta. Syncytiotrophoblast hCG secretion is modulated by the partial pressure of oxygen (pO2), reactive oxygen species (ROS) and potassium (K+) channels. Here we test the hypothesis that K+ channels mediate the effects of pO2 and ROS on hCG secretion. Placental villous explants from normal term pregnancies were cultured for 6 days at 6% (normoxia), 21% (hyperoxia) or 1% (hypoxia) pO2. On days 3-5, explants were treated with 5mM 4-aminopyridine (4-AP) or tetraethylammonium (TEA), blockers of pO2-sensitive voltage-gated K+ (KV) channels, or ROS (10-1000μM H2O2). hCG secretion and lactate dehydrogenase (LDH) release, a marker of necrosis, were determined daily. At day 6, hCG and LDH were measured in tissue lysate and 86Rb (K+) efflux assessed to estimate syncytiotrophoblast K+ permeability. hCG secretion and 86Rb efflux were significantly greater in explants maintained in 21% pO2 than normoxia. 4-AP/TEA inhibited hCG secretion to a greater extent at 21% than 6% and 1% pO2, and reduced 86Rb efflux at 21% but not 6% pO2. LDH release and tissue LDH/hCG were similar in 6%, 21% and 1% pO2 and unaffected by 4-AP/TEA. H2O2 stimulated 86Rb efflux and hCG secretion at normoxia but decreased 86Rb efflux, without affecting hCG secretion, at 21% pO2. 4-AP/TEA-sensitive K+ channels participate in pO2-sensitive hCG secretion from syncytiotrophoblast. ROS effects on both hCG secretion and 86Rb efflux are pO2-dependent but causal links between the two remain to be established. PMID:26863525

  13. Oxygen-Sensitive K+ Channels Modulate Human Chorionic Gonadotropin Secretion from Human Placental Trophoblast

    PubMed Central

    Díaz, Paula; Sibley, Colin P.; Greenwood, Susan L.

    2016-01-01

    Human chorionic gonadotropin (hCG) is a key autocrine/paracrine regulator of placental syncytiotrophoblast, the transport epithelium of the human placenta. Syncytiotrophoblast hCG secretion is modulated by the partial pressure of oxygen (pO2), reactive oxygen species (ROS) and potassium (K+) channels. Here we test the hypothesis that K+ channels mediate the effects of pO2 and ROS on hCG secretion. Placental villous explants from normal term pregnancies were cultured for 6 days at 6% (normoxia), 21% (hyperoxia) or 1% (hypoxia) pO2. On days 3–5, explants were treated with 5mM 4-aminopyridine (4-AP) or tetraethylammonium (TEA), blockers of pO2-sensitive voltage-gated K+ (KV) channels, or ROS (10–1000μM H2O2). hCG secretion and lactate dehydrogenase (LDH) release, a marker of necrosis, were determined daily. At day 6, hCG and LDH were measured in tissue lysate and 86Rb (K+) efflux assessed to estimate syncytiotrophoblast K+ permeability. hCG secretion and 86Rb efflux were significantly greater in explants maintained in 21% pO2 than normoxia. 4-AP/TEA inhibited hCG secretion to a greater extent at 21% than 6% and 1% pO2, and reduced 86Rb efflux at 21% but not 6% pO2. LDH release and tissue LDH/hCG were similar in 6%, 21% and 1% pO2 and unaffected by 4-AP/TEA. H2O2 stimulated 86Rb efflux and hCG secretion at normoxia but decreased 86Rb efflux, without affecting hCG secretion, at 21% pO2. 4-AP/TEA-sensitive K+ channels participate in pO2-sensitive hCG secretion from syncytiotrophoblast. ROS effects on both hCG secretion and 86Rb efflux are pO2-dependent but causal links between the two remain to be established. PMID:26863525

  14. AMPK Knockdown in Placental Trophoblast Cells Results in Altered Morphology and Function

    PubMed Central

    Carey, Erica A.K.; Albers, Renee E.; Doliboa, Savannah R.; Hughes, Martha; Wyatt, Christopher N.; Natale, David R.C.

    2014-01-01

    The placenta is a transient organ that develops upon the initiation of pregnancy and is essential for embryonic development and fetal survival. The rodent placenta consists of distinct lineages and includes cell types that are analogous to those that make up the human placenta. Trophoblast cells within the labyrinth layer, which lies closest to the fetus, fuse and come in contact with maternal blood, thus facilitating nutrient and waste exchange between the mother and the baby. Abnormalities of the placenta may occur as a result of cellular stress and have been associated with pregnancy-associated disorders: such as preeclampsia, intrauterine growth restriction, and placental insufficiency. Cellular stress has also been shown to alter proliferation and differentiation rates of trophoblast cells. This stress response is important for cell survival and ensures continued placental functionality. AMP-activated protein kinase is an important sensor of cellular metabolism and stress. To study the role of AMPK in the trophoblast cells, we used RNA interference to simultaneously knockdown levels of both the AMPK alpha isoforms, AMPKα1 and AMPKα2. SM10 trophoblast progenitor cells were transduced with AMPKα1/2 shRNA and stable clones were established to analyze the effects of AMPK knockdown on important cellular functions. Our results indicate that a reduction in AMPK levels causes alterations in cell morphology, growth rate, and nutrient transport, thus identifying an important role for AMPK in the regulation of placental trophoblast differentiation. PMID:25003940

  15. Protective effect of (±)α-tocopherol on brominated diphenyl ether-47-stimulated prostaglandin pathways in human extravillous trophoblasts in vitro.

    PubMed

    Park, Hae-Ryung; Loch-Caruso, Rita

    2015-10-01

    Brominated diphenyl ether (BDE)-47 is a prevalent flame retardant chemical found in human tissues and is linked to adverse pregnancy outcomes in humans. Because dysregulation of the prostaglandin pathway is implicated in adverse pregnancy outcomes, the present study investigates BDE-47 induction of prostaglandin synthesis in a human extravillous trophoblast cell line, HTR-8/SVneo, examining the hypothesis that BDE-47 increases generation of reactive oxygen species (ROS) to stimulate the prostaglandin response. Treatment with 20 μM BDE-47 significantly increased mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2) at 4, 12 and 24 h, and 24-h treatment significantly increased cyclooxygenase (COX)-2 cellular protein expression and prostaglandin E2 (PGE2) concentration in culture medium. The BDE-47-stimulated PGE2 release was inhibited by the COX inhibitors indomethacin and NS398, implicating COX activity. Exposure to 20 μM BDE-47 significantly increased ROS generation as measured by carboxydichlorofluorescein fluorescence, and this response was blocked by cotreatment with the peroxyl radical scavenger (±)-α-tocopherol. (±)-α-Tocopherol cotreatment suppressed BDE-47-stimulated increases of PGE2 release without significant effects on COX-2 mRNA and protein expression, implicating a role for ROS in post-translational regulation of COX activity. Because prostaglandins regulate trophoblast functions necessary for placentation and pregnancy, further investigation is warranted of BDE-47 impacts on trophoblast responses. PMID:26026498

  16. Hepatitis C Virus Sensing by Human Trophoblasts Induces Innate Immune Responses and Recruitment of Maternal NK Cells: Potential Implications for Limiting Vertical Transmission.

    PubMed

    Giugliano, Silvia; Petroff, Margaret G; Warren, Bryce D; Jasti, Susmita; Linscheid, Caitlin; Ward, Ashley; Kramer, Anita; Dobrinskikh, Evgenia; Sheiko, Melissa A; Gale, Michael; Golden-Mason, Lucy; Winn, Virginia D; Rosen, Hugo R

    2015-10-15

    Hepatitis C virus (HCV) is the world's most common blood-borne viral infection for which there is no vaccine. The rates of vertical transmission range between 3 and 6% with odds 90% higher in the presence of HIV coinfection. Prevention of vertical transmission is not possible because of lack of an approved therapy for use in pregnancy or an effective vaccine. Recently, HCV has been identified as an independent risk factor for preterm delivery, perinatal mortality, and other complications. In this study, we characterized the immune responses that contribute to the control of viral infection at the maternal-fetal interface (MFI) in the early gestational stages. In this study, we show that primary human trophoblast cells and an extravillous trophoblast cell line (HTR8), from first and second trimester of pregnancy, express receptors relevant for HCV binding/entry and are permissive for HCV uptake. We found that HCV-RNA sensing by human trophoblast cells induces robust upregulation of type I/III IFNs and secretion of multiple chemokines that elicit recruitment and activation of decidual NK cells. Furthermore, we observed that HCV-RNA transfection induces a proapoptotic response within HTR8 that could affect the morphology of the placenta. To our knowledge, for the first time, we demonstrate that HCV-RNA sensing by human trophoblast cells elicits a strong antiviral response that alters the recruitment and activation of innate immune cells at the MFI. This work provides a paradigm shift in our understanding of HCV-specific immunity at the MFI as well as novel insights into mechanisms that limit vertical transmission but may paradoxically lead to virus-related pregnancy complications. PMID:26342030

  17. The role of invasive trophoblast in implantation and placentation of primates

    PubMed Central

    Carter, Anthony M.; Enders, Allen C.; Pijnenborg, Robert

    2015-01-01

    We here review the evolution of invasive placentation in primates towards the deep penetration of the endometrium and its arteries in hominoids. The strepsirrhine primates (lemurs and lorises) have non-invasive, epitheliochorial placentation, although this is thought to be derived from a more invasive type. In haplorhine primates, there is differentiation of trophoblast at the blastocyst stage into syncytial and cellular trophoblast. Implantation involves syncytiotrophoblast that first removes the uterine epithelium then consolidates at the basal lamina before continuing into the stroma. In later stages of pregnancy, especially in Old World monkeys and apes, cytotrophoblast plays a greater role in the invasive process. Columns of trophoblast cells advance to the base of the implantation site where they spread out to form a cytotrophoblastic shell. In addition, cytotrophoblasts advance into the lumen of the spiral arteries. They are responsible for remodelling these vessels to form wide, low-resistance conduits. In human and great apes, there is additional invasion of the endometrium and its vessels by trophoblasts originating from the base of the anchoring villi. Deep trophoblast invasion that extends remodelling of the spiral arteries to segments in the inner myometrium evolved in the common ancestor of gorilla, chimp and human. PMID:25602074

  18. The role of invasive trophoblast in implantation and placentation of primates.

    PubMed

    Carter, Anthony M; Enders, Allen C; Pijnenborg, Robert

    2015-03-01

    We here review the evolution of invasive placentation in primates towards the deep penetration of the endometrium and its arteries in hominoids. The strepsirrhine primates (lemurs and lorises) have non-invasive, epitheliochorial placentation, although this is thought to be derived from a more invasive type. In haplorhine primates, there is differentiation of trophoblast at the blastocyst stage into syncytial and cellular trophoblast. Implantation involves syncytiotrophoblast that first removes the uterine epithelium then consolidates at the basal lamina before continuing into the stroma. In later stages of pregnancy, especially in Old World monkeys and apes, cytotrophoblast plays a greater role in the invasive process. Columns of trophoblast cells advance to the base of the implantation site where they spread out to form a cytotrophoblastic shell. In addition, cytotrophoblasts advance into the lumen of the spiral arteries. They are responsible for remodelling these vessels to form wide, low-resistance conduits. In human and great apes, there is additional invasion of the endometrium and its vessels by trophoblasts originating from the base of the anchoring villi. Deep trophoblast invasion that extends remodelling of the spiral arteries to segments in the inner myometrium evolved in the common ancestor of gorilla, chimp and human. PMID:25602074

  19. Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport.

    PubMed

    Wittmaack, F M; Gåfvels, M E; Bronner, M; Matsuo, H; McCrae, K R; Tomaszewski, J E; Robinson, S L; Strickland, D K; Strauss, J F

    1995-01-01

    The very low density lipoprotein/apolipoprotein-E receptor (VLDLR) is the newest member of the low density lipoprotein receptor (LDLR) family. Very little is known about VLDLR localization and regulation. Immunohistochemical analysis of human placenta with a specific polyclonal antibody detected VLDLR in syncytiotrophoblast and intermediate trophoblast cells. VLDLR transcripts were also localized in these cells by in situ hybridization histochemistry. In addition, VLDLR messenger RNA (mRNA) was detected in villous core endothelial cells and cells appearing to be Hofbauer cells. Northern blot analysis of placenta revealed a 2.6-fold increase in VLDLR mRNA at term compared to that in the first trimester. The regulation of VLDLR expression was studied in JEG-3 and BeWo choriocarcinoma cells, two trophoblast-derived cell lines. Treatment of these cells with 8-bromo-cAMP caused a profound suppression of VLDLR message, whereas LDLR transcripts were increased. Incubation of JEG-3 cells with 25-hydroxycholesterol did not lead to sterol negative feedback on VLDLR gene expression, unlike LDLR mRNA, which declined markedly. Insulin (200 mg/L) up-regulated VLDLR message in JEG-3 cells 2-fold, as did the fibrate hypolipidemic drug, clofibric acid. We conclude that 1) VLDLR is expressed in human placental trophoblast cells in a pattern consistent with a role in placental lipid transport; 2) VLDLR expression is high at term relative to that in the first trimester; and 3) the trophoblast VLDLR is subject to down-regulation by cAMP and up-regulation by insulin and fibrate hypolipidemic drugs. PMID:7828550

  20. Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast.

