Science.gov

Sample records for hybrid composites aged

  1. ) Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Show, Bijay Kumar; Mondal, Dipak Kumar; Maity, Joydeep

    2014-12-01

    In this research work, the dry sliding wear behavior of 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) hybrid composite was investigated at low sliding speed (1 m/s) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion (along with associated subsurface cracking and delamination) and microcutting abrasion at lower load. While at higher load, abrasive wear involving microcutting and microploughing along with adherent oxide formation was observed. The overall wear rate increased with increasing normal load. The massive particle clusters as well as individual reinforcement particles were found to stand tall to resist abrasive wear. Besides, at higher load, the generation of adherent nodular tribo-oxide through nucleation and epitaxial growth on existing Al2O3 particles lowered down the wear rate. Accordingly, at any normal load, 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) hybrid composite exhibited superior wear resistance (lower overall wear rate) than the reported wear resistance of monolithic 6351 Al alloy.

  2. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Barjasteh, Ehsan

    anhydride/epoxy network used in composite-reinforced conductor cables was investigated to determine the extent of thermal oxidative (surface effect) and non-oxidative (bulk effect) degradation. Thermal oxidation tests were performed in air-circulating and vacuum ovens at 180°C and 200ºC (the maximum emergency temperature for ACCC conductors). The extent of oxidation during aging was determined by monitoring the thickness of the oxidized layer. Results showed that the oxidized layer thickness did not increase monotonically as a function of exposure time, and even decreased for a limited period of time. A phenomenological reaction-diffusion model was implemented to predict the thickness of oxidized layer, and the calculated results were compared with measurements for aging times up to 10,000 hours. The accuracy of the reaction-diffusion-based thickness values for the isothermally aged epoxy specimen was affected by the permeability properties of the oxidized material, and to a lesser extent by the degree of oxidation. The diffusivity varied because of changes in the density of the oxidized layer, the macro-void content, crack formation, and the molecular structures. To investigate the effects on diffusivity, the morphology of the oxidized layer and the void content was monitored over time. In addition, the density of the oxidized specimens was calculated by direct measurements of volume and weight during exposure. An empirically based volume-loss model was developed to predict the changes in volume of the specimen as a function of aging times and hence to predict the effects on the oxidized layer thickness. Volume-loss measurements provide an indication of material degradation by demonstrating a direct measurement of shrinkage rates and insight into crack initiation, as opposed to typical weight-loss measurements that provide no insight into material failure. Thermal oxidation of a unidirectional carbon-fiber/glass-fiber hybrid composite was also investigated in this study

  3. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  4. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  5. Hybridized polymer matrix composite

    NASA Technical Reports Server (NTRS)

    Stern, B. A.; Visser, T.

    1981-01-01

    Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives.

  6. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    London, A.

    1981-01-01

    Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.

  7. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1983-01-01

    Methods of improving the fire resistance of graphite epoxy composite laminates were investigated with the objective of reducing the volume of loose graphite fibers disseminated into the airstream as the result of a high intensity aircraft fuel fire. Improvements were sought by modifying the standard graphite epoxy systems without significantly negating their structural effectiveness. The modifications consisted primarily of an addition of a third constituent material such as glass fibers, glass flakes, carbon black in a glassy resin. These additions were designed to encourage coalescense of the graphite fibers and thereby reduce their aerodynamic float characteristics. A total of 38 fire tests were conducted on thin (1.0 mm) and thick (6.0 mm) hybrid panels.

  8. Damage of hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Haery, Haleh A.; Kim, Ho Sung

    2013-08-01

    Hybrid laminates consisting of woven glass fabric/epoxy composite plies and woven carbon fabric/epoxy composite plies are studied for fatigue damage and residual strength. A theoretical framework based on the systems approach is proposed as a guide to deal with the complexity involving uncertainties and a large number of variables in the hybrid composite system. A relative damage sensitivity factor expression was developed for quantitative comparisons between non-hybrid and hybrid composites. Hypotheses derived from the theoretical framework were tested and verified. The first hypothesis was that the difference between two different sets of properties produces shear stress in interface between carbon fibre reinforced plastics (CRP) and glass fibre reinforced plastics (GRP), and eventually become a source for CRP/GRP interfacial delamination or longitudinal cracking. The second hypothesis was that inter-fibre bundle delamination occurs more severely to CRP sub-system than GRP sub-system.

  9. Intercalated hybrid graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Gaier, James R. (Inventor)

    1993-01-01

    The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

  10. Hybrid composite laminate structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F. (Inventor)

    1977-01-01

    An invention which relates to laminate structures and specifically to essentially anisotropic fiber composite laminates is described. Metal foils are selectively disposed within the laminate to produce increased resistance to high velocity impact, fracture, surface erosion, and other stresses within the laminate.

  11. Shape Memory Composite Hybrid Hinge

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  12. Computer code for intraply hybrid composite design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A computer program is described for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories, and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.

  13. Computer code for intraply hybrid composite design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A computer program has been developed and is described herein for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.

  14. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  15. Flexural performance of woven hybrid composites

    NASA Astrophysics Data System (ADS)

    Maslinda, A. B.; Majid, M. S. Abdul; Dan-mallam, Y.; Mazawati, M.

    2016-07-01

    This paper describes the experimental investigation of the flexural performance of natural fiber reinforced polymer composites. Hybrid composites consist of interwoven kenaf/jute and kenaf/hemp fibers was prepared by infusion process using epoxy as polymer matrix. Woven kenaf, jute and hemp composites were also prepared for comparison. Both woven and hybrid composites were subjected to three point flexural test. From the result, bending resistance of hybrid kenaf/jute and kenaf/hemp composites was higher compared to their individual fiber. Hybridization with high strength fiber such as kenaf enhanced the capability of jute and hemp fibers to withstand bending load. Interlocking between yarns in woven fabric make pull out fibers nearly impossible and increase the flexural performance of the hybrid composites.

  16. Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior.

    PubMed

    Ahmed, Khalil

    2015-03-01

    In this assessment, hybrid composites were prepared from the combination of industrial waste, as marble waste powder (MWP) with conventional fillers, carbon black (CB) as well as silica as reinforcing material, incorporated with natural rubber (NR). The properties studied were curing, mechanical and swelling behavior. Assimilation of CB as well as silica into MWP containing NR compound responded in decreasing the scorch time and cure time besides increasing in the torque. Additionally, increasing the CB and silica in their respective NR hybrid composite increases the tensile, tear, modulus, hardness, and cross-link density, but decreases the elongation and swelling coefficient. The degradation property e.g., thermal aging of the hybrid composite was also estimated. The overall behavior at 70 °C aging temperature signified that the replacement of MS by CB and silica improved the aging performance. PMID:25750756

  17. Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior

    PubMed Central

    Ahmed, Khalil

    2013-01-01

    In this assessment, hybrid composites were prepared from the combination of industrial waste, as marble waste powder (MWP) with conventional fillers, carbon black (CB) as well as silica as reinforcing material, incorporated with natural rubber (NR). The properties studied were curing, mechanical and swelling behavior. Assimilation of CB as well as silica into MWP containing NR compound responded in decreasing the scorch time and cure time besides increasing in the torque. Additionally, increasing the CB and silica in their respective NR hybrid composite increases the tensile, tear, modulus, hardness, and cross-link density, but decreases the elongation and swelling coefficient. The degradation property e.g., thermal aging of the hybrid composite was also estimated. The overall behavior at 70 °C aging temperature signified that the replacement of MS by CB and silica improved the aging performance. PMID:25750756

  18. Aging Effects in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Chistos C.; McManus, Hugh L.

    1999-01-01

    Simulation of composites degradation due to aging are described. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. Aging effects at the laminate, ply, and micro levels are evaluated, to determine failure of any kind. The results obtained show substantial ply stress built up as a result of aging accompanied by comparable laminate strength degradation in matrix dominated composite strengths.

  19. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  20. Probabilistic assessment of uncertain adaptive hybrid composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.

    1994-01-01

    Adaptive composite structures using actuation materials, such as piezoelectric fibers, were assessed probabilistically utilizing intraply hybrid composite mechanics in conjunction with probabilistic composite structural analysis. Uncertainties associated with the actuation material as well as the uncertainties in the regular (traditional) composite material properties were quantified and considered in the assessment. Static and buckling analyses were performed for rectangular panels with various boundary conditions and different control arrangements. The probability density functions of the structural behavior, such as maximum displacement and critical buckling load, were computationally simulated. The results of the assessment indicate that improved design and reliability can be achieved with actuation material.

  1. Characterization of Hybrid CNT Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  2. Influence of defect structure on ferroelectric aging in donor-acceptor hybrid-doped PZT

    NASA Astrophysics Data System (ADS)

    Anil, A.; Vani, K.; Kumar, V.

    2016-06-01

    In the present work, we report the aging effect in manganese (Mn) and niobium (Nb) hybrid-doped PZT composition. Interestingly, it is observed that the ferroelectric aging depends on the acceptor/donor ratio. In hybrid-doped PZT, at high donor dopant concentrations, aging is not observed. The underlying mechanism is correlated with the defect chemistry of the system. It is also observed that tuning the defect chemistry is an effective strategy to realize piezoceramics with enhanced dielectric and piezoelectric characteristics.

  3. Development and characterization of hybrid thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Karkhanis, Priyanka Chandrashekhar

    This work is aimed at studying the possibility of using interply hybrid woven thermoplastic semi-pregs in secondary structures in aircrafts at TenCate Advanced Composites, Netherlands and Purdue University. Three different interply hybrids were designed from combination of Cetex(c) carbon-PPS semi-preg, Owen corning's woven glass with PPS sheets and discontinuous chopped Cetex(c) carbon-PPS semi-preg to get desired flexural, out of plane and bearing properties. The design calculations are done based on classical laminate theory and the selection of materials to be used with carbon-PPS was done based on cost and availability. The Hybrid laminate performances are analyzed and compared to the conventional Cetex (c) Carbon-PPS semi-preg laminates. Observations are reported on three point bend test (European standard 2562), four point bend test(ASTM D6415-99) and bearing test (Airbus standards AITM 1-0009) for the laminates and it was found that hybrid laminates show a reduction of 5-10% in bending stiffness, 20-40% reduction in out-of-plane strength and 2-5%reduction in bearing with a cost reduction of 20-30%. The research identifies and documents the different factors responsible for failures and reduction in strength in the Hybrids.

  4. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  5. Thermal conductivity of hybrid short fiber composites

    SciTech Connect

    Dunn, M.L.; Taya, M.; Hatta, H.; Takei, T.; Nakajima, Y. Inst. of Space and Astronautical Science, Sagamihara Three-D Composites Research, Tsukuba Tohoku Univ., Sendai )

    1993-01-01

    A combined analytical/experimental study has been undertaken to investigate the effective thermal conductivity of hybrid composite materials. The analysis utilizes the equivalent inclusion approach for steady state heat conduction (Hatta and Taya, 1986) through which the interaction between the various reinforcing phases at finite concentrations is approximated by the Mori-Tanaka (1973) mean field approach. The multiple reinforcing phases of the composite are modeled as ellipsoidal in shape and thus can simulate a wide range of microstructural geometries ranging from thin platelet to continuous fiber reinforcement. The case when one phase of the composite is penny-shaped microcracks is studied in detail. Multiphase composites consisting of a Kerimid matrix and Al2O3 short fibers and Si3N4 whiskers were fabricated and, after a careful study of their microstructure, their thermal conductivities were measured. Analytical predictions are shown to be in good agreement with experimental results obtained for the Al2O3/Si3N4/Kerimid short fiber composites. 26 refs.

  6. Ballistic damage in hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Pandya, Kedar S.; Naik, Niranjan K.; Roy, Anish; Silberschmidt, Vadim V.

    2015-07-01

    Ballistic damage of hybrid woven-fabric composites made of plain-weave E-glass- fabric/epoxy and 8H satin-weave T300 carbon-fabric/epoxy is studied using a combination of experimental tests, microstructural studies and finite-element (FE) analysis. Ballistic tests were conducted with a single-stage gas gun. Fibre damage and delamination were observed to be dominating failure modes. A ply-level FE model was developed, with a fabric-reinforced ply modelled as a homogeneous orthotropic material with capacity to sustain progressive stiffness degradation due to fibre/matrix cracking, fibre breaking and plastic deformation under shear loading. Simulated damage patterns on the front and back faces of fabric-reinforced composite plates provided an insight into their damage mechanisms under ballistic loading.

  7. Fabrication and Characterization of SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  8. PP composites with Hybrid Nanofillers: NTC phenomenon

    SciTech Connect

    Sarlin, Juha; Immonen, Kirsi

    2010-06-02

    Electric conductive plastic composites have a wide potential for commercial applications, some examples are EMI shielding housings and components in automotive industry and in consumer electronics, equipments in health care sector and fuel cell components. A phenomenon in conductive composites, especially in composites with carbon based fillers, is change of thermal induced change in conductivity as a result of morphological transitions. Usually the observed changes are practically irreversible. The phenomenon may cause increasing resistivity, usually called as 'positive temperature coefficient' (PTC) or decreasing resistivity, called 'negative temperature coefficient' (NTC), where the new morphology created by heat treatment is more favorable for electric conductivity compared to the original state. The existence of NTC is a sing of the lost potential in material design and processing. Therefore detailed information about the phenomenon gives us tools to develop high performance conductive materials. It this paper we discuss about NTC phenomenon observed in PP composites with CNT or in-situ synthesized CNT-PANi hybrid nanofiller with an amphiphilic dispersing agent. The goal of the paper is not to present a comprehensive model of this phenomenon; we present some experimental results which may be related to polymer-filler interactions. These details are a part of this complicated phenomenon.

  9. Boron/aluminum graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  10. Preliminary evaluation of hybrid titanium composite laminates

    NASA Technical Reports Server (NTRS)

    Miller, J. L.; Progar, D. J.; Johnson, W. S.; St.clair, T. L.

    1994-01-01

    In this study, the mechanical response of hybrid titanium composite laminates (HTCL) was evaluated at room and elevated temperatures. Also, the use of an elastic-plastic laminate analysis program for predicting the tensile response from constituent properties was verified. The improvement in mechanical properties achieved by the laminates was assessed by comparing the results of static strength and constant amplitude fatigue tests to those for monolithic titanium sheet. Two HTCL were fabricated with different fiber volume fractions, resin layer thicknesses, and resins. One panel was thicker and was more poorly bonded in comparison to other. Consequently, the former had a lower tensile strength, while fewer cracks grew in this panel and at a slower rate. Both panels showed an improvement in fatigue life of almost two orders of magnitude. The model predictions were also in good agreement with the experimental results for both HTCL panels.

  11. Ultra-high modulus organic fiber hybrid composites

    NASA Technical Reports Server (NTRS)

    Champion, A. R.

    1981-01-01

    An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.

  12. Effect of Hybridization on Stiffness Properties of Woven Textile Composites

    NASA Astrophysics Data System (ADS)

    Bejan, Liliana; Taranu, Nicolae; Sîrbu, Adriana

    2013-04-01

    The present study focuses on stiffness properties of woven textile reinforced polymeric composites with respect to hybridization, and geometry of reinforcement. The analyzed composites represent combinations of different fibre materials (E-glass, Kevlar 49, carbon HM) in a predetermined fabric geometry (a plane weave embedded in thermosetting polymeric resin) serving controlled properties and required performance. The effects of hybridization on the stiffness properties of woven textile composites have been studied with respect to the fibres materials, the unbalancing degree of fabrics, and the variation of compactness and undulation of yarns. Some undesirable effects in fabric geometry can be overcome by the combined effects of hybridization and compactness.

  13. Cured shape prediction of the bistable hybrid composite laminate

    NASA Astrophysics Data System (ADS)

    Dai, Fu-hong; Zhang, Bo-ming; Du, Shan-yi

    2009-07-01

    A bistable unsymmetric hybrid composite laminate with quite high stiffness and large shape change is presented. Rayleigh-Ritz method is used to predict the cured shape and the predited results agree well with the experimentals. The critical loads switching between different shapes are tested. It shows that the critical load for hybrid composite laminates increases greatly (up to 10 times) compared with the pure fiber reinforced polymer matrix composite laminates. The influence of different geometric and material properites on the bistable shape is discussed. It reveals that the present hybrid bistable laminate is more designable and miscellaneous.

  14. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  15. Environmental effects on the hybrid glass fiber/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Tsai, Yun-I.

    2009-12-01

    Fiber reinforced polymer composites (FRPCs) have been widely used to replace conventional metals due to the high specific strength, fatigue resistance, and light weight. In the power distribution industry, an advanced composites rod has been developed to replace conventional steel cable as the load-bearing core of overhead conductors. Such conductors, called aluminum conductor composite core (ACCC) significantly increases the transmitting efficiency of existing power grid system without extensive rebuilding expenses, while meeting future demand for electricity. In general, the service life of such overhead conductors is required to be at least 30 years. Therefore, the long-term endurance of the composite core in various environments must be well-understood. Accelerated aging by hygrothermal exposure was conducted to determine the effect of moisture on the glass fiber (GF)/carbon fiber (CF) hybrid composites. The influence of water immersion and humid air exposure on mechanical properties is investigated. Results indicated that immersion in water is the most severe environment for such hybrid GF/CF composites, and results in greater saturation and degradation of properties. When immersed directly in water, the hybrid GF/CF composites exhibit a moisture uptake behavior that is more complex than composite materials reinforced with only one type of fiber. The unusual diffusion behavior is attributed to a higher packing density of fibers at the annular GF/CF interface, which acts as a temporary moisture barrier. Moisture uptake leads to the mechanical and thermal degradation of such hybrid GF/CF composites. Findings presented here indicate that the degradation is a function of exposure temperature, time, and moisture uptake level. Results also indicate that such hybrid GF/CF composites recover short beam shear (SBS) strength and glass transition temperature (Tg) values comparable to pre-aged samples after removal of the absorbed moisture. In the hygrothermal environment

  16. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  17. Impact resistance of hybrid composite fan blade materials

    NASA Technical Reports Server (NTRS)

    Friedrich, L. A.

    1974-01-01

    Improved resistance to foreign object damage was demonstrated for hybrid composite simulated blade specimens. Transply metallic reinforcement offered additional improvement in resistance to gelatin projectile impacts. Metallic leading edge protection permitted equivalent-to-titanium performance of the hybrid composite simulated blade specimen for impacts with 1.27 cm and 2.54 cm (0.50 and 1.00 inch) diameter gelatin spheres.

  18. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  19. Accelerated aging of wood-composite members

    SciTech Connect

    Sonti, S.S.; GangaRao, H.V.S.; Talakanti, D.R.

    1996-12-31

    This paper discusses the longterm performance of various adhesives under accelerated aging conditions, where the intended application of the adhesives is bonding wood member to composite fabric wraps. Northern Red Oak was used as the core and two types of composite fabrics were used (glass and carbon) as external reinforcements. The adhesives used for bonding include: Epoxy, Polyurethane, Isopolyester, Resorcinol Formaldehyde, and Phenolic based Resorcinol Formaldehyde. Results from the shear strength evaluations show that a primer/resin combination provided a better bond compared to the bond developed by resin system only. Also, it was observed that phenolic-based resins had higher retention of shear strength after being subjected to aging conditions.

  20. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for perdicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  1. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  2. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  3. Impact strength on fiber-reinforced hybrid composite

    NASA Astrophysics Data System (ADS)

    Firdaus, S. M.; Nurdina; Azmil Ariff, M.

    2013-12-01

    Acrylonitrile-Butadiene-Styrene (ABS) has been well known composite in automotive players to have light weight with high impact strength material compared to sheet metal material which has high impact strength but heavy in weight. In this project, the impact strength properties of fabricated pure ABS were compared to the eight samples of hybrid ABS composite with different weight percentages of short fibers and particle sizes of ground rubber. The objective was to improve the impact strength in addition of short fibers and ground rubber particles. These samples were then characterized using an un-notched Izod impact test. Results show that the increasing of filler percentage yielded an adverse effect on the impact strength of the hybrid composite. The effect of the ground rubber particulate sizes however are deemed to be marginal than the effect of varying filler percentage based on the collected impact strength data from all physically tested hybrid composites.

  4. Computational simulation of intermingled-fiber hybrid composite behavior

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Chamis, Christos C.

    1992-01-01

    Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations.

  5. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  6. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  7. Probing Compositional Variation within Hybrid Nanostructures

    SciTech Connect

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  8. Hybridization induced transparency in composites of metamaterials and atomic media.

    PubMed

    Weis, Peter; Garcia-Pomar, Juan Luis; Beigang, René; Rahm, Marco

    2011-11-01

    We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to α-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT). PMID:22109237

  9. Topologically ordered magnesium-biopolymer hybrid composite structures.

    PubMed

    Oosterbeek, Reece N; Seal, Christopher K; Staiger, Mark P; Hyland, Margaret M

    2015-01-01

    Magnesium and its alloys are intriguing as possible biodegradable biomaterials due to their unique combination of biodegradability and high specific mechanical properties. However, uncontrolled biodegradation of magnesium during implantation remains a major challenge in spite of the use of alloying and protective coatings. In this study, a hybrid composite structure of magnesium metal and a biopolymer was fabricated as an alternative approach to control the corrosion rate of magnesium. A multistep process that combines metal foam production and injection molding was developed to create a hybrid composite structure that is topologically ordered in all three dimensions. Preliminary investigations of the mechanical properties and corrosion behavior exhibited by the hybrid Mg-polymer composite structures suggest a new potential approach to the development of Mg-based biomedical devices. PMID:24659540

  10. Micromechanics of intraply hybrid composites: Elastic and thermal properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    Composite micromechanics are used to derive equations for predicting the elastic and thermal properties of unidirectional intraply hybrid composites. The results predicted using these equations are compared with those predicted using approximate equations based on the rule of mixtures, linear laminate theory, finite element analysis and limited experimental data. The comparisons for three different intraply hybrids indicate that all four methods predict approximately the same elastic properties and are in good agreement with measured data. The micromechanics equations and linear laminate theory predict about the same values for thermal expansion coefficients. The micromechanics equations predict through-the-thickness properties which are in good agreement with the finite element results.

  11. Physical aging in graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    The matrix dominated mechanical behavior of a graphite epoxy composite was found to be affected by sub Tg annealing. Postcured + or - 45 deg 4S specimens of Thornel 300 graphite/Narmco 5208 epoxy were quenched from above Tg and given a sub Tg annealing at 140 C for times up to 10 to the 5th power min. The ultimate tensile strength, strain to break, and toughness of the composite material were found to decrease as functions of sub Tg annealing time. No weight loss was observed during the sub Tg annealing. The time dependent change in mechanical behavior is explained on the basis of free volume changes that are related to the physical aging of the nonequilibrium glassy network epoxy. The results imply possible changes in composite properties with service time.

  12. Composition of Ragusano cheese during aging.

    PubMed

    Licitra, G; Campo, P; Manenti, M; Portelli, G; Scuderi, S; Carpino, S; Barbano, D M

    2000-03-01

    Ragusano cheese is a brine-salted pasta filata cheese. Composition changes during 12 mo of aging were determined. Historically, Ragusano cheese has been aged in caves at 14 to 16 degrees C with about 80 to 90% relative humidity. Cheeses (n = 132) included in our study of block-to-block variation were produced by 20 farmhouse cheese makers in the Hyblean plain region of the Province of Ragusa in Sicily. Mean initial cheese block weight was about 14 kg. The freshly formed blocks of cheese before brine salting contained about 45.35% moisture, 25.3% protein, and 25.4% fat, with a pH of 5.25. As result of the brining and aging process, a natural rind forms. After 12 mo of aging, the cheese contained about 33.6% moisture, 29.2% protein, 30.0% fat, and 4.4% salt with a pH of 5.54, but block-to-block variation was large. Both soluble nitrogen content and free fatty acid (FFA) content increased with age. The pH 4.6 acetate buffer and 12% TCA-soluble nitrogen as a percentage of total nitrogen were 16 and 10.7%, respectively, whereas the FFA content was about 643 mg/100 g of cheese at 180 d. Five blocks of cheese were selected at 180 d for a study of variation within block. Composition variation within block was large; the center had higher moisture and lower salt in moisture content than did the outside. Composition variation within blocks favored more proteolysis and softer texture in the center. PMID:10750095

  13. Properties of a glass-ionomer/resin-composite hybrid material.

    PubMed

    Mathis, R S; Ferracane, J L

    1989-09-01

    A small percentage of the liquid resin used in commercial dental composites was added to the liquid used in a commercial glass-ionomer restorative in order to produce a fluoride-containing hybrid restorative-type material that would adhere to dentin while being stronger, less brittle, and less sensitive to desiccation in the oral cavity than glass ionomer. Compressive strength, yield strength, elastic modulus, fracture toughness, and tensile strength were analyzed for this hybrid, light-cured material. In addition, the solubility in water, adhesion to dentin, and surface roughness were also examined in vitro. The results suggest that the early (one-hour) mechanical properties of the hybrid material exceed those of glass ionomer. In addition, the brittleness and solubility of the material are less than those of commercial glass ionomer, while adhesion to dentin is unaffected. Most importantly, surface crazing, a documented problem with some glass ionomers when they become desiccated, is alleviated with this hybrid formulation. PMID:2638281

  14. A fast multipole hybrid boundary node method for composite materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Miao, Yu; Zhu, Hongping

    2013-06-01

    This article presents a multi-domain fast multipole hybrid boundary node method for composite materials in 3D elasticity. The hybrid boundary node method (hybrid BNM) is a meshless method which only requires nodes constructed on the surface of a domain. The method is applied to 3D simulation of composite materials by a multi-domain solver and accelerated by the fast multipole method (FMM) in this paper. The preconditioned GMRES is employed to solve the final system equation and precondition techniques are discussed. The matrix-vector multiplication in each iteration is divided into smaller scale ones at the sub-domain level and then accelerated by FMM within individual sub-domains. The computed matrix-vector products at the sub-domain level are then combined according to the continuity conditions on the interfaces. The algorithm is implemented on a computer code written in C + +. Numerical results show that the technique is accurate and efficient.

  15. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  16. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    J. G. Rodriguez; L. G. Blackwood; L. L. Torres; N. M. Carlson; T. S. Yoder

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  17. Analysis of high velocity impact on hybrid composite fan blades

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    Recent developments in the analysis of high velocity impact of composite blades are described, using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an interply hybrid composite aircraft engine fan blade is described in detail. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.

  18. Analysis of high velocity impact on hybrid composite fan blades

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    This paper describes recent developments in the analysis of high velocity impact of composite blades using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an intraply hybrid composite aircraft engine fan blade is described in detail. The predicted results agree with measured data. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.

  19. Mechanics of intraply hybrid composites - Properties, analysis and design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    A mechanics theory is developed for predicting the physical thermal, hygral and mechanical properties (including various strengths) of unidirectional intraply hybrid composites (UIHC) based on unidirectional properties of the constituent composites. Procedures are described which can use this theory in conjunction with composite mechanics computer codes and general purpose structural analysis finite element programs for the analysis/design of structural components made from intraply hybrid angleplied laminates (IHAL). Comparisons with limited data show that this theory predicts mechanical properties of UIHC and flexural stiffnesses of IHAL which are in good agreement with experimental data. The theory developed herein makes it possible to design and optimize structural components from IHAL based on a large class of available constituent fibers.

  20. Development of LaRC 160/NR150B2 polyimide graphite hybrid composites. [for shuttle applications

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Bergren, O.; Lockerby, S.

    1980-01-01

    A method for co-curing NR150B2 and LaRC 160 prepregs into hybrid composites was developed. The processing characteristics and the properties of the hybrid composites were compared with those of laminates fabricated from the individual component prepregs. Resin forms were selected and optimized and a new NR150 formulation was investigated. The new formulation greatly facilitated the processing and the performance of this system. Quality control techniques were evaluated and developed, high quality laminates were fabricated from both individual resin systems, and hybrid laminates were successfully co-cured. Optimum hybrid forms were investigated and several novel approaches were explored. An optimum hybrid system was developed that utilizes a LaRC curing schedule but shows no degradation of mechanical properties after aging 500 hr in air at 260 C.

  1. Resin Bonding to a Hybrid Ceramic: Effects of Surface Treatments and Aging.

    PubMed

    Campos, F; Almeida, C S; Rippe, M P; de Melo, R M; Valandro, L F; Bottino, M A

    2016-01-01

    The aim of this study was to verify the effects of different surface treatments on the microtensile bond strength between resin cement and a hybrid ceramic. Thirty-two hybrid ceramic slices (8 × 10 × 3 mm) were produced and allocated among four groups according to the surface treatment: Cont = no treatment, HA = 10% hydrofluoric acid applied for 60 seconds, PA = 37% phosphoric acid applied for 60 seconds and CJ = air abrasion with silica particle coated alumina (Cojet Sand, 3M ESPE, 30 μm/2.8 bar). As a control group, eight blocks of feldspathic ceramic (8 × 10 × 3 mm) were etched by hydrofluoric acid for 60 seconds (VMII). After the surface treatments, the ceramic slices were silanized (except the Cont group) and adhesively cemented to composite resin blocks (8 × 10 × 3 mm ) with a load of 750 g (polymerized for 40 seconds each side). The cemented blocks were cut into beams (bonded surface area of ∼1 mm(2)). Half of the beams were aged (thermocycling of 5°C-55°C/6000 cycles + water storage at 37°C/60 days), and the other half were tested immediately after being cut. Data were analyzed by Kruskal-Wallis and Dunn tests (non-aged groups) and by one-way analysis of variance and Tukey test (aged groups; α=0.05%). The mode of failure was classified by stereomicroscopy. The surface treatment significantly affected the bond strength in each set of groups: non-aged (p=0.001) and aged (p=0.001). Before being aged, samples in the CJ, HA, and PA groups achieved the highest bond strength values. However, after being aged, only those in the HA group remained with the highest bond strength values. Adhesive failure was found most often. In conclusion, hydrofluoric acid etching should be used for surface conditioning of the studied hybrid ceramic. PMID:26266652

  2. Wear Behavior of a Novel Aluminum-Based Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Show, Bijay Kumar; Mondal, Dipak Kumar; Maity, Joydeep

    2014-02-01

    In the current research, the dry sliding wear behaviors of 6351 Al alloy and its composite with hybrid reinforcement ( ex situ SiC and in situ Al4SiC4) were investigated at low sliding speed (1 m s-1) against a hardened EN 31 disk at different loads. The wear mechanism involved adhesion and microcutting-abrasion at lower load. On the other hand, at higher load, abrasive wear involving microcutting and microplowing along with adherent oxide formation was observed. Initially, under higher load, the abrasive wear mechanism caused rapid wear loss up to a certain sliding distance. Afterward, by virtue of frictional heat generation and associated temperature rise, an adherent oxide layer was developed at the pin surface which drastically reduced the wear loss. The overall wear rate increased with load in alloy as well as in composite. Moreover, the overall wear rate of the composite was found lower than that of the 6351 Al alloy at all applied loads. The ex situ SiC particles were found to resist abrasive wear, while, in situ Al4SiC4 particles offered resistance to adhesive wear. Accordingly, the 6351 Al (SiC + Al4SiC4) hybrid composite exhibited superior wear resistance relative to the 6351 Al alloy.

