Science.gov

Sample records for human-machine interface

  1. Gloved Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard (Inventor); Olowin, Aaron (Inventor); Hannaford, Blake (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  2. Human Machine Interface Programming and Testing

    NASA Technical Reports Server (NTRS)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  3. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit

  4. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  5. Human-machine interface hardware: The next decade

    NASA Technical Reports Server (NTRS)

    Marcus, Elizabeth A.

    1991-01-01

    In order to understand where human-machine interface hardware is headed, it is important to understand where we are today, how we got there, and what our goals for the future are. As computers become more capable, faster, and programs become more sophisticated, it becomes apparent that the interface hardware is the key to an exciting future in computing. How can a user interact and control a seemingly limitless array of parameters effectively? Today, the answer is most often a limitless array of controls. The link between these controls and human sensory motor capabilities does not utilize existing human capabilities to their full extent. Interface hardware for teleoperation and virtual environments is now facing a crossroad in design. Therefore, we as developers need to explore how the combination of interface hardware, human capabilities, and user experience can be blended to get the best performance today and in the future.

  6. Human Reliability Analysis for Digital Human-Machine Interfaces

    SciTech Connect

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  7. Human Machine Interfaces for Teleoperators and Virtual Environments Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.

  8. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Human-Machine Interface (HMI) Design E Appendix E to Part 236 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR...

  9. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Human-Machine Interface (HMI) Design E Appendix E to Part 236 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR...

  10. Considerations for human-machine interfaces in tele-operations

    NASA Technical Reports Server (NTRS)

    Newport, Curt

    1991-01-01

    Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.

  11. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface.

    PubMed

    Oehler, Martin; Neumann, Peter; Becker, Matthias; Curio, Gabriel; Schilling, Meinhard

    2008-01-01

    The use of capacitive electrodes for measuring EEG eliminates the preparation procedure known from classical noninvasive EEG measurements. The insulated interface to the brain signals in combination with steady-state visual evoked potentials (SSVEP) enables a zero prep human machine interface triggered by brain signals. This paper presents a 28-channel EEG helmet system based on our capacitive electrodes measuring and analyzing SSVEPs even through scalp hair. Correlation analysis is employed to extract the stimulation frequency of the EEG signal. The system is characterized corresponding to the available detection time with different subjects. As demonstration of the use of capacitive electrodes for SSVEP measurements, preliminary online Brain-Computer Interface (BCI) results of the system are presented. Detection times lie about a factor of 3 higher than in galvanic EEG SSVEP measurements, but are low enough to establish a proper communication channel for Human Machine Interface (HMI). PMID:19163714

  12. Techniques and applications for binaural sound manipulation in human-machine interfaces

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1990-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  13. All printed touchless human-machine interface based on only five functional materials

    NASA Astrophysics Data System (ADS)

    Scheipl, G.; Zirkl, M.; Sawatdee, A.; Helbig, U.; Krause, M.; Kraker, E.; Andersson Ersman, P.; Nilsson, D.; Platt, D.; Bodö, P.; Bauer, S.; Domann, G.; Mogessie, A.; Hartmann, Paul; Stadlober, B.

    2012-02-01

    We demonstrate the printing of a complex smart integrated system using only five functional inks: the fluoropolymer P(VDF:TrFE) (Poly(vinylidene fluoride trifluoroethylene) sensor ink, the conductive polymer PEDOT:PSS (poly(3,4 ethylenedioxythiophene):poly(styrene sulfonic acid) ink, a conductive carbon paste, a polymeric electrolyte and SU8 for separation. The result is a touchless human-machine interface, including piezo- and pyroelectric sensor pixels (sensitive to pressure changes and impinging infrared light), transistors for impedance matching and signal conditioning, and an electrochromic display. Applications may not only emerge in human-machine interfaces, but also in transient temperature or pressure sensing used in safety technology, in artificial skins and in disposable sensor labels.

  14. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  15. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces.

    PubMed

    Jung, Sungmook; Kim, Ji Hoon; Kim, Jaemin; Choi, Suji; Lee, Jongsu; Park, Inhyuk; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-07-23

    A novel method to produce porous pressure-sensitive rubber is developed. For the controlled size distribution of embedded micropores, solution-based procedures using reverse micelles are adopted. The piezosensitivity of the pressure sensitive rubber is significantly increased by introducing micropores. Using this method, wearable human-machine interfaces are fabricated, which can be applied to the remote control of a robot. PMID:24827418

  16. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented. PMID:21095885

  17. Human Reliability and the Current Dilemma in Human-Machine Interface Design Strategies

    SciTech Connect

    Passalacqua, Roberto; Yamada, Fumiaki

    2002-07-01

    Since human error dominates the probability of failures of still-existing human-requiring systems (as the Monju reactor), the human-machine interface needs to be improved. Several rationales may lead to the conclusion that 'humans' should limit themselves to monitor the 'machine'. For example, this is the trend in the aviation industry: newest aircrafts are designed to be able to return to a safe state by the use of control systems, which do not need human intervention. Thus, the dilemma whether we really need operators (for example in the nuclear industry) might arise. However, social-technical approaches in recent human error analyses are pointing out the so-called 'organizational errors' and the importance of a human-machine interface harmonization. Typically plant's operators are a 'redundant' safety system with a much lower reliability (than the machine): organizational factors and harmonization requirements suggest designing the human-machine interface in a way that allows improvement of operator's reliability. In addition, taxonomy studies of accident databases have also proved that operators' training should promote processes of decision-making. This is accomplished in the latest trends of PSA technology by introducing the concept of a 'Safety Monitor' that is a computer-based tool that uses a level 1 PSA model of the plant. Operators and maintenance schedulers of the Monju FBR will be able to perform real-time estimations of the plant risk level. The main benefits are risk awareness and improvements in decision-making by operators. Also scheduled maintenance can be approached in a more rational (safe and economic) way. (authors)

  18. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  19. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  20. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    PubMed

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001). PMID:22255248

  1. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    PubMed Central

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  2. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    PubMed

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  3. Functional requirements analysis and human machine interface specifications for handheld metal detector wands

    SciTech Connect

    Hoang, V.; Hartney, C.; Banks, W.

    1994-11-01

    Functional Requirements Analysis (FRA) and Human-Machine-Interface Design Specifications (HMIDs) are critical elements in the development of effective security systems. Handheld metal detector wands are currently used by security personnel to detect metal weapons and munitions that might be smuggled onboard an aircraft by terrorists or individuals who intend to do harm to passengers, aircraft, or other air carrier-related targets. The FAA has requested that Lawrence Livermore National Laboratory (LLNL) assist in developing functional requirements for handheld metal detector devices (wands) used at airports. This effort is focused on both defining and assuring adequate functional and human interface designs that are an integral part of airport security operations. In addition to developing functional requirements, LLNL was also requested to examine and review wanding procedures currently used by the airports and air carriers and provide comments, recommendations, and suggestions for enhanced security based upon this review. The phrase ``Human-Machine-Interface`` (HMI) is frequently used to describe the characteristics of a system that allows the human to interact and control the machine or system. Equipment used by checkpoint security Pre-Board Screeners (PBS`s) during rapid search of passengers must be designed to fit a broad range of anthropometric differences in height, hand size, grip strength, upper body strength, visual. acuity, auditory acuity, and other related human variables. In essence, if there is a high degree of compatibility between the end-user and the equipment, there will be a direct enhancement of total system performance and system operability. Thus, this document may also be used as, a guideline to enhance ergonomic compatibility between the PBS`s and the equipment they use.

  4. Human machine interface based on muscular and brain signals applied to a robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ferreira, A.; Silva, R. L.; Celeste, W. C.; Bastos Filho, T. F.; Sarcinelli Filho, M.

    2007-11-01

    This paper presents a Human-Machine Interface (HMI) based on the signals generated by eye blinks or brain activity. The system structure and the signal acquisition and processing are shown. The signals used in this work are either the signal associated to the muscular movement corresponding to an eye blink or the brain signal corresponding to visual information processing. The variance is the feature extracted from such signals in order to detect the intention of the user. The classification is performed by a variance threshold which is experimentally determined for each user during the training stage. The command options, which are going to be sent to the commanded device, are presented to the user in the screen of a PDA (Personal Digital Assistant). In the experiments here reported, a robotic wheelchair is used as the device being commanded.

  5. Computer-based diagnostic monitoring to enhance the human-machine interface of complex processes

    SciTech Connect

    Kim, I.S.

    1992-02-01

    There is a growing interest in introducing an automated, on-line, diagnostic monitoring function into the human-machine interfaces (HMIs) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). This paper provides a conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS), along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community.

  6. A vibro-haptic human-machine interface for structural health monitoring

    DOE PAGESBeta

    Mascarenas, David; Plont, Crystal; Brown, Christina; Cowell, Martin; Jameson, N. Jordan; Block, Jessica; Djidjev, Stephanie; Hahn, Heidi A.; Farrar, Charles

    2014-11-01

    The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less

  7. A vibro-haptic human-machine interface for structural health monitoring

    SciTech Connect

    Mascarenas, David; Plont, Crystal; Brown, Christina; Cowell, Martin; Jameson, N. Jordan; Block, Jessica; Djidjev, Stephanie; Hahn, Heidi A.; Farrar, Charles

    2014-11-01

    The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systems found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.

  8. Development of a shear measurement sensor for measuring forces at human-machine interfaces.

    PubMed

    Cho, Young Kuen; Kim, Seong Guk; Kim, Donghyun; Kim, Hyung Joo; Ryu, Jeicheong; Lim, Dohyung; Ko, Chang-Yong; Kim, Han Sung

    2014-12-01

    Measuring shear force is crucial for investigating the pathology and treatment of pressure ulcers. In this study, we introduced a bi-axial shear transducer based on strain gauges as a new shear sensor. The sensor consisted of aluminum and polyvinyl chloride plates placed between quadrangular aluminum plates. On the middle plate, two strain gauges were placed orthogonal to one another. The shear sensor (54 mm × 54 mm × 4.1 mm), which was validated by using standard weights, displayed high accuracy and precision (measurement range, -50 to 50 N; sensitivity, 0.3N; linear relationship, R(2)=0.9625; crosstalk error, 0.635% ± 0.031%; equipment variation, 4.183). The shear force on the interface between the human body and a stand-up wheelchair was measured during sitting or standing movements, using two mats (44.8 cm × 44.8 cm per mat) that consisted of 24 shear sensors. Shear forces on the sacrum and ischium were almost five times higher (15.5 N at last posture) than those on other sites (3.5 N on average) during experiments periods. In conclusion, the proposed shear sensor may be reliable and useful for measuring the shear force on human-machine interfaces. PMID:25445984

  9. Understanding customers' holistic perception of switches in automotive human-machine interfaces.

    PubMed

    Wellings, Tom; Williams, Mark; Tennant, Charles

    2010-01-01

    For successful new product development, it is necessary to understand the customers' holistic experience of the product beyond traditional task completion, and acceptance measures. This paper describes research in which ninety-eight UK owners of luxury saloons assessed the feel of push-switches in five luxury saloon cars both in context (in-car) and out of context (on a bench). A combination of hedonic data (i.e. a measure of 'liking'), qualitative data and semantic differential data was collected. It was found that customers are clearly able to differentiate between switches based on the degree of liking for the samples' perceived haptic qualities, and that the assessment environment had a statistically significant effect, but that it was not universal. A factor analysis has shown that perceived characteristics of switch haptics can be explained by three independent factors defined as 'Image', 'Build Quality', and 'Clickiness'. Preliminary steps have also been taken towards identifying whether existing theoretical frameworks for user experience may be applicable to automotive human-machine interfaces. PMID:19375691

  10. Categorical vowel perception enhances the effectiveness and generalization of auditory feedback in human-machine-interfaces.

    PubMed

    Larson, Eric; Terry, Howard P; Canevari, Margaux M; Stepp, Cara E

    2013-01-01

    Human-machine interface (HMI) designs offer the possibility of improving quality of life for patient populations as well as augmenting normal user function. Despite pragmatic benefits, utilizing auditory feedback for HMI control remains underutilized, in part due to observed limitations in effectiveness. The goal of this study was to determine the extent to which categorical speech perception could be used to improve an auditory HMI. Using surface electromyography, 24 healthy speakers of American English participated in 4 sessions to learn to control an HMI using auditory feedback (provided via vowel synthesis). Participants trained on 3 targets in sessions 1-3 and were tested on 3 novel targets in session 4. An "established categories with text cues" group of eight participants were trained and tested on auditory targets corresponding to standard American English vowels using auditory and text target cues. An "established categories without text cues" group of eight participants were trained and tested on the same targets using only auditory cuing of target vowel identity. A "new categories" group of eight participants were trained and tested on targets that corresponded to vowel-like sounds not part of American English. Analyses of user performance revealed significant effects of session and group (established categories groups and the new categories group), and a trend for an interaction between session and group. Results suggest that auditory feedback can be effectively used for HMI operation when paired with established categorical (native vowel) targets with an unambiguous cue. PMID:23527278

  11. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  12. Combined Auditory and Vibrotactile Feedback for Human-Machine-Interface Control.

    PubMed

    Thorp, Elias B; Larson, Eric; Stepp, Cara E

    2014-01-01

    The purpose of this study was to determine the effect of the addition of binary vibrotactile stimulation to continuous auditory feedback (vowel synthesis) for human-machine interface (HMI) control. Sixteen healthy participants controlled facial surface electromyography to achieve 2-D targets (vowels). Eight participants used only real-time auditory feedback to locate targets whereas the other eight participants were additionally alerted to having achieved targets with confirmatory vibrotactile stimulation at the index finger. All participants trained using their assigned feedback modality (auditory alone or combined auditory and vibrotactile) over three sessions on three days and completed a fourth session on the third day using novel targets to assess generalization. Analyses of variance performed on the 1) percentage of targets reached and 2) percentage of trial time at the target revealed a main effect for feedback modality: participants using combined auditory and vibrotactile feedback performed significantly better than those using auditory feedback alone. No effect was found for session or the interaction of feedback modality and session, indicating a successful generalization to novel targets but lack of improvement over training sessions. Future research is necessary to determine the cognitive cost associated with combined auditory and vibrotactile feedback during HMI control. PMID:23912500

  13. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    NASA Astrophysics Data System (ADS)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  14. Personalized keystroke dynamics for self-powered human--machine interfacing.

    PubMed

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control. PMID:25552331

  15. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    SciTech Connect

    Holcomb, David Eugene; Upadhyaya, Belle R.; Kisner, Roger A; O'Hara, John; Quinn, Edward L.; Miller, Don W.

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system

  16. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    PubMed Central

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  17. Next Generation Munitions Handler: Human-Machine Interface and Preliminary Performance Evaluation

    SciTech Connect

    Draper, J.V.; Jansen, J.F.; Pin, F.G.; Rowe, J.C.

    1999-04-25

    The Next Generation Munitions Handler/Advanced Technology Demonstrator (NGMI-VATTD) is a technology demonstrator for the application of an advanced robotic device for re-arming U.S. Air Force (USAF) and U.S. Navy (USN) tactical fighters. It comprises two key hardware components: a heavy-lift dexterous manipulator (HDM) and a nonholonomic mobility platform. The NGMWATTD is capable of lifting weapons up to 4400 kg (2000 lb) and placing them on any weapons rack on existing fighters (including the F-22 Raptor). This report describes the NGMH mission with particular reference to human-machine interfaces. It also describes preliminary testing to garner feedback about the heavy-lift manipulator arm from experienced fighter load crewmen. The purpose of the testing was to provide preliminary information about control system parameters and to gather feed- back from users about manipulator arm functionality. To that end, the Air Force load crewmen interacted with the NGMWATTD in an informal testing session and provided feedback about the performance of the system. Certain con- trol system parameters were changed during the course of the testing and feedback from the participants was used to make a rough estimate of "good" initial operating parameters. Later, formal testing will concentrate within this range to identify optimal operating parameters. User reactions to the HDM were generally positive, All of the USAF personnel were favorably impressed with the capabilities of the system. Fine-tuning operating parameters created a system even more favorably regarded by the load crews. Further adjustment to control system parameters will result in a system that is operationally efficient, easy to use, and well accepted by users.

  18. On the Applicability of Brain Reading for Predictive Human-Machine Interfaces in Robotics

    PubMed Central

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors. PMID:24358125

  19. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    PubMed

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors. PMID:24358125

  20. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction. PMID:25122851

  1. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    PubMed

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand. PMID:25398172

  2. A performance indicator of the effectiveness of human-machine interfaces for nuclear power plants

    SciTech Connect

    Moray, N.; Jones, B.J.; Rasmussen, J.; Lee, J.D.; Vicente, K.J.; Brock, R.; Djemil, T. . Dept. of Mechanical and Industrial Engineering)

    1993-01-01

    Effective interfaces must call up operators' deep understanding of plant operation if operators are to deal effectively with normal operation and diagnosis of transients. The present research examines the ability of a memory recall task to indicate the ability of an interface to couple plant state to operator knowledge. Novices, people with intermediate experience, and experienced nuclear power plant operators viewed three kinds of displays. They watched nine simulated transients and tried to recall the values of variables, or the states through which the plant passed, and to detect and diagnose the nature of the transients. The displays were simulated analog instruments, simulated analog with pressure-temperature graphics, and an animated representation of the Rankine cycle. The recall tasks did not show promise as indirect performance indicators of the quality of the interfaces, but the diagnosis test detected differences in the quality of the displays and the levels of expertise.

  3. A performance indicator of the effectiveness of human-machine interfaces for nuclear power plants

    SciTech Connect

    Moray, N.; Jones, B.J.; Rasmussen, J.; Lee, J.D.; Vicente, K.J.; Brock, R.; Djemil, T.

    1993-01-01

    Effective interfaces must call up operators` deep understanding of plant operation if operators are to deal effectively with normal operation and diagnosis of transients. The present research examines the ability of a memory recall task to indicate the ability of an interface to couple plant state to operator knowledge. Novices, people with intermediate experience, and experienced nuclear power plant operators viewed three kinds of displays. They watched nine simulated transients and tried to recall the values of variables, or the states through which the plant passed, and to detect and diagnose the nature of the transients. The displays were simulated analog instruments, simulated analog with pressure-temperature graphics, and an animated representation of the Rankine cycle. The recall tasks did not show promise as indirect performance indicators of the quality of the interfaces, but the diagnosis test detected differences in the quality of the displays and the levels of expertise.

  4. Human-machine interface (HMI) report for 241-SY-101 data acquisition [and control] system (DACS) upgrade study

    SciTech Connect

    Truitt, R.W.

    1997-10-22

    This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system.

  5. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    PubMed Central

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair. PMID:24453877

  6. Robust human machine interface based on head movements applied to assistive robotics.

    PubMed

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair. PMID:24453877

  7. Usability testing of the human-machine interface for the Light Duty Utility Arm System

    SciTech Connect

    Kiebel, G.R.; Ellis, J.E.; Masliah, M.R.

    1994-09-20

    This report describes the usability testing that has been done for the control and data acquisition system for the Light Duty Utility Arm (LDUA) System. A program of usability testing has been established as a part of a process for making the LDUA as easy to use as possible. The LDUA System is being designed to deploy a family of tools, called End Effectors, into underground storage tanks by means of a robotic arm on the end of a telescoping mast, and to collect and manage the data that they generate. The LDUA System uses a vertical positioning mast, to lower the arm into a tank through an existing 30.5 cm access riser. A Mobile Deployment Subsystem is used to position the mast and arm over a tank riser for deployment, and to transport them from tank to tank. The LDUA System has many ancillary subsystems including the Operations Control Trailer, the Tank Riser Interface and Confinement Subsystem, the Decontamination Subsystem, and the End Effector Exchange Subsystem. This work resulted in the identification of several important improvements to the LDUA control and data acquisition system before the design was frozen. The most important of these were color coding of joints in motion, simultaneous operator control of multiple joints, and changes to the field-of-views of the camera lenses for the robot and other camera systems.

  8. A Comparative Analysis of Three Non-Invasive Human-Machine Interfaces for the Disabled

    PubMed Central

    Ravindra, Vikram; Castellini, Claudio

    2014-01-01

    In the framework of rehabilitation robotics, a major role is played by the human–machine interface (HMI) used to gather the patient’s intent from biological signals, and convert them into control signals for the robotic artifact. Surprisingly, decades of research have not yet declared what the optimal HMI is in this context; in particular, the traditional approach based upon surface electromyography (sEMG) still yields unreliable results due to the inherent variability of the signal. To overcome this problem, the scientific community has recently been advocating the discovery, analysis, and usage of novel HMIs to supersede or augment sEMG; a comparative analysis of such HMIs is therefore a very desirable investigation. In this paper, we compare three such HMIs employed in the detection of finger forces, namely sEMG, ultrasound imaging, and pressure sensing. The comparison is performed along four main lines: the accuracy in the prediction, the stability over time, the wearability, and the cost. A psychophysical experiment involving ten intact subjects engaged in a simple finger-flexion task was set up. Our results show that, at least in this experiment, pressure sensing and sEMG yield comparably good prediction accuracies as opposed to ultrasound imaging; and that pressure sensing enjoys a much better stability than sEMG. Given that pressure sensors are as wearable as sEMG electrodes but way cheaper, we claim that this HMI could represent a valid alternative/augmentation to sEMG to control a multi-fingered hand prosthesis. PMID:25386135

  9. A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees

    PubMed Central

    Sierra González, David; Castellini, Claudio

    2013-01-01

    In the past years, especially with the advent of multi-fingered hand prostheses, the rehabilitation robotics community has tried to improve the use of human-machine interfaces to reliably control mechanical artifacts with many degrees of freedom. Ideally, the control schema should be intuitive and reliable, and the calibration (training) short and flexible. This work focuses on medical ultrasound imaging as such an interface. Medical ultrasound imaging is rich in information, fast, widespread, relatively cheap and provides high temporal/spatial resolution; moreover, it is harmless. We already showed that a linear relationship exists between ultrasound image features of the human forearm and the hand kinematic configuration; here we demonstrate that such a relationship also exists between similar features and fingertip forces. An experiment with 10 participants shows that a very fast data collection, namely of zero and maximum forces only and using no force sensors, suffices to train a system that predicts intermediate force values spanning a range of about 20 N per finger with average errors in the range 10–15%. This training approach, in which the ground truth is limited to an “on-off” visual stimulus, constitutes a realistic scenario and we claim that it could be equally used by intact subjects and amputees. The linearity of the relationship between images and forces is furthermore exploited to build an incremental learning system that works online and can be retrained on demand by the human subject. We expect this system to be able in principle to reconstruct an amputee's imaginary limb, and act as a sensible improvement of, e.g., mirror therapy, in the treatment of phantom-limb pain. PMID:24155719

  10. A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees.

    PubMed

    Sierra González, David; Castellini, Claudio

    2013-01-01

    In the past years, especially with the advent of multi-fingered hand prostheses, the rehabilitation robotics community has tried to improve the use of human-machine interfaces to reliably control mechanical artifacts with many degrees of freedom. Ideally, the control schema should be intuitive and reliable, and the calibration (training) short and flexible. This work focuses on medical ultrasound imaging as such an interface. Medical ultrasound imaging is rich in information, fast, widespread, relatively cheap and provides high temporal/spatial resolution; moreover, it is harmless. We already showed that a linear relationship exists between ultrasound image features of the human forearm and the hand kinematic configuration; here we demonstrate that such a relationship also exists between similar features and fingertip forces. An experiment with 10 participants shows that a very fast data collection, namely of zero and maximum forces only and using no force sensors, suffices to train a system that predicts intermediate force values spanning a range of about 20 N per finger with average errors in the range 10-15%. This training approach, in which the ground truth is limited to an "on-off" visual stimulus, constitutes a realistic scenario and we claim that it could be equally used by intact subjects and amputees. The linearity of the relationship between images and forces is furthermore exploited to build an incremental learning system that works online and can be retrained on demand by the human subject. We expect this system to be able in principle to reconstruct an amputee's imaginary limb, and act as a sensible improvement of, e.g., mirror therapy, in the treatment of phantom-limb pain. PMID:24155719

  11. [A new human machine interface in neurosurgery: The Leap Motion(®). Technical note regarding a new touchless interface].

    PubMed

    Di Tommaso, L; Aubry, S; Godard, J; Katranji, H; Pauchot, J

    2016-06-01

    Currently, cross-sectional imaging viewing is used in routine practice whereas the surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). This type of contact results in a risk of lack of aseptic control and causes loss of time. The recent appearance of devices such as the Leap Motion(®) (Leap Motion society, San Francisco, USA) a sensor which enables to interact with the computer without any physical contact is of major interest in the field of surgery. However, its configuration and ergonomics produce key challenges in order to adapt to the practitioner's requirements, the imaging software as well as the surgical environment. This article aims to suggest an easy configuration of the Leap Motion(®) in neurosurgery on a PC for an optimized utilization with Carestream(®) Vue PACS v11.3.4 (Carestream Health, Inc., Rochester, USA) using a plug-in (to download at: https://drive.google.com/?usp=chrome_app#folders/0B_F4eBeBQc3ybElEeEhqME5DQkU) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). PMID:27234915

  12. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general

    NASA Astrophysics Data System (ADS)

    Zander, Thorsten O.; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  13. Structural health monitoring for bolt loosening via a non-invasive vibro-haptics human-machine cooperative interface

    NASA Astrophysics Data System (ADS)

    Pekedis, Mahmut; Mascerañas, David; Turan, Gursoy; Ercan, Emre; Farrar, Charles R.; Yildiz, Hasan

    2015-08-01

    For the last two decades, developments in damage detection algorithms have greatly increased the potential for autonomous decisions about structural health. However, we are still struggling to build autonomous tools that can match the ability of a human to detect and localize the quantity of damage in structures. Therefore, there is a growing interest in merging the computational and cognitive concepts to improve the solution of structural health monitoring (SHM). The main object of this research is to apply the human-machine cooperative approach on a tower structure to detect damage. The cooperation approach includes haptic tools to create an appropriate collaboration between SHM sensor networks, statistical compression techniques and humans. Damage simulation in the structure is conducted by releasing some of the bolt loads. Accelerometers are bonded to various locations of the tower members to acquire the dynamic response of the structure. The obtained accelerometer results are encoded in three different ways to represent them as a haptic stimulus for the human subjects. Then, the participants are subjected to each of these stimuli to detect the bolt loosened damage in the tower. Results obtained from the human-machine cooperation demonstrate that the human subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human-machine cooperation SHM may provide a useful framework to interact with abstract entities such as data from a sensor network.

  14. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  15. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current

  16. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    NASA Astrophysics Data System (ADS)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  17. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands

    PubMed Central

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system’s complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs. PMID

  18. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EGG/ERP measures.

    PubMed

    Giraudet, L; Imbert, J-P; Bérenger, M; Tremblay, S; Causse, M

    2015-11-01

    The Air Traffic Control (ATC) environment is complex and safety-critical. Whilst exchanging information with pilots, controllers must also be alert to visual notifications displayed on the radar screen (e.g., warning which indicates a loss of minimum separation between aircraft). Under the assumption that attentional resources are shared between vision and hearing, the visual interface design may also impact the ability to process these auditory stimuli. Using a simulated ATC task, we compared the behavioral and neural responses to two different visual notification designs--the operational alarm that involves blinking colored "ALRT" displayed around the label of the notified plane ("Color-Blink"), and the more salient alarm involving the same blinking text plus four moving yellow chevrons ("Box-Animation"). Participants performed a concurrent auditory task with the requirement to react to rare pitch tones. P300 from the occurrence of the tones was taken as an indicator of remaining attentional resources. Participants who were presented with the more salient visual design showed better accuracy than the group with the suboptimal operational design. On a physiological level, auditory P300 amplitude in the former group was greater than that observed in the latter group. One potential explanation is that the enhanced visual design freed up attentional resources which, in turn, improved the cerebral processing of the auditory stimuli. These results suggest that P300 amplitude can be used as a valid estimation of the efficiency of interface designs, and of cognitive load more generally. PMID:26200718

  19. An assisted navigation training framework based on judgment theory using sparse and discrete human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano

    2009-01-01

    This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented. PMID:19963849

  20. U.S. Department of Energy Roadmap on Instrumentation, Controls, and Human-Machine Interface Technologies in Current and Future Nuclear Power Plants

    SciTech Connect

    Holcomb, David Eugene

    2007-01-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) recently sponsored the creation of a roadmap for instrumentation, controls, and human-machine interface (ICHMI) technology development. The roadmap represents the collective efforts of a group of subject matter experts from the DOE national laboratories, academia, vendors, the U.S. Nuclear Regulatory Commission (NRC), and utilities. It is intended to provide the underpinnings to the government sponsored ICHMI research, development, and demonstration (RD&D) performed in the United States for the next several years. A distinguishing feature of this roadmapping effort is that it is not limited to a technology progression plan but includes a detailed rationale, aimed at the nonspecialist, for the existence of a focused ICHMI RD&D program. Eight specific technology areas were identified for focused RD&D as follows: (1) sensors and electronics for harsh environments,(2) uncertainty characterization for diagnostics/prognostics applications, (3) quantification of software quality for high-integrity digital applications, (4) intelligent controls for nearly autonomous operation of advanced nuclear plants, (5) plant network architecture, (6) intelligent aiding technology for operational support, (7) human system interaction models and analysis tools, and (8) licensing and regulatory challenges and solutions.

  1. Human-machine interfaces for teleoperators: an overview of research and development at the Oak Ridge National Laboratory. Consolidated Fuel Reprocessing Program

    SciTech Connect

    Draper, J.V.; Feldman, M.J.

    1985-01-01

    This paper surveys the contributions of human factors to the mission of the Remote Control Engineering (RCE) task over the last six years. These contributions can be divided into two areas, research efforts and design efforts. Some of the topics covered in human factors research are manipulator comparisons, investigation of viewing system characteristics, research into the effects of force reflection, and studies of crew size and task allocation. In the area of component design the human factors group was primarily responsible for the conceptual design of the Advanced Integrated Maintenance System (AIMS) control room, including all operator work stations and overall control room architecture. The human factors group also contributed to the design of the AIMS master controller handle. Recent research at the RCE task has centered on comparison of manipulator systems. This research was planned and conducted by the human factors group and other ORNL personnel. The research is aimed at evaluating three important characteristics of manipulator systems: system dynamics, force feedback, and human-machine interface.

  2. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect

    Gilmore, Walter E.; Stender, Kerith K.

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  3. A Human-machine-interface Integrating Low-cost Sensors with a Neuromuscular Electrical Stimulation System for Post-stroke Balance Rehabilitation.

    PubMed

    Kumar, Deepesh; Das, Abhijit; Lahiri, Uttama; Dutta, Anirban

    2016-01-01

    A stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow to brain thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to reorganize its structure, function and connections as a response to intrinsic or extrinsic stimuli is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with non-invasive electrotherapy, such as neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves coordinated electrical stimulation of motor nerves and muscles to activate them with continuous short pulses of electrical current while SES involves stimulation of sensory nerves with electrical current resulting in sensations that vary from barely perceivable to highly unpleasant. Here, active cortical participation in rehabilitation procedures may be facilitated by driving the non-invasive electrotherapy with biosignals (electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG)) that represent simultaneous active perception and volitional effort. To achieve this in a resource-poor setting, e.g., in low- and middle-income countries, we present a low-cost human-machine-interface (HMI) by leveraging recent advances in off-the-shelf video game sensor technology. In this paper, we discuss the open-source software interface that integrates low-cost off-the-shelf sensors for visual-auditory biofeedback with non-invasive electrotherapy to assist postural control during balance rehabilitation. We demonstrate the proof-of-concept on healthy volunteers. PMID:27166666

  4. Biosleeve Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Assad, Christopher (Inventor)

    2016-01-01

    Systems and methods for sensing human muscle action and gestures in order to control machines or robotic devices are disclosed. One exemplary system employs a tight fitting sleeve worn on a user arm and including a plurality of electromyography (EMG) sensors and at least one inertial measurement unit (IMU). Power, signal processing, and communications electronics may be built into the sleeve and control data may be transmitted wirelessly to the controlled machine or robotic device.

  5. From human-machine interaction to human-machine cooperation.

    PubMed

    Hoc, J M

    2000-07-01

    Since the 1960s, the rapid growth of information systems has led to the wide development of research on human-computer interaction (HCI) that aims at the designing of human-computer interfaces presenting ergonomic properties, such as friendliness, usability, transparency, etc. Various work situations have been covered--clerical work, computer programming, design, etc. However, they were mainly static in the sense that the user fully controls the computer. More recently, public and private organizations have engaged themselves in the enterprise of managing more and more complex and coupled systems by the means of automation. Modern machines not only process information, but also act on dynamic situations as humans have done in the past, managing stock exchange, industrial plants, aircraft, etc. These dynamic situations are not fully controlled and are affected by uncertain factors. Hence, degrees of freedom must be maintained to allow the humans and the machine to adapt to unforeseen contingencies. A human-machine cooperation (HMC) approach is necessary to address the new stakes introduced by this trend. This paper describes the possible improvement of HCI by HMC, the need for a new conception of function allocation between humans and machines, and the main problems encountered within the new forms of human-machine relationship. It proposes a conceptual framework to study HMC from a cognitive point of view in highly dynamic situations like aircraft piloting or air-traffic control, and concludes on the design of 'cooperative' machines. PMID:10929820

  6. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  7. HUMAN MACHINE COOPERATIVE TELEROBOTICS

    SciTech Connect

    William R. Hamel; Spivey Douglass; Sewoong Kim; Pamela Murray; Yang Shou; Sriram Sridharan; Ge Zhang; Scott Thayer; Rajiv V. Dubey

    2003-06-30

    described as Human Machine Cooperative Telerobotics (HMCTR). The HMCTR combines the telerobot with robotic control techniques to improve the system efficiency and reliability in teleoperation mode. In this topical report, the control strategy, configuration and experimental results of Human Machines Cooperative Telerobotics (HMCTR), which modifies and limits the commands of human operator to follow the predefined constraints in the teleoperation mode, is described. The current implementation is a laboratory-scale system that will be incorporated into an engineering-scale system at the Oak Ridge National Laboratory in the future.

  8. Infrared stereo camera for human machine interface

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Vaden, Justin; Chenault, David

    2012-06-01

    Improved situational awareness results not only from improved performance of imaging hardware, but also when the operator and human factors are considered. Situational awareness for IR imaging systems frequently depends on the contrast available. A significant improvement in effective contrast for the operator can result when depth perception is added to the display of IR scenes. Depth perception through flat panel 3D displays are now possible due to the number of 3D displays entering the consumer market. Such displays require appropriate and human friendly stereo IR video input in order to be effective in the dynamic military environment. We report on a stereo IR camera that has been developed for integration on to an unmanned ground vehicle (UGV). The camera has auto-convergence capability that significantly reduces ill effects due to image doubling, minimizes focus-convergence mismatch, and eliminates the need for the operator to manually adjust camera properties. Discussion of the size, weight, and power requirements as well as integration onto the robot platform will be given along with description of the stand alone operation.

  9. Five Papers on Human-Machine Interaction.

    ERIC Educational Resources Information Center

    Norman, Donald A.

    Different aspects of human-machine interaction are discussed in the five brief papers that comprise this report. The first paper, "Some Observations on Mental Models," discusses the role of a person's mental model in the interaction with systems. The second paper, "A Psychologist Views Human Processing: Human Errors and Other Phenomena Suggest…

  10. Knowledge-based load leveling and task allocation in human-machine systems

    NASA Technical Reports Server (NTRS)

    Chignell, M. H.; Hancock, P. A.

    1986-01-01

    Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.

  11. Hands-free human-machine interaction with voice

    NASA Astrophysics Data System (ADS)

    Juang, B. H.