    PubMed Central

    Mutter, G L; Stewart, C L; Chaponot, M L; Pomponio, R J

    1993-01-01

    Human uniparental gestations such as gynogenetic ovarian teratomas and androgenetic complete hydatidiform moles provide a model to evaluate the integrity of parent-specific gene expression--i.e., imprinting--in the absence of a complementary parental genetic contribution. We studied expression, in these tissues, of the oppositely imprinted genes H19, which is an embryonic nontranslated RNA, and insulin-like growth factor type 2 (IGF2). Normal gestations only express H19 from the maternal allele and express IGF2 from the paternal allele, whereas neither is expressed from the maternal genome of gynogenetic gestations, and both are expressed from the paternal genome of androgenetic gestations. Coexpression of H19 and IGF2 in the androgenetic tissues was in a single population of cells, mononuclear trophoblast--the same cell type expressing these genes in biparental placentas. These results demonstrate that a biparental genome may be required for expression of the reciprocal IGF2/H19 imprint. Alternatively, biparental expression may be a normal feature of some imprinted genes in specific cell types. Additional experiments with other imprinted genes will clarify whether this reflects global failure of the imprinting process or a change specific to the IGF2/H19 locus. Images Figure 1 Figure 2 Figure 3 PMID:7692725

  1. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    SciTech Connect

    Wang, Ji-meng; Zhao, Hong-xi; Wang, Li; Gao, Zhi-ying; Yao, Yuan-qing

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expression of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.

  2. BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages

    PubMed Central

    Bernardo, Andreia S.; Faial, Tiago; Gardner, Lucy; Niakan, Kathy K.; Ortmann, Daniel; Senner, Claire E.; Callery, Elizabeth M.; Trotter, Matthew W.; Hemberger, Myriam; Smith, James C.; Bardwell, Lee; Moffett, Ashley; Pedersen, Roger A.

    2011-01-01

    Summary BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2. PMID:21816365

  3. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling

    PubMed Central

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2015-01-01

    Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth. PMID:26508738

  4. Nonchoriocarcinomatous Trophoblastic Tumors of the Testis: The Widening Spectrum of Trophoblastic Neoplasia.

    PubMed

    Idrees, Muhammad T; Kao, Chia-Sui; Epstein, Jonathan I; Ulbright, Thomas M

    2015-11-01

    Tumors of trophoblastic derivation other than choriocarcinoma are very rare in the testis but have been reported on occasion in association with other germ cell tumors. Their morphologic spectrum is analogous to the trophoblastic tumors of the female genital tract including epithelioid trophoblastic tumor (ETT) and placental site trophoblastic tumor (PSTT). Herein we report our experience with 8 cases of trophoblastic tumors of testicular origin that lacked the features of choriocarcinoma; these included 4 ETTs, 1 PSTT, 1 unclassified trophoblastic tumor (UTT), 1 partially regressed choriocarcinoma with a monophasic morphology, and 1 hybrid tumor showing a mixture of adenocarcinoma and a UTT. All tumors occurred in young men 19 to 43 years old. Five arose de novo within the testis (2 ETTs, 1 UTT, 1 regressing choriocarcinoma, and the hybrid tumor) as a component of mixed germ cell tumors, and 3 (2 ETTs and 1 PSTT) were found in metastatic sites after chemotherapy. The trophoblastic component was minor (5% to 10%) in 6 tumors but was 95% of 1 metastatic tumor (ETT) and 50% of the hybrid tumor. Other germ cell tumor elements were identified in all cases, most commonly teratoma. The ETTs consisted of nodules and nests of squamoid trophoblast cells showing abundant eosinophilic cytoplasm, frequent apoptotic cells, extracellular fibrinoid material, and positivity for p63 and negativity for human placental lactogen (HPL). The PSTT showed sheets of discohesive, pleomorphic, mononucleated trophoblast cells that invaded blood vessels with fibrinoid change and were p63 negative and HPL positive. The UTT showed a spectrum of small and large trophoblast cells, some multinucleated but lacking distinct syncytiotrophoblasts, and was patchily positive for both p63 and HPL. The hybrid tumor had ETT-like and adenocarcinomatous areas that coexpressed inhibin and GATA3 but were negative for p63 and HPL, leading to classification of the trophoblastic component as UTT. Seven of the

  5. The CD200 tolerance-signaling molecule and its receptor, CD200R1, are expressed in human placental villus trophoblast and in peri-implant decidua by 5 weeks' gestation.

    PubMed

    Clark, David A; Arredondo, Jorge L; Dhesy-Thind, Sukhbinder

    2015-11-01

    CD200 expression in murine trophoblast and decidua prevents semi-allogeneic and LPS-induced abortions by binding to CD200 receptor-bearing cells to suppress NK activity, induces IDO in macrophages, and promotes the generation of regulatory T cell subsets. CD200 and its receptor CD200R1 reported in 7-9 weeks' gestation human villus trophoblasts are reduced in spontaneous abortion syncytiotrophoblasts. By specific antibody staining, we find that both CD200 and CD200R1 are expressed even earlier, by 5 weeks' gestation, by villus trophoblasts and by decidual cells. Expression of CD200 was validated using two independent antibodies. CD200-CD200R1 signaling may be required for human pregnancy success. PMID:26123445

  6. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor regulates cell surface plasminogen activator activity on human trophoblast cells.

    PubMed

    Zhang, J C; Sakthivel, R; Kniss, D; Graham, C H; Strickland, D K; McCrae, K R

    1998-11-27

    The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP/alpha2MR) mediates the internalization of numerous ligands, including prourokinase (pro-UK) and complexes between two-chain urokinase (tc-u-PA) and plasminogen activator inhibitor type-1 (PAI-1). It has been suggested that through its ability to internalize these ligands, LRP/alpha2MR may regulate the expression of plasminogen activator activity on cell surfaces; this hypothesis, however, has not been experimentally confirmed. To address this issue, we assessed the ability of LRP/alpha2MR to regulate plasminogen activator activity on human trophoblast cells, which express both LRP/alpha2MR and the urokinase receptor (uPAR). Trophoblasts internalized and degraded exogenous 125I-pro-UK (primarily following its conversion to tc-u-PA and incorporation into tc-u-PA.PAI complexes) in an LRP/alpha2MR-dependent manner, which was inhibited by the LRP/alpha2MR receptor-associated protein. Receptor-associated protein also caused a approximately 50% reduction in cell surface plasminogen activator activity and delayed the regeneration of unoccupied uPAR by cells on which uPAR were initially saturated with pro-UK. Identical effects were caused by anti-LRP/alpha2MR antibodies. These results demonstrate that LRP/alpha2MR promotes the expression of cell surface plasminogen activator activity on trophoblasts by facilitating the clearance of tc-u-PA.PAI complexes and regeneration of unoccupied cell surface uPAR. PMID:9822706

  7. Placental fractalkine mediates adhesion of THP-1 monocytes to villous trophoblast

    PubMed Central

    Siwetz, Monika; Sundl, Monika; Kolb, Dagmar; Hiden, Ursula; Herse, Florian; Huppertz, Berthold; Gauster, Martin

    2015-01-01

    The chemokine fractalkine (CX3CL1) recently attracted increasing attention in the field of placenta research due to its dual nature, acting both as membrane-bound and soluble form. While the membrane-bound form mediates flow resistant adhesion of leukocytes to endothelial and epithelial cells via its corresponding receptor CX3CR1, the soluble form arises from metalloprotease dependent shedding and bears chemoattractive activity for monocytes, natural killer cells and T-cells. In human placenta, fractalkine is expressed at the apical microvillous plasma membrane of the syncytiotrophoblast, which may enable close physical contact with circulating maternal leukocytes. Based on these observations we tested the hypothesis that fractalkine mediates adhesion of monocytes to the villous trophoblast. Forskolin-induced differentiation and syncytialization of the trophoblast cell line BeWo was accompanied with a substantial upregulation in fractalkine expression and led to increased adhesion of the monocyte cell line THP-1, which preferentially bound to syncytia. Blocking as well as silencing of the fractalkine receptor CX3CR1 proved involvement of the fractalkine/CX3CR1 system in adherence of THP-1 monocytes to villous trophoblast. Pre-incubation of THP-1 monocytes with human recombinant fractalkine as well as silencing of CX3CR1 expression in THP-1 monocytes significantly impaired their adherence to BeWo cells and primary term trophoblasts. The present study suggests fractalkine as another candidate amongst the panel of adhesion molecules enabling stable interaction between leukocytes and the syncytiotrophoblast. PMID:25566740

  8. Pulmonary disease in gestational trophoblastic neoplasms.

    PubMed Central

    McNair, O. M.; Polk, O. D.

    1992-01-01

    Gestational trophoblastic neoplasms can present as pulmonary nodules without significant disease of the reproductive organs. This article describes a case of metastatic gestational trophoblastic disease to the lungs. This entity must be considered in the differential diagnosis in any female of reproductive age who presents with multiple pulmonary nodules. Thoracotomy has a limited role in the initial evaluation of patients with this disease. However, it may be needed in patients who have evidence of persistent pulmonary disease, despite appropriate therapy. Images Figure 1 Figure 2 Figure 3 PMID:1324326

  9. Trophoblast expression dynamics of the tumor suppressor gene gastrokine 2.

    PubMed

    Fahlbusch, Fabian B; Ruebner, Matthias; Huebner, Hanna; Volkert, Gudrun; Bartunik, Hannah; Winterfeld, Ilona; Hartner, Andrea; Menendez-Castro, Carlos; Noegel, Stephanie C; Marek, Ines; Wachter, David; Schneider-Stock, Regine; Beckmann, Matthias W; Kehl, Sven; Rascher, Wolfgang

    2015-09-01

    Gastrokines (GKNs) were originally described as stomach-specific tumor suppressor genes. Recently, we identified GKN1 in extravillous trophoblasts (EVT) of human placenta. GKN1 treatment reduced the migration of the trophoblast cell line JEG-3. GKN2 is known to inhibit the proliferation, migration and invasion of gastric cancer cells and may interact with GKN1. Recently, GKN2 was detected in the placental yolk sac of mice. We therefore aimed to further characterize placental GKN2 expression. By immunohistochemistry, healthy first-trimester placenta showed ubiquitous staining for GKN2 at its early gestational stage. At later gestational stages, a more differentiated expression pattern in EVT and villous cytotrophoblasts became evident. In healthy third-trimester placenta, only EVT retained strong GKN2 immunoreactivity. In contrast, HELLP placentas showed a tendency of increased levels of GKN2 expression with a more prominent GKN2 staining in their syncytiotrophoblast. Choriocarcinoma cell lines did not express GKN2. Besides its trophoblastic expression, we found human GKN2 in fibrotic villi, in amniotic membrane and umbilical cord. GKN2 co-localized with smooth muscle actin in villous myofibroblasts and with HLA-G and GKN1 in EVT. In the rodent placenta, GKN2 was specifically located in the spongiotrophoblast layer. Thus, the gestational age-dependent and compartment-specific expression pattern of GKN2 points to a role for placental development. The syncytial expression of GKN2 in HELLP placentas might represent a reduced state of functional differentiation of the syncytiotrophoblast. Moreover, the specific GKN2 expression in the rodent spongiotrophoblast layer (equivalent to human EVT) might suggest an important role in EVT physiology. PMID:26070363

  10. [Gestational trophoblastic disease].

    PubMed

    Allias, Fabienne; Bolze, Pierre-Adrien; Gaillot-Durand, Lucie; Devouassoux-Shisheboran, Mojgan

    2014-12-01

    Gestational trophoblastic disease encompresses a group of interrelated diseases, following a pregnancy after a variable period of time. Hydatiform mole corresponds to premalignant disorders composed of villi with excess of paternal genetic material, with a malignant potential more important for complete mole than partial mole. Gestational trophoblastic neoplasia includes invasive mole, choriocarcinoma, placental site trophoblatic tumor and epithelioid trophoblastic tumor. Their histological diagnosis may be problematic on curettage material and needs to be correlated to serum hCG level and radiological findings. The use of chemotherapy has dramatically improved the prognosis of these lesions. All patients with this rare disease need to be registered in the national service for gestational trophoblastic disease (http://www.mole-chorio.com), which coordinates their management at the national level. PMID:25499859

  11. Gestational Trophoblastic Disorders: An Update in 2015

    PubMed Central

    Stevens, F. T.; Katzorke, N.; Tempfer, C.; Kreimer, U.; Bizjak, G. I.; Fleisch, M. C.; Fehm, T. N.