  3. On the development of an intrinsic hybrid composite

    NASA Astrophysics Data System (ADS)

    Kießling, R.; Ihlemann, J.; Riemer, M.; Drossel, W.-G.; Scharf, I.; Lampke, T.; Sharafiev, S.; Pouya, M.; F-X Wagner, M.

    2016-03-01

    Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces.

  4. Low and high velocity impact response of thick hybrid composites

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Ishai, Ori

    1993-01-01

    The effects of low and high velocity impact on thick hybrid composites (THC's) were experimentally compared. Test Beams consisted of CFRP skins which were bonded onto an interleaved syntactic foam core and cured at 177 C (350 F). The impactor tip for both cases was a 16 mm (0.625 inch) steel hemisphere. In spite of the order of magnitude difference in velocity ranges and impactor weights, similar relationships between impact energy, damage size, and residual strength were found. The dependence of the skin compressive strength on damage size agree well with analytical open hole models for composite laminates and may enable the prediction of ultimate performance for the damaged composite, based on visual inspection.

  5. Chemical Composition of Fresh and Aged Biochars

    NASA Astrophysics Data System (ADS)

    Cooper, W. T.; Hamdan, R.; Mukherjee, A.; Zimmerman, A. R.

    2014-12-01

    It is possible to manipulate the chemical and physical properties of pyrogenic organic matter ('black carbon' or 'biochar') during its production and tailor its composition for intended environmental management applications. In this study biochars made from grass (Tripsacum floridanum), oak (Quercus lobata), and pine (Pinus taeda) at 250 ºC in air and 400 and 650 ºC under N2 were characterized by solid state 13C-NMR spectroscopy and desorption atmospheric pressure photoionization mass spectrometry. Among the biochars produced, those originating from pine showed distinct characteristics, with greater amounts of oxygenated aromatic clusters after low temperature combustion and more condensed aromatic clusters after higher temperature pyrolysis. Although a mixture of small and large aromatic clusters occurred across the temperature profile, cluster size increased and functionality decreased with increasing combustion temperature (Figure 1). At medium and high temperatures, aromatic clusters of up to 60- carbon aromatic rings inter-connected with small chains dominated the biochars examined. These structures are intermediate in size between the linearly condensed structures and the predominantly condensed aromatic clusters proposed in earlier studies. Field aging of the pure biochars for 15 months decreased the total acid functional group content as determined by Boehm titration, but solid-state 13C-NMR analyses suggested the creation and transformation of a range of functional groups via leaching, oxidation, and addition of microbially-produced organic matter. Similar trends were observed when the biochars were mixed with soils, suggesting that the same biochar aging processes occurred in the soil environment. These findings demonstrate that biochar transformations occur over time through a multitude of processes that are both biochar and soil type-dependent.

  6. Hybrid Composites for LH2 Fuel Tank Structure

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  7. Influence of boar breeds or hybrid genetic composition on semen quality and seminal plasma biochemical variables.

    PubMed

    Žaja, Ivona Žura; Samardžija, Marko; Vince, Silvijo; Majić-Balić, Ivanka; Vilić, Marinko; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-01-01

    The enzyme concentrations of seminal plasma are important for spermatozoa metabolism and function in boars. The need has arisen for introducing a biochemical evaluation of semen, along with the usual standard semen analyses. There are no data on the influence of boar breeds on the seminal plasma biochemical variables investigated in this study. Therefore, the objective was to determine the influence of breed and hybrid genetic composition of boars on semen quality and seminal plasma biochemical variables. Semen samples of 27 boars (Swedish Landrace, German Landrace, Large White, Pietrain and Pig Improvement Company hybrid-PIC-hybrid), aged between 1.5 and 3 years, were collected. After evaluation of semen quality, the seminal plasma was separated from the spermatozoa by centrifugation of semen. The seminal plasma was subjected to spectrophotometric analysis to determine alkaline phosphatase (ALP), acid phosphatase (ACP), γ-glutamyltransferase (GGT), creatine kinase (CK) and lactate dehydrogenase (LDH) and to atomic absorption spectrophotometric analysis to measure the concentration of calcium and magnesium. Conventional semen quality variables differed depending on breed and PIC-hybrid genetic composition, though these differences were typically insignificant. In the seminal plasma, significant differences were determined in enzyme activity (ALP, GGT, CK and LDH) and in calcium concentration among boars of different breeds. There are, therefore, differences in semen quality and significant differences in the seminal plasma biochemical variables among boars of different breeds and PIC-hybrid genetic composition. The data and differences in semen variables detected in the present study provide knowledge for enhancing evaluation and monitoring of boar reproductive potential, semen quality and explain the potential causes of boar infertility. PMID:26692346

  8. MoSi2-Base Hybrid Composites from Aeroengine Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2000-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  9. SMA Hybrid Composites for Dynamic Response Abatement Applications

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2000-01-01

    A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of Shape Memory Alloy (SMA) hybrid composite (SMAHC) structures is briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also capable of modeling restrained or free recovery. Numerical results are shown for glass/epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and transmission loss are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. Embedded SMA actuators are shown to be significantly more effective in dynamic response abatement applications than the conventional approaches and are attractive for combination with other passive and/or active approaches.

  10. Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2004-01-01

    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

  11. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  12. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  13. Influence of Material Distribution on Impact Resistance of Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Abatan, Ayu; Hu, Hurang

    1998-01-01

    Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.

  14. Effect of kenaf fiber age on PLLA composite properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The age of the kenaf (Hibiscus cannabinus L.) fiber dictates its pore architecture. The impact of increasing age of plant fiber on the corresponding composite can impact material selection for enhanced composite performance. Bast fibers stems of kenaf, a warm season tropical herbaceous annual plant ...

  15. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  16. MoSi2-Base Hybrid Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Hebsur, Mohan

    1998-01-01

    The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically

  17. Phagocytosis of hybrid molecular nanosomal compositions containing oxidized dextrans conjugated with isonicotinic acid hydrazide by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-12-01

    We studied phagocytic activity of macrophages towards hybrid molecular nanosomal compositions consisting of 150-800-nm nanoliposomes containing oxidized dextrans with a molecular weight of 35 and 60 kDa obtained by chemical ("permanganate") and radiochemical oxidation of dextran conjugated with isonicotinic acid hydrazide (dextrazides, intracellular prolonged antituberculous drugs). Phagocytic activity of macrophages towards hybrid molecular nanosomal compositions containing dextrazides obtained by chemical oxidation of dextrans is higher than activity towards hybrid molecular nanosomal compositions containing dextrazides prepared by radiochemical oxidation and depends on the size of hybrid molecular nanosomal compositions and molecular weight of oxidized dextrans. PMID:21116494

  18. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    SciTech Connect

    Rajh, T.; Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Center for Nanoscale Materials

    2009-05-06

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  19. Tracking accelerated aging of composites with ultrasonic attenuation measurements

    SciTech Connect

    Chinn, D.J.; Durbin, P.F.; Thomas, G.H.; Groves, S.E.

    1996-10-01

    Composite materials are steadily replacing traditional materials in many industries. For many carbon composite materials, particularly in aerospace applications, durability is a critical design parameter which must be accurately characterized. Lawrence Livermore National Laboratory (LLNL) and Boeing Commercial Airplane Group have established a cooperative research and development agreement (CRADA) to assist in the high speed research program at Boeing. LLNL`s expertise in fiber composites, computer modeling, mechanical testing, chemical analysis and nondestructive evaluation (ND) will contribute to the study of advanced composite materials in commercial aerospace applications. Through thermo-mechanical experiments with periodic chemical analysis and nondestructive evaluation, the aging mechanisms in several continuous fiber polymer composites will be studied. Several measurement techniques are being studied for their correlation with aging. This paper describes through-transmission ultrasonic attenuation measurements of isothermally aged composite materials and their use as a tracking parameter for accelerated aging.

  20. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    NASA Astrophysics Data System (ADS)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  1. Effect of temperature on the dynamic characteristics of the glass-carbon fiber hybrid composites

    NASA Astrophysics Data System (ADS)

    Hidayat, Yon Afif; Susilo, Didik Djoko; Raharjo, Wijang W.

    2016-03-01

    This study aimed to investigate the effect of temperature on the dynamic characteristics of hybrid composites. Hybrid composites consisting of unsaturated polyester resin and glass fiber reinforced with carbon fiber. The volume fraction used in this study was 0.4. The hybrid composite was made using hand lay-up technique. The dynamic characteristics were obtained through vibration testing. The testing was conducted according to ASTM E756. The variables studied were composite without heating, heating at 100 °C, 200 °C and 280 °C. The experiments were done in three mounting configurations, i.e. upright, downward and horizontal configurations. The natural frequency and damping ratio was determined using half-power bandwidth method. The results showed that heating of composite structure affects the natural frequency and damping ratio of the hybrid composite. Heating until 100 °C will increase the natural frequency of the hybrid composite and decrease the damping ratio, but heating at the temperature above 100 °C will decrease the natural frequency and will damage the hybrid composite structure. The composite mounting configurations do not give significant effect to natural frequency and damping ratio of the hybrid composites.

  2. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  3. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Rhymer, Donald W.; St.Clair, Terry L. (Technical Monitor)

    2000-01-01

    Hybrid Titanium Composite Laminates (HTCL) are a type of hybrid composite laminate with promise for high-speed aerospace applications, specifically designed for improved damage tolerance and strength at high-temperature (350 F, 177 C). However, in previous testing, HTCL demonstrated a propensity to excessive delamination at the titanium/PMC interface following titanium cracking. An advanced HTCL has been constructed with an emphasis on strengthening this interface, combining a PETI-5/IM7 PMC with Ti-15-3 foils prepared with an alkaline-perborate surface treatment. This paper discusses how the fatigue capabilities of the "advanced" HTCL compare to the first generation HTCL which was not modified for interface optimization, in both tension-tension (R = 0.1) and tension-compression (R=-0.2). The advanced HTCL under did not demonstrate a significant improvement in fatigue life, in either tension-tension or tension-compression loading. However, the advanced HTCL proved much more damage tolerant. The R = 0.1 tests revealed the advanced HTCL to increase the fatigue life following initial titanium ply damage up to 10X that of the initial HTCL at certain stress levels. The damage progression following the initial ply damage demonstrated the effect of the strengthened PMC/titanium interface. Acetate film replication of the advanced HTCL edges showed a propensity for some fibers in the adjacent PMC layers to fail at the point of titanium crack formation, suppressing delamination at the Ti/PMC interface. The inspection of failure surfaces validated these findings, revealing PMC fibers bonded to the majority of the titanium surfaces. Tension compression fatigue (R = -0.2) demonstrated the same trends in cycles between initial damage and failure, damage progression, and failure surfaces. Moreover, in possessing a higher resistance to delamination, the advanced HTCL did not exhibit buckling following initial titanium ply cracking under compression unlike the initial HTCL.

  4. Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels

    NASA Technical Reports Server (NTRS)

    Evans, Owen R. (Inventor); Dong, Wenting (Inventor); Deshpande, Kiranmayi (Inventor)

    2015-01-01

    Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.

  5. Microwave properties of carbon nanotube/microwire/rubber multiscale hybrid composites

    NASA Astrophysics Data System (ADS)

    Qin, F. X.; Brosseau, C.; Peng, H. X.

    2013-07-01

    A novel microwire/carbon nanotube (CNT)/rubber multiscale hybrid composite is reported here. Compared to CNT composites, the hybrid composite shows enhanced conductivity and permittivity and decreased intrinsic impedance, giving rise to significant improvement of absorption yet along with the increase of reflection loss. The hybrid composite also shows a field tunable effect with a featured critical bias, which divided two opposite frequency dispersion trend with the field due to the different biasing mechanism decided by the field magnitude. The counter-influence of wires and CNTs plays an important role in formulating the resulting electromagnetic responses.

  6. Composite Aging Markers Can Be Used for Quantitative Profiling of Aging.

    PubMed

    Shamir, Lior

    2015-01-01

    In the absence of a single marker that reliably reflects biological aging, or even an exact definition of biological age, compound aging scores that combine multiple aging biomarkers into a single composite aging score can quantitatively reflect the age-related changes over time. If aging is viewed as the broad accumulation of alterations over time, a composite score that reflects numerous diverse aspects of these alterations can be used as a quantitative approximation of aging. Profiling the changes of the composite aging score over time shows variations in the pace of aging at different chronological ages, such that the changes over time show distinct stages separated by a short period of rapid aging. These observations are difficult to explain by molecular entropy or stochastic accumulation of irreparable environmental damage alone, as a process driven solely by entropy or stochasticity is not expected to have signs of distinct stages or leaps in aging. These results are in agreement with some previous observations in other organisms, indicating the possibility of the involvement of pathways in the process of aging. Given this evidence, the contention that aging can be driven also by biological pathways should be considered. PMID:26088420

  7. Water aging reverses residual stresses in hydrophilic dental composites.

    PubMed

    Park, J W; Ferracane, J L

    2014-02-01

    Dental composites develop residual stresses during polymerization due to shrinkage. These stresses may change with time because of relaxation and water sorption in the oral environment. This phenomenon is likely dependent on the composition of the materials, specifically their hydrophilic characteristics, and could result in deleterious stresses on restorative materials and tooth structure. The purpose of this experiment was to use the thin ring-slitting method to compare the residual stress generated within composite materials of varying hydrophilicity when aged in wet and dry conditions after polymerization. Water sorption, solubility, elastic modulus, and residual stresses were measured in 6 commercial composites/cements aged in water and dry conditions. The self-adhesive resin cement showed the highest water sorption and solubility. All composites showed initial residual contraction stresses, which were maintained when aged dry. Residual stresses in 2 of the self-adhesive cements and the polyacid-modified composite aged in wet conditions resulted in a net expansion. This experiment verified that residual shrinkage stresses in dental composites can be reversed during aging in water, resulting in a net expansion, with the effect directly related to their hydrophilic properties. PMID:24272790

  8. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  9. Analysis of SMA hybrid composite structures using commercial codes

    NASA Astrophysics Data System (ADS)

    Turner, Travis L.; Patel, Hemant D.

    2004-07-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  10. Fracture toughness of experimental dental composites aged in ethanol.

    PubMed

    Ferracane, J L; Berge, H X

    1995-07-01

    Fracture toughness (KIc) is an intrinsic property which may be related to the ability of a restorative material to resist fracture and abrasion. This property may change for a dental composite restorative due to the effects of various oral solvents. The hypothesis to be tested was that aging in ethanol would cause a reduction in the fracture toughness of dental composites, and that the extent of this reduction might be dependent upon certain compositional variables. The fracture toughnesses of three series of experimental composites with various degrees of conversion, filler volume, and percent of silane-treated fillers were compared after the composites were aged for periods of one month and six months in 75% ethanol/water, a solvent which serves as a food-simulating liquid. An unfilled Bis-GMA/TEGDMA resin served as the control. All composites, with the exception of one subjected to a post-light-curing heat treatment, experienced a significant reduction (from 30 to 56%) in KIc after being aged in 75% ethanol for six months. A similar reduction in KIc of 58% for the unfilled resin suggested that the reduction for the composites was due to a weakening of the resin matrix, which facilitated crack propagation. A simultaneous reduction in microhardness was also demonstrated. One month of aging in ethanol also produced large reductions in KIc for specimens with insufficient cure and minimal filler volume, suggesting that the properties of the resin matrix predominated for these composites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7560394

  11. Development of hybrid composite co-pultruded structural members

    NASA Astrophysics Data System (ADS)

    Honickman, Hart Noah

    Fibre reinforced polymer (FRP) materials offer many advantages over conventional metallic structural materials due to their high specific strength and stiffness, long fatigue life, and resistance to environmental corrosion. However, these materials present some unique engineering challenges due to their anisotropy and heterogeneity. The connection of these composite parts to adjacent components often results in complex and counter-intuitive states of stress that can be quite difficult to model. Furthermore, since these materials are, in a sense, synthesized during the fabrication of the final part, the mechanical properties that can be expected from FRP structures are largely dependent upon highly skilled workmanship. Pultrusion is a manufacturing technique that is intended for the mass-production of long FRP parts having continuous cross-sectional geometry. Although it has not yet been optimized for the aerospace industry, with some qualification research, pultrusion may prove to offer many benefits over conventional methods of manufacturing composite aircraft parts. The present dissertation investigates the possibility of co-pultruding FRP parts with embedded non-FRP materials (such as metallic materials), which could serve as integral hard points to facilitate serviceable mechanical connections to adjacent parts. It is shown that these hybrid co-pultruded members offer substantial light-weighting benefits over conventional metallic components, while retaining the ability to employ serviceable mechanical fasteners. Simple unidimensional beam models are of great value when validating the results of complex finite element analyses of aircraft wing-stringers, or other similar structural members. It is demonstrated in the present dissertation that classical unidimensional beam-type analytical models often yield unconservative predictions (over-predictions) of stiffness and elastic stability when used for the analyses of FRP beams and columns. In fact, specific

  12. Shear Characteristics of Hybrid Composites with Non-Woven Carbon Tissue

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Noguchi, Hiroshi

    Mechanical shear characteristics of hybrid composites with non-woven carbon tissue (NWCT) are investigated under uni-axial static tensile loadings. In-plane characteristics were studied on [±45]3S angle-ply CFRP laminates and [+45/-45/+45/-45/+45/-45]S angle-ply hybrid laminates. Here, the symbol “/” means that the NWCT is located at an interface between CFRP layers. A new estimation method was proposed for the stiffness of hybrid composites. Chord shear modulus and 0.2%-offset shear strength of hybrid laminates were compared with those of CFRP laminates. Results estimated with the new method were compared with results of experiments and an ordinary rule of mixtures, and then the validity was confirmed. The hybrid angle-ply laminate seems to be effective to improve the shear characteristics. The damage and failure mechanisms of the hybrid composites were discussed through observation results with an optical microscope.

  13. INHYD: Computer code for intraply hybrid composite design. A users manual

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1983-01-01

    A computer program (INHYD) was developed for intraply hybrid composite design. A users manual for INHYD is presented. In INHYD embodies several composite micromechanics theories, intraply hybrid composite theories, and an integrated hygrothermomechanical theory. The INHYD can be run in both interactive and batch modes. It has considerable flexibility and capability, which the user can exercise through several options. These options are demonstrated through appropriate INHYD runs in the manual.

  14. Composite Overwrapped Pressure Vessels (COPV) Materials Aging Issues

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This slide presentation reviews some of the issues concerning the aging of the materials in a Composite Overwrapped Pressure Vessels (COPV). The basic composition of the COPV is a Boss, a composite overwrap, and a metallic liner. The lifetime of a COPV is affected by the age of the overwrap, the cyclic fatigue of the metallic liner, and stress rupture life, a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. There is information about the coupon tests that were performed, and a test on a flight COPV.

  15. Monotonic and fatigue properties of kenaf /glass hybrid composites under fully reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Sharba, M. J.; Leman, Z.; Sultan, M. T. H.; Ishak, M. R.; Hanim, M. A. A.

    2015-12-01

    The aim of this work is to investigate the effect of hybridization of kenaf-glass fibers reinforced unsaturated polyester on fatigue life. Three types of composites were fabricated using hands lay-up method, namely, kenaf, glass, and hybrid composites with 30% of weight fraction, the hybrid was mixed with a ratio of kenaf: glass 10:20. Monotonic tests were achieved (Tensile and compression) to determine the fatigue stress levels. Fully reversed fatigue loading was conducted with a stress ratio of -1 and stress levels 55-85% of the ultimate static stresses, all tests were conducted at 10 Hz of frequency. The results proof a positive hybrid composite; also agree with the rule of mixture that can predict the final composite properties. Moreover, it's been observed an improvement in overall mechanical properties of hybrid compared to individual ones.

  16. Remote Compositional Analysis: The Coming of Age

    NASA Astrophysics Data System (ADS)

    McCord, T. B.

    2002-12-01

    Remote mineralogical analysis of planetary surfaces was attempted more than a century ago. This involved spectroscopy of regions on, mostly, the lunar surface, using groundbased telescopes and of rocks and minerals in the laboratory. However, it was not until the 1960s that science and technology developed to the point of allowing reflectance spectroscopy to become a quantitative technique. Some of us were luck enough to appear on this scene, young and energetic and with supporting funds available to take advantage of these advances to further the knowledge of molecules and minerals in the solar system. Electronic light detectors became available and the near IR portion of the spectrum was quantitatively accessed so that specific absorption bands could be detected in the reflectance spectrum, begging interpretation. At the same time, the physics of the interaction of light and minerals was becoming much better understood, allowing interpretation. Geochemists and geologists became interested and helped place these discoveries in the context of solar system science. Major successes resulted mostly from a few scientists who accomplished some expertise in all three areas. This allowed identification of many minerals and their crystal state using the reflectance spectra. The early emphasis was on the Moon because of its proximity to Earth and the Apollo Program. Reflectance spectra of the Moon were obtained in the late 60s and early 70s that showed absorption features and these features were interpreted, for example, to suggest a basaltic composition for the maria with high titanium content in some places. The Apollo Program produced samples and their reflectance spectra were measured in the laboratory. Comparisons with telescopic measurements indicated very good agreement and confirmed remote mineralogical interpretations. With confidence gained, we proceeded to explore the mineralogy of the Moon and derived interpretations therefrom. This success gave us confidence to

  17. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  18. In vitro accelerated aging of composites and a sealant.

    PubMed

    Powers, J M; Fan, P L; Marcotte, M

    1981-09-01

    The in vitro accelerated aging of conventional and microfilled composite restorative materials and a sealant was studied. Volume loss/surface area ranged from 2.0 x 10(-3) mm3/mm2 for I to 7.3 x 10(-3) mm3/mm2 for SF after 900 h of aging. Surface morphology of the conventional composites was characterized by crazing and exposure of filler particles. The surfaces of the microfilled composites also showed crazing. The surface morphology of the sealant appeared unchanged. Comparisons of infrared ATR spectra between zero and 900 h of aging showed that slight chemical changes occurred at the surface of AR but not SF. PMID:6943161

  19. Aging behavior and life prediction of graphite composites

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Raasch, David

    1989-01-01

    This paper presents experimental data from two independent tests, designed to determine the long-term reliability of composite materials. The technique of accelerated aging at elevated temperatures is employed. In the first set, graphite fiber, epoxy composites in five ply layups are manufactured and tested in the standard short-beam shear mode. In the second set, Nomex honeycomb, graphite fiber/epoxy composite face and rear sheet sandwich coupons are tested. After satisfying simple consistency checks, data interpretation is attempted within the framework of an Arrhenius degradation model. The elevated temperature is assumed to influence the degradation according to this temperature-dependent rate law. From these tests on five-ply composites and honeycomb sandwiches, it is concluded that aging is not a serious problem.

  20. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  1. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  2. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  3. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  4. Long-term ageing and materials degradation of hybrid mica compressive seals for solid oxide fuel cells

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.

    2009-06-15

    Hybrid phlogopite mica seals with silver interlayers were evaluated in long term isothermal ageing tests in a dual environment consisting of dilute hydrogen vs. air at 800 degrees C. High-temperature leak tests with helium showed very stable leakage of 0.01-0.02 sccm/cm for 28366 hrs under a low applied compressive stress of 82 kPa (12 psi). Post-mortem SEM and EDS analyses of the mica showed minimum degradation in terms of changes in microstructure and chemical composition, although there appeared to be some Ag migration and segregation at interstices between mica flakes. Fluorine was also found to be released from mica. Overall, the low, constant leakage through the hybrid mica/Ag seals clearly demonstrated a very promising candidate for SOFC sealing.

  5. Biomechanical characteristics of polymeric UHMWPE composites with hybrid matrix and dispersed fillers

    NASA Astrophysics Data System (ADS)

    Panin, Sergey; Kornienko, Lyudmila; Shilko, Sergey; Thuc, Nguyen Xuan; Korchagin, Mikhail; Chaikina, Marina

    2015-11-01

    In order to develop artificial joint implants some biomechanical properties of composites with UHMWPE and hybrid (polymer-polymeric) "UHMWPE+PTFE" matrix with dispersed fillers were studied. A comparative analysis of the effectiveness of adding hydroxyapatite micron- and nanopowders as a biocompatible filler was carried out. It was shown that under dry sliding friction the wear rate of nanocomposites with the hybrid matrix is lower as compared with composites with the non-hybrid one. Mechanical activation of components further enhances the durability of nano- and microcomposites to almost double it without any significant reduction in the strength characteristics.

  6. Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design

    NASA Astrophysics Data System (ADS)

    Girish, B. M.; Satish, B. M.; Sarapure, Sadanand; Basawaraj

    2016-06-01

    In the present paper, the statistical investigation on wear behavior of magnesium alloy (AZ91) hybrid metal matrix composites using Taguchi technique has been reported. The composites were reinforced with SiC and graphite particles of average size 37 μm. The specimens were processed by stir casting route. Dry sliding wear of the hybrid composites were tested on a pin-on-disk tribometer under dry conditions at different normal loads (20, 40, and 60 N), sliding speeds (1.047, 1.57, and 2.09 m/s), and composition (1, 2, and 3 wt pct of each of SiC and graphite). The design of experiments approach using Taguchi technique was employed to statistically analyze the wear behavior of hybrid composites. Signal-to-noise ratio and analysis of variance were used to investigate the influence of the parameters on the wear rate.

  7. Correlating synergistic reinforcement with chain motion in elastomer/nanocarbon hybrids composites.

    PubMed

    Wu, Siwu; Zhang, Liqun; Weng, Peijin; Yang, Zhijun; Tang, Zhenghai; Guo, Baochun

    2016-08-17

    The strategy of using hybrid fillers with different geometric shapes and aspect ratios has been established to be an efficient way to achieve high-performance polymer composites. While, in spite of the recently renowned advances in this field, the mechanism of synergistic behavior in the system is still unclear and equivocal. In this study, we systematically investigated the mechanism for the synergistic reinforcement in an elastomer reinforced by nanocarbon hybrids consisting of 2D reduced graphene oxide (rGO) and 1D carbon nanotubes (CNTs). The improved dispersion state of hybrid filler was attested by Raman, UV-Vis spectra and morphological observations. In addition to the phenomenological evidences, we substantiated a stronger confinement effect of hybrid network on chain dynamics, for the first time, with molecular concepts by dielectric relaxation analysis. The formation of a glassy interphase with orders of magnitude slower chain dynamics than that for bulk chains has been explicitly demonstrated in the hybrid system. Besides improved dispersion upon hybridization, it is believed the formation of a glassy interphase is another crucial factor in governing the synergistic reinforcement capability of hybrid composites. We envision this new finding provides significant insight into the mechanism of synergistic behavior in hybrid-filled polymer composites with molecular concepts. PMID:27387393

  8. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  9. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  10. Thermal analysis of 3D composites by a new fast multipole hybrid boundary node method

    NASA Astrophysics Data System (ADS)

    Miao, Yu; Wang, Qiao; Zhu, Hongping; Li, Yinping

    2014-01-01

    This paper applies the hybrid boundary node method (Hybrid BNM) for the thermal analysis of 3D composites. A new formulation is derived for the inclusion-based composites. In the new formulation, the unknowns of the interfaces are assembled only once in the final system equation, which can reduce nearly one half of degrees of freedom (DOFs) compared with the conventional multi-domain solver when there are lots of inclusions. A new version of the fast multipole method (FMM) is also coupled with the new formulation and the technique is applied to thermal analysis of composites with many inclusions. In the new fast multipole hybrid boundary node method (FM-HBNM), a diagonal form for translation operators is used and the method presented can be applied to the computation of more than 1,000,000 DOFs on a personal computer. Numerical examples are presented to analyze the thermal behavior of composites with many inclusions.

  11. Aging of composite insulators; Simulation by electrical tests

    SciTech Connect

    de Tourreil, C.H. ); Lambeth, P.J.

    1990-07-01

    To assess the long-term performance of 72 kV and 230 kV composite long rod insulators different laboratory aging tests have been developed. This paper reports two principal diagnostic tests used to measure the performance of the insulators, the quick flashover salt fog (QFO SF), and the rapid flashover clean fog (RFO CF) tests. The aging processes were: cement coating and clean fog, salt fog, and cement coating and salt fog. Similar sets of insulators were aged also in the field for over three years, and all the insulators evaluated in the laboratory. The cement/salt fog aging process was found to be the most controllable and realistic, when the results were assessed by means of the RFO CF test.

  12. Further understanding of aged composite and adhesively bonded structures

    NASA Astrophysics Data System (ADS)

    Heslehurst, Rikard B.; Baird, John P.

    1996-11-01

    As the application of advanced composite materials and adhesively bonded components becomes increasingly numerous in aircraft structures, so is the number of aircraft containing such structures that can be classified in the aging aircraft category. The effect of environmental and in- service aging of such structures is not well known or understood, neither have NDE techniques been able to satisfactorily qualify and quantify the loss of structural integrity due to the aging process. This paper will present the latest developments in the practical use of a field portable holographic interferometric testing system. The system results, known as holographic interferograms, provide a better understanding of how a structure is behaving under realistic loads in the presence of defects, damage and material property aging. The system has been applied to a variety of defects in composite and adhesive bondlines, as well as artificial environmental aging of these materials. The holographic interferograms produced form these investigations will be briefly reviewed and their impact on structural integrity of the component discussed.

  13. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  14. Effect of natural fibers and bio-resins on mechanical properties in hybrid and non-hybrid composites

    NASA Astrophysics Data System (ADS)

    Fragassa, Cristiano

    2016-05-01

    The aim of the present experimental investigation was to perform a comparative analysis concerning the influence on mechanical properties of natural fibers and/or bio-resins in reinforced thermoset composites. Flax and basalt fibers were selected as natural reinforcements, as single constituents or in hybrid combination. Glass synthetic fibers were used for comparison. Eco-friendly matrixes, both epoxy or vinylester, were considered and compared with composites based on traditional resins. Samples were fabricated by hand lay-up and resin infusion techniques. Cures were accelerated and controlled by applying heat and pressure in autoclave. Tensile, flexural and impact tests were carried out according to ASTM standards.

  15. Hybrid Gear Preliminary Results-Application of Composites to Dynamic Mechanical Components

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Roberts Gary D.; Sinnamon, R.; Stringer, David B.; Dykas, Brian D.; Kohlman, Lee W.