    2001-05-01

    Voice is natural communication interface between a human and a machine. The machine, when placed in today's communication networks, may be configured to provide automation to save substantial operating cost, as demonstrated in AT&T's VRCP (Voice Recognition Call Processing), or to facilitate intelligent services, such as virtual personal assistants, to enhance individual productivity. These intelligent services often need to be accessible anytime, anywhere (e.g., in cars when the user is in a hands-busy-eyes-busy situation or during meetings where constantly talking to a microphone is either undersirable or impossible), and thus call for advanced signal processing and automatic speech recognition techniques which support what we call ``hands-free'' human-machine communication. These techniques entail a broad spectrum of technical ideas, ranging from use of directional microphones and acoustic echo cancellatiion to robust speech recognition. In this talk, we highlight a number of key techniques that were developed for hands-free human-machine communication in the mid-1990s after Bell Labs became a unit of Lucent Technologies. A video clip will be played to demonstrate the accomplishement.

  12. Deployment of human-machine dialogue systems.

    PubMed Central

    Roe, D B

    1995-01-01

    The deployment of systems for human-to-machine communication by voice requires overcoming a variety of obstacles that affect the speech-processing technologies. Problems encountered in the field might include variation in speaking style, acoustic noise, ambiguity of language, or confusion on the part of the speaker. The diversity of these practical problems encountered in the "real world" leads to the perceived gap between laboratory and "real-world" performance. To answer the question "What applications can speech technology support today?" the concept of the "degree of difficulty" of an application is introduced. The degree of difficulty depends not only on the demands placed on the speech recognition and speech synthesis technologies but also on the expectations of the user of the system. Experience has shown that deployment of effective speech communication systems requires an iterative process. This paper discusses general deployment principles, which are illustrated by several examples of human-machine communication systems. Images Fig. 1 PMID:7479719

  13. Human machine interface by using stereo-based depth extraction

    NASA Astrophysics Data System (ADS)

    Liao, Chao-Kang; Wu, Chi-Hao; Lin, Hsueh-Yi; Chang, Ting-Ting; Lin, Tung-Yang; Huang, Po-Kuan

    2014-03-01

    The ongoing success of three-dimensional (3D) cinema fuels increasing efforts to spread the commercial success of 3D to new markets. The possibilities of a convincing 3D experience at home, such as three-dimensional television (3DTV), has generated a great deal of interest within the research and standardization community. A central issue for 3DTV is the creation and representation of 3D content. Acquiring scene depth information is a fundamental task in computer vision, yet complex and error-prone. Dedicated range sensors, such as the Time­ of-Flight camera (ToF), can simplify the scene depth capture process and overcome shortcomings of traditional solutions, such as active or passive stereo analysis. Admittedly, currently available ToF sensors deliver only a limited spatial resolution. However, sophisticated depth upscaling approaches use texture information to match depth and video resolution. At Electronic Imaging 2012 we proposed an upscaling routine based on error energy minimization, weighted with edge information from an accompanying video source. In this article we develop our algorithm further. By adding temporal consistency constraints to the upscaling process, we reduce disturbing depth jumps and flickering artifacts in the final 3DTV content. Temporal consistency in depth maps enhances the 3D experience, leading to a wider acceptance of 3D media content. More content in better quality can boost the commercial success of 3DTV.

  14. Advanced human-machine interface for collaborative building control

    DOEpatents

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  15. A human-machine interface for multireactor operation

    SciTech Connect

    Zizzo, D.; Dayal, Y.; Carroll, D. ); Hashimoto, S.; Ishida, T. )

    1993-01-01

    This paper describes interim results of an ongoing joint effort between G.E. Nuclear Energy and Hitachi, Ltd., to develop functional, performance, and anthropometric requirements for a unique nuclear reactor operating console that facilitates operation of three reactors and a steam turbine by a single licensed reactor operator. The human factors engineering (HFE) challenges associated with the operator console are discussed, a conceptual [open quotes]visualization[close quotes] of the console and control room is presented, and operator support concepts (e.g., alarm handling) are briefly described. The Advanced Reactor Programs group with G.E. Nuclear Energy is designing a modular, pool-type, sodium-cooled reactor with unique safety characteristics whereby no mitigative operator action is required in order to meet the plant's safety limits (radiation release criteria). A full-sized, 1440-MW(electric) plant includes nine such reactors configured as three physically separate, independently operated power blocks. One power block consists of three reactors, each with their individual steam generators headered to jointly deliver superheated steam to a turbine generator. All power blocks are operated from one control room. Furthermore, due to greatly reduced reliance on manual safety actions by the operator, control systems are automated to the extent that one power block is operated by one licensed reactor operator. The control room houses three operator consoles (one per power block) and a supervisor's workstation. This is the primary equipment used by the normal control room shift staffing of three licensed reactor operators, a shift supervisor, and an assistant shift supervisor. The operator and the automated control systems will, in principle, perform together as a single entity. However, one operator operating more than one nuclear reactor has no precedent.

  16. Physiological cognitive state assessment: applications for designing effective human-machine systems.

    PubMed

    Estepp, Justin R; Christensen, James C

    2011-01-01

    Significant growth in the field of neuroscience has occurred over the last decade such that new application areas for basic research techniques are opening up to practitioners in many other areas. Of particular interest to many is the principle of neuroergonomics, by which the traditional work in neuroscience and its related topics can be applied to non-traditional areas such as human-machine system design. While work in neuroergonomics certainly predates the use of the term in the literature (previously identified by others as applied neuroscience, operational neuroscience, etc.), there is great promise in the larger framework that is represented by the general context of the terminology. Here, we focus on the very specific concept that principles in brain-computer interfaces, neural prosthetics and the larger realm of machine learning using physiological inputs can be applied directly to the design and implementation of augmented human-machine systems. Indeed, work in this area has been ongoing for more than 25 years with very little cross-talk and collaboration between clinical and applied researchers. We propose that, given increased interest in augmented human-machine systems based on cognitive state, further progress will require research in the same vein as that being done in the aforementioned communities, and that all researchers with a vested interest in physiologically-based machine learning techniques can benefit from increased collaboration. We thereby seek to describe the current state of cognitive state assessment in human-machine systems, the problems and challenges faced, and the tightly-coupled relationship with other research areas. This supports the larger work of the Cognitive State Assessment 2011 Competition by setting the stage for the purpose of the session by showing the need to increase research in the machine learning techniques used by practitioners of augmented human-machine system design. PMID:22255837

  17. Scientific bases of human-machine communication by voice.

    PubMed Central

    Schafer, R W

    1995-01-01

    The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines. PMID:7479802

  18. Scientific Bases of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Schafer, Ronald W.

    1995-10-01

    The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines.

  19. Cooperative human-machine fault diagnosis

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  20. Context in Models of Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    All human-machine systems models represent context. This paper proposes a theory of context through which models may be usefully related and integrated for design. The paper presents examples of context representation in various models, describes an application to developing models for the Crew Activity Tracking System (CATS), and advances context as a foundation for integrated design of complex dynamic systems.

  1. [Cybersurgery: human-machine integration for surgery of the future].

    PubMed

    Marescaux, Jacques; Diana, Michele

    2013-10-01

    The concept whereby human-machine collaboration can enhance surgical performance is briefly reviewed in this editorial. Implementation of computer and robotic technologies in the operating room may enhance the safety, efficacy and precision of the surgical procedure and facilitate minimally invasive approaches. The coming cybernetic revolution in surgery is no longer science fiction: a surgical robot equipped with image recognition, specific algorithms and artificial intelligence has the potential replace surgeons and to perform complex procedures autonomously. PMID:25796718

  2. Human-Machine CRFs for Identifying Bottlenecks in Scene Understanding.

    PubMed

    Mottaghi, Roozbeh; Fidler, Sanja; Yuille, Alan; Urtasun, Raquel; Parikh, Devi

    2016-01-01

    Recent trends in image understanding have pushed for scene understanding models that jointly reason about various tasks such as object detection, scene recognition, shape analysis, contextual reasoning, and local appearance based classifiers. In this work, we are interested in understanding the roles of these different tasks in improved scene understanding, in particular semantic segmentation, object detection and scene recognition. Towards this goal, we "plug-in" human subjects for each of the various components in a conditional random field model. Comparisons among various hybrid human-machine CRFs give us indications of how much "head room" there is to improve scene understanding by focusing research efforts on various individual tasks. PMID:26656579

  3. Integrated human-machine intelligence in space systems

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.

    1992-01-01

    The integration of human and machine intelligence in space systems is outlined with respect to the contributions of artificial intelligence. The current state-of-the-art in intelligent assistant systems (IASs) is reviewed, and the requirements of some real-world applications of the technologies are discussed. A concept of integrated human-machine intelligence is examined in the contexts of: (1) interactive systems that tolerate human errors; (2) systems for the relief of workloads; and (3) interactive systems for solving problems in abnormal situations. Key issues in the development of IASs include the compatibility of the systems with astronauts in terms of inputs/outputs, processing, real-time AI, and knowledge-based system validation. Real-world applications are suggested such as the diagnosis, planning, and control of enginnered systems.

  4. Social Intelligence in a Human-Machine Collaboration System

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Morishima, Yasunori; Yamada, Ryota; Brave, Scott; Maldonado, Heidy; Nass, Clifford; Kawaji, Shigeyasu

    In this information society of today, it is often argued that it is necessary to create a new way of human-machine interaction. In this paper, an agent with social response capabilities has been developed to achieve this goal. There are two kinds of information that is exchanged by two entities: objective and functional information (e.g., facts, requests, states of matters, etc.) and subjective information (e.g., feelings, sense of relationship, etc.). Traditional interactive systems have been designed to handle the former kind of information. In contrast, in this study social agents handling the latter type of information are presented. The current study focuses on sociality of the agent from the view point of Media Equation theory. This article discusses the definition, importance, and benefits of social intelligence as agent technology and argues that social intelligence has a potential to enhance the user's perception of the system, which in turn can lead to improvements of the system's performance. In order to implement social intelligence in the agent, a mind model has been developed to render affective expressions and personality of the agent. The mind model has been implemented in a human-machine collaborative learning system. One differentiating feature of the collaborative learning system is that it has an agent that performs as a co-learner with which the user interacts during the learning session. The mind model controls the social behaviors of the agent, thus making it possible for the user to have more social interactions with the agent. The experiment with the system suggested that a greater degree of learning was achieved when the students worked with the co-learner agent and that the co-learner agent with the mind model that expressed emotions resulted in a more positive attitude toward the system.

  5. Modeling human-machine interactions for operations room layouts

    NASA Astrophysics Data System (ADS)

    Hendy, Keith C.; Edwards, Jack L.; Beevis, David

    2000-11-01

    The LOCATE layout analysis tool was used to analyze three preliminary configurations for the Integrated Command Environment (ICE) of a future USN platform. LOCATE develops a cost function reflecting the quality of all human-human and human-machine communications within a workspace. This proof- of-concept study showed little difference between the efficacy of the preliminary designs selected for comparison. This was thought to be due to the limitations of the study, which included the assumption of similar size for each layout and a lack of accurate measurement data for various objects in the designs, due largely to their notional nature. Based on these results, the USN offered an opportunity to conduct a LOCATE analysis using more appropriate assumptions. A standard crew was assumed, and subject matter experts agreed on the communications patterns for the analysis. Eight layouts were evaluated with the concepts of coordination and command factored into the analysis. Clear differences between the layouts emerged. The most promising design was refined further by the USN, and a working mock-up built for human-in-the-loop evaluation. LOCATE was applied to this configuration for comparison with the earlier analyses.

  6. Collaborative human-machine analysis using a controlled natural language

    NASA Astrophysics Data System (ADS)

    Mott, David H.; Shemanski, Donald R.; Giammanco, Cheryl; Braines, Dave

    2015-05-01

    A key aspect of an analyst's task in providing relevant information from data is the reasoning about the implications of that data, in order to build a picture of the real world situation. This requires human cognition, based upon domain knowledge about individuals, events and environmental conditions. For a computer system to collaborate with an analyst, it must be capable of following a similar reasoning process to that of the analyst. We describe ITA Controlled English (CE), a subset of English to represent analyst's domain knowledge and reasoning, in a form that it is understandable by both analyst and machine. CE can be used to express domain rules, background data, assumptions and inferred conclusions, thus supporting human-machine interaction. A CE reasoning and modeling system can perform inferences from the data and provide the user with conclusions together with their rationale. We present a logical problem called the "Analysis Game", used for training analysts, which presents "analytic pitfalls" inherent in many problems. We explore an iterative approach to its representation in CE, where a person can develop an understanding of the problem solution by incremental construction of relevant concepts and rules. We discuss how such interactions might occur, and propose that such techniques could lead to better collaborative tools to assist the analyst and avoid the "pitfalls".

  7. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  8. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... rules and regulations are codified in Title 47 of the Code of Federal Regulations (CFR). (1) Electronics... governing PCS transmitters may be found in 47 CFR, Parts 0 to 19. (iv) OET Bulletin 62 (December 1993... Regulations (47 CFR 1.1307(b), 1.1310, 2.1091, 2.1093). The following documentation is applicable...

  9. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... rules and regulations are codified in Title 47 of the Code of Federal Regulations (CFR). (1) Electronics... governing PCS transmitters may be found in 47 CFR, Parts 0 to 19. (iv) OET Bulletin 62 (December 1993... Regulations (47 CFR 1.1307(b), 1.1310, 2.1091, 2.1093). The following documentation is applicable...

  10. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... rules and regulations are codified in Title 47 of the Code of Federal Regulations (CFR). (1) Electronics... governing PCS transmitters may be found in 47 CFR, Parts 0 to 19. (iv) OET Bulletin 62 (December 1993... Regulations (47 CFR 1.1307(b), 1.1310, 2.1091, 2.1093). The following documentation is applicable...

  11. Design and Development of Functionally Effective Human-Machine Interfaces for Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Cho, Henry

    2013-01-01

    This project involves creating software for support equipment used on the Space l aunch System (SLS). The goal is to create applications and displays that will be used to remotely operate equipment from the firing room and will continue to support the SLS launch vehicle to the extent of its program. These displays include design practices that help to convey information effectively, such as minimizing distractions at normal operating state and displaying intentional distractions during a warning or alarm state. The general practice for creating an operator display is to reduce the detail of unimportant aspects of the display and promote focus on data and dynamic information. These practices include using minimalist design, using muted tones for background colors, using a standard font at a readable text size, displaying alarms visible for Immediate attention, grouping data logically, and displaying data appropriately varying on the type of data. Users of these displays are more likely to stay focused on operating for longer periods by using design practices that reduce eye strain and fatigue. Effective operator displays will improve safety by reducing human errors during operation, which will help prevent catastrophic accidents. This report entails the details of my work on developing remote displays for the Hypergolics ground system. Before developing a prototype display, the design and requirements of the system are outlined and compiled into a document. Then each subsystem has schematic representations drawn tha.t meet the specifications detailed in the document. The schematics are then used as the outline to create display representations of each subsystem. Each display is first tested individually. Then the displays are integrated with a prototype of the master system, and they are tested in a simulated environment then retested in the real environment. Extensive testing is important to ensure the displays function reliably as intended.

  12. Collaborative human-machine nuclear non-proliferation analysis

    SciTech Connect

    Greitzer, F.L.; Badalamente, R.V.; Stewart, T.S.

    1993-10-01

    The purpose of this paper is to report on the results of a project investigating support concepts for the information treatment needs of the International Atomic Energy Agency (IAEA, also referred to as the Agency) and its attempts to strengthen international safeguards. The aim of the research was to define user/computer interface concepts and intelligent support features that will enhance the analyst`s access to voluminous and diverse information, the ability to recognize and evaluate uncertain data, and the capability to make decisions and recommendations. The objective was to explore techniques for enhancing safeguards analysis through application of (1) more effective user-computer interface designs and (2) advanced concepts involving human/system collaboration. The approach was to identify opportunities for human/system collaboration that would capitalize on human strengths and still accommodate human limitations. This paper documents the findings and describes a concept prototype, Proliferation Analysis Support System (PASS), developed for demonstration purposes. The research complements current and future efforts to enhance the information systems used by the IAEA, but has application elsewhere, as well.

  13. The role of voice input for human-machine communication.

    PubMed Central

    Cohen, P R; Oviatt, S L

    1995-01-01

    Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology. PMID:7479803

  14. Towards an Educational SuperInterface.

    ERIC Educational Resources Information Center

    De Diana, Italo P. F.; White, T. N.

    1994-01-01

    Describes an educational computer network, SuperInterface, that could be used for telestudy for university education. Topics discussed include computer-supported collaborative work; computer-based learning; multimedia databases, or electronic books; human-machine interfaces; hardware, software, and groupware; learners; teachers; organizations and…

  15. [Human machines--mechanical humans? The industrial arrangement of the relation between human being and machine on the basis of psychotechnik and Georg Schlesingers work with disabled soldiers].

    PubMed

    Patzel-Mattern, Katja

    2005-01-01

    The 20th Century is the century of of technical artefacts. With their existance and use they create an artificial reality, within which humans have to position themselves. Psychotechnik is an attempt to enable humans for this positioning. It gained importance in Germany after World War I and had its heyday between 1919 and 1926. On the basis of the activity of the engineer and supporter of Psychotechnik Georg Schlesinger, whose particular interest were disabled soldiers, the essay on hand will investigate the understanding of the body and the human being of Psychotechnik as an applied science. It turned out, that the biggest achievement of Psychotechnik was to establish a new view of the relation between human being and machine. Thus it helped to show that the human-machine-interface is a shapable unit. Psychotechnik sees the human body and its physique as the last instance for the design of machines. Its main concern is to optimize the relation between human being and machine rather than to standardize human beings according to the construction of machines. After her splendid rise during the Weimar Republic and her rapid decline since the late 1920s Psychotechnik nowadays gains scientifical attention as a historical phenomenon. The main attention in the current discourse lies on the aspects conserning philosophy of science: the unity of body and soul, the understanding of the human-machine-interface as a shapable unit and the human being as a last instance of this unit. PMID:17153311

  16. A Simple ERP Method for Quantitative Analysis of Cognitive Workload in Myoelectric Prosthesis Control and Human-Machine Interaction

    PubMed Central

    Deeny, Sean; Chicoine, Caitlin; Hargrove, Levi; Parrish, Todd; Jayaraman, Arun

    2014-01-01

    Common goals in the development of human-machine interface (HMI) technology are to reduce cognitive workload and increase function. However, objective and quantitative outcome measures assessing cognitive workload have not been standardized for HMI research. The present study examines the efficacy of a simple event-related potential (ERP) measure of cortical effort during myoelectric control of a virtual limb for use as an outcome tool. Participants trained and tested on two methods of control, direct control (DC) and pattern recognition control (PRC), while electroencephalographic (EEG) activity was recorded. Eighteen healthy participants with intact limbs were tested using DC and PRC under three conditions: passive viewing, easy, and hard. Novel auditory probes were presented at random intervals during testing, and significant task-difficulty effects were observed in the P200, P300, and a late positive potential (LPP), supporting the efficacy of ERPs as a cognitive workload measure in HMI tasks. LPP amplitude distinguished DC from PRC in the hard condition with higher amplitude in PRC, consistent with lower cognitive workload in PRC relative to DC for complex movements. Participants completed trials faster in the easy condition using DC relative to PRC, but completed trials more slowly using DC relative to PRC in the hard condition. The results provide promising support for ERPs as an outcome measure for cognitive workload in HMI research such as prosthetics, exoskeletons, and other assistive devices, and can be used to evaluate and guide new technologies for more intuitive HMI control. PMID:25402345

  17. Software Engineering for User Interfaces. Technical Report.

    ERIC Educational Resources Information Center

    Draper, Stephen W.; Norman, Donald A.

    The discipline of software engineering can be extended in a natural way to deal with the issues raised by a systematic approach to the design of human-machine interfaces. The user should be treated as part of the system being designed and projects should be organized to take into account the current lack of a priori knowledge of user interface…

  18. Using Human Interactive Proofs to Secure Human-Machine Interactions via Untrusted Intermediaries

    NASA Astrophysics Data System (ADS)

    Mitchell, Chris J.

    This paper explores ways in which Human Interactive Proofs (HIPs), i.e. problems which are easy for humans to solve but are intractable for computers, can be used to improve the security of human-machine interactions. The particular focus of this paper is the case where these interactions take place via an untrusted intermediary device, and where the use of HIPs can be used to establish a secure channel between the human and target machine. A number of application scenarios of this general type are considered, and in each case the possible use of HIPs to improve interaction security is explored.

  19. Human factors issues for resolving adverse effects of human work underload and workload transitions in complex human-machine systems

    SciTech Connect

    Ryan, T.G.

    1995-10-01

    A workshop was conducted whose specific purpose was to build on earlier work of the United States National Research Council, United States Federal government agencies, and the larger human factors community to: (1) clarify human factors issues pertaining to degraded performance in advanced human-machine systems (e.g., nuclear production, transportation, aerospace) due to human work underload and workload transition, and (2) develop strategies for resolving these issues. Recent history demonstrates that: (1) humans often react adversely to their diminishing roles in advanced human-machine systems, and therefore (2) new allocation models and strategies are required if humans are to be willing and able to assume diminishing and shifting roles assigned to them in these systems, and are to accept new technologies making up these systems. Problems associated with theses diminishing and shifting human roles are characterized as work underload and workload transitions. The workshop affirmed that: (1) work underload and workload transition are issues that will have to be addressed by designers of advanced human-machine systems, especially those relying on automation, if cost, performance, safety, and operator acceptability are to be optimized, (2) human machine allocation models, standards, and guidelines which go beyond simple capability approaches will be needed to preclude or seriously diminish the work underload and workload transition problems, and (3) the 16 workload definition, measurement, situational awareness, and trust issues identified during the workshop, need resolution if these models, standards, and guidelines are to be achieved.

  20. Human-machine interface issues in the use of helmet-mounted displays in short conjugate simulators

    NASA Astrophysics Data System (ADS)

    Melzer, James E.

    2011-06-01

    With the introduction of helmet-mounted displays (HMD) into modern aircraft, there is a desire on the part of pilot trainees to achieve a "look and feel" for the simulation environment similar to the real flight hardware. Given this requirement for high fidelity, it may be necessary to configure - or to perhaps re-configure - the HMD for a short conjugate viewing distance and to do so without causing eye strain or other adverse physiological effects. This paper will survey the human factors literature and provide an analysis on the visual construct issues of focus and vergence which - if not properly configured for the short conjugate simulator - could cause adverse effects, which can negatively affect training.

  1. Discrete Versus Continuous Mapping of Facial Electromyography for Human-Machine Interface Control: Performance and Training Effects.

    PubMed

    Cler, Meredith J; Stepp, Cara E

    2015-07-01

    Individuals with high spinal cord injuries are unable to operate a keyboard and mouse with their hands. In this experiment, we compared two systems using surface electromyography (sEMG) recorded from facial muscles to control an onscreen keyboard to type five-letter words. Both systems used five sEMG sensors to capture muscle activity during five distinct facial gestures that were mapped to five cursor commands: move left, move right, move up, move down, and "click". One system used a discrete movement and feedback algorithm in which the user produced one quick facial gesture, causing a corresponding discrete movement to an adjacent letter. The other system was continuously updated and allowed the user to control the cursor's velocity by relative activation between different sEMG channels. Participants were trained on one system for four sessions on consecutive days, followed by one crossover session on the untrained system. Information transfer rates (ITRs) were high for both systems compared to other potential input modalities, both initially and with training (Session 1: 62.1 bits/min, Session 4: 105.1 bits/min). Users of the continuous system showed significantly higher ITRs than the discrete users. Future development will focus on improvements to both systems, which may offer differential advantages for users with various motor impairments. PMID:25616053

  2. Analysis of interaction quality in human-machine systems: applications for forklifts.

    PubMed

    Solman, K Nolimo

    2002-03-01

    The aim of the work presented here was to propose a methodology for analysis of interactions between humans and machines. The driver-truck system in a warehouse context was used as a case for empirical evaluation. The work consists of three empirical studies and one analysis of statistical data. In total 29 pallet truck drivers have been involved in the studies which were performed at two Swedish distribution companies. A framework is proposed, where effects on performance, safety, subjective experiences and physical and mental impact on the humans are used as indicators of the quality of interactions. The results show that the methodology proposed supports appropriate input for the evaluation of the interaction quality between humans and technology. One example of this is musculoskeletal loads and discomfort, which could be related to the task and the design of the steering arm. Another conclusion from this work is that many factors outside the warehouse truck affect the interaction in the human-truck system, for example the design of loading ramps. This supports the importance of having a holistic ergonomics view when studying a human-machine system. PMID:12009122

  3. Human-machine cooperation: a solution for life-critical systems?

    PubMed

    Millot, Patrick; Boy, Guy A

    2012-01-01

    Decision-making plays an important role in life-critical systems. It entails cognitive functions such as monitoring, as well as fault prevention and recovery. Three kinds of objectives are typically considered: safety, efficiency and comfort. People involved in the control and management of such systems provide two kinds of contributions: positive with their unique involvement and capacity to deal with the unexpected; and negative with their ability to make errors. In the negative view, people are the problem and need to be supervised by regulatory systems in the form of operational constraints or by design. In the positive view, people are the solution and lead the game; they are decision-makers. The former view also deals with error resistance, and the latter with error tolerance, which, for example, enables cooperation between people and decision support systems (DSS). In the real life, both views should be considered with respect to appropriate situational factors, such as time constraints and very dangerous environments. This is known as function allocation between people and systems. This paper presents a possibility to reconcile both approaches into a joint human-machine organization, where the main dimensioning factors are safety and complexity. A framework for cooperative and fault tolerant systems is proposed, and illustrated by an example in Air Traffic Control. PMID:22317421

  4. State Event Models for the Formal Analysis of Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Combefis, Sebastien; Giannakopoulou, Dimitra; Pecheur, Charles

    2014-01-01

    The work described in this paper was motivated by our experience with applying a framework for formal analysis of human-machine interactions (HMI) to a realistic model of an autopilot. The framework is built around a formally defined conformance relation called "fullcontrol" between an actual system and the mental model according to which the system is operated. Systems are well-designed if they can be described by relatively simple, full-control, mental models for their human operators. For this reason, our framework supports automated generation of minimal full-control mental models for HMI systems, where both the system and the mental models are described as labelled transition systems (LTS). The autopilot that we analysed has been developed in the NASA Ames HMI prototyping tool ADEPT. In this paper, we describe how we extended the models that our HMI analysis framework handles to allow adequate representation of ADEPT models. We then provide a property-preserving reduction from these extended models to LTSs, to enable application of our LTS-based formal analysis algorithms. Finally, we briefly discuss the analyses we were able to perform on the autopilot model with our extended framework.

  5. Military and government applications of human-machine communication by voice.

    PubMed Central

    Weinstein, C J

    1995-01-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479718

  6. Military and Government Applications of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Weinstein, Clifford J.

    1995-10-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.

  7. Implementation of Human-Machine Synchronization Control for Active Rehabilitation Using an Inertia Sensor

    PubMed Central

    Song, Zhibin; Guo, Shuxiang; Xiao, Nan; Gao, Baofeng; Shi, Liwei

    2012-01-01

    According to neuro-rehabilitation practice, active training is effective for mild stroke patients, which means these patients are able to recovery effective when they perform the training to overcome certain resistance by themselves. Therefore, for rehabilitation devices without backdrivability, implementation of human-machine synchronization is important and a precondition to perform active training. In this paper, a method to implement this precondition is proposed and applied in a user’s performance of elbow flexions and extensions when he wore an upper limb exoskeleton rehabilitation device (ULERD), which is portable, wearable and non-backdrivable. In this method, an inertia sensor is adapted to detect the motion of the user’s forearm. In order to get a smooth value of the velocity of the user’s forearm, an adaptive weighted average filtering is applied. On the other hand, to obtain accurate tracking performance, a double close-loop control is proposed to realize real-time and stable tracking. Experiments have been conducted to prove that these methods are effective and feasible for active rehabilitation. PMID:23443366

  8. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  9. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    PubMed

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future. PMID:24691198

  10. A Conceptual Framework for Predicting Error in Complex Human-Machine Environments

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.

  11. Intelligent virtual interfaces for telerobotics

    NASA Astrophysics Data System (ADS)

    Grinstein, Georges G.; Maybury, Mark T.; Mitchell, Richard B.

    1992-11-01

    One promise of telerobotics is the ability to interact in environments that are distant (e.g., deep sea or deep space), dangerous (e.g., nuclear, chemical, or biological environments), or inaccessible by humans for political or legal reasons. A key component to such interactions are sophisticated human-computer interfaces that can replicate sufficient information about a local environment to permit remote navigation and manipulation. This environment replication can, in part, be provided by technologies such as virtual reality. In addition, however, telerobotic interfaces may need to enhance human-machine interaction to assist users in task performance, for example, governing motion or manipulation controls to avoid obstacles or to restrict interaction with certain objects (e.g., avoiding contact with a live mine or a deep sea treasure). Thus, effective interactions within remote environments require intelligent virtual interfaces to telerobotic devices. In part to address this problem, MITRE is investigating virtual reality architectures that will enable enhanced interaction within virtual environments. Key components to intelligent virtual interfaces include spoken language processing, gesture recognition algorithms, and more generally, task recognition. In addition, these interfaces will eventually have to take into account properties of the user, the task, and discourse context to be more adaptive to the current situation at hand. While our work has not yet investigated the connection of virtual interfaces to external robotic devices, we have begun developing the key components for intelligent virtual interfaces for information and training systems.

  12. Methodological issues in the validation of complex human-machine systems

    SciTech Connect

    O`Hara, J.; Stubler, W.; Wachtel, J.

    1995-05-01

    Integrated system validation is one aspect of the US Nuclear Regulatory Commission`s design review process for human-system interfaces. This paper will consider three methodological issues that must be addressed in validation and their implications for drawing conclusions about the acceptability of the integrated system. They are: representing the integrated system, representing the operational events it must handle, and representing system performance. A logical basis for generalizability from validation tests to predicted performance of the integrated system emerges from the comparability of the psychological and physical processes of the test and actual situations. Generalizability of results is supported when the integrated system, operating conditions and performance are representative of their real-world counterparts. The methodological considerations for establishing representativeness are discussed.

  13. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    ERIC Educational Resources Information Center

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  14. Tactual interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Srinivasan, M. A.

    1991-01-01

    Increasingly complex human-machine interactions, such as in teleoperation or in virtual environments, have necessitated the optimal use of the human tactual channel for information transfer. This need leads to a demand for a basic understanding of how the human tactual system works, so that the tactual interface between the human and the machine can receive the command signals from the human, as well as display the information to the human, in a manner that appears natural to the human. The tactual information consists of two components: (1) contact information which specifies the nature of direct contact with the object; and (2) kinesthetic information which refers to the position and motion of the limbs. This paper is mostly concerned with contact information.

  15. An extremely lightweight fingernail worn prosthetic interface device

    NASA Astrophysics Data System (ADS)

    Yetkin, Oguz; Ahluwalia, Simranjit; Silva, Dinithi; Kasi-Okonye, Isioma; Volker, Rachael; Baptist, Joshua R.; Popa, Dan O.

    2016-05-01

    Upper limb prosthetics are currently operated using several electromyography sensors mounted on an amputee's residual limb. In order for any prosthetic driving interface to be widely adopted, it needs to be responsive, lightweight, and out of the way when not being used. In this paper we discuss the possibility of replacing such electrodes with fingernail optical sensor systems mounted on the sound limb. We present a prototype device that can detect pinch gestures and communicate with the prosthetic system. The device detects the relative position of fingers to each other by measuring light transmitted via tissue. Applications are not limited to prosthetic control, but can be extended to other human-machine interfaces.

  16. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain. PMID:22317152

  17. Issues for resolving adverse effects on the safety culture of human work underload and workload transitions in complex human-machine systems

    SciTech Connect

    Ryan, T.G.

    1996-08-01

    A workshop was conducted whose specific purpose was to build on earlier work of the US National Research Council, US federal government agencies, and the larger human factors community to: (1) clarify human factors issues pertaining to degraded safety performance in advanced human-machine systems(e.g., nuclear production, transportation, aerospace) due to human work underload and workload transition, and (2) develop strategies for resolving these issues. The workshop affirmed that: (1) work underload and workload transition are issues that will have to be addressed by designers of advanced human-machine systems, especially those relying on automation, if cost, performance, safety, and operator acceptability are to be optimized, (2) human machine allocation models, standards and guidelines which go beyond simple capability approaches will be needed to preclude or seriously diminish the work underload and workload transition problems, and (3) the 16 workload definition, measurement, situational awareness, and trust issues identified during the workshop, need resolution if these models, standards, and guidelines are to be achieved.

  18. A Study on Structured Simulation Framework for Design and Evaluation of Human-Machine Interface System -Application for On-line Risk Monitoring for PWR Nuclear Power Plant-

    SciTech Connect

    Zhan, J.; Yang, M.; Li, S.C.; Peng, M.J.; Yan, S.Y.; Zhang, Z.J.

    2006-07-01

    The operators in the main control room of Nuclear Power Plant (NPP) need to monitor plant condition through operation panels and understand the system problems by their experiences and skills. It is a very hard work because even a single fault will cause a large number of plant parameters abnormal and operators are required to perform trouble-shooting actions in a short time interval. It will bring potential risks if operators misunderstand the system problems or make a commission error to manipulate an irrelevant switch with their current operation. This study aims at developing an on-line risk monitoring technique based on Multilevel Flow Models (MFM) for monitoring and predicting potential risks in current plant condition by calculating plant reliability. The proposed technique can be also used for navigating operators by estimating the influence of their operations on plant condition before they take an action that will be necessary in plant operation, and therefore, can reduce human errors. This paper describes the risk monitoring technique and illustrates its application by a Steam Generator Tube Rupture (SGTR) accident in a 2-loop Pressurized Water Reactor (PWR) Marine Nuclear Power Plant (MNPP). (authors)

  19. Developing the VirtualwindoW into a General Purpose Telepresence Interface

    SciTech Connect

    McKay, M D; Anderson, M O; Kinoshita, R A; Willis, W D

    1999-04-01

    An important need while using robots or remotely operated equipment is the ability for the operator or an observer to easily and accurately perceive the operating environment. A classic problem in providing a complete representation of a work area is sensory overload or excessive complexity in the human-machine interface. In addition, remote operations often benefit from depth perception capability while viewing or manipulating objects. Thus, there is an on going effort within the robotic field to develop simplified telepresence interfaces. The Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) has been researching methods to generalize a human-machine interface for telepresence applications. Initial telepresence research conducted at the INEEL developed and implemented a concept called the VirtualwindoW. This system minimized the complexity of remote stereo viewing controls and provided the operator the "feel" of viewing the environment, including depth perception, in a natural setting. The VirtualwindoW has shown that the human-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW to provide a generalized, reconfigurable system that easily utilizes commercially available components. The original system has now been expanded to include support for zoom lenses, camera blocks, wireless links, and even vehicle control.

  20. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    PubMed Central

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2012-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693

  1. Defining brain-machine interface applications by matching interface performance with device requirements.

    PubMed

    Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo

    2008-01-15

    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications. PMID:17499364

  2. Bottlenecks and needs in human-human and human-machine interaction - a view from and into the neurosurgical OR.

    PubMed

    Blaar, Melanie; Janß, Armin; Dell'Anna, Jasmin; Höllig, Anke; Radermacher, Klaus; Clusmann, Hans

    2016-04-01

    The number and complexity of user interfaces in the OR has been considerably increasing during the last years. Moreover, increasing cost and time pressure force surgeons and surgical nurses to perform different tasks in parallel. We analyzed the workflow of 25 neurosurgical procedures with a workflow analysis tool in order to analyze the present situation in the neurosurgical OR and to identify potential use-oriented risks and to develop first proposals for respective countermeasures. Application of the navigation system, the CUSA ultrasonic aspirator, and the PACS-PC was associated with errors and resulting potential risks. A number of different disruptive factors have been identified, the most prominent of those being intraoperative duty phone calls, longer absence of the circulating nurses or slipped off foot switches. Furthermore, the identified problems may lead to risks for patient, and also for staff by use errors, associated with an inappropriate cognitive workload of the surgeon or nurses. Organizational and technical countermeasures are necessary: to enhance communication, team trainings could be helpful, and the setup of a mailbox could reduce the number of intraoperative duty phone calls. Technical deficiencies have to be reduced, e.g. with more user-oriented design of devices, such as foot switches, or standard design for user interfaces. For further risk reduction in the case of use deficiencies, we propose the implementation of device interoperability and the use of a sterile integrated user interface in a networked OR. PMID:26389631

  3. Response error correction--a demonstration of improved human-machine performance using real-time EEG monitoring.

    PubMed

    Parra, Lucas C; Spence, Clay D; Gerson, Adam D; Sajda, Paul

    2003-06-01

    We describe a brain-computer interface (BCI) system, which uses a set of adaptive linear preprocessing and classification algorithms for single-trial detection of error related negativity (ERN). We use the detected ERN as an estimate of a subject's perceived error during an alternative forced choice visual discrimination task. The detected ERN is used to correct subject errors. Our initial results show average improvement in subject performance of 21% when errors are automatically corrected via the BCI. We are currently investigating the generalization of the overall approach to other tasks and stimulus paradigms. PMID:12899266

  4. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device.