    2015-01-01

    Gestational trophoblastic diseases (GTD) are a group of pregnancy-related disorders representing rare human tumours. They encompass premalignant disorders including complete (CHM), partial hydatidiform mole (PHM), exaggerated placental site (EPS), and placental-site nodule (PSN) as well as malignant disorders (also known as “gestational trophoblastic neoplasia [GTN]”) including invasive mole, choriocarcinoma (CC), placenta-site trophoblastic tumour (PSTT), and epitheloid trophoblastic tumours (ETT) (Fig. 1). Originally, GTD develop from abnormal proliferation of trophoblastic tissue and form botryoid arranged vesicles. Premalignant moles are usually treated by suction curettage while persistent and recurrent moles and malignant forms require systemic therapy with methotrexate or combination chemotherapy consisting of etoposide, actimomycin D, methotrexate, vincristine, and cyclophosphamide (EMA-CO). β-human chorion gonadotropin (β-hCG) plays a crucial role in diagnosis and monitoring therapeutic effects. Since the definitive diagnosis cannot be obtained by histology in most cases, persistent or recurrent disease is diagnosed by elevated or persistent serum levels of β-hCG. While curing rates are described to be as high as 98 %, GTD may initially present, recur, or end up as a metastasising systemic disease. This underlines the importance of a regular and consistent follow-up after treatment. PMID:26556906

  12. Trophoblastic markers in women using intrauterine contraception.

    PubMed

    Ylikorkala, O; Siljander, M; Huhtaniemi, I; Kauppila, A; Seppälä, M

    1980-03-01

    Serum levels of human chorionic gonadotropin (hCG) and pregnancy-specific beta 1-glycoprotein (PSBG) were measured in 214 women using Copper-T200 intrauterine devices (CIUDs). In a cross-sectional study the samples were taken between the 25th and 35th cycle days, 1 sample per cycle. Either trophoblastic marker was detectable in 8 women (3.7%), hCG in 3 (1.4%), PSBG in 7 (3.3%), and both markers together in (0.9%). Normal menstruation-like bleeding ensued in all but 1 woman whose bleeding was delayed by 5 days. Our results suggest that the intrauterine contraceptive device (IUD) prevents pregnancy mainly before significant amounts of trophoblastic products are secreted. Still, the incidence of subclinical abortion based on the demonstration of trophoblastic markers in serum was 7 to 10 times higher than that of established pregnancy in women using a CIUD. PMID:6965779

  13. Uterine Spiral Artery Remodeling: The Role of Uterine Natural Killer Cells and Extravillous Trophoblasts in Normal and High-Risk Human Pregnancies.

    PubMed

    Tessier, Daniel R; Yockell-Lelièvre, Julien; Gruslin, Andrée

    2015-07-01

    The process of uterine spiral artery remodeling in the first trimester of human pregnancy is an essential part of establishing adequate blood perfusion of the placenta that will allow optimal nutrient/waste exchange to meet fetal demands during later development. Key regulators of spiral artery remodeling are the uterine natural killer cells and the invasive extravillous trophoblasts. The functions of these cells as well as regulation of their activation states and temporal regulation of their localization within the uterine tissue are beginning to be known. In this review, we discuss the roles of these two cell lineages in arterial remodeling events, their interaction/influence on one another and the outcomes of altered temporal, and spatial regulation of these cells in pregnancy complications. PMID:25472023

  14. Regulation of amino acid transporter trafficking by mTORC1 in primary human trophoblast cells is mediated by the ubiquitin ligase Nedd4-2.

    PubMed

    Rosario, Fredrick J; Dimasuay, Kris Genelyn; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas

    2016-04-01

    Changes in placental amino acid transfer directly contribute to altered fetal growth, which increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Placental amino acid transfer is critically dependent on the expression of specific transporters in the plasma membrane of the trophoblast, the transporting epithelium of the human placenta. However, the molecular mechanisms regulating this process are largely unknown. Nedd4-2 is an ubiquitin ligase that catalyses the ubiquitination of proteins, resulting in proteasomal degradation. We hypothesized that inhibition of mechanistic target of rapamycin complex 1 (mTORC1) decreases amino acid uptake in primary human trophoblast (PHT) cells by activation of Nedd4-2, which increases transporter ubiquitination resulting in decreased transporter expression in the plasma membrane. mTORC 1 inhibition increased the expression of Nedd4-2, promoted ubiquitination and decreased the plasma membrane expression of SNAT2 (an isoform of the System A amino acid transporter) and LAT1 (a System L amino acid transporter isoform), resulting in decreased cellular amino acid uptake. Nedd4-2 silencing markedly increased the trafficking of SNAT2 and LAT1 to the plasma membrane, which stimulated cellular amino acid uptake. mTORC1 inhibition by silencing of raptor failed to decrease amino acid transport following Nedd4-2 silencing. In conclusion, we have identified a novel link between mTORC1 signalling and ubiquitination, a common posttranslational modification. Because placental mTORC1 is inhibited in fetal growth restriction and activated in fetal overgrowth, we propose that regulation of placental amino acid transporter ubiquitination by mTORC1 and Nedd4-2 constitutes a molecular mechanisms underlying abnormal fetal growth. PMID:26608079

  15. Biological markers during early pregnancy: trophoblastic signals of the peri-implantation period.

    PubMed Central

    Glasser, S R; Julian, J; Munir, M I; Soares, M J

    1987-01-01

    The peri-implantation period extends from the time the blastocyst is free in the uterus, through the processes of recognition and attachment, to the beginning of trophoblast differentiation and the interactions between the embryo and the uterine endometrium which initiate establishment of the hemochorial placenta. It is during the peri-implantation period that the embryo and hormonally regulated endometrial cells appear to be most sensitive to factors which introduce risk into the intrauterine environment. There are no markers which can be used practically to assess pregnancy risk during the peri-implantation period of either human or laboratory rodents. Experimental studies, using in vitro laboratory models of differentiating trophoblast cells, have identified peptide hormone markers of pivotal developmental processes. Exposure of trophoblast during the expression of these processes could have severe and far-reaching effects individually and societally. While these trophoblast signals are limited in their utility with respect to health monitoring extrapolation of these findings to human pregnancy, the signals could serve to identify more practical and sensitive markers to assess risk in early gestation. Human chorionic gonadotropin (hCG) has been used extensively as a marker to assess risk during the early stages of pregnancy. Extrapolation of experimental data indicates how hCG could be used more effectively in analyses of possible cause and effect relationships. The limitations of hCG as a marker for risk during the human peri-implantation period are discussed. Peptide hormones which could serve to assess risk during this critical period of extraordinary sensitivity to toxic factors are introduced. PMID:3319548

  16. Trophoblast Deportation to the Lungs of Cotton Rats (Sigmodon hispidus)

    PubMed Central

    Perle, Krista M D La; Green, M Gia; Niewiesk, Stefan

    2014-01-01

    Cotton rats (Sigmodon hispidus) have been used to study a variety of infectious agents, particularly human respiratory viral pathogens. During the course of comprehensive pathologic evaluations of aging breeders from our breeding colony, 6 of 22 (27%) female cotton rats had histologic evidence, limited to the lungs, of embolized cells that were confirmed to be trophoblastic in origin by HSD3B1 immunoreactivity. When pulmonary trophoblast emboli were numerous, they usually were associated with additional histologic findings in the lungs, including pulmonary edema and hemorrhage, endothelial hypertrophy, fibrinoid vascular necrosis, and abundant alveolar macrophages containing fresh fibrin and hemolyzing erythrocytes. Of the 6 cotton rats with pulmonary trophoblast emboli, 5 (83%) were at 8 to 18 d of the 27-d gestation period, with the greatest number of emboli per lung present between days 10 through 14. The remaining cotton rat had a focal pulmonary trophoblast embolus and was not pregnant but had delivered a litter 3 mo previously. Three other cotton rats in either the early or late stages of gestation showed no histologic evidence of pulmonary trophoblast deportation. This report is the first to document pulmonary trophoblast emboli in cotton rats. This finding suggests that cotton rats may be an alternative animal model for the study of normal and aberrant trophoblast deportation in routine pregnancies and gestational pathologic conditions in women. PMID:25527025

  17. Effect of Microcystin-LR on human trophoblast differentiation in vitro

    EPA Science Inventory

    Background: Microcystin LR is a potent protein phosphatase 2a (PP2a) inhibitor and generates reactive oxygen species (ROS) believed to be an essential component of a toxic effect. Toxicological studies have demonstrated microcystin (MCYST) disruption of cytoskeletal function and...

  18. Trophoblast viability in perfused term placental tissue and explant cultures limited to 7-24 hours.

    PubMed

    Di Santo, S; Malek, A; Sager, R; Andres, A-C; Schneider, H

    2003-01-01

    Human term-placental culture techniques such as villous explant or dual perfusion are commonly used to study trophoblast function under control and experimentally manipulated conditions. We have compared trophoblast viability during perfusion and in explants cultured under various conditions by monitoring glucose consumption, protein synthesis and secretion, expression of differentiation-specific genes, induction of stress proteins and apoptotic cell death. The tissue was obtained from term-placentae of uncomplicated pregnancies after elective Caesarean delivery. We observed a severe loss of trophoblast viability in explants irrespective of the culture conditions used. Over 7 h of culture the amount of the differentiation specific placental hormones hCG, hPL and leptin accumulated in the medium dropped significantly. Analysis of their expression by semi-quantitative and real-time RT-PCR revealed that the down-regulation of expression occurred at the transcriptional level. This transcriptional repression was accompanied by induction of the stress-proteins RTP and BiP/GRP78. Analysis of apoptotic cell death by TUNEL assay and immunohistochemical detection of the caspase-3-specific degradation product of cytokeratin 18 revealed prominent cell death after 7 h of culture. These results are in contrast to the findings obtained in perfused placental tissue where, after 7 h of culture, hormone secretion, expression of stress proteins and cell death were similar as in native tissue. This difference between villous explant incubation and dual perfusion is also reflected by a significantly higher consumption of glucose in perfused tissue. PMID:13129686

  19. Decreased stathmin-1 expression inhibits trophoblast proliferation and invasion and is associated with recurrent miscarriage.

    PubMed

    Tian, Fu-Ju; Qin, Chuan-Mei; Li, Xiao-Cui; Wu, Fan; Liu, Xiao-Rui; Xu, Wang-Ming; Lin, Yi

    2015-10-01

    Fetal trophoblasts invade endometrium and establish a complex interaction with the maternal microenvironment during early pregnancy. However, the molecular mechanisms regulating trophoblast migration and invasion at the maternal-fetal interface remain poorly understood. Immunohistochemistry and immunoblotting have shown that stathmin-1 (STMN1) was down-regulated significantly in placental villi tissue and trophoblasts from patients with recurrent miscarriage. In vitro, overexpression of STMN1 promoted human trophoblast proliferation, migration, and invasion, whereas knockdown of STMN1 inhibited these processes. In addition, knockdown of STMN1 down-regulated N-cadherin and up-regulated E-cadherin in trophoblasts, whereas E-cadherin was up-regulated and N-cadherin was down-regulated in recurrent miscarriage villi tissue. Knockdown of STMN1 attenuated cytoplasmic-nuclear translocation of β-catenin and in turn down-regulated trophoblast matrix metalloproteases. Furthermore, tumor necrosis factor-α (TNF-α) down-regulated STMN1 expression, and serum TNF-α expression correlated inversely with trophoblast STMN1 levels. Interestingly, M1 macrophage-derived TNF-α reduced trophoblast migration and invasion, and an anti-TNF-α antibody reversed this effect. Collectively, this study indicated that STMN1 may play a key role in regulating trophoblast invasion, and that impaired STMN1 expression may lead to abnormal trophoblast invasion and result in recurrent miscarriage. PMID:26272359

  20. Regulation of amino acid transporters by adenoviral-mediated human insulin-like growth factor-1 in a mouse model of placental insufficiency in vivo and the human trophoblast line BeWo in vitro

    PubMed Central

    Jones, H.; Crombleholme, T.; Habli, M.