    2012-01-01

    Composite spur gears were fabricated and then tested at NASA Glenn Research Center. The composite material served as the web of the gear between the gear teeth and a metallic hub for mounting to the torque-applying shaft. The composite web was bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The Hybrid Gear was tested against an all-steel gear and against a mating Hybrid Gear. As a result of the composite to metal fabrication process used, the concentricity of the gears were reduced from their initial high-precision value. Regardless of the concentricity error, the hybrid gears operated successfully for over 300 million cycles at 10000 rpm and 490 in.*lbs torque. Although the design was not optimized for weight, the composite gears were found to be 20% lighter than the all-steel gears. Free vibration modes and vibration/noise tests were also conduct to compare the vibration and damping characteristic of the Hybrid Gear to all-steel gears. The initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.

  16. Finite element analysis when orthogonal cutting of hybrid composite CFRP/Ti

    NASA Astrophysics Data System (ADS)

    Xu, Jinyang; El Mansori, Mohamed

    2015-07-01

    Hybrid composite, especially CFRP/Ti stack, is usually considered as an innovative structural configuration for manufacturing the key load-bearing components in modern aerospace industry. This paper originally proposed an FE model to simulate the total chip formation process dominated the hybrid cutting operation. The hybrid composite model was established based on three physical constituents, i.e., Ti constituent, interface and CFRP constituent. Different constitutive models and damage criteria were introduced to replicate the interrelated cutting behaviour of the stack material. The CFRP/Ti interface was modelled as a third phase through the concept of cohesive zone (CZ). Particular attention was made on the comparative studies of the influence of different cutting-sequence strategies on the machining responses induced in hybrid stack cutting. The numerical results emphasized the pivotal role of cutting-sequence strategy on the various machining induced responses including cutting-force generation, machined surface quality and induced interface damage.

  17. Lamination residual stresses in hybrid composites, part 1

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.

  18. Magnetic properties modeling of soft magnetic composite materials using two-dimensional vector hybrid hysteresis model

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Liu, Fugui; Li, Yongjian; Zhao, Zhigang; Zhang, Changgeng; Yang, Qingxin

    2014-05-01

    A 2-D vector hybrid hysteresis model for a soft magnetic composite (SMC) material is established, which is combined with classical Preisach model and Stoner-Wohlfarth (S-W) model. The rotational magnetic properties of SMC materials were studied using the vector model, and the computed results were compared with the experimental measurement. It is shown that the vector hybrid model can effectively simulate the rotational magnetic properties under low magnetization fields.

  19. Structure/property relations of elastomeric hybrid organic-inorganic composites

    NASA Astrophysics Data System (ADS)

    Miller, Thomas Michael

    Hybrid organic-inorganic composites have been synthesized by the sol-gel processing of triethoxysilane end functionalized poly(tetramethylene oxide) and tetraethxoysilane. The resulting transparent materials are elastomeric gels crosslinked by an amorphous polysilicate phase. Elementary rubber-elasticity theory in conjunction with dynamic mechanical spectroscopy was applied to these seemingly nonideal networks to quantify the change in phase interaction induced by aging the benchmark acid catalyzed gels in a basic solution of 70% ethylamine in water. The change in the average molar mass between crosslinks explained the previously published mechanical and dynamic mechanical results. Furthermore, the application of this theory to these seemingly nonideal networks resulted in network parameters that were in excellent agreement with traditional equilibrium swelling estimates. The work was then extended by utilizing this ethylamine solution to catalyze the sol-gel reaction in-situ. The effect of this change in catalyst upon the oxygen diffisivity of the hybrids as a function of polysilicate loading was investigated using a luminescence based approach. While the diffusivity of the acid catalyzed gels decreased with increasing loading, the base catalyzed gels did not indicating that the polysilicate domains resulting from the base catalysis possess considerable porosity. However, the pores appear to be much too small for Knudsen diffusion, a commonly observed gas separation mechanism in porous ceramic membranes. To investigate the influence of polysilicate network polarity and spatial distribution, the sol-gel processing of the hybrids was adjusted to produce two classes of gels. One exhibited a more discrete polysilicate phase possessing greater network connectivity and reduced silanol content than the other. This was accomplished by using dimethylformamide in place of tetrahydrofuran as the organic solvent constituent of the sol. Poly(methacrylic acid

  20. Insight into octoploid strawberry (Fragaria) subgenome composition revealed by GISH analysis of pentaploid hybrids.

    PubMed

    Liu, Bo; Poulsen, Elizabeth G; Davis, Thomas M

    2016-02-01

    As the product of interspecific hybridization between its two ancestral octoploid (2n = 8x = 56) species (Fragaria chiloensis and F. virginiana), the cultivated strawberry (F. ×ananassa) is among the most genomically complex of crop plants, harboring subgenomic components derived from as many as four different diploid ancestors. To physically visualize the octoploids' subgenome composition(s), we launched molecular cytogenetic studies using genomic in situ hybridization (GISH), comparative GISH (cGISH), and rDNA-FISH techniques. First, GISH resolution in Fragaria was tested by using diploid and triploid hybrids with predetermined genome compositions. Then, observation of an octoploid genome was implemented by hybridizing chromosomes of pentaploid (2n = 5x = 35) hybrids from F. vesca × F. virginiana with genomic DNA probes derived from diploids (2n = 2x = 14) F. vesca and F. iinumae, which have been proposed by phylogenetic studies to be closely related to the octoploids yet highly divergent from each other. GISH and cGISH results indicated that octoploid-derived gametes (n = 4x = 28) carried seven chromosomes with hybridization affinities to F. vesca, while the remaining 21 chromosomes displayed varying affinities to F. iinumae, indicating differing degrees of subgenomic contribution to the octoploids by these two putatively ancestral diploids. Combined rDNA-FISH revealed severe 25S rDNA loss in both the F. vesca- and F. iinumae-like chromosome groups, while only the prior group retained its 5S loci. PMID:26835888

  1. Enhanced thermal-mechanical properties of polymer composites with hybrid boron nitride nanofillers

    NASA Astrophysics Data System (ADS)

    Yan, Haiyan; Tang, Yanxia; Su, Juling; Yang, Xiaoyan

    2014-02-01

    The present work focuses on the investigation of the thermal-mechanical properties of the epoxy composites with hybrid boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNSs). The stable dispersions of BNNTs-BNNSs were achieved by a noncovalent functionalization with pyrene carboxylic acid. The resulting epoxy/BNNTs-BNNSs composites exhibited homogeneously dispersed BNNTs-BNNSs and a strong filler-matrix interface interaction. The composites showed a 95 % increase in thermal conductivity and a 57 % improvement in Young's modulus by addition of only 1 vol. % BNNTs-BNNSs. Meanwhile, the composites also retained a high electrical resistance of pure epoxy. Our study thus shows the potential for hybrid BNNTs-BNNSs to be successfully used as the nanofillers of polymer composites for applications in electrically insulating thermal interface materials.

  2. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  3. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  4. Preliminary burn and impact tests of hybrid polymeric composites. [preventing graphite fiber release

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1978-01-01

    Free graphite fibers released into the environment from resin matrix composite components, as a result of fire and/or explosion, pose a potential hazard to electrical equipment. An approach to prevent the fibers from becoming airborne is to use hybrid composite materials which retain the fibers at the burn site. Test results are presented for three hybrid composites that were exposed to a simulation of an aircraft fire and explosion. The hybrid systems consisted of 16 plies of graphite-epoxy with two plies of Kevlar-, S-glass-, or boron-epoxy on each face. Two different test environments were used. In one environment, specimens were heated by convection only, and then impacted by a falling mass. In the other environment, specimens were heated by convection and by radiation, but were not impacted. The convective heat flux was about 100-120 kW/m in both environments and the radiative flux was about 110 kW/sq m.

  5. Electrical anisotropy in multiscale nanotube/fiber hybrid composites

    SciTech Connect

    Thostenson, Erik T.; Gangloff, John J. Jr.; Li Chunyu; Byun, Joon-Hyung

    2009-08-17

    This letter reports an experimental and theoretical study on the electrical properties of carbon nanotube/glass fiber composites. Experimental measurements on unidirectional glass fiber composites with nanotubes dispersed in the polymer matrix show a high degree of anisotropy. The composites, manufactured with a vacuum infusion technique, do not show any significant process-induced anisotropy. Theoretical modeling reveals that the microstructure of the fiber composite plays a dominant role in the electrical behavior due to alteration of percolating paths in the carbon nanotube network.

  6. Electrical anisotropy in multiscale nanotube/fiber hybrid composites

    NASA Astrophysics Data System (ADS)

    Thostenson, Erik T.; Gangloff, John J.; Li, Chunyu; Byun, Joon-Hyung

    2009-08-01

    This letter reports an experimental and theoretical study on the electrical properties of carbon nanotube/glass fiber composites. Experimental measurements on unidirectional glass fiber composites with nanotubes dispersed in the polymer matrix show a high degree of anisotropy. The composites, manufactured with a vacuum infusion technique, do not show any significant process-induced anisotropy. Theoretical modeling reveals that the microstructure of the fiber composite plays a dominant role in the electrical behavior due to alteration of percolating paths in the carbon nanotube network.

  7. Stone Composition as a Function of Age and Sex

    PubMed Central

    Rule, Andrew D.; Krambeck, Amy E.; Williams, James C.; Bergstralh, Eric J.; Mehta, Ramila A.; Moyer, Thomas P.

    2014-01-01

    Background and objectives Kidney stones are heterogeneous but often grouped together. The potential effects of patient demographics and calendar month (season) on stone composition are not widely appreciated. Design, setting, participants, & measurements The first stone submitted by patients for analysis to the Mayo Clinic Metals Laboratory during 2010 was studied (n=43,545). Stones were classified in the following order: any struvite, any cystine, any uric acid, any brushite, majority (≥50%) calcium oxalate, or majority (≥50%) hydroxyapatite. Results Calcium oxalate (67%) was the most common followed by hydroxyapatite (16%), uric acid (8%), struvite (3%), brushite (0.9%), and cystine (0.35%). Men accounted for more stone submissions (58%) than women. However, women submitted more stones than men between the ages of 10–19 (63%) and 20–29 (62%) years. Women submitted the majority of hydroxyapatite (65%) and struvite (65%) stones, whereas men submitted the majority of calcium oxalate (64%) and uric acid (72%) stones (P<0.001). Although calcium oxalate stones were the most common type of stone overall, hydroxyapatite stones were the second most common before age 55 years, whereas uric acid stones were the second most common after age 55 years. More calcium oxalate and uric acid stones were submitted in the summer months (July and August; P<0.001), whereas the season did not influence other stone types. Conclusions It is well known that calcium oxalate stones are the most common stone type. However, age and sex have a marked influence on the type of stone formed. The higher number of stones submitted by women compared with men between the ages of 10 and 29 years old and the change in composition among the elderly favoring uric acid have not been widely appreciated. These data also suggest increases in stone risk during the summer, although this is restricted to calcium oxalate and uric acid stones. PMID:25278549

  8. Development of hierarchical magnesium composites using hybrid microwave sintering.

    PubMed

    Habibi, Meisam Kouhi; Joshi, Shailendra P; Gupta, Manoj

    2011-01-01

    In this work, hierarchical magnesium based composites with a micro-architecture comprising reinforcing constituent that is a composite in itself were fabricated using powder metallurgy route including microwave assisted rapid sintering technique and hot extrusion. Different level-I composite particles comprises sub-micron pure aluminum (Al) matrix containing Al2O3 particles of different length scale (from micrometer to nanometer size). Microstructural characterization of the hierarchical composites revealed reasonably uniform distribution of level-I composite particles and significant grain refinement compared to monolithic Mg. Hierarchical composite configurations exhibited different mechanical performance as a function of Al2O3 length scale. Among the different hierarchical formulations synthesized, the hierarchical configuration with level-I composition comprising Al and nano-Al2O3 (0.05 microm) exhibited the highest improvement in tensile yield strength (0.2% YS), ultimate tensile strength (UTS), tensile failure strain (FS), compressive yield strength (0.2% CYS) and ultimate compressive strength (UCS) (+96%, +80%, +42%, +80%, and +83%) as compared to monolithic Mg. An attempt has been made in the present study to correlate the effect of different length scales of Al2O3 particulates on the microstructural and mechanical response of magnesium. PMID:24427874

  9. Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics.

    PubMed

    Zhang, Wen Ling; Choi, Hyoung Jin

    2012-05-01

    Silica-graphene oxide (Si-GO) hybrid composite particles were prepared by the hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of hydrophilic GO obtained from a modified Hummers method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images provided visible evidence of the silica nanoparticles grafted on the surface of GO, resulting in Si-GO hybrid composite particles. Energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) spectra indicated the coexistence of silica and GO in the composite particles. The Si-GO hybrid composite particles showed better thermal stability than that of GO according to thermogravimetric analysis (TGA). The electrorheological (ER) characteristics of the Si-GO hybrid composite based ER fluid were examined further by optical microscopy and a rotational rheometer in controlled shear rate mode under various electric field strengths. Shear stress curves were fitted using both conventional Bingham model and a constitutive Cho-Choi-Jhon model. The polarizability and relaxation time of the ER fluid from dielectric spectra measured using an LCR meter showed a good correlation with its ER characteristics. PMID:22486527

  10. Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre

    NASA Astrophysics Data System (ADS)

    Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.

    2012-06-01

    Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.

  11. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    PubMed

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites. PMID:20499931

  12. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2010-06-01

    In this paper, hybrid fillers, including carbon black (CB) and chopped short carbon fibers (SCF), are integrated into a styrene-based shape memory polymer (SMP) with sensing and actuating capabilities. The hybrid filler is expected to transform insulating SMP into conducting. Static mechanical properties of the SMP composites containing various filler concentrations of hybrid filler reinforcement are studied first, and it is theoretically and experimentally confirmed that the mechanical properties are significantly improved by a factor of filler content of SCF. The excellent electrical properties of this novel type of SMP composite are determined by a four-point-probe method. As a consequence, the sensing properties of SMP composite filled with 5 wt% CB and 2 wt% SCF are characterized by functions of temperature and strain. These two experimental results both aid the use of SMP composites as sensors that respond to changes in temperature or mechanical loads. On the other hand, the actuating capability of SMP composites is also validated and demonstrated. The dynamic mechanical analysis result reveals that the output strength of SMP composites is improved with an increase in filler content of SCF. The actuating capability of SMP composites is subsequently demonstrated in a series of photographs.

  13. Properties of Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Kang, Jin Ho; Grimsley, Brian W.; Ratcliffe, James G.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strength- and stiffness-to-weight ratios, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Carbon nanotubes (CNT) offer the potential to enhance the multi-functionality of composites with improved thermal and electrical conductivity. In this study, hybrid CNT/carbon fiber (CF) polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing. Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated.

  14. Mechanical behavior of polyester-based woven jute/glass hybrid composites

    NASA Astrophysics Data System (ADS)

    Ahsan, Q.; Tanju, S.

    2012-06-01

    In polymer composite fabrication system, hybridization of jute fibers with synthetic fibers is one of the techniques adopted to overcome some of the limitations (poor mechanical properties and moisture resistance) that have been identified for jute fiber reinforced composites. In the present study, the effect of hybridization on mechanical properties of jute and glass mat reinforced polyester composites has been evaluated experimentally. The composites were made of glass mat, jute mat and varying layers of jute and glass mat in the polyester matrix by applying hand lay-up technique at room temperature (250C). The values of mechanical properties obtained from tensile, flexural and interlaminar shear strength (ILSS) tests show significant improvement with the increase of glass fiber content in hybrid composites. But the positive contribution from glass mat in increasing of ILSS of composite is limited to some extent and the optimum ILSS is achieved when glass-jute incorporated in composite as 50-50 weight basis. SEM images were used to study the modes of fracture, fiber-matrix adhesion, and jute-glass layer adhesion. The fracture surfaces resulted from different tests clearly show that cracks propagate throughout the polyester matrix by tearing the jute mat and delaminating the glass mat.

  15. Syndiotactic Polystyrene/Hybrid Silica Spheres of POSS Siloxane Composites Exhibiting Ultralow Dielectric Constant.

    PubMed

    Joseph, Angel Mary; Nagendra, Baku; Surendran, K P; Gowd, E Bhoje

    2015-09-01

    Homogeneously dispersed hybrid silica/syndiotactic polystyrene composites were investigated for low-κ dielectric applications. The composites were prepared by a solution blending method, and their microstructures were analyzed by SEM, TEM, and AFM. Crystallization and phase transformation behavior of sPS were investigated using differential scanning calorimetry and wide-angle X-ray diffraction. These composites exhibited improved thermal stability and reduced thermal expansion coefficients. Promising dielectric properties were observed for the composites in the microwave frequency region with a dielectric constant (κ = 1.95) and loss (tan δ = 10(-4)) at 5 GHz. PMID:26287385

  16. Effect of fiber loading on flexural strength of hybrid sisal/hemp-HDPE composites

    NASA Astrophysics Data System (ADS)

    Aggarwal, Lakshya; Sinha, Shishir; Gupta, V. K.

    2015-05-01

    The continuing demand for sustainable materials and increasing environmental concerns have led to intense research in the field of natural fiber reinforced composites. Natural fibers are favored over synthetic fibers as reinforcement due to positive environmental benefits such as raw material utilization at source and easy disposable of the biodegradable fiber. In the present work, we have investigated flexural behavior of hybrid natural fiber reinforced HDPE composites. The matrix comprises of 50-50 ratio of virgin and recycled HDPE and the content of fibers (sisal and hemp) in the composite is varied from 10 to 30%. The natural fibers were mercerized with NaOH solution and chemically treated with maleic anhydride. The flexural specimens were prepared by injection moulding process and the testing was conducted in accordance to ASTM D790 standards. It is revealed that the flexural strength of the hybrid composite increases with the increase in fibers content when compared to specimen containing 100% HDPE.

  17. Predicting the tensile modulus and strength of single and hybrid natural fibre reinforced thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Facca, Angelo George

    Natural fibre reinforced thermoplastics (NFRT) are used in a variety of commercial applications, but there is little theoretical modeling of structure/property relationships in these materials. In this thesis, micromechanical models available in the short-fibre literature were adapted to predict the tensile modulus and strength of some NFRT formulations. Hemp, 20 and 40-mesh hardwood, rice hulls and E-glass fibres were blended into HDPE to produce single and hybrid composites. Changes in fibre density and moisture content that occur during composite manufacturing were included in the micromechanical models. To account for fibre densification, the Young's modulus of the natural fibres was determined on a cell wall basis. A modified hybrid rule of mixtures (HROM) equation that uses experimental data from single NFRT was developed and found to adequately predict the tensile modulus of the hybrid composites. The tensile modulus for both the single and hybrid composites was found to linearly increase with an increase in fibre loading. The failure mechanism for all composite specimens was due to fibre pullout followed by matrix failure. Consequently the tensile strength of the NFRT was predicted using a ROM strength equation, which was modified with a derived semi-empirical fibre clustering parameter. The clustering parameter correctly predicted that as fibre loading increased, the average fibre stress would decrease. By assuming no contact between different types of fibres it was possible to use a modified HROM strength equation to predict the tensile strength of the hybrid composites. As a result parameters taken from the respective single fibre systems could be applied directly to the HROM equation. The modified ROM and HROM strength equations adequately predicted the tensile strength of various single and hybrid fibre reinforced composites over a wide range of composite loading. In this study experiments were conducted to shed light on the effect of a coupling agent

  18. Analysis of thermal stresses in composite laminates by assumed stress hybrid multilayer element

    SciTech Connect

    Wang Liangzhong; Wang Cheng )

    1993-03-01

    Based on Hellinger-Reissner principle, a hybrid multilayer element is presented in this article. This element can be used for analyzing thermoelastic stresses in composite laminates induced by nonuniform temperature distribution. The thermal loads are derived from the functional directly in the element model. Numerical results show that this multilayer element model is suitable for thermal stress analysis of laminated composite structures. 9 refs.

  19. Structural analysis of hybrid titania-based mesostructured composites.

    PubMed

    Boettcher, Shannon W; Bartl, Michael H; Hu, Jerry G; Stucky, Galen D

    2005-07-13

    High-optical-quality titania-based mesostructured films with cubic or 2D-hexagonal symmetry were fabricated by combining trifluoroacetate (TFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) copolymers. The distribution, dynamics, and local environments of the TFA-modified titania, PEO, and PPO components of the hybrid were investigated. IR/Raman spectroscopy, in situ small-angle X-ray scattering, and transmission electron microscopy studies indicate that TFA coordinates the titanium center and forms a stable complex that is subsequently organized by the block copolymer species into ordered mesostructures. Solid-state NMR (19)F-->(1)H cross-polarization, (13)C{(1)H} two-dimensional heteronuclear correlation, and (1)H relaxation techniques were used to determine that PEO is predominantly incorporated within the TFA-modified titania, and that PPO environments encompass both microphase separated regions and interfacial regions composed of mixed PPO and TFA-modified titania. NMR (19)F multiple-quantum spin counting measurements suggest that -CF(3) groups of the trifluoroacetate ligands do not form clusters but instead randomly distribute within the inorganic component of the hybrid. PMID:15998076

  20. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system

    NASA Astrophysics Data System (ADS)

    Ha, Sung Min; Kwon, O. Hwan; Gyeong Oh, Yu; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Gak Kim, Byoung; Yoo, Youngjae

    2015-12-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)-1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

  1. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties

    NASA Astrophysics Data System (ADS)

    Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.

    2016-07-01

    The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.

  2. Hybrid visibility compositing and masking for illustrative rendering☆

    PubMed Central

    Bruckner, Stefan; Rautek, Peter; Viola, Ivan; Roberts, Mike; Sousa, Mario Costa; Gröller, M. Eduard

    2010-01-01

    In this paper, we introduce a novel framework for the compositing of interactively rendered 3D layers tailored to the needs of scientific illustration. Currently, traditional scientific illustrations are produced in a series of composition stages, combining different pictorial elements using 2D digital layering. Our approach extends the layer metaphor into 3D without giving up the advantages of 2D methods. The new compositing approach allows for effects such as selective transparency, occlusion overrides, and soft depth buffering. Furthermore, we show how common manipulation techniques such as masking can be integrated into this concept. These tools behave just like in 2D, but their influence extends beyond a single viewpoint. Since the presented approach makes no assumptions about the underlying rendering algorithms, layers can be generated based on polygonal geometry, volumetric data, point-based representations, or others. Our implementation exploits current graphics hardware and permits real-time interaction and rendering. PMID:20862189

  3. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  4. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase and lignocellulosic fibres, derived from sugarcane bagasse, apple and orange waste were moulded in a carver press in the presence of water and glycerol such as platicizers agents. Corn starch was introduced as a bio...

  5. A New View of Vega's Composition, Mass, and Age

    NASA Astrophysics Data System (ADS)

    Yoon, Jinmi; Peterson, Deane M.; Kurucz, Robert L.; Zagarello, Robert J.

    2010-01-01

    We present estimates of Vega's composition, mass, and age based on a simultaneous fit of high-resolution metal line profiles, the wings of the Balmer lines, the absolute visible/near-IR fluxes, and high angular resolution triple phase data from the Navy Prototype Optical Interferometer to gravity-darkened Roche models. This substantially expands our earlier analysis. We determine that Vega has a much lower mass, 2.135 ± 0.074 M sun, than generally assumed. This strongly supports the contention that Vega is metal-poor throughout (Z ~ 0.008), suggesting it was formed that way. Assuming a uniform composition equal to that derived for the surface, and the luminosity and radius obtained here, we derive a best estimate of Vega's age, 455 ± 13 Myr, and mass, 2.157 ± 0.017 M sun, by fitting to standard isochrones. We continue to argue that Vega is much too old to be coeval with other members of the Castor moving group and is thus unlikely to be a member. The updated chemical abundances continue to support the conclusion that Vega is a λ Boo star.

  6. A NEW VIEW OF VEGA'S COMPOSITION, MASS, AND AGE

    SciTech Connect

    Yoon, Jinmi; Peterson, Deane M.; Kurucz, Robert L.; Zagarello, Robert J. E-mail: dpeterson@astro.sunysb.ed E-mail: rzagarello@mail.astro.sunysb.ed

    2010-01-01

    We present estimates of Vega's composition, mass, and age based on a simultaneous fit of high-resolution metal line profiles, the wings of the Balmer lines, the absolute visible/near-IR fluxes, and high angular resolution triple phase data from the Navy Prototype Optical Interferometer to gravity-darkened Roche models. This substantially expands our earlier analysis. We determine that Vega has a much lower mass, 2.135 +- 0.074 M{sub sun}, than generally assumed. This strongly supports the contention that Vega is metal-poor throughout (Z approx 0.008), suggesting it was formed that way. Assuming a uniform composition equal to that derived for the surface, and the luminosity and radius obtained here, we derive a best estimate of Vega's age, 455 +- 13 Myr, and mass, 2.157 +- 0.017 M{sub sun}, by fitting to standard isochrones. We continue to argue that Vega is much too old to be coeval with other members of the Castor moving group and is thus unlikely to be a member. The updated chemical abundances continue to support the conclusion that Vega is a lambda Boo star.

  7. A novel hybrid joining methodology for composite to steel joints

    NASA Astrophysics Data System (ADS)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  8. Color stability of repaired composite submitted to accelerated artificial aging.

    PubMed

    Souza, Ana Beatriz Silva; Silame, Francisca Daniele Jardilino; Alandia-Roman, Carla Cecilia; Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability (ΔE) of nanoparticulate composite, with consideration for the type of surface treatment performed before repair. A Teflon matrix was used to fabricate 50 test specimens from composite. After initial color readout, the specimens were submitted to 100 hours of accelerated artificial aging (AAA). The samples were divided into five groups (n = 10), according to the surface treatment performed: sandblasting with aluminum oxide powder, phosphoric acid, and an adhesive system (Group 1); sandblasting with aluminum oxide powder, phosphoric acid, and a flowable composite (Group 2); abrasion with a diamond bur, phosphoric acid, and an adhesive system (Group 3); abrasion with a diamond bur, phosphoric acid, and a nanoparticulate composite (Group 4); and a control group (Group 5). After repair, a new color readout was taken, the test specimens were submitted to a new AAA cycle (300 hours), and the final color readout was taken. Comparison of the ΔE means (one-way ANOVA and Tukey tests, p < 0.05) demonstrated no statistically significant differences among the groups (p > 0.05) after 100 hours of AAA. After repair, Group 1 (4.61 ± 2.03) presented the highest color alteration with a statistically significant difference compared with the other groups (p < 0.05). After 300 hours, Group 4 specimens (13.84 ± 0.71) presented the lowest color alteration in comparison with the other groups, with a statistically significant difference (p < 0.05). It was concluded that the repair performed in Group 4 provided greater esthetic recovery, made possible by the regression in the ΔE values of the restorations after repair, and less color alteration of the restorations over the course of time. PMID:23032241

  9. Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybrid resin composite.

    PubMed

    Musanje, Lawrence; Ferracane, Jack L

    2004-08-01

    This study evaluated the effects of nanofiller surface treatment and resin viscosity on the early and long-term properties of experimental hybrid composites. Three resin formulations (low, medium and high viscosity) were prepared by varying the ratio of TEGDMA:UDMA:bis-GMA (47:33:16 wt%; 30:33:33 wt%; 12:33:51 wt%). Composites contained 71.3 wt% silanated strontium glass (1-3 microm) and 12.6 wt% of either silanated or unsilanated silica (OX-50; 0.04 microm). Specimens (n=10) for flexural strength, flexural modulus, fracture toughness and Knoop hardness were tested after 24 h, 1 and 6 months exposure to water at 37 degrees C. Degree of conversion (DC) was determined 24 h after photoinitiation using FTIR. Resin viscosity only had a marginal influence on the mechanical response of composites but it can be adjusted to achieve a balance between DC and mechanical properties. Adding non-bonded nanofiller to hybrid composites had no systematic effect on DC. Non-bonded nanofillers had no significant effect on the long-term properties of hybrid composites. PMID:15046897

  10. Three-year randomised clinical trial to evaluate the clinical performance, quantitative and qualitative wear patterns of hybrid composite restorations

    PubMed Central

    Palaniappan, Senthamaraiselvi; Elsen, Liesbeth; Lijnen, Inge; Peumans, Marleen; Van Meerbeek, Bart

    2009-01-01

    The aim of the study was to compare the clinical performance, quantitative and qualitative wear patterns of conventional hybrid (Tetric Ceram), micro-filled hybrid (Gradia Direct Posterior) and nano-hybrid (Tetric EvoCeram, TEC) posterior composite restorations in a 3-year randomised clinical trial. Sixteen Tetric Ceram, 17 TEC and 16 Gradia Direct Posterior restorations were placed in human molars and evaluated at baseline, 6, 12, 24 and 36 months of clinical service according to US Public Health Service criteria. The gypsum replicas at each recall were used for 3D laser scanning to quantify wear, and the epoxy resin replicas were observed under scanning electron microscope to study the qualitative wear patterns. After 3 years of clinical service, the three hybrid restorative materials performed clinically well in posterior cavities. Within the observation period, the nano-hybrid and micro-hybrid restorations evolved better in polishability with improved surface gloss retention than the conventional hybrid counterpart. The three hybrid composites showed enamel-like vertical wear and cavity-size dependant volume loss magnitude. Qualitatively, while the micro-filled and nano-hybrid composite restorations exhibited signs of fatigue similar to the conventional hybrid composite restorations at heavy occlusal contact area, their light occlusal contact areas showed less surface pitting after 3 years of clinical service. PMID:19669176

  11. Behaviour of hybrid jute-glass/epoxy composite tubes subjected to lateral loading

    NASA Astrophysics Data System (ADS)

    Khalid, A. A.

    2015-12-01

    Experimental work on hybrid and non-hybrid composite tubes subjected to lateral loading has been carried out using jute, glass and hybrid jute-glass/epoxy materials. Tubes of 200 mm length with 110 mm inner diameter were fabricated by hand lay-up method to investigate the effect of material used and the number of layers on lateral-load-displacement relations and on the failure mode. Crush force efficiency and the specific energy absorption of the composite tubes were calculated. Results show that the six layers glass/epoxy tubes supported load higher 10.6% than that of hybrid jute-glass/ epoxy made of two layers of jute/epoxy four layers of glass/epoxy. It has been found that the specific energy absorption of the glass/epoxy tubes is found higher respectively 11.6% and 46% than hybrid jute-glass/epoxy and jute/epoxy tubes. The increase in the number of layers from two to six increases the maximum lateral load from 0.53KN to 1.22 KN for jute/epoxy and from 1.35 KN to 3.87 KN for the glass/epoxy tubes. The stacking sequence of the hybrid tubes influenced on the maximum lateral load and the absorbed energy. The maximum load obtained for the six layers jute-glass/epoxy tubes of different staking sequence varies between 1.88 KN to 3.46 KN. Failure mechanisms of the laterally loaded composite tubes were also observed and discussed.