    PubMed

    Wang, Xuewen; Xiong, Zuoping; Liu, Zheng; Zhang, Ting

    2015-02-25

    Reduced graphene oxide ultrathin films are fabricated by a reproducible exfoliation method at the liquid/air interface, and they show high transparency, tunable sheet resistance, uniform electric conductivity, and structural homogeneity over a large area. A flexible relative humidity sensing matrix is demonstrated and it is shown to be excellent for close proximity sensing without touching it. This method opens up a novel avenue for future human-machine interaction applications. PMID:25522328

  5. Biomechanical design considerations for transradial prosthetic interface: A review.

    PubMed

    Sang, Yuanjun; Li, Xiang; Luo, Yun

    2016-03-01

    Traditional function and comfort assessment of transradial prostheses pay scant attention to prosthetic interface. With better understanding of the biomechanics of prosthetic interface comes better efficiency and safety for interface design; in this way, amputees are more likely to accept prosthetic usage. This review attempts to provide design and selection criteria of transradial interface for prosthetists and clinicians. Various transradial socket types in the literature were chronologically reviewed. Biomechanical discussion of transradial prosthetic interface design from an engineering point of view was also done. Suspension control, range of motion, stability, as well as comfort and safety of socket designs have been considered in varying degrees in the literature. The human-machine interface design should change from traditional "socket design" to new "interface design." From anatomy and physiology to biomechanics of the transradial residual limb, the force and motion transfer, together with comfort and safety, are the two main aspects in prosthetic interface design. Load distribution and transmission should mainly rely on achieving additional skeletal control through targeted soft tissue relief. Biomechanics of the residual limb soft tissues should be studied to find the relationship between mechanical properties and the comfort and safety of soft tissues. PMID:26759485

  6. Developing the VirtualwindoW into a General Purpose Telepresence Interface

    SciTech Connect

    Kinoshita, Robert Arthur; Anderson, Matthew Oley; Mckay, Mark D; Willis, Walter David

    1999-04-01

    An important need while using robots or remotely operated equipment is the ability for the operator or an observer to easily and accurately perceive the operating environment. A classic problem in providing a complete representation of a work area is sensory overload or excessive complexity in the human–machine interface. In addition, remote operations often benefit from depth perception capability while viewing or manipulating objects. Thus, there is an on going effort within the robotic field to develop simplified telepresence interfaces. The Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) has been researching methods to generalize a human-machine interface for telepresence applications. Initial telepresence research conducted at the INEEL developed and implemented a concept called the VirtualwindoW. This system minimized the complexity of remote stereo viewing controls and provided the operator the “feel” of viewing the environment, including depth perception, in a natural setting. The VirtualwindoW has shown that the human-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW to provide a generalized, reconfigurable system that easily utilizes commercially available components. The original system has now been expanded to include support for zoom lenses, camera blocks, wireless links, and even vehicle control.

  7. Hyperbolic interfaces.

    PubMed

    Giomi, Luca

    2012-09-28

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature. PMID:23030106

  8. Hyperbolic Interfaces

    NASA Astrophysics Data System (ADS)

    Giomi, Luca

    2012-09-01

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature.

  9. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    NASA Technical Reports Server (NTRS)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  10. Soft Interfaces

    NASA Astrophysics Data System (ADS)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  11. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  12. The designs and applications of a scanning interface with electrical signal detection on the scalp for the severely disabled.

    PubMed

    Lin, Chern-Sheng; Lin, Jung-Chih; Huang, Yen-Chen; Lai, Yu-Chen; Chang, Hsing-Cheng

    2015-11-01

    This study discussed a computer-aided program development that meets the requirements of people with physical disabilities. A number of control modes, such as electrode signal recorded on the scalp and blink control, were combined with the scanning human-machine interface to improve the external input/output device. Moreover, a novel and precise algorithm, which filters noise and reduces misrecognition of the system, was proposed. A convenient assistive device can assist people with physical disabilities to meet their requirements for independent living and communication with the outside. The traditional scanning keyboard is changed, and only the phonetic notations are typed instead of characters, thus the time of tone and function selection could be saved, and the typing time could be also reduced. Barrier-free computer assistive devices and interface for people with physical disabilities in typing or speech could allow them to use a scanning keyboard to select phonetic symbols instead of Chinese characters to express their thoughts. The human-machine interface controls can obtain more reliable results as 99.8% connection success rate and 95% typing success rate. PMID:26256069

  13. Discrete Kalman Filter based Sensor Fusion for Robust Accessibility Interfaces

    NASA Astrophysics Data System (ADS)

    Ghersi, I.; Mariño, M.; Miralles, M. T.

    2016-04-01

    Human-machine interfaces have evolved, benefiting from the growing access to devices with superior, embedded signal-processing capabilities, as well as through new sensors that allow the estimation of movements and gestures, resulting in increasingly intuitive interfaces. In this context, sensor fusion for the estimation of the spatial orientation of body segments allows to achieve more robust solutions, overcoming specific disadvantages derived from the use of isolated sensors, such as the sensitivity of magnetic-field sensors to external influences, when used in uncontrolled environments. In this work, a method for the combination of image-processing data and angular-velocity registers from a 3D MEMS gyroscope, through a Discrete-time Kalman Filter, is proposed and deployed as an alternate user interface for mobile devices, in which an on-screen pointer is controlled with head movements. Results concerning general performance of the method are presented, as well as a comparative analysis, under a dedicated test application, with results from a previous version of this system, in which the relative-orientation information was acquired directly from MEMS sensors (3D magnetometer-accelerometer). These results show an improved response for this new version of the pointer, both in terms of precision and response time, while keeping many of the benefits that were highlighted for its predecessor, giving place to a complementary method for signal acquisition that can be used as an alternative-input device, as well as for accessibility solutions.

  14. Investigation of human-robot interface performance in household environments

    NASA Astrophysics Data System (ADS)

    Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.

    2016-05-01

    Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.

  15. Battery electric vehicles - implications for the driver interface.

    PubMed

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed. PMID:26444273

  16. Programmable logic controller optical fibre sensor interface module

    NASA Astrophysics Data System (ADS)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  17. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    NASA Technical Reports Server (NTRS)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard

  18. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  19. Media independent interface. Interface control document

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A Media Independent Interface (MII) is specified, using current standards in the industry. The MII is described in hierarchical fashion. At the base are IEEE/International Standards Organization (ISO) documents (standards) which describe the functionality of the software modules or layers and their interconnection. These documents describe primitives which are to transcent the MII. The intent of the MII is to provide a universal interface to one or more Media Access Contols (MACs) for the Logical Link Controller and Station Manager. This interface includes both a standardized electrical and mechanical interface and a standardized functional specification which defines the services expected from the MAC.

  20. Assessing the Usability of Six Data Entry Mobile Interfaces for Caregivers: A Randomized Trial

    PubMed Central

    Haller, Guy; Sarrey, Evelyne; Walesa, Magali; Wipfli, Rolf; Lovis, Christian

    2015-01-01

    Background There is an increased demand in hospitals for tools, such as dedicated mobile device apps, that enable the recording of clinical information in an electronic format at the patient’s bedside. Although the human-machine interface design on mobile devices strongly influences the accuracy and effectiveness of data recording, there is still a lack of evidence as to which interface design offers the best guarantee for ease of use and quality of recording. Therefore, interfaces need to be assessed both for usability and reliability because recording errors can seriously impact the overall level of quality of the data and affect the care provided. Objective In this randomized crossover trial, we formally compared 6 handheld device interfaces for both speed of data entry and accuracy of recorded information. Three types of numerical data commonly recorded at the patient’s bedside were used to evaluate the interfaces. Methods In total, 150 health care professionals from the University Hospitals of Geneva volunteered to record a series of randomly generated data on each of the 6 interfaces provided on a smartphone. The interfaces were presented in a randomized order as part of fully automated data entry scenarios. During the data entry process, accuracy and effectiveness were automatically recorded by the software. Results Various types of errors occurred, which ranged from 0.7% for the most reliable design to 18.5% for the least reliable one. The length of time needed for data recording ranged from 2.81 sec to 14.68 sec, depending on the interface. The numeric keyboard interface delivered the best performance for pulse data entry with a mean time of 3.08 sec (SD 0.06) and an accuracy of 99.3%. Conclusions Our study highlights the critical impact the choice of an interface can have on the quality of recorded data. Selecting an interface should be driven less by the needs of specific end-user groups or the necessity to facilitate the developer’s task (eg, by

  1. Applying Spatial Audio to Human Interfaces: 25 Years of NASA Experience

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.; Godfrey, Martine; Miller, Joel D.; Anderson, Mark R.

    2010-01-01

    From the perspective of human factors engineering, the inclusion of spatial audio within a human-machine interface is advantageous from several perspectives. Demonstrated benefits include the ability to monitor multiple streams of speech and non-speech warning tones using a cocktail party advantage, and for aurally-guided visual search. Other potential benefits include the spatial coordination and interaction of multimodal events, and evaluation of new communication technologies and alerting systems using virtual simulation. Many of these technologies were developed at NASA Ames Research Center, beginning in 1985. This paper reviews examples and describes the advantages of spatial sound in NASA-related technologies, including space operations, aeronautics, and search and rescue. The work has involved hardware and software development as well as basic and applied research.

  2. Nuclear power plant human computer interface design incorporating console simulation, operations personnel, and formal evaluation techniques

    SciTech Connect

    Chavez, C.; Edwards, R.M.; Goldberg, J.H.

    1993-12-31

    New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary.

  3. Media independent interface

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The work done on the Media Independent Interface (MII) Interface Control Document (ICD) program is described and recommendations based on it were made. Explanations and rationale for the content of the ICD itself are presented.

  4. Water at Interfaces.

    PubMed

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding. PMID:27232062

  5. Microconical interface fitting and interface grasping tool

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L. (Inventor); Wightman, William D. (Inventor); Johnston, Alistair P. (Inventor)

    1994-01-01

    A small and light weight microconical interface fitting may be attached to the surface of a space vehicle or equipment to provide an attachment device for an astronaut or robot to capture the space vehicle or equipment. The microconical interface fitting of the present invention has an axisymmetrical conical body having a base portion with a torque reaction surface for preventing rotation of the interface grasping tool; a cavitated, sunken or hollowed out intermediate locking portion which has a cavity shaped for receiving the latches of the grasping tool and an upper guiding portion for guiding the grasping tool into axial alignment with the microconical interface fitting. The capture is accomplished with an interface grasping tool. The grasping tool comprises an outer sleeve with a handle attached, an inner sleeve which may be raised and lowered within the outer sleeve with a plurality of latches supported at the lower end and a cam to raise and lower the inner sleeve. When the inner sleeve is at its lowest position, the latches form the largest diameter opening for surrounding the microconical fitting and the latches form the smallest diameter or a locking, grasping position when raised to the highest position within the outer sleeve. The inner sleeve may be at an intermediate, capture position which permits the latches to be biased outwardly when contacting the microconical fitting under very low forces to grasp the fitting and permits capture (soft docking) without exact alignment of the fitting and the tool.

  6. Turbomachine Interface Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Chupp, Raymond E.; Lattime, Scott B.; Steinetz, Bruce M.

    2005-01-01

    Sealing interfaces and coatings, like lubricants, are sacrificial, giving up their integrity for the benefit of the component. Clearance control is a major issue in power systems turbomachine design and operational life. Sealing becomes the most cost-effective way to enhance system performance. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining interface clearances in turbomachine sealing and component life. This paper focuses on conventional and innovative materials and design practices for sealing interfaces.

  7. The kinked interface crack

    NASA Astrophysics Data System (ADS)

    Heitzer, Joerg

    1992-05-01

    Two methods for the numerical solution of the integral equation describing the kinked interface crack, one proposed by Erdogan et al. (1973) and the other by Theokaris and Iokimidis (1979), are examined. The method of Erdogan et al. is then used to solve the equation in order to determine the kinking angle of the interface crack. Results are presented for two material combinations, aluminum/epoxy and glass/ceramic, under uniaxial tension in the direction normal to the interface.

  8. Persistent interface fluid syndrome.

    PubMed

    Hoffman, Richard S; Fine, I Howard; Packer, Mark

    2008-08-01

    We present an unusual case of persistent interface fluid that would not resolve despite normal intraocular pressure and corneal endothelial replacement with Descemet-stripping endothelial keratoplasty. Dissection, elevation, and repositioning of the laser in situ keratomileusis flap were required to resolve the interface fluid. Circumferential corneal graft-host margin scar formation acting as a mechanical strut may have been the cause of the intractable interface fluid. PMID:18655997

  9. Popeye Project: ROV interface

    SciTech Connect

    Scates, C.R.; Hernandez, D.A.; Hickok, D.D.

    1996-12-31

    This paper discusses the Remote Operated Vehicle (ROV) interface with the Popeye Project Subsea System. It describes the ROV-related plans, design philosophies, intervention tasks, tooling/equipment requirements, testing activities, and offshore installation experiences. Early identification and continuous consideration of the ROV interfaces significantly improved the overall efficiency of equipment designs and offshore operations. The Popeye Project helped advance the technology and standardization of ROV interfaces for deep water subsea production systems.

  10. Multimodal neuroelectric interface development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Rosipal, Roman; Clanton, Sam T.; Matthews, Bryan; Hibbs, Andrew D.; Matthews, Robert; Krupka, Michael

    2003-01-01

    We are developing electromyographic and electroencephalographic methods, which draw control signals for human-computer interfaces from the human nervous system. We have made progress in four areas: 1) real-time pattern recognition algorithms for decoding sequences of forearm muscle activity associated with control gestures; 2) signal-processing strategies for computer interfaces using electroencephalogram (EEG) signals; 3) a flexible computation framework for neuroelectric interface research; and d) noncontact sensors, which measure electromyogram or EEG signals without resistive contact to the body.

  11. TSF Interface Package

    SciTech Connect

    2004-03-01

    A collection of packages of classes for interfacing to sparse and dense matrices, vectors and graphs, and to linear operators. TSF (via TSFCore, TSFCoreUtils and TSFExtended) provides the application programmer interface to any number of solvers, linear algebra libraries and preconditioner packages, providing also a sophisticated technique for combining multiple packages to solve a single problem. TSF provides a collection of abstract base classes that define the interfaces to abstract vector, matrix and linear soerator objects. By using abstract interfaces, users of TSF are not limiting themselves to any one concrete library and can in fact easily combine multiple libraries to solve a single problem.

  12. The CDS at the Age of Multitouch Interfaces and Mobility

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Boch, T.; Fernique, P.; Kaestlé, V.

    2012-09-01

    Currently, we are witnessing a rapid evolution of new human-machine interfaces based on the widespread use of multitouch screens. This evolution is not just a replacement of the mouse-keyboard couple but requires a recast of the interfaces to take advantage of the new features (example: simultaneous selections in different parts of the screen). Traditional operating systems (mostly Windows and Linux) are also moving towards the integration of multitouch. It is possible in Windows7, also in Ubuntu (since release 10.10). The user interfaces of existing applications should be deeply impacted, as it is not just an adaptation of the existing ones: it is a transition from a selection in menus, click on button, to an intuitive based interaction. In this context the use of the semantics could help to understand what the user wants to do and to simplify the interfaces. The number of mobile devices (Smartphones based on iPhoneOS, AndroidOS and others, tablet computers (iPad, Galaxy Tab, etc.) is growing exponentially with a sustained frequency of replacement (18 months for a device). Smartphones provide an access to Web services but also to dedicated applications (available on App Store, Android Market, etc.). Investment in human resources to provide services on mobile devices could be limited in the first case (a simple adaptation of existing Web pages), but is higher in the case of dedicated applications (software development for a given operating system and the porting to other systems to achieve sufficient diffusion). Following this step, we have developed an Aladin Allsky lite application for Android, SkySurveys. This application is based on HEALPix and it was a real challenge to provide a tool with good display performances on a basic hardware device compared to a desktop or a laptop. We are now focusing the study on the use of HTML5, an emerging technology supported by recent versions of Internet browsers, which can provide rich content. HTML5 has the advantage of

  13. Cursor control by Kalman filter with a non-invasive body-machine interface

    NASA Astrophysics Data System (ADS)

    Seáñez-González, Ismael; Mussa-Ivaldi, Ferdinando A.

    2014-10-01

    Objective. We describe a novel human-machine interface for the control of a two-dimensional (2D) computer cursor using four inertial measurement units (IMUs) placed on the user’s upper-body. Approach. A calibration paradigm where human subjects follow a cursor with their body as if they were controlling it with their shoulders generates a map between shoulder motions and cursor kinematics. This map is used in a Kalman filter to estimate the desired cursor coordinates from upper-body motions. We compared cursor control performance in a centre-out reaching task performed by subjects using different amounts of information from the IMUs to control the 2D cursor. Main results. Our results indicate that taking advantage of the redundancy of the signals from the IMUs improved overall performance. Our work also demonstrates the potential of non-invasive IMU-based body-machine interface systems as an alternative or complement to brain-machine interfaces for accomplishing cursor control in 2D space. Significance. The present study may serve as a platform for people with high-tetraplegia to control assistive devices such as powered wheelchairs using a joystick.

  14. Thread Pool Interface (TPI)

    Energy Science and Technology Software Center (ESTSC)

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  15. Interface Conductance Modal Analysis

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2015-03-01

    Reliably and quantitatively calculating the conductance of phonons across an interface between two materials has been one of the major unresolved questions in thermal transport physics for the last century. Theories have been presented in this regard, but their predictive power is limited. A new formalism to extract the modal contributions to thermal interface conductance with full inclusion of temperature dependent anharmonicity and all of the atom level topography is presented. The results indicate that when two materials are joined a new set of vibrational modes are required to correctly describe the transport across the interface. The new set of vibrational modes is inconsistent with the physical picture described by phonon gas model (PGM), because some of the most important modes are localized and non-propagating and therefore do not have a well-defined velocity nor do they impinge on the interface. Among these new modes, certain classifications emerge, as most modes extend at least partially into the other material. Localized interfacial modes are also present and exhibit a high conductance contribution on a per mode basis by strongly coupling to other types of vibrational modes. We apply our formalism to different interfaces and present thermal interface conductance accumulation functions, two-dimensional cross-correlation matrices, and a quantitative determination of the contributions arising from inelastic effects. The provided new perspective on interface thermal transport can open new gates towards deeper understanding of phonon-phonon and electron-phonon interactions around interfaces.

  16. Interface colloidal robotic manipulator

    DOEpatents

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  17. Designing the Instructional Interface.

    ERIC Educational Resources Information Center

    Lohr, L. L.

    2000-01-01

    Designing the instructional interface is a challenging endeavor requiring knowledge and skills in instructional and visual design, psychology, human-factors, ergonomic research, computer science, and editorial design. This paper describes the instructional interface, the challenges of its development, and an instructional systems approach to its…

  18. Interfaces in Perovskite Heterostructures

    SciTech Connect

    Christen, Hans M; Kim, Dae Ho; Rouleau, Christopher M

    2008-01-01

    Recent advances in film synthesis have made it possible to investigate the properties of well-controlled interfaces in perovskite metal-oxides. A review of published experimental data and computational results indicate that so far most interfaces that have been analyzed in ferroelectric materials - while necessary to impose large lattice strain on the polar material - contribute little to the ferroelectricity and may instead be detrimental to the desired properties. In contrast, a very different situation arises at interfaces that show changes in the electronic configuration as a consequence of a compositional discontinuity. Data is shown for LaMnO3/SrTiO 3 superlattices as an example of electronic effects that produce enhanced properties, further illustrating the richness of interfacial properties that can be obtained at interfaces (as shown in numerous published results for different but related interfaces).

  19. Operator interface for vehicles

    DOEpatents

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  20. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.

    PubMed

    Nam, Yunjun; Koo, Bonkon; Cichocki, Andrzej; Choi, Seungjin

    2014-02-01

    We present a novel human-machine interface, called GOM-Face , and its application to humanoid robot control. The GOM-Face bases its interfacing on three electric potentials measured on the face: 1) glossokinetic potential (GKP), which involves the tongue movement; 2) electrooculogram (EOG), which involves the eye movement; 3) electromyogram, which involves the teeth clenching. Each potential has been individually used for assistive interfacing to provide persons with limb motor disabilities or even complete quadriplegia an alternative communication channel. However, to the best of our knowledge, GOM-Face is the first interface that exploits all these potentials together. We resolved the interference between GKP and EOG by extracting discriminative features from two covariance matrices: a tongue-movement-only data matrix and eye-movement-only data matrix. With the feature extraction method, GOM-Face can detect four kinds of horizontal tongue or eye movements with an accuracy of 86.7% within 2.77 s. We demonstrated the applicability of the GOM-Face to humanoid robot control: users were able to communicate with the robot by selecting from a predefined menu using the eye and tongue movements. PMID:24021635

  1. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  2. Scalable coherent interface

    SciTech Connect

    Alnaes, K.; Kristiansen, E.H. ); Gustavson, D.B. ); James, D.V. )

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs.

  3. TSF Interface Package

    Energy Science and Technology Software Center (ESTSC)

    2004-03-01

    A collection of packages of classes for interfacing to sparse and dense matrices, vectors and graphs, and to linear operators. TSF (via TSFCore, TSFCoreUtils and TSFExtended) provides the application programmer interface to any number of solvers, linear algebra libraries and preconditioner packages, providing also a sophisticated technique for combining multiple packages to solve a single problem. TSF provides a collection of abstract base classes that define the interfaces to abstract vector, matrix and linear soeratormore » objects. By using abstract interfaces, users of TSF are not limiting themselves to any one concrete library and can in fact easily combine multiple libraries to solve a single problem.« less

  4. Implantable microscale neural interfaces.

    PubMed

    Cheung, Karen C

    2007-12-01

    Implantable neural microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. Such implantable microelectrode arrays are being developed to simultaneously sample signals at many points in the tissue, providing insight into processes such as movement control, memory formation, and perception. These electrode arrays have been microfabricated on a variety of substrates, including silicon, using both surface and bulk micromachining techniques, and more recently, polymers. Current approaches to achieving a stable long-term tissue interface focus on engineering the surface properties of the implant, including coatings that discourage protein adsorption or release bioactive molecules. The implementation of a wireless interface requires consideration of the necessary data flow, amplification, signal processing, and packaging. In future, the realization of a fully implantable neural microsystem will contribute to both diagnostic and therapeutic applications, such as a neuroprosthetic interface to restore motor functions in paralyzed patients. PMID:17252207

  5. Polarizable Ions at Interfaces

    NASA Astrophysics Data System (ADS)

    Levin, Yan

    2009-04-01

    A nonperturbative theory is presented which allows us to calculate the solvation free energy of polarizable ions near water-vapor and water-oil interfaces. The theory predicts that larger halogen anions are adsorbed at the interface, while the alkali metal cations are repelled from it. The density profiles calculated theoretically are similar to those obtained using molecular dynamics simulations with polarizable force fields.

  6. Performance Application Programming Interface

    Energy Science and Technology Software Center (ESTSC)

    2005-10-31

    PAPI is a programming interface designed to provide the tool designer and application engineer with a consistent interface and methodology for use of the performance counter hardware found in most major microprocessors. PAPI enables software engineers to see, in near real time, the relation between software performance and processor events. This release covers the hardware dependent implementation of PAPI version 3 for the IBM BlueGene/L (BG/L) system.

  7. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  8. Interfaces: nanometric dielectrics

    NASA Astrophysics Data System (ADS)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  9. MER SPICE Interface

    NASA Technical Reports Server (NTRS)

    Sayfi, Elias

    2004-01-01

    MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.

  10. Serial interface controller

    SciTech Connect

    Kandasamy, A.

    1995-04-14

    The idea of building a Serial Interface Controller (SIC) proposed by Paul O`Connor, Instrumentation Division, BNL is to determine the feasibility of incorporating a Serial Interface Controlled CMOS IC`s for charge amplification, shaping, analog storage and multiplexing used in particle detectors for high energy physics experiments. The serial data pumped into the CMOS ICs will be used to control many circuit parameters like digitally controlled gain, shaping time, precision preamplifier calibration circuits and many other parameters like timing discriminators mode of operation. The SIC board built will be tested on a Serial Interface Controlled Digital - to - Analog Convertor, which follows either Motorola`s SPI/QSPI or National Semiconductors Microwire interface technique. The DAC chosen for this was MAXIM`s MAX537, a Quad, 12-bit DAC. The function of this controller can be achieved by using some on-shelf micro-controllers like the Motorola`s MC68HC11, which offers dedicated SPI ports. The drawback encountered in using this controller is the overhead involved in putting together an user interface where the user can dynamically change its settings and load the SIC device. This is very critical in testing fewer number of CMOS IC`s having SIC. The SIC board described here takes care of this dynamic user interface issue.

  11. Approach and landing test network interface processor interface control document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design requirements are established for all external or interproject interfaces to the Network Interface Processor located in Building 30 at the Lyndon B. Johnson Space Center, Houston, Texas. In addition to external interfaces, software/hardware and special interfaces are also described.

  12. Environmental materials and interfaces

    SciTech Connect

    Not Available

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig.

  13. [Emergency Department Interfaces].

    PubMed

    Fleischmann, Thomas

    2016-01-01

    Emergency Departments ED may be an exceptionally good example of an interface within a hospital. EDs have no patients of their own but pass them over to other institutions, either to specialist departments within the hospital or to primary care providers. Moreover, many doctors, nurses, attendants and institutions take part in the care of emergency department patients, and thus the number of its interfaces is very high. The characteristics of working in an ED, for example shortage of time, high work load, taking care of several patients at the same time and frequently crowding, may compromise the transfer of information via interfaces, sometimes including even vital data. The best way to secure handoff of information may be the formalization and standardization of this process, assuring patient safety and quality of care. Further study is required. PMID:26710198

  14. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  15. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  16. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1992-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  17. Urban water interfaces

    NASA Astrophysics Data System (ADS)

    Gessner, M. O.; Hinkelmann, R.; Nützmann, G.; Jekel, M.; Singer, G.; Lewandowski, J.; Nehls, T.; Barjenbruch, M.

    2014-06-01

    Urban water systems consist of large-scale technical systems and both natural and man-made water bodies. The technical systems are essential components of urban infrastructure for water collection, treatment, storage and distribution, as well as for wastewater and runoff collection and subsequent treatment. Urban aquatic ecosystems are typically subject to strong human influences, which impair the quality of surface and ground waters, often with far-reaching impacts on downstream aquatic ecosystems and water users. The various surface and subsurface water bodies in urban environments can be viewed as interconnected compartments that are also extensively intertwined with a range of technical compartments of the urban water system. As a result, urban water systems are characterized by fluxes of water, solutes, gases and energy between contrasting compartments of a technical, natural or hybrid nature. Referred to as urban water interfaces, boundaries between and within these compartments are often specific to urban water systems. Urban water interfaces are generally characterized by steep physical and biogeochemical gradients, which promote high reaction rates. We hypothesize that they act as key sites of processes and fluxes with notable effects on overall system behaviour. By their very nature, urban water interfaces are heterogeneous and dynamic. Therefore, they increase spatial heterogeneity in urban areas and are also expected to contribute notably to the temporal dynamics of urban water systems, which often involve non-linear interactions and feedback mechanisms. Processes at and fluxes across urban water interfaces are complex and less well understood than within well-defined, homogeneous compartments, requiring both empirical investigations and new modelling approaches at both the process and system level. We advocate an integrative conceptual framework of the urban water system that considers interfaces as a key component to improve our fundamental

  18. Nonlinear optics at interfaces

    SciTech Connect

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory.

  19. Modal Interfaces in Hawaii

    NASA Technical Reports Server (NTRS)

    Wright, E. Alvey

    1974-01-01

    Hawaii, an archipelago where transportation distances are short but the interfaces are many, seeks elimination of modal changes by totally-submerged hydrofoil craft operating at the water surface directly between tourist resort destinations, by dual mode rapid transit vehicles operating directly between the deplaning bridges at Honolulu International Airport and hotel porte-cochere at Waikiki, by demand responsive vehicles for collection and distribution operating on fixed guideways for line haul, and by roll-on/roll-off inter-island ferries for all models of manually operated ground vehicles. The paper also describes facilitation of unavoidable interfaces by innovative sub-systems.

  20. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  1. Optical encryption interface

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  2. Profile Interface Generator

    Energy Science and Technology Software Center (ESTSC)

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allowsmore » semantic instrumentation to live in production codes without interfering with production runs.« less

  3. Profile Interface Generator

    SciTech Connect

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allows semantic instrumentation to live in production codes without interfering with production runs.

  4. Unstable nonlocal interface dynamics.

    PubMed

    Nicoli, Matteo; Cuerno, Rodolfo; Castro, Mario

    2009-06-26

    Nonlocal effects occur in many nonequilibrium interfaces, due to diverse physical mechanisms like diffusive, ballistic, or anomalous transport, with examples from flame fronts to thin films. While dimensional analysis describes stable nonlocal interfaces, we show the morphologically unstable condition to be nontrivial. This is the case for a family of stochastic equations of experimental relevance, paradigmatically including the Michelson-Sivashinsky system. For a whole parameter range, the asymptotic dynamics is scale invariant with dimension-independent exponents reflecting a hidden Galilean symmetry. The usual Kardar-Parisi-Zhang nonlinearity, albeit irrelevant in that parameter range, plays a key role in this behavior. PMID:19659099

  5. Direct Manipulation Interfaces.

    ERIC Educational Resources Information Center

    Hutchins, Edwin L.; And Others

    This paper presents a cognitive account of both the advantages and disadvantages of direct manipulation interfaces, i.e., the use of icons to manipulate and interact directly with data rather than writing programs or calling on a set of statistical subroutines. Two underlying phenomena that give rise to the sensation of directness are identified.…

  6. Interfacing with a DMM.

    ERIC Educational Resources Information Center

    Beatty, Jim

    1985-01-01

    Suggests purchasing a digital multimer (DMM) with an IEEE-488 option to interface an instrument to a microcomputer, indicating that a DMM is well protected from overloads and is easy to connect. An example of its use in an experiment involving hydrolysis of tertiary butyl alcohol (with program listing) is given. (JN)

  7. A Thermistor Interface.

    ERIC Educational Resources Information Center

    Kamin, Gary D.; Dowden, Edward

    1987-01-01

    Describes the use of a precalibrated stainless steel thermistor, interfaced with an Apple computer, in chemistry experiments. Discusses the advantages of "instant" temperature readings in experiments requiring that readings be taken at certain intervals. Outlines such an experiment which investigates freezing point depressions. (TW)

  8. Photochemistry at Interfaces

    SciTech Connect

    Eisenthal, Kenneth B

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  9. Videodisc-Computer Interfaces.

    ERIC Educational Resources Information Center

    Zollman, Dean

    1984-01-01

    Lists microcomputer-videodisc interfaces currently available from 26 sources, including home use systems connected through remote control jack and industrial/educational systems utilizing computer ports and new laser reflective and stylus technology. Information provided includes computer and videodisc type, language, authoring system, educational…

  10. the EXFOR interface

    Energy Science and Technology Software Center (ESTSC)

    2011-03-10

    The x4i package is an interface to the EXFOR nuclear data library. It simplifies retrieval of EXFOR entries and can automatically parse them, allowing one to extract cross-section (and other) data in a simple, plot-able format. x4i also understands and can parse the entire reaction string, allowing one to build a strategy for processing the data

  11. Virtual interface environment

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture is under development for use as a multipurpose interface environment. Initial applications of the system are in telerobotics, data-management and human factors research. System configuration and research directions are described.

  12. PREFACE: Water at interfaces Water at interfaces

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  13. Easy-to-use interface

    SciTech Connect

    Blattner, M M; Blattner, D O; Tong, Y

    1999-04-01

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future.

  14. Interface Configuration Experiment: Preliminary results

    SciTech Connect

    Concus, P.; Finn, R.; Weislogel, M.

    1993-09-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum reoriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  15. Interface Configuration Experiment: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark

    1994-01-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum re-oriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  16. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

    NASA Astrophysics Data System (ADS)

    Zander, T. O.; Jatzev, S.

    2012-02-01

    Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.

  17. Thyra Abstract Interface Package

    Energy Science and Technology Software Center (ESTSC)

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  18. Popeye Project: ROV interfaces

    SciTech Connect

    Scates, C.R.; Hickok, D.D.; Hernandez, D.A.

    1997-04-01

    The Popeye Project in the Gulf of Mexico helped advance the technology and standardization of ROV interfaces for deepwater subsea production systems. Some of the many successful ROV operations during installation and completion were {open_quotes}first-of-it`s-kind{close_quotes} activities-enabled by many technical advances. The use and reliance upon ROV systems for support of deepwater drilling and installation operations significantly increased in the past 10 years. Shell Offshore Inc.`s (SOI) confidence in this increased capability was an important factor in many of the design decisions which characterized the innovative system. Technology advancements, which depended on effective ROV intervention, were implemented with no significant difficulties. These advancements, in particular the flying leads and seabed position methods, are available to the industry for other deepwater subsea systems. In addition, several Popeye ROV interfaces have helped advance the subsea standardization initiative; e.g., hot stabs, torque-tool end effectors, and paint color.

  19. Standard interface file handbook

    SciTech Connect

    Shapiro, A.; Huria, H.C. )

    1992-10-01

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  20. Virtual button interface

    DOEpatents

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  1. Virtual button interface

    DOEpatents

    Jones, Jake S.

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  2. SNE Industrial Fieldbus Interface

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Raines, Matthew; Oostdyk, Rebecca; Mata, Carlos

    2011-01-01

    Programmable logic controllers (PLCs) have very limited diagnostic and no prognostic capabilities, while current smart sensor designs do not have the capability to communicate over Fieldbus networks. The aim is to interface smart sensors with PLCs so that health and status information, such as failure mode identification and measurement tolerance, can be communicated via an industrial Fieldbus such as ControlNet. The SNE Industrial Fieldbus Interface (SIFI) is an embedded device that acts as a communication module in a networked smart sensor. The purpose is to enable a smart sensor to communicate health and status information to other devices, such as PLCs, via an industrial Fieldbus networking protocol. The SNE (Smart Network Element) is attached to a commercial off-the-shelf Any bus-S interface module through the SIFI. Numerous Anybus-S modules are available, each one designed to interface with a specific Fieldbus. Development of the SIFI focused on communications using the ControlNet protocol, but any of the Anybus-S modules can be used. The SIFI communicates with the Any-bus module via a data buffer and mailbox system on the Anybus module, and supplies power to the module. The Anybus module transmits and receives data on the Fieldbus using the proper protocol. The SIFI is intended to be connected to other existing SNE modules in order to monitor the health and status of a transducer. The SIFI can also monitor aspects of its own health using an onboard watchdog timer and voltage monitors. The SIFI also has the hardware to drive a touchscreen LCD (liquid crystal display) unit for manual configuration and status monitoring.