    2014-01-01

    Previous work in our laboratory demonstrated that over-expression of human insulin-like growth factor-11 (hIGF-1) in the placenta corrects fetal weight deficits in mouse, rat, and rabbit models of intrauterine growth restriction without changes in placental weight. The underlying mechanisms of this effect have not been elucidated. To investigate the effect of intra-placental IGF-1 over-expression on placental function we examined amino acid transporter expression and localization in both a mouse model of placental Insufficiency (PI) and a model of human trophoblast, the BeWo Choriocarcinoma cell line. For in vitro human studies, BeWo Choriocarcinoma cells were maintained in F12 complete medium + 10%FBS. Cells were incubated in serum-free control media ± Ad-IGF-1 or Ad-LacZ for 48 h. MOIs of 10:1 and 100:1 were utilized. In BeWo, transfection efficiency was 100% at an MOI of 100:1 and Ad-IGF-1 significantly increased IGF-1 secretion, proliferation and invasion but reduced apoptosis compared to controls. In vitro, amino acid uptake was increased following Ad-IGF-1 treatment and associated with significantly increased RNA expression of SNAT1, 2, LAT1 and 4F2hc. Only SNAT2 protein expression was increased but LAT1 showed relocalization from a perinuclear location to the cytoplasm and cell membrane. For in vivo studies, timed-pregnant animals were divided into four groups on day 18; sham-operated controls, uterine artery branch ligation (UABL), UABL + Ad-hIGF-1 (108 PFU), UABL + Ad-LacZ (108 PFU). At gestational day 20, pups and placentas were harvested by C-section. Only LAT1 mRNA expression changed, showing that a reduced expression of the transporter levels in the PI model could be partially rectified with Ad-hIGF1 treatment. At the protein level, System L was reduced in PI but remained at control levels following Ad-hIGF1. The System A isoforms were differentially regulated with SNAT2 expression diminished but SNAT1 increased in PI and Ad-hIGF1 groups. Enhanced

  1. Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion.

    PubMed

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-11-15

    Cell-cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted BeWo cell fusion. CNN3 at the cytoplasmic face of cytoskeleton was dislocated from F-actin with forskolin treatment and diffused into the cytoplasm in a phosphorylation-dependent manner. Phosphorylation sites were located at Ser293/296 in the C-terminal region, and deletion of this region or site-specific disruption of Ser293/296 suppressed syncytium formation. These CNN3 mutants were colocalized with F-actin and remained there after forskolin treatment, suggesting that dissociation of CNN3 from F-actin is modulated by the phosphorylation status of the C-terminal region unique to CNN3 in the CNN family proteins. The mutant missing these phosphorylation sites displayed a dominant negative effect on cell fusion, while replacement of Ser293/296 with aspartic acid enhanced syncytium formation. These results indicated that CNN3 regulates actin cytoskeleton rearrangement which is required for the plasma membranes of trophoblasts to become fusion competent. PMID:20861310

  2. Protective Effect of Nuclear Factor E2-Related Factor 2 on Inflammatory Cytokine Response to Brominated Diphenyl Ether-47 in the HTR-8/SVneo Human First Trimester Extravillous Trophoblast Cell Line

    PubMed Central

    Park, Hae-Ryung; Loch-Caruso, Rita

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20 μM BDE-47 for 24 h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20 μM BDE-47 for 24 h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation. PMID:25305463

  3. Phosphoinositide 3-Kinase (PI3K) Subunit p110δ Is Essential for Trophoblast Cell Differentiation and Placental Development in Mouse

    PubMed Central

    Hu, Xiwen; Li, Jiangchao; Zhang, Qianqian; Zheng, Lingyun; Wang, Guang; Zhang, Xiaohan; Zhang, Jingli; Gu, Quliang; Ye, Yuxiang; Guo, Sun-Wei; Yang, Xuesong; Wang, Lijing

    2016-01-01

    Maternal PI3K p110δ has been implicated in smaller litter sizes in mice, but its underlying mechanism remains unclear. The placenta is an indispensable chimeric organ that supports mammalian embryonic development. Using a mouse model of genetic inactivation of PI3K p110δ (p110δD910A/D910A), we show that fetuses carried by p110δD910A/D910A females were growth retarded and showed increased mortality in utero mainly during placentation. The placentas in p110δD910A/D910A females were anomalously anemic, exhibited thinner spongiotrophoblast layer and looser labyrinth zone, which indicate defective placental vasculogenesis. In addition, p110δ was detected in primary trophoblast giant cells (P-TGC) at early placentation. Maternal PI3K p110δ inactivation affected normal TGCs generation and expansion, impeded the branching of chorioallantoic placenta but enhanced the expression of matrix metalloproteinases (MMP-2, MMP-12). Poor vasculature support for the developing fetoplacental unit resulted in fetal death or gross growth retardation. These data, taken together, provide the first in vivo evidence that p110δ may play an important role in placental vascularization through manipulating trophoblast giant cell. PMID:27306493

  4. An investigation of methods for enriching trophoblast from maternal blood.

    PubMed

    Johansen, M; Knight, M; Maher, E J; Smith, K; Sargent, I L

    1995-10-01

    Trophoblast deportation is known to occur in normal human pregnancy, but it is not yet clear whether these cells routinely enter the maternal peripheral circulation and are available as a source of fetal DNA for non-invasive prenatal diagnosis of genetic disorders. To resolve this issue requires an efficient method of enriching trophoblast from maternal blood combined with a means to confirm its identity. Five different techniques were tested on ten retroplacental blood samples to determine the most sensitive and operator-efficient method. Lysis of red cells alone gave the best recovery of trophoblast but had to be discounted, together with Ficoll density gradient centrifugation, due to the very low purity and the excessive time required. Fluorescence-activated cell sorting (FACS) of pre-enriched trophoblast resulted in the lowest recovery rate (8 per cent) despite a 3250-fold enrichment and a very high purity. Immunomagnetic beads (Dynabeads) coated with anti-CD16 antibody proved to be the best method for the subsequent immunocytochemical characterization of deported trophoblast. However, IO beads coated with anti-CD45 antibody may be more useful for isolating trophoblast for prenatal diagnosis due to the high purity, enrichment (32-fold), and recovery rate (78 per cent) obtained with this method. PMID:8587860

  5. The Elsevier Trophoblast Research Award Lecture: Importance of metzincin proteases in trophoblast biology and placental development: a focus on ADAM12.

    PubMed

    Aghababaei, Mahroo; Beristain, Alexander G

    2015-04-01

    Placental development is a highly regulated process requiring signals from both fetal and maternal uterine compartments. Within this complex system, trophoblasts, placental cells of epithelial lineage, form the maternal-fetal interface controlling nutrient, gas and waste exchange. The commitment of progenitor villous cytotrophoblasts to differentiate into diverse trophoblast subsets is a fundamental process in placental development. Differentiation of trophoblasts into invasive stromal- and vascular-remodeling subtypes is essential for uterine arterial remodeling and placental function. Inadequate placentation, characterized by defects in trophoblast differentiation, may underlie the earliest cellular events driving pregnancy disorders such as preeclampsia and fetal growth restriction. Molecularly, invasive trophoblasts acquire characteristics defined by profound alterations in cell-cell and cell-matrix adhesion, cytoskeletal reorganization and production of proteolytic factors. To date, most studies have investigated the importance of the matrix metalloproteinases (MMPs) and their ability to efficiently remodel components of the extracellular matrix (ECM). However, it is now becoming clear that besides MMPs, other related proteases regulate trophoblast invasion via mechanisms other than ECM turnover. In this review, we will summarize the current knowledge on the regulation of trophoblast invasion by members of the metzincin family of metalloproteinases. Specifically, we will discuss the emerging roles that A Disintegrin and Metalloproteinases (ADAMs) play in placental development, with a particular focus on the ADAM subtype, ADAM12. PMID:25589360

  6. IgG expression in trophoblasts derived from placenta and gestational trophoblastic disease and its role in regulating invasion.

    PubMed

    Yang, Mei; Ha, Chunfang; Liu, Dan; Xu, Yonghui; Ma, Yuan; Liu, Yufeng; Nian, Yan

    2014-10-01

    Immunoglobulin G (IgG) is an important humoral immune factor, which plays a role in innate immunity of the fetus. IgG immunoreactivity was often seen in trophoblasts of placenta. Traditionally, IgG in trophoblasts was believed to be transported from the maternal blood through neonatal Fc receptor (FcRn). Here, we explored the phenomenon of IgG expression and its role in regulating invasion in trophoblasts derived from normal placenta and gestational trophoblastic disease (GTD). IgG expression was detected with an emphasis on mRNA transcripts by using reverse transcription-polymerase chain reaction and hybridization in situ, besides evaluated at the protein level with immunohistochemistry and immunofluorescence. The migration and attachment of normal trophoblast cell line (TEV-1) and choriocarcinoma cell line (JAR) were inhibited with down-regulation of IgG expression. Methotrexate promoted the differentiation of JAR cell line; however, it had little effect on the differentiation of TEV-1 cell line. IgG expression, migration, and attachment of JAR and TEV-1 cell lines were decreased in the presence of methotrexate. Furthermore, statistical analysis showed that the differences in migration and attachment were significant (P < 0.05) for JAR cell line, while no significant difference was found for TEV-1 cell line. Collectively, these results confirmed that with the progression from normal placenta to GTD, the expression of IgG was increased in trophoblasts, which might actively promote the migration and attachment of trophoblasts as an important regulating factor. PMID:24469916

  7. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line

    SciTech Connect

    Park, Hae-Ryung Loch-Caruso, Rita

    2014-11-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20 μM BDE-47 for 24 h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20 μM BDE-47 for 24 h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation. - Highlights: • BDE-47 stimulated ARE reporter activity and GSH production. • BDE-47 resulted in differential

  8. Epigenesis and plasticity of mouse trophoblast stem cells.

    PubMed

    Prudhomme, Julie; Morey, Céline

    2016-02-01

    The critical role of the placenta in supporting a healthy pregnancy is mostly ensured by the extraembryonic trophoblast lineage that acts as the interface between the maternal and the foetal compartments. The diverse trophoblast cell subtypes that form the placenta originate from a single layer of stem cells that emerge from the embryo when the earliest cell fate decisions are occurring. Recent studies show that these trophoblast stem cells exhibit extensive plasticity as they are capable of differentiating down multiple pathways and are easily converted into embryonic stem cells in vitro. In this review, we discuss current knowledge of the mechanisms and control of the epigenesis of mouse trophoblast stem cells through a comparison with the corresponding mechanisms in pluripotent embryonic stem cells. To illustrate some of the more striking manifestations of the epigenetic plasticity of mouse trophoblast stem cells, we discuss them within the context of two paradigms of epigenetic regulation of gene expression: the imprinted gene expression of specific loci and the process of X-chromosome inactivation. PMID:26542801

  9. Biological markers during early pregnancy: trophoblastic signals of the peri-implantation period

    SciTech Connect

    Glasser, S.R.; Julian, J.; Munir, M.I.; Soares, M.J.

    1987-10-01

    The peri-implantation period extends from the time the blastocyst is free in the uterus, through the processes of recognition and attachment, to the beginning of trophoblast differentiation and the interactions between the embryo and the uterine endometrium which initiate establishment of the hemochorial placenta. It is during the peri-implantation period that the embryo and hormonally regulated endometrial cells appear to be most sensitive to factors which introduce risk into the intrauterine environment. There are no markers which can be used practically to assess pregnancy risk during the peri-implantation period of either human or laboratory rodents. Experimental studies, using in vitro laboratory models of differentiating trophoblasst cells, have identified peptide hormone markers of pivotal developmental processes. Exposure of trophoblast during the expression of these processes could have severe and far-reaching effects individually and societally. Human chorionic gonadotropin (hCG) has been used extensively as a marker to assess risk during the early stages of pregnancy. Extrapolation of experimental data indicates how hCG could be used more effectively in analyses of possible cause and effect relationships. The limitations of hCG as a marker for risk during the human peri-implantation period are discussed. Peptide hormones which could serve to assess risk during this critical period of extraordinary sensitivity to toxic factors are introduced.

  10. Interaction of extravillous trophoblast galectin-1 and mucin(s)-Is there a functional relevance?

    PubMed

    Bojić-Trbojević, Žanka; Jovanović Krivokuća, Milica; Kolundžić, Nikola; Kadoya, Toshihiko; Radojčić, Ljiljana; Vićovac, Ljiljana

    2016-03-01

    In the course of embryo implantation extensive interaction of the trophoblast with uterine tissue is crucial for adequate trophoblast invasion. This interaction is highly controlled, and it has been pointed out that a specific glycocode and changes in glycosylation may be important for successful implantation and maintenance of pregnancy. Both uterine and trophoblast cells have been shown to express cell surface glycoconjugates and sugar binding proteins, such as mucins (MUC) and galectins (gals). An increasing number of studies have investigated potential candidates interacting in this process. However, knowledge about the biochemical nature of the interactions and their importance for trophoblast cell function, and, consequently, for pregnancy outcome are still lacking. This review is aimed at deliberating the possibility that mucins, as heavily glycosylated proteins, might be among the functionally relevant galectin ligands in human trophoblast, based on both published data and our original research. PMID:26418067

  11. Formation of atypical podosomes in extravillous trophoblasts regulates extracellular matrix degradation

    PubMed Central

    Patel, Anand; Dash, Philip R.