  12. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-09-01

    This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin–Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.

  13. Application of central composite design for DNA hybridization onto magnetic microparticles.

    PubMed

    Martins, S A M; Prazeres, D M F; Fonseca, L P; Monteiro, G A

    2009-08-01

    Central composite face-centered (CCF) design and response surface methodologies were used to investigate the effect of probe and target concentration and particle number in immobilization and hybridization on a microparticle-based DNA/DNA hybridization assay. The factors under study were combined according to the CCF design matrix, and the intensity of the hybridization signal was quantified by flow cytometry. A second-order polynomial was fitted to data and validated by analysis of variance. The results showed a complex relationship between variables and response given that all factors as well as some interactions were significant, yet it could explain 95% of the data. Probe and target concentration had the strongest impact on hybridization signal intensity. Increments in initial probe concentration in solution positively affected the hybridization signal until a negative influence of a compact probe layer emerged. This trend was attributed to probe-probe interactions. By manipulating particle number on both immobilization and hybridization, enhancements on the assay sensitivity could be obtained. Under optimized conditions, the limit of detection (LOD) at the 95% confidence level was determined to be 2.3 nM of target solution concentration. PMID:19435595

  14. Alteration of lunar optical properties: age and composition effects.

    PubMed

    Adams, J B; McCord, T B

    1971-02-12

    A model for lunar surface processes is presented which explains the main albedo and color contrasts and the temporal changes in these optical properties. Evidence from Apollo 11 and Apollo 12 samples and telescopic spectral reflectivity measurements indicates that the maria are similar in mineralogy on a regional scale and that the highlands are consistent with an anorthositic-gabbro composition. Bright craters and rays in both regions expose materials that are relatively crystalline compared with their backgrounds, which are richer in dark glass. With age, bright craters and rays in the maria darken in place by meteorite impact-induced vitrification and mixing with the surrounding material. Highland bright craters and rays may, however, darken primarily through regional contamination by iron- and titanium-rich mare material. PMID:17734782

  15. Edge crack growth of thermally aged graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Nelson, J. B.

    1984-01-01

    Laminates of Celion 6000/LARC-160 and Celion 6000/PMR-15 graphite/polyimide composite materials were aged in air at temperatures of 202, 232, 260 and 288 C for various times up to 15,000 hours. Three unidirectional specimen types were studied: short beam shear (SBS), flexure, and 153 mm square panels. The interior region of the square panels exhibited little or no property degradation, whereas both laminate materials degraded and cracked preferentially at the specimen edge perpendicular to the fibers. Using a dye penetrant, the specimens were X-rayed and the crack depth measured as a function of time and temperature. A time temperature superposition of the crack data was successfully performed using an Arrhenius form for the shift factor. A direct correlation was found for edge crack depth and SBS strength for the LARC-160 laminates but the correlation for PMR-15 laminates was more complex.

  16. Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites

    PubMed Central

    Ibrahim, Nor Azowa; Ariffin, Hidayah; Yunus, Wan Md. Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  17. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    PubMed

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  18. In vivo animal models of body composition in aging

    SciTech Connect

    Yasumura, S. |; Jones, K.; Spanne, P.; Schidlovsky, G.; Wielopolski, L.; Ren, X.; Glaros, D.; Xatzikonstantinou, Y. |

    1992-12-31

    We developed several techniques that provide data on body elemental composition from in vivo measurements in rats. These methods include total body potassium by whole-body counting of endogenous {sup 40}K; total body calcium (TBCa), sodium and chloride by in vivo neutron activation analysis and total body phosphorus (TBP) and nitrogen (TBN) by photon activation analysis. These elements provide information on total body fat, total body protein and skeletal mass. Measurements were made in 6-, 12- and 24-month-old rats. TBN Increased slightly between 6 and 12 months but was significantly lower by 24 months, indicating a substantial loss in total body protein. Working at the National Synchrotron light Source, we studied rat femurs by computed microtomography (CMT), and the elemental profile of the femur cortex by synchrotron-radiation induced X-ray emission (SRIXE). Although there were no significant changes in TBCA and TBP, indices of skeletal mass, CMT revealed a marked increase in the size and number of cavities in the endosteal region of the femur cortex with increasing age. The SRIXE analysis of this cortical bone revealed a parallel decrease in the endosteal Ca/P ratio. Thus, there are major alterations in bone morphology and regional elemental composition despite only modest changes in total skeletal mass.

  19. Effect of different bleaching regimens on the flexural strength of hybrid composite resin

    PubMed Central

    Feiz, Atiyeh; Samanian, Noushmehr; Davoudi, Amin; Badrian, Hamid

    2016-01-01

    Background: The entire effects of different bleaching regimens on the mechanical properties of composite resins have remained unknown. The purpose of this study was to evaluate the effects of different bleaching regimens on the flexural strength (FS) of hybrid composite resins. Materials and Methods: In this in vitro study, 80 bar-shaped specimens of hybrid composite resins were fabricated and randomly divided into four groups, 20 specimens in each group. First group (C) was considered as control. The other groups were treated by home bleaching (HB) agent, in-office bleaching (IB) agent, and the combination regimens (HIB), respectively. The FS was evaluated by three-point bending test by using a Universal Testing Machine. All data were analyzed by using Statistical Package for the Social Sciences (SPSS) software version 18, analysis of variance (ANOVA), and Turkey's post hoc statistical tests (α = 0.05). Results: The maximum mean value of FS was seen in HB group with significant differences to other groups (P < 0.05). Also, the minimum FS was observed in group HIB. Conclusion: Application of different bleaching regimens does not have any adverse effect on the FS of hybrid composite resins. However, the administration of HB regimens seemed to have lesser negative impact on the FS. PMID:27099423

  20. Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites

    PubMed Central

    Yazdani, Bahareh; Xu, Fang; Ahmad, Iftikhar; Hou, Xianghui; Xia, Yongde; Zhu, Yanqiu

    2015-01-01

    Tribological performance of the hot-pressed pure Al2O3 and its composites containing various hybrid contents of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) were investigated under different loading conditions using the ball-on-disc method. Benchmarked against the pure Al2O3, the composite reinforced with a 0.5 wt% GNP exhibited a 23% reduction in the friction coefficient along with a promising 70% wear rate reduction, and a hybrid reinforcement consisting of 0.3 wt.% GNPs + 1 wt.% CNTs resulted in even better performance, with a 86% reduction in the wear rate. The extent of damage to the reinforcement phases caused during wear was studied using Raman spectroscopy. The wear mechanisms for the composites were analysed based on the mechanical properties, brittleness index and microstructural characterizations. The excellent coordination between GNPs and CNTs contributed to the excellent wear resistance property in the hybrid GNT-reinforced composites. GNPs played the important role in the formation of a tribofilm on the worn surface by exfoliation; whereas CNTs contributed to the improvement in fracture toughness and prevented the grains from being pulled out during the tribological test. PMID:26100097

  1. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  2. Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Yazdani, Bahareh; Xu, Fang; Ahmad, Iftikhar; Hou, Xianghui; Xia, Yongde; Zhu, Yanqiu

    2015-06-01

    Tribological performance of the hot-pressed pure Al2O3 and its composites containing various hybrid contents of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) were investigated under different loading conditions using the ball-on-disc method. Benchmarked against the pure Al2O3, the composite reinforced with a 0.5 wt% GNP exhibited a 23% reduction in the friction coefficient along with a promising 70% wear rate reduction, and a hybrid reinforcement consisting of 0.3 wt.% GNPs + 1 wt.% CNTs resulted in even better performance, with a 86% reduction in the wear rate. The extent of damage to the reinforcement phases caused during wear was studied using Raman spectroscopy. The wear mechanisms for the composites were analysed based on the mechanical properties, brittleness index and microstructural characterizations. The excellent coordination between GNPs and CNTs contributed to the excellent wear resistance property in the hybrid GNT-reinforced composites. GNPs played the important role in the formation of a tribofilm on the worn surface by exfoliation; whereas CNTs contributed to the improvement in fracture toughness and prevented the grains from being pulled out during the tribological test.

  3. Charge transport in hybrid nanorod-polymer composite photovoltaiccells

    SciTech Connect

    Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

    2002-06-21

    Charge transport in composites of inorganic nanorods and aconjugated polymer is investigated using a photovoltaic device structure.We show that the current-voltage (I-V) curves in the dark can be modelledusing the Shockley equation modified to include series and shuntresistance at low current levels, and using an improved model thatincorporates both the Shockley equation and the presence of a spacecharge limited region at high currents. Under illumination, theefficiency of photocurrent generation is found to be dependent on appliedbias. Furthermore, the photocurrent-light intensity dependence was foundto be sublinear. An analysis of the shunt resistance as a function oflight intensity suggests that the photocurrent as well as the fill factoris diminished as a result of increased photoconductivity of the activelayer at high light intensity. By studying the intensity dependence ofthe open circuit voltage for nanocrystals with different diameters andthus ! band gaps, it was inferred that Fermi-level pinning occurs at theinterface between the aluminum electrode and the nanocrystal.

  4. Approaches to hybrid SHM and NDE of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Dawson, Alexander J.; Michaels, Thomas E.; Ruzzene, Massimo

    2014-03-01

    Periodic inspection of aerospace structures, while essential for ensuring their safety, incurs significant costs over a structure's life and also can result in significant loss of service. Structural health monitoring (SHM), which is also referred to as in situ nondestructive evaluation (NDE), offers the promise of more frequent assessments of structural integrity with little or no loss of service; however, such systems are not in common use. Here we consider a combined SHM and NDE approach to inspection of composite, plate-like components where the SHM system detects sites of possible damage and the follow-up NDE method utilizes the in situ SHM sensors to facilitate the inspection. The specific SHM approach considered is that of a sparse guided wave array using simple transducers that are spatially distributed on the structure. The NDE approach is non-contact guided wavefield imaging whereby one or more of the SHM transducers is used as a source and full wavefield data are recorded over the area of interest. This method has the advantage over conventional ultrasonic methods of being non-contact and requiring minimal surface preparation. Sparse array and wavefield data from a composite specimen with simulated sites of damage are presented here to illustrate the concept. Damage is simulated via glued-on steel plate pieces at multiple locations, and localization is performed using delay-and-sum imaging. A small, single site of simulated damage is well-localized, whereas larger and multiple sites of damage are not; however, their presence is readily detected. The follow-up wavefield imaging using a single sparse array transducer as a source is able to not only locate the sites of damage, but is able to provide a reasonable estimate of their sizes.

  5. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  6. Applications of multifunctional polymer-matrix composites in hybrid heat sinks

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Khan, Omer M.; Naguib, Hani E.; Dawson, Francis; Adinkrah, Vincent

    2012-04-01

    Designers of electronic devices and telecommunications equipment have used three-dimensional chip architecture, comprised of a vertically integrated stack of chips, to increase the number of transistors on integrated circuits. These latest chips generate excessive amount of heat, and thus can reach unacceptably high temperatures. In this context, this research aims to develop thermally conductive liquid crystal polymer (LCP)/hexagonal boron nitride (hBN) composite films to replace the traditionally-used Kapton films that satisfy the electrical insulation requirements for the attachment of heat sinks to the chips without compromising the heat dissipation performance. Parametric study was conducted to elucidate the effects of hBN contents on the heat dissipation ability of the composite. The performance of the hybrid heat sinks were experimentally simulated by measuring the temperature distribution of the hybrid heat sinks attached to a 10 W square-faced (i.e., 10 cm by 10 cm) heater. Experimental simulation show that the maximum temperature of the heater mounted with a hybrid heat sink reduced with increased hBN content. It is believed the fibrillation of LCP matrix leads to highly ordered structure, promoting heat dissipation ability of the electrically insulating pad of the hybrid heat sink.

  7. Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites

    NASA Astrophysics Data System (ADS)

    Alipour Skandani, A.; Masghouni, N.; Case, S. W.; Leo, D. J.; Al-Haik, M.

    2012-08-01

    In this study, ZnO nanorods are grown on the surface of polyacrylonitrile based carbon fibers using a low temperature hydrothermal synthesis technique. Bi-layered carbon fiber-ZnO nanorod hybrid composite with epoxy matrix is prepared and tested for vibrational attenuations using dynamic mechanical analysis. Results revealed that the growth of ZnO nanorods on top of carbon fiber increases the damping performance by 50% while causing a slight decrease (˜7%) on the storage modulus. The enhanced damping of the hybrid composites can be related to the frictional mechanisms between the ZnO nanorod/epoxy and nanorod/nanorod interfaces combined with piezoelectric effect of ZnO.

  8. High-Temperature Fatigue of a Hybrid Aluminum Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Clark, J. T.; Sanders, P. G.

    2014-01-01

    An aluminum metal matrix composite (MMC) brake drum was tested in fatigue at room temperature and extreme service temperatures. At room temperature, the hybrid composite did not fail and exceeded estimated vehicle service times. At higher temperatures (62 and 73 pct of the matrix eutectic), fatigue of a hybrid particle/fiber MMC exhibited failure consistent with matrix overloading. Overaging of the A356 matrix coupled with progressive fracture of the SiC particles combined to create the matrix overload condition. No evidence of macro-fatigue crack initiation or growth was observed, and the matrix-particle interface appeared strong with no debonding, visible matrix phases, or porosity. An effective medium model was constructed to test the hypothesis that matrix overloading was the probable failure mode. The measured particle fracture rate was fit using realistic values of the SiC Weibull strength and modulus, which in turn predicted cycles to failure within the range observed in fatigue testing.

  9. Hydrogen Gas Sensing Characteristics of Multiwalled Carbon Nanotubes Based Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Dhall, Shivani; Jaggi, Neena

    2016-01-01

    In the present work, hydrogen (H2) gas sensing characteristics of hybrid composites prepared by sputtering of platinum (Pt) metal on the synthesized composites of functionalized multiwalled carbon nanotubes (F-MWCNTs) with selective metal oxides (nickel oxide and cuprous oxide) have been investigated. Both of these sensors are found to have fast response, complete resistance recovery, and good baseline stability at room temperature (25°C). These sensors stably and reversibly respond to 0.05% concentration of H2 gas at 25°C. This sensing material was characterized by x-ray diffraction, Raman spectroscopy ,and scanning electron microscopy. To the best of our knowledge, detection of such low concentration of H2 gas is reported here for the first time using F-MWCNTs/NiO/Pt and F-MWCNTs/Cu2O/Pt hybrid nanostructures at 25°C.

  10. Flexural Properties of E Glass and TR50S Carbon Fiber Reinforced Epoxy Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Dong, Chensong; Sudarisman; Davies, Ian J.

    2013-01-01

    A study on the flexural properties of E glass and TR50S carbon fiber reinforced hybrid composites is presented in this paper. Specimens were made by the hand lay-up process in an intra-ply configuration with varying degrees of glass fibers added to the surface of a carbon laminate. These specimens were then tested in the three-point bend configuration in accordance with ASTM D790-07 at three span-to-depth ratios: 16, 32, and 64. The failure modes were examined under an optical microscope. The flexural behavior was also simulated by finite element analysis, and the flexural modulus, flexural strength, and strain to failure were calculated. It is shown that although span-to-depth ratio shows an influence on the stress-strain relationship, it has no effect on the failure mode. The majority of specimens failed by either in-plane or out-of-plane local buckling followed by kinking and splitting at the compressive GFRP side and matrix cracking combined with fiber breakage at the CFRP tensile face. It is shown that positive hybrid effects exist for the flexural strengths of most of the hybrid configurations. The hybrid effect is noted to be more obvious when the hybrid ratio is small, which may be attributed to the relative position of the GFRP layer(s) with respect to the neutral plane. In contrast to this, flexural modulus seems to obey the rule of mixtures equation.

  11. A review of composite material applications in the automotive industry for the electric and hybrid vehicle

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.

    1979-01-01

    A review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass provides, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems encountered include the attainment of mass production techniques and the prevention of environmental hazards.

  12. Comparison of the abrasive wear resistance between amalgams, hybrid composite material and different dental cements.

    PubMed

    Gil, F J; Espias, A; Sánchez, L A; Planell, J A

    1999-12-01

    This paper reports on the abrasion wear of various restorative dental materials (three amalgams and two dental cements and a hybrid composite material) commonly used in dentistry. The mechanical properties, surface roughness and the volume loss by abrasion were determined for the different materials studied. The results showed a better profile for the amalgams versus the composite materials due to the failure of the polymeric matrix of the latter materials. However, the amalgams exhibited corrosion observed by means of Scanning Electron Microscopy. PMID:10907431

  13. Hybrid type anterior fibre-reinforced composite resin prosthesis: a case report.

    PubMed

    Garoushi, Sufyan; Shinya, Akikazu; Shinya, Akiyoshi; Vallittu, Pekka K

    2008-03-01

    A variety of therapeutic modalities, from implant to conventional Maryland prosthesis, can be used for the replacement of a missing anterior tooth. In patients refusing implant treatment, when minimal teeth reduction is preferred, a fibre reinforced composite (FRC) prosthesis can be a good alternative to conventional prosthetic techniques. The purpose of this case report is to describe the clinical procedure for fabricating hybrid type FRC prosthesis with pre-impregnated unidirectional E-glass fibres. Fibre-reinforced composite, in combination with adhesive technology, appears promising treatment option for replacing missing teeth. However, further clinical investigation will be required to provide additional information on this technique. PMID:18468325

  14. Age-dependent morphological and compositional variations on Ceres

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    2016-04-01

    Extended smooth plains cover the interior of a number of craters on Ceres. Smooth plains appear on different topographic levels associated with pits and flow-like features that overrun crater rims. The material forming these plains also ponds in depressions and smaller craters and cover the pre-existing surface creating distinct geological boundaries. Ikapati crater shows smooth plains on different topographic levels associated with pits and flow-like features that overrun crater rims. The material forming these plains, ponds in depressions and smaller craters and cover the pre-existing surface creating a distinct geological boundary. The interior of Occator also exhibits extended plains of ponded material, multiple flows originating from the center overwhelming the mass wasting deposits from the rim, dome-like features, vents cracks and fissures. Furthermore, crater densities on Occator's floor are lower than those on the ejecta blanket indicating a post-impact formation age of the flows. The flows to the northeast appear to originate from the central region and move slightly uphill. This indicates either a feeding zone that pushes the flows forward by supplying low-viscosity material or a depression of the crater center, possibly after discharging a subsurface reservoir. The plains and flows as well as some areas surrounding the craters appear spectrally blue. Both plains and flow material are characterized in camera and spectrometer visible spectra by a slightly negative slope with a gradual drop off up to 10% in reflectance from 0.5μm to 1μm. Although the spectral variations in the visible are subtle, they are clearly expressed in the color ratio composite. The crater densities of 20 locations across the surface of Ceres with different spectral behavior were analyzed in order to investigate the age dependence of spectral surface features. The results indicate that bluish material is mainly associated with the youngest impact craters on Ceres (< 0.5 Ga) while

  15. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    PubMed

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. PMID:27145332

  16. Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.

    2006-12-01

    The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.

  17. Physico-mechanical and tribological properties of Grewia Optiva fiber/bio-particulates hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Gangil, Brijesh; Patel, Vinay Kumar

    2016-05-01

    Lack of resources and increasing environmental issues has received widespread attention for the development of natural fiber/ particulate reinforced hybrid polymer composites. In the present investigation the authors use (GO) Grewia Optiva as the main reinforcement and rice husk/wheat straw as additional particulates for improving the mechanical and wear properties of polymer composites. The samples were prepared by hand layup technique according to ASTM standards. The results indicated that incorporation of wheat straw with GO polymer materials exhibited better hardness (2.5 times harder) and less wear (0.85 times) than mono GO fiber polymer composites (GOFRP). Moreover, Rice husk filled GOFRP shows superior impact energy among the all set of composites. Water absorption behavior was also discussed in this investigation.

  18. Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices.

    PubMed

    Shtein, Michael; Nadiv, Roey; Buzaglo, Matat; Regev, Oren

    2015-10-28

    Thermal management has become a critical aspect in next-generation miniaturized electronic devices. Efficient heat dissipation reduces their operating temperatures and insures optimal performance, service life, and efficacy. Shielding against shocks, vibrations, and moisture is also imperative when the electronic circuits are located outdoors. Potting (or encapsulating) them in polymer-based composites with enhanced thermal conductivity (TC) may provide a solution for both thermal management and shielding challenges. In the current study, graphene is employed as a filler to fabricate composites with isotropic ultrahigh TC (>12 W m(-1) K(-1)) and good mechanical properties (>30 MPa flexural and compressive strength). To avoid short-circuiting the electronic assemblies, a dispersion of secondary ceramic-based filler reduces the electrical conductivity and synergistically enhances the TC of composites. When utilized as potting materials, these novel hybrid composites effectively dissipate the heat from electronic devices; their operating temperatures decrease from 110 to 37 °C, and their effective thermal resistances are drastically reduced, by up to 90%. The simple filler dispersion method and the precise manipulation of the composite transport properties via hybrid filling offer a universal approach to the large-scale production of novel materials for thermal management and other applications. PMID:26445279

  19. Highly atom-economic synthesis of graphene/Mn₃O₄ hybrid composites for electrochemical supercapacitors.

    PubMed

    Jiangying, Qu; Feng, Gao; Quan, Zhou; Zhiyu, Wang; Han, Hu; Beibei, Li; Wubo, Wan; Xuzhen, Wang; Jieshan, Qiu

    2013-04-01

    A highly atom-economic procedure for the preparation of reduced graphene oxide/Mn3O4 (rGO/Mn3O4) composites is reported. Pristine graphene oxide/manganese sulfate (GO/MnSO4) suspension produced by modified Hummers method is utilized with high efficiency, which has been in situ converted into GO/Mn3O4 hybrid composite by air oxidation, then into rGO/Mn3O4 composite by means of dielectric barrier discharge (DBD) plasma-assisted deoxygenation. The Mn3O4 content of the rGO/Mn3O4 composites can be readily tailored. It is observed that Mn3O4 nanoparticles of 15-24 nm are well-dispersed on graphene sheets with Mn3O4 loading as high as 90%. The specific capacitance of the as-prepared rGO/Mn3O4 hybrids with 90% Mn3O4 reaches 193 F g(-1) when employed as the electrode material in neutral Na2SO4 electrolyte solutions (76 F g(-1) for pristine graphene and 95 F g(-1) for pure Mn3O4), which indicates the positive synergetic effects from both graphene and attached Mn3O4. The method developed in this study should offer a new technique for the large scale and highly atom-economic production of graphene/MnOx composites for many applications. PMID:23459860

  20. High strength thermoplastic composite hybrids containing random and oriented fiber reinforcements

    SciTech Connect

    Kao, M.; Kovacich, A.; Marshall, D.; Schachner, K.

    1997-12-31

    Polypropylene-based composites containing hybrid reinforcements of random and oriented fibers were developed by combining Glass Mat Thermoplastic (GMT) composite sheets with thin tapes containing unidirectional fibers. The idea of this construction is to use GMT to form the basic shape of a composite structure while adding oriented tape at strategic locations for additional reinforcement according to the load requirement. Compression molding was used to laminate GMT sheets and oriented tapes in various combinations of tape arrangement. Room temperature bending tests showed that beam deflection could be improved by 33% when it was reinforced with one layer of the glass tape on the tension side and up to 71% when reinforced with one layer each of the carbon tape on the tension and compression sides. Finite Element Analyses showed the deflection of hybrid beams under different loading conditions agreed well with the experimental data. The hybrid concept was also successfully applied to an automotive seat cushion frame in which glass and carbon tapes were molded-in at the high stress area under production conditions, indicating that this concept is both feasible and practical for automotive structural applications.

  1. Uranium isotopic composition and absolute ages of Allende chondrules

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.; Budde, G.; Kleine, T.

    2015-11-01

    A handful of events, such as the condensation of refractory inclusions and the formation of chondrules, represent important stages in the formation and evolution of the early solar system and thus are critical to understanding its development. Compared to the refractory inclusions, chondrules appear to have a protracted period of formation that spans millions of years. As such, understanding chondrule formation requires a catalog of reliable ages, free from as many assumptions as possible. The Pb-Pb chronometer has this potential; however, because common individual chondrules have extremely low uranium contents, obtaining U-corrected Pb-Pb ages of individual chondrules is unrealistic in the vast majority of cases at this time. Thus, in order to obtain the most accurate 238U/235U ratio possible for chondrules, we separated and pooled thousands of individual chondrules from the Allende meteorite. In this work, we demonstrate that no discernible differences exist in the 238U/235U compositions between chondrule groups when separated by size and magnetic susceptibility, suggesting that no systematic U-isotope variation exists between groups of chondrules. Consequently, chondrules are likely to have a common 238U/235U ratio for any given meteorite. A weighted average of the six groups of chondrule separates from Allende results in a 238U/235U ratio of 137.786 ± 0.004 (±0.016 including propagated uncertainty on the U standard [Richter et al. 2010]). Although it is still possible that individual chondrules have significant U isotope variation within a given meteorite, this value represents our best estimate of the 238U/235U ratio for Allende chondrules and should be used for absolute dating of these objects, unless such chondrules can be measured individually.

  2. Sex chromosome loss and aging: In situ hybridization studies on human interphase nuclei

    SciTech Connect

    Guttenbach, M.; Koschorz, B.; Bernthaler, U.

    1995-11-01

    A total of 1,000 lymphocyte interphase nuclei per proband from 90 females and 138 males age 1 wk to 93 years were analyzed by in situ hybridization for loss of the X and Y chromosomes, respectively. Both sex chromosomes showed an age-dependent loss. In males, Y hypoploidy was very low up to age 15 years (0.05%) but continuously increased to a frequency of 1.34% in men age 76-80 years. In females, the baseline level for X chromosome loss is much higher than that seen for the Y chromosome in males. Even prepubertal females show a rate of X chromosome loss on the order of 1.5%-2.5%, rising to {approximately}4.5%-5% in women older than 75 years. Dividing the female probands into three biological age groups on the basis of sex hormone function (<13 years, 13-51 years, and >51 years), a significant correlation of X chromosome loss versus age could clearly be demonstrated in women beyond age 51 years. Females age 51-91 years showed monosomy X at a rate from 3.2% to 5.1%. In contrast to sex chromosomal loss, the frequency of autosomal monosomies does not change during the course of aging: chromosome 1 and chromosome 17 monosomic cells were found with a constant incidence of 1.2% and 1%, respectively. These data also indicate that autosome loss in interphase nuclei is not a function of chromosome size. 34 refs., 5 figs., 6 tabs.

  3. Aging characteristics of short glass fiber reinforced ZA-27 alloy composite materials

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Girish, B. M.; Satish, B. M.; Kamath, R.

    1998-12-01

    Aging characteristics of short glass fiber reinforced ZA-27 alloy composite materials have been evaluated in the present study. The liquid metallurgy technique was used to fabricate the composites, in which preheated short glass fibers were introduced into the ZA-27 alloy melt above its liquidus temperature. The aging temperature employed was 125 °C for 6, 12,18, and 24 h. The aged alloy (no fibers) reached the peak hardness after 18 h, while the composites (regardless of filler content) reached the same hardness in 12 h. It is hypothesized that the aging treatment of a composite improves the strength of the interface between the short fibers and the matrix. This is confirmed by the tensile fractograph analysis, which indicates that at a given aging temperature, the composites aged for 18 h exhibit short fibers that remain attached to the metal matrix, while those aged for 6 h undergo debonding.

  4. The penetrometer - A technique for monitoring composite propellant ageing characteristics

    NASA Astrophysics Data System (ADS)

    Faulkner, G. S.

    The monitoring of the natural and accelerated aging of rubbery composite propellants by using a non-destructive mechanical properties tester, the 'penetrometer', is presented. This capability facilitates predictions of rocket-motor service life and also detects motors that may not have been stored correctly. The probe is inserted into the conduit of a motor and held in place by an integral, motor-specific, air-bag. The indenter is then driven into the charge in a low-stress region. Information obtained from the test is displayed graphically on a microcomputer, analyzed, and stored. It is concluded that, because not all of the rocket motors will have seen the same environment depending on the individual motor history, it will be possible to extend the lifetime before disposal since the charge can now be tested. This in turn will lead to financial savings if the charge's life can be said to have 'X' years of life left and does not need to be withdrawn from service.

  5. The concept of a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers

    NASA Astrophysics Data System (ADS)

    Ray, M. C.

    2010-03-01

    A new hybrid piezoelectric composite (HPZC) reinforced with zigzag single-walled carbon nanotubes (CNTs) and piezoelectric fibers is proposed. The novel constructional feature of this composite is that the uniformly aligned CNTs are radially grown on the surface of piezoelectric fibers. A micromechanics model is derived to estimate the effective piezoelectric and elastic properties. It is found that the effective piezoelectric coefficient e31 of the proposed HPZC, which accounts for the in-plane actuation, is significantly higher than that of the existing 1-3 piezoelectric composite without reinforcement with carbon nanotubes and the previously reported hybrid piezoelectric composite (Ray and Batra 2009 ASME J. Appl. Mech. 76 034503).

  6. Effect of winding layer and speed on kenaf/glass fiber hybrid reinforced acrylonitrile butadiene styrene (ABS) composites

    NASA Astrophysics Data System (ADS)

    Khoni, Norizzahthul Ainaa Abdul; Sharifah Shahnaz S., B.; Ghazali, Che Mohd Ruzaidi

    2016-07-01

    The usage of natural fiber is becoming significant in composite industries due to their good performance. Single and continuous natural fibers have relatively high mechanical properties; especially their young modulus can be as high as glass fibers. Filament winding is a method to produce technically aligned composites which have high fibers content. The properties of filament winding can be tailored to meet the end product requirements. This research studied the compression properties of kenaf/glass fibers hybrid reinforced composites. Kenaf/glass fibers hybrid composite samples were fabricated by filament winding technique and their properties were compared with the properties of neat kenaf fiber and glass fibers composites. The kenaf/glass fiber hybrid composites exhibited higher strength compared to the neat glass fibers composites. Composites of helical pattern, which produced at low winding speed showed better compression resistance than hoop pattern winding, which produced at high winding speed. As predicted, kenaf composite showed highest water absorption; followed by kenaf/glass fiber hybrid composites while neat glass fiber has lowest water absorption capability.

  7. Water-Soluble Luminescent Hybrid Composites Consisting of Oligosilsesquioxanes and Lanthanide Complexes and their Sensing Ability for Cu(2.).