  3. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  4. The THOSE remote interface

    NASA Astrophysics Data System (ADS)

    Klawon, Kevin; Gold, Josh; Bachman, Kristen

    2013-05-01

    The DIA, in conjunction with the Army Research Lab (ARL), wants to create an Unmanned Ground Sensor (UGS) controller that is (a) interoperable across all controller platforms, (b) capable of easily adding new sensors, radios, and processes and (c) backward compatible with existing UGS systems. To achieve this, a Terra Harvest controller was created that used Java JRE 1.6 and an Open Services Gateway initiative (OSGi) platform, named Terra Harvest Open Software Environment (THOSE). OSGi is an extensible framework that provides a modularized environment for deploying functionality in "bundles". These bundles can publish, discover, and share services available from other external bundles or bundles provided by the controller core. With the addition of a web GUI used for interacting with THOSE, a natural step was then to create a common remote interface that allows 3rd party real-time interaction with the controller. This paper provides an overview of the THOSE system and its components as well as a description of the architectural structure of the remote interface, highlighting the interactions occurring between the controller and the remote interface and its role in providing a positive user experience for managing UGSS functions.

  5. Eye-voice-controlled interface

    NASA Technical Reports Server (NTRS)

    Glenn, Floyd A., III; Iavecchia, Helene P.; Ross, Lorna V.; Stokes, James M.; Weiland, William J.

    1986-01-01

    The Ocular Attention-Sensing Interface System (OASIS) is an innovative human-computer interface which utilizes eye movement and voice commands to communicate messages between the operator and the system. This report initially describes some technical issues relevant to the development of such an interface. The results of preliminary experiments which evaluate alternative eye processing algorithms and feedback techniques are presented. Candidate interface applications are also discussed.

  6. Why Mineral Interfaces Matter

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Putnis, Christine V.

    2015-04-01

    While it is obvious that reactions between a mineral and an aqueous solution take place at the mineral-fluid interface it is only relatively recently that high spatial resolution studies have demonstrated how the local structure of the mineral surface and the chemical composition of the fluid at the interface control both the short-range and the long-range consequences of mineral-fluid interaction. Long-range consequences of fluid-mineral interaction control element cycles in the earth, the formation of ore-deposits, the chemical composition of the oceans through weathering of rocks and hence climate changes. Although weathering is clearly related to mineral dissolution, to what extent do experimentally measured dissolution rates of minerals help to understand weathering, especially weathering mechanisms? This question is related to the short-range, local reactions that take place when a mineral, that is not stable in the fluid, begins to dissolve. In this case the fluid composition at the interface will become supersaturated with respect to a different phase or phases. This may be a different composition of the same mineral e.g. a Ca-rich feldspar dissolving in a Na-rich solution results in a fluid at the interface which may be supersaturated with respect to an Na-rich feldspar. Alternatively, the interfacial fluid could be supersaturated with respect to a different mineral e.g. an Na-rich zeolite, depending on the temperature. Numerous experiments have shown that the precipitation of a more stable phase at the mineral-fluid interface results in a coupling between the dissolution and the precipitation, and the replacement of one mineral by another. This process separates the short-range mechanisms which depend only on the composition of the interfacial solution, and the long-range consequences that depend on the composition of the residual fluid released from the reacting parent mineral. Typically such residual fluids may carry metal ions tens to hundreds of

  7. Graphic Interfaces and Online Information.

    ERIC Educational Resources Information Center

    Percival, J. Mark

    1990-01-01

    Discusses the growing importance of the use of Graphic User Interfaces (GUIs) with microcomputers and online services. Highlights include the development of graphics interfacing with microcomputers; CD-ROM databases; an evaluation of HyperCard as a potential interface to electronic mail and online commercial databases; and future possibilities.…

  8. POLYMERIC INTERFACES FOR STACK MONITORING

    EPA Science Inventory

    Research has been performed on the use of polymeric interfaces for in situ continuous stack monitoring of gaseous pollutants. Permeabilities of candidate interface materials to SO2 were measured at temperatures from ambient to 200C, and the results were used to design interfaces ...

  9. Productivity issues at organizational interfaces

    NASA Technical Reports Server (NTRS)

    Holland, A. W.

    1985-01-01

    The need for close interdependence between large numbers of diverse and specialized work groups makes the Space Program extremely vulnerable to loss of productivity at organizational interfaces. Trends within the program also suggest that the number and diversity of interfaces will grow in the near term. Continued maintenance of R&D excellence will require that interface performance issues be included in any future productivity improvement effort. The types and characteristics of organizational interfaces are briefly presented, followed by a review of factors which impact their productivity. Approaches to assessing and improving interface effectiveness are also discussed.

  10. Fracture behavior across interfaces

    NASA Astrophysics Data System (ADS)

    Petrie, E. S.; Evans, J. P.; Jeppson, T. N.

    2011-12-01

    Faults and fracture networks at depth are important fluid pathways, especially in fine-grained, low permeability seal lithologies. Discontinues in sealing lithologies can create seal bypass systems, leading to the failure of CO2 geosequestration sites or hydrocarbon traps. We characterize the occurrence of and changes in discontinuity patterns and the associated changes in elastic moduli across sedimentologic interfaces to document the importance of these discontinuities for fluid management in the subsurface and potential for re-activation in high-pressure injection scenarios. We evaluate well-exposed, fine-grained, low-permeability Mesozoic and Paleozoic units that are seals of potential CO2 repositories on the Colorado Plateau and show evidence for open fractures and fluid flow in the subsurface. Field observations document changes in fracture distributions across lithologic boundaries allowing us to identify mechano-stratigraphic units and focus on the effect of lithologic interfaces on fracture distribution. An interface marks the boundary between facies in a seal and in this study the fractures are shown to deflect or arrest at the interface. In outcrop fracture intensity varies in from 1 to 18 fractures per meter and fracture apertures range from mm to cm. The mineralized fractures often have associated alteration halos along their boundaries; their general orientation follows that of discontinuities within the underlying reservoir facies or adjacent faults. The recognition of these changes in fracture distribution is important for forward modeling of fluid flow and risk management. Studying the occurrence of and changes in fracture patterns from outcrops and scaling it up for use in modeling at a field scale is difficult due to the lack of direct correlation between outcrop observations and subsurface data. Due to the size and amount of data needed to model fluid flow at the field scale the meso-scale (cm to m) variability of rock properties is often

  11. NESSUS/NASTRAN Interface

    NASA Technical Reports Server (NTRS)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS probabilistic analysis computer program has been developed with a built-in finite element analysis program NESSUS/FEM. However, the NESSUS/FEM program is specialized for engine structures and may not contain sufficient features for other applications. In addition, users often become well acquainted with a particular finite element code and want to use that code for probabilistic structural analysis. For these reasons, this work was undertaken to develop an interface between NESSUS and NASTRAN such that NASTRAN can be used for the finite element analysis and NESSUS can be used for the probabilistic analysis. In addition, NESSUS was restructured such that other finite element codes could be more easily coupled with NESSUS. NESSUS has been enhanced such that NESSUS will modify the NASTRAN input deck for a given set of random variables, run NASTRAN and read the NASTRAN result. The coordination between the two codes is handled automatically. The work described here was implemented within NESSUS 6.2 which was delivered to NASA in September 1995. The code runs on Unix machines: Cray, HP, Sun, SGI and IBM. The new capabilities have been implemented such that a user familiar with NESSUS using NESSUS/FEM and NASTRAN can immediately use NESSUS with NASTRAN. In other words, the interface with NASTRAN has been implemented in an analogous manner to the interface with NESSUS/FEM. Only finite element specific input has been changed. This manual is written as an addendum to the existing NESSUS 6.2 manuals. We assume users have access to NESSUS manuals and are familiar with the operation of NESSUS including probabilistic finite element analysis. Update pages to the NESSUS PFEM manual are contained in Appendix E. The finite element features of the code and the probalistic analysis capabilities are summarized.

  12. User interface concerns

    NASA Technical Reports Server (NTRS)

    Redhed, D. D.

    1978-01-01

    Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.

  13. NESSUS/NASTRAN Interface

    NASA Technical Reports Server (NTRS)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.

  14. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  15. Access Interface Strategies

    PubMed Central

    Fager, Susan; Beukelman, David R.; Fried-Oken, Melanie; Jakobs, Tom; Baker, John

    2013-01-01

    Individuals who rely on augmentative and alternative communication (AAC) devices to support their communication often have physical movement challenges that require alternative methods of access. Technology that supports access, particularly for those with the most severe movement deficits, have expanded substantially over the years. The purposes of this article are to review the state of the science of access technologies that interface with augmentative and alternative communication devices and to propose a future research and development agenda that will enhance access options for people with limited movement capability due to developmental and acquired conditions. PMID:22590797

  16. Matched Interface and Boundary Method for Elasticity Interface Problems

    PubMed Central

    Wang, Bao; Xia, Kelin; Wei, Guo-Wei

    2015-01-01

    Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms. PMID:25914439

  17. Chemical structure of interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.

    1985-01-01

    The interfacial structure of silicon/dielectric and silicon/metal systems is particularly amenable to analysis using a combination of surface spectroscopies together with a variety of chemical structures of Si/SiO2, Si/SiO2Si3N4, Si/Si2N2O, Si/SiO2/Al, and Si/Native Oxide interfaces using high resolution (0.350 eV FWHM) X ray photoelectron spectroscopy. The general structure of these dielectric interfaces entails a monolayer chemical transition layer at the Si/dielectric boundary. Amorphous Si substrates show a wide variety of hydrogenated Si and Si(OH) sub x states that are not observed in thermal oxidation of single crystal material. Extended SiO2 layers greater than 8 A in thickness are shown to be stoichiometric SiO2, but to exhibit a wide variety of local network structures. In the nitrogen containing systems, an approach to stoichiometric oxynitride compounds with interesting impurity and electron trapping properties are seen. In native oxides, substantial topographical nonuniformity in oxide thickness and composition are found. Analysis of metal/oxide interfacial layers is accomplished by analytical removal of the Si substrate by UHV XeF2 dry etching methods.

  18. Mysteries at Ice Interfaces

    NASA Astrophysics Data System (ADS)

    Fain, Samuel C., Jr.

    1996-03-01

    Michael Faraday noted that ``two pieces of thawing ice, if put together, adhere and become one...the effect will take place in air, or in water, or in vacuo." Why? He proposed that ``a particle of water, which could retain the liquid state whilst touching ice only on one side, could not retain the liquid state if it were touched by ice on both sides."footnote M. Faraday, Proc. Roy. Soc. London 10, 440 (1860) The existence of special properties at interfaces of ice is generally agreed and has important environmental consequences.(J. G. Dash, H. Fu, and J. S. Wettlaufer, Rep. Prog. Phys. 58), 115 (1995) Why do different experiments infer different properties for this layer? Impurities and electric fields at the interfaces may be responsible for some of the variations in experimental results.footnote V. F. Petrenko, U. S. Army Cold Regions Research and Engineering Laboratory Report 94-22 (1994) Some background on the physical properties of ice will be discussed, including recent force microscopy measurements done at the University of Washington.footnote C.R. Slaughterbeck, E.W. Kukes, B. Pittenger, D.J. Cook, P.C. Williams, V.L. Eden, S.C. Fain, Jr., J. Vac. Sci. Technol. (in press) Supported by NSF Grant DMR-91-19701.

  19. Laparoscopic simulation interface

    DOEpatents

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  20. Mercury Shopping Cart Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.

  1. Multiple network interface core apparatus and method

    SciTech Connect

    Underwood, Keith D.; Hemmert, Karl Scott

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  2. Flexible DCP interface. [environmental sensor and signal conditioning interface

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Schimmelpfenning, H.

    1974-01-01

    The author has identified the following significant results. A user of an ERTS data collection system (DCS) must supply the sensors and signal-conditioning interface. The electronic interface must be compatible with the NASA-furnished data collection platform. A universal signal-conditioning system for use with a wide range of environmental sensors is described. The interface is environmentally and electronically compatible with the DCP and has operated satisfactorily for a complete winter wheat growing season in Kansas.

  3. Nuclear data interface retrospective

    SciTech Connect

    Gray, Mark G

    2008-01-01

    The Nuclear Data Interface (NDI) code library and data formats are the standards for multigroup nuclear data at Los Alamos National Laboratory. NDI's analysis, design, implementation, testing, integration, and maintenance required a ten person-year and ongoing effort by the Nuclear Data Team. Their efforts provide a unique, contemporary experience in producing a standard component library. In reflection upon that experience at NDI's decennial, we have identified several factors critical to NDI's success: it addressed real problems with appropriate simplicity, it fully supported all users, it added extra value through the code to the raw nuclear data, and its team went the distance from analysis through maintenance. In this report we review these critical success factors and discuss their implications for future standardization projects.

  4. Electron hydration: interface shells

    NASA Astrophysics Data System (ADS)

    Novakovskaya, Yulia V.; Stepanov, Nikolai F.

    2001-08-01

    Interface water cluster anions (H 2O) n- ( n ⩽ 12 ) composed of two to four fragments are simulated in the unrestricted Hartree-Fock approximation with the second order Moeller-Plesset perturbation theory corrections taken into account with the 6-31++G ** basis set either augmented or not with the floating center of eight s functions. A linear dependence of the circumsphere radius involving central molecules of the anions on 1/ n provides an estimate of the excess electron radius in condensed water (about 2.5 Å). Vertical detachment energies, approximated with linear dependences on n-1/3, are extrapolated to the values around 3.4 eV for bulk water.

  5. Porphyrins at interfaces

    NASA Astrophysics Data System (ADS)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  6. Human-computer interface

    DOEpatents

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  7. Intelligent interface design and evaluation

    NASA Technical Reports Server (NTRS)

    Greitzer, Frank L.

    1988-01-01

    Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms.

  8. Interface-assisted molecular spintronics

    SciTech Connect

    Raman, Karthik V.

    2014-09-15

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  9. The Common Communication Interface (CCI)

    SciTech Connect

    Shipman, Galen M; Atchley, Scott; Dillow, David A; Geoffray, Patrick; Bosilca, George; Squyres, Jeffrey M; Minnich, Ronald

    2011-01-01

    There are many APIs for connecting and exchanging data between network peers. Each interface varies wildly based on metrics including performance, portability, and complexity. Specifically, many interfaces make design or implementation choices emphasizing some of the more desirable metrics (e.g., performance) while sacrificing others (e.g., portability). As a direct result, software developers building large, network-based applications are forced to choose a specific network API based on a complex, multi-dimensional set of criteria. Such trade-offs inevitably result in an interface that fails to deliver some desirable features. In this paper, we introduce a novel interface that both supports many features that have become standard (or otherwise generally expected) in other communication interfaces, and strives to export a small, yet powerful, interface. This new interface draws upon years of experience from network-oriented software development best practices to systems-level implementations. The goal is to create a relatively simple, high-level communication interface with low barriers to adoption while still providing important features such as scalability, resiliency, and performance. The result is the Common Communications Interface (CCI): an intuitive API that is portable, efficient, scalable, and robust to meet the needs of network-intensive applications common in HPC and cloud computing.

  10. mREST Interface Specification

    NASA Technical Reports Server (NTRS)

    McCartney, Patrick; MacLean, John

    2012-01-01

    mREST is an implementation of the REST architecture specific to the management and sharing of data in a system of logical elements. The purpose of this document is to clearly define the mREST interface protocol. The interface protocol covers all of the interaction between mREST clients and mREST servers. System-level requirements are not specifically addressed. In an mREST system, there are typically some backend interfaces between a Logical System Element (LSE) and the associated hardware/software system. For example, a network camera LSE would have a backend interface to the camera itself. These interfaces are specific to each type of LSE and are not covered in this document. There are also frontend interfaces that may exist in certain mREST manager applications. For example, an electronic procedure execution application may have a specialized interface for configuring the procedures. This interface would be application specific and outside of this document scope. mREST is intended to be a generic protocol which can be used in a wide variety of applications. A few scenarios are discussed to provide additional clarity but, in general, application-specific implementations of mREST are not specifically addressed. In short, this document is intended to provide all of the information necessary for an application developer to create mREST interface agents. This includes both mREST clients (mREST manager applications) and mREST servers (logical system elements, or LSEs).

  11. Interface-assisted molecular spintronics

    NASA Astrophysics Data System (ADS)

    Raman, Karthik V.

    2014-09-01

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  12. Entrainment across density interfaces

    NASA Astrophysics Data System (ADS)

    Sanchez, M. A.; Carrillo, A.; Mahjoub, O. B.

    2010-05-01

    The structure of non-homogeneous turbulence affected by stratification and rotation is investigated both by means of laboratory and numerical experiments. The experiments investigate zero mean flow across a stably stratified density interface and are used to quantify the entrainment, the mixing efficiency and different types of dominant instability and the topological aspects of the turbulent cascades detected both horizontally and vertically [1,2]. Grid turbulence in a rotating stratified two layer system is measured with PIV as well as with sonic velocimetry. Observations of the horizontal and vertical velocity energy spectra as well as the structure functions are used to estimate local mixedness, entrainment and intermittency [3,4]. The method of estimation of the average eddy diffusivity from the time series images of a sharp density interface marked by fluoresceine also take anisotropy into account. but on the long run, horizontal ( and 2D type flow such as [5]) flow directions will average out so using a single integral length scale defined in Sanchez and Redondo(1998) varying in height will be enough together with the internal frequency. The method of calculating vertical fluxes in time allows to estimate different intermittency parameters as a function of local instability e.g. Kelvin/Helmholtz, Rayleigh-Taylor or Holbmoe[6-8]. Different concentration interfaces show different fractal dimensions, that are also a power function of the local Richardson number, this may be due to different levels of intermittency and thus different spectra, which are not necessarily inertial nor in equilibrium [8,9]. [1] Sanchez M.A. and Redondo J.M.Observations from Grid Stirred Turbulence. Applied Scientific Research 59, 191-204. 1998. [2] Redondo, J.M. and Cantalapiedra I.R. Mixing in Horizontally Heterogeneous Flows . Jour. Flow Turbulence and Combustion. 51, 217-222. 1993. [3] Castilla R, Redondo J.M., Gamez P.J., Babiano A. Coherent vortices and Lagrangian Dynamics in 2D

  13. Interface effects on nanoelectronics

    NASA Astrophysics Data System (ADS)

    Conrad, Brad Richard

    2009-12-01

    Nanoelectronics consist of devices with active electronic components on the nanometer length scale. At such dimensions most, if not all, atoms or molecules composing the active device region must be on or near a surface. Also, materials effectively confined to two dimensions, or when subject to abrupt boundary conditions, generally do not behave the same as materials inside three dimensional, continuous structures. This dissertation is a quantitative determination of how surfaces and interfaces in organic nanoelectronic devices affect properties such as charge transport, electronic structure, and material fluctuations. Si/SiO2 is a model gate/gate dielectric for organic thin film transistors, therefore proper characterization and measurement of the effects of the SiO2/organic interface on device structures is extremely important. I fabricated pentacene thin film transistors on Si/SiO2 and varied the conduction channel thickness from effectively bulk (˜40nm) to 2 continuous conducting layers to examine the effect of substrate on noise generation. The electronic spectral noise was measured and the generator of the noise was determined to be due to the random spatial dependence of grain boundaries, independent of proximity to the gate oxide. This result led me to investigate the mechanisms of pentacene grain formation, including the role of small quantities of impurities, on silicon dioxide substrates. Through a series of nucleation, growth and morphology studies, I determined that impurities assist in nucleation on SiO2, decreasing the stable nucleus size by a third and increasing the overall number of grains. The pentacene growth and morphology studies prompted further exploration of pentacene crystal growth on SiO2. I developed a method of making atomically clean ultra-thin oxide films, with surface chemistry and growth properties similar to the standard thick oxides. These ultra-thin oxides were measured to be as smooth as cleaned silicon and then used as

  14. Self-Checking Memory Interface

    NASA Technical Reports Server (NTRS)

    Sievers, M. W.; Rennels, D. A.

    1984-01-01

    Memory-interface integrated circuit not only detects errors in data from other circuits but also detects errors within itself. Memory-interface chip encodes 16-bit words with Hamming code for single-error correction or double-error detection. Chip used in fault-tolerant computers under development by NASA.

  15. Polysilicon thin films and interfaces

    SciTech Connect

    Kamins, T. ); Raicu, B. ); Thompson, C.V. )

    1990-01-01

    This volume contains the proceedings of a symposium on polysilicon thin films and interfaces, held as part of the 1990 Materials Research Society Spring Meeting. Topics covered include: crystal grown fo silicon and germanium wafers for photovoltaic devices, microanalysis of tungsten silicide interface, thermal processing of polysilicon thin films, and electrical and optical properties of polysilicon sheets for photovoltaic devices.

  16. Rare-event recorder interface

    SciTech Connect

    Kuts, V.N.

    1984-03-01

    The author describes an interface for a BPA2-95 analog-digital computer with PL-80 and a Perfomom 30 perferator for rare event recording. This interface allows the height of each pulse that passes through the analog-digital converter to be recorded on punch tape. A series of three block diagrams illustrates in thorough detail the system described.

  17. Interface To The SURE Program

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Boerschlein, David P.

    1993-01-01

    Abstract Semi-Markov Specification Interface to SURE Tool (ASSIST) computer program is interface program enabling reliability engineers to design large semi-Markov mathematical models accurately. Language enables efficient description of large, complicated systems. Also offers, as part of bundled package with SURE and PAWS/STEM, two other reliable analysis programs developed by Systems Validation Methods group at Langley Research Center.

  18. Integrating and Interfacing Library Systems.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    1985-01-01

    This overview of local library online systems that integrate several functions covers functional integration, benefits of integrated systems, turnkey systems, minicomputer and microcomputer-based systems, interfacing automated systems, types of interfaces, linking homogenous and heterogeneous systems, role of vendors, library applications, linking…

  19. XTOD - XES Interface Control Document

    SciTech Connect

    Trent, J

    2005-09-07

    This document describes the interface between the LCLS XTOD System (WBS No.1.5) and the LCLS XES (WBS No.1.6). The interface locations ranging from the beam dump to the far experimental hall are identified. Subsystems that connect at or cross the boundary are identified.

  20. Online Remote Sensing Interface

    NASA Technical Reports Server (NTRS)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  1. Next Generation Search Interfaces

    NASA Astrophysics Data System (ADS)

    Roby, W.; Wu, X.; Ly, L.; Goldina, T.

    2015-09-01

    Astronomers are constantly looking for easier ways to access multiple data sets. While much effort is spent on VO, little thought is given to the types of User Interfaces we need to effectively search this sort of data. For instance, an astronomer might need to search Spitzer, WISE, and 2MASS catalogs and images then see the results presented together in one UI. Moving seamlessly between data sets is key to presenting integrated results. Results need to be viewed using first class, web based, integrated FITS viewers, XY Plots, and advanced table display tools. These components should be able to handle very large datasets. To make a powerful Web based UI that can manage and present multiple searches to the user requires taking advantage of many HTML5 features. AJAX is used to start searches and present results. Push notifications (Server Sent Events) monitor background jobs. Canvas is required for advanced result displays. Lesser known CSS3 technologies makes it all flow seamlessly together. At IPAC, we have been developing our Firefly toolkit for several years. We are now using it to solve this multiple data set, multiple queries, and integrated presentation problem to create a powerful research experience. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). Firefly is the core for applications serving many project archives, including Spitzer, Planck, WISE, PTF, LSST and others. It is also used in IRSA's new Finder Chart and catalog and image displays.

  2. Aquatic Acoustic Metrics Interface

    Energy Science and Technology Software Center (ESTSC)

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specificallymore » designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  3. User interface enhancement report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Gangel, J.; Shields, G.; Fala, G.

    1985-01-01

    The existing user interfaces to TEMPUS, Plaid, and other systems in the OSDS are fundamentally based on only two modes of communication: alphanumeric commands or data input and grapical interaction. The latter are especially suited to the types of interaction necessary for creating workstation objects with BUILD and with performing body positioning in TEMPUS. Looking toward the future application of TEMPUS, however, the long-term goals of OSDS will include the analysis of extensive tasks in space involving one or more individuals working in concert over a period of time. In this context, the TEMPUS body positioning capability, though extremely useful in creating and validating a small number of particular body positions, will become somewhat tedious to use. The macro facility helps somewhat, since frequently used positions may be easily applied by executing a stored macro. The difference between body positioning and task execution, though subtle, is important. In the case of task execution, the important information at the user's level is what actions are to be performed rather than how the actions are performed. Viewed slightly differently, the what is constant over a set of individuals though the how may vary.

  4. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  5. Power User Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Power User Interface 5.0 (PUI) is a system of middleware, written for expert users in the Earth-science community, PUI enables expedited ordering of data granules on the basis of specific granule-identifying information that the users already know or can assemble. PUI also enables expert users to perform quick searches for orderablegranule information for use in preparing orders. PUI 5.0 is available in two versions (note: PUI 6.0 has command-line mode only): a Web-based application program and a UNIX command-line- mode client program. Both versions include modules that perform data-granule-ordering functions in conjunction with external systems. The Web-based version works with Earth Observing System Clearing House (ECHO) metadata catalog and order-entry services and with an open-source order-service broker server component, called the Mercury Shopping Cart, that is provided separately by Oak Ridge National Laboratory through the Department of Energy. The command-line version works with the ECHO metadata and order-entry process service. Both versions of PUI ultimately use ECHO to process an order to be sent to a data provider. Ordered data are provided through means outside the PUI software system.

  6. Ultrasonic characterization of metallic interfaces

    SciTech Connect

    Palmer, D.D. Jr.

    1987-11-01

    A set of diffusion bonded copper samples was prepared at different temperatures and times, allowing the bonding to proceed across the planar interfaces. To obtain a second set, interfaces were roughened to various degrees followed by diffusion bonding at a designated time/temperature condition. On all samples, ultrasonic reflection coefficient (R) maps of the bonded interfaces were obtained over a broad frequency range. In addition, the bond strengths, ..sigma.., of the interfaces were determined, thus providing an empirical ..sigma..-R correlation. Nearly all of the specimens tested failed along the interfaces, exposing fracture planes with distinctive features indicating originally bonded and unbonded areas. These features, examined metallographically, allowed for the successful testing of the ''distributed spring model'' by Baik and Thompson (J. NDE 4, 177, 1984). This model was used as an intermediate step in the development of a bond strength model to explain the observed ..sigma..-R correlation, the beginnings of which are discussed. 32 refs., 22 figs.

  7. Microsegregation in Peltier interface demarcation

    NASA Astrophysics Data System (ADS)

    Dabo, Y.; Nguyen Thi, H.; Coriell, S. R.; McFadden, G. B.; Li, Q.; Billia, B.

    2000-06-01

    Experimental results on solute microsegregation induced by Peltier interface demarcation (PID) technique during directional solidification of Bi-1 wt% Sb alloys are presented. These data are compared with the results of numerical simulation and the theory of PID is revisited. It is shown that the Peltier coefficient previously determined using Peltier pulsing has been underestimated. The quantity of interface cooling absorbed by limited Bi-growth kinetics is comparable to that covered by solute depletion, and can even be dominant for very short pulses, so that the commonly made assumption of local equilibrium at the solid-liquid interface (i.e. usual hypothesis of constant interface temperature during pulse marking for pure systems) should be abandoned and the right dependence of interface temperature on solidification velocity be included in the model. Finally, two conditions to select systems capable of efficient marking by PID microsegregation are deduced and the effects of applied current in the first instants of electric pulse clarified.

  8. Multimodal Neuroelectric Interface Development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  9. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  10. Interface cracks in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Govorukha, V.; Kamlah, M.; Loboda, V.; Lapusta, Y.

    2016-02-01

    Due to their intrinsic electromechanical coupling behavior, piezoelectric materials are widely used in sensors, actuators and other modern technologies. It is well known that piezoelectric ceramics are very brittle and susceptible to fracture. In many cases, fracture occurs at interfaces as debonding and cracks. This leads to an undesired degradation of electrical and mechanical performance. Because of the practical and fundamental importance of the problem, interface cracks in piezoelectric materials have been actively studied in the last few decades. This review provides a comprehensive survey of recent works on cracks situated at the interface of two materials, at least one of which has piezoelectric or piezoelectromagnetic properties. Different electric boundary conditions along the crack faces are discussed. The oscillating and contact zone models for in-plane straight interface cracks between two dissimilar piezoelectric materials or between piezoelectric and non-piezoelectric ones are reviewed. Different peculiarities related to the investigation of interface cracks in piezoelectric materials for the anti-plane case, for functionally graded and thermopiezoelectric materials are presented. Papers related to magnetoelectroelastic bimaterials, to steady state motion of interface cracks in piezoelectric bimaterials and to circular arc-cracks at the interface of piezoelectric materials are reviewed, and various methods used to address these problems are discussed. The review concludes with an outlook on future research directions.

  11. Polymers at Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Tsige, Mesfin

    2015-03-01

    Interfaces between solids, liquids, and gases play an important role in a wide range of practical applications and have been a subject of scientific interest since Poisson showed in 1831 that the order parameter of liquids near interfaces must deviate considerably from its bulk value. In particular, polymers at surfaces and interfaces have been a subject of extensive theoretical, experimental and computational studies for a long time due to their use in many diverse applications ranging from antifouling coatings to flexible electronic devices. Understanding the structure and thermodynamic properties of polymers at surfaces and interfaces is thus an area of fundamental and current technological interest. Although encouraging experimental progress has been made over the years in understanding the molecular structure of polymers in contact with various environments, selectively probing their structure and dynamics at surfaces and interfaces has been extremely difficult. Computer simulations, especially molecular dynamics (MD) simulations, have proven over the years to be an invaluable tool in providing molecular details at interfaces that are usually lacking in the experimental data. In this talk, I'll give an overview of some previous simulation efforts to understand the structure and dynamics of polymers at surfaces and buried interfaces. I will conclude by presenting our current and ongoing work on combining ab initio calculations and MD simulations with Sum Frequency Generation (SFG) Spectroscopy to study polymer surfaces. This approach demonstrates the future role of MD in surface science. Work supported by NSF (DMR0847580 and DMR1410290) and Petroleum Research Fund of the American Chemical Society.

  12. ARINC 653 Interface in RTEMS

    NASA Astrophysics Data System (ADS)

    Rufino, J.; Filipe, S.; Coutinho, M.; Santos, S.; Windsor, J.

    2007-08-01

    The ARINC 653 specification is assuming a key role in the provision of a standard operating system interface for safety-critical applications in the aeronautic market and it is foreseen to acquire a similar status on the space market. The ARINC 653 application interface is inde- pendent from the underlying hardware and from a given operating system implementation. This paper describes how RTEMS, the Real-Time Executive for Multiproces- sor Systems, can be adapted to offer the application interface and the functionality required by the ARINC 653 standard. The use of RTEMS is highly relevant given its qualification for on-board software of unmanned space programs.

  13. Virtual optical interfaces for transportation

    NASA Astrophysics Data System (ADS)

    Kiefer, Renaud; Kress, Bernard; Fontaine, Joseph-Joel

    2009-05-01

    Today, the ever increasing number of controls in automobile and aviation cockpits leads to the cluttering of various interfaces (keyboards, switches, panels, etc...). LCD touch screens have proved to be a good alternative to reduce cluttering by reconfiguring in real time different interfaces, appearing on demand as they are needed by the user. However, the underlying screen still remains cumbersome and fragile glass device. We present a novel way to produce virtual consoles and interfaces by projecting diffractive images and sensing the position of the fingers by the use of IR diffractive optics.

  14. Aqueous Solutions and their Interfaces

    SciTech Connect

    Xantheas, Sotiris S.; Voth, Gregory A.

    2009-04-02

    Preface of the special issue of the Journal of Physical Chemistry in conjunction with the international workshop "Aqueous Solutions and their Interfaces". The topics include the structure of liquid water, the analysis of X-ray and neutron scattering experimental data, the vibrational spectroscopy of liquid water, the structure and spectroscopy of aqueous interfaces and the development of theoretical approaches to model the structure and spectra of liquid water and interfaces. This work was supported by the US Department of Energy's Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  15. Active colloids at fluid interfaces.

    PubMed

    Malgaretti, P; Popescu, M N; Dietrich, S

    2016-05-01

    If an active Janus particle is trapped at the interface between a liquid and a fluid, its self-propelled motion along the interface is affected by a net torque on the particle due to the viscosity contrast between the two adjacent fluid phases. For a simple model of an active, spherical Janus colloid we analyze the conditions under which translation occurs along the interface and we provide estimates of the corresponding persistence length. We show that under certain conditions the persistence length of such a particle is significantly larger than the corresponding one in the bulk liquid, which is in line with the trends observed in recent experimental studies. PMID:27025167

  16. Automated Fluid Interface System (AFIS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  17. Dispersive transport across interfaces

    NASA Astrophysics Data System (ADS)

    Berkowitz, Brian; Adler, Pierre

    2015-04-01

    Experiments demonstrating asymmetrical dispersive transport of a conservative tracer across interfaces between different porous materials have recently been performed. Here, this phenomenon is studied numerically on the pore scale. The flow field is derived by solving the Stokes equation. The dispersive transport is simulated by a large number of particles undergoing random walks under the simultaneous action of convection and diffusion. Two main two-dimensional configurations are studied; each consists of two segments (called coarse and fine) with the same structure, porosity, and length along the main flow, but different characteristic solid/pore sizes. One structure consists of two channels containing cavities of different sizes, and the second of square "grains" of different sizes. At time t=0, a large number of particles is injected (as a pulse) around a given cross-section. The corresponding breakthrough curves (BTCs) are registered as functions of time at six different cross sections. Calculations are made twice; in the first case (CtoF), particles are injected in the coarse side and are transported towards the fine one; in the second one (FtoC), the opposite case is studied. These calculations are performed for various Péclet numbers (Pe). Comparison of the resulting BTCs shows features that are similar to experimental observations, but with qualitative and quantitative differences. The influences of the medium, of the injection and observation planes, and of Pe are detailed and discussed. A BTC for pulse injection can be characterized by its maximum M(t_M) and the time tM at which it occurs. The observed differences for channels bounded by cavities are very small. However for the granular structures, M(t_M) is always larger for FtoC than for CtoF ; tM depends on all the parameters, namely Pe, the size ratio between the large and small grains, the injection and the observation planes. The numerical results are systematically compared with solutions of one

  18. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    PubMed

    Finke, Andrea; Essig, Kai; Marchioro, Giuseppe; Ritter, Helge

    2016-01-01

    The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction. PMID:26812487

  19. Antisite defects at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew

    We use ab initio calculations to estimate formation energies of cation (transition metal) antisite defects at oxide interfaces and to understand the basic physical effects that drive or suppress the formation of these defects. We find that antisite defects are favored in systems with substantial charge transfer across the interface, while Jahn-Teller distortions and itinerant ferromagnetism can prevent antisite defects and help stabilize atomically sharp interfaces. Our results enable identification of classes of systems that are more and less susceptible to the formation of antisite defects and motivate a range of experimental studies and further theoretical calculations to further explicate the oxide interface systems. This research was supported by National Science Foundation under Grant No. DMR-1120296 (H. Chen) and DOE-ER-046169 (A. J. Millis).

  20. SKITTER/implement mechanical interface

    NASA Technical Reports Server (NTRS)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad

    1988-01-01

    SKITTER (Spacial Kinematic Inertial Translatory Tripod Extremity Robot) is a three-legged transport vehicle designed to perform under the unique environment of the moon. The objective of this project was to design a mechanical interface for SKITTER. This mechanical latching interface will allow SKITTER to use a series of implements such as drills, cranes, etc., and perform different tasks on the moon. The design emphasized versatility and detachability; that is, the interface design is the same for all implements, and connection and detachment is simple. After consideration of many alternatives, a system of three identical latches at each of the three interface points was chosen. The latching mechanism satisfies the design constraints because it facilitates connection and detachment. Also, the moving parts are protected from the dusty environment by housing plates.