    2012-01-01

    Throughout pregnancy the cytotrophoblast, the stem cell of the placenta, gives rise to the differentiated forms of trophoblasts. The two main cell lineages are the syncytiotrophoblast and the invading extravillous trophoblast. A successful pregnancy requires extravillous trophoblasts to migrate and invade through the decidua and then remodel the maternal spiral arteries. Many invasive cells use specialised cellular structures called invadopodia or podosomes in order to degrade extracellular matrix. Despite being highly invasive cells, the presence of invadapodia or podosomes has not previously been investigated in trophoblasts. In this study these structures have been identified and characterised in extravillous trophoblasts. The role of specialised invasive structures in trophoblasts in the degradation of the extracellular matrix was compared with well characterised podosomes and invadopodia in other invasive cells and the trophoblast specific structures were characterised by using a sensitive matrix degradation assay which enabled visualisation of the structures and their dynamics. We show trophoblasts form actin rich protrusive structures which have the ability to degrade the extracellular matrix during invasion. The degradation ability and dynamics of the structures closely resemble podosomes, but have unique characteristics that have not previously been described in other cell types. The composition of these structures does not conform to the classic podosome structure, with no distinct ring of plaque proteins such as paxillin or vinculin. In addition, trophoblast podosomes protrude more deeply into the extracellular matrix than established podosomes, resembling invadopodia in this regard. We also show several significant pathways such as Src kinase, MAPK kinase and PKC along with MMP-2 and 9 as key regulators of extracellular matrix degradation activity in trophoblasts, while podosome activity was regulated by the rigidity of the extracellular matrix. PMID

  12. Xanthohumol impairs glucose uptake by a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) and impacts the process of placentation.

    PubMed

    Correia-Branco, Ana; Azevedo, Cláudia F; Araújo, João R; Guimarães, João T; Faria, Ana; Keating, Elisa; Martel, Fátima

    2015-10-01

    In this study, we aimed to investigate modulation of glucose uptake by the HTR-8/SVneo human first-trimester extravillous trophoblast cell line by a series of compounds and to study its consequences upon cell proliferation, viability and migration. We observed that uptake of (3)H-deoxy-d-glucose ((3)H-DG; 10 nM) was time-dependent, saturable, inhibited by cytochalasin B (50 and 100 µM), phloretin (0.5 mM) and phloridzin (1 mM), insulin-insensitive and sodium-independent. In the short term (30 min), neither 5-HT (100-1000 µM), melatonin (10 nM) nor the drugs of abuse ethanol (100 mM), nicotine (100 µM), cocaine (25 µM), amphetamine (10-25 µM) and 3,4-methylenedioxy-N-methamphetamine (10 µM) affected (3)H-DG uptake, while dexamethasone (100-1000 µM), fluoxetine (100-300 µM), quercetin, epigallocatechin-3-gallate (30-1000 µM), xanthohumol (XH) and resveratrol (1-500 µM) decreased it. XH was the most potent inhibitor [IC50 = 3.55 (1.37-9.20) µM] of (3)H-DG uptake, behaving as a non-competitive inhibitor of (3)H-DG uptake, both after short- and long-term (24 h) treatment. The effect of XH (5 µM; 24 h) upon (3)H-DG uptake involved mammalian target of rapamycin, tyrosine kinases and c-Jun N-terminal kinases intracellular pathways. Moreover, XH appeared to decrease cellular uptake of lactate due to inhibition of the monocarboxylate transporter 1. Additionally, XH (24 h; 5 µM) decreased cell viability, proliferation, culture growth and migration. The effects of XH upon cell viability and culture growth, but not the antimigratory effect, were mimicked by low extracellular glucose conditions and reversed by high extracellular glucose conditions. We thus suggest that XH, by inhibiting glucose cellular uptake and impairing HTR-8/SVneo cell viability and proliferation, may have a deleterious impact in the process of placentation. PMID:26194608

  13. Cervical carcinomas overexpress human trophoblast cell-surface marker (Trop-2) and are highly sensitive to immunotherapy with hRS7, a humanized monoclonal anti-Trop-2 antibody

    PubMed Central

    Varughese, Joyce; Cocco, Emiliano; Bellone, Stefania; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E.; Rutherford, Thomas J.; Buza, Natalia; Pecorelli, Sergio; Santin, Alessandro D.

    2011-01-01

    Objectives We evaluated the expression of human-trophoblast-cell-surface-marker (Trop-2) and the potential of hRS7, a humanized-monoclonal-anti-Trop-2-antibody, against treatment-refractory cervical cancer. Study Design Trop-2 expression was evaluated by immunohistochemistry (IHC), real-time polymerase-chain-reaction (RT-PCR) and flow-cytometry. Sensitivity to hRS7 antibody-dependent-cell-mediated-cytotoxicity (ADCC) and complement-dependent-cytotoxicity was tested in 5-hour-chromium-release-assays. The effect of interleukin-2 on hRS7 ADCC was also investigated. Results Membrane Trop-2 expression was observed in 8 out of 8 (100%) of the cancer samples tested by IHC, but not in normal cervix. High messenger RNA expression by RT-PCR and high Trop-2 surface expression by flow-cytometry were detected in 80% of cervical cancers (4 of 5 cell lines). Although these tumors were resistant to natural-killer-cell-dependent-cytotoxicity in vitro (mean killing 6.0%), Trop-2-positive cell lines showed high sensitivity to hRS7 ADCC (range of killing: 30.6–73.2%). Incubation with interleukin-2 further increased the level of cytotoxicity against Trop-2-positive tumors. Conclusions hRS7 may represent a novel treatment option for patients with cervical cancer refractory to conventional treatment modalities. PMID:21889762

  14. ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion.

    PubMed

    Aghababaei, M; Hogg, K; Perdu, S; Robinson, W P; Beristain, A G

    2015-12-01

    Trophoblasts, placental cells of epithelial lineage, undergo extensive differentiation to form the cellular components of the placenta. Trophoblast progenitor cell differentiation into the multinucleated syncytiotrophoblast is a key developmental process required for placental function, where defects in syncytiotrophoblast formation and turnover associate with placental pathologies and link to poor pregnancy outcomes. The cellular and molecular processes governing syncytiotrophoblast formation are poorly understood, but require the activation of pathways that direct cell fusion. The protease, A Disintegrin and Metalloproteinase 12 (ADAM12), controls cell fusion in myoblasts and is highly expressed in the placenta localizing to multiple trophoblast populations. However, the importance of ADAM12 in regulating trophoblast fusion is unknown. Here, we describe a function for ADAM12 in regulating trophoblast fusion. Using two distinct trophoblast models of cell fusion, we show that ADAM12 is dynamically upregulated and is under the transcriptional control of protein kinase A. siRNA-directed loss of ADAM12 impedes spontaneous fusion of primary cytotrophoblasts, whereas overexpression of the secreted variant, ADAM12S, potentiates cell fusion in the Bewo trophoblast cell line. Mechanistically, both ectopic and endogenous levels of ADAM12 were shown to control trophoblast fusion through E-cadherin ectodomain shedding and remodeling of intercellular boundaries. This study describes a novel role for ADAM12 in placental development, specifically highlighting its importance in controlling the differentiation of villous cytotrophoblasts into multinucleated cellular structures. Moreover, this work identifies E-cadherin as a novel ADAM12 substrate, and highlights the significance that cell adhesion molecule ectodomain shedding has in normal development. PMID:25909890

  15. Trophoblast syncytialisation necessitates mitochondrial function through estrogen-related receptor-γ activation.

    PubMed

    Poidatz, Dorothée; Dos Santos, Esther; Gronier, Héloïse; Vialard, François; Maury, Benoit; De Mazancourt, Philippe; Dieudonné, Marie-Noëlle

    2015-02-01

    Human pregnancy needs a correct placentation which depends on adequate cytotrophoblast proliferation, differentiation and invasion. In this study, using specific mitochondrial respiratory chain inhibitors, we observed a decrease of hormone production (hCG and leptin) and cell fusion of human primary villous cytotrophoblasts (CT). These results demonstrated that mitochondria are involved in the control of CT differentiation process. Moreover, we also observed a decrease of mitochondrial mass associated with an increase of mitochondrial DNA during CT differentiation. Furthermore, lactate production increased during CT differentiation suggesting that anaerobic metabolism was enhanced in differentiated CTs, and that the role of mitochondria in CT fusion is not only related to its energetic function. Otherwise, the orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is known to orchestrate transcriptional control of energy metabolism genes. In this study, using RNA knockdown and transcriptional activation with DY131 (an ERRγ agonist), we clearly demonstrated that ERRγ promotes hormone production and cell fusion indicating that ERRγ is a key positive transcriptional factor involved in CT differentiation. Finally, we showed that ERRγ promotes mitochondrial biogenesis and function during CT differentiation, and that the role of ERRγ during trophoblast differentiation is mainly mediated by the control of mitochondrial functions. PMID:25376642

  16. Decidual Control of Trophoblast Invasion.

    PubMed

    Sharma, Shipra; Godbole, Geeta; Modi, Deepak

    2016-03-01

    At the time of implantation, the trophoblast cells of the embryo adhere and then invade into the maternal endometrium and eventually establish placentation. The endometrium at the same time undergoes decidualization, which is essential for successful pregnancy. While the NK cells of the decidua have been implicated to play a key role in trophoblast invasion, few evidence are now available to demonstrate a pro-invasive property of decidual stromal cells. Secretions from decidualized endometrial stromal cells promote invasion of primary trophoblasts and model cell lines by activating proteases and altering expression of adhesion-related molecules. The decidual secretions contain high amounts of pro-invasive factors that include IL-1β, IL-5, IL-6, IL-7, IL-8, IL-9, IL-13, IL-15, Eotaxin CCL11, IP-10 and RANTES, and anti-invasive factors IL-10, IL-12 and VEGF. It appears that these decidual factors promote invasion by regulating the protease pathways and integrin expression utilizing the STAT pathways in the trophoblast cells. At the same time the decidua also seem to secrete some anti-invasive factors that are antagonist to the matrix metalloproteinases and/or are activators of tissue inhibitors of metalloproteinases. This might be essential to neutralize the effects of the invasion-promoting factors and restrain overinvasion. It is tempting to propose that during the course of pregnancy, the decidua must balance the production of these pro and anti-invasive molecules and such harmonizing production would allow a timely and regulated invasion. PMID:26755153

  17. Differentiation of human innate lymphoid cells (ILCs).

    PubMed

    Juelke, Kerstin; Romagnani, Chiara

    2016-02-01

    During the last years, a high complexity in innate lymphoid lineages now collectively referred to as innate lymphoid cells (ILCs) has been revealed. ILCs can be grouped according to their effector functions and transcriptional requirements into three main groups, termed group 1, 2 and 3 ILCs. The differentiation of ILC lineages from hematopoietic precursors and the molecular switches guiding their developmental fate have started to be characterized both in mice and humans. In this review, we discuss the origin, differentiation stages and plasticity of human ILC subsets as well as the signals that drive ILC lineage commitment and acquisition of their unique effector programs. PMID:26707651

  18. Lentivirus-mediated PHLDA2 overexpression inhibits trophoblast proliferation, migration and invasion, and induces apoptosis

    PubMed Central

    JIN, FENG; QIAO, CHONG; LUAN, NANNAN; LI, HUI

    2016-01-01

    Inadequate trophoblast invasion and increased trophoblast apoptosis cause serious pregnancy complications. Pleckstrin homology-like domain, family A, member 2 (PHLDA2) has been linked to fetal size at birth and growth restriction in a number of studies. However, the impact of PHLDA2 on trophoblast function had not been studied previously, to the best of our knowledge. In the present study, immunofluorescence staining demonstrated that primary trophoblasts isolated from placental villous tissues were positive for cytokeratin 18 (CK18), vimentin and human placental lactogen (hPL). JEG-3 cells and primary trophoblasts were infected with lentivirus overexpressing PHLDA2. RT-qPCR and western blot analysis detected high levels of PHLDA2. A Cell Counting Kit-8 (CCK-8) assay showed that PHLDA2 overexpression inhibited trophoblast proliferation. In addition, PHLDA2 significantly induced apoptosis, as evidenced by Annexin V-FITC/propidium iodide (PI) and Hoechst staining, along with activation of Bax and caspase-3 and also decreased Bcl-2 expression. Further investigation showed that PHLDA2 effectively induced reactive oxygen species (ROS) generation, caused cytochrome c release from the mitochondria into the cytosol and decreased mitochondrial membrane potential. PHLDA2 likely induced apoptosis through the mitochondrial pathway. Wound healing and Transwell assays indicated that PHLDA2 overexpression efficiently suppressed cell migration and invasion. These data suggest that PHLDA2 plays an important role in the occurrence and development of pregnancy complications by promoting trophoblast apoptosis and suppressing cell invasion. PMID:26935516

  19. Melatonin: the watchdog of villous trophoblast homeostasis against hypoxia/reoxygenation-induced oxidative stress and apoptosis.