    PubMed

    Xu, Qianqian; Li, Zhiqiang; Li, Huanrong

    2016-02-01

    Water-soluble hybrid composites with great potential for selective and sensitive sensing and that are obtained through simple, rapid, and environmentally friendly methods are highly desirable and remain a challenging task. Herein, we present luminescent hybrid composites that were realized by linking Na3 [Ln(dpa)3 ] (dpa=2,6-pyridinedicarboxylic acid) to octa-amino functionalized polyhedral oligomeric silsesquioxane (POSS-NH2 ) through hydrogen-bonding interactions between the oxygen atoms of the carboxylate groups of dpa and the hydrogen-bond-donor amino groups. The resulting hybrid composites Ln(dpa)3 @POSS-NH2 are highly soluble in aqueous solutions and the quantum yield of Eu(dpa)3 @POSS-NH2 is as high as 56.5 % or 46.3 % in the solid state and in aqueous solution, respectively, as determined by using the integrating sphere method. The novel water-soluble luminescent hybrid composites exhibit high thermal and photostability, and the emitted colors of the resulting hybrid composite can be finely tuned by changing the Eu(3+) /Tb(3+) ratio. Interestingly, Eu(dpa)3 @POSS-NH2 hybrid composites exhibited an effective switch-off fluorescence response to Cu(2+) over other common metal ions in aqueous media. PMID:26808058

  8. Spatial Reference Memory in Normal Aging Fischer 344 × Brown Norway F1 Hybrid Rats

    PubMed Central

    McQuail, Joseph A.; Nicolle, Michelle M.

    2014-01-01

    Fischer 344 × Brown Norway F1 (F344×BN-F1) hybrid rats express greater longevity with improved health relative to aging rodents of other strains; however, few behavioral reports have thoroughly evaluated cognition across the F344×BN-F1 lifespan. Consequently, this study evaluated spatial reference memory in F344×BN-F1 rats at 6, 18, 24 or 28 months (mo) of age in the Morris water maze. Reference memory decrements were observed between 6 mo and 18 mo and between 18 mo and 24 mo. At 28 mo, spatial learning was not worse than 24 mo, but swim speed was significantly slower. Reliable individual differences revealed that ~50% of 24-28 mo performed similarly to 6 mo while others were spatial learning-impaired. Aged rats were impaired at learning within daily training sessions, but not impaired at retaining information between days of training. Aged rats were also slower to learn to escape onto the platform, regardless of strategy. In summary, these data clarify the trajectory of cognitive decline in aging F344×BN-F1 rats and elucidate relevant behavioral parameters. PMID:25086838

  9. Film Delivery Module For Fiber Placement Fabrication of Hybridized Composite Structures

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; Young, Greg

    2005-01-01

    A new fabrication technology has been developed at the NASA Marshall Space Flight Center that will allow for the fabrication of hybridized composite structures using fiber placement processing. This technology was originally developed in response to a need to address the issue of hydrogen permeation and microcracking in cryogenic propellant tanks. Numerous thin polymeric and metallized films were investigated under low temperatures conditions for use as barrier films in a composite tank. Manufacturing studies conducted at that time did not address the processing issues related to fabrication of a hybridized tank wall. A film processing head was developed that will allow for the processing of thin polymeric and metallized films, metallic foils, and adhesives using fiber placement processing machinery. The film head is designed to enable the simultaneous processing of film materials and composite tape/tow during the composite part layup process and is also capable of processing the film during an independent operation. Several initial demonstrations were conducted to assess the performance of the film module device. Such assessments included film strip lay-up accuracy, capability to fabricate panels having internal film liners, and fabrication of laminates with embedded film layers.

  10. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    PubMed Central

    2014-01-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC. PMID:25232295

  11. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    NASA Astrophysics Data System (ADS)

    Hu, Yun; Ehrich, Marion; Fuhrman, Kristel; Zhang, Chenming

    2014-08-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.

  12. Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites

    NASA Astrophysics Data System (ADS)

    Savchyn, V. P.; Popov, A. I.; Aksimentyeva, O. I.; Klym, H.; Horbenko, Yu. Yu.; Serga, V.; Moskina, A.; Karbovnyk, I.

    2016-07-01

    The radiation properties and the electronic structure of hybrid composites based on suspension polystyrene (PS) and nanocrystals of BaZrO3 (BZO) (d < 50 nm) have been studied using luminescent spectroscopy and x-ray analysis. A strong cathodoluminescence (CL) in BZO-nanocrystals is observed in temperature range 80-293 K. It is modified in BZO-PS composites: both the low- and a high-energy bands (near 4 eV) appear, together with a significant reduction in the CL intensity. A decrease of the lattice parameter a for BZO phase in the composite and the modification of CL spectra indicate for changes in the nanocrystalline structure induced by the polymer.

  13. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates.

    PubMed

    Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C

    2016-08-01

    A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen. PMID:27115575

  14. Simulation of ultrasonic inspection of curved composites using a hybrid semi-analytical/numerical code

    NASA Astrophysics Data System (ADS)

    Reverdy, Frédéric; Mahaut, Steve; Dominguez, Nicolas; Dubois, Philippe

    2015-03-01

    Carbon Fiber reinforced composites are increasingly used in structural parts in the aeronautics industry, as they allow to reduce the weight of aircrafts while maintaining high mechanical performances. However, such structures can be complicated to inspect due to their complex geometries and complex composite properties, leading to highly heterogeneous and anisotropic materials. Different potential damages and manufacturing flaws related to these parts are to be detected: porosities, ply waviness, delaminations after impact. Ultrasonic inspection, which is commonly used to test the full volume of composite panels, thus has to cope with both complex wave propagation (within anisotropic parts whose crystallographic orientation varies according to the layers structure) and flaw interaction (local distortion of plies such as ply waviness, small pores, structural noise due to periodicity patterns…). Developing NDT procedures for those parts therefore requires simulation tools to help for understanding those phenomena, and to optimize probes and techniques. Within the CIVA multi-techniques platform, CEA-LIST has developed semi-analytical tools for ultrasonic techniques, which have the advantages of high computational efficiency (fast calculations), but with limited range of application due to some hypothesis (for instance, homogenization approaches which don't allow to take account of structural noise). On the other hand, numerical methods such as finite element (FEM) or finite difference in time domain (FDTD) are more suitable to compute ultrasonic wave propagation and defect scattering in complex materials such as composite but require more computational efforts. Hybrid methods couple semi-analytical solutions and numerical computations in limited spatial domains to handle complex cases with high computation performances. In CIVA we have integrated a hybrid model that combines the semi-analytical methods developed at CEA to FDTD codes developed at Airbus Group

  15. SimConcept: a hybrid approach for simplifying composite named entities in biomedical text.

    PubMed

    Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2015-07-01

    One particular challenge in biomedical named entity recognition (NER) and normalization is the identification and resolution of composite named entities, where a single span refers to more than one concept (e.g., BRCA1/2). Previous NER and normalization studies have either ignored composite mentions, used simple ad hoc rules, or only handled coordination ellipsis, making a robust approach for handling multitype composite mentions greatly needed. To this end, we propose a hybrid method integrating a machine-learning model with a pattern identification strategy to identify the individual components of each composite mention. Our method, which we have named SimConcept, is the first to systematically handle many types of composite mentions. The technique achieves high performance in identifying and resolving composite mentions for three key biological entities: genes (90.42% in F-measure), diseases (86.47% in F-measure), and chemicals (86.05% in F-measure). Furthermore, our results show that using our SimConcept method can subsequently improve the performance of gene and disease concept recognition and normalization. SimConcept is available for download at: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/SimConcept/. PMID:25879978

  16. SimConcept: A Hybrid Approach for Simplifying Composite Named Entities in Biomedical Text

    PubMed Central

    Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2015-01-01

    One particular challenge in biomedical named entity recognition (NER) and normalization is the identification and resolution of composite named entities, where a single span refers to more than one concept (e.g., BRCA1/2). Previous NER and normalization studies have either ignored composite mentions, used simple ad-hoc rules, or only handled coordination ellipsis, making a robust approach for handling multi-type composite mentions greatly needed. To this end, we propose a hybrid method integrating a machine-learning model with a pattern identification strategy to identify the individual components of each composite mention. Our method, which we have named SimConcept, is the first to systematically handle many types of composite mentions. The technique achieves high performance in identifying and resolving composite mentions for three key biological entities: genes (90.42% in F-measure), diseases (86.47% in F-measure) and chemicals (86.05% in F-measure). Furthermore, our results show that using our SimConcept method can subsequently improve the performance of gene and disease concept recognition and normalization. PMID:25879978

  17. Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Shengfeng; Dai, Xiaoqin

    2010-05-01

    In order to investigate the microstructure characteristics and properties of Ni-based WC composite coatings containing a relatively large amount of WC particles by laser induction hybrid rapid cladding (LIHRC) and compare to the individual laser cladding without preheating, Ni60A + 35 wt.% WC composite coatings are deposited on A3 steel plates by LIHRC and the individual laser cladding without preheating. The composite coating produced by the individual laser cladding without preheating exhibits many cracks and pores, while the smooth composite coating without cracks and pores is obtained by LIHRC. Moreover, the cast WC particles take on the similar dissolution characteristics in Ni60A + 35 wt.% WC composite coatings by LIHRC and the individual laser cladding without preheating. Namely, the completely dissolved WC particles interact with Ni-based alloy solvent to precipitate the blocky and herringbone carbides, while the partially dissolved WC particles still preserve the primary lamellar eutectic structure. A few WC particles are split at the interface of WC and W 2C, and then interact with Ni-based alloy solvent to precipitate the lamellar carbides. Compared with the individual laser cladding without preheating, LIHRC has the relatively lower temperature gradient and the relatively higher laser scanning speed. Therefore, LIHRC can produce the crack-free composite coating with relatively higher microhardness and relatively more homogeneous distribution of WC particles and is successfully applied to strengthen the corrugated roller, showing that LIHRC process has a higher efficiency and good cladding quality.

  18. Age and Social Composition Factors as Explanations for Cleavages in Socio-Political Values.

    ERIC Educational Resources Information Center

    Tedin, Kent L.

    1978-01-01

    This analysis tested for the effects of age vs social composition in explaining variation in four attitudinal dependent variables. Using a sample especially drawn to study generational differences, and employing a multivariate statistical model, it was found that age differences were only modestly reduced by social composition variables. (Author)

  19. Hybrid carbon fiber/carbon nanotube composites for structural damping applications

    NASA Astrophysics Data System (ADS)

    Tehrani, M.; Safdari, M.; Boroujeni, A. Y.; Razavi, Z.; Case, S. W.; Dahmen, K.; Garmestani, H.; Al-Haik, M. S.

    2013-04-01

    Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT-carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1-60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface.

  20. Evaluation of a hybrid paper-electronic medication management system at a residential aged care facility.

    PubMed

    Elliott, Rohan A; Lee, Cik Yin; Hussainy, Safeera Y

    2016-06-01

    Objectives The aims of the study were to investigate discrepancies between general practitioners' paper medication orders and pharmacy-prepared electronic medication administration charts, back-up paper charts and dose-administration aids, as well as delays between prescribing, charting and administration, at a 90-bed residential aged care facility that used a hybrid paper-electronic medication management system. Methods A cross-sectional audit of medication orders, medication charts and dose-administration aids was performed to identify discrepancies. In addition, a retrospective audit was performed of delays between prescribing and availability of an updated electronic medication administration chart. Medication administration records were reviewed retrospectively to determine whether discrepancies and delays led to medication administration errors. Results Medication records for 88 residents (mean age 86 years) were audited. Residents were prescribed a median of eight regular medicines (interquartile range 5-12). One hundred and twenty-five discrepancies were identified. Forty-seven discrepancies, affecting 21 (24%) residents, led to a medication administration error. The most common discrepancies were medicine omission (44.0%) and extra medicine (19.2%). Delays from when medicines were prescribed to when they appeared on the electronic medication administration chart ranged from 18min to 98h. On nine occasions (for 10% of residents) the delay contributed to missed doses, usually antibiotics. Conclusion Medication discrepancies and delays were common. Improved systems for managing medication orders and charts are needed. What is known about the topic? Hybrid paper-electronic medication management systems, in which prescribers' orders are transcribed into an electronic system by pharmacy technicians and pharmacists to create medication administration charts, are increasingly replacing paper-based medication management systems in Australian residential aged care

  1. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    PubMed

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented. PMID:27455650

  2. Hybrid Three-Dimensional (3-D) Woven Thick Composite Architectures in Bending

    NASA Astrophysics Data System (ADS)

    Pankow, Mark; Quabili, Ashiq; Yen, Chian-Fong

    2013-11-01

    In this study, three 3-dimensional (3-D) woven composite materials were examined to determine how yarn tow configurations affect the flexural response of the structure. Woven fabric preforms were manufactured with a Z-fiber architecture in 2-3 in. thicknesses. These preforms contained S-2 Glass (AGY, Aiken, SC, USA), carbon, and Twaron (Teijin Aramid, Arnhem, The Netherlands) yarns in different architectures creating a hybrid material system. Due to the thickness of the material, these samples required a significant span length (30 in.). The results showed a change in the strength and degradation after failure with the addition of carbon layers in tension.

  3. Composition of Ultra High Energy Cosmic Rays Observed by Telescope Array in Hybrid Mode

    NASA Astrophysics Data System (ADS)

    Hanlon, William; Telescope Array Collaboration

    2016-03-01

    The energy spectrum of cosmic rays exhibits several important features such as the knee (E ~10 15 . 5 eV), ankle (E ~10 18 . 7 eV), and high energy suppression (E ~10 19 . 8 eV). Cosmic ray chemical composition is the key to understanding their galactic and extragalactic sources as well as the origin of particle production and acceleration mechanisms. Energy dependent chemical composition is a fundamental input for models of cosmic ray sources and interstellar transport which may lead to competing explanations of the observed spectral features. Understanding composition will therefore allow one to distinguish between the different scenarios of cosmic ray origin, a decades old problem in astrophysics. In this talk we will describe measurements of ultra high energy cosmic ray composition performed by Telescope Array (TA) using Xmax measured in extended air showers (EAS) simultaneously observed by the TA surface array and TA fluorescence stations (called hybrid mode). Showers with primary energies above 1018 eV will be considered. We will also discuss improved methods of comparing the measured composition to EAS models.

  4. Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane.

    PubMed

    Zhang, Yuqing; Jin, Zhenhua; Shan, Xing; Sunarso, Jaka; Cui, Ping

    2011-02-15

    Polysulfone (PSF) membranes are broadly applied in many fields owing to good physicochemical stability, resistance to oxidation and chlorine. But when treated with wastewater containing oil, PSF membranes are easy to be contaminated for its hydrophobicity, which can result in the declining of flux and lifespan of the membrane and limit their application in large scale. To enhance the capability of PSF membrane in the above circumstances, phosphorylated Zr-doped hybrid silica particles (SZP particles) were firstly prepared. SZP particles have various point defects inside their structure and lots of hydroxide radicals on their surface. SZP particles were added to the porous matrix of PSF to prepare a novel composite membrane (SZP/PSF) through a phase inversion process. Finally, the optimum preparation conditions of SZP/PSF composite membranes were determined. The optimum conditions are: the mass ratio of PSF, PEG400 and SZP is 12:10:10; ultrasound 10 min inside each 30 min; the pre-evaporating time is 10s. Optimized SZP/PSF composite membrane was characterized by scanning electron microscope (SEM) and ultrafiltration experiment. The results indicate that SZP particles can be uniformly dispersed in SZP/PSF composite membranes with excellent hydrophilic property, antifouling capability and tensile strength. Therefore, it can be concluded that the optimized SZP/PSF composite membrane is desirable in the treatment of wastewater containing oil and wastewater. PMID:21122987

  5. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    NASA Astrophysics Data System (ADS)

    Davoodi, M. M.; Sapuan, S. M.; Ali, Aidy; Ahmad, D.; Khalina, A.

    2010-05-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  6. Ferroelectric/ferromagnetic ceramic composite and its hybrid permittivity stemming from hopping charge and conductivity inhomogeneity

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Li, Lu; Xu, Zhaojun; Weng, Wenjian; Han, Gaorong; Ma, Ning; Du, Piyi

    2013-01-01

    Exploring the nature of multiferroic ceramic composite with dual high performances is much important to take full advantage of its novel dielectric properties. In this paper, Ni0.5Zn0.5291Fe2O4/BaTiO3 ceramic composite is proposed and successfully prepared from BTO and NZFO powders which are obtained by sol-gel process and citric acid combustion method, respectively. Results show that with increasing BTO content from 0 to 25 vol. % in the matrix of NZFO, the permittivity of the composite decreases from 220 k to 100 k at low frequencies (˜40 Hz) and contrarily from 20 to 100 at high frequencies (˜100 MHz). It is mainly ascribed to the instant polarization in NZFO at low frequencies and the polarization in the perovskite phase of BTO at sufficiently high frequencies. The permittivity of the ferrite and composite is shown to be compatible with a hybrid model proposed, which concerns hopping charges between Fe2+ and Fe3+, conductivity heterogeneity at the grain boundaries of the ferrite, and changes in the conductivities of the two phases induced by interdiffusion of the ions between the two phases. The composition dependence of the permittivity is agreeable with Kirkpatrick's compound law with the percolation threshold of NZFO to be about 55 vol. %.

  7. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites.

    PubMed

    Yu, Seunggun; Park, Bo-In; Park, Cheolmin; Hong, Soon Man; Han, Tae Hee; Koo, Chong Min

    2014-05-28

    In this paper, we demonstrate a facile route to produce epoxy/carbon fiber composites providing continuous heat conduction pathway of Cu with a high degree of crystal perfection via electroplating, followed by rapid thermal annealing (RTA) treatment and compression molding. Copper shells on carbon fibers were coated through electroplating method and post-treated via RTA technique to reduce the degree of imperfection in the Cu crystal. The epoxy/Cu-plated carbon fiber composites with Cu shell of 12.0 vol % prepared via simple compression molding, revealed 18 times larger thermal conductivity (47.2 W m(-1) K(-1)) in parallel direction and 6 times larger thermal conductivity (3.9 W m(-1) K(-1)) in perpendicular direction than epoxy/carbon fiber composite. Our novel composites with RTA-treated carbon fiber/Cu core/shell hybrid showed heat conduction behavior of an excellent polymeric composite thermal conductor with continuous heat conduction pathway, comparable to theoretical values obtained from Hatta and Taya model. PMID:24758290

  8. Computational investigation on thermal expansivity behavior of Al 6061-SiC-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Mohan Krishna, S. A.; Shridhar, T. N.; Krishnamurthy, L.

    2015-08-01

    Metal matrix composites (MMCs) have been regarded as one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has been increasingly important in a wide range of applications. The coefficient of thermal expansion is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of coefficient of thermal expansion (CTE) as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of thermal expansivity has been accomplished for Al 6061, silicon carbide (SiC) and Graphite (Gr) hybrid MMCs from room temperature to 300°C. Aluminum (Al)-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated for the evaluation of thermal expansivity of composites. Using the experimental values namely modulus of elasticity, Poisson's ratio and thermal expansivity, computational investigation has been carried out to evaluate the thermal parameters namely thermal displacement, thermal strain and thermal stress.

  9. Computational investigation on thermal conductivity behavior of Al 6061-SiC-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Krishna, S. A. Mohan; Shridhar, T. N.; Krishnamurthy, L.

    2015-10-01

    Metal matrix composites (MMCs) are regarded to be one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has become increasingly important in a wide range of applications. Thermal conductivity is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of thermal conductivity as a function of temperature is necessary in order to know the behavior of the material. In the present research, evaluation of thermal conductivity has been accomplished for aluminum alloy (Al) 6061, silicon carbide (SiC) and graphite (Gr) hybrid MMCs from room temperature to 300∘C. Al-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal conductivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated using laser flash technique. The results have indicated that the thermal conductivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated concerning with the evaluation of thermal conductivity of composites. Using the experimental values namely density, thermal conductivity, specific heat capacity and enthalpy at varying temperature ranges, computational investigation has been carried out to evaluate the thermal gradient and thermal flux.

  10. Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian A.

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.

  11. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  12. Wear of Al-based hybrid composites containing BN and SiC particulates

    SciTech Connect

    Tjong, S.C.; Lau, K.C.; Wu, S.Q.

    1999-09-01

    During the last decade, aluminum alloys discontinuously reinforced with ceramic particulates have received increasing attention for various high-performance applications in automotive, aerospace, and transportation industries due to their high strength-to-weight ratio and superior wear resistance. Particulate-reinforced MMCs can be produced by ingot metallurgy (IM) and powder metallurgy (PM) processing routes. The advantages of PM over IM processing in the fabrication of MMCs include near-net-shape fabrication, lower processing temperatures, and improved microstructural homogeneity. In this study, the authors attempt to fabricate hybrid composites composed of Al-4 wt pct Cu matrix, boron nitride (BN), and SiC particulates. The BN particulates are selected because of their low density (2.3 g/cm{sup 3}) and self-lubricant property. It is expected that BN additions can further substantially improve the wear performance of SiC/Al-4 pct Cu composites.

  13. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium.

    PubMed

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO(2) nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow-derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%-50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl(-)anions. A thin TiO(2) coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  14. Proposition of an Accelerated Ageing Method for Natural Fibre/Polylactic Acid Composite

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2015-10-01

    Natural fibre composite based on polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources and biodegradable. Some samples of jute/PLA composite and PLA alone made 6 years ago and kept in tropical climate on a shelf shows too fast ageing degradation. In this work, an accelerated ageing method for natural fibres/PLA composite is proposed and tested. Experiment was carried out with jute and flax fibre/PLA composite. The method was compared with the standard ISO 1037-06a. The residual flexural strength after ageing test was compared with the one of common wood-based panels and of real aged samples prepared 6 years ago.

  15. The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers

    PubMed Central

    Liao, Cheng Zhu; Wong, Hoi Man; Yeung, Kelvin Wai Kwok; Tjong, Sie Chin

    2014-01-01

    This study focuses on the design, fabrication, microstructural and property characterization, and biocompatibility evaluation of polypropylene (PP) reinforced with carbon nanofiber (CNF) and hydroxyapatite nanorod (HANR) fillers. The purpose is to develop advanced PP/CNF–HANR hybrids with good mechanical behavior, thermal stability, and excellent biocompatibility for use as craniofacial implants in orthopedics. Several material-examination techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile tests, and impact measurement are used to characterize the microstructural, mechanical, and thermal properties of the hybrids. Furthermore, osteoblastic cell cultivation and colorimetric assay are also employed for assessing their viability on the composites. The CNF and HANR filler hybridization yields an improvement in Young’s modulus, impact strength, thermal stability, and biocompatibility of PP. The PP/2% CNF–20% HANR hybrid composite is found to exhibit the highest elastic modulus, tensile strength, thermal stability, and biocompatibility. PMID:24648729

  16. A computational analysis of the ballistic performance of light-weight hybrid composite armors

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Pandurangan, B.; Koudela, K. L.; Cheeseman, B. A.

    2006-11-01

    The ability of hybrid light-weight fiber-reinforced polymer-matrix composite laminate armor to withstand the impact of a fragment simulating projectile (FSP) is investigated using a non-linear dynamics transient computational analysis. The hybrid armor is constructed using various combinations and stacking sequences of a high-strength/high-stiffness carbon fiber-reinforced epoxy (CFRE) and a high-ductility/high-toughness Kevlar fiber-reinforced epoxy (KFRE) composite laminates of different thicknesses. The results obtained indicate that at a fixed thickness of the armor both the stacking sequence and the number of CFRE/KFRE laminates substantially affect the ballistic performance of the armor. Specifically, it is found that the armor consisting of one layer of KFRE and one layer of CFRE, with KFRE laminate constituting the outer surface of the armor, possesses the maximum resistance towards the projectile-induced damage and failure. The results obtained are rationalized using an analysis of the elastic wave reflection and transmission behavior at the inter-laminate and laminate/air interfaces.

  17. Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Oh, Ilgeun; Kim, Myeongjin; Kim, Jooheon

    2015-02-01

    In this study, Fe3O4/carbon-coated Si ternary hybrid composites were fabricated. A carbon layer was directly formed on the surface of Si by the thermal vapor deposition. The carbon-coating layer not only prevented the contact between Si and reactive electrolyte but also provided anchoring sites for the deposition of Fe3O4. Fe3O4 nanoparticles were deposited on the surface of carbon-coated Si by the hydrazine reducing method. The morphology and structure of Fe3O4 and carbon layer were characterized via X-ray diffractometry, field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses. These characterizations indicate that a carbon layer was fully coated on the Si particles, and Fe3O4 particles were homogeneously deposited on the carbon-coated Si particles. The Fe3O4/carbon-coated Si electrode exhibited enhanced electrochemical performance, attributed to the high conductivity and stability of carbon layer and pseudocapacitive reaction of Fe3O4. The proposed ternary-hybrid composites may be potentially useful for the fabrication of high-performance electrodes.

  18. Niobium oxide-polydimethylsiloxane hybrid composite coatings for tuning primary fibroblast functions.

    PubMed

    Young, Matthew D; Tran, Nhiem; Tran, Phong A; Jarrell, John D; Hayda, Roman A; Born, Chistopher T

    2014-05-01

    This study evaluates the potential of niobium oxide-polydimethylsiloxane (PDMS) composites for tuning cellular response of fibroblasts, a key cell type of soft tissue/implant interfaces. In this study, various hybrid coatings of niobium oxide and PDMS with different niobium oxide concentrations were synthesized and characterized using scanning electron microscopy, X-ray photoelectron spectrometry (XPS), and contact angle goniometry. The coatings were then applied to 96-well plates, on which primary fibroblasts were seeded. Fibroblast viability, proliferation, and morphology were assessed after 1, 2, and 3 days of incubation using WST-1 and calcein AM assays along with fluorescent microscopy. The results showed that the prepared coatings had distinct surface features with submicron spherical composites covered in a polymeric layer. The water contact angle measurement demonstrated that the hybrid surfaces were much more hydrophobic than the original pure niobium oxide and PDMS. The combination of surface roughness and chemistry resulted in a biphasic cellular response with maximum fibroblast density on substrate with 40 wt % of niobium oxide. The results of the current study indicate that by adjusting the concentration of niobium oxide in the coating, a desirable cell response can be achieved to improve tissue/implant interfaces. PMID:23776075

  19. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    SciTech Connect

    Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N.; Mujica, V.; Martin, D.; Rajh, T.

    2009-04-13

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  20. α MnMoO₄/graphene hybrid composite: high energy density supercapacitor electrode material.

    PubMed

    Ghosh, Debasis; Giri, Soumen; Moniruzzaman, Md; Basu, Tanya; Mandal, Manas; Das, Chapal Kumar

    2014-07-28

    A unique and cost effective hydrothermal procedure has been carried out for the synthesis of hexahedron shaped α MnMoO4 and its hybrid composite with graphene using three different weight percentages of graphene. Characterization techniques, such as XRD, Raman and FTIR analysis, established the phase and formation of the composite. The electrochemical characterization of the pseudocapacitive MnMoO4 and the MnMoO4/graphene composites in 1 M Na2SO4 displayed highest specific capacitances of 234 F g(-1) and 364 F g(-1), respectively at a current density of 2 A g(-1). Unlike many other pseudocapacitive electrode materials our prepared materials responded in a wide range of working potentials of (-)1 V to (+)1 V, which indeed resulted in a high energy density without substantial loss of power density. The highest energy densities of 130 Wh kg(-1) and 202.2 Wh kg(-1) were achieved, respectively for the MnMoO4 and the MnMoO4/graphene composite at a constant power delivery rate of 2000 W kg(-1). The synergistic effect of the graphene with the pseudocapacitive MnMoO4 caused an increased cycle stability of 88% specific capacitance retention after 1000 consecutive charge discharge cycles at 8 A g(-1) constant current density, which was higher than the virgin MnMoO4 with 84% specific capacitance retention. PMID:24921461

  1. FT-IR Photoacoustic Spectroscopy Applied to the Curing and Aging of Composites

    NASA Astrophysics Data System (ADS)

    Jones, Roger W.; Sweterlitsch, Jeffrey J.; Wagner, Anthony J.; McClelland, John F.; Hsu, David K.; Polis, Daniel L.; Sovinski, Marjorie F.

    2005-04-01

    Fourier-transform infrared photoacoustic spectroscopy has been applied to carbon-fiber composites to test whether bulk physical properties of the composites could be determined using the near-surface-sensitive photoacoustic approach. Both the cure levels of carbon fiber/cyanate ester composites and the interlaminar shear strengths of artificially aged carbon fiber/epoxy composites were successfully measured. Standard errors of cross validation were 3.46% cure for a sample set ranging from 8% to 95% cured and 1.60 MPa for aged samples with strengths ranging from 22 to 77 MPa.

  2. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality

    PubMed Central

    Clark, Rebecca I.; Salazar, Anna; Yamada, Ryuichi; Fitz-Gibbon, Sorel; Morselli, Marco; Alcaraz, Jeanette; Rana, Anil; Rera, Michael; Pellegrini, Matteo; Ja, William W.; Walker, David W.

    2015-01-01

    Summary Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals. PMID:26321641

  3. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems.

    PubMed

    Elsaka, Shaymaa E

    2015-01-01

    This study evaluated the repair bond strength of a nanohybrid resin composite to a novel CAD/CAM hybrid ceramic based on four intraoral ceramic repair systems. Vita Enamic (VE) CAD/CAM hybrid ceramic was used in this study. Specimens were divided into five test groups according to the repair method performed on the ceramic surface: Gr C (No treatment; control); Gr CZ (Cimara Zircon); Gr PR (Porcelain Repair); Gr CR (Clearfil Repair); and Gr CS (CoJet system). Nanohybrid resin composite (GrandioSO) was packed onto treated ceramic surfaces for adhesion testing using microtensile bond strength test. Debonded specimens were examined with a stereomicroscope and SEM to determine the fracture mode. Data were analyzed using ANOVA and Tukey's HSD test. PR and CZ repair systems significantly enhanced the bond strength of nanohybrid resin composite to VE CAD/CAM hybrid ceramic when compared with the other tested repair systems. PMID:25736259

  4. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol

    2014-09-01

    Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  5. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    PubMed

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. PMID:26249589

  6. Effect of rotation, site, and clone on the chemical composition of Populus hybrids

    SciTech Connect

    Blanckenhorn, P.R.; Bowersox, T.W.; Kuklewski, K.M.; Stimely, S.L.

    1985-01-01

    Chemical content values were determined for three Populus clones grown on two dissimilar sites by component (wood, bark, and wood/bark specimens), tissue age (1-, 2- and 4-year-old), and rotation. The chemical content values obtained included extractives, holocellulose, ..alpha..-cellulose, and lignin. In general, analysis of the data for the wood, bark, and wood/bark specimens indicated that: 1) wood was high in holocellulose and ..alpha..-cellulose content compared to bark, 2) bark was high in lignin and extractive content values compared to wood, and 3) wood/bark chemical content values were between the values for the wood and bark specimens. The chemical content data were analyzed to identify: 1) significant differences between rotations by component (wood, bark and wood/bark) for a given age, clone, and site, and 2) significant differences between sites for four-year-old wood, bark and wood/bark specimens of a given rotation, and clone. Statistical analyses indicated that significant differences existed among clones, sites, ages, and rotations. Within the wood, bark and wood/bark specimens, tissue age, rotation, and site influenced the chemical content values more than the parentage. Potential chemical yields derived from the three Populus hybrid clones investigated will depend on component, age, rotation, and site with limited parentage effects.