  1. Superfluid Interfaces in Quantum Solids

    NASA Astrophysics Data System (ADS)

    Burovski, Evgeni; Kozik, Evgeni; Kuklov, Anatoly; Prokof'ev, Nikolay; Svistunov, Boris

    2005-04-01

    One scenario for the nonclassical moment of inertia of solid 4He discovered by Kim and Chan [Nature (London), NATUAS, 0028-0836 427, 225 (2004), 10.1038/nature02220] is the superfluidity of microcrystallite interfaces. On the basis of the most simple model of a quantum crystal—the checkerboard lattice solid—we show that the superfluidity of interfaces between solid domains can exist in a wide range of parameters. At strong enough interparticle interaction, a superfluid interface becomes an insulator via a quantum phase transition. Under the conditions of particle-hole symmetry, the transition is of the standard U(1) universality class in 3D, while in 2D the onset of superfluidity is accompanied by the interface roughening, driven by fractionally charged topological excitations.

  2. Brain-Computer Interface Workshop

    NASA Video Gallery

    At a g.tec-sponsored Brain-Computer Interface (BCI) workshop at the National Institute of Aerospace in Hampton, Va., volunteers were able to spell out words on a computer screen using using a g.tec...

  3. Colloids at NAPL-Interfaces

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas; Metz, Christian

    2014-05-01

    Non-aqueous phase liquids in subsurface are relevant in the scope of contaminated sites as well as for enhanced oil recovery. In both cases colloids and engineered nanoparticles are applied to increase the efficiency of NAPL removal. Particle tracking experiments using fluoresecent latex beads and opaque particles have been run in micromodels mimicking the pore structure of subsurface media. The results show that the interface between NAPL and water is highly dynamic, especially in its early stage. There is a distinct circular flow pattern at the interface, effectively increasing the interfacial area. Concentration gradients measured with Raman Microspectrometry at low Peclet numbers suggest that the mass transfer of dissolved contaminants from the NAPL into the water is highly affected by the interface dynamics. On the other hand the interfaces themselves are less accessible, which has implications for the remediation of contaminated sites.

  4. The HEASARC graphical user interface

    NASA Technical Reports Server (NTRS)

    White, N.; Barrett, P.; Jacobs, P.; Oneel, B.

    1992-01-01

    An OSF/Motif-based graphical user interface has been developed to facilitate the use of the database and data analysis software packages available from the High Energy Astrophysics Science Archive Research Center (HEASARC). It can also be used as an interface to other, similar, routines. A small number of tables are constructed to specify the possible commands and command parameters for a given set of analysis routines. These tables can be modified by a designer to affect the appearance of the interface screens. They can also be dynamically changed in response to parameter adjustments made while the underlying program is running. Additionally, a communication protocol has been designed so that the interface can operate locally or across a network. It is intended that this software be able to run on a variety of workstations and X terminals.

  5. Blasting, graphical interfaces and Unix

    SciTech Connect

    Knudsen, S.

    1993-11-01

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters to be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.

  6. Blasting, graphical interfaces and Unix

    SciTech Connect

    Knudsen, S.

    1994-12-31

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters to be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.

  7. Interfacing Microcomputers with Laboratory Instruments.

    ERIC Educational Resources Information Center

    Long, Joseph W.

    1983-01-01

    Describes development of microcomputer-controlled gamma scintillation spectrometer and chromatographic data analyzer, including design and construction of interface electronics and production of software. Includes diagrams of electric circuits and project evaluation indicating that both instruments functioned as intended. (JN)

  8. Sandia ATM SONET Interface Logic

    Energy Science and Technology Software Center (ESTSC)

    1994-07-21

    SASIL is used to program the EPLD's (Erasable Programmable Logic Devices) and PAL's (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  9. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  10. Coal-shale interface detector

    NASA Technical Reports Server (NTRS)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  11. Coal-shale interface detection

    NASA Technical Reports Server (NTRS)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  12. Laser velocimeter (autocovariance) buffer interface

    NASA Technical Reports Server (NTRS)

    Clemmons, J. I., Jr.

    1981-01-01

    A laser velocimeter (autocovariance) buffer interface (LVABI) was developed to serve as the interface between three laser velocimeter high speed burst counters and a minicomputer. A functional description is presented of the instrument and its unique features which allow the studies of flow velocity vector analysis, turbulence power spectra, and conditional sampling of other phenomena. Typical applications of the laser velocimeter using the LVABI are presented to illustrate its various capabilities.

  13. Satellite services handbook. Interface guidelines

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Satellite interfaces for on orbit servicing, both manned and unmanned are identified, and is intended to be used by designers of space vehicles, both foreign and domestic. A primary concern is for design of interfaces with the astronaut in the loop, especially extravehicular activity, but also intravehicular activity and operations that are remote but have man-in-the-loop. The main emphasis is on servicing in low earth orbits from the Space Shuttle and also from the Space Station or other platforms.

  14. Retained gas sampler interface volume

    SciTech Connect

    Cannon, N.S.

    1997-10-01

    The maximum Retained Gas Sampler (RGS) interface volume was determined; this volume can trap contamination gases during the sampling process. A new technique (helium backfill) for eliminating contamination gases from the RGS sampler interface volume is described, and verification testing reported. Also demonstrated was that RGS data obtained prior to the introduction of the new helium backfill technique can be compensated for air contamination using the measured oxygen concentration and normal air composition.

  15. Satellite services handbook. Interface guidelines

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Satellite interfaces for on orbit servicing, both manned and unmanned are identified, and is intended to be used by designers of space vehicles, both foreign and domestic. A primary concern is for design of interfaces with the astronaut in the loop, especially extravehicular activity, but also intravehicular activity and operations that are remote but have man-in-the-loop. The main emphasis is on servicing in low earth orbits from the Space Shuttle and also from the Space Station or other platforms.

  16. The theory of interface slicing

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.

  17. Hydrophobic effect at aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  18. Active matter clusters at interfaces.

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    2016-03-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  19. Theory of Interface States at Silicon / Transition - - Silicide Interfaces.

    NASA Astrophysics Data System (ADS)

    Lim, Hunhwa

    The Si/NiSi(,2)(111) interface is of both fundamental and techno- logical interest: From the fundamental point of view, it is the best characterized of all semiconductor/metal interfaces, with two well-determined geometries (A and B) involving nearly perfect bonding. (This is because Si and NiSi(,2) have nearly the same lattice spacing.) Consequently, a theoretical treatment of this system makes sense--as it would not for messier systems--and one can have some confidence that the theoretical predictions are relevant to experimental observa- tions. From the technological point of view, Si/NiSi(,2) is representative of the class of semiconductor/metal interfaces that are currently of greatest interest in regard to electronic devices--Si/transition -metal-silicide interfaces. The calculations of this dissertation are for the intrinsic interface states of Si/NiSi(,2)-A geometry. These calculations also provide a foundation for later studies of defects at this interface, and for studies of other related systems, such as CoSi(,2). The calculations employ empirical tight-binding Hamiltonians for both Si and NiSi(,2) (with the parameters fitted to prior calculations of the bulk band structures, which appear to be in agreement with the available experimental data on bulk Si and NiSi(,2)). They also employ Green's function techniques--in particular, the subspace Hamiltonian technique. Our principal results are the following: (1) Interface state disper- sion curves are predicted along the symmetry lines (')(GAMMA)(')M, (')M(')K and (')K(')(GAMMA) of the surface Brillouin zone. (2) A prominent band of interface states is found which disperses downward from an energy within the Si band gap to an energy below the Si valence band edge E(,(upsilon)) as the planar wavevector (')k increases from (')(GAMMA) ((')k = 0) to (')M or (')K (symmetry points at boundary of the surface Brillouin zone). This band of inter- face states should be observable. It produces a peak in the surface

  20. Fluxes across a thermohaline interface

    NASA Astrophysics Data System (ADS)

    Fleury, M.; Lueck, R. G.

    1991-07-01

    Measurements of velocity and temperature microstructure and hydrography were made with a towed vehicle moving in and around a single interface in a double-diffusive staircase. The interface was traversed 222 times in a saw-tooth pattern over a track 35 km long. The salinity and potential temperature and density in the mixed layers adjacent to the interface were spatially uniform except for one 8 km long anomaly. The rate of dissipation of kinetic energy was uniformly low in the interface and in the mixed layers, except for one section 600 m long where a Kelvin-Helmholtz instability generated turbulence. For the non-turbulent section of the interface, the mean rate of dissipation was 30.2 × 10 -10 W kg -1 in the mixed layers and 9.5 × 10 -10 W kg -1 in the interface. The non-dimensional dissipation rate, ɛ/vN 2, was almost always less than 16 in the interface and therfore, there was no turblent buoyancy flux according to ROHRet al. (1988, Journal of Fluid Mechanics, 195, 77-111). The average double-diffusive flux of buoyancy by heat was 3.6 × 10 -10 W kg -1. Under certain assumptions the ratio of the flux of buoyancy by heat and salt can be estimated to be 0.53 ± 0.10, in good agreement with laboratory and theoretical estimates for salt fingers. The average Cox number was about 8 in the interface, consistent with the theories of STERN (1975, Ocean circulation physics, Academic Press) and KUNZE (1987, Journal of Marine Research, 45 533-556), but displayed an inverse dependence on the vertical temperature gradient which was not predicted. As a result, the flux of buoyancy, as well as the individual contributions by heat and salt, were independent of the local mean vertical temperature gradient and the buoyancy frequency. The length of the turbulent section of the interface was only 1.7% of the total length observed. However, the turbulence was intense—the mean rate of dissipation was 2.5 × 10 -8 W kg -1—and may have sufficiently enhanced the flux of heat to

  1. Active matter clusters at interfaces

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development and flocks of birds. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit whose movement depends on the nature of the local environment. We find that low speed clusters which exert forces but no active torques, encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds and clusters with active torques, they show more complex behaviors crossing the interface multiple times, becoming trapped at the interface and deviating from the predictable refraction and reflection of the low velocity clusters. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  2. XML Translator for Interface Descriptions

    NASA Technical Reports Server (NTRS)

    Boroson, Elizabeth R.

    2009-01-01

    A computer program defines an XML schema for specifying the interface to a generic FPGA from the perspective of software that will interact with the device. This XML interface description is then translated into header files for C, Verilog, and VHDL. User interface definition input is checked via both the provided XML schema and the translator module to ensure consistency and accuracy. Currently, programming used on both sides of an interface is inconsistent. This makes it hard to find and fix errors. By using a common schema, both sides are forced to use the same structure by using the same framework and toolset. This makes for easy identification of problems, which leads to the ability to formulate a solution. The toolset contains constants that allow a programmer to use each register, and to access each field in the register. Once programming is complete, the translator is run as part of the make process, which ensures that whenever an interface is changed, all of the code that uses the header files describing it is recompiled.

  3. A UNIX interface to supercomputers

    SciTech Connect

    McBryan, O.A.

    1985-01-01

    We describe a convenient interface between UNIX-based work-stations or minicomputers, and supercomputers such as the CRAY series machines. Using this interface, the user can issue commands entirely on the UNIX system, with remote compilation, loading and execution performed on the supercomputer. The interface is not a remote login interface. Rather the domain of various UNIX utilities such as compilers, archivers and loaders are extended to include the CRAY. The user need know essentially nothing about the CRAY operating system, commands or filename restrictions. Standard UNIX utilities will perform CRAY operations transparently. UNIX command names and arguments are mapped to corresponding CRAY equivalents, suitable options are selected as needed, UNIX directory tree filenames are coerced to allowable CRAY names and all source and output files are automatically transferred between the machines. The primary purpose of the software is to allow the programmer to benefit from the interactive features of UNIX systems including screen editors, software maintenance utilities such as make and SCCS and in general to avail of the large set of UNIX text manipulation features. The interface was designed particularly to support development of very large multi-file programs, possibly consisting of hundreds of files and hundreds of thousands of lines of code. All CRAY source is kept on the work-station. We have found that using the software, the complete program development phase for a large CRAY application may be performed entirely on a work-station.

  4. DIRAC: Secure web user interface

    NASA Astrophysics Data System (ADS)

    Casajus Ramo, A.; Sapunov, M.

    2010-04-01

    Traditionally the interaction between users and the Grid is done with command line tools. However, these tools are difficult to use by non-expert users providing minimal help and generating outputs not always easy to understand especially in case of errors. Graphical User Interfaces are typically limited to providing access to the monitoring or accounting information and concentrate on some particular aspects failing to cover the full spectrum of grid control tasks. To make the Grid more user friendly more complete graphical interfaces are needed. Within the DIRAC project we have attempted to construct a Web based User Interface that provides means not only for monitoring the system behavior but also allows to steer the main user activities on the grid. Using DIRAC's web interface a user can easily track jobs and data. It provides access to job information and allows performing actions on jobs such as killing or deleting. Data managers can define and monitor file transfer activity as well as check requests set by jobs. Production managers can define and follow large data productions and react if necessary by stopping or starting them. The Web Portal is build following all the grid security standards and using modern Web 2.0 technologies which allow to achieve the user experience similar to the desktop applications. Details of the DIRAC Web Portal architecture and User Interface will be presented and discussed.

  5. Interface dynamics of competing tissues

    NASA Astrophysics Data System (ADS)

    Podewitz, Nils; Jülicher, Frank; Gompper, Gerhard; Elgeti, Jens

    2016-08-01

    Tissues can be characterized by their homeostatic stress, i.e. the value of stress for which cell division and cell death balance. When two different tissues grow in competition, a difference of their homeostatic stresses determines which tissue grows at the expense of the second. This then leads to the propagation of the interface separating the tissues. Here, we study structural and dynamical properties of this interface by combining continuum theory with mesoscopic simulations of a cell-based model. Using a simulation box that moves with the interface, we find that a stationary state exists in which the interface has a finite width and propagates with a constant velocity. The propagation velocity in the simulations depends linearly on the homeostatic stress difference, in excellent agreement with the analytical predictions. This agreement is also seen for the stress and velocity profiles. Finally, we analyzed the interface growth and roughness as a function of time and system size. We estimated growth and roughness exponents, which differ from those previously obtained for simple tissue growth.

  6. EVA-glass interface bond stability

    NASA Technical Reports Server (NTRS)

    Koenig, J. L.

    1984-01-01

    The ethylene vinyl acetate/glass interface bond stability was investigated. Special methods to determine the structure of polymer/glass interface were developed. Structural changes related to hydrothermal degradation of polymer/glass interface are examined. Methods to inhibit the degradation reaction which occur at polymer/glass interface are developed.

  7. PinBus Interface Design

    SciTech Connect

    Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

    2009-12-30

    On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins’ functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

  8. Flow in presence of interfaces

    NASA Astrophysics Data System (ADS)

    Lunati, I.

    2011-12-01

    Although most physical properties and empirical laws are well defined and experimentally tested only for homogeneous systems, being able to solve environmental problems requires dealing with systems that are inherently heterogeneous. This is particularly true for applications in hydrogeology, where properties (such as permeability) can vary over orders of magnitude. The most challenging cases are those of flow in presence of interfaces, i.e., region characterized by sharp and abrupt contrasts in properties or state. Interfaces require a special treatment, both conceptually and numerically (e.g., quantity such as pressure can become discontinuous), and must be accurately described because of the important phenomena that can take place (e.g., reaction or instability) and influence the behavior of the system at large scales. We discuss the problems related with an accurate description of the propagation of a fluid-fluid interface in a pore geometry, and with the evolution of an unstable front between two fluids of different densities.

  9. Holographic interface-particle potential

    NASA Astrophysics Data System (ADS)

    Nagasaki, Koichi; Tanida, Hiroaki; Yamaguchi, Satoshi

    2012-01-01

    We consider two mathcal{N} = {4} supersymmetric gauge theories connected by an interface and the gravity dual of this system. This interface is expressed by a fuzzy funnel solution of Nahm's equation in the gauge theory side. The gravity dual is a probe D5-brane in AdS5 × S 5. The potential energy between this interface and a test particle is calculated in both the gauge theory side and the gravity side by the expectation value of a Wilson loop. In the gauge theory it is evaluated by just substituting the classical solution to the Wilson loop. On the other hand it is done by the on-shell action of the fundamental string stretched between the AdS boundary and the D5-brane in the gravity. We show the gauge theory result and the gravity one agree with each other.

  10. Nanofluidic interfaces in microfluidic networks

    DOE PAGESBeta

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  11. Nanofluidic interfaces in microfluidic networks

    SciTech Connect

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxide during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.

  12. Interfacing with the Computational Brain

    PubMed Central

    Jackson, Andrew; Fetz, Eberhard E.

    2012-01-01

    Neuroscience is just beginning to understand the neural computations that underlie our remarkable capacity to learn new motor tasks. Studies of natural movements have emphasized the importance of concepts such as dimensionality reduction within hierarchical levels of redundancy, optimization of behavior in the presence of sensorimotor noise and internal models for predictive control. These concepts also provide a framework for understanding the improvements in performance seen in myoelectric-controlled interface (MCI) and brain-machine interface (BMI) paradigms. Recent experiments reveal how volitional activity in the motor system combines with sensory feedback to shape neural representations and drives adaptation of behavior. By elucidating these mechanisms, a new generation of intelligent interfaces can be designed to exploit neural plasticity and restore function after neurological injury. PMID:21659037

  13. Conjugated Polymer Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Salaneck, W. R.; Stafstrom, S.; Brédas, J. L.

    2003-10-01

    The authors illustrate the basic physics and materials science of conjugated polymers and their interfaces, particularly, but not exclusively, as they are applied to polymer-based light emitting diodes. The approach is to describe the basic physical and associated chemical principles that apply to these materials, which in many instances are different from those that apply to their inorganic counterparts. The main aim of the authors is to highlight specific issues and properties of polymer surfaces and interfaces that are relevant in the context of the emerging field of polymer-based electronics in general, and polymer-based light emitting diodes in particular. Both theoretical and experimental methods used in the study of these systems are discussed. This book will be of interest to graduate students and research workers in departments of physics, chemistry, electrical engineering and materials sciences studying polymer surfaces and interfaces and their application in polymer-based electronics.

  14. Swimming bacteria at complex interfaces

    NASA Astrophysics Data System (ADS)

    Lopez, Diego; Lauga, Eric

    2013-11-01

    Swimming microorganisms such as bacteria often move in confined geometries. Such confinement can be caused by the presence of solid boundaries, free surfaces, or liquid interfaces. It is well established that confinement affects significantly locomotion, generating additional forces and torques on the bacteria. In the presence of a solid boundary (imposing a no-slip condition), microorganisms using helical propulsion undergo circular motion (clockwise in the case of E. coli). Conversely, close to a free (no-shear) surface the circular motion is reversed. However, realistic interfaces are complex, and experimental results do not always agree with theoretical predictions. In this work, we show, using analytical modeling, how different complex interfaces affect a nearby bacterium and modify its swimming kinematics. IUSTI UMR 7343, Polytech Marseille, France.

  15. Usable Interface Design for Everyone

    NASA Astrophysics Data System (ADS)

    de Castro Lozano, Carlos; Salcines, Enrique García; Sainz de Abajo, Beatriz; Burón Fernández, F. Javier; Ramírez, José Miguel; Recellado, José Gabriel Zato; Montoya, Rafael Sanchez; Bell, John; Marin, Francisco Alcantud

    When designing "interfaces for everyone" for interactive systems, it is important to consider factors such as cost, the intended market, the state of the environment, etc. User interfaces are fundamental for the developmental process in any application, and its design must be contemplated from the start. Of the distinct parts of a system (hardware and software), it is the interface that permits the user access to computer resources. The seven principles of "Universal Design" or "Design for Everyone" focus on a universal usable design, but at the same time acknowledge the influences of internal and external factors. Structural changes in social and health services could provide an increase in the well-being of a country's citizens through the use of self-care programming and proactive management/prevention of disease. Automated home platforms can act as an accessibility instrument which permits users to avoid, compensate, mitigate, or neutralize the deficiencies and dependencies caused by living alone.

  16. Multi-robot control interface

    DOEpatents

    Bruemmer, David J.; Walton, Miles C.

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  17. Anthropomorphizing the User Interface: A Case for Interface Guides.

    ERIC Educational Resources Information Center

    Jones, Marshall G.

    Anthropomorphism can be defined as the attribution of human characteristics or behavior to inanimate objects. People give names to their automobiles and computers as a way to relate to complicated pieces of technology that they use regularly, but do not fully understand. Software designers may claim that their interfaces are intuitive, but in…

  18. Immersed interface methods. Final report

    SciTech Connect

    LeVeque, R.J.; Adams, L.M.; Bube, K.P.

    1996-11-01

    Cartesian grid methods encompass a wide variety of techniques used to solve partial differential equations in more than one space dimension on uniform Cartesian grids even when the underlying geometry is complex and not aligned with the grid. The authors` groups work on Immersed Interface Methods (IIM) was originally motivated by the desire to understand and improve the ``Immersed Boundary Method``, developed by Charles Peskin to solve incompressible Navier-Stokes equations in complicated geometries with moving elastic boundaries. This report briefly discusses the development of the Immersed Interface Methods and gives examples of application of the method in solving several partial differential equations.

  19. The dynamic interface: A review

    PubMed Central

    Jain, Rachna; Kapoor, Daljit

    2015-01-01

    The implant-to-tissue interface is an extremely dynamic region of interaction. Generally, a surgical procedure is performed on a patient to insert a foreign material into the bone, and the body is called on to “heal” the wound. The time schedule crucial for a healing process that is expected to result in restitution ad integrum must be determined with respect to the condition of the individual patient and tissue to be treated. There are various factors responsible for the formation of an adequate bone–implant interface. A comprehensive review of the response of bone to implant is described. PMID:26539385

  20. User interfaces to expert systems

    SciTech Connect

    Agarwal, A.; Emrich, M.L.

    1988-10-01

    Expert Systems are becoming increasingly popular in environments where the user is not well versed in computers or the subject domain. They offer expert advice and can also explain their lines of reasoning. As these systems are applied to highly technical areas, they become complex and large. Therefore, User Systems Interfaces (USIs) become critical. This paper discusses recent technologies that can be applied to improved user communication. In particular, bar menus/graphics, mouse interfaces, touch screens, and voice links will be highlighted. Their applications in the context of SOFTMAN (The Software Manager Apprentice) a knowledge-based system are discussed. 18 refs., 2 figs.

  1. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  2. Fluorescent fluid interface position sensor

    DOEpatents

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  3. Interface standards for computer equipment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The ability to configure data systems using modules provided by independent manufacturers is complicated by the wide range of electrical, mechanical, and functional characteristics exhibited within the equipment provided by different manufacturers of computers, peripherals, and terminal devices. A number of international organizations were and still are involved in the creation of standards that enable devices to be interconnected with minimal difficulty, usually involving only a cable or data bus connection that is defined by the standard. The elements covered by an interface standard are covered and the most prominent interface standards presently in use are identified and described.

  4. Intelligent interfaces for expert systems

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Wang, Lui

    1988-01-01

    Vital to the success of an expert system is an interface to the user which performs intelligently. A generic intelligent interface is being developed for expert systems. This intelligent interface was developed around the in-house developed Expert System for the Flight Analysis System (ESFAS). The Flight Analysis System (FAS) is comprised of 84 configuration controlled FORTRAN subroutines that are used in the preflight analysis of the space shuttle. In order to use FAS proficiently, a person must be knowledgeable in the areas of flight mechanics, the procedures involved in deploying a certain payload, and an overall understanding of the FAS. ESFAS, still in its developmental stage, is taking into account much of this knowledge. The generic intelligent interface involves the integration of a speech recognizer and synthesizer, a preparser, and a natural language parser to ESFAS. The speech recognizer being used is capable of recognizing 1000 words of connected speech. The natural language parser is a commercial software package which uses caseframe instantiation in processing the streams of words from the speech recognizer or the keyboard. The systems configuration is described along with capabilities and drawbacks.

  5. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  6. Microcomputer to Multichannel Analyzer Interface.

    ERIC Educational Resources Information Center

    Metz, Roger N.

    1982-01-01

    Describes a microcomputer-based multichannel analyzer (MCA) in which the front end is connected to a microcomputer through a custom interface. Thus an MCA System of 1024 channel resolution, programmable in Basic rather than in machine language and having moderate cost, is achieved. (Author/SK)

  7. Graphical fiber shaping control interface

    NASA Astrophysics Data System (ADS)

    Basso, Eric T.; Ninomiya, Yasuyuki

    2016-03-01

    In this paper, we present an improved graphical user interface for defining single-pass novel shaping techniques on glass processing machines that allows for streamlined process development. This approach offers unique modularity and debugging capability to researchers during the process development phase not usually afforded with similar scripting languages.

  8. Strength Development At Thermoset Interfaces

    NASA Astrophysics Data System (ADS)

    Wool, R. P.; Raghavan, J.

    1997-03-01

    A basic set of 10 polymer-polymer matrix interfaces has been identified to play a vital role in the technical apects of composite manufacturing, repair, recycling, welding and joining of thermoset matrix composites. A model vinyl ester resin was used in compact tension experiments with side-A and side-B, to determine the fracture energy G. Surprisingly, G was very small compared to the virgin strength (co-cured side-A with side-B) when liquid resin in side A was cured against previously cured side-B. Apparently, the chain extension reactions were not sufficient to achieve sufficient molecular connectivity at the interface. Several methods of repair were explored for fractured specimens, the most successful being the use of polystyrene connector chains at the interface with a molecular weight near M = 200,000. However, the complete virgin strength was never recovered, despite several chemical treatments, including crack healing. Strength results for all 10 interfaces, subjected to a variety of chemical treatments and surface preparation techniques are presented.

  9. Gluing Soft Interfaces by Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Dobrynin, Andrey

    Using a combination of the molecular dynamics simulations and scaling analysis we studied reinforcement of interface between two soft gel-like materials by spherical nanoparticles. Analysis of the simulations shows that the depth of penetration of a nanoparticle into a gel is determined by a balance of the elastic energy of the gel and nanoparticle deformations and the surface energy of nanoparticle/gel interface. In order to evaluate work of adhesion of the reinforced interface, the potential of mean force for separation of two gels was calculated. These simulations showed that the gel separation proceeds through formation of necks connecting nanoparticle with two gels. The shapes of the necks are controlled by a fine interplay between nanoparticle/gel surface energies and elastic energy of the neck deformation. Our simulations showed that by introducing nanoparticles at soft interfaces, the work required for separation of two gels could be 10-100 times larger than the work of adhesion between two gels without nanoparticle reinforcement. These results provide insight in understanding the mechanism of gluing soft gels and biological tissues by nano- and micro-sized particles. NSF DMR-1409710.

  10. Willow: a uniform search interface.

    PubMed Central

    Ketchell, D S; Freedman, M M; Jordan, W E; Lightfoot, E M; Heyano, S; Libbey, P A

    1996-01-01

    The objective of the Willow Project is to develop a uniform search interface that allows a diverse community of users to retrieve information from heterogeneous network-based information resources. Willow separates the user interface from the database management or information retrieval system. It provides a graphic user interface to a variety of information resources residing on diverse hosts, and using different search engines and idiomatic query languages through networked-based client-server and Transmission Control Protocol/Internet Protocol (TCP/IP) protocols. It is based on a "database driver'' model, which allows new database hosts to be added without altering Willow itself. Willow employs a multimedia extension mechanism to launch external viewers to handle data in almost any form. Drivers are currently available for a local BRS/SEARCH system and the Z39.50 protocol. Students, faculty, clinicians, and researchers at the University of Washington are currently offered 30 local and remote databases via Willow. They conduct more than 250,000 sessions a month in libraries, medical centers and clinics, laboratories, and offices, and from home. The Massachusetts Institute of Technology is implementing Willow as its uniform search interface to Z39.50 hosts. PMID:8750388

  11. Interface Reconstruction with Directional Walking

    SciTech Connect

    Yao, J

    2009-05-22

    Young's interface reconstruction with three-dimensional arbitrary mesh, in general, is rather tedious to implement compared to the case of a regular mesh. The main difficulty comes from the construction of a planar facet that bounds a certain volume inside a cell. Unlike the five basic configurations with a Cartesian mesh, there can be a great number of different configurations in the case of a general mesh. We represent a simple method that can derive the topology/geometry of the intersection of arbitrary planar objects in a uniform way. The method is based on a directional walking on the surface of objects, and links the intersection points with the paths of the walking naturally defining the intersection of objects. The method works in both two and three dimensions. The method does not take advantage of convexity, thus decomposition of an object is not necessary. Therefore, the solution with this method will have a reduced number of edges and less data storage, compared with methods that use shape decomposition. The treatment is general for arbitrary polyhedrons, and no look-up tables are needed. The same operation can easily be extended for curved geometry. The implementation of this new algorithm shall allow the interface reconstruction on an arbitrary mesh to be as simple as it is on a regular mesh. Furthermore, we exactly compute the integral of partial cell volume bounded by quadratic interface. Therefore, interface reconstruction with higher than second order accuracy can be achieved on an arbitrary mesh.

  12. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  13. Brush/Fin Thermal Interfaces

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.; Seaman, Christopher L.; Ellman, Brett M.

    2004-01-01

    Brush/fin thermal interfaces are being developed to increase heat-transfer efficiency and thereby enhance the thermal management of orbital replaceable units (ORUs) of electronic and other equipment aboard the International Space Station. Brush/fin thermal interfaces could also be used to increase heat-transfer efficiency in terrestrial electronic and power systems. In a typical application according to conventional practice, a replaceable heat-generating unit includes a mounting surface with black-anodized metal fins that mesh with the matching fins of a heat sink or radiator on which the unit is mounted. The fins do not contact each other, but transfer heat via radiation exchange. A brush/fin interface also includes intermeshing fins, the difference being that the gaps between the fins are filled with brushes made of carbon or other fibers. The fibers span the gap between intermeshed fins, allowing heat transfer by conduction through the fibers. The fibers are attached to the metal surfaces as velvet-like coats in the manner of the carbon fiber brush heat exchangers described in the preceding article. The fiber brushes provide both mechanical compliance and thermal contact, thereby ensuring low contact thermal resistance. A certain amount of force is required to intermesh the fins due to sliding friction of the brush s fiber tips against the fins. This force increases linearly with penetration distance, reaching 1 psi (6.9 kPa) for full 2-in. (5.1 cm) penetration for the conventional radiant fin interface. Removal forces can be greater due to fiber buckling upon reversing the sliding direction. This buckling force can be greatly reduced by biasing the fibers at an angle perpendicularly to the sliding direction. Means of containing potentially harmful carbon fiber debris, which is electrically conductive, have been developed. Small prototype brush/fin thermal interfaces have been tested and found to exhibit temperature drops about onesixth of that of conventional

  14. A sharp interface method for SPH

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu; Deng, Xiao-Long

    2015-12-01

    A sharp interface method (SIM) for smoothed particle hydrodynamics (SPH) has been developed to simulate two-phase flows with clear interfaces. The level set function is introduced to capture the interface implicitly. The interface velocity is used to evolve the level set function. The smoothness of the level set function helps to improve the accuracy of the interface curvature. Material discontinuity across the interface is dealt with by the ghost fluid method. The interface states are calculated by applying the jump conditions and are extended to the corresponding ghost fluid particles. The ghost fluid method helps to get smooth and stable calculation near the interface. The performance of the developed method is validated by benchmark tests. The developed SIM for SPH can be applied to simulate low speed two-phase flows of high density ratios with clear interface accurately and stably.

  15. MIB Galerkin method for elliptic interface problems.

    PubMed

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-12-15

    Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the

  16. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOEpatents

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  17. ACPYPE - AnteChamber PYthon Parser interfacE

    PubMed Central

    2012-01-01

    Background ACPYPE (or AnteChamber PYthon Parser interfacE) is a wrapper script around the ANTECHAMBER software that simplifies the generation of small molecule topologies and parameters for a variety of molecular dynamics programmes like GROMACS, CHARMM and CNS. It is written in the Python programming language and was developed as a tool for interfacing with other Python based applications such as the CCPN software suite (for NMR data analysis) and ARIA (for structure calculations from NMR data). ACPYPE is open source code, under GNU GPL v3, and is available as a stand-alone application at http://www.ccpn.ac.uk/acpype and as a web portal application at http://webapps.ccpn.ac.uk/acpype. Findings We verified the topologies generated by ACPYPE in three ways: by comparing with default AMBER topologies for standard amino acids; by generating and verifying topologies for a large set of ligands from the PDB; and by recalculating the structures for 5 protein–ligand complexes from the PDB. Conclusions ACPYPE is a tool that simplifies the automatic generation of topology and parameters in different formats for different molecular mechanics programmes, including calculation of partial charges, while being object oriented for integration with other applications. PMID:22824207

  18. The Integrated Mode Management Interface

    NASA Technical Reports Server (NTRS)

    Hutchins, Edwin

    1996-01-01

    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the

  19. Universal sensor interface module (USIM)

    NASA Astrophysics Data System (ADS)

    King, Don; Torres, A.; Wynn, John

    1999-01-01

    A universal sensor interface model (USIM) is being developed by the Raytheon-TI Systems Company for use with fields of unattended distributed sensors. In its production configuration, the USIM will be a multichip module consisting of a set of common modules. The common module USIM set consists of (1) a sensor adapter interface (SAI) module, (2) digital signal processor (DSP) and associated memory module, and (3) a RF transceiver model. The multispectral sensor interface is designed around a low-power A/D converted, whose input/output interface consists of: -8 buffered, sampled inputs from various devices including environmental, acoustic seismic and magnetic sensors. The eight sensor inputs are each high-impedance, low- capacitance, differential amplifiers. The inputs are ideally suited for interface with discrete or MEMS sensors, since the differential input will allow direct connection with high-impedance bridge sensors and capacitance voltage sources. Each amplifier is connected to a 22-bit (Delta) (Sigma) A/D converter to enable simultaneous samples. The low power (Delta) (Sigma) converter provides 22-bit resolution at sample frequencies up to 142 hertz (used for magnetic sensors) and 16-bit resolution at frequencies up to 1168 hertz (used for acoustic and seismic sensors). The video interface module is based around the TMS320C5410 DSP. It can provide sensor array addressing, video data input, data calibration and correction. The processor module is based upon a MPC555. It will be used for mode control, synchronization of complex sensors, sensor signal processing, array processing, target classification and tracking. Many functions of the A/D, DSP and transceiver can be powered down by using variable clock speeds under software command or chip power switches. They can be returned to intermediate or full operation by DSP command. Power management may be based on the USIM's internal timer, command from the USIM transceiver, or by sleep mode processing management

  20. Command Interface ASIC - Analog Interface ASIC Chip Set

    NASA Technical Reports Server (NTRS)

    Ruiz, Baldes; Jaffe, Burton; Burke, Gary; Lung, Gerald; Pixler, Gregory; Plummer, Joe; Katanyoutanant,, Sunant; Whitaker, William

    2003-01-01

    A command interface application-specific integrated circuit (ASIC) and an analog interface ASIC have been developed as a chip set for remote actuation and monitoring of a collection of switches, which can be used to control generic loads, pyrotechnic devices, and valves in a high-radiation environment. The command interface ASIC (CIA) can be used alone or in combination with the analog interface ASIC (AIA). Designed primarily for incorporation into spacecraft control systems, they are also suitable for use in high-radiation terrestrial environments (e.g., in nuclear power plants and facilities that process radioactive materials). The primary role of the CIA within a spacecraft or other power system is to provide a reconfigurable means of regulating the power bus, actuating all valves, firing all pyrotechnic devices, and controlling the switching of power to all switchable loads. The CIA is a mixed-signal (analog and digital) ASIC that includes an embedded microcontroller with supporting fault-tolerant switch control and monitoring circuitry that is capable of connecting to a redundant set of interintegrated circuit (I(sup 2)C) buses. Commands and telemetry requests are communicated to the CIA. Adherence to the I(sup 2)C bus standard helps to reduce development costs by facilitating the use of previously developed, commercially available components. The AIA is a mixed-signal ASIC that includes the analog circuitry needed to connect the CIA to a custom higher powered version of the I(sup 2)C bus. The higher-powered version is designed to enable operation with bus cables longer than those contemplated in the I(sup 2)C standard. If there are multiple higher-power I(sup 2)C-like buses, then there must an AIA between the CIA and each such bus. The AIA includes two identical interface blocks: one for the side-A I(sup 2)C clock and data buses and the other for the side B buses. All the AIAs on each side are powered from a common power converter module (PCM). Sides A and B

  1. Bergsonian Comedy and the Human Machines in "Star Wars."

    ERIC Educational Resources Information Center

    Roth, Lane

    While analyzing humor is difficult, Henri Bergson's concept of comedy (a person acting like a machine) outlined in the classic essay, "Le Rire," in 1900, is probably too narrow a definition. Science fiction film, a genre which has evolved since the publication of Bergson's essay, has also speculated about man and society, often to comment on, and…

  2. Humanizing machines: Anthropomorphization of slot machines increases gambling.

    PubMed

    Riva, Paolo; Sacchi, Simona; Brambilla, Marco

    2015-12-01

    Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. PMID:26322589

  3. Controlled English to facilitate human/machine analytical processing

    NASA Astrophysics Data System (ADS)

    Braines, Dave; Mott, David; Laws, Simon; de Mel, Geeth; Pham, Tien

    2013-06-01

    Controlled English is a human-readable information representation format that is implemented using a restricted subset of the English language, but which is unambiguous and directly accessible by simple machine processes. We have been researching the capabilities of CE in a number of contexts, and exploring the degree to which a flexible and more human-friendly information representation format could aid the intelligence analyst in a multi-agent collaborative operational environment; especially in cases where the agents are a mixture of other human users and machine processes aimed at assisting the human users. CE itself is built upon a formal logic basis, but allows users to easily specify models for a domain of interest in a human-friendly language. In our research we have been developing an experimental component known as the "CE Store" in which CE information can be quickly and flexibly processed and shared between human and machine agents. The CE Store environment contains a number of specialized machine agents for common processing tasks and also supports execution of logical inference rules that can be defined in the same CE language. This paper outlines the basic architecture of this approach, discusses some of the example machine agents that have been developed, and provides some typical examples of the CE language and the way in which it has been used to support complex analytical tasks on synthetic data sources. We highlight the fusion of human and machine processing supported through the use of the CE language and CE Store environment, and show this environment with examples of highly dynamic extensions to the model(s) and integration between different user-defined models in a collaborative setting.