    PubMed

    Lanoix, Dave; Lacasse, Andrée-Anne; Reiter, Russel J; Vaillancourt, Cathy

    2013-12-01

    Human placenta produces melatonin and expresses its receptors. We propose that melatonin, an antioxidant, protects the human placenta against hypoxia/reoxygenation (H/R)-induced damage. Primary term villous cytotrophoblasts were cultured under normoxia (8% O2) with or without 1mM melatonin for 72h to induce differentiation into the syncytiotrophoblast. The cells were then cultured for an additional 22h under normoxia or subjected to hypoxia (0.5% O2) for 4h followed by 18h reoxygenation (8% O2) with or without melatonin. H/R induced oxidative stress, which activated the Bax/Bcl-2 mitochondrial apoptosis pathway and the downstream fragmentation of DNA. Villous trophoblast treatment with melatonin reversed all the negative effects induced by H/R to normoxic levels. This study shows that melatonin protects the villous trophoblast against H/R-induced oxidative stress and apoptosis and suggests a potential preventive and therapeutic use of this indolamine in pregnancy complications characterized by syncytiotrophoblast survival alteration. PMID:23886990

  20. Ethanol cytotoxic effect on trophoblast cells.

    PubMed

    Clave, S; Joya, X; Salat-Batlle, J; Garcia-Algar, O; Vall, O

    2014-03-01

    Prenatal ethanol exposure may cause both, altered fetal neurodevelopment and impaired placental function. These disturbances can lead to growth retardation, which is one of the most prevalent features in Fetal Alcohol Syndrome (FAS). It is not known whether there is a specific pattern of cytotoxicity caused by ethanol that can be extrapolated to other cell types. The aim of this study was to determine the cytotoxic effects caused by sustained exposure of trophoblast cells to ethanol. The cytotoxic effect of sustained exposure to standard doses of ethanol on an in vitro human trophoblast cell line, JEG3, was examined. Viable cell count by exclusion method, total protein concentration, lactate dehydrogenase (LDH) activity and activation of apoptotic markers (P-H2AX, caspase-3 and PARP-1) were determined. Sustained exposure to ethanol decreased viable cell count and total protein concentration. LDH activity did not increased in exposed cells but apoptotic markers were detected. In addition, there was a dose-dependent relationship between ethanol concentration and apoptotic pathways activation. Sustained ethanol exposure causes cellular cytotoxicity by apoptotic pathways induction as a result of DNA damage. This apoptotic induction may partially explain the altered function of placental cells and the damage previously detected in other tissues. PMID:24374569

  1. [Modification of endocrine function of trophoblasts by thyroid hormone].

    PubMed

    Matsuo, H; Maruo, T; Hayashi, M; Mochizuki, M

    1991-11-01

    Direct effects of L-triiodothyronine(T3) on placental endocrine function were investigated in vitro with an organ culture system for human placental tissues. Explants of trophoblastic tissues obtained from early and term placentas were cultured with or without graded doses of T3 in a serum-free condition. The addition of an optimal concentration of T3(10(-3) M T3) stimulated daily secretion of progesterone and estradiol from cultured early placental tissues by acting at the level of 3 beta-hydroxysteroid dehydrogenase and aromatase enzyme activity, together with the enhancement of hCG(alpha, beta) and hPL secretion. The addition of higher or lower concentrations of T3 gave attenuated effects and the addition of an excessive concentration of T3(10(-3) M T3) resulted in remarkable inhibition of progesterone and estradiol secretion by cultured early placental tissues. These results suggest that the optimal concentration of thyroid hormone acts as a biological amplifier of endocrine function of cultured trophoblasts obtained from early placentas. Unlike the early placental tissues, cultured term placental tissues did not respond to the addition of graded doses of T3 with increased endocrine function. Thus, the frequent occurrence of spontaneous abortion in early pregnancy during the state of hypothyroidism or hyperthyroidism may represent a direct consequence of inadequate thyroid hormone availability at the level of the trophoblast, followed by diminished endocrine function of early placental trophoblasts. PMID:1940550

  2. The impact of ionizing radiation on placental trophoblasts

    PubMed Central

    Kanter, D.J.; O'Brien, M.B.; Shi, X.-H.; Chu, T.; Mishima, T.; Beriwal, S.; Epperly, M.W.; Wipf, P.; Greenberger, J.S.; Sadovsky, Y.

    2014-01-01

    Introduction Exposure to low-dose radiation is widespread and attributable to natural sources. However, occupational, medical, accidental, and terrorist-related exposures remain a significant threat. Information on radiation injury to the feto-placental unit is scant and largely observational. We hypothesized that radiation causes trophoblast injury, and alters the expression of injury-related transcripts in vitro or in vivo, thus affecting fetal growth. Methods Primary human trophoblasts (PHTs), BeWo or NCCIT cells were irradiated in vitro, and cell number and viability were determined. Pregnant C57Bl/6HNsd mice were externally irradiated on E13.5, and placentas examined on E17.5. RNA expression was analyzed using microarrays and RT-qPCR. The experiments were repeated in the presence of the gramicidin S (GS)-derived nitroxide JP4-039, used to mitigate radiation-induced cell injury. Results We found that survival of in vitro–irradiated PHT cell was better than that of irradiated BeWo trophoblast cell line or the radiosensitive NCCIT mixed germ cell tumor line. Radiation altered the expression of several trophoblast genes, with a most dramatic effect on CDKN1A (p21, CIP1). Mice exposed to radiation at E13.5 exhibited a 25% reduction in mean weight by E17.5, and a 9% reduction in placental weight, which was associated with relatively small changes in placental gene expression. JP4-039 had a minimal effect on feto-placental growth or on gene expression in irradiated PHT cells or mouse placenta. Discussion and conclusion While radiation affects placental trophoblasts, the established placenta is fairly resistant to radiation, and changes in this tissue may not fully account for fetal growth restriction induced by ionizing radiation. PMID:24418702

  3. Atypical postcesarean epithelioid trophoblastic lesion with cyst formation: a case report and literature review.

    PubMed

    Zhou, Feng; Lin, Kaiqing; Shi, Haiyan; Qin, Jiale; Lu, Bingjian; Huang, Lili

    2015-07-01

    We report an extremely rare case of atypical postcesarean epithelioid trophoblastic lesion with cyst formation. A 41-year-old Chinese woman presented with lower abdominal pain and menstrual disorder. Her serum human chorionic gonadotropin (hCG) was low (0.373 IU/L), and her urine hCG was negative. Ultrasound images showed a 3.7×2.8×2.5 cm(3) mass on the surface of the lower uterine segment, and a laparoscopy indicated a cystic mass in the serosal surface of the lower uterine segment. Histology indicated a cystic lesion consisting of epithelioid trophoblastic cells with an intermediate pattern between a classical placental site nodule and an epithelioid trophoblastic tumor; thus, the term atypical postcesarean epithelioid trophoblastic lesion with cyst formation was appropriate. As in atypical placental site nodule, serum hCG monitoring after treatment is necessary. PMID:25907864

  4. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin.

    PubMed

    Lala, Peeyush K; Nandi, Pinki

    2016-03-01

    The objective of the present review is to synthesize the information on the cellular and molecular players responsible for maintaining a homeostatic balance between a naturally invasive human placenta and the maternal uterus in pregnancy; to review the roles of decorin (DCN) as a molecular player in this homeostasis; to list the common maladies associated with a break-down in this homeostasis, resulting from a hypo-invasive or hyper-invasive placenta, and their underlying mechanisms. We show that both the fetal components of the placenta, represented primarily by the extravillous trophoblast, and the maternal component represented primarily by the decidual tissue and the endometrial arterioles, participate actively in this balance. We discuss the process of uterine angiogenesis in the context of uterine arterial changes during normal pregnancy and preeclampsia. We compare and contrast trophoblast growth and invasion with the processes involved in tumorigenesis with special emphasis on the roles of DCN and raise important questions that remain to be addressed. Decorin (DCN) is a small leucine-rich proteoglycan produced by stromal cells, including dermal fibroblasts, chondrocytes, chorionic villus mesenchymal cells and decidual cells of the pregnant endometrium. It contains a 40 kDa protein core having 10 leucine-rich repeats covalently linked with a glycosaminoglycan chain. Biological functions of DCN include: collagen assembly, myogenesis, tissue repair and regulation of cell adhesion and migration by binding to ECM molecules or antagonising multiple tyrosine kinase receptors (TKR) including EGFR, IGF-IR, HGFR and VEGFR-2. DCN restrains angiogenesis by binding to thrombospondin-1, TGFβ, VEGFR-2 and possibly IGF-IR. DCN can halt tumor growth by antagonising oncogenic TKRs and restraining angiogenesis. DCN actions at the fetal-maternal interface include restraint of trophoblast migration, invasion and uterine angiogenesis. We demonstrate that DCN overexpression in

  5. B-cell lymphoma 6 promotes proliferation and survival of trophoblastic cells.

    PubMed

    Muschol-Steinmetz, Cornelia; Jasmer, Britta; Kreis, Nina-Naomi; Steinhäuser, Kerstin; Ritter, Andreas; Rolle, Udo; Yuan, Juping; Louwen, Frank

    2016-03-18

    Preeclampsia is one of the leading causes of maternal and perinatal mortality and morbidity and its pathogenesis is not fully understood. B-cell lymphoma 6 (BCL6), a key regulator of B-lymphocyte development, is altered in preeclamptic placentas. We show here that BCL6 is present in all 3 studied trophoblast cell lines and it is predominantly expressed in trophoblastic HTR-8/SVneo cells derived from a 1(st) trimester placenta, suggestive of its involvement in trophoblast expansion in the early stage of placental development. BCL6 is strongly stabilized upon stress stimulation. Inhibition of BCL6, by administrating either small interfering RNA or a specific small molecule inhibitor 79-6, reduces proliferation and induces apoptosis in trophoblastic cells. Intriguingly, depletion of BCL6 in HTR-8/SVneo cells results in a mitotic arrest associated with mitotic defects in centrosome integrity, indicative of its involvement in mitotic progression. Thus, like in haematopoietic cells and breast cancer cells, BCL6 promotes proliferation and facilitates survival of trophoblasts under stress situation. Further studies are required to decipher its molecular roles in differentiation, migration and the fusion process of trophoblasts. Whether increased BCL6 observed in preeclamptic placentas is one of the causes or the consequences of preeclampsia warrants further investigations in vivo and in vitro. PMID:27029530

  6. Establishment and Characterization of a Telomerase-Immortalized Sheep Trophoblast Cell Line

    PubMed Central

    Zhang, Yufei; Liu, Shuying

    2016-01-01

    The primary sheep trophoblast cells (STCs) have a finite lifespan in culture. This feature limits the scope for long-term in vitro studies with STCs. This study was an attempt to establish and characterize a telomerase-immortalized sheep trophoblast cell line. STCs were isolated and purified by using Percoll and specific immunoaffinity purification, respectively. The purified STCs were transfected with a plasmid carrying sequences of human telomerase reverse transcriptase (hTERT) to create immortalized sheep trophoblast cell line (hTERT-STCs). hTERT-STCs showed a stable expression of hTERT gene, serially passaged for a year, and showed active proliferation without signs of senescence. Cytokeratin 7 (CK-7), secreted human chorionic gonadotrophin subunit β (CG-β), placental lactogen (PL), and endogenous jaagsiekte sheep retrovirus (enJSRV) envelope genes were expressed in hTERT-STCs. Transwell cell invasion assay indicated that hTERT-STCs still possessed the same invasive characteristics as normal primary sheep trophoblast cells. hTERT-STCs could not grow in soft agar and did not develop into tumors in nude mice. In this study, we established a strain of immortalized sheep trophoblast cell line which could be gainfully employed in the future as an experimental model to study trophoblast cells with secretory function, invasive features, and probable biological function of enJSRV envelope genes. PMID:26998488

  7. VIP boosts regulatory T cell induction by trophoblast cells in an in vitro model of trophoblast-maternal leukocyte interaction.