  7. Influence of weave structures on the tribological properties of hybrid Kevlar/PTFE fabric composites

    NASA Astrophysics Data System (ADS)

    Gu, Dapeng; Yang, Yulin; Qi, Xiaowen; Deng, Wei; Shi, Lei

    2012-09-01

    The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism

  8. Null Extinction of Ceria@silica Hybrid Particles: Transparent Polystyrene Composites.

    PubMed

    İncel, Anıl; Güner, Tuğrul; Parlak, Onur; Demir, Mustafa M

    2015-12-16

    Scattering of light in optical materials, particularly in composites based on transparent polymer and inorganic pigment nanoparticles, is a chronic problem. It might originate mainly from light scattering because of a refractive index mismatch between the particles and transparent polymer matrix. Thus, the intensity of light is rapidly diminished and optical transparency is reduced. Refractive index matching between the pigment core and the surrounding transparent matrix using a secondary component at the interface (shell) has recently appeared as a promising approach to alter light scattering. Here, CeO2 (ceria) nanoparticles with a diameter of 25 nm are coated with a SiO2 (silica) shell with various thicknesses in a range of 6.5-67.5 nm using the Stöber method. When the hybrid core-shell particles are dispersed into transparent polystyrene (PS), the transmission of the freestanding PS composite films increases over both the ultraviolet (UV) and visible region as the shell thickness increases particularly at 37.5 nm. The increase of transmission can be attributed to the reduction in the scattering coefficient of the hybrid particles. On the other hand, the particles in tetrahydrofuran (THF) absorb over UV and the intensity of absorption shows a systematic decrease as the shell thickness increases. Thus, the silica shell suppresses not only the scattering coefficient but also the molar absorptivity of the core ceria particles. The experimental results regarding the target shell thickness to develop low extinction (scattering + absorption) composites show a qualitative agreement with the predictions of Effective Medium Theory. PMID:26594909

  9. Effect of different polishing systems on the surface roughness of nano-hybrid composites

    PubMed Central

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    Objective: The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Background: Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Materials and Methods: Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I — Filtek Z350 and Group II — Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a — OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c — Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Result: Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P < 0.05). Mylar strip and “PoGo” created equally smooth surfaces, while significantly rougher surfaces were obtained after applications of “Sof-Lex spiral” and “OneGloss” (P < 0.05). Conclusion: Polishing ability of Tetric N-Ceram is better than Filtek Z350 XT. “PoGo” seems to be a better polishing system than “OneGloss” and “Sof-Lex Spiral.” PMID:26957791

  10. Hybrid carbon fiber/carbon nanotube composites for structural damping applications.

    PubMed

    Tehrani, M; Safdari, M; Boroujeni, A Y; Razavi, Z; Case, S W; Dahmen, K; Garmestani, H; Al-Haik, M S

    2013-04-19

    Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT-carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1-60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface. PMID:23518871

  11. High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes

    NASA Astrophysics Data System (ADS)

    Enya, K.; Yamada, N.; Imai, T.; Tange, Y.; Kaneda, H.; Katayama, H.; Kotani, M.; Maruyama, K.; Naitoh, M.; Nakagawa, T.; Onaka, T.; Suganuma, M.; Ozaki, T.; Kume, M.; Krödel, M. R.

    2012-01-01

    This paper presents highly precise measurements of thermal expansion of a "hybrid" carbon-fiber reinforced silicon carbide composite, HB-Cesic® - a trademark of ECM, in the temperature region of ˜310-10 K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic® is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1σ) in the range 293-10 K derived from the data for the XY- and Z-directions were 0.805 ± 0.003 × 10-6 K-1 and 0.837 ± 0.001 × 10-6 K-1, respectively. The absolute accuracy and the reproducibility of the present measurements are suggested to be better than 0.01 × 10-6 K-1 and 0.001 × 10-6 K-1, respectively. The residual anisotropy of the thermal expansion was consistent with our previous speculation regarding carbon-fiber, in which the residual anisotropy tended to lie mainly in the horizontal plane.

  12. The effects of stress and physical aging on the creep compliance of a polymeric composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas E.; Feldman, Mark

    1993-01-01

    An experimental study was performed to determine the effects of stress and physical aging on the matrix dominated viscoelastic properties of IM7/8320, a high temperature fiber reinforced thermoplastic composite. Established creep/aging test techniques developed for polymers were adapted for testing of the composite material. The transverse and shear compliance for an orthotropic plate were found from creep compliance measurements at constant, sub-Tg temperatures. These compliance terms were shown to be effected by physical aging. Aging time shift factors and shift rates were found to be a function of applied stress.

  13. Hybrid Effect on Whisker Orientation Dependence of Composite Strength of Aluminum Cast Alloy Reinforced by Al2O3 Whiskers and SiC Particles

    NASA Astrophysics Data System (ADS)

    Md, Rafiquzzaman; Arai, Yoshio

    The hybrid effect on the orientation dependence of the composite strength of an aluminum cast alloy reinforced by Al2O3 whiskers and SiC particles is studied experimentally and numerically. Two types of specimens are prepared for monotonic bending tests. The longitudinal specimen orientation (maximum stress direction) is parallel to or normal to randomly oriented whiskers in plane. The monotonic strength is 18% higher when the hybrid metal matrix composite (MMC) is subjected to an external load parallel to the random whisker orientation in plane than when the load is perpendicular to the whisker orientation. The whisker orientation dependence of composite strength in hybrid composite is weaker than that in whisker-reinforced composite. On the fracture surface of the specimen loaded along the direction parallel to the random whisker orientation in plane, most whiskers are broken while many de-bonded interfaces between the whiskers and matrix are observed on the fracture surface of the specimen loaded along the direction perpendicular to the whisker orientation. To characterize the hybrid effect on the whisker orientation dependence of composite strength, a three-dimensional hybrid composite unit cell model including one whisker and a few particles under a periodic boundary condition is developed using the finite element method. The hybrid composites have higher whisker stress than whisker-reinforced composite when subjected to an external load parallel to the whisker orientation if these composites have the same total volume fraction of reinforcement and the particles are distributed randomly. Under an external load perpendicular to the whisker orientation, the interface stress of hybrid composites is lower than that of whisker-reinforced composite. As a result, the strength difference for parallel and perpendicular loading conditions of the hybrid composites is smaller than that of whisker-reinforced composite. Thus, the weak whisker orientation effect in the

  14. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  15. Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest

    PubMed Central

    Trogisch, Stefan; Both, Sabine; Scholten, Thomas; Bruelheide, Helge; Buscot, François

    2013-01-01

    Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition. PMID:23826151

  16. Age and composition of igneous rocks, Edna Mountain quadrangle, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, Ralph L.; Silberman, Miles L.; Marsh, S.P.

    1978-01-01

    Six pulses of igneous activity ranging in age from Jurassic to Pliocene have been identified in the Edna Mountain quadrangle, Humboldt County, Nev. Porphyritic syenite am! quartz monzonite of Jurassic age (146-164 million years) at Buffalo Mountain are highly potassic through a wide range in SiO2 content from olivine-bearing syenite to quartz-rich monzonite, and their composition contrasts sharply with plutons elsewhere in north-central Nevada. Granodiorite and quartz monzonite plutons of Cretaceous age (88- 106 m.y.) are chemically and mineralogically similar to other calc-alkaline plutons in north-central Nevada. Four episodes of Tertiary volcanism include rhyolite ashflow tuffs and slightly younger andesitic basalt flows and tuffs of Oligocene age, rhyolite vitrophyre of late Miocene age, and olivine basalt flows of Pliocene age. Their age and mineralogical and chemical compositions are similar to other Tertiary volcanic rocks in north-central Nevada.

  17. Some Exploitation Properties of Wood Plastic Hybrid Composites Based on Polypropylene and Plywood Production Waste

    NASA Astrophysics Data System (ADS)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2015-12-01

    polypropylenewood hybrid composites (WPHC) physical-mechanical and other exploitation properties.

  18. Hybrid composites of calcium phosphate granules, fibrin glue, and bone marrow for skeletal repair.

    PubMed

    Le Nihouannen, Damien; Goyenvalle, Eric; Aguado, Eric; Pilet, Paul; Bilban, Melitta; Daculsi, Guy; Layrolle, Pierre

    2007-05-01

    Synthetic bone substitutes, such as calcium phosphate ceramics, give good results in clinical applications. In order to adapt to surgical sites, bioceramics come in the form of blocks or granules, and are either dense or porous. Combining these bioceramics with fibrin glue provides a mouldable and self-hardening composite biomaterial with the biochemical properties of each component. Critical-sized defects in the femoral condyle of rabbits were filled with TricOs/fibrin glue/bone marrow hybrid/composite material. The TricOs granules (1-2 mm) were composed of hydroxyapatite and beta tricalcium phosphate (60/40 in weight). The fibrin glue was composed of fibrinogen, thrombin and other biological factors and mixed with MBCP granules either simultaneously or sequentially. Bone marrow was also added to the MBCP/fibrin composite prior to filling the defects. After 3, 6, 12, and 24 weeks of implantation, the newly-formed bone was analysed with histology, histomorphometry and mechanical tests. The newly-formed bone had grown centripetally. Simultaneous application of fibrin glue showed better results for mechanical properties than sequential application after 6 weeks. Around 40% of bone had formed after 24 weeks in the three groups. Although the addition of bone marrow did not improve bone formation, the MBCP/fibrin material could be used in clinical bone filling applications. PMID:17117470

  19. Long-term water-aging of whisker-reinforced polymer-matrix composites.

    PubMed

    Xu, H H K

    2003-01-01

    Long-term water exposure may degrade polymer-matrix composites. This study investigated the water-aging of whisker composites. It was hypothesized that whiskers would provide stable and substantial reinforcement, and that whisker type would affect water-aging resistance. Silica-fused Si(3)N(4) and SiC whiskers were incorporated into a resin. The specimens were tested by three-point flexure and nano-indentation vs. water-aging for 1 to 730 days. After 730 days, SiC composite had a strength (mean +/- SD; n = 6) of 185 +/- 33 MPa, similar to 146 +/- 44 MPa for Si(3)N(4) composite (p = 0.064); both were significantly higher than 67 +/- 23 MPa for an inlay/onlay control (p < 0.001). Compared with 1 day, the strength of the SiC composite showed no decrease, while that of the Si(3)N(4) composite decreased. The decrease was due to whisker weakening rather than to resin degradation or interface breakdown. Whisker composites also had higher moduli than the controls. In conclusion, silica-fused whiskers bonded to polymer matrix and resisted long-term water attack, resulting in much stronger composites than the controls after water-aging. PMID:12508045

  20. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  1. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  2. Nonvolatile memory devices based on poly(vinyl alcohol) + graphene oxide hybrid composites.

    PubMed

    Sun, Yanmei; Lu, Junguo; Ai, Chunpeng; Wen, Dianzhong

    2016-04-20

    Nonvolatile memory devices based on active layers of poly(vinyl alcohol) (PVA) + graphene oxide (GO) hybrid composites have been fabricated. The performance of the ITO/PVA + GO/Al device was compared with that of the ITO/PVA/Al device. The ITO/PVA + GO/Al device showed excellent performance compared to the ITO/PVA/Al device (an ON/OFF resistance ratio of 1.2 × 10(2) at 1 V, VSET ∼ -1.45 V and VRESET ∼ 3.6 V), with a higher ON/OFF resistance ratio of 3 × 10(4) at 1 V and lower operating voltages of VSET ∼ -0.75 V and VRESET ∼ 3.0 V. Furthermore, endurance performance and write-read-erase-reread (WRER) cycle tests manifest that the presence of GO in ITO/PVA + GO/Al devices makes them have better stability and repeatability. The results show that the performance of hybrid devices can be effectively enhanced by the introduction of GO into the PVA matrix. PMID:27056548

  3. Material Degradation during Isothermal Aging and Thermal Cycling of Hybrid Mica Seal with Ag Interlayer under SOFC Exposure Conditions

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Hardy, John S.; Singh, Prabhakar

    2006-11-01

    Hybrid phlogopite mica seals with silver interlayers were evaluated in terms of materials degradation in a combined isothermal ageing and thermal cycling test. The hybrid mica seal was composed of a phlogopite mica paper sandwiched between two Ag foils. The hybrid micas were first aged at 800oC for ~1,000 hrs in a moist, dilute hydrogen fuel (~2.7% H2/bal. Ar + ~3% H2O), followed by short-term thermal cycling between ~100oC and 800oC. The combined test was repeated for 3 times for a total of 4,000 hrs ageing at 800oC and 119 thermal cycles. The results of high temperature leak rate tests showed very good thermal stability and thermal cycle stability with 800oC leak rates of ~0.02-0.03 sccm/cm. A hybrid mica seal tested in a high water content fuel (30 v% H2O/70 v% H2) demonstrated similar leakage during isothermal ageing and subsequent thermal cycles. Post-mortem analyses showed no extensive reaction between Ag and phlogopite mica as well as no significant mica degradation. Simple calculations to estimate the effect of measured leakage on the open circuit voltage and the total fuel loss for various SOFC stack sizes suggest very small fuel losses for the current hybrid mica seals, indicating that they are good candidates for SOFC sealing applications. Corresponding author: Yeong-Shyung Chou Tel: 509-375-2527, Fax: 509-375-2186, E-mail: yeong-shyung.chou@pnl.gov

  4. Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Brinson, H. F.

    1993-01-01

    Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.

  5. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  6. Effect of nanocomposite composition on shear and elongational rheological behavior of PLA/MMT hybrids

    NASA Astrophysics Data System (ADS)

    Garofalo, Emilia; Scarfato, Paola; Di Maio, Luciano; Incarnato, Loredana

    2014-05-01

    The present work focuses on the possibility of conveniently tuning materials in PLA based nanocomposites in order to improve their processability in manufacturing processes where extensional flow is mainly involved. Nanocomposites at a constant silicate loading were produced by melt compounding, using a commercial polylactide grade (PLA 4032D) and two different organo-silicates (Cloisite 30B and Nanofil SE3010). A morphological characterization in solid and molten state, realized by TEM investigations and shear rheological measurements, firstly pointed out the influence of composition on the nanostructure of the hybrid systems. All the samples were then submitted to uniaxial stretching and the rheological response of the different nanocomposites was correlated to the initial nanostructure and the different polymer-clay affinity.

  7. Structural Acoustic Response of a Shape Memory Alloy Hybrid Composite Panel (Lessons Learned)

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2002-01-01

    This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.

  8. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  9. Effects of real-time thermal aging on graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Haskins, J. F.; Kerr, J. R.

    1985-01-01

    As part of a program to evaluate high-temperature advanced composites for use on supersonic cruise transport aircraft, two graphite/polyimide composites have been aged at elevated temperatures for times up to 5.7 years. Work on the first, HT-S/710 graphite/polyimide, was started in 1974. Evaluation of the second polyimide, Celion 6000/LARC-160, began in 1980. Baseline properties are presented, including unnotched and notched tensile data as a function of temperature, compression, flexure, shear, and constant-amplitude fatigue data at R = 0.1 and R = -1. Tensile specimens were aged in ovens where pressure and aging temperatures were controlled for various times up to and including 50,000 hours. Changes in tensile strength were determined and plotted as a function of aging time. The HT-S/710 composite aged at 450 F and 550 F if compared to the Celion 6000/LARC-160 composite aged at 350 F and 450 F. After tensile testing, many of the thermal aging specimens were examined using a scanning electron microscope. Results of these studies are presented, and changes in properties and degradation mechanisms during high-temperature aging are discussed and illustrated using metallographic techniques.

  10. Evaluation of the bond strength between aged composite cores and luting agent

    PubMed Central

    2015-01-01

    PURPOSE The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to 55℃) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at α=.05. RESULTS Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between 7.07 ± 2.11 and 26.05 ± 6.53 N. The highest bond strength of 26.05 ± 6.53 N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success. PMID:25932308

  11. A comparative study of the mechanical performance of Glass and Glass/Carbon hybrid polymer composites at different temperature environments

    NASA Astrophysics Data System (ADS)

    Shukla, M. J.; Kumar, D. S.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.

    2015-02-01

    Glass Fiber Reinforced Polymer (GFRP) composites have been widely accepted as high strength, low weight structural material as compared to their metallic counterparts. Some specific advanced high performance applications such as aerospace components still require superior specific strength and specific modulus. Carbon Fiber Reinforced Polymer (CFRP) composites exhibit superior specific strength and modulus but have a lower failure strain and high cost. Hence, the combination of both glass and carbon fiber in polymer composite may yield optimized mechanical properties. Further the in-service environment has a significant role on the mechanical performance of this class of materials. Present study aims to investigate the mechanical property of GFRP and Glass/Carbon (G/C hybrid) composites at room temperature, in-situ and ex-situ temperature conditions. In-situ testing at +70°C and +100°C results in significant loss in inter-laminar shear strength (ILSS) for both the composites as compared to room temperature. The ILSS was nearly equal for both the composite systems tested in-situ at +100°C and effect of fiber hybridisation was completely diminished there. At low temperature ex-situ conditioning significant reduction in ILSS was observed for both the systems. Further at -60°C G/C hybrid exhibited 32.4 % higher ILSS than GFRP. Hence this makes G/C hybrid a better choice of material in low temperature environmental applications.

  12. Synthesis and Properties of Cellulose-Functionalized POSS-SiO2/TiO2 Hybrid Composites.

    PubMed

    Hong, Gwang-Wook; Ramesh, Sivalingam; Kim, Joo-Hyung; Kim, Hyeon-Ju; Lee, Ho-Saeng

    2015-10-01

    The mechanical, thermal, optical, electrical and morphological properties of cellulose, an excellent natural biomaterial, can be improved by organic-inorganic hybrid composite methods. Based on the pristine properties of cellulose, the preparation of cellulose-metal oxide hybrid nanocomposites using a dispersion process of nanoparticles into the cellulose host matrix by traditional methods, has limitations. Recently, the functionalized cellulose-polymer-based materials were considered to be an important class of high-performance materials, providing the synthesis of various functional hybrid nanocomposites using a sol-gel method. Transparent cellulose-POSS-amine-silica/titania hybrids were prepared by an in-situ sol-gel process in the presence of γ-aminopropyltrimethoxylsilane (γ-APTES). The methodology involves the formation of covalent bonding between the cellulose-POSS amine and SiO2/TiO2 hybrid nanocomposite material. An analysis of the synthesized hybrid material by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential thermal calorimetry, scanning electron microscopy, and transmission electron microscopy indicated that the silica/titania nanoparticles were bonded covalently and dispersed uniformly into the cellulose-POSS amine matrix. In addition, biological properties of the cellulose-POSS-silica/titania hybrid material were examined using an antimicrobial test against pathogenic bacteria, such as Bacillus cereus (F481072) and E. coli (ATCC35150) for the bacterial effect. PMID:26726461

  13. Hypoxia affects performance traits and body composition of juvenile hybrid striped bass (Morone chrysops x M. saxatilis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance traits and body composition of juvenile hybrid striped bass (Morone chrysops x M. saxatilis) in response to hypoxia were evaluated in replicate tanks maintained at constant dissolved oxygen concentrations that averaged 23.0 +/- 2.3%, 39.7 +/- 3.0%, and 105.5 +/- 9.5% dissolved oxygen sat...

  14. Sea Water Ageing of GFRP Composites and the Dissolved salts

    NASA Astrophysics Data System (ADS)

    Chakraverty, A. P.; Mohanty, U. K.; Mishra, S. C.; Satapathy, A.

    2015-02-01

    This paper houses the effect of sea water immersion on glass fibre reinforced polymer (GFRP) composites. The major sources of interest are study of sea water absorption, penetration of the dissolved salts, details of chemical and physical bonds at the interface, variations of mechanical properties and study of failure mechanisms as revealed through SEM fractographs. Eighteen ply GFRP composites are immersed in sea water for a period of one year in steps of two months durations. It is revealed that the moisture absorption transforms from a Fickian to non-Fickian behavior with lapse of time. The dissolved salt 'K' shows highest depth of penetration after one year of immersion while 'Na' shows a least depth of penetration, as revealed from the EDS spectra. It is also revealed that 'Ca' seems to have a sudden burst in the rate of penetration even surpassing that of 'K'. This trend can be attributed to the combined effect of ionic mobility of the various dissolved salts and the probable interaction between 'K' and the -OH group of epoxy resin. This interaction between dissolved 'K' and the -OH group in the polymer could have arrested the further advancement of 'K' salts in the polymer, resulting in comparatively high rates of 'Ca' penetration. The mechanical properties such as inter laminar shear stress (ILSS), stress and strain at rupture, glass transition temperature (Tg) and elastic modulus show a decreasing trend with the increased duration of immersion. As revealed from the SEM fractographs pot- holing, fiber pull-out, matrix crack etc. are seen to be the major reason for failure of the immersed samples under load.

  15. Tailoring plant lipid composition: designer oilseeds come of age.

    PubMed

    Napier, Johnathan A; Graham, Ian A

    2010-06-01

    Plant neutral lipids such as seed oil triacylglycerols play a key role in many aspects of human life, ranging from providing essential nutrition to acting as biolubricants. There is also growing interest in using plant oils as a replacement for petrochemicals, either for fuel or as a chemical feedstock. Considerable effort has been focused on modifying the fatty acid composition of seed oils and/or increasing the levels of storage triacylglycerol. Certainly, it is now possible to successfully modify the profile of plant oils via transgenic metabolic engineering to generate something approaching a 'designer oil'. This is specifically true for the accumulation of omega-3 long chain polyunsaturated fatty acids that now stand at levels equivalent to those found in native marine organisms. However, it is equally clear that a holistic understanding of plant lipid metabolism is still lacking, mainly owing to the continually emerging complexity and interplay between pathways, recently exemplified by the identification of the ROD1 phosphatidylcholine:diacylglycerol cholinephosphotransferase involved in the channelling of unsaturated fatty acids into storage oil. The new approaches and outcomes described here will inform new paradigms and hasten the arrival of truly predictive biology in this vital field. PMID:20185359

  16. Composition and corrosion phases of Etruscan Bronzes from Villanovan Age

    NASA Astrophysics Data System (ADS)

    Festa, G.; Caroppi, P. A.; Filabozzi, A.; Andreani, C.; Arancio, M. L.; Triolo, R.; Lo Celso, F.; Benfante, V.; Imberti, S.

    2008-03-01

    A neutron diffraction (ND) and neutron tomography (NT) study of laminated ancient bronzes was performed at the ISIS (Rutherford Appleton Laboratory, UK) neutron source and at the BENSC reactor (Hahn-Meitner Institut, Germany). The samples are part of an 8th century BC Etruscan collection discovered in the necropolises of Osteria-Poggio Mengarelli and Cavalupo in the Vulci area (Viterbo, Italy). The study allowed us to derive—in a totally non-destructive manner—information related to the main composition of the objects, possible presence of alterations and their nature, crusts and inclusions, as well as structure of the bulk. The presence of some components is linked to a variety of questions such as the correct determination of the historical and cultural timeframe, place and method of production, technologies adopted and conditions for restoration and preservation. Moreover, the data analysis of corrosion products provides information about the past environments and the physical/chemical events that transformed the objects into a partially corroded matrix.

  17. Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  18. Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    NASA Astrophysics Data System (ADS)

    Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.

    2006-03-01

    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.

  19. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  20. Tartaric Acid-Assisted Self-Assembly of Hybrid Block Copolymer Composites

    NASA Astrophysics Data System (ADS)

    Yao, Li; Lin, Ying; Watkins, James

    2014-03-01

    Enantiopure tartaric acid was used as an additive to increase the segregation strength of poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) copolymers through strong, selective interactions with one of the polymer chain segments. Addition of tartaric acid to PEO-b-PtBA exhibiting cylindrical morphologies resulted in the formation of helical superstructures as observed by transmission electron microscopy. It was also found that this small acid additive can also enable phase-selective ultra-high loading of nanoparticles (NPs) into target domains of the block copolymer composites. The loading of tartaric acid can increase enthalpically favorable interactions between the nanoparticle ligands and the host domain and mitigate entropic penalties associated with NP incorporation into the target domain. A metal content of over 40 weight percent by mass of the resulting well ordered composites was achieved as measured by thermal gravimetric analysis in PEO-b-PtBA/tartaric acid/4-hydroxythiophenol functionalized Au NP hybrid system. Funding from Center for Hierarchical Manufacturing (CHM); Facility support from Materials Research Science and Engineering Center at UMass Amherst.

  1. Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.

    2006-01-01

    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.

  2. Aero-thermo-mechanical characteristics of imperfect shape memory alloy hybrid composite panels

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Hamed; Yoo, Hong Hee; Lee, Kwan-Soo

    2009-08-01

    A nonlinear finite element model is provided to predict the static aero-thermal deflection and the vibration behavior of geometrically imperfect shape memory alloy hybrid composite panels under the combined effect of thermal and aerodynamic loads. The nonlinear governing equations are obtained using Marguerre curved plate theory and the principle of virtual work taking into account the temperature-dependence of material properties. The effect of large deflection is included in the formulation through the von Karman nonlinear strain-displacement relations. The thermal load is assumed to be a steady-state constant-temperature distribution, whereas the aerodynamic pressure is modeled using the quasi-steady first-order piston theory. The Newton-Raphson iteration method is employed to obtain the nonlinear aero-thermal deflections, while an eigenvalue problem is solved at each temperature step and static aerodynamic load to predict the free vibration frequencies about the deflected equilibrium position. Finally, the nonlinear deflection and free vibration characteristics of a composite panel are presented, illustrating the effects of geometric imperfection, temperature rise, aerodynamic pressure, boundary conditions and shape memory alloy fiber embeddings on the panel response.

  3. Spin-triplet electron transport in hybrid superconductor heterostructures with a composite ferromagnetic interlayer

    NASA Astrophysics Data System (ADS)

    Sheyerman, A. E.; Constantinian, K. Y.; Ovsyannikov, G. A.; Kislinskii, Yu. V.; Shadrin, A. V.; Kalabukhov, A. V.; Khaydukov, Yu. N.

    2015-06-01

    Hybrid YBa2Cu3O7 - x /SrRuO3/La0.7Sr0.3MnO3/Au-Nb superconductor mesastructures with a composite manganite-ruthenate ferromagnetic interlayer are studied using electrophysical, magnetic, and microwave methods. The supercurrent in the mesastructure is observed when the interlayer thickness is much larger than the coherence length of ferromagnetic materials. The peak on the dependence of the critical current density on the interlayer material thickness corresponds to the coherence length, which is in qualitative agreement with theoretical predictions for a system with spit-triplet superconducting correlations. The magnetic-field dependence of the critical current is determined by penetration of magnetic flux quanta and by the magnetic domain structure, as well as by the field dependence of disorientation of the magnetization vectors of the layers in the composite magnetic interlayer. It is found that the supercurrent exists in magnetic fields two orders of magnitude stronger than the field corresponding to entry of a magnetic flux quantum into the mesastructure. The current-phase relation (CPR) of the supercurrent of mesastructures is investigated upon a change in the magnetic field from zero to 30 Oe; the ratio of the second CPR harmonic to the first, determined from the dependence of the Shapiro steps on the microwave radiation amplitude, does not exceed 50%.

  4. Spin-triplet electron transport in hybrid superconductor heterostructures with a composite ferromagnetic interlayer

    SciTech Connect

    Sheyerman, A. E. Constantinian, K. Y.; Ovsyannikov, G. A.; Kislinskii, Yu. V.; Shadrin, A. V.; Kalabukhov, A. V.; Khaydukov, Yu. N.

    2015-06-15

    Hybrid YBa{sub 2}Cu{sub 3}O{sub 7−x}/SrRuO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/Au-Nb superconductor mesastructures with a composite manganite-ruthenate ferromagnetic interlayer are studied using electrophysical, magnetic, and microwave methods. The supercurrent in the mesastructure is observed when the interlayer thickness is much larger than the coherence length of ferromagnetic materials. The peak on the dependence of the critical current density on the interlayer material thickness corresponds to the coherence length, which is in qualitative agreement with theoretical predictions for a system with spit-triplet superconducting correlations. The magnetic-field dependence of the critical current is determined by penetration of magnetic flux quanta and by the magnetic domain structure, as well as by the field dependence of disorientation of the magnetization vectors of the layers in the composite magnetic interlayer. It is found that the supercurrent exists in magnetic fields two orders of magnitude stronger than the field corresponding to entry of a magnetic flux quantum into the mesastructure. The current-phase relation (CPR) of the supercurrent of mesastructures is investigated upon a change in the magnetic field from zero to 30 Oe; the ratio of the second CPR harmonic to the first, determined from the dependence of the Shapiro steps on the microwave radiation amplitude, does not exceed 50%.

  5. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2014-01-01

    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  6. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    PubMed

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures. PMID:26529570

  7. Effect of in vivo loading on bone composition varies with animal age

    PubMed Central

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele; Fratzl, Peter; Duda, Georg N.; Wagermaier, Wolfgang; Willie, Bettina M.

    2015-01-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier Transform Infrared Imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone’s microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal and tissue age dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further supports the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  8. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena. PMID:25250496

  9. An Introduced Hybrid Graphene/Polyaniline Composites for Improvement of Supercapacitor

    NASA Astrophysics Data System (ADS)

    Tayel, Mazhar B.; Soliman, Moataz M.; Ebrahim, Shaker; Harb, Mohamed E.

    2016-01-01

    Supercapacitors represent an attractive alternative for portable electronics and automotive applications due to their high capacitance, specific power and extended life. In fact, the growing demand of portable systems and hybrid electric vehicles, memory protection in complementary metal-oxide-semiconductor (CMOS), logic circuit, videocassette recorders (VCRs), compact disc (CD) players, personal computers (PCs), uninterruptible power supply (UPS) in security alarm systems, remote sensing, smoke detectors, etc. require high power in short-term pulses. Therefore, in the last 20 years, supercapacitors have been required for the development of large and small devices driven by electrical power. In this paper, graphene oxide (GO) was synthesized by improved Hummers method. Two polyaniline (PANI)/graphene oxide nanocomposites electrode materials were prepared from aniline, GO and ammoniumpersulfate (APS) by in situ chemical polymerization with the mass ratios (mGO:mAniline) 10:90 and 30: 70 in ice bath. The crystal structure and the surface topography of all materials were characterized by means of x-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of the composites were evaluated by cyclic voltammetry (CV), charge-discharge measurements and electrical impedance spectroscopy (EIS), respectively. The results show that the composites have similar and enhanced cyclic voltammetry performance compared with pure PANI based electrode material. The graphene/PANI composite synthesized with the mass ratio (mANI:mGO) 90:10 possessed good capacitive behavior with a specific capacitance as high as 1509.35 F/g at scan rate of 1 mV/s in scanning potential window from -0.8 V to 0.8 V.