  4. Marketing image categorization using hybrid human-machine combinations

    NASA Astrophysics Data System (ADS)

    Gnanasambandam, Nathan; Madhu, Himanshu

    2012-03-01

    Marketing instruments with nested, short-form, symbol loaded content need to be studied differently. Image classification in the Web2.0 world can dynamically use a configurable amount of internal and external data as well as varying levels of crowd-sourcing. Our work is one such examination of how to construct a hybrid technique involving learning and crowd-sourcing. Through a parameter called turkmix and a multitude of crowd-sourcing techniques available we show that we can control the trend of metrics such as precision and recall on the hybrid categorizer.

  5. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Schweizer, Marco; Öttinger, Hans Christian

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the ``dividing surface,'' as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a ``thermometer,'' and can be significantly different from the temperatures of the adjacent phases.

  6. Is structural interface standardization beneficial?

    NASA Astrophysics Data System (ADS)

    Dombert, W. E.

    1983-11-01

    Factors applicable to fixed angle, large field and fixed angle, large building flat plate photovoltaic (PV) generator arrays are discussed in the context of standardization. It is concluded that structural interface standardization may be highly desirable in any one major project, but not at this time in the overall PV industry. Attempts to mandate such standardization will act as a deterrent to long-range improvements. In specific projects, structural standardization should be defined at the largest practical interface, leaving the maximum possible freedom to the module and array manufacturer. There is a corollary area, however, where detailed standards would benefit the industry; the matter of Standard Practices. Work being done towards definition of acceptable/desirable practices in materials, finishes, fastening and locking methods, grounding techniques, lightning protection, etc., and in handling the environmental ranges, should be continued.

  7. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.

  8. Nonequilibrium thermodynamics of an interface.

    PubMed

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics. PMID:27300960

  9. Virtual Frame Buffer Interface Program

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas L.

    1990-01-01

    Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.

  10. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  11. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  12. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  13. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  14. Software handlers for process interfaces

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.

    1976-01-01

    Process interfaces are developed in an effort to reduce the time, effort, and money required to install computer systems. Probably the chief obstacle to the achievement of these goals lies in the problem of developing software handlers having the same degree of generality and modularity as the hardware. The problem of combining the advantages of modular instrumentation with those of modern multitask operating systems has not been completely solved, but there are a number of promising developments. The essential principles involved are considered.

  15. Chiral magnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit

    2014-03-01

    There are tantalizing hints of magnetism at the n-type LaAlO3/SrTiO3 interface, but the experimental evidence remains controversial in view of some of the differences between different samples and probes. I will argue that if magnetism exists at interfaces, symmetry arguments imply chiral interactions that lead to a spiral ground state in zero external field and skyrmion crystals for H ≠ 0 . I will next present a microscopic model that provides a possible mechanism for the formation of local moments. I will show that the coupling of these moments to itinerant electrons leads to ferromagnetic double exchange together with Dzyaloshinskii-Moriya (DM) interactions and an easy-plane ``compass'' anisotropy, which arise from Rashba spin-orbit coupling (SOC) due to the lack of inversion symmetry at the interface. The compass term, often ignored in the literature on chiral magnetism, is shown to play a crucial role in determining the magnetic ground state. I will compare our results with existing torque magnetometry data on LAO/STO and try to reconcile it with scanning SQUID magnetometry. Finally, I will present the phase diagram in a field and show that easy-plane anisotropy stabilizes an unexpectedly large skyrmion crystal phase and describe its properties. (Work done in collaboration with Sumilan Banerjee, Onur Erten, Daniel Kestner and James Rowland). Supported by DOE-BES DE-SC0005035, NSF-DMR-1006532 and NSF MRSEC DMR-0820414.

  16. Detonation interaction with an interface

    NASA Astrophysics Data System (ADS)

    Lieberman, D. H.; Shepherd, J. E.

    2007-09-01

    Detonation interaction with an interface was investigated, where the interface separated a combustible from an oxidizing or inert mixture. The ethylene-oxygen combustible mixture had a fuel-rich composition to promote secondary combustion with the oxidizer in the turbulent mixing zone (TMZ) that resulted from the interaction. Sharp interfaces were created by using a nitro-cellulose membrane to separate the two mixtures. The membrane was mounted on a wood frame and inserted in the experimental test section at a 45° angle to the bulk flow direction. The membrane was destroyed by the detonation wave. The interaction resulted in a transmitted and reflected wave at a node point similar to regular shock refraction. A detonation refraction analysis was carried out to compare with the measured shock angles. It was observed that the measured angle is consistently lower than the predicted value. An uncertainty analysis revealed possible explanations for this systematic variation pointing to factors such as the incident wave curvature and the role of the nitro-cellulose diaphragm. Analysis of the TMZ and Mach stem formed from the reflection of the transmitted shock wave off the solid boundary were carried out and found to justify the size and strength of these features as a function of the test gas composition. The role of secondary combustion in the TMZ was also investigated and found to have a small influence on the wave structure.

  17. Microprocessor-based interface for oceanography

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  18. Formal specification of human-computer interfaces

    NASA Technical Reports Server (NTRS)

    Auernheimer, Brent

    1990-01-01

    A high-level formal specification of a human computer interface is described. Previous work is reviewed and the ASLAN specification language is described. Top-level specifications written in ASLAN for a library and a multiwindow interface are discussed.

  19. Reinventing the energy modelling-policy interface

    NASA Astrophysics Data System (ADS)

    Strachan, Neil; Fais, Birgit; Daly, Hannah

    2016-03-01

    Energy modelling has a crucial underpinning role for policy making, but the modelling-policy interface faces several limitations. A reinvention of this interface would better provide timely, targeted, tested, transparent and iterated insights from such complex multidisciplinary tools.

  20. Programmable atom-photon quantum interface

    NASA Astrophysics Data System (ADS)

    Kurz, Christoph; Eich, Pascal; Schug, Michael; Müller, Philipp; Eschner, Jürgen

    2016-06-01

    We present the implementation of a programmable atom-photon quantum interface, employing a single trapped +40Ca ion and single photons. Depending on its mode of operation, the interface serves as a bidirectional atom-photon quantum-state converter, as a source of entangled atom-photon states, or as a quantum frequency converter of single photons. The interface lends itself particularly to interfacing ions with spontaneous parametric down-conversion-based single-photon or entangled-photon-pair sources.

  1. Atomistic modeling of dislocation-interface interactions

    SciTech Connect

    Wang, Jian; Valone, Steven M; Beyerlein, Irene J; Misra, Amit; Germann, T. C.

    2011-01-31

    Using atomic scale models and interface defect theory, we first classify interface structures into a few types with respect to geometrical factors, then study the interfacial shear response and further simulate the dislocation-interface interactions using molecular dynamics. The results show that the atomic scale structural characteristics of both heterophases and homophases interfaces play a crucial role in (i) their mechanical responses and (ii) the ability of incoming lattice dislocations to transmit across them.

  2. Relaxation, Structure, and Properties of Semicoherent Interfaces

    NASA Astrophysics Data System (ADS)

    Shao, S.; Wang, J.

    2016-01-01

    Materials containing a high density of interfaces are promising candidates for future energy technologies because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. A semicoherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. In this article, we review the relaxation mechanisms, structure, and properties of (111) semicoherent interfaces in face-centered cubic structures.

  3. INL Multi-Robot Control Interface

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  4. Interfaces in novel electronic materials

    NASA Astrophysics Data System (ADS)

    Liu, Fude

    Materials are now an important constraint of Si-based devices. One of the most serious problems is now the field effect transistor (FET) gate dielectric. It is desirable to find high-K dielectrics to replace Si02 so that a physically thicker gate dielectric can be used and then the tunneling effect can be reduced or avoided. Very recently, more interest has been shown in the La-based materials. In this study, a main part of effort was put on amorphous LaScO3 and La2O3/SiO2 alloys grown on Si (001) substrate. We have demonstrated that amorphous high-K oxide layers can be deposited directly on Si substrate as gate dielectrics for CMOS devices. However, oxygen diffusion through the high-K layers and reaction with Si substrate increased the EOT and the interface roughness at 1000°C. So possible oxygen sources at 1000°C need to be eliminated. All these results give us a deep understanding about the promising La-based oxides as the next generation gate dielectric. Compared to the mature Si industry, III-nitrides had not earned a most respected place in modern devices until recently. Unlike silicon and other traditional materials, III-nitrides are particularly suitable for high-frequency, high-power and high-temperature applications. Unfortunately, the choice of appropriate substrate materials for III-nitrides is still one of the biggest issues to be solved. Sapphire offers a compromise as the most widely used substrate material to date. And much remains to be known about the interface structures and GaN inversion domain boundaries (IDBs). In this study, we tried to determine these interface structures and GaN-IDBs. To the GaN films on c-sapphire with a low temperature AIN (LT-AIN) nucleation layer, the interface atomic structure of LT-AIN on c-sapphire and the exact 3-D geometry of AIN pits were determined for the first time. The GaN IDBs were also studied in detail. A transition region with mixed polarities was found with the convergent beam electron diffraction (CBED

  5. Properties of interfaces of diamond

    NASA Astrophysics Data System (ADS)

    Nemanich, R. J.; Bergman, L.; Turner, K. F.; van der Weide, J.; Humphreys, T. P.

    1993-04-01

    Results related to two different interface aspects involving diamond are described: (1) the initial states of CVD diamond film growth, and (2) the negative electron affinity and formation of metal-diamond interfaces. The surface and interface properties are probed with STM, Raman scattering/photoluminescence and angle-resolved UV photoemission spectroscopy (ARUPS). STM measurements of diamond nuclei on Si after various plasma growth processes show both flat and hillocked structures characteristics of 2-dimensional and 3-dimensional growth modes, respectively. STS measurements show distinct I- V characteristics of the nuclei and the substrate. The presence of optical defects and the diamond quality are studied with micro-Raman/photoluminescence measurements. The results indicate an increased density of impurity-related defects during the initial stages of growth. The interface properties of Ti on natural crystal (1 1 1) and (1 0 0) surfaces are studied with ARUPS using 21.2 eV HeI emission. Prior to deposition the diamond (1 1 1) is chemically cleaned, and a sharp (0.5 eV FWHM) peak is observed at the position of the conduction band minimum, indicating a negative electron affinity surface. After a subsequent argon plasma clean this peak disappears, while the spectrum shows a shift of 0.5 eV towards higher energies. Upon sub-monolayer titanium deposition on (1 1 1) diamond, the negative electron affinity peak reappears. Further titanium depositions causes this titanium-induced negative electron affinity peak to be attenuated, indicating that the emission originates from the interface. A similar experiment, done on the diamond (1 0 0) surface, however, does not result in a negative electron affinity. By determining the relative positions of the diamond valence band edge and the titanium Fermi level, the Schottky barrier height of titanium on diamond is measured. A model, based on the Schottky barrier height of titanium on diamond, and the work function of titanium, is

  6. Towards automation of user interface design

    NASA Technical Reports Server (NTRS)

    Gastner, Rainer; Kraetzschmar, Gerhard K.; Lutz, Ernst

    1992-01-01

    This paper suggests an approach to automatic software design in the domain of graphical user interfaces. There are still some drawbacks in existing user interface management systems (UIMS's) which basically offer only quantitative layout specifications via direct manipulation. Our approach suggests a convenient way to get a default graphical user interface which may be customized and redesigned easily in further prototyping cycles.

  7. Properties of interfaces and transport across them.

    PubMed

    Cabezas, H

    2000-01-01

    Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed. PMID:10610364

  8. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  9. Interface solitons in thermal nonlinear media

    SciTech Connect

    Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei

    2011-05-15

    We demonstrate the existence of fundamental and dipole interface solitons in one-dimensional thermal nonlinear media with a step in linear refractive index. Fundamental interface solitons are found to be always stable and the stability of dipole interface solitons depends on the difference in linear refractive index. The mass center of interface solitons always locates in the side with higher refractive index. The two intensity peaks of dipole interface solitons are unequal except under some specific conditions, which is different from their counterparts in uniform thermal nonlinear media.

  10. Intelligent subsystem interface for modular hardware system

    NASA Technical Reports Server (NTRS)

    Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor); Caffrey, Robert T. (Inventor)

    2000-01-01

    A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

  11. TAXI Interface Demultiplexes Proprietarily Formatted Data

    NASA Technical Reports Server (NTRS)

    Newnan, Bruce G.; Ahiport, Steven F.

    2001-01-01

    The 'TAXI Direct-to-Disk' interface is a special purpose interface unit for demultiplexing of data from a Racal Storeplex (or equivalent) multichannel recorder onto one or more hard disks that reside in, and/or are controlled by, a personal computer (PC). The acronym 'TAXI' signifies transparent asynchronous transceiver interface. The TAXI interface was developed for original use in capturing data from instrumentation on a test stand in a NASA rocket testing facility. The installation of the TAXI interface, in conjunction with other modifications, causes the transfer of data to take place in real time, so that the data are immediately available for review during or after the test.

  12. Transient aspects of stream interface signatures

    SciTech Connect

    Crooker, N.U.; Shodhan, S.; Forsyth, R.J.; Burton, M.E.; Gosling, J.T.; Fitzenreiter, R.J.; Lepping, R.P.

    1999-06-01

    Although stream interfaces are steady-state, corotating boundaries between slow and fast solar wind, their signatures are sometimes associated with transient features. Here the authors illustrate two modes of association: interfaces trailing interplanetary coronal mass ejections (ICMEs) at 1 AU and interfaces within ICMEs in the range 4--5 AU. The former are readily understood as boundaries between transient slow wind and steady-state fast wind, where the ICMEs add variability to the interface signatures. The latter are puzzling and may be related to evolution of interfaces.

  13. Dislocation punching from ceramic/metal interfaces

    SciTech Connect

    Taya, M. ); Mori, T. . Dept. of Materials Science and Engineering)

    1994-07-01

    Relaxation of misfit strains at interfaces between two different materials by dislocation punching is studied analytically by focusing on two types of interfaces: planar and nonplanar. As an example of planar type interface, the case of metal coating/ceramic substrate system is studied while ceramic filler/metal matrix composite system is examined as an example of a nonplanar interface. Based on the present analytical model, the condition for dislocation punching for each interface is established. Validity of the dislocation punching model is verified by comparing the analytical results with limited experimental results, resulting in a good agreement.

  14. Tailoring thermal interfaces with nanomaterials

    NASA Astrophysics Data System (ADS)

    Seshadri, Indira

    Thermal interfaces are key to ensure the reliable performance of many semiconductor, energy and electronic systems. High thermal conductivity (k), low elastic modulus (E) interface materials are required to dissipate heat and relieve thermo-mechanical stresses. The aim of this thesis is to develop compliant, high k nanocomposite materials for thermal interface applications utilizing nanostructured networks. Realizing high k nanocomposites is a challenge because of difficulties in incorporating high fractions of uniformly dispersed nanofillers and countering low filler-matrix interfacial conductance, while retaining a low elastic modulus. In this thesis, it is demonstrated that these issues are obviated by using < 5 volume % sub-10-nm cold welded gold nanowire fillers to obtain an unprecedented 30-fold increase in polydimethylsiloxane thermal conductivity that is 6-fold higher than previously reported nanocomposites at low nanofiller loadings and exceeds theoretical predictions. The nanowire diameter and aspect ratio are key to obtain cold-welded networks that enhance k at low filler fractions, while fostering low E. Along with high k, tailoring high thermal contact conductance G c is crucial for many applications. This thesis reveals a critical correlation between the rheological behavior of a high k gold-nanowire-filled polydimethylsiloxane nanocomposite and its thermal contact conductance with copper. At a critical filler fraction, an abrupt increase in the nanocomposite k is accompanied by a liquid-solid transition and a multifold decrease in Gc. These concurrent changes are attributed to nanowire percolation network formation and pre-cure polymer gelation that inhibits the formation of conformal void-free interfaces. These findings will be important for designing processing sequences to realize heterointerfaces with nanowire filled high k nanocomposite materials. Another important finding of this thesis is that nanowire networks can result in mechanical

  15. Surface rheology and interface stability.

    SciTech Connect

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D.; Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  16. Metawidgets in the multimodal interface

    SciTech Connect

    Blattner, M.M. Anderson Cancer Center, Houston, TX ); Glinert, E.P.; Jorge, J.A.; Ormsby, G.R. . Dept. of Computer Science)

    1991-01-01

    We analyze two intertwined and fundamental issues concerning computer-to-human communication in the multimodal interfaces: the interplay between sound and graphics, and the role of object persistence. Our observations lead us to introduce metawidgets as abstract entities capable of manifesting themselves to users as image, as sound, or as various combinations and/or sequences of the two media. We show examples of metawidgets in action, and discuss mechanisms for choosing among alternative media for metawidget instantiation. Finally, we describe a couple of experimental microworlds we have implemented to test out some of our ideas. 17 refs., 7 figs.

  17. Helmholtz solitons at nonlinear interfaces.

    PubMed

    Sánchez-Curto, J; Chamorro-Posada, P; McDonald, G S

    2007-05-01

    Reflection and refraction of spatial solitons at dielectric interfaces, accommodating arbitrarily angles of incidence, is studied. Analysis is based on Helmholtz soliton theory, which eliminates the angular restriction associated with the paraxial approximation. A novel generalization of Snell's law is discovered that is valid for collimated light beams and the entire angular domain. Our new theoretical predictions are shown to be in excellent agreement with full numerical simulations. New qualitative features of soliton refraction and limitations of previous paraxial analyses are highlighted. PMID:17410257

  18. Avalanche dynamics of elastic interfaces.

    PubMed

    Le Doussal, Pierre; Wiese, Kay Jörg

    2013-08-01

    Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a nonhomogeneous substrate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d≥d(uc) (d(uc)=2,4 respectively for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion of a point particle in a random-force landscape, which is itself a random walk [Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model]. Furthermore, the full spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension d (for monotonous driving) by summing tree graphs, equivalent to solving a (nonlinear) instanton equation. We focus on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in short-ranged disorder, up to the renormalization of two parameters at d=d(uc). We calculate a number of observables of direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations and probability distribution functions (PDF's) of the velocity inside an avalanche, as well as the avalanche shape and its fluctuations (second shape). Within MFT we find that velocity correlations at nonzero q are asymmetric under time reversal. Next we calculate, beyond MFT, i.e., including loop corrections, the one-time PDF of the center-of-mass velocity u[over ·] for dimension d

  19. EXPRESS Pallet Payload Interface Requirements

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    2004-01-01

    A viewgraph presentation describing the EXPRESS Pallet Space Station payload interface requirements is shown. The topics include: 1) External Payload Sites; 2) EXPRESS Pallet with Six Payload Envelopes; 3) EXPRESS Pallet in Payload Bay Representative Layout; 4) EXPRESS Pallet Installation SSRMS positions pallet for PAS mating on S3 truss; 5) EXPRESS Pallet Major Components; 6) EXPRESS Pallet Adapter; 7) EXPRESS Pallet Center Location Payload Envelope; 8) Envelope Restriction for EXPRESS Pallet Corner Payload Locations; 9) EXPRESS Pallet-PAS Truss Configuration; and 10) EXPRESS Pallet Payload Services and Specifications.

  20. Praxis input/output interface

    SciTech Connect

    Shapiro, R.E.; Evans, A. Jr.

    1981-01-01

    This document is intended as an introduction to the use of RMS facilities via Praxis (this interface hereafter called Praxis-RMS). It is presumed that the reader is familiar with Praxis conventions as well as with RMS use (at the MACRO level). Since Praxis-RMS was designed to be functionally equivalent to MACRO-RMS, the explanations follow the pattern of the DEC MACRO-RMS documentation (particularly the programmer's reference manual). A complete list of the procedures that make up Praxis-RMS appears at the end of this document (with parameters), along with the constants (grouped by type) that can be used as actual parameters.

  1. The patient-sensor interface

    PubMed Central

    Crockett, G. S.

    1970-01-01

    During the assessment of monitoring equipment on acute medical cases in a general ward, a quantitative investigation of technical faults revealed that 44% of these occurred at the patient-sensor interface. While the attachment of the equipment was accepted by the patient and was suitable for application by nursing staff, this degree of technical breakdown indicates that more progress is necessary in the design of this aspect of monitoring equipment before it is possible to have a reliable system. ImagesFig. 1 PMID:5476136

  2. Gestural interfaces for immersive environments

    NASA Astrophysics Data System (ADS)

    Margolis, Todd

    2014-02-01

    We are witnessing an explosion of new forms of Human Computer Interaction devices lately for both laboratory research and home use. With these new affordance in user interfaces (UI), how can gestures be used to improve interaction for large scale immersive display environments. Through the investigation of full body, head and hand tracking, this paper will discuss various modalities of gesture recognition and compare their usability to other forms of interactivity. We will explore a specific implementation of hand gesture tracking within a large tiled display environment for use with common collaborative media interaction activities.

  3. Physical significance of interfaces on fracture growth

    SciTech Connect

    Wang, J.J.; Guo, Q. )

    1993-08-01

    Details of the interfaces between two geologic materials are normally neglected in predicting the growth of hydraulic fractures. In addition, perfect bonding is assumed across the interface. However, due to a combination of reasons, the perfect bonding assumption is violated to various degrees. Assessment for potential slippage is important to fracture-growth modeling. As a fracture approaches an interface, both mode I (for a fracture crossing the interface) and mode II (for a fracture extending in the interface) stress-intensity factors need to be evaluated. Should the interface properties be such that the mode I stress-intensity factor reach the critical value, the fracture will cross the interface. Should the converse happen and the mode II stress-intensity factor become critical, slippage along the interface will occur. If both the critical stress intensity factors are reached simultaneously, both fractures across the interface and slippage will occur. Good description of the interface material is needed to model the fracturing process. Methodology to model the physical significance of interfaces for calculating two-dimensional fracture growth includes descriptions of applications to oil/gas recovery and the injection of contaminants in isolated formations.

  4. Experiments showing dynamics of materials interfaces

    SciTech Connect

    Benjamin, R.F.

    1997-02-01

    The discipline of materials science and engineering often involves understanding and controlling properties of interfaces. The authors address the challenge of educating students about properties of interfaces, particularly dynamic properties and effects of unstable interfaces. A series of simple, inexpensive, hands-on activities about fluid interfaces provides students with a testbed to develop intuition about interface dynamics. The experiments highlight the essential role of initial interfacial perturbations in determining the dynamic response of the interface. The experiments produce dramatic, unexpected effects when initial perturbations are controlled and inhibited. These activities help students to develop insight about unstable interfaces that can be applied to analogous problems in materials science and engineering. The lessons examine ``Rayleigh-Taylor instability,`` an interfacial instability that occurs when a higher-density fluid is above a lower-density fluid.

  5. The interactive digital video interface

    NASA Technical Reports Server (NTRS)

    Doyle, Michael D.

    1989-01-01

    A frequent complaint in the computer oriented trade journals is that current hardware technology is progressing so quickly that software developers cannot keep up. A example of this phenomenon can be seen in the field of microcomputer graphics. To exploit the advantages of new mechanisms of information storage and retrieval, new approaches must be made towards incorporating existing programs as well as developing entirely new applications. A particular area of need is the correlation of discrete image elements to textural information. The interactive digital video (IDV) interface embodies a new concept in software design which addresses these needs. The IDV interface is a patented device and language independent process for identifying image features on a digital video display and which allows a number of different processes to be keyed to that identification. Its capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. Sophisticated interrelationships can be set up between images, text, and program control mechanisms.

  6. Probing the Buried Magnetic Interfaces.

    PubMed

    Liu, Wenqing; Zhou, Qionghua; Chen, Qian; Niu, Daxin; Zhou, Yan; Xu, Yongbing; Zhang, Rong; Wang, Jinlan; van der Laan, Gerrit

    2016-03-01

    Understanding magnetism in ferromagnetic metal/semiconductor (FM/SC) heterostructures is important to the development of the new-generation spin field-effect transistor. Here, we report an element-specific X-ray magnetic circular dichroism study of the interfacial magnetic moments for two FM/SC model systems, namely, Co/GaAs and Ni/GaAs, which was enabled using a specially designed FM1/FM2/SC superstructure. We observed a robust room temperature magnetization of the interfacial Co, while that of the interfacial Ni was strongly diminished down to 5 K because of hybridization of the Ni d(eg) and GaAs sp(3) states. The validity of the selected method was confirmed by first-principles calculations, showing only small deviations (<0.02 and <0.07 μB/atom for Co/GaAs and Ni/GaAs, respectively) compared to the real FM/SC interfaces. Our work proved that the electronic structure and magnetic ground state of the interfacial FM2 is not altered when the topmost FM2 is replaced by FM1 and that this model is applicable generally for probing the buried magnetic interfaces in the advanced spintronic materials.. PMID:26887429

  7. Continuous Liquid Interface Production (CLIP)

    NASA Astrophysics Data System (ADS)

    Tumbleston, John

    Continuous liquid interface production (CLIP) can rapidly produce 3D parts using a range of polymeric materials. A DLP-based form of additive manufacturing, CLIP proceeds via projecting a sequence of UV images through an oxygen-permeable, UV-transparent window below a liquid resin bath. A thin uncured liquid layer, or dead zone, is created above the window and maintains a liquid interface below the advancing part. Above the dead zone, the curing part is drawn out of the resin bath creating suction forces that renew reactive liquid resin. The dead zone is created due to oxygen inhibition of photopolymerization, a process that is traditionally a nuisance in other photopolymerization applications. However, for CLIP oxygen inhibition and creation of the dead zone allows for a continuous mode of printing where UV exposure, resin renewal, and part elevation are conducted simultaneously. This continual process is fundamentally different from traditional bottom-up stereolithography printers where these steps must be conducted in separate and discrete steps. Furthermore, the relatively gentle nature of CLIP due to the established dead zone enables the use of unique materials with a wide range of mechanical properties. This presentation will showcase the CLIP technology and provide a detailed picture of interactions between different resin and process parameters. New applications for 3D printing that span the micro- to macro-scale enabled by CLIP's combination of unique materials and part production speed will also be presented.

  8. Brain Computer Interfaces, a Review

    PubMed Central

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  9. Body language user interface (BLUI)

    NASA Astrophysics Data System (ADS)

    Brody, Arthur W.; Olmsted, Coert

    1998-07-01

    We analyze a 3D skeletal representation of the user in spatial and temporal domains as a tool necessary to recognizing the gestures of drawing, picking and grabbing. The mechanisms of visual perception that are called upon in the imaginative process of artistic creation use those same tactile and kinesthetic pathways and structures in the brain which are employed when we manipulate the 3D world. We see, in fact, with our sensual bodies as well as with our eyes. Our interface is built on an analysis of pointing and gesturing and how they related to the perception of form in space. We report on our progress in implementing a body language user interface for artistic computer interaction, i.e., an human/computer interaction based on an analysis of how an artist uses her body in the act of creation. Using two synchronous TV cameras, we have videotaped an environment into which an artist moves, assumes a canonical (Da Vinci) pose and subsequently makes a series of simple gestures. The video images are processed to generate an animated 3D skeleton that corresponds to the skeleton of the artist. The locus of the path taken by the drawing hand is the source of a trace of particles. Our presentation shows the two simultaneous videos, the associated animated 3D skeleton, that skeleton as an instance of motion capture for a constrained model of a human skeleton and the trace of the path taken by the drawing hand.

  10. Micromachined devices for interfacing neurons

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Beutel, Hansjoerg; Blau, Cornelia; Meyer, Joerg-Uwe

    1998-07-01

    Micromachining technologies were established to fabricate microelectrode arrays and devices for interfacing parts of the central or peripheral nervous system. The devices were part of a neural prosthesis that allows simultaneous multichannel recording and multisite stimulation of neurons. Overcoming the brittle mechanics of silicon devices and challenging housing demands close to the nerve we established a process technology to fabricate light-weighted and highly flexible polyimide based devices. Platinum and iridium thin-film electrodes were embedded in the polyimide. With reactive ion etching we got the possibility to simply integrate interconnections and to form nearly arbitrary outer shapes of the devices. We designed multichannel devices with up to 24 electrodes in the shape of plates, hooks and cuffs for different applications. In vitro tests exhibited stable electrode properties and no cytotoxicity of the materials and the devices. Sieve electrodes were chronically implanted in rats to interface the regenerating sciatic nerve. After six months, recordings and stimulation of the nerve via electrodes on the micro-device proved functional reinnervation of the limb. Concentric circular structures were designed for a retina implant for the blind. In preliminary studies in rabbits, evoked potentials in the visual cortex corresponded to stimulation sites of the implant.

  11. When soft controls get slippery: User interfaces and human error

    SciTech Connect

    Stubler, W.F.; O`Hara, J.M.

    1998-12-01

    Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety.

  12. [Charge generation and separation at liquid interfaces

    SciTech Connect

    Eisenthal, K.B.

    1992-01-01

    The research is divided into 3 parts: (1)Sum Frequency Generation (SFG) and Monolayer Structure. Picosecond lasers are combined by difference frequency mixing in a nonlinear crystal to generate picosecond, tunable IR pulses, which are used to study orientation of C[double bond]N and CD[sub 3] chromosphores (head group and tail) on lipid monolayers CD[sub 3](CH[sub 2])[sub 21]CN at air/water interface. (2)Femtosecond Dynamics. The femtosecond colliding pulse mode locked laser is being modified to carry out pump-second harmonic (SH) probe studies at liquid interfaces. Picosecond SH knowhow of intermolecular energy transfer, excited state isomerization, and rotational motions at interfaces is now being applied to femtosecond scale. Aromatics adsorbed at air/water interface, generated changes in SH probe signal and their decay back to original value. If the laser is tightly focussed at interface, multiphoton absorption processes occur which destroy the sample; this effect will be exploited. (3)Interface Potential and Acid-Base Equilibria. The interface potential is a key to charge transport; using SHG, we plan to measure the pKa of organic acids at interfaces. In these studies at silica/aqueous interface, the water molecules extending from the interface into the bulk (about 50[Angstrom]) were strongly polarized by SiO[sup [minus

  13. Tailoring thermal interfaces with nanomaterials

    NASA Astrophysics Data System (ADS)

    Seshadri, Indira

    Thermal interfaces are key to ensure the reliable performance of many semiconductor, energy and electronic systems. High thermal conductivity (k), low elastic modulus (E) interface materials are required to dissipate heat and relieve thermo-mechanical stresses. The aim of this thesis is to develop compliant, high k nanocomposite materials for thermal interface applications utilizing nanostructured networks. Realizing high k nanocomposites is a challenge because of difficulties in incorporating high fractions of uniformly dispersed nanofillers and countering low filler-matrix interfacial conductance, while retaining a low elastic modulus. In this thesis, it is demonstrated that these issues are obviated by using < 5 volume % sub-10-nm cold welded gold nanowire fillers to obtain an unprecedented 30-fold increase in polydimethylsiloxane thermal conductivity that is 6-fold higher than previously reported nanocomposites at low nanofiller loadings and exceeds theoretical predictions. The nanowire diameter and aspect ratio are key to obtain cold-welded networks that enhance k at low filler fractions, while fostering low E. Along with high k, tailoring high thermal contact conductance G c is crucial for many applications. This thesis reveals a critical correlation between the rheological behavior of a high k gold-nanowire-filled polydimethylsiloxane nanocomposite and its thermal contact conductance with copper. At a critical filler fraction, an abrupt increase in the nanocomposite k is accompanied by a liquid-solid transition and a multifold decrease in Gc. These concurrent changes are attributed to nanowire percolation network formation and pre-cure polymer gelation that inhibits the formation of conformal void-free interfaces. These findings will be important for designing processing sequences to realize heterointerfaces with nanowire filled high k nanocomposite materials. Another important finding of this thesis is that nanowire networks can result in mechanical

  14. Cooperative strings and glassy interfaces.

    PubMed

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-07-01

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908

  15. Conduction at a ferroelectric interface

    DOE PAGESBeta

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, inmore » one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  16. [Pathology of the vitreomacular interface].

    PubMed

    Pop, Monica; Gheorghe, Alina

    2014-01-01

    Vitreous role in the pathophysiology of retinal diseases has increased importantly over the recent years. This was possible using Optical Coherence Tomography which reviewed the way the vitreoretinal interface should be looked at and defined and classified new pathologies such as Vitreoretinal Traction Syndrome. Vitreous is not an empty space but an important anatomical structure with role in ocular physiology. With age biochemical changes occur so that vitreous starts to liquefy. Once the vitreous is liquefied (sinchisis) it collapses and passes in the retrohialoid space (sineresis). In complete PVD besides sinchisis there is a weakness of the adherence between the posterior cortex and ILM with total detachment of posterior cortex. Abnormal adhesions are associated with incomplete PVD. The definition and understanting of vitreoretinal pathology is an active and continuous process, PVD being the trigger of a lot of retinal pathologies: epiretinal membrane, macular hole, tractional macular oedema, VMTS, myopic traction maculopathy, exacerbations of exudative ARMD. PMID:25300121

  17. Actuator-valve interface optimization

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1986-01-01

    A computer code, Actuator Valve Response (AVR), has been developed to optimize the explosive actuator-valve interface parameters so that the valve plunger velocity is at a maximum when the plunger reaches the valve tubes. The code considers three forces to act on the valve plunger before the plunger reaches the valve tubes. These are the pressure force produced by the actuator, the shear force necessary to shear the seal disks on the actuator and the valve plunger, and the friction force caused by friction between the plunger and the plunger bore. The three forces are modeled by expressions that are explicitly functions of the plunger displacement. A particular actuator-valve combination was analyzed with the computer code AVR with four different combinations of valve plunger seal disk shear strength and initial friction force. (LEW)

  18. Kinetic interfaces of patchy particles

    NASA Astrophysics Data System (ADS)

    Araújo, N. A. M.; Dias, C. S.; Telo da Gama, M. M.

    2015-05-01

    We study the irreversible adsorption of patchy particles on substrates in the limit of advective mass transport. Recent numerical results show that the interface roughening depends strongly on the particle attributes, such as, patch-patch correlations, bond flexibility and strength of the interactions, uncovering new absorbing phase transitions. Here, we revisit these results and discuss in detail the transitions. In particular, we present new evidence that the tricritical point, observed in systems of particles with flexible patches, is in the tricritical directed percolation universality class. A scaling analysis of the time evolution of the correlation length for the aggregation of patchy particles with distinct bonding energies confirms that the critical regime is in the Kardar-Parisi-Zhang with quenched disorder universality class.