    PubMed

    Fraccaroli, Laura; Grasso, Esteban; Hauk, Vanesa; Paparini, Daniel; Soczewski, Elizabeth; Mor, Gil; Pérez Leirós, Claudia; Ramhorst, Rosanna

    2015-07-01

    Inducible regulatory T cells (Tregs) exert a timely and efficient immunosuppressive action at the critical peri-implantation stage essential for maternal tolerance to the conceptus. Vasoactive intestinal peptide (VIP) promotes anti-inflammatory and tolerogenic profiles through binding to VIP receptors on immune cells. We evaluated whether VIP produced by trophoblast cells induces Tregs during the early interaction of maternal leukocytes with trophoblast cells, thus contributing to maternal tolerance. We used an in vitro model of maternal leukocyte-trophoblast cell interaction represented by cocultures of fertile women's PBMCs with a human trophoblast cell line (Swan-71) and evaluated the effect of VIP added exogenously and of the endogenous polypeptide. VIP increased the frequency of CD4(+)CD25(+)FoxP3(+) cells after coculture, and these cells were able to suppress the maternal alloresponse. VIP also increased the frequency of CD4(+)IL10(+) and CD4(+)TGFβ(+) cells, but it did not modulate IFN-γ or IL-17 production. Swan-71 secreted VIP, and their coculture with maternal PBMCs significantly increased the frequency of Tregs. This effect was even more pronounced if the trophoblast cells had been pretreated with VIP. In both situations, the VIP antagonist prevented the increase in the frequency of CD4(+)Foxp3(+) cells, reflecting a specific effect of the polypeptide after the interaction with Swan-71 cells. Finally, the increase in CD4(+)CD25(+)FoxP3(+) frequency was prevented by an anti-TGF-β Ab and a VIP antagonist. These results suggest that VIP could have an active role in the immunoregulatory processes operating in the maternal-placental interface by contributing to the induction of Tregs through a mechanism involving TGF-β1. PMID:25877932

  8. Fatal Cases of Gestational Trophoblastic Neoplasia in a National Trophoblastic Disease Reference Center in Dakar Senegal

    PubMed Central

    Gueye, Mamour; Ndiaye-Gueye, Mame Diarra; Kane Gueye, Serigne Modou; Moreau, Jean Charles

    2016-01-01

    Objectives: The objectives of this study were to analyze deaths after gestational trophoblastic neoplasia and to determine the factors of treatment failure. Methods: This is a retrospective study in Aristide Le Dantec teaching Hospital in Dakar, Senegal, between 1 January 2006 and 31 December 2014. We took into account socio-epidemiological characteristics of patients, initial diagnosis, time between uterine evacuation and admission, time to onset of gestational trophoblastic neoplasia (GTN), treatment received (deadlines, protocols), difficulties experienced in the diagnosis and the initiation of treatment and survival. Results: In total, 1044 patients were admitted during the study period; 164 cases of GTN were diagnosed (15.7%); and 21 deaths occurred leading to a specific lethality of 12.8%. The average age was 30 years. Almost all patients (n = 18; 85.7%) had low income or no income. Eight out of 21 patients (38.1%) were seen in our department after GTN onset. The mean time to onset of GTN of all patients was 22.1 weeks. For 66.6%, histology was not available; the diagnosis of hydatidiform mole was made on the clinical history and sonographic features and GTN on human chorionic gonadotrophin (hCG) evolution and ultrasound findings. None of the patients had regular chemotherapy due to financial reasons. Patients who died within 3 months after diagnosis had metastatic tumors (7 of 21). All these women had resistance to treatment or progressed after three courses of chemotherapy. Ten of the 12 women with high-risk GTN were not treated with multi-agent chemotherapy (EMA-CO) for purely financial reasons. Conclusion and Global Health Implications: The high incidence and mortality require a profound reorganization of our health system and a high awareness of practitioners to refer to time or to declare all suspected cases of hydatidiform mole or gestational trophoblastic neoplasia. PMID:27622010

  9. Pigment epithelium-derived factor (PEDF): a novel trophoblast-derived factor limiting feto-placental angiogenesis in late pregnancy.

    PubMed

    Loegl, Jelena; Nussbaumer, Erika; Hiden, Ursula; Majali-Martinez, Alejandro; Ghaffari-Tabrizi-Wizy, Nassim; Cvitic, Silvija; Lang, Ingrid; Desoye, Gernot; Huppertz, Berthold

    2016-07-01

    The rapidly expanding feto-placental vasculature needs tight control by paracrine and endocrine mechanisms. Here, we focused on paracrine influence by trophoblast, the placental epithelium. We aimed to identify differences in regulation of feto-placental angiogenesis in early versus late pregnancy. To this end, the effect of conditioned media (CM) from early and late pregnancy human trophoblast was tested on network formation, migration and proliferation of human feto-placental endothelial cells. Only CM of late pregnancy trophoblast reduced network formation and migration. Screening of trophoblast transcriptome for anti-angiogenic candidates identified pigment epithelium-derived factor (PEDF) with higher expression and protein secretion in late pregnancy trophoblast. Addition of a PEDF-neutralizing antibody restored the anti-angiogenic effect of CM from late pregnancy trophoblast. Notably, human recombinant PEDF reduced network formation only in combination with VEGF. Also in the CAM assay, the combination of PEDF with VEGF reduced branching of vessels below control levels. Analysis of phosphorylation of ERK1/2 and FAK, two key players in VEGF-induced proliferation and migration, revealed that PEDF altered VEGF signaling, while PEDF alone did not affect phosphorylation of ERK1/2 and FAK. These data suggest that the trophoblast-derived anti-angiogenic molecule PEDF is involved in restricting growth and expansion of the feto-placental endothelium predominantly in late pregnancy and targets to modulate the intracellular effect of VEGF. PMID:27278471

  10. The YY1/MMP2 axis promotes trophoblast invasion at the maternal-fetal interface.

    PubMed

    Tian, Fu-Ju; Cheng, Yan-Xiang; Li, Xiao-Cui; Wang, Fa; Qin, Chuan-Mei; Ma, Xiao-Ling; Yang, Jing; Lin, Yi

    2016-05-01

    YY1 is a sequence-specific DNA-binding transcription factor that has many important biological roles. However, its function in trophoblasts at the maternal-fetal interface remains to be elucidated. In this study, we used an mRNA microarray and reverse transcription qPCR and compared the YY1 mRNA expression level in trophoblasts between patients with recurrent miscarriage (RM) and healthy control subjects. Our results revealed that YY1 mRNA expression was significantly lower in the trophoblasts of the RM group compared with the healthy control group. Furthermore, immunofluorescence and immunohistochemical data showed that YY1 was highly expressed in human placental villi during early pregnancy, especially in cytotrophoblast cells and invasive extravillous trophoblasts, and it was expressed at a much lower level in the placental villi of term pregnancy. YY1 overexpression enhanced, and knockdown repressed, the invasion and proliferation of trophoblasts. Antibody array screening revealed that YY1 significantly promoted MMP2 expression in trophoblasts. Bioinformatics analysis identified three YY1-binding sites in the MMP2 promoter region, and chromatin immunoprecipitation analysis verified that YY1 binds directly to its promoter region. Importantly, inhibition of YY1 by siRNA clearly decreased trophoblast invasion in an ex vivo explant culture model. Overall, our findings revealed a new regulatory pathway of YY1/MMP2 in trophoblast cell invasion during early pregnancy and indicated that YY1 may be involved in the pathogenesis of RM. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:27071480

  11. Silencing of Paternally Expressed Gene 10 Inhibits Trophoblast Proliferation and Invasion

    PubMed Central

    Chen, Haiying; Sun, Manni; Liu, Jing; Tong, Chunxiao; Meng, Tao

    2015-01-01

    Paternally expressed gene 10 (PEG10) is an imprinted and monoallelic expressed gene. Previous study using a knockout mouse model revealed a crucial role of PEG10 in placental development, yet the exact function of PEG10 during placentation remains to be elucidated. In this study, denuded chorionic villi were prepared from first trimester human placentas, and transduced with PEG10 small interference RNA (siRNA) or non-targeting control sequence by lentiviral infection. Immunohistochemical staining revealed that silencing of PEG10 in the chorionic villous explants resulted in reduced immune-reactivity to CK7, Ki67 and integrin α5, implying that silencing of PEG10 impaired the proliferation of villous trophoblasts and may interfere with the activity of extravillous trophoblasts. We further investigated the role of PEG10 in the proliferation, migration and invasion of JEG-3 trophoblast cell line and the primary chorionic villous cells. PEG10-silenced JEG-3 cells and primary chorionic villous cells displayed a reduced proliferation rate and impaired invasiveness in vitro. Silencing of PEG10 in trophoblast cells led to upregulated expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) as well as downregulated expression of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, knockdown of TIMP-1 reversed the suppressed invasiveness of PEG10 siRNA-transduced JEG-3 cells. In conclusion, our study demonstrates that PEG10 plays an important role in trophoblast proliferation and promotes trophoblast invasion through TIMP-1. PMID:26680220

  12. New insights into the function of Cullin 3 in trophoblast invasion and migration.

    PubMed

    Zhang, Qian; Yu, Song; Huang, Xing; Tan, Yi; Zhu, Cheng; Wang, Yan-Ling; Wang, Haibin; Lin, Hai-Yan; Fu, Jiejun; Wang, Hongmei

    2015-08-01

    Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia. PMID:26021998

  13. Average Gait Differential Image Based Human Recognition

    PubMed Central

    Chen, Jinyan; Liu, Jiansheng

    2014-01-01

    The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI) is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI), AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA) is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition. PMID:24895648

  14. Unusual Presentation of Hypothyroidism in a Pregnant Woman, Mimicking Gestational Trophoblastic Neoplasm.

    PubMed

    Aminimoghaddam, Soheila; Karisani, Narmin; Mazloomi, Maryam; Rahimi, Maryam

    2016-01-01

    Hypothyroidism is a common health issue worldwide with varying clinical manifestations. We report a woman who experienced an incomplete abortion and undiagnosed hypothyroidism who was referred to the oncologist with the suspicion of metastatic gestational trophoblastic neoplasm (GTN). A 29-year-old woman with incomplete abortion was referred to an oncologist for possible GTN due to persistent active vaginal bleeding, an elevated beta human chorionic gonadotropin (hCG), abnormal cervical inspection exam, abnormal liver function tests, ovarian enlargement, ascites, and a pleural effusion. She was found to have hypothyroidism in further work-up. She was managed with thyroid hormone replacement therapy and her condition improved after 6 weeks. Complete resolution of the ovarian mass and pericardial and pleural effusion was achieved. This case describes an important experience; hypothyroidism should be considered in the differential diagnosis of any woman with an incomplete abortion presenting with an ovarian mass. Evaluation and correct diagnosis are important to prevent mismanagement. PMID:27034864

  15. Unusual Presentation of Hypothyroidism in a Pregnant Woman, Mimicking Gestational Trophoblastic Neoplasm

    PubMed Central

    Aminimoghaddam, Soheila; Mazloomi, Maryam; Rahimi, Maryam

    2016-01-01

    Hypothyroidism is a common health issue worldwide with varying clinical manifestations. We report a woman who experienced an incomplete abortion and undiagnosed hypothyroidism who was referred to the oncologist with the suspicion of metastatic gestational trophoblastic neoplasm (GTN). A 29-year-old woman with incomplete abortion was referred to an oncologist for possible GTN due to persistent active vaginal bleeding, an elevated beta human chorionic gonadotropin (hCG), abnormal cervical inspection exam, abnormal liver function tests, ovarian enlargement, ascites, and a pleural effusion. She was found to have hypothyroidism in further work-up. She was managed with thyroid hormone replacement therapy and her condition improved after 6 weeks. Complete resolution of the ovarian mass and pericardial and pleural effusion was achieved. This case describes an important experience; hypothyroidism should be considered in the differential diagnosis of any woman with an incomplete abortion presenting with an ovarian mass. Evaluation and correct diagnosis are important to prevent mismanagement. PMID:27034864

  16. MTA3 regulates CGB5 and Snail genes in trophoblast

    SciTech Connect

    Chen, Ying; Miyazaki, Jun; Nishizawa, Haruki; Kurahashi, Hiroki; Leach, Richard; Wang, Kai

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  17. Differential Network Analysis in Human Cancer Research

    PubMed Central

    Gill, Ryan; Datta, Somnath; Datta, Susmita

    2016-01-01

    A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures. PMID:23530503

  18. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways

    PubMed Central

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  19. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways.

    PubMed

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  20. Endocrine, paracrine and autocrine regulation of trophoblastic metalloproteinases.