  10. Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding.

    PubMed

    Ma, Jingjing; Zhan, Maosheng; Wang, Kai

    2015-01-14

    Ultralightweight silver nanowires (AgNWs) hybrid polyimide (PI) composite foams with microcellular structure and low density of 0.014-0.022 g/cm(3) have been fabricated by a facile and effective one-pot liquid foaming process. The tension flow generated during the cell growth induced the uniform dispersion of AgNWs throughout the cell walls. The interconnected AgNWs network in the cell walls combined with the large 3D AgNWs network caused by 3D structure of foams provided fast electron transport channels inside foams. The electromagnetic interference (EMI) shielding effectiveness (SE) of these foams increased with increasing AgNWs loading as well as the nanowire aspect ratio due to the increasing connections of the conduction AgNWs network. Appropriate surface treatment like etching or spraying facilitated the construction of the seamlessly interconnected 2D AgNWs network on the surface, which could effectively reflect electromagnetic waves. Maximum specific EMI SE of values of 1210 dB·g(-1)·cm(3) at 200 MHz, 957 dB·g(-1)·cm(3) at 600 MHz, and 772 dB·g(-1)·cm(3) at 800-1500 MHz were achieved in sprayed composite foams containing <0.044 vol % AgNWs loading, which far surpasses the best values of other composite materials. The reflections of interconnected AgNWs networks on the surface and inside foams combined with the multiple reflections at interfaces contributed to the shielding effect. PMID:25518040

  11. Learning Science in Small Multi-Age Groups: The Role of Age Composition

    ERIC Educational Resources Information Center

    Kallery, Maria; Loupidou, Thomais

    2016-01-01

    The present study examines how the overall cognitive achievements in science of the younger children in a class where the students work in small multi-age groups are influenced by the number of older children in the groups. The context of the study was early-years education. The study has two parts: The first part involved classes attended by…

  12. Environmental Aging of Scotch-Weld(TradeMark) AF-555M Structural Adhesive in Composite to Composite Bonds

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Miner, Gilda A.; Lowther, Sharon E.; Connell, John W.; Baughman, James M.

    2010-01-01

    Fiber reinforced resin matrix composites have found increased usage in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance is not well established. In this study, adhesive bonds were prepared by the secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminate. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of single-lap-shear (SLS) specimen was measured to determine thickness and inspected visually for voids. A three-year environmental aging plan for the SLS specimens at 82 C and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The aging results of strength retention and failure modes to date are reported.

  13. The impact of intrinsic ageing on the protein composition of the dermal-epidermal junction.

    PubMed

    Langton, Abigail K; Halai, Poonam; Griffiths, Christopher E M; Sherratt, Michael J; Watson, Rachel E B

    2016-06-01

    The dermal-epidermal junction of human skin exhibits age-related remodelling, resulting in a flattened appearance and reduced surface area. Despite this, a paucity of information is available regarding which protein components change with advancing age. Here we report a significant reduction in the protein distribution of collagen IV (P<0.0001), collagen VII (P<0.001), collagen XVII (P<0.01), integrin β4 (P<0.001) and laminin-332 (P<0.0001) in intrinsically aged skin. The functional implication of this altered protein composition appears to be loss of structural integrity and may, in part, explain the increased fragility of aged skin. PMID:27013376

  14. Genetic composition and diploid hybrid speciation of a high mountain pine, Pinus densata, native to the Tibetan plateau.

    PubMed Central

    Wang, X R; Szmidt, A E; Savolainen, O

    2001-01-01

    Pinus densata has been suggested to have originated from hybridization events involving P. tabulaeformis and P. yunnanensis. In this study, allozyme differentiation at 12 loci was studied in 14 populations of P. tabulaeformis, P. densata, and P. yunnanensis from China. The observed genetic composition of P. densata supported the hybrid hypothesis and showed varying degrees of contribution from P. yunnanensis and P. tabulaeformis among its populations. These data, together with previous chloroplast DNA results, indicated different evolutionary histories among P. densata populations. To examine the possibility of ongoing hybridization among the three species, we analyzed patterns of linkage disequilibria between allozyme loci in ovule, pollen, and zygote pools. None of these tests suggested that there is significant ongoing gene exchange, implying that populations of P. densata have a stabilized hybrid nature. The normal fertility and high fecundity of P. densata indicate that this hybrid is maintained through sexual reproduction. P. densata represents an example of diploid hybrid speciation in an extreme ecological habitat that is both spatially and ecologically separated from that of its parents. PMID:11560909

  15. Effects of boron and glass hybrid epoxy-composites on graphite-fiber release in an aircraft fire

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1979-01-01

    Recent studies have shown that the benefits gained by using graphite-epoxy composite structures may not be realized without some risk. The graphite fibers are very good electrical conductors and fibers released into the environment during a fire create a possible hazard to electrical equipment. Several graphite-epoxy hybrids were exposed to a fire and simulated explosion and their graphite fiber retention characteristics were examined. Several low melting-temperature glasses which wet and clump graphite-fibers and a glass/graphite fabric which reduced impact damage were identified as promising hybridizing components to minimize graphite fiber release.

  16. Penetration of carbon-fabric-reinforced composites by edge cracks during thermal aging

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Kamvouris, John E.

    1994-01-01

    Thermo-oxidative stability (TOS) test results are significantly influenced by the formation and growth or presence of interlaminar and interlaminar cracks in the cut edges of all carbon-fiber-crosslinked high-temperature polymer matrix composites(exp 1-5) (i.e., unidirectional, crossplied, angle-plied, and fabric composites). The thermo-oxidative degradation of these composites is heavily dependent on the surface area that is exposed to the harmful environment and on the surface-to-volume ratio of the structure under study. Since the growth of cracks and voids on the composite surfaces significantly increases the exposed surface areas, it is imperative that the interaction between the aging process and the formation of new surface area as the aging time progresses be understood.

  17. Effects of physical aging on long-term creep of polymers and polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Brinson, L. Catherine; Gates, Thomas S.

    1994-01-01

    For many polymeric materials in use below the glass transition temperature, the long term viscoelastic behavior is greatly affected by physical aging. To use polymer matrix composites as critical structural components in existing and novel technological applications, this long term behavior of the material system must be understood. Towards that end, this study applied the concepts governing the mechanics of physical aging in a consistent manner to the study of laminated composite systems. Even in fiber-dominated lay-ups the effects of physical aging are found to be important in the long-term behavior of the composite. The basic concepts describing physical aging of polymers are discussed. Several aspects of physical aging which have not been previously documented are also explored in this study, namely the effects of aging into equilibrium and a relationship to the time-temperature shift factor. The physical aging theory is then extended to develop the long-term compliance/modulus of a single lamina with varying fiber orientation. The latter is then built into classical lamination theory to predict long-time response of general oriented lamina and laminates. It is illustrated that the long term response can be counterintuitive, stressing the need for consistent modeling efforts to make long term predictions of laminates to be used in structural situations.

  18. High-volume-fraction Cu/Al2O3-SiC hybrid interpenetrating phase composite

    NASA Astrophysics Data System (ADS)

    Saidi, Hesam; Roudini, Ghodratollah; Afarani, Mahdi Shafiee

    2015-10-01

    Metal matrix particulate interpenetrating phase composites are a class of composites materials with three-dimensional internal connections of matrix and reinforcements. This kind of microstructure affects the mechanical and physical properties of the composites. In this study, Al2O3-SiC hybrid preforms were produced by polyurethane foams removal (replica method) within mean pore size of 30 pores per inch (ppi), and sintering at 1200 °C. Subsequently, the molten copper was infiltrated into the preforms by squeeze casting method. The microstructure, density, porosity, bending strength and thermal shock resistance of the preforms were investigated. Then, the composites microstructure and compressive strength were studied. The results showed that with SiC concentration increasing, the density, flexural strength and thermal shock resistance of the preforms were improved. Also the composites compressive strengths were changed with variation of SiC concentration.

  19. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    PubMed

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites. PMID:25898271

  20. Shear bond strength of orthodontic brackets to aged resin composite surfaces: effect of surface conditioning.

    PubMed

    Bayram, Mehmet; Yesilyurt, Cemal; Kusgöz, Adem; Ulker, Mustafa; Nur, Metin

    2011-04-01

    The aim of this study was to investigate the effects of surface conditioning protocols on the shear bond strength (SBS) of metal brackets to aged composite resin surfaces in vitro. Ninety composite resin discs, 6 mm in diameter and 2 mm in height, were prepared and treated with an ageing procedure. After ageing, the specimens were randomly assigned to one of the following groups: (1) control with no surface treatment, (2) 38 per cent phosphoric acid gel, (3) 9.6 per cent hydrofluoric acid gel, (4) airborne aluminium trioxide particle abrasion, (5) sodium bicarbonate particle abrasion, and (6) diamond bur. The metal brackets were bonded to composite surfaces by means of an orthodontic adhesive (Transbond XT). All specimens were stored in water for 1 week at 37°C and then thermocycled (1000 cycles, 5-55°C) prior to SBS testing. SBS values and residual adhesive on the composite surface were evaluated. Analysis of variance showed a significant difference (P = 0.000) between the groups. Group 6 had the highest mean SBS (10.61 MPa), followed by group 4 (10.29 MPa). The results of this study suggest that a clinically acceptable bond strength can be achieved by surface conditioning of aged resin composite via the application of hydrofluoric acid, aluminium trioxide particle abrasion, sodium bicarbonate particle abrasion, or a diamond bur. PMID:20660131

  1. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone

    PubMed Central

    Raghavan, Mekhala; Sahar, Nadder D.; Kohn, David H.; Morris, Michael D.

    2012-01-01

    There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86–96% accuracy) as compared to using individual measures (59–79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single

  2. One-step in situ synthesis of graphene–TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic activity

    SciTech Connect

    Sun, Mingxuan Li, Weibin; Sun, Shanfu; He, Jia; Zhang, Qiang; Shi, Yuying

    2015-01-15

    Chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with superior dispersity were synthesized by a one-step in situ hydrothermal method using graphene oxide (GO) and TiO{sub 2} (P25) as the starting materials. The as-prepared samples were characterized by XRD, XPS, TEM, FE-SEM, EDX, Raman, N{sub 2} adsorption, and UV–vis DRS techniques. Enhanced light absorption and a red shift of absorption edge were observed for the composites in the ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). Their effective photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation. An enhancement of photocatalytic performance was observed over graphene/TiO{sub 2} nanorod hybrid composite photocatalysts, as 3.7 times larger than that of pristine TiO{sub 2} nanorods. This work demonstrated that the synthesis of TiO{sub 2} nanorods and simultaneous conversion of GO to graphene “without using reducing agents” had shown to be a rapid, direct and clean approach to fabricate chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic performance.

  3. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-07-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO.

  4. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Shi, Qiwu; Luo, Yanbing; Fan, Rangrang; Zhou, Liangxue; Qian, Zhiyong; Yu, Jie

    2014-05-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites.

  5. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives.

    PubMed

    Guo, Gang; Shi, Qiwu; Luo, Yanbing; Fan, Rangrang; Zhou, Liangxue; Qian, Zhiyong; Yu, Jie

    2014-01-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites. PMID:24872802

  6. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  7. Effects of aging on repair bond strengths of a polyacid-modified composite resin.

    PubMed

    Yap, A U; Sau, C W; Lye, K W

    1999-01-01

    The effect of age of a poly-acid-modified composite resin on repair bond strength after different methods of surface conditioning was studied. Surface conditioning methods included the following: maleic acid with resin application; polyacrylic acid with resin application; sand-blasting with resin application. Shear bond testing between the aged and new material was carried out with an Instron Universal Testing Machine. Although repair bonds strengths after all surface conditioning methods were significantly higher than the control group at 1 week, no statistically significant differences in bond strengths were noted after aging the material for 6 months. After all aging periods, surface conditioning with sand-blasting and resin application resulted in the highest repair bond for poly-acid-modified composite resins. Specimens with cohesive failure in the material gave significantly higher repair bond strengths than specimens with adhesive failure at the repaired interface. PMID:10823087

  8. Effect of Thermally Softened Bronze Matrix on the Fracturing Behavior of Diamond Particles in Hybrid Sprayed Bronze/Diamond Composite

    NASA Astrophysics Data System (ADS)

    Na, Hyuntaek; Bae, Gyuyeol; Kang, Kicheol; Kim, Hyungjun; Kim, Jay-Jung; Lee, Changhee

    2010-09-01

    In our previous study (Na et al., Compos Sci Technol 69:463-468, 2009), optimized thickness of protective nickel film was proposed for smaller diamond feedstock to obtain reduced impact stress and uniform flight behavior of particles during kinetic (or cold) spraying. However, in this study, nickel-coated diamond particles were severely fractured with increasing particle size due to high kinetic energy. Hence, an innovative hybrid spraying technique (a combination of kinetic and thermal spraying) was introduced to embed relatively large diamond particles into the bronze matrix. Size distributions of the diamond particles in the composite coatings were analyzed by scanning electron microscopy, an electron probe micro analyzer, and image analysis methods. In addition, impact behaviors of diamond particles in kinetic and hybrid gas flows were simulated through finite element analysis (ABAQUS/Explicit 6.7-2). Diamond fracturing was significantly minimized by the reduced impact energy afforded by the thermally softened bronze matrix through hybrid spraying.

  9. Effects of Age, Walking Speed, and Body Composition on Pedometer Accuracy in Children

    ERIC Educational Resources Information Center

    Duncan, J. Scott; Schofield, Grant; Duncan, Elizabeth K.; Hinckson, Erica A.

    2007-01-01

    The objective of this study was to investigate the effects of age group, walking speed, and body composition on the accuracy of pedometer-determined step counts in children. Eighty-five participants (43 boys, 42 girls), ages 5-7 and 9-11 years, walked on a treadmill for two-minute bouts at speeds of 42, 66, and 90 m[middle dot]min[superscript -1]…

  10. Minor and trace element composition and age of Yukon probable-microtektites

    NASA Technical Reports Server (NTRS)

    Boundy-Sanders, S. Q.; Hervig, R. L.

    1993-01-01

    Major, minor, and trace element composition of the candidate micro tektites from Yukon Territory suggest a possible impact site of hydrothermally altered limestone and sand or chert, or possibly a carbonatite. Their REE/chondrite curve is similar in character to, but higher than, shale composites of North America, Australia, and Europe. Relative to these same composites, the Yukon droplets are enriched in Y, F, S, Sr, P, Mn, Mg, and Ca. They are depleted in Rb, Li, Th, Nb, Ti, K, Na, Fe, Si, and Al. Biostratigraphic constraints on the droplets indicate they are Middle to Late Devonian, more likely Middle Devonian, in age.

  11. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    NASA Astrophysics Data System (ADS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  12. Age composition and antioxidant enzyme activities in blood of Black Sea teleosts.

    PubMed

    Rudneva, Irina I; Skuratovskaya, Ekaterina N; Kuzminova, Natalya S; Kovyrshina, Tatyana B

    2010-03-01

    Age composition and age-related trends of antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT), peroxidase (PER), glutathione reductase (GR) and glutathione-S-transferase (GST) in the blood of seven Black Sea teleosts (Carangidae, Centracanthidae, Gadidae, Mullidae, Gobiidae and Scorpaenidae) collected in marine coastal area of Sevastopol (Ukraine) were studied. In the catches the animals of 1-2 years of age dominated while in the Scorpaena porcus population the number of relatively elder individuals belonging to classes of 3-4 years was the highest. The trends of antioxidant enzyme activities in blood were not uniform. Three types of age-dependent responses were indicated in fish blood: 1. enzymatic activity did not change with age; 2. enzymatic activity decreased with age and 3. enzyme activity increased with age or varied unclearly. The interspecies differences of age-related enzymatic activities associated with the specificity of fish biology and ecology were indicated. Despite no clear evidence of age-related differences between fish species belonging to different ecological groups both benthic forms exhibited similar age-dependent trends of SOD and PER. The correlations between blood antioxidant enzyme activities in fish belonging to suprabenthic and benthic/pelagic groups demonstrated the intermediate values as compared to the benthic and pelagic forms. The results suggest the importance of age trends for biomarkers in fish monitoring studies. PMID:19897051

  13. Body composition during fetal development and infancy through the age of 5 years.

    PubMed

    Toro-Ramos, T; Paley, C; Pi-Sunyer, F X; Gallagher, D

    2015-12-01

    Fetal body composition is an important determinant of body composition at birth, and it is likely to be an important determinant at later stages in life. The purpose of this work is to provide a comprehensive overview by presenting data from previously published studies that report on body composition during fetal development in newborns and the infant/child through 5 years of age. Understanding the changes in body composition that occur both in utero and during infancy and childhood, and how they may be related, may help inform evidence-based practice during pregnancy and childhood. We describe body composition measurement techniques from the in utero period to 5 years of age, and identify gaps in knowledge to direct future research efforts. Available literature on chemical and cadaver analyses of fetal studies during gestation is presented to show the timing and accretion rates of adipose and lean tissues. Quantitative and qualitative aspects of fetal lean and fat mass accretion could be especially useful in the clinical setting for diagnostic purposes. The practicality of different pediatric body composition measurement methods in the clinical setting is discussed by presenting the assumptions and limitations associated with each method that may assist the clinician in characterizing the health and nutritional status of the fetus, infant and child. It is our hope that this review will help guide future research efforts directed at increasing the understanding of how body composition in early development may be associated with chronic diseases in later life. PMID:26242725

  14. High Technique for T-Peel Strength Enhancement of Al/AFRP Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woong; Oh, Dong-Joon

    The interlaminar peel strength of Al/AFRP (Aluminum alloy/Aramid Fiber Reinforced Plastic) hybrid composite is affected by the adhesive strength between the Al alloy layer and the aramid fiber layer. The study of the tensile strength and the T-peel strength of the Al/AFRP should be accomplished first. Therefore, this study focused on the effect of the resin mixture ratio as the Al/AFRP on the tensile strength and T-peel strength. In conclusions, the resin mixture ratio by equivalence ratio of equal to <1:1> of Al/AFRP-I and the resin mixture ratio by equivalence ratio of equal to <1:1:0.2> of Al/AFRP-II showed the highest ultimate tensile strength. After the T-peel test, it is found that the T-peel strength of Al/AFRP-II is approximately 1.5 times higher than that of Al/AFRP-I. Reviewing the characteristics of the tensile and T-peel strengths, the resin mixture ratio <1:1:0.2> of Al/AFRP-II showed the highest tensile strength and T-peel strength.

  15. Stress analysis and damage evaluation of flawed composite laminates by hybrid-numerical methods

    NASA Technical Reports Server (NTRS)

    Yang, Yii-Ching

    1992-01-01

    Structural components in flight vehicles is often inherited flaws, such as microcracks, voids, holes, and delamination. These defects will degrade structures the same as that due to damages in service, such as impact, corrosion, and erosion. It is very important to know how a structural component can be useful and survive after these flaws and damages. To understand the behavior and limitation of these structural components researchers usually do experimental tests or theoretical analyses on structures with simulated flaws. However, neither approach has been completely successful. As Durelli states that 'Seldom does one method give a complete solution, with the most efficiency'. Examples of this principle is seen in photomechanics which additional strain-gage testing can only average stresses at locations of high concentration. On the other hand, theoretical analyses including numerical analyses are implemented with simplified assumptions which may not reflect actual boundary conditions. Hybrid-Numerical methods which combine photomechanics and numerical analysis have been used to correct this inefficiency since 1950's. But its application is limited until 1970's when modern computer codes became available. In recent years, researchers have enhanced the data obtained from photoelasticity, laser speckle, holography and moire' interferometry for input of finite element analysis on metals. Nevertheless, there is only few of literature being done on composite laminates. Therefore, this research is dedicated to this highly anisotropic material.

  16. Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air

    PubMed Central

    Trocino, Stefano; Donato, Andrea; Latino, Mariangela; Donato, Nicola; Leonardi, Salvatore Gianluca; Neri, Giovanni

    2012-01-01

    Hydrogen is a valuable fuel for the next energy scenario. Unfortunately, hydrogen is highly flammable at concentrations higher than 4% in air. This aspect makes the monitoring of H2 leaks an essential issue for safety reasons, especially in the transportation field. In this paper, nanocomposites based on Pt-doped TiO2/multiwalled carbon nanotubes (MWCNTs) have been introduced as sensitive materials for H2 at low temperatures. Pt-TiO2/MWNTs nanocomposites with different composition have been prepared by a simple wet chemical procedure and their morphological, microstructural and electrical properties were investigated. Resistive thick-film devices have been fabricated printing the hybrid nanocomposites on alumina substrates provided with Pt interdigitated electrodes. Electrical tests in air have shown that embedding MWCNTs in the TiO2 matrix modify markedly the electrical conductivity, providing a means to decrease the resistance of the sensing layer. Pt acts as a catalytic additive. Pt-TiO2/MWNTs-based sensors were found to be sensitive to hydrogen at concentrations between 0.5 and 3% in air, satisfying the requisites for practical applications in hydrogen leak detection devices.

  17. Assumed--stress hybrid elements with drilling degrees of freedom for nonlinear analysis of composite structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr. (Principal Investigator)

    1996-01-01

    The goal of this research project is to develop assumed-stress hybrid elements with rotational degrees of freedom for analyzing composite structures. During the first year of the three-year activity, the effort was directed to further assess the AQ4 shell element and its extensions to buckling and free vibration problems. In addition, the development of a compatible 2-node beam element was to be accomplished. The extensions and new developments were implemented in the Computational Structural Mechanics Testbed COMET. An assessment was performed to verify the implementation and to assess the performance of these elements in terms of accuracy. During the second and third years, extensions to geometrically nonlinear problems were developed and tested. This effort involved working with the nonlinear solution strategy as well as the nonlinear formulation for the elements. This research has resulted in the development and implementation of two additional element processors (ES22 for the beam element and ES24 for the shell elements) in COMET. The software was developed using a SUN workstation and has been ported to the NASA Langley Convex named blackbird. Both element processors are now part of the baseline version of COMET.

  18. Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers.

    PubMed

    Mauri-Aucejo, Adela R; Ponce-Català, Patricia; Belenguer-Sapiña, Carolina; Amorós, Pedro

    2015-03-01

    An analytical method for the determination of phenolic compounds in air samples based on the use of cyclodextrin-silica hybrid microporous composite samplers is proposed. The method allows the determination of phenol, guaiacol, cresol isomers, eugenol, 4-ethylphenol and 4-ethylguaiacol in workplaces according to the Norm UNE-EN 1076:2009 for active sampling. Therefore, the proposed method offers an alternative for the assessment of the occupational exposure to phenol and cresol isomers. The detection limits of the proposed method are lower than those for the NIOSH Method 2546. Storage time of samples almost reaches 44 days. Recovery values for phenol, guaiacol, o-cresol, m-cresol, p-cresol, 4-ethylguaiacol, eugenol and 4-ethylphenol are 109%, 99%, 102%, 94%, 94%, 91%, 95% and 102%, respectively with a coefficient of variation below 6%. The method has been applied to the assessment of exposure in different areas of a farm and regarding the quantification of these compounds in the vapors generated by burning incense sticks and an essential oil marketed as air fresheners. The acquired results are comparable with those provided from a reference method for a 95% of confidence level. The possible use of these samplers for the sampling of other toxic compounds such as phthalates is evaluated by qualitative analysis of extracts from incense sticks and essential oil samples. PMID:25618708

  19. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method.

    PubMed

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2016-07-10

    Recovery of oil from oil-in-water emulsion has been investigated by many scientists and it continues to be a challenging task for environmental scientists so far. Among all the techniques, adsorption is found to be an appropriate process for the removal of oil from oil-in-water emulsion owing to its high efficiency and easy operation. A hybrid material, zirconium-chitosan composite (Zr-CS-HC) was prepared to remove the oil from oil-in-water emulsion and oil was measured by extractive gravimetric method. Various parameters viz., agitation time, pH, sorbent dosage and initial oil concentration for maximum sorption were optimized. In this study, the maximum oil removal percentage was found to be at pH 3.0 and a minimum contact time of 50min using prepared sorbent. The pH of the sorption studies revealed that oil sorption was favored in acidic condition. The sorbent was characterized using FTIR, SEM with EDAX, XRD, TGA and DSC; contact angle and heat of combustion. The experimental data were explained using Freundlich, Langmuir, D-R and Tempkin isotherms to find the best fit for the sorption process. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to understand the nature of sorption process. This work provides a potential platform for the expansion of oil removal technology. PMID:27106157

  20. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell.

    PubMed

    Huang, Jianhang; Yang, Zhanhong; Feng, Zhaobin; Xie, Xiaoe; Wen, Xing

    2016-01-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does. PMID:27074985

  1. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell

    PubMed Central

    Huang, Jianhang; Yang, Zhanhong; Feng, Zhaobin; Xie, Xiaoe; Wen, Xing

    2016-01-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does. PMID:27074985

  2. Analysis of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners

    NASA Astrophysics Data System (ADS)

    Modak, Partha; Hossain, M. Jamil; Ahmed, S. Reaz

    2016-07-01

    An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle of individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.

  3. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell

    NASA Astrophysics Data System (ADS)

    Huang, Jianhang; Yang, Zhanhong; Feng, Zhaobin; Xie, Xiaoe; Wen, Xing

    2016-04-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does.

  4. Composites of hybrids BaTiO3/carbon nanotubes/polyvinylidene fluoride with high dielectric properties

    NASA Astrophysics Data System (ADS)

    Fan, Benhui; Bai, Jinbo

    2015-11-01

    High dielectric composites were prepared based on polyvinylidene fluoride (PVDF) and hybrids BaTiO3-carbon nanotubes (H-BT-CNTs) with a special structure. The hybrids that BT was a core and CNTs grew outside were fabricated by chemical vapor deposition. Due to the special structure, composite’s dielectric permittivity reached 1777 at 100 Hz and 80 at 1 MHz, while loss tangent maintained as 6 at 100 Hz and 0.56 at 1 MHz, respectively. Moreover, dielectric permittivity and ac conductivity of composite were further enhanced after annealing process at moderate temperature. These improved properties were originated from the reformation of conductive network and BT-CNTs structure inside PVDF matrix.

  5. Paternal-age effects on sperm aneuploidy investigated in mice and humans by three-chromosome fluorescence in situ hybridization

    SciTech Connect

    Wyrobek, A.J.; Lowe, X.; Holland, N.T.

    1994-09-01

    We conducted a cross-species comparison of the effects of paternal age on sperm aneuploidy in mice and humans. A new murine assay was developed to detect sperm hyperhaploidy and polyploidy for chromosomes X, Y, and 8 using fluorescence in situ hybridization with chromosome-specific DNA probes, to serve as a direct corollate to the three-chromosome method developed early for human sperm. Sperm aneuploidy was evaluated in eight male B6C3F1 male mice (aged 22.5-30.5 mo) and compared to young controls (2.4 mo). The aged group showed significant ({approximately}2.0-fold) increases in hyperhaploidies involving chromosomes X, Y and 8, with the greatest effects seen in the oldest animals. Sperm aneuploidy was also evaluated in two groups of healthy men who differed in mean age [46.8{plus_minus}3.1 (n=4) vs. 28.5{plus_minus}5.0 (n=10) yrs], using the three-chromosome method. The older group showed a statistically significant increase in hyperhaploid sperm for both sex chromosomes. Additional controlled human studies are planned. Taken together, the murine and human data are consistent with a positive effect of paternal age on sperm aneuploidy. In both species, the strongest age effect was observed for hyperhaploidies of chromosome Y. Future studies are needed to investigate the shape of the age-effect curve and to evaluate chromosomal differences, especially for humans in their late reproductive years.

  6. A general templated method to homogeneous and composition-tunable hybrid TiO2 nanocomposite fibers.

    PubMed

    Xu, Ximing; Li, Xiaona; Lin, Pingyong; Chen, Ting; Yuan, Rusheng; Ding, Zhengxin; Wu, Ling; Wang, Xuxu; Li, Zhaohui

    2011-03-01

    Sequential impregnations of metal ions and titanium tetraisopropoxide (TTIP) into activated carbon fibers (ACF) followed by a solvothermal treatment has been found to be a general method in the preparations of homogeneous and composition-tunable hybrid TiO(2) hierarchical nanocomposite fibers like WO(3)/TiO(2), Fe(2)O(3)/TiO(2) and SnO(2)/TiO(2). PMID:21225065

  7. Synthesis of organic-inorganic hybrid fillers at the molecular level and their application to composite resin.

    PubMed

    Anzai, Misaki; Ishikawa, Youichi; Yoshihashi, Kazue; Hirose, Hideharu; Nishiyama, Minoru

    2002-12-01

    The objective of this study was to synthesize a hybrid type filler composed of an organic component with inorganic component at the molecular level and to examine the properties of the filler. The composite resin was prepared by mixing synthesized filler with monomer and its physical properties were also examined. An organic-inorganic hybrid filler was synthesized by using 3-methacryloxypropyltrimethoxysilane (3-MPTS), methyltriethyoxysilane (MTES) and methanol silica sol. Firstly, poly3-methacryloxypropyltrimethoxysilane (poly3-MPTS) was synthesized by polymerization of 3-MPTS. A gelation product was obtained by graft-polymerization of poly3-MPTS with condensed organopolysiloxane after the hydrolysis of 3-MPTS, MTES and methanol silica sol. The gelation product was dried and ground to a filler. From the results of thermogravimetry-differential thermal analysis (TG-DTA), the organic-inorganic hybrid filler was found to be composed of 16.5 wt% organic component, 83.1 wt% inorganic component and 0.4 wt% residual water. A trial composite resin was prepared by mixing 55 wt% dimethacryloxyethyl 2,2,4-trimethylhexamethylene diurethane (UDMA), 15 wt% triethyleneglycol dimethacrylate (TEGDMA), 30 wt% 1-fluoro-1,3,3,5,5-penta (methacryloxyethyleneoxy) cyclotriphosphazene [P3N3(F)1 (EMA)5] as a base monomer and then 32.0 wt% of this monomer was mixed with 68.0 wt % of synthesized filler and a photo initiator, comphorquinone (CQ), was added. Compressive strength of the trial visible-light cured composite resin showed 397.0 MPa, and flexural strength and elastic modulus showed 142.5 MPa and 11.5 GPa, respectively. From the results, it was demonstrated that the present organic-inorganic hybrid filler at the molecular level can be used as a composite resin filler. PMID:12613504

  8. Reduction of the impact of atmospheric ageing effects on spin coated γ-CuCl nanocrystalline hybrid films

    NASA Astrophysics Data System (ADS)

    Alam, M. M.; Daniels, S.; McNally, P. J.