  19. Kinetic interfaces of patchy particles.

    PubMed

    Araújo, N A M; Dias, C S; Telo da Gama, M M

    2015-05-20

    We study the irreversible adsorption of patchy particles on substrates in the limit of advective mass transport. Recent numerical results show that the interface roughening depends strongly on the particle attributes, such as, patch-patch correlations, bond flexibility and strength of the interactions, uncovering new absorbing phase transitions. Here, we revisit these results and discuss in detail the transitions. In particular, we present new evidence that the tricritical point, observed in systems of particles with flexible patches, is in the tricritical directed percolation universality class. A scaling analysis of the time evolution of the correlation length for the aggregation of patchy particles with distinct bonding energies confirms that the critical regime is in the Kardar-Parisi-Zhang with quenched disorder universality class. PMID:25923051

  20. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  1. General purpose intelligent sensor interface

    NASA Technical Reports Server (NTRS)

    Mckee, J. W.

    1990-01-01

    The long range goal is to develop an intelligent sensor system that will simplify the design and development of expert systems that use sensors of physical phenomena as a source of input data. This phase of the research concentrated on the integration of image processing sensors with expert system environments. The anticipated result of this research is the ability to design systems in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, or television cameras selection. The user will be able to access data from video sensors through standard expert system statements without any need to know about the sensor hardware or software.

  2. Cooperative strings and glassy interfaces

    PubMed Central

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A.

    2015-01-01

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam–Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel–Fulcher–Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908

  3. Conduction at a ferroelectric interface

    SciTech Connect

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  4. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform. PMID:24189715

  5. Network interface unit design options performance analysis

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.

    1991-01-01

    An analysis is presented of three design options for the Space Station Freedom (SSF) onboard Data Management System (DMS) Network Interface Unit (NIU). The NIU provides the interface from the Fiber Distributed Data Interface (FDDI) local area network (LAN) to the DMS processing elements. The FDDI LAN provides the primary means for command and control and low and medium rate telemetry data transfers on board the SSF. The results of this analysis provide the basis for the implementation of the NIU.

  6. Moment of Fluid Interface Reconstruction with Filaments

    SciTech Connect

    Jemison, Matthew B.

    2012-08-15

    A moving system made up of multiple fluids (e.g. air and water) may be defined by an evolving interface with a changing topology. MOF uses a piecewise linear interface reconstruction to numerically model deforming boundaries. Given a volume fraction V and reference centroid x for a material in cell {Omega}, we seek to find an interface {Gamma} that exactly captures V and minimizes error in x. This differs from Volume of Fluid methods.

  7. New User Interface Capabilities for Control Systems

    SciTech Connect

    Kasemir, Kay

    2009-01-01

    Latest technologies promise new control system User Interface (UI) features and greater interoperability of applications. New developments using Java and Eclipse aim to unify diverse control systems and make communication between applications seamless. Web based user interfaces can improve portability and remote access. Modern programming tools improve efficiency, support testing and facilitate shared code. This paper will discuss new developments aimed at improving control system interfaces and their development environment.

  8. Small computer interface to a stepper motor

    NASA Technical Reports Server (NTRS)

    Berry, Fred A., Jr.

    1986-01-01

    A Commodore VIC-20 computer has been interfaced with a stepper motor to provide an inexpensive stepper motor controller. Only eight transistors and two integrated circuits compose the interface. The software controls the parallel interface of the computer and provides the four phase drive signals for the motor. Optical sensors control the zeroing of the 12-inch turntable positioned by the controller. The computer calculates the position information and movement of the table and may be programmed in BASIC to execute automatic sequences.

  9. Flexible feature interface for multimedia sources

    DOEpatents

    Coffland, Douglas R.

    2009-06-09

    A flexible feature interface for multimedia sources system that includes a single interface for the addition of features and functions to multimedia sources and for accessing those features and functions from remote hosts. The interface utilizes the export statement: export "C" D11Export void FunctionName(int argc, char ** argv,char * result, SecureSession *ctrl) or the binary equivalent of the export statement.

  10. Recent work on material interface reconstruction

    SciTech Connect

    Mosso, S.J.; Swartz, B.K.

    1997-12-31

    For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interface was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.

  11. On Building a Search Interface Discovery System

    NASA Astrophysics Data System (ADS)

    Shestakov, Denis

    A huge portion of the Web known as the deep Web is accessible via search interfaces to myriads of databases on the Web. While relatively good approaches for querying the contents of web databases have been recently proposed, one cannot fully utilize them having most search interfaces unlocated. Thus, the automatic recognition of search interfaces to online databases is crucial for any application accessing the deep Web. This paper describes the architecture of the I-Crawler, a system for finding and classifying search interfaces. The I-Crawler is intentionally designed to be used in the deep web characterization surveys and for constructing directories of deep web resources.

  12. Structural modifications due to interface chemistry at metal-nitride interfaces

    PubMed Central

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X.-Y.

    2015-01-01

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. Corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces. PMID:26611639

  13. Structural modifications due to interface chemistry at metal-nitride interfaces

    SciTech Connect

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  14. Structural modifications due to interface chemistry at metal-nitride interfaces

    DOE PAGESBeta

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less

  15. EDITORIAL: Sensors based on interfaces

    NASA Astrophysics Data System (ADS)

    Camassel, Jean; Soukiassian, Patrick G.

    2007-12-01

    Sensors are specific analog devices that convert a physical quantity, like the temperature or external pressure or concentration of carbon monoxide in a confined atmosphere, into an electrical signal. Considered in this way, every sensor is then a part of the artificial interface, which connects the human world to the world of machines. The other side of the interface is represented by actuators. Most often, after processing the data they are used to convert the out-coming electrical power into counteracting physical action. In the last few years, thanks to inexpensive silicon technology, enormous capability for data processing has been developed and the world of machines has become increasingly invasive. The world of sensors has become increasingly complex too. Applications range from classical measurements of the temperature, vibrations, shocks and acceleration to more recent chemical and bio-sensing technologies. Chemical sensors are used to detect the presence of specific, generally toxic, chemical species. To measure their concentration, one uses some specific property, generally a physical one, like the intensity of infrared absorption bands. Bio-sensors are new, more complex, devices that combine a bio-receptor with a physical transducer. The bio-receptor is a molecule (for instance, an enzyme like glucose oxidase) that can recognize a specific target (glucose molecules in the case of glucose oxidase). The enzyme must be fixed on the transducer and, as a consequence of recognition, the transducer must convert the event into a measurable analytical signal. A common feature of many chemical and bio-sensors is that they require a large surface of interaction with the outside world. For that reason and in order to increase efficiency, either nanoparticles or pores or a combination of both, made from various materials including (but not limited to) porous silicon, are often used as the functional transducer interface. The reviews in this Cluster Issue of Journal

  16. Interface structure at large supercooling

    NASA Astrophysics Data System (ADS)

    Misbah, C.; Müller-Krumbhaar, H.; Temkin, D. E.

    1991-04-01

    The front dynamics during the growth of a pure substance in the large undercooling limit including interface kinetics is analyzed. There exists a critical dimensionless undercooling Δ_s(>1) above which a planar front is linearly stable. For Δ < Δ_s the planar front is unstable against short wavenumbers k's perturbations, 0interface dynamics is governed by a partial differential equation of the Kuramoto-Sivashinsky [3, 4] type. We have investigated steady-state periodic solutions of this equation in the range (0, k0) and analyzed their full linear stability. It is found that among the continuous family of solutions with wavenumbers lying in the interval (0, k0), the stable ones exist only in a narrow region of this interval. From our estimates it seems that the nematic crystal [19] and/or the columnar liquid crystal [20] should allow experimental access to the “large” supercooling regime. They should therefore constitute good candidates on which to perform experiments in this regime where a rich dynamics, including order, temporal chaos, and turbulence..., is expected. Nous étudions la dynamique du front de croissance d'un corps pur en présense de cinétique d'interface non instantanée dans la limite de grandes surfusions. Le front plan est trouvé être stable au dessus d'une surfusion critique Δ_s(>1). Pour le front est instable vis-à-vis des perturbations de petit vecteur d'onde, 0

  17. Shear melting at the crystal-liquid interface: Erosion and the asymmetric suppression of interface fluctuations

    NASA Astrophysics Data System (ADS)

    Ramsay, Malcolm; Harrowell, Peter

    2016-04-01

    The influence of an applied shear on the planar crystal-melt interface is modeled by a nonlinear stochastic partial differential equation of the interface fluctuations. A feature of this theory is the asymmetric destruction of interface fluctuations due to advection of the crystal protrusions on the liquid side of the interface only. We show that this model is able to qualitatively reproduce the nonequilibrium coexistence line found in simulations. The impact of shear on spherical clusters is also addressed.

  18. Interfacing the expert: Characteristics and requirements for the user interface in expert systems

    NASA Technical Reports Server (NTRS)

    Potter, Andrew

    1987-01-01

    Because expert systems deal with new sets of problems presenting unique interface requirements, special issues requiring special attention are presented to user interface designers. External knowledge representation (how knowdedge is represented across the user interface), modes of user-system interdependence (advisory, cooperative, and autonomous), and management of uncertainty (deciding what actions to take or recommend based on incomplete evidence) are discussed.

  19. Micro Channel/Multibus-II Interface Circuit

    NASA Technical Reports Server (NTRS)

    D'Ambrose, John J.; Jaworski, Richard C.; Heise, Nyles N.; Thornton, David N.

    1991-01-01

    Micro Channel/Multibus-II interface circuit provides electrical interconnections enabling communications between Micro Channels of IBM Personal System/2 computers and IEEE 1296 standard Multibus-II parallel system bus (iPSB). Made mostly of commercially available parts, interface enables independent Micro Channels to communicate over iPSB without modification.

  20. Pursuing Scalability for hypre's Conceptual Interfaces

    SciTech Connect

    Falgout, R D; Jones, J E; Yang, U M

    2004-07-21

    The software library hypre provides high performance preconditioners and solvers for the solution of large, sparse linear systems on massively parallel computers as well as conceptual interfaces that allow users to access the library in the way they naturally think about their problems. These interfaces include a stencil-based structured interface (Struct); a semi-structured interface (semiStruct), which is appropriate for applications that are mostly structured, e.g. block structured grids, composite grids in structured adaptive mesh refinement applications, and overset grids; a finite element interface (FEI) for unstructured problems, as well as a conventional linear-algebraic interface (IJ). It is extremely important to provide an efficient, scalable implementation of these interfaces in order to support the scalable solvers of the library, especially when using tens of thousands of processors. This paper describes the data structures, parallel implementation and resulting performance of the IJ, Struct and semiStruct interfaces. It investigates their scalability, presents successes as well as pitfalls of some of the approaches and suggests ways of dealing with them.

  1. Rapid Prototyping of Distributed User Interfaces

    NASA Astrophysics Data System (ADS)

    Massó, José Pascual Molina; Vanderdonckt, Jean; López, Pascual González; Fernández-Caballero, Antonio; Pérez, María Dolores Lozano

    This paper introduces a software tool for rapid prototyping of interactive systems whose user interfaces could be distributed according to four axes defined in a design space: type of computing platform, amount of interaction surfaces, type of interaction surface, and type of user interface. This software is based on a virtual toolkit for rendering the user interfaces in a virtual world depicting the real world in which the distribution occurs. The virtual toolkit consists of a layer for rendering a concrete user interface specified in a user interface description language. This paper presents its extension to modeling the external environment in terms of the design space so as to render the context of use in which the user interfaces are distributed. For each axis, a pair of functions enables exploring the axis in decreasing and increasing order so as to explore various situations of distribution, axis by axis, or in a combined way. As the interfaces resulting from this rendering are truly executable ones, this system provides designers with an acceptable means for generating ideas about how a user interface can be distributed in a context of use, and helps to evaluate the quality of a solution at an early design stage. Four representative situations located on the design space are implemented and discussed: distribution in a multi-platform context, distribution of the workplace, ubiquitous computing, and ambient intelligence, thus proving the coverage of the design space and the capabilities of the whole system

  2. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  3. User Interface Design for Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Kortenkamp, Ulrich; Dohrmann, Christian

    2010-01-01

    In this article we describe long-standing user interface issues with Dynamic Geometry Software and common approaches to address them. We describe first prototypes of multi-touch-capable DGS. We also give some hints on the educational benefits of proper user interface design.

  4. Optimum interface properties for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Lerch, Bradley A.

    1989-01-01

    Due to the thermal expansion coefficient mismatch (CTE) between the fiber and the matrix, high residual sresses exist in metal matrix composite systems upon cool down from processing temperature to room temperature. An interface material can be placed between the fiber and the matrix to reduce the high tensile residual stresses in the matrix. A computer program was written to minimize the residual stress in the matrix subject to the interface material properties. The decision variables are the interface modulus, thickness and thermal expansion coefficient. The properties of the interface material are optimized such that the average distortion energy in the matrix and the interface is minimized. As a result, the only active variable is the thermal expansion coefficient. The optimum modulus of the interface is always the minimum allowable value and the interface thickness is always the maximum allowable value, independent of the fiber/matrix system. The optimum interface thermal expansion coefficient is always between the values of the fiber and the matrix. Using this analysis, a survey of materials was conducted for use as fiber coatings in some specific composite systems.

  5. Inkjet color-printer control interface

    NASA Technical Reports Server (NTRS)

    Kistler, R.; Kriegler, F. J.; Marshall, R. E.

    1977-01-01

    Special purpose interface permits computer-driven control of inkjet printers. Inkjet printers are answer to problem of high-speed peripheral output devices for computer systems. Control interface was developed to provide high-resolution color-classification maps quickly and economically from multispectral data.

  6. Bacteria motility at oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Juarez, Gabriel; Smirga, Steven; Fernandez, Vicente; Stocker, Roman

    2012-11-01

    The swimming dynamics of bacteria are strongly influenced by interfaces: Motile bacteria often accumulate at rigid boundaries, such as liquid-solid interfaces, and at soft boundaries, such as liquid-air or liquid-liquid interfaces. Attachment of bacteria to these interfaces is crucial for the formation of biofilms (liquid-solid), pellicles (liquid-air), and oil-degrading communities (liquid-liquid). We investigated the motility of the oil-degrading bacteria Marinobacter aquaeolei in the presence of oil droplets. We created individual oil droplets using dedicated microfluidic devices and captured the swimming behavior of individual bacteria near the interface and their attachment dynamics to the droplets with high-speed and epifluorescent microscopy. We find that Marinobacter aquaeolei has a high affinity towards interfaces and their swimming dynamics at soft interfaces differ from both those in the bulk and at rigid boundaries. Characterizing the interaction and attachment of motile bacteria to liquid-liquid interfaces will promote a fundamental understanding to oil-microbe interactions in aquatic environments and potentially lead to improved oil bioremediation strategies.

  7. Actuator-valve interface optimization. [Explosive actuators

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1987-02-01

    The interface of explosive actuator driven valves can be optimized to maximize the velocity of the valve plunger by using the computer code Actuator-Valve Response. Details of the AVR model of the actuator driven valve plunger and the results of optimizing an actuator-valve interface with AVR are presented. 5 refs., 5 figs., 3 tabs.

  8. Spatial Competition: Roughening of an Experimental Interface

    PubMed Central

    Allstadt, Andrew J.; Newman, Jonathan A.; Walter, Jonathan A.; Korniss, G.; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader’s lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover’s growth morphology. PMID:27465518

  9. Interfaces for Distributed Systems of Information Servers.

    ERIC Educational Resources Information Center

    Kahle, Brewster; And Others

    1992-01-01

    Describes two systems--Wide Area Information Servers (WAIS) and Rosebud--that provide protocol-based mechanisms for accessing remote full-text information servers. Design constraints, human interface design, and implementation are examined for five interfaces to these systems developed to run on the Macintosh or Unix terminals. Sample screen…

  10. Nonlinear optical studies of polymer interfaces

    SciTech Connect

    Shen, Y.R. |

    1993-11-01

    Second-order nonlinear optical processes can be used as effective surface probes. They can provide some unique opportunities for studies of polymer interfaces. Here the author describes two examples to illustrate the potential of the techniques. One is on the formation of metal/polymer interfaces. The other is on the alignment of liquid crystal films by mechanically rubbed polymer surfaces.

  11. Ocular attention-sensing interface system

    NASA Technical Reports Server (NTRS)

    Zaklad, Allen; Glenn, Floyd A., III; Iavecchia, Helene P.; Stokes, James M.

    1986-01-01

    The purpose of the research was to develop an innovative human-computer interface based on eye movement and voice control. By eliminating a manual interface (keyboard, joystick, etc.), OASIS provides a control mechanism that is natural, efficient, accurate, and low in workload.

  12. Spatial Competition: Roughening of an Experimental Interface.

    PubMed

    Allstadt, Andrew J; Newman, Jonathan A; Walter, Jonathan A; Korniss, G; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader's lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover's growth morphology. PMID:27465518

  13. Student Preferences toward Microcomputer User Interfaces.

    ERIC Educational Resources Information Center

    Hazari, Sunil I.; Reaves, Rita R.

    1994-01-01

    Describes a study of undergraduates that was conducted to determine students' preferences toward Graphical User Interface versus Command Line Interface during computer-assisted instruction. Previous experience, comfort level, performance scores, and student attitudes are examined and compared, and the computer use survey is appended. (Contains 13…

  14. Vision as a user interface

    NASA Astrophysics Data System (ADS)

    Koenderink, Jan

    2011-03-01

    The egg-rolling behavior of the graylag goose is an often quoted example of a fixed-action pattern. The bird will even attempt to roll a brick back to its nest! Despite excellent visual acuity it apparently takes a brick for an egg." Evolution optimizes utility, not veridicality. Yet textbooks take it for a fact that human vision evolved so as to approach veridical perception. How do humans manage to dodge the laws of evolution? I will show that they don't, but that human vision is an idiosyncratic user interface. By way of an example I consider the case of pictorial perception. Gleaning information from still images is an important human ability and is likely to remain so for the foreseeable future. I will discuss a number of instances of extreme non-veridicality and huge inter-observer variability. Despite their importance in applications (information dissemination, personnel selection,...) such huge effects have remained undocumented in the literature, although they can be traced to artistic conventions. The reason appears to be that conventional psychophysics-by design-fails to address the qualitative, that is the meaningful, aspects of visual awareness whereas this is the very target of the visual arts.

  15. Interfacing Topological Insulators with Ferromagnetism

    NASA Astrophysics Data System (ADS)

    Richardella, Anthony

    In topological insulators, the surface states arise from strong spin-orbit coupling while the degeneracy of the Dirac point is protected by time reversal symmetry. Introducing magnetism in proximity to the surface states breaks this symmetry, destroying the non-trivial Berry phase at the Dirac point and leads to a hedgehog spin texture near the newly opened magnetic gap. This symmetry broken phase leads to a host of unusual physics, such as the quantum anomalous Hall (QAH) effect. In this talk, we discuss the growth by molecular beam epitaxy and characterization of such magnetically interfaced and magnetically doped topological insulators. Such materials often suffer from structural defects and interfacial layers, as well as from degradation during device fabrication. In particular, it is shown that Cr doped (Bi1-x,Sbx)2Te3 can exhibit perfect Hall quantization at low temperatures despite these defects. However, the magnetic ordering of this material was found to be quite unusual, displaying a super-paramagnetic like character, perhaps reflecting this disorder. Such observations highlight the surprising behavior of such broken symmetry phases in topological materials. This work was performed in collaboration with A. Kandala, M. Liu, W. Wang, N.P. Ong, C.-X. Liu, and N. Samarth, in addition to the authors of the references cited. This work was supported by funding from ARO/MURI, DARPA and ONR.

  16. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  17. Handheld interface for miniature sensors

    NASA Astrophysics Data System (ADS)

    Kedia, Sunny; Samson, Scott A.; Farmer, Andrew; Smith, Matthew C.; Fries, David; Bhansali, Shekhar

    2005-02-01

    Miniaturization of laboratory sensors has been enabled by continued evolution of technology. Field portable systems are often desired, because they reduce sample handling, provide rapid feedback capability, and enhance convenience. Fieldable sensor systems should include a method for initiating the analysis, storing and displaying the results, while consuming minimal power and being compact and portable. Low cost will allow widespread usage of these systems. In this paper, we discuss a reconfigurable Personal Data Assistant (PDA) based control and data collection system for use with miniature sensors. The system is based on the Handspring visor PDA and a custom designed motherboard, which connects directly to the PDA microprocessor. The PDA provides a convenient and low cost graphical user interface, moderate processing capability, and integrated battery power. The low power motherboard provides the voltage levels, data collection, and input/output (I/O) capabilities required by many MEMS and miniature sensors. These capabilities are relayed to connectors, where an application specific daughterboard is attached. In this paper, two applications are demonstrated. First, a handheld nucleic acid sequence-based amplification (NASBA) detection sensor consisting of a heated and optical fluorescence detection system is discussed. Second, an electrostatically actuated MEMS micro mirror controller is realized.

  18. Elaborating transition interface sampling methods

    SciTech Connect

    Erp, Titus S. van . E-mail: bolhuis@science.uva.nl

    2005-05-01

    We review two recently developed efficient methods for calculating rate constants of processes dominated by rare events in high-dimensional complex systems. The first is transition interface sampling (TIS), based on the measurement of effective fluxes through hypersurfaces in phase space. TIS improves efficiency with respect to standard transition path sampling (TPS) rate constant techniques, because it allows a variable path length and is less sensitive to recrossings. The second method is the partial path version of TIS. Developed for diffusive processes, it exploits the loss of long time correlation. We discuss the relation between the new techniques and the standard reactive flux methods in detail. Path sampling algorithms can suffer from ergodicity problems, and we introduce several new techniques to alleviate these problems, notably path swapping, stochastic configurational bias Monte Carlo shooting moves and order-parameter free path sampling. In addition, we give algorithms to calculate other interesting properties from path ensembles besides rate constants, such as activation energies and reaction mechanisms.

  19. Visual Interface for Materials Simulations

    Energy Science and Technology Software Center (ESTSC)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materialsmore » simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.« less

  20. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  1. Virtual Solar Observatory: Web Interface Updates

    NASA Astrophysics Data System (ADS)

    Hughitt, V. Keith; Davey, A.; Hourcle, J.; Suarez-Sola, I.

    2011-05-01

    The Virtual Solar Observatory (VSO) enables scientists to query and download a wide range of solar data sets using a web interface, IDL or programmatically via an API.  Because of the complex nature of the queries that are possible using the VSO, we have had to re-work the web client to enable complex searches without creating an overly cluttered or complex interface. The new interface is modular to allow us to more easily add new search parameters while allowing users to set defaults for their preferred search and download settings, minimizing the amount of complexity exposed. We describe the advantages of the new search interface, including the ability to bookmark searches, a streamlined query process, customized search interfaces for instruments with special needs, and improved performance.

  2. Dielectric constant of water in the interface

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V.

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ˜5 to 18 Å.

  3. Phenomena on Plasma-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi

    Recent researches on plasma-liquid interface are introduced. One is about plasma-water interaction at the interface of pulsed dielectric-barrier plasma in gas-liquid two-phase flow for water treatment. Acetic acid in water is decomposed as a persistent material. Numerical calculation indicates that plasma-water interaction which is O-radical-induced generation of liquid-phase-OH radical occurs. The other reports highly-concentrated adsorption of a surfactant at plasma-water interface, and an interfacial reaction decomposing the surfactant. Perfluorooctane sulfonic acid is an extremely persistent surfactant, but can be decomposed by plasma attached to the solution. The decomposing reaction occurs at the plasma-water interface. Estimation of the amount of PFOS adsorbing to the plasma-water interface shows much higher mole fraction of PFOS than that in bulk water. Thus, the plasma can effectively react with PFOS at the water surface and exhibits high energy efficiency.

  4. Dielectric constant of water in the interface.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å. PMID:27394114

  5. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  6. Gestures in an Intelligent User Interface

    NASA Astrophysics Data System (ADS)

    Fikkert, Wim; van der Vet, Paul; Nijholt, Anton

    In this chapter we investigated which hand gestures are intuitive to control a large display multimedia interface from a user's perspective. Over the course of two sequential user evaluations, we defined a simple gesture set that allows users to fully control a large display multimedia interface, intuitively. First, we evaluated numerous gesture possibilities for a set of commands that can be issued to the interface. These gestures were selected from literature, science fiction movies, and a previous exploratory study. Second, we implemented a working prototype with which the users could interact with both hands and the preferred hand gestures with 2D and 3D visualizations of biochemical structures. We found that the gestures are influenced to significant extent by the fast paced developments in multimedia interfaces such as the Apple iPhone and the Nintendo Wii and to no lesser degree by decades of experience with the more traditional WIMP-based interfaces.

  7. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.

  8. High Integrity Can Design Interfaces

    SciTech Connect

    Shaber, E.L.

    1998-08-01

    The National Spent Nuclear Fuel Program is chartered with facilitating the disposition of DOE-owned spent nuclear fuel to allow disposal at a geologic repository. This is done through coordination with the repository program and by assisting DOE Site owners of SNF with needed information, standardized requirements, packaging approaches, etc. The High Integrity Can (HIC) will be manufactured to provide a substitute or barrier enhancement for normal fuel geometry and cladding. The can would be nested inside the DOE standardized canister which is designed to interface with the repository waste package. The HIC approach may provide the following benefits over typical canning approaches for DOE SNF. (a) It allows ready calculation and management of criticality issues for miscellaneous. (b) It segments and further isolates damaged or otherwise problem materials from normal SNF in the repository package. (c) It provides a very long term corrosion barrier. (d) It provides an extra internal pressure barrier for particulates, gaseous fission products, hydrogen, and water vapor. (e) It delays any potential release of fission products to the repository environment. (f) It maintains an additional level of fuel geometry control during design basis accidents, rock-fall, and seismic events. (g) When seal welded, it could provide the additional containment required for shipments involving plutonium content in excess of 20 Ci. (10 CFR 71.63.b) if integrated with an appropriate cask design. Long term corrosion protection is central to the HIC concept. The material selected for the HIC (Hastelloy C-22) has undergone extensive testing for repository service. The most severe theoretical interactions between iron, repository water containing chlorides and other repository construction materials have been tested. These expected chemical species have not been shown capable of corroding the selected HIC material. Therefore, the HIC should provide a significant barrier to DOE SNF dispersal

  9. Apple cuticle: the perfect interface

    NASA Astrophysics Data System (ADS)

    Curry, Eric; Arey, Bruce

    2010-06-01

    The domestic apple might well be called an 'extreme' fruit. In the arid Northwest United States, the fruit often tolerates surface temperatures ranging from -2 °C in the early spring to 50 °C in the heat of summer, and again to -2 °C during controlled postharvest storage for up to 12 months. During its 18-month existence, the apple maintains a cuticle that is dynamic and environmentally responsive to protect against 1) cellular water loss during desiccation stress and 2) excessive uptake of standing surface moisture. Physiological disorders of the peel such as russeting, cracking, splitting, flecking and lenticel marking, develop as epidermal cells respond to rapid changes in ambient conditions at specific developmental stages during the growing season. Resultant market losses underlie research investigating the nature of apple cuticle growth and development. Ultrastructural analysis of the pro-cuticle using scanning electron microscopy indicates an overlapping network of lipid-based distally-elongating microtubules--produced by and connected to epidermal cells--which co-polymerize to form an organic solvent-insoluble semi-permeable cutin matrix. Microtubule elongation, aggregation, and polymerization function together as long as the fruit continues to enlarge. The nature of lipid transport from the epidermal cells through the cell wall to become part of the cuticular matrix was explored using an FEI Helios NanoLabTM DualBeamTM focused ion beam/scanning electron microscope on chemically- and cryo-fixed peel tissue from mature or freshly harvested apples. Based on microtubule dimensions, regular projections found at the cell/cuticle interface suggest an array of microtubule-like structures associated with the epidermal cell.

  10. Novel method for the prediction of an interface bonding species at alumina/metal interfaces

    SciTech Connect

    Yoshitake, Michiko Yagyu, Shinjiro; Chikyow, Toyohiro

    2014-03-15

    Interface bonding between alumina and various metals is discussed from the viewpoint of chemical thermodynamics. A method to predict the interface bonding species at an alumina/metal interface under equilibrium conditions is proposed by using the concept of chemical equilibrium for interface termination. The originality of this method is in the way a simple estimation of the interface binding energy, which is generally applicable to most metals, is developed. The effectiveness of this method is confirmed by careful examination of the experimental results. Comparison of the predicted and experimentally observed interface terminations reveals that the proposed method agrees well with the reported results. The method uses only basic quantities of pure elements and the formation enthalpy of oxides. Therefore, it can be applied to most metals in the periodic table and is useful for screening materials in the quest to develop interfaces with particular functions.

  11. Materials Research Society Proceedings: Interfaces in Composites, volume 170

    NASA Astrophysics Data System (ADS)

    Pantano, Carlo G.; Chen, Eric J. H.

    1990-11-01

    Reports on the following topics are presented: (1) micromechanics of interfaces; (2) characterization of interfaces; (3) interface reactions in ceramic and metal systems; (4) interface effects in ceramic and metal matrix composites; and (5) interface effects in polymer matrix composites. A list of the materials research society symposium proceedings is also presented.

  12. Capillary migration of microdisks on curved interfaces.

    PubMed

    Yao, Lu; Sharifi-Mood, Nima; Liu, Iris B; Stebe, Kathleen J

    2015-07-01

    The capillary energy landscape for particles on curved fluid interfaces is strongly influenced by the particle wetting conditions. Contact line pinning has now been widely reported for colloidal particles, but its implications in capillary interactions have not been addressed. Here, we present experiment and analysis for disks with pinned contact lines on curved fluid interfaces. In experiment, we study microdisk migration on a host interface with zero mean curvature; the microdisks have contact lines pinned at their sharp edges and are sufficiently small that gravitational effects are negligible. The disks migrate away from planar regions toward regions of steep curvature with capillary energies inferred from the dissipation along particle trajectories which are linear in the deviatoric curvature. We derive the curvature capillary energy for an interface with arbitrary curvature, and discuss each contribution to the expression. By adsorbing to a curved interface, a particle eliminates a patch of fluid interface and perturbs the surrounding interface shape. Analysis predicts that perfectly smooth, circular disks do not migrate, and that nanometric deviations from a planar circular, contact line, like those around a weakly roughened planar disk, will drive migration with linear dependence on deviatoric curvature, in agreement with experiment. PMID:25618486

  13. Fatigue crack propagation at polymer adhesive interfaces

    SciTech Connect

    Ritter, J.E.

    1996-12-31

    Delamination of polymer adhesive interfaces often occurs due to slow crack growth under either monotonic or cyclic loading. The author`s previous research showed that moisture-assisted crack growth at epoxy/glass and epoxy acrylate/glass interfaces under monotonic loading was directly related to the applied energy release rate and relative humidity and that cyclic loading could enhance crack growth. The purpose of the present research is to compare crack growth along epoxy acrylate/glass and epoxy/PMMA interfaces under monotonic and cyclic loading.

  14. Interface Effects in Perovskite Thin Films

    NASA Astrophysics Data System (ADS)

    Lepetit, Marie-Bernadette; Mercey, Bernard; Simon, Charles

    2012-02-01

    The control of matter properties (transport, magnetic, dielectric,…) using synthesis as thin films is strongly hindered by the lack of reliable theories, able to guide the design of new systems, through the understanding of the interface effects and of the way the substrate constraints are imposed on the material. The present Letter analyzes the energetic contributions at the interfaces, and proposes a model describing the microscopic mechanisms governing the interactions at an epitaxial interface between a manganite and another transition metal oxide in perovskite structure (as for instance SrTiO3). The model is checked against experimental results and literature analysis.

  15. Dynamical transitions of a driven Ising interface

    NASA Astrophysics Data System (ADS)

    Sahai, Manish K.; Sengupta, Surajit

    2008-03-01

    We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t) . H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve , [i.e., H(r,t)=H(r-vet) ], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large ve the interface depins and grows with Kardar-Parisi-Zhang exponents.

  16. Interface-mediated growth of monodispersed nanostructures.

    PubMed

    Wang, Xun; Peng, Qing; Li, Yadong

    2007-08-01

    This Account focuses on the recent development of interface-mediated growth of monodispersed nanostructures in our laboratory. By rationally tuning the chemical reactions at various gas-liquid, solid-solid, liquid-liquid, and liquid-solid-solution interfaces, we could readily synthesize nanostructures such as hollow microspheres, core-shell nanoparticles, and monodispersed nanocrystals. These advances in interface-mediated synthesis could lead to progress in the development of nanocrystal crystallography and encourage some more unique and exciting research and applications to nanoscience and nanotechnology. PMID:17500508

  17. 200 Area TEDF interface control document

    SciTech Connect

    Brown, M.J.; Hildebrand, R.A.

    1994-11-15

    Because the TEDF does not have any treatment or retention capacity, strict control at the generator interface is essential to operate the TEDF in compliance with good engineering practices, Hanford site requirements, and the 216 Discharge Permit. The information in the Interface Control Document (ICD) forms the basis of understanding between all parties involved in the TEDF; DOE, WHC, and the generating facilities. The ICD defines the controlling document hierarchy; LEF, and generator responsibilities; monitoring and sampling requirements; and specifies the TEDF/Generator Interface points.

  18. Diffuse-Interface Methods in Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  19. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  20. Micro- and Nanotechnologies for Optical Neural Interfaces

    PubMed Central

    Pisanello, Ferruccio; Sileo, Leonardo; De Vittorio, Massimo

    2016-01-01

    In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review highlights the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles. PMID:27013939

  1. Concept of software interface for BCI systems

    NASA Astrophysics Data System (ADS)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  2. A programmable computer interface for CAMAC

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Fessler, T. E.; Arnold, J. M.

    1973-01-01

    An interface has been developed for CAMAC instrumentation systems that implements data transfers controlled either by the computer CPU or by an autonomous (data-channel) processor in the interface unit. The data channel processor executes programs stored in the computer memory. These programs consist of standard CAMAC module commands plus special control characters and commands for the processor itself. The interface was built for the PDP-15 computer, which has an 18-bit word structure, but both 18- and 24-bit data transfers can be made. A software system has been written that exploits the many features of the processor.

  3. Are Pretty Interfaces Worth the Time? The Effects of User Interface Types on Web-Based Instruction

    ERIC Educational Resources Information Center

    Cheon, Jongpil; Grant, Michael M.

    2009-01-01

    The purpose of this study was to examine the effectiveness of three different interface types on Web-based instruction: a text-based interface, a graphical interface and a metaphorical interface. In order to determine differences among three interface groups, we compared learning performance, cognitive load, usability, and appeal with various data…

  4. A generalized strategy for building resident database interfaces

    NASA Technical Reports Server (NTRS)

    Moroh, Marsha; Wanderman, Ken

    1990-01-01

    A strategy for building resident interfaces to host heterogeneous distributed data base management systems is developed. The strategy is used to construct several interfaces. A set of guidelines is developed for users to construct their own interfaces.

  5. A CLIPS/X-window interface

    NASA Technical Reports Server (NTRS)

    Pohl, Kym Jason

    1991-01-01

    The design and implementation of an interface between the C Language Integrated Production System (CLIPS) expert system development environment and the graphic user interface development tools of the X-Window system are described. The underlying basis of the CLIPS/X-Window is a client-server model in which multiple clients can attach to a single server that interprets, executes, and returns operation results, in response to client action requests. Implemented in an AIX (UNIX) operating system environment, the interface has been successfully applied in the development of graphics interfaces for production rule cooperating agents in a knowledge-based computer aided design (CAD) system. Initial findings suggest that the client-server model is particularly well suited to a distributed parallel processing operational mode in a networked workstation environment.