    PubMed

    Bischof, P

    2001-01-01

    Gelatinase A and B (MMP-2 and MMP-9) are secreted by cytotrophoblast (CTB); these enzymes digest the major constituents of the endometrial extracellular matrices (ECM). Direct evidence links the expression of MMPs to the metastatic phenotype of tumour cells and tissue inhibitor of metalloproteinases (TIMP) to the inhibition of metastatisation. Gelatinase B (MMP-9, and no other MMP) has been shown in vitro to mediate CTB invasion. ECM components are known to influence adhesion, spreading, migration and differentiation of cells through specific cell surface receptors called integrins. While CTB migrate from the villous into the decidua they modulate their integrin repertoire, secrete MMP-9 and acquire the capacity to digest their environment. Although CTB behave like metastatic cells, in vivo they are only transiently invasive (first trimester) and their invasion is essentially limited to the endometrium and to the proximal myometrium. This temporal and spatial regulation seems to be mediated in a paracrine way by uterine factors and in an autocrine way by trophoblastic factors. We investigated the effects of endometrial regulators such as leukaemia inhibitory factor (LIF), tumour necrosis factor (TNF), transforming growth factor beta (TGFb), interleukin-1 and 6 (IL-1, IL-6) and insulin-like growth factor binding protein-1 (IGFBP-1) as well as trophoblastic factors such as hCG and leptin. All these factors markedly influenced the secretion and/or activation of MMP-2 and MMP-9. Most cytokines influence cell behaviour by modulating phosphorylation of transcription factors. Among these we identified two oncogene products (Jun and Fos) which were activated by TNF or phorbol esters and which promoted the synthesis of MMP-9. We conclude that decidual and trophoblastic products are autocrine or paracrine regulators of trophoblastic invasion of the endometrium and that some of these products act by activating the transcription of early response genes such as transcription

  1. A Grhl2-dependent gene network controls trophoblast branching morphogenesis.

    PubMed

    Walentin, Katharina; Hinze, Christian; Werth, Max; Haase, Nadine; Varma, Saaket; Morell, Robert; Aue, Annekatrin; Pötschke, Elisabeth; Warburton, David; Qiu, Andong; Barasch, Jonathan; Purfürst, Bettina; Dieterich, Christoph; Popova, Elena; Bader, Michael; Dechend, Ralf; Staff, Anne Cathrine; Yurtdas, Zeliha Yesim; Kilic, Ergin; Schmidt-Ott, Kai M

    2015-03-15

    Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction. PMID:25758223

  2. Intermediate trophoblast--A distinctive, unique and often unrecognized population of trophoblastic cells.

    PubMed

    Cierna, Zuzana; Varga, Ivan; Danihel, Ludovit; Kuracinova, Kristina; Janegova, Andrea; Danihel, Ludovit

    2016-03-01

    The trophoblast forms an outer layer of the blastocyst in the developing placenta and fetal membrane chorion. It is composed of different types of cells. Two main cell types are cytotrophoblasts and syncytiotrophoblasts. The third type of trophoblastic cells, often "forgotten" in most of histological and embryological textbooks, is morphologically and functionally between the first and second one, therefore, it is called the intermediate trophoblast. There is no mention of it in the internationally accepted Terminologia Embryologica. This term is not universally used by pathologists as some of them prefer the name extravillous trophoblast. This review provides an overview of morphology, localization, function and immunohistochemistry of different types of intermediate trophoblast cells. An indisputable reason for categorizing these cells as a distinct group is the fact that they are a source of various forms of gestational trophoblastic disease. PMID:26581330

  3. Differentiation of xenografted human fetal lung parenchyma

    PubMed Central

    Pavlovic, Jelena; Floros, Joanna; Phelps, David S.; Wigdahl, Brian; Welsh, Patricia; Weisz, Judith; Shearer, Debra A.; Pree, Alphonse Leure du; Myers, Roland; Howett, Mary K.

    2009-01-01

    The goal of this study was to characterize xenografted human fetal lung tissue with respect to developmental stage-specific cytodifferentiation. Human fetal lung tissue (pseudoglandular stage) was grafted either beneath the renal capsule or the skin of athymic mice (NCr-nu). Tissues were analyzed from 3 to 42 days post-engraftment for morphological alterations by light and electron microscopy (EM), and for surfactant protein mRNA and protein by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry (ICC), respectively. The changes observed resemble those seen in human lung development in utero in many respects, including the differentiation of epithelium to the saccular stage. Each stage occurred over approximately one week in the graft in contrast to the eight weeks of normal in utero development. At all time points examined, all four surfactant proteins (SP-A, SP-B, SP-C, and SP-D) were detected in the epithelium by ICC. Lamellar bodies were first identified by EM in 14 day xenografts. By day 21, a significant increase in lamellar body expression was observed. Cellular proliferation, as marked by PCNA ICC and elastic fiber deposition resembled those of canalicular and saccular in utero development. This model in which xenografted lung tissue in different stages of development is available may facilitate the study of human fetal lung development and the impact of various pharmacological agents on this process. PMID:17555893

  4. A CRE/AP-1-Like Motif Is Essential for Induced Syncytin-2 Expression and Fusion in Human Trophoblast-Like Model

    PubMed Central

    Vargas, Amandine; Rassart, Éric; Barbeau, Benoit

    2015-01-01

    Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1) and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer. PMID:25781974

  5. Interleukin-10 modifies the effects of interleukin-1beta and tumor necrosis factor-alpha on the activity and expression of prostaglandin H synthase-2 and the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase in cultured term human villous trophoblast and chorion trophoblast cells.

    PubMed

    Pomini, F; Caruso, A; Challis, J R

    1999-12-01

    The concentrations of tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta), two inflammatory cytokines in amniotic fluid, have been shown to rise during chorioamnionitis. This is probably related to activation of the immune system in order to intensify the inflammatory process and to protect the maternal and fetal organism from infectious agents. These cytokines activate the PG biosynthetic pathway in several tissues, but few studies have examined effects on PG-metabolizing enzymes. When PGs are produced by increased synthesis and/or decreased metabolism at the chorio-decidual interface, labor can be induced. Interleukin-10 (IL-10) is known to act as an antiinflammatory cytokine. The goals of this study were to evaluate the interaction of IL-10 with IL-1beta and TNFalpha on PG synthesis and to determine the effects of IL-10, IL-1beta, and TNFalpha on PG metabolism using purified cultures of villous trophoblast and chorion trophoblast cells prepared from placentas of patients at term. Cells were treated with IL-1beta and TNFalpha with or without IL-10 for various times up to 24 h. Levels of messenger ribonucleic acid (mRNA) encoding PGH synthase-2 (PGHS-2) and NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) were quantified by Northern blotting, and PGE2 and 13,14-dihydro-15-keto-PGF2alpha (PGFM) output in the medium was measured by RIA. IL-1beta increased PGHS-2 mRNA and PGE2 output from villous and chorion trophoblasts and decreased PGDH mRNA in villous trophoblasts (all P < 0.05). These effects were reversed by IL-10. We found no change in PGHS-2 mRNA or PGE2 output in either trophoblast type treated with TNFalpha, but TNFalpha reduced PGDH mRNA in villous trophoblast, and this effect was reversed by IL-10 (both P < 0.05). We conclude that proinflammatory cytokines can influence PG output through effects on PG synthesis and metabolism and that these effects may be opposed by an antiinflammatory cytokine. These interactions may be

  6. [Differentiation of human and nonhuman primate ribs].

    PubMed

    May, E; Martins, M

    1985-01-01

    The ribs of 9 human beings and 6 animal-primates (4 Pongidae and 2 Cercopithecidae of 2 different species) had been examined metrically with regard to their relative dimensions and proportions. Special care was taken as well of the differentiation of single ribs of one individual as of interspecific differentiation. Generally the Pongidae show the greatest relative-dimensions. This concerns both the diameter as the length. The individuals of the genus Homo have medium-sized dimensions, while the Cercopithecidae have the smallest. In this way a first grouping of the measurements becomes possible. As for the rib-diameter Homo concurs more with the Pongidae than with the Cercopithecidae. At first from the rib-proportions resulted an indication to special similarity between the Pongidae and recent man from whom the Cercopithecidae distinctively differ as it is shown by the indices angulus-sternal end/tuberculum-angulus. A divariate presentation of the measurements of this index, however, proves that Homo concerning the single measurements occupies an intermediate position between the Pongidae and the Cercopithecidae in this case, too (Fig. 5). The examination of the craniocaudal trend of different ribmeasurements (length, depth and area of the rib-arc) produced a special similarity of the 4 upper ribs between the Pongidae and Homo. In the region of the lower chest a great conformity between the Pongidae and the Cercopithecidae became obvious in this respect. A different trend shows up in Homo - probably as an expression of the transformation-process in the human chest. The intraspecific morphometric discrimination of the single ribs proves to be especially difficult, above all between the 7th to 10th rib, if the ribs of an individual are not completely present. It is, however, possible in some cases by means of some measurements and indices of these ribs. PMID:4083514

  7. Drugs Approved for Gestational Trophoblastic Disease

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for gestational trophoblastic disease. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  8. Imaging of vascular development in early mouse decidua and its association with leukocytes and trophoblasts.

    PubMed

    Croy, B Anne; Chen, Zhilin; Hofmann, Alexander P; Lord, Edith M; Sedlacek, Abigail L; Gerber, Scott A

    2012-11-01

    In species with endometrial decidualization and hemochorial placentation (humans, mice, and others), leukocytes localize to early implant sites and contribute to decidual angiogenesis, spiral arterial remodeling, and trophoblast invasion. Relationships between leukocytes, trophoblasts, and the decidual vasculature are not fully defined. Early C57BL/6J implant sites were analyzed by flow cytometry to define leukocyte subsets and by whole-mount immunohistochemistry to visualize relationships between leukocytes, decidual vessels, and trophoblasts. Ptprc(+) (CD45(+)) cells increased in decidua between Gestational Day (GD) 5.5 and GD 9.5. Uterine natural killer (uNK) cells that showed dynamic expression of Cd (CD) 69, an activating receptor, and Klrg1 (KLRG1), an inhibitory receptor, localized mesometrially and were the dominant CD45(+) cells between GD 5.5 and GD 7.5. At GD 8.5, immature monocytes that occurred throughout decidua exceeded uNK cells numerically and many leukocytes acquired irregular shapes, and leukocyte-leukocyte conjugates became frequent. Vessels were morphologically heterogeneous and regionally unique. Migrating trophoblasts were first observed at GD 6.5 and, at GD 9.5, breached endothelium, entered vascular lumens, and appeared to occlude some vessels, as described for human spiral arteries. No leukocyte-trophoblast conjugates were detected. Whole-mount staining gave unparalleled decidual vascular detail and cell-specific positional information. Its application across murine models of pregnancy disturbances should significantly advance our understanding of the maternal-fetal interface. PMID:22954796

  9. NADPH-diaphorase activity and nitric oxide synthase isoforms in the trophoblast of Calomys callosus

    PubMed Central

    MORAES, NECI; ZAGO, DOUGLAS; GAGIOTI, SONIA; HOSHIDA, MARA SANDRA; BEVILACQUA, ESTELA

    2001-01-01

    The pattern of expression of a variety of placental nitric oxide synthase isoforms has contributed to elucidating the regulatory mechanisms of nitric oxide (NO) synthesis during gestation. The maintenance of vascular tone, attenuation of vasoconstriction, prevention of platelet and leukocyte adhesion to the trophoblast surface, and possible participation in uterine blood flow seem to be the main functions of NO generated at the fetal-maternal interface in humans and mice. Extending this knowledge to other rodent species commonly used as laboratory animals, in this study we focus on NADPH-diaphorase activity and the distribution of nitric oxide synthase isoforms (NOS) in the trophoblast cells of Calomys callosus during different phases of pregnancy. NADPH-diaphorase activity was evaluated cytochemically and the presence of NOS isoforms detected by immunohistochemistry. These techniques were performed on pre- and postimplantation embryos in situ and in vitro, as well as in placentae on d 14 and 18 of pregnancy. Neither NADPH-diaphorase activity nor inducible or endothelial NOS isoforms were found in pre-implanting embryos except after culturing for at least 48 h, when some of the embryonic cells were positive for the diaphorase reaction. On d 6·5 of pregnancy, trophoblast cells showed intense diaphorase activity both in situ and under in vitro conditions. A positive reaction was also found in the different placental trophoblast cells on d 14 and 18 of pregnancy. The inducible NOS (iNOS) isoform, but not the endothelial isoform, was immunodetected in trophoblast cells from the placenta and from postimplantation embryos in situ and under in vitro conditions. These results strongly suggest the production of NO by the iNOS isoform in the trophoblast of Calomys callosus after embryo implantation. The data also emphasise a possible role for the trophoblast in producing and releasing cytotoxic molecules at the fetal-maternal interface. PMID:11327206

  10. Expression and localization of StarD7 in trophoblast cells.

    PubMed

    Angeletti, S; Rena, V; Nores, R; Fretes, R; Panzetta-Dutari, G M; Genti-Raimondi, S

    2008-05-01

    The StAR-related lipid transfer (START) domain is defined as a motif of around 200 amino acids implicated in lipid/sterol binding. In a previous study, we identified the StarD7 transcript encoding one of the 15 family members with START domain present in the human genome. This transcript was found to be overexpressed in choriocarcinoma JEG-3 cells. In addition, we demonstrated that the recombinant StarD7 protein forms stable Gibbs and Langmuir monolayers at the air-buffer interface, showing marked surface activity and interaction with phospholipid monolayers, mainly with phosphatidylserine, cholesterol and phosphatidylglycerol. This study was undertaken to evaluate the expression and localization of StarD7 protein in trophoblastic samples. Here, we show for the first time the presence of StarD7 protein in human trophoblast cells. Western blot assays revealed a unique specific 34 kDa protein in JEG-3 cell line, choriocarcinoma tissue, complete hydatidiform mole, early and normal term placenta. Immunohistochemical data from early and normal term placentas and complete hydatidiform moles showed that this protein is abundant in the syncytiotrophoblasts, mainly at the apical side of the syncytium, with a weak and focal reaction in the cytotrophoblast cells. Furthermore, an increased StarD7 mRNA and protein expression, as well as a change in its sub-cellular localization was observed in in vitro differentiating cytotrophoblast isolated from normal term placenta. Taken together, these findings support and allow future studies to explore the possibility that StarD7 protein mediates transplacental lipid transport and/or is involved in syncytialization. PMID:18378304