  6. Interaction of Thermal Phonons with Interfaces

    SciTech Connect

    David H. Hurley; Subhash Shinde; Edward Piekos

    2013-11-01

    In this chapter we will first explore the connection between interface scattering and thermal transport using the Boltzmann transport equation (BTE). It will be shown that Boltzmann transport provides a convenient method for considering boundary scattering in nanochannel structures. For internal interfaces such as grain boundaries found in polycrystals, it is more natural to consider transmission and reflection across a single boundary. In this regard we will discuss theories related to interface thermal resistance. Our qualitative discussion of the theories of phonon transport will be followed by a discussion of experimental techniques for measuring thermal transport. We end this chapter by giving a detailed description of two complimentary experimental techniques for measuring the influence of interfaces on thermal phonon transport.

  7. Interfacing the human into information systems

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Brown, Scott M.

    2000-03-01

    The current state of user interfaces for large information spaces imposes an unmanageable cognitive burden upon the user. Determining how to get the right information into the right form with the right tool at the right time has become a monumental task. Interface agents address the problem of increasing task load by serving as either an assistant or associate, extracting and analyzing relevant information, providing information abstractions of that information, and providing timely, beneficial assistance to suers. Interface agents communicate with the user through the existing user interface and also adapt to user needs and behaviors. User modeling, on the other hand, is concerned with how to represent users' knowledge and interaction within a system to adapt the system to the needs of users. The inclusion of a user model within the overall system architecture allows the system to adapt its response to the preferences, biases, expertise level, goals and needs.

  8. Use of Computer Interfacing in Mechanics.

    ERIC Educational Resources Information Center

    Saunders, Bruce J.

    1995-01-01

    Describes an experiment that uses the Tain Electronics TCS2 interface to investigate the relationship between force, mass, and acceleration. Discusses the following topics: assembling the system, forces in the system, software, and data analysis. (JRH)

  9. CLIPS application user interface for the PC

    NASA Technical Reports Server (NTRS)

    Jenkins, Jim; Holbrook, Rebecca; Shewhart, Mark; Crouse, Joey; Yarost, Stuart

    1991-01-01

    The majority of applications that utilize expert system development programs for their knowledge representation and inferencing capability require some form of interface with the end user. This interface is more than likely an interaction through the computer screen. When building an application the user interface can prove to be the most difficult and time consuming aspect to program. Commercial products currently exist which address this issue. To keep pace C Language Integrated Production System (CLIPS) will need to find a solution for their lack of an easy to use Application User Interface (AUI). This paper represents a survey of the DoD CLIPS' user community and provides the backbone of a possible solution.

  10. Client interfaces to the Virtual Observatory Registry

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Harrison, P.; Taylor, M.; Normand, J.

    2015-04-01

    The Virtual Observatory Registry is a distributed directory of information systems and other resources relevant to astronomy. To make it useful, facilities to query that directory must be provided to humans and machines alike. This article reviews the development and status of such facilities, also considering the lessons learnt from about a decade of experience with Registry interfaces. After a brief outline of the history of the standards development, it describes the use of Registry interfaces in some popular clients as well as dedicated UIs for interrogating the Registry. It continues with a thorough discussion of the design of the two most recent Registry interface standards, RegTAP on the one hand and a full-text-based interface on the other hand. The article finally lays out some of the less obvious conventions that emerged in the interaction between providers of registry records and Registry users as well as remaining challenges and current developments.

  11. Superconductivity observed in platinum-silicon interface

    SciTech Connect

    Kuo, Pai-Chia; Chen, Chun-Wei; Lee, Ku-Pin; Shiue, Jessie

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ∼0.6 K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ∼2.5 eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a ∼ 7 nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  12. Polymer enrichment decelerates surfactant membranes near interfaces

    NASA Astrophysics Data System (ADS)

    Lipfert, F.; Frielinghaus, H.; Holderer, O.; Mattauch, S.; Monkenbusch, M.; Arend, N.; Richter, D.

    2014-04-01

    Close to a planar surface, lamellar structures are imposed upon otherwise bulk bicontinuous microemulsions. Thermally induced membrane undulations are modified by the presence of the rigid interface. While it has been shown that a pure membrane's dynamics are accelerated close to the interface, we observed nearly unchanged relaxation rates for membranes spiked with large amphiphilic diblock copolymers. An increase of the polymer concentration by a factor of 2-3 for the first and second surfactant membrane layers was observed. We interpret the reduced relaxation times as the result of an interplay between the bending rigidity and the characteristic distance of the first surfactant membrane to the rigid interface, which causes the hydrodynamic and steric interface effects described in Seifert's theory. The influence of these effects on decorated membranes yields a reduction of the frequencies and an amplification of the amplitudes of long-wavelength undulations, which are in accordance to our experimental findings.

  13. Interface control of bulk ferroelectric polarization

    PubMed Central

    Yu, P.; Luo, W.; Yi, D.; Zhang, J. X.; Rossell, M. D.; Yang, C.-H.; You, L.; Singh-Bhalla, G.; Yang, S. Y.; He, Q.; Ramasse, Q. M.; Erni, R.; Martin, L. W.; Chu, Y. H.; Pantelides, S. T.; Pennycook, S. J.; Ramesh, R.

    2012-01-01

    The control of material interfaces at the atomic level has led to novel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we employ a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite underlayers extends the generality of this phenomenon. PMID:22647612

  14. Soft particles at a fluid interface

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hadi; Harting, Jens; Snoeijer, Jacco H.

    2015-11-01

    Particles added to a fluid interface can be used as a surface stabilizer in the food, oil and cosmetic industries. As an alternative to rigid particles, it is promising to consider highly deformable particles that can adapt their conformation at the interface. In this study, we compute the shapes of soft elastic particles using molecular dynamics simulations of a cross-linked polymer gel, complemented by continuum calculations based on the linear elasticity. It is shown that the particle shape is not only affected by the Young's modulus of the particle, but also strongly depends on whether the gel is partially or completely wetting the fluid interface. We find that the molecular simulations for the partially wetting case are very accurately described by the continuum theory. By contrast, when the gel is completely wetting the fluid interface the linear theory breaks down and we reveal that molecular details have a strong influence on the equilibrium shape.

  15. The single-chip FASTBUS Slave Interface

    SciTech Connect

    Nelson, R.O.; Machen, D.R.; Downing, R.W.

    1990-12-31

    A single-chip implementation of the general-purpose FASTBUS Slave Interface (FSI) has been developed in ECL gate-array technology. The FSI will occupy only 1.6% of the available circuit board space while providing a complete 32-bit interface to the FASTBUS. All mandatory slave-interface requirements of IEEE 960 are supported, in addition to several non-mandatory requirements and the optional, extended MS code features. Geographic, logical, and broadcast addressing are implemented using on-chip registers. An optional multiple-module addressing technique is included that allows participating modules residing on a common crate or cable segment to respond as if individually addressed in sequence. The user interface provided by the FSI allows control of slave status-response and connection timing for both address and data cycles. The BIT1 ECL array technology used for the FSI allows direct connections to the FASTBUS, eliminating the need for external driver/receiver buffers.

  16. Perspective: Emergent magnetic phenomena at interfaces

    SciTech Connect

    Suzuki, Yuri

    2015-06-01

    The discovery of emergent magnetic phenomena is of fundamental and technological interest. This perspective highlights recent promising examples of emergent ferromagnetism at complex oxide interfaces in the context of spin based electronics.

  17. Theory of reactions at electrified interfaces.

    PubMed

    Lück, Jessica; Latz, Arnulf

    2016-07-21

    Interfacial reaction and transport processes are a decisive factor for the overall performance of electrochemical systems. However, existing models rely on phenomenological descriptions of charged interfaces, which yields no deeper insights. We present a generic theory to describe charge and electron transfer reactions at charged interfaces, which is applicable to different electrochemical systems, like fuel cells or batteries with liquid or solid electrolytes. In the present work, our general theory is adopted to the electrochemical double layer at the interface between a solid electrode and a liquid electrolyte. The model allows to describe the intercalation reaction in Li-ion insertion batteries as a two-step process, consisting of a first desolvation and adsorption and a second actual insertion step. It becomes apparent that a charging of the double layer acts as the necessary driving force for the charge transfer across the interface. PMID:27215943

  18. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1989-01-01

    The present invention relates to improved elements for use in fuel cell stacks, and more particularly, to a stack having a corrosion-resistant, electrally conductive, fluid-impervious interface member therein.

  19. Applying Cognitive Psychology to User Interfaces

    NASA Astrophysics Data System (ADS)

    Durrani, Sabeen; Durrani, Qaiser S.

    This paper explores some key aspects of cognitive psychology that may be mapped onto user interfaces. Major focus in existing user interface guidelines is on consistency, simplicity, feedback, system messages, display issues, navigation, colors, graphics, visibility and error prevention [8-10]. These guidelines are effective indesigning user interfaces. However, these guidelines do not handle the issues that may arise due to the innate structure of human brain and human limitations. For example, where to place graphics on the screen so that user can easily process them and what kind of background should be given on the screen according to the limitation of human motor system. In this paper we have collected some available guidelines from the area of cognitive psychology [1, 5, 7]. In addition, we have extracted few guidelines from theories and studies of cognitive psychology [3, 11] which may be mapped to user interfaces.

  20. Ultrasonic characterization of interfaces in composite bonds

    SciTech Connect

    Wang, N.; Lobkis, O. I.; Rokhlin, S. I.; Cantrell, J. H.

    2011-06-23

    The inverse determination of imperfect interfaces from reflection spectra of normal and oblique incident ultrasonic waves in adhesive bonds of multidirectional composites is investigated. The oblique measurements are complicated by the highly dispersed nature of oblique wave spectra at frequencies above 3MHz. Different strategies for bond property reconstruction, including a modulation method, are discussed. The relation of measured interfacial spring density to the physico-chemical model of a composite interface described by polymer molecular bonds to emulate loss of molecular strength on an adhesive composite interface is discussed. This potentially relates the interfacial (adhesion) strength (number of bonds at the adhesive substrate interface) to the spring constant (stiffness) area density (flux), which is an ultrasonically measurable parameter.

  1. Magnetic Interface for Segmented Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H.

    2012-01-01

    Newly developed magnetic devices are used to create an interface between adjacent mirror segments so that once assembled, aligned, and phased, the multiple segments will behave functionally equivalent to a monolithic aperture mirror. One embodiment might be a kinematic interface that is reversible so that any number of segments can be pre-assembled, aligned, and phased to facilitate fabrication operations, and then disassembled and reassembled, aligned, and phased in space for operation. The interface mechanism has sufficient stiffness, force, and stability to maintain phasing. The key to producing an interface is the correlated magnetic surface. While conventional magnets are only constrained in one direction -- the direction defined by their point of contact (they are in contact and cannot get any closer) -- correlated magnets can be designed to have constraints in multiple degrees of freedom. Additionally, correlated magnetic surfaces can be designed to have a limited range of action.

  2. SASIL. Sandia ATM SONET Interface Logic

    SciTech Connect

    Kitta, J.P.

    1994-07-01

    SASIL is used to program the EPLD`s (Erasable Programmable Logic Devices) and PAL`s (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  3. Transition radiation on a dynamic periodic interface

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Potylitsyn, A. P.; Kocharyan, V. R.; Saharian, A. A.

    2016-02-01

    We investigate the transition radiation on a periodically deformed interface between two dielectric media. Under the assumption that the dielectric permittivities of the media are close, a formula is derived for the spectral-angular distribution of the radiated energy in the general case of a nonstatic profile function for the separating boundary. In particular, the latter includes the case of surface waves propagating along the boundary. The numerical examples are given for triangular grating and for sinusoidal profile. We show that instead of a single peak in the backward transition radiation on a flat interface, for periodic interface one has a set of peaks. The number and the locations of the peaks depend on the incidence angle of the charge and on the period of the interface. The conditions are specified for their appearance.

  4. Ultrasonic Characterization of Interfaces in Composite Bonds

    NASA Technical Reports Server (NTRS)

    Wang, N.; Lobkis, O. I.; Rokhlin, S. I.; Cantrell, J. H.

    2010-01-01

    The inverse determination of imperfect interfaces from reflection spectra of normal and oblique incident ultrasonic waves in adhesive bonds of multidirectional composites is investigated. The oblique measurements are complicated by the highly dispersed nature of oblique wave spectra at frequencies above 3MHz. Different strategies for bond property reconstruction, including a modulation method, are discussed. The relation of measured interfacial spring density to the physico-chemical model of a composite interface described by polymer molecular bonds to emulate loss of molecular strength on an adhesive composite interface is discussed. This potentially relates the interfacial (adhesion) strength (number of bonds at the adhesive substrate interface) to the spring constant (stiffness) area density (flux), which is an ultrasonically measurable parameter.

  5. A Natural Language Interface to Databases

    NASA Technical Reports Server (NTRS)

    Ford, D. R.

    1990-01-01

    The development of a Natural Language Interface (NLI) is presented which is semantic-based and uses Conceptual Dependency representation. The system was developed using Lisp and currently runs on a Symbolics Lisp machine.

  6. FPGA implementation of VXIbus interface hardware.

    PubMed

    Mehta, K; Rajesh, V A; Veeraswamy, S

    1993-01-01

    The HP E1399A development card is a B-size, register based device that can be used to simplify the development of simple, custom VXIbus instruments. The E1399A provides interface logic that buffers a 16-bit bidirectional data bus and performs other functions required by the VXIbus standard. However, the amount of interface logic required is high enough to substantially reduce the breadboard area that is available to the user. This paper reports on evaluation of field programmable gate array (FPGA) technology to the implementation of the VXIbus interface circuitry. Using FPGAs (Xilinx), all the logic of the E1399A can be fit into at most two low cost gate array packages with an attendant savings in board space. This results in a reliable design that provides the interface between the VXIbus and the user's custom circuitry. PMID:8329634

  7. The reliable multicast protocol application programming interface

    NASA Technical Reports Server (NTRS)

    Montgomery , Todd; Whetten, Brian

    1995-01-01

    The Application Programming Interface for the Berkeley/WVU implementation of the Reliable Multicast Protocol is described. This transport layer protocol is implemented as a user library that applications and software buses link against.

  8. CLIPS interface development tools and their application

    NASA Technical Reports Server (NTRS)

    Engel, Bernard A.; Rewerts, Chris C.; Srinivasan, Raghavan; Rogers, Joseph B.; Jones, Don D.

    1990-01-01

    A package of C-based PC user interface development functions has been developed and integrated into CLIPS. The primary function is ASK which provides a means to ask the user questions via multiple choice menus or the keyboard and then returns the user response to CLIPS. A parameter-like structure supplies information for the interface. Another function, SHOW, provides a means to paginate and display text. A third function, TITLE, formats and displays title screens. A similar set of C-based functions that are more general and thus will run on UNIX and machines have also been developed. Seven expert system applications were transformed from commercial development environments into CLIPS and utilize ASK, SHOW, and TITLE. Development of numerous new expert system applications using CLIPS and these interface functions has started. These functions greatly reduce the time required to build interfaces for CLIPS applications.

  9. Agreements at the Pharmaceutical/University Interface.

    ERIC Educational Resources Information Center

    Ku, Katherine

    1987-01-01

    Specific agreements that arise at the interface between universities and pharmaceutical companies are described including sponsored research agreements, license agreements, clinical study agreements, material transfer agreements, and patient consent forms with respect to commercialization rights. (Author/MLW)

  10. When do interfaces become important for failure?

    NASA Astrophysics Data System (ADS)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Gray, G. T., III

    2015-09-01

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to the damage evolution as a function of the surrounding parent materials. In this work, we present results on three different materials: 1) Cu, 2) Cu-10 wt%Ag, and 3) Cu-15 wt%Nb examined to probe the influence of bi-metal interfaces on void nucleation and evolution. These materials were chosen due to the differences in the stacking fault energy between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy and melting temperature etc) the type of interface between the two parent materials does not influence the damage process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the material.

  11. Interface elements for heat transfer analysis

    NASA Astrophysics Data System (ADS)

    Mason, W. E.

    1984-08-01

    Interface elements are desirable in finite element heat transfer analyses in situations where dissimilar meshes are to be joined or where contact resistances occur between various parts of a body. In stress codes, such elements are often termed master/slave. A general algorithm for interface elements will be described. The algorithm allows development of interface elements for both two- and three-dimensional applications. Surfaces in contact are automatically determined so that a minimum of input data is required. In addition, the algorithm allows for compatibility in thermal stress calculations with mechanical codes which have sliding interface capabilities. Implementation of the algorithm into the TACO codes will be discussed and examples will be given.

  12. Ultrasound Research Interface - Cancer Imaging Program

    Cancer.gov

    The ultrasound research interface permits extensive instrument parameter control of a commercially available scanner that allows access to, and export of, the beam-formed signal data while simultaneously displaying the ultrasound system-processed data as a clinical image.

  13. Numerical simulation of droplet impact on interfaces

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Che, Zhizhao; Matar, Omar; Shin, Seungwon; Chergui, Jalel; Juric, Damir

    2015-11-01

    Simulations of three-dimensional droplet impact on interfaces are carried out using BLUE, a massively-parallel code based on a hybrid Front-Tracking/Level-Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. High resolution numerical results show fine details and features of droplet ejection, crown formation and rim instability observed under similar experimental conditions. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  14. Coal-shale interface detection system

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  15. RF Front End Interface and AGC Modification

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1982-01-01

    The latest RF front end built by Burhans (Mini-L-82) was successfully interfaced to the Ohio University LORAN-C receiver. In order for the front end to operate optimally, modifications were made to existing automatic gain control (AGC) circuitry already developed for the Ohio University LORAN-C receiver. The hardware modifications to the AGC and other interface circuitry, as well as some preliminary results are discussed.

  16. Interfacing AM/FM with distribution SCADA

    SciTech Connect

    Horton, M.A. )

    1993-01-01

    This article examines an upgrade to Union Electric's (UE's) distribution SCADA system by interfacing it with UE's automated mapping and facility management (AM/FM) system to give dispatchers a way to relate facility outages geographically with a real-time monitoring system. The topics of the article are the original SCADA system, the AM/FM system, and the new SCADA system, the man-machine and machine-machine interface, and further applications.

  17. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  18. Systems Engineering Interfaces: A Model Based Approach

    NASA Technical Reports Server (NTRS)

    Fosse, Elyse; Delp, Christopher

    2013-01-01

    Currently: Ops Rev developed and maintains a framework that includes interface-specific language, patterns, and Viewpoints. Ops Rev implements the framework to design MOS 2.0 and its 5 Mission Services. Implementation de-couples interfaces and instances of interaction Future: A Mission MOSE implements the approach and uses the model based artifacts for reviews. The framework extends further into the ground data layers and provides a unified methodology.

  19. Communications interface for wireless communications headset

    NASA Technical Reports Server (NTRS)

    Seibert, Marc A. (Inventor); Culotta, Jr., Anthony Joseph (Inventor)

    2004-01-01

    A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.

  20. Bandwidth Constrained Multi-interface Networks

    NASA Astrophysics Data System (ADS)

    D'Angelo, Gianlorenzo; di Stefano, Gabriele; Navarra, Alfredo

    In heterogeneous networks, devices can communicate by means of multiple wired or wireless interfaces. By switching among interfaces or by combining the available interfaces, each device might establish several connections. A connection is established when the devices at its endpoints share at least one active interface. Each interface is assumed to require an activation cost, and provides a communication bandwidth. In this paper, we consider the problem of activating the cheapest set of interfaces among a network G = (V,E) in order to guarantee a minimum bandwidth B of communication between two specified nodes. Nodes V represent the devices, edges E represent the connections that can be established. In practical cases, a bounded number k of different interfaces among all the devices can be considered. Despite this assumption, the problem turns out to be NP-hard even for small values of k and Δ, where Δ is the maximum degree of the network. In particular, the problem is NP-hard for any fixed k ≥ 2 and Δ ≥ 3, while it is polynomially solvable when k = 1, or Δ ≤ 2 and k = O(1). Moreover, we show that the problem is not approximable within ηlogB or Ω(loglog|V|) for any fixed k ≥ 3, Δ ≥ 3, and for a certain constant η, unless P={NP}. We then provide an approximation algorithm with ratio guarantee of b max , where b max is the maximum communication bandwidth allowed among all the available interfaces. Finally, we focus on particular cases by providing complexity results and polynomial algorithms for Δ ≤ 2.

  1. TMS communications software. Volume 1: Computer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, J. S.; Lenker, M. D.

    1979-01-01

    A prototype bus communications system, which is being used to support the Trend Monitoring System (TMS) as well as for evaluation of the bus concept is considered. Hardware and software interfaces to the MODCOMP and NOVA minicomputers are included. The system software required to drive the interfaces in each TMS computer is described. Documentation of other software for bus statistics monitoring and for transferring files across the bus is also included.

  2. TMS communications hardware. Volume 1: Computer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, J. S.; Weinrich, S. S.

    1979-01-01

    A prototpye coaxial cable bus communications system was designed to be used in the Trend Monitoring System (TMS) to connect intelligent graphics terminals (based around a Data General NOVA/3 computer) to a MODCOMP IV host minicomputer. The direct memory access (DMA) interfaces which were utilized for each of these computers are identified. It is shown that for the MODCOMP, an off-the-shell board was suitable, while for the NOVAs, custon interface circuitry was designed and implemented.

  3. XTOD to Conventional Facilities Interface Control Document

    SciTech Connect

    McMahon, D

    2005-09-29

    This document describes the interface between the LCLS X-ray Transport and Diagnostics (XTOD) (WBS 1.5) and the LCLS Conventional Facilities (CF) (WBS 1.1). The interface locations ranging from the beam dump to the far experimental hall are identified. Conventional Facilities provides x-ray, beamline and equipment enclosures, mounting surfaces, conventional utilities, compressed (clean, dry) air, process and purge gases, exhaust systems, power, and environmental conditions for the XTOD components and controls.

  4. Dynamics of swimming bacteria at complex interfaces

    NASA Astrophysics Data System (ADS)

    Lopez, Diego; Lauga, Eric

    2014-07-01

    Flagellated bacteria exploiting helical propulsion are known to swim along circular trajectories near surfaces. Fluid dynamics predicts this circular motion to be clockwise (CW) above a rigid surface (when viewed from inside the fluid) and counter-clockwise (CCW) below a free surface. Recent experimental investigations showed that complex physicochemical processes at the nearby surface could lead to a change in the direction of rotation, both at solid surfaces absorbing slip-inducing polymers and interfaces covered with surfactants. Motivated by these results, we use a far-field hydrodynamic model to predict the kinematics of swimming near three types of interfaces: clean fluid-fluid interface, slipping rigid wall, and a fluid interface covered by incompressible surfactants. Representing the helical swimmer by a superposition of hydrodynamic singularities, we first show that in all cases the surfaces reorient the swimmer parallel to the surface and attract it, both of which are a consequence of the Stokes dipole component of the swimmer flow field. We then show that circular motion is induced by a higher-order singularity, namely, a rotlet dipole, and that its rotation direction (CW vs. CCW) is strongly affected by the boundary conditions at the interface and the bacteria shape. Our results suggest thus that the hydrodynamics of complex interfaces provide a mechanism to selectively stir bacteria.

  5. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  6. Water dynamics at neutral and ionic interfaces

    PubMed Central

    Fenn, Emily E.; Wong, Daryl B.; Fayer, M. D.

    2009-01-01

    The orientational dynamics of water at a neutral surfactant reverse micelle interface are measured with ultrafast infrared spectroscopy of the hydroxyl stretch, and the results are compared to orientational relaxation of water interacting with an ionic interface. The comparison provides insights into the influence of a neutral vs. ionic interface on hydrogen bond dynamics. Measurements are made and analyzed for large nonionic surfactant Igepal CO-520reverse micelles (water nanopool with a 9-nm diameter). The results are compared with those from a previous study of reverse micelles of the same size formed with the ionic surfactant Aerosol-OT (AOT). The results demonstrate that the orientational relaxation times for interfacial water molecules in the two types of reverse micelles are very similar (13 ps for Igepal and 18 ps for AOT) and are significantly slower than that of bulk water (2.6 ps). The comparison of water orientational relaxation at neutral and ionic interfaces shows that the presence of an interface plays the dominant role in determining the hydrogen bond dynamics, whereas the chemical nature of the interface plays a secondary role. PMID:19706895

  7. Modeling Europa's Ice-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  8. The net charge at interfaces between insulators

    NASA Astrophysics Data System (ADS)

    Bristowe, N. C.; Littlewood, P. B.; Artacho, Emilio

    2011-03-01

    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO3 over SrTiO3 in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta.

  9. The net charge at interfaces between insulators.

    PubMed

    Bristowe, N C; Littlewood, P B; Artacho, Emilio

    2011-03-01

    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO(3) over SrTiO(3) in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta. PMID:21411891

  10. Rheology of asphaltene-toluene/water interfaces.

    PubMed

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-12-01

    The stability of water-in-crude oil emulsions is frequently attributed to a rigid asphaltene film at the water/oil interface. The rheological properties of these films and their relationship to emulsion stability are ill defined. In this study, the interfacial tension, elastic modulus, and viscous modulus were measured using a drop shape analyzer for model oils consisting of asphaltenes dissolved in toluene for concentrations varying from 0.002 to 20 kg/m(3). The effects of oscillation frequency, asphaltene concentration, and interface aging time were examined. The films exhibited viscoelastic behavior. The total modulus increased as the interface aged at all asphaltene concentrations. An attempt was made to model the rheology for the full range of asphaltene concentration. The instantaneous elasticity was modeled with a surface equation of state (SEOS), and the elastic and viscous moduli, with the Lucassen-van den Tempel (LVDT) model. It was found that only the early-time data could be modeled using the SEOS-LVDT approach; that is, the instantaneous, elastic, and viscous moduli of interfaces aged for at most 10 minutes. At longer interface aging times, the SEOS-LVDT approach was invalid, likely because of irreversible adsorption of asphaltenes on the interface and the formation of a network structure. PMID:16316096

  11. Fluidic Dielectrophoresis of Aqueous Electrical Interfaces

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary

    2014-11-01

    To date, alternating current (AC) electric fields have been exploited to dielectrophoretically manipulate bubbles, liquid drops, particles, biomolecules and cells. Research and applications in this area, however, has been primarily limited to the interfaces formed between two immiscible metal-liquid, particle-liquid, or gas-liquid surfaces on particles. The influence of AC electric fields across aqueous liquid-liquid interfaces remains relatively unexplored. Fundamentally, many electrokinetic phenomena arise from discontinuities in ionic flux and charge accumulation at electrical interfaces, and here I explore the influence of AC electric fields on the electrical interface created between two aqueous liquids with disparaging electrical properties Using a microfluidic channel with embedded electrodes, two fluid streams - one with a greater electrical conductivity, the other a greater dielectric constant - were made to flow side-by-side. An AC electric field was applied across the flow channel and fluid was observed to displace across the phase interface. The displacement direction is AC frequency dependent, and is attributed to the Maxwell-Wagner interfacial polarization at the liquid-liquid electrical interface. At low AC frequency, below the interfacial charge relaxation time, the high conductive stream is observed to displace into the high dielectric stream. Above this frequency, the direction of liquid injection reverses, and the high dielectric stream injects into the high conductivity stream. An analytical model is presented for this liquid crossover frequency, and applied towards biosensing applications.

  12. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation. PMID:24058213

  13. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models

    PubMed Central

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson–Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation. PMID:24058213

  14. Interface Representations of Critical Ground States

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    1995-01-01

    We study the critical properties of the F model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice, by mapping these models to models of rough interfaces. In particular, we construct operators in a systematic way, which is provided by the interface representation, and we show that their scaling dimensions can be related to the stiffness of the interface. Two types of operators are found, and they correspond to electric and magnetic charges in the Coulomb gas which is related to the interface model by the usual duality transformation. Furthermore, we find that the stiffness of the interface models, and therefore all the critical exponents, can be calculated exactly by considering the contour correlation function which measures the probability that two points on the interface belong to the same contour loop. The exact information about the stiffness also allows us to analyze in detail the conformal field theories (CFT) that represent the scaling limits of the interface models. We find that CFT's associated with the F model, the three -coloring model, and the four-coloring model, have chiral symmetry algebras given by the su(2)_{k=1 }, su(3)_{k=1}, and su(4) _{k=1} Kac-Moody algebras, respectively. The three-coloring and the four coloring-model are ground states of certain antiferromagnetic Potts models, and the behavior of these Potts models at small but finite temperatures is determined by topological defects that can be defined in the associated interface models. In this way we calculate the correlation length and the specific heat of the Potts models, and they are in good agreement with numerical simulations. We also present our Monte-Carlo results for the scaling dimensions of operators in the four-coloring model, and they are in excellent agreement with our analytical results. Finally, we define geometrical exponents for contour loops on self -affine interfaces and calculate their values as a function of the

  15. Regenerative Electrode Interfaces for Neural Prostheses.

    PubMed

    Thompson, Cort H; Zoratti, Marissa J; Langhals, Nicholas B; Purcell, Erin K

    2016-04-01

    Neural prostheses are electrode arrays implanted in the nervous system that record or stimulate electrical activity in neurons. Rapid growth in the use of neural prostheses in research and clinical applications has occurred in recent years, but instability and poor patency in the tissue-electrode interface undermines the longevity and performance of these devices. The application of tissue engineering strategies to the device interface is a promising approach to improve connectivity and communication between implanted electrodes and local neurons, and several research groups have developed new and innovative modifications to neural prostheses with the goal of seamless device-tissue integration. These approaches can be broadly categorized based on the strategy used to maintain and regenerate neurons at the device interface: (1) redesign of the prosthesis architecture to include finer-scale geometries and/or provide topographical cues to guide regenerating neural outgrowth, (2) incorporation of material coatings and bioactive molecules on the prosthesis to improve neuronal growth, viability, and adhesion, and (3) inclusion of cellular grafts to replenish the local neuron population or provide a target site for reinnervation (biohybrid devices). In addition to stabilizing the contact between neurons and electrodes, the potential to selectively interface specific subpopulations of neurons with individual electrode sites is a key advantage of regenerative interfaces. In this study, we review the development of regenerative interfaces for applications in both the peripheral and central nervous system. Current and future development of regenerative interfaces has the potential to improve the stability and selectivity of neural prostheses, improving the patency and resolution of information transfer between neurons and implanted electrodes. PMID:26421660

  16. Language workbench user interfaces for data analysis

    PubMed Central

    Benson, Victoria M.

    2015-01-01

    Biological data analysis is frequently performed with command line software. While this practice provides considerable flexibility for computationally savy individuals, such as investigators trained in bioinformatics, this also creates a barrier to the widespread use of data analysis software by investigators trained as biologists and/or clinicians. Workflow systems such as Galaxy and Taverna have been developed to try and provide generic user interfaces that can wrap command line analysis software. These solutions are useful for problems that can be solved with workflows, and that do not require specialized user interfaces. However, some types of analyses can benefit from custom user interfaces. For instance, developing biomarker models from high-throughput data is a type of analysis that can be expressed more succinctly with specialized user interfaces. Here, we show how Language Workbench (LW) technology can be used to model the biomarker development and validation process. We developed a language that models the concepts of Dataset, Endpoint, Feature Selection Method and Classifier. These high-level language concepts map directly to abstractions that analysts who develop biomarker models are familiar with. We found that user interfaces developed in the Meta-Programming System (MPS) LW provide convenient means to configure a biomarker development project, to train models and view the validation statistics. We discuss several advantages of developing user interfaces for data analysis with a LW, including increased interface consistency, portability and extension by language composition. The language developed during this experiment is distributed as an MPS plugin (available at http://campagnelab.org/software/bdval-for-mps/). PMID:25755929

  17. An interface tracking model for droplet electrocoalescence.

    SciTech Connect

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  18. SUNDIALSTB, a MATLAB Interface to SUNDIALS

    SciTech Connect

    Serban, R

    2005-05-09

    SUNDIALS [2], SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, is a family of software tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems of equations. It consists of CVODE, IDA, and KINSOL, and variants of these with sensitivity analysis capabilities. SUNDIALSTB is a collection of MATLAB functions which provide interfaces to the SUNDIALS solvers. The core of each MATLAB interface in SUNDIALSTB is a single MEX file which interfaces to the various user-callable functions for that solver. However, this MEX file should not be called directly, but rather through the user-callable functions provided for each MATLAB interface. A major design principle for SUNDIALSTB was to provide an interface that is, as much as possible, equally familiar to users of both the SUNDIALS codes and MATLAB. Moreover, we tried to keep the number of user-callable functions to a minimum. For example, the CVODES MATLAB interface contains only 9 such functions, 3 of which interface solely to the adjoint sensitivity module in CVODES. In tune with the MATLAB ODESET function, optional solver inputs in SUNDIALSTB are specified through a single function (CvodeSetOptions for CVODES). However, unlike the ODE solvers in MATLAB, we have kept the more flexible SUNDIALS model in which a separate ''solve'' function (CVodeSolve for CVODES) must be called to return the solution at a desired output time. Solver statistics, as well as optional outputs (such as solution and solution derivatives at additional times) can be obtained at any time with calls to separate functions (CVodeGetStats and CVodeGet for CVODES). This document provides a complete documentation for the SUNDIALSTB functions. For additional details on the methods and underlying SUNDIALS software consult also the corresponding SUNDIALS user guides [3, 1].

  19. Understanding and Design of Polymer Device Interfaces

    SciTech Connect

    Kahn, Antoine

    2015-10-26

    The research performed under grant DE-FG02-04ER46165 between May 2008 and April 2011 focused on the understanding and control of interfaces of organic semiconductors in general, and polymer interfaces more specifically. This work was a joined effort by three experimentalists and a theoretician. Emphasis was placed on the determination of the electronic structure of these interfaces, i.e. the relative energy position of molecular levels across these interfaces. From these electronic structures depend the injection, extraction and transport of charge carriers into, from and across, respectively, all (opto)electronic devices made of these semiconductors. A significant fraction of our work focused on ways to modify and optimize interfaces, for example via chemical doping of the semiconductors to reduce interface energy barriers or via deposition of ultra-thin work function-reducing polymer or self-assembled monolayers of dipolar molecules. Another significant fraction of our work was devoted to exploring alternate and unconventional interface formation methods, in particular the soft-contact lamination of both metal contacts and polymer overlayers on top of polymer films. These methods allowed us to better understand the impact of hot metal atom evaporation on a soft organic surface, as well as the key mechanisms that control the energetics of polymer/polymer heterojunctions. Finally, a significant fraction of the research was directed to understanding the electronic structure of buried polymer heterojunctions, in particular within donor/acceptor blends of interest in organic photovoltaic applications. The work supported by this grant resulted in 17 publications in some of the best peer-reviewed journals of the field, as well as numerous presentations at US and international conferences.

  20. Language workbench user interfaces for data analysis.

    PubMed

    Benson, Victoria M; Campagne, Fabien

    2015-01-01

    Biological data analysis is frequently performed with command line software. While this practice provides considerable flexibility for computationally savy individuals, such as investigators trained in bioinformatics, this also creates a barrier to the widespread use of data analysis software by investigators trained as biologists and/or clinicians. Workflow systems such as Galaxy and Taverna have been developed to try and provide generic user interfaces that can wrap command line analysis software. These solutions are useful for problems that can be solved with workflows, and that do not require specialized user interfaces. However, some types of analyses can benefit from custom user interfaces. For instance, developing biomarker models from high-throughput data is a type of analysis that can be expressed more succinctly with specialized user interfaces. Here, we show how Language Workbench (LW) technology can be used to model the biomarker development and validation process. We developed a language that models the concepts of Dataset, Endpoint, Feature Selection Method and Classifier. These high-level language concepts map directly to abstractions that analysts who develop biomarker models are familiar with. We found that user interfaces developed in the Meta-Programming System (MPS) LW provide convenient means to configure a biomarker development project, to train models and view the validation statistics. We discuss several advantages of developing user interfaces for data analysis with a LW, including increased interface consistency, portability and extension by language composition. The language developed during this experiment is distributed as an MPS plugin (available at http://campagnelab.org/software/bdval-for-mps/). PMID:25755929