    2016-01-01

    γ-CuCl (Eg = 3.395 eV at 4 K) is an ionic I-VII compound semiconductor material with the zincblende structure at room temperature. This is one of the most studied inorganic materials for excitonic related linear/non-linear optical processes due to its large excitonic binding energy. One challenge linked with the use of CuCl is that it is sensitive to moist air i.e. CuCl is not stable in ambient conditions; it forms oxyhalides of Cu++ within a few hours or days of exposure to air. Therefore the use of CuCl for long-term applications is limited. To eliminate this drawback we have investigated the use of spin-coated organic-inorganic CuCl hybrid films. In an organic-inorganic hybrid film, the inorganic material is mixed with organic materials (polymer) to improve its physical, chemical, thermal and electrical properties, process simplicity, and stability. The impacts of atmospheric ageing effects on nanocrystalline CuCl hybrid films were investigated in order to avoid extra capping layer to protect CuCl degradation and extended its use in large scale applications. We show that CuCl-based hybrid films produced in this fashion have useful lifetimes of up to 3 months, which is approximately a two orders of magnitude improvement in the previously published usable lifetimes for optical emission in these materials, opening up the possibility that organic-inorganic CuCl hybrid films can indeed be useful materials for optoelectronic applications.

  9. The composite dynamic method as evidence for age-specific waterfowl mortality

    USGS Publications Warehouse

    Burnham, Kenneth P.; Anderson, David R.

    1979-01-01

    For the past 25 years estimation of mortality rates for waterfowl has been based almost entirely on the composite dynamic life table. We examined the specific assumptions for this method and derived a valid goodness of fit test. We performed this test on 45 data sets representing a cross section of banded sampled for various waterfowl species, geographic areas, banding periods, and age/sex classes. We found that: (1) the composite dynamic method was rejected (P <0.001) in 37 of the 45 data sets (in fact, 29 were rejected at P <0.00001) and (2) recovery and harvest rates are year-specific (a critical violation of the necessary assumptions). We conclude that the restrictive assumptions required for the composite dynamic method to produce valid estimates of mortality rates are not met in waterfowl data. Also we demonstrate that even when the required assumptions are met, the method produces very biased estimates of age-specific mortality rates. We believe the composite dynamic method should not be used in the analysis of waterfowl banding data. Furthermore, the composite dynamic method does not provide valid evidence for age-specific mortality rates in waterfowl.

  10. Mechanical properties of silorane-based and methacrylate-based composite resins after artificial aging.

    PubMed

    de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido

    2016-01-01

    The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P < 0.001). The conventional composite resin Fill Magic presented the best performance before (P < 0.05) and after AAA (P < 0.05). Values for compressive strength of the silorane-based composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785). PMID:26943090

  11. Age-related changes in body composition in laboratory rats: Strain and gender comparisons

    EPA Science Inventory

    Long Evans (LE), Sprague Dawley (SD), Fischer 344 (F344), and Brown Norway (BN) rats are all commonly used as laboratory research subjects. These strains have been studied under many conditions, but few studies have measured changes in body composition as the animals age. Underst...

  12. Fiber Bragg grating sensing in smart composite patch repairs for aging aircraft

    NASA Astrophysics Data System (ADS)

    Kressel, I.; Botsev, Y.; Leibovich, H.; Guedj, P.; Ben-Simon, U.; Ghilai, G.; Gorbatov, Nahum; Gali, S.; Tur, Moshe

    2005-05-01

    A low spatial resolution Fiber-Bragg-Grating sensor net is proposed for real time health monitoring of bonded composite patches used for aging aircraft structural repairs. FBG reading are shown to have direct correlation with the structural integrity of the patch, making this concept attractive for airworthiness assessment of bonded repairs.

  13. Classroom Age Composition and Vocabulary Development among At-Risk Preschoolers

    ERIC Educational Resources Information Center

    Guo, Ying; Tompkins, Virginia; Justice, Laura; Petscher, Yaacov

    2014-01-01

    Research Findings: The purpose of this exploratory study was to examine the relationship between classroom age composition and preschoolers' vocabulary gains over an academic year and also to examine whether these relations were moderated by classroom quality. In this study (N = 130 children in 16 classrooms representing a subset of all…

  14. Body Composition and Physiological Responses of Masters Female Swimmers 20 to 70 Years of Age.

    ERIC Educational Resources Information Center

    Vaccaro, Paul; And Others

    1984-01-01

    Female masters swimmers ranging in age from 20 to 69 were chosen for a study of their body composition and physiological responses at rest and during exercise. Two training groups were formed that differed on the basis of frequency, duration, and intensity of swimming workouts. Results are discussed. (Author/DF)

  15. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    SciTech Connect

    Tsutaoka, Takanori Fukuyama, Koki; Kinoshita, Hideaki; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  16. In Situ Response of Nanostructured Hybrid Fluoridated Restorative Composites on Enamel Demineralization, Surface Roughness and Ion Release.

    PubMed

    Melo, Mary A S; Codes, Bruna M; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-12-01

    Recurrent caries at the tooth-restoration margins is the main reason for composite failure. Fluoride-releasing nanohybrid composite resin may reduce the recurrent caries rates. A fluoride-releasing resin (FCR) and non-fluoride-releasing resin (CR) were tested using an in situ model. Demineralization (ΔS), ion release and surface roughness of composite specimens were determined. The F concentration in the group FCR was higher than the CR group. ΔS (Mean ± SD) was 2579 ± 1582 and 1705 ± 1292, respectively, for FCR and CR. Surfaces roughness was altered by biofilm accumulation. The hybrid fluorated restorative composites containing nanoparticles have a slight anticaries action without alteration of surface smoothness of the material. PMID:26466443

  17. Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam.

    PubMed

    Masghouni, N; Burton, J; Philen, M K; Al-Haik, M

    2015-03-01

    Hybrid piezoelectric composite structures that are able to convert mechanical energy into electricity have gained growing attention in the past few years. In this work, an energy harvesting composite beam is developed by growing piezoelectric zinc oxide nanowires on the surface of carbon fiber prior to forming structural composites. The piezoelectric behavior of the composite beam was demonstrated under different vibration sources such as water bath sonicator and permanent magnet vibration shaker. The beam was excited at its fundamental natural frequency (43.2 Hz) and the open circuit voltage and the short circuit current were measured to be 3.1 mV and 23 nA, respectively. Upon connecting an optimal resistor (1.2 kΩ) in series with the beam a maximum power output 2.5 nW was achieved. PMID:25670370

  18. A comparison of measured and calculated thermal stresses in a hybrid metal matrix composite spar cap element

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Taylor, A. H.; Sakata, I. F.

    1985-01-01

    A hybrid spar of titanium with an integrally brazed composite, consisting of an aluminum matrix reinforced with boron-carbide-coated fibers, was heated in an oven and the resulting thermal stresses were measured. Uniform heating of the spar in an oven resulted in thermal stresses arising from the effects of dissimilar materials and anisotropy of the metal matrix composite. Thermal stresses were calculated from a finite element structural model using anisotropic material properties deduced from constituent properties and rules of mixtures. Comparisons of calculated thermal stresses with measured thermal stresses on the spar are presented. It was shown that failure to account for anisotropy in the metal matrix composite elements would result in large errors in correlating measured and calculated thermal stresses. It was concluded that very strong material characterization efforts are required to predict accurate thermal stresses in anisotropic composite structures.

  19. Mechanical, Hygric, and Thermal Properties of Cement-Based Composite with Hybrid Fiber Reinforcement Subjected to High Temperatures

    NASA Astrophysics Data System (ADS)

    Vejmelková, Eva; Konvalinka, Petr; Padevět, Pavel; Kopecký, Lubomír; Keppert, Martin; Černý, Robert

    2009-06-01

    The tensile strength, bending strength, water vapor diffusion resistance factor, gas permeability, thermal conductivity, specific heat capacity, and linear thermal expansion coefficient of a cement-based composite with hybrid PVA-fiber reinforcement are determined as functions of thermal pre-treatment, the loading temperatures being 600 °C, 800 °C, and 1000 °C. The experimental results show that the most important changes in all studied parameters occur between the unloaded state and the loading temperature of 600 °C and then between 800 °C and 1000 °C. Although seemingly high, these changes are still small as compared to many other cement-based composites. The positive effect of using PVA fibers for the high-temperature behavior of the studied composite can be seen mainly in their ability to prevent thermal spalling which is a serious deterioration effect for cement-based composites.

  20. Effect of animal age and trimming practices on the physical composition of Bonsmara beef.

    PubMed

    Hall, Nicolette; Schönfeldt, Hettie C; Pretorius, Beulah

    2016-02-15

    Increased economic incentive for producing young and leaner carcasses, as well as demand for lean meat from progressively health conscious consumers, are considered drivers for change in carcass composition over time. Furthermore, many retailers trim visible fat from meat to various degrees and consumers increasingly remove visible fat from meat prior to, or after, cooking. The objective of this study was to determine the composition of South African Bonsmara beef from four age groups from different production systems, as well as to extrapolate the effect of fat trimming on physical composition. Fat content of marketable beef has decreased notably since the 1930s, and beef from the South African Bonsmara breed contains less than 10g lipid per 100g after trimming of subcutaneous fat, irrespective of age. Removal of all visible fat reduces the lipid content to less than 5g per 100g, comparing favourably with other lean animal products. PMID:26433303

  1. Surface structural changes of naturally aged silicone and EPDM composite insulators

    SciTech Connect

    Vlastos, A.E. ); Gubanski, S.M. )

    1991-04-01

    In a long-term outdoor test with high direct and alternating voltages, silicone and EPDM rubber composite insulators have, at the beginning, shown a superior performance to that of glass and porcelain insulators. In the long-term test, however, the silicone rubber composite insulator has, in spite of the ageing of both insulator types, kept its good performance, while the performance of the EPDM rubber composite insulator was drastically deteriorated. In order to get a better insight into results obtained, the wettability and the surface structural changes of the insulators were studied by the drop deposition method (using a goniometer) and by advanced techniques such as SEM, ESCA, FTIR and SIMS respectively. The results show that the differences in performance have to be found in the differences in the surface structural changes and in the dynamic ability of the surface to compensate the ageing.

  2. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiangying, Qu; Feng, Gao; Quan, Zhou; Zhiyu, Wang; Han, Hu; Beibei, Li; Wubo, Wan; Xuzhen, Wang; Jieshan, Qiu

    2013-03-01

    A highly atom-economic procedure for the preparation of reduced graphene oxide/Mn3O4 (rGO/Mn3O4) composites is reported. Pristine graphene oxide/manganese sulfate (GO/MnSO4) suspension produced by modified Hummers method is utilized with high efficiency, which has been in situ converted into GO/Mn3O4 hybrid composite by air oxidation, then into rGO/Mn3O4 composite by means of dielectric barrier discharge (DBD) plasma-assisted deoxygenation. The Mn3O4 content of the rGO/Mn3O4 composites can be readily tailored. It is observed that Mn3O4 nanoparticles of 15-24 nm are well-dispersed on graphene sheets with Mn3O4 loading as high as 90%. The specific capacitance of the as-prepared rGO/Mn3O4 hybrids with 90% Mn3O4 reaches 193 F g-1 when employed as the electrode material in neutral Na2SO4 electrolyte solutions (76 F g-1 for pristine graphene and 95 F g-1 for pure Mn3O4), which indicates the positive synergetic effects from both graphene and attached Mn3O4. The method developed in this study should offer a new technique for the large scale and highly atom-economic production of graphene/MnOx composites for many applications.

  3. NiZn ferrite/Fe hybrid epoxy-based composites: extending magnetic properties to high frequency

    NASA Astrophysics Data System (ADS)

    Wang, Yunqi; Grant, Patrick S.

    2014-08-01

    Hybrid ferromagnetic composites composed of Ni0.4Zn0.6Fe2O4 ferrite powder and Fe particles in an epoxy matrix with various composition ratios were prepared by a simple mould casting route. Planetary ball milling was then introduced to pre-grind Fe and NiZn ferrite filler mixtures before casting, which resulted in fragmentation of the NiZn ferrites and modification of the Fe morphology from spherical particles to sub-micron flakes. Composites containing the ball-milled fillers exhibited a remarkable improvement in electromagnetic properties over the as-supplied materials, especially in the suppression of dielectric and magnetic loss. By combining the characteristics of high resonant frequency of the Fe and low energy losses of the ferrite, an optimum mixture of ball-milled 15 vol% NiZn ferrite and 38 vol% Fe in a hybrid epoxy-based composite gave an approximately one order of magnitude higher extended operating bandwidth over a ferrite-only containing composite, suppressing dielectric and magnetic loss tangents to approximately 10-2 up to 150 MHz without significant deterioration of permeability. This approach of manipulating multi-phase ferromagnetic material fractions and their structure provide for flexibility in the development of bespoke electromagnetic materials for applications in electrically small antenna and metamaterials.

  4. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    NASA Astrophysics Data System (ADS)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  5. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    PubMed Central

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm−1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m−1 K−2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat. PMID:26728992

  6. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Sankar, Kalimuthu Vijaya; Selvan, Ramakrishnan Kalai

    2015-02-01

    The ternary MnFe2O4/graphene/polyaniline (PANI) composite was successfully prepared for the negative electrode in hybrid supercapacitors. The MnFe2O4 particles are synthesized by polymer assisted solution combustion method without any high temperature calcinations. Similarly, the flexible graphene and PANI are prepared by eco-friendly hydrothermal and in situ polymerization method, respectively. The presence of possible functional groups and the existence of individual constituents in the composite were identified through Fourier transform infra-red spectra (FT-IR) and Raman spectra. Transmission electron microscope (TEM) image reveals that the MnFe2O4 particles are dispersed on the flexible graphene sheet and are wrapped by PANI. The ternary composite electrode delivered a specific capacitance of 241 F g-1 at 0.5 mA cm-2, which was 7.5 times higher than MnFe2O4. The calculated b-value elucidates that the charge storage mechanism in the ternary system is based on the capacitive behavior rather than intercalation. The increase in ratio between capacitive and intercalation current with respect to scan rate corroborates that the pseudocapacitive charge storage mechanism is dominant. Further, the fabricated hybrid supercapacitor provides the maximum specific capacitance and energy density of 48.5 F g-1 at 0.5 mA cm-2 and 17 Wh kg-1, respectively. In addition, the hybrid supercapacitor exhibits excellent cyclic stability of up to 5000 successive cycles.

  7. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    NASA Astrophysics Data System (ADS)

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm-1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m-1 K-2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  8. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    PubMed Central

    Ahmed, Khalil; Nizami, Shaikh Sirajuddin; Riza, Nudrat Zahid

    2013-01-01

    A research has been carried out to develop natural rubber (NR) hybrid composites reinforced with marble sludge (MS)/Silica and MS/rice husk derived silica (RHS). The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc. PMID:25685484

  9. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    SciTech Connect

    Matthieu Dubarry; Cyril Truchot; Mikael Cugnet; Bor Yann Liaw; Kevin Gering; Sergiy Sazhin; David Jamison; Christopher Michelbacher

    2011-12-01

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  10. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    NASA Astrophysics Data System (ADS)

    Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikaël; Liaw, Bor Yann; Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising {LiMn 1/3Ni 1/3Co 1/3O 2 + LiMn 2O 4} is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  11. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    NASA Astrophysics Data System (ADS)

    Misri, S.; Leman, Z.; Sapuan, S. M.; Ishak, M. R.

    2010-05-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  12. Long-term thermal aging of 2 graphite-polyimide composite materials

    NASA Technical Reports Server (NTRS)

    Nelson, J. B.

    1984-01-01

    Two graphite/polyimide composite materials were aged in circulating air ovens at temperatures 204 C, 232 C, 260 C, and 288 C for various times up to 25000 hours. The composites were: (1) Celanese Celion 6000 graphite fiber and PMR-15 polyimide resin (Celion/PMR-15) and (2) Celion 6000 graphite fiber and LARC-160 polyimide resin (Celion/LARC-160). Three unidirectional specimen geometries were studied: short beam shear (SBS) specimens, flexure specimens, and 153 mm square panels. The interior regions of the square panels exhibited only minor property degradation. The individually aged SBS and flexure specimens exhibited large reductions in strengths after aging. Both laminate materials cracked and degraded preferentially at the specimen edge perpendicular to the fibers.

  13. Critical interparticle distance for the remarkably enhanced dielectric constant of BaTiO3-Ag hybrids filled polyvinylidene fluoride composites

    NASA Astrophysics Data System (ADS)

    Luo, Suibin; Yu, Shuhui; Fang, Fang; Lai, Maobai; Sun, Rong; Wong, Ching-Ping

    2014-06-01

    Discrete nano Ag-deposited BaTiO3 (BT-Ag) hybrids with varied Ag content were synthesized, and the hybrids filled polyvinylidene fluoride (PVDF) composites were prepared. The effect of Ag content on the dielectric properties of the composites were analyzed based on the diffused electrical double layer theory. Results showed that with a higher Ag content in BT-Ag hybrids, the dielectric constant of BT-Ag/PVDF composites increases fast with the filler loading, while the dielectric loss and conductivity showed a suppressed and moderate increase. The dielectric constant of BT-0.61Ag/PVDF (61 wt. % of Ag in BT-Ag hybrid) composites reached 613, with the dielectric loss of 0.29 at 1 kHz. It was deduced that remarkably enhanced dielectric constant appeared when the interparticle distance decreased to a critical value of about 20 nm.

  14. [Usefulness of hybrid small group learning and age-mixing method in early exposure learning in 2006 and 2007].

    PubMed

    Mizuno, Tomohiro; Taguchi, Tadao; Kato, Hiroshi; Yoshimi, Akira; Yamada, Shinnosuke; Kato, Marina; Yoshimura, Tomoko; Ito, Tatsuo; Noda, Yukihiro

    2009-09-01

    In 2006 the Faculty of Pharmacy, Meijo University has introduced an early exposure learning into the first-year curriculum of the 6-year pharmacy education system, with the aim of "understanding of patients," "enhancing motivation to learn pharmacy," and "understanding of the roles of pharmacists in the clinical setting". This program has three approaches: "active learning", "hybrid small group learning (SGL)" and "age-mixing". The 2006 questionnaire survey on this program revealed some disadvantages, including the inability of student facilitators to get the program in perspective, due to their lack of numbers and time assigned to each group. In response to the survey results, steps were taken to rectify these defects. Accordingly, in the 2007 questionnaire survey, the first-year undergraduates, student facilitators and faculty facilitators responded that the program was achieving its aims. In particular, they acknowledged the usefulness of "age-mixing" and "hybrid SGL" as educational approaches fundamental to the 6-year education system. Thus, in 2007 the program became more useful through our efforts to remedy the issues pointed out in 2006, including the low degree of understanding of "age-mixing" among the first-year undergraduates, and poor assignment of student facilitators to each group. The challenges for 2008 include further enhancing motivation of first-year undergraduates regarding SGL and establishment of a method for student facilitator intervention in SGL. Focusing on these challenges, we will continue our efforts to enhance the quality of pharmaceutical education through such approaches as early exposure learning. PMID:19721385

  15. Acoustic emissions generated in aged dental composites using a laser thermoacoustic technique.

    PubMed

    Lee, S Y; Lin, C T; Dong, D R; Huang, H M; Shih, Y H

    2000-09-01

    The heating up of dental composites by laser will produce acoustic emissions (AEs) that may be related to fracture mechanisms in the composites. It has been proved that the mechanical properties of dental composites are affected by storage in food simulating liquids, i.e. 75% ethanol, which has a solubility parameter approximating to that of bisphenol glycidyl dimethacrylate (BisGMA) resin. A new method was innovated to evaluate the laser-induced AEs in dental composites aged by 75% ethanol solution. Model systems (50/50 BisGMA/TEGDMA resin filled with 0% and 75 wt.% 5-10 microm silanized BaSiO6) as well as three commercial composites (Marathon One, Z100 and Herculite XRV) were used in this study. Nine samples acting as the control group were tested to establish the correlation of AEs to laser power. The effect of ageing by immersion in 75% ethanol on AEs and diametral tensile strength (DTS) was then evaluated. A quasi-continuous wave CO2 laser was used to heat up the composites. AEs of frequency 100-200 kHz were collected, filtered, recorded and processed using a 4610 Smart Acoustic Monitor. Burst patterns, which formally were assumed to be correlated to fracture mechanisms, were also identified from the data obtained at laser power > or = 5 W for commercial composites and > or = 4 W for model systems. Higher laser powers cause the AE to increase for all composites except unfilled model resin. AEs as a function of power for all aged systems were flat (< 100 events) below 4 W. Emissions then rose sharply to > 1000 events at 7.1 W. Statistically significant differences were found between the AEs obtained at 5 W (commercial composites) and those at 4.3 W (model systems) for material systems and storage times. Marathon One was less affected by the laser and an abrupt change in AE was found between days 0 and 7 of storage for all commercial composites. The AE value from the unfilled model resin was found to be significantly different from that of the model composites

  16. Analysis of aging of commercial composite metal oxide - Li4Ti5O12 battery cells

    NASA Astrophysics Data System (ADS)

    Svens, Pontus; Eriksson, Rickard; Hansson, Jörgen; Behm, Mårten; Gustafsson, Torbjörn; Lindbergh, Göran

    2014-12-01

    Commercial battery cells with Li4Ti5O12 negative electrode and composite metal oxide positive electrode have been analyzed with respect to aging mechanisms. Electrochemical impedance spectroscopy (EIS), differential capacity analysis (dQ/dV), differential voltage analysis (dV/dQ) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) were used to identify different ageing mechanisms such as lithium inventory loss, loss of active electrode material and surface film growth. The active material of the positive electrode was also examined by X-ray diffraction (XRD). Aging mechanisms were studied for both calendar-aged and cycle-aged cells. Data from half cells prepared from post mortem harvested electrode material, using lithium foil as negative electrode and pouch material as encapsulation, were used as reference to full cell data. Electrochemical analysis of full and half cells combined with material analysis showed to be a powerful method to identify aging mechanisms in this type of commercial cells. The calendar-aged cell showed insignificant aging while the cycle-aged cell showed noticeable loss of positive electrode active material and loss of cyclable lithium, but only minor loss of negative electrode active material. The results imply that Li4Ti5O12 negative electrode material is a good alternative to other materials if high energy density is not the primary goal.

  17. Researching Hybrid Learning Communities in the Digital Age through Educational Ethnography

    ERIC Educational Resources Information Center

    James, Nalita; Busher, Hugh

    2013-01-01

    This paper discusses the complexities of investigating the experiences of participants in hybrid (online/offline) learning communities through educational ethnography. In these communities, people construct small cultures in the liminal spaces or "border crossings" between the virtually real and "actually" real, using computer-mediated and…

  18. Age and seasonal-dependent variations in the biochemical composition of boar semen.

    PubMed

    Fraser, L; Strzeżek, J; Filipowicz, K; Mogielnicka-Brzozowska, M; Zasiadczyk, L

    2016-08-01

    This study investigated the effect of age- and seasonal-related variations in the composition of boar semen over a 3-year period. At the onset of 8 months of age, ejaculates were collected from four boars and allocated into three groups: 8 to 18, 19 to 30, and 31 to 42 months and were divided into two seasonal periods: autumn-winter and spring-summer. Boar variability had a significant effect on most of the analyzed semen parameters. Significantly, higher ejaculate volumes were observed in the boars older than 18 months of age during the autumn-winter period. Sperm concentration was higher in boars less than the age of 18 months of age, whereas the total sperm numbers were significantly higher during the autumn-winter period, regardless of the age group. Seasonal effects in sperm motility were more marked in boars at the age of 19 to 30 months, being significantly higher during the autumn-winter period. The proportions of spermatozoa with intact, normal apical ridge acrosome, and osmotically tolerant acrosomal membranes were markedly higher in boars at the age of 19 to 30 months during the autumn-winter period. Spermatozoa harvested during the spring-summer period were more susceptible to lipid peroxidation, irrespective of the age group. Significantly, higher levels of protein content and concentrations of nonthiol-containing antioxidant components of the seminal plasma (SP) were detected in boars less than 18 months of age during the autumn-winter period. Seasonal effects on the pH and proteinase inhibitory activity in the SP were more marked in boars less than 18 months of age, whereas alkaline phosphatase activity was greater in boars at the age of 19 to 30 months during the autumn-winter period. Substantial amounts of the thiol-containing antioxidants of the SP were detected in boars older than 18 months of age during the spring-summer period. Neither osmolality nor total antioxidant status was affected by differences in the seasonal periods or age

  19. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing

    NASA Astrophysics Data System (ADS)

    Burrs, S. L.; Sidhu, R.; Bhargava, M.; Kiernan-Lewis, J.; Schwalb, N.; Rong, Y.; Gomes, C.; Claussen, J.; Vanegas, D. C.; McLamore, E. S.

    2016-05-01

    Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was partially reduced by both thermal and chemical treatment. Fractal platinum nanostructures were formed on the reduced graphene oxide paper, producing a conductive paper with an extremely high electroactive surface area, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. To show the broad applicability of the material, the platinum surface was functionalized with three different biomaterials: 1) glucose oxidase (via chitosan encapsulation); 2) a DNA aptamer (via covalent linking), or 3) a chemosensory protein (via his linking). We demonstrate the application of this device for point of care biosensing. The detection limit for both glucose (0.08 +/- 0.02 μM) and E. coli O157:H7 (1.3 +/- 0.1 CFU mL-1) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6 sec for glucose and 10 min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing.

  20. Magneto-rheological response of elastomer composites with hybrid-magnetic fillers

    NASA Astrophysics Data System (ADS)

    Aloui, Sahbi; Klüppel, Manfred

    2015-02-01

    We study the magneto-rheological response of hybrid-magnetic elastomer composites consisting of two different magnetic filler particles at fixed overall concentration. Thereby, we focus on an optimization of mechanical and magnetic properties by combining highly reinforcing magnetic nano-particles (MagSilica) with micro-sized carbonyl-iron particles (CIP), which exhibit high switch ability in a magnetic field. We observe a symbiotic interaction of both filler types, especially in the case when an orientation of the magnetic filler particles is achieved due to curing in an external magnetic field. The orientation effect is significant only for the micro-sized CIP particles with high saturation magnetization, indicating that the induced magnetic moment for the nano-sized particles is too small for delivering sufficient attraction between the particles in an external magnetic field. A pronounced switching behavior is observed for the non-cross-linked melts with 15 and 20 vol.% CIP, whereby the small strain modulus increases by more than 50%. For the sample without the coupling agent silane, one even observes a relative modulus increase of about 140%, which can be related to the combined effect of a higher mobility of the particles without a silane layer and the ability of the particles to come in close contact when they are arranged in strings along the field lines. For the cross-linked samples, a maximum switching effect of about 30% is achieved for the system with pure CIP. This magneto-sensitivity decreases successively if CIP is replaced by MagSilica, while the tensile strength of the systems increases significantly. The use of silane reduces the switching effect, but it is necessary for a good mechanical performance by delivering strong chemical bonding of the magnetic filler particles to the polymer matrix.

  1. Fabrication, testing, and analysis of anisotropic carbon/glass hybrid composites: volume 1: technical report.

    SciTech Connect

    Wetzel, Kyle K. (Wetzel Engineering, Inc. Lawrence, Kansas); Hermann, Thomas M. (Wichita state University, Wichita, Kansas); Locke, James (Wichita state University, Wichita, Kansas)

    2005-11-01

    Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-plane displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers oriented 15{sup

  2. Adjusting Measured Weight Loss of Aged Graphite Fabric/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1998-01-01

    The purposes of this study were to evaluate the growth of the surface damage layer in polymer matrix composites (PMC's) fabricated with graphite fabric reinforcement and to determine the effects of the cut-surface degradation on the overall thermo-oxidative (TOS) stability of these materials. Four important conclusions were made about the TOS behavior of T650-35/PNIR- 15 fabric-reinforced composites: (1) Three stages of composite weight loss were seen on the plot of weight loss versus aging time; (2) the depth of the cut-edge damage is related to the composite thickness; (3) the actual weight loss realized by a mechanical test specimen that has had all the aging-induced cut-edge damage removed during the preparation process is significantly less than the weight loss measured using specimens with a high percentage of cut edges exposed to the damaging environment; and (4) an extrapolation of a section of the weight loss curve can be used to obtain a more correct estimate of the actual weight loss after extended periods of aging at elevated temperatures.

  3. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model

    PubMed Central

    Conley, Melissa N.; Wong, Carmen P.; Duyck, Kyle M.; Hord, Norman; Ho, Emily

    2016-01-01

    Introduction. Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as “inflammaging.” While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of our study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results. We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 stratify individuals by age. Discussion. Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age

  4. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model.

    PubMed

    Conley, Melissa N; Wong, Carmen P; Duyck, Kyle M; Hord, Norman; Ho, Emily; Sharpton, Thomas J

    2016-01-01

    Introduction. Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as "inflammaging." While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of our study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results. We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 stratify individuals by age. Discussion. Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age

  5. Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1995-01-01

    An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.

  6. Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Brinson, L. Cate

    1999-01-01

    The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The

  7. Improved dielectric and mechanical properties of polystyrene-hybrid silica sphere composite induced through bifunctionalization at the interface.

    PubMed

    Sasikala, Thottunkal S; Nair, Bindu P; Pavithran, Chorappan; Sebastian, Mailadil T

    2012-06-26

    Hybrid silica spheres (HS) of size 270-350 nm with vinyl and aminopropyl surface groups were incorporated in polystyrene (PS), and its effect on dielectric properties, coefficient of thermal expansion (CTE), and strength of PS-HS composite was studied. Incorporation of HS in PS followed a decrease in the dielectric constant from 3.2 for PS to 2.6 for composite with 7.5 vol % HS. The decrease in the dielectric constant was attributed to (i) increased interfacial porosity, (ii) formation of anhydrous HS having low dielectric constant, during hot processing of the composites, and (iii) dispersion and preservation of the anhydrous HS in the hydrophobic matrix. The dielectric constant of the composites with HS content up to 7.5 vol % does not vary much with temperature in the range from -20 to 65 °C. These composites also exhibited reduced CTE and improved flexural strength/stiffness due to good interfacial bonding through HS vinyl groups and dispersion of the filler in the matrix. The dielectric loss increased with HS content, and the loss measured for 7.5 vol % PS-HS composite was 6 × 10(-3), as compared to 10(-4) for PS. At HS loading above 7.5 vol %, the tendency of HS to agglomerate and form percolated structure lead to an increase in the dielectric constant and decrease in the mechanical properties of the composites. PMID:22616660

  8. Effects of physical aging on long-term behavior of composites

    NASA Technical Reports Server (NTRS)

    Brinson, L. Catherine

    1993-01-01

    The HSCT plane, envisioned to have a lifetime of over 60,000 flight hours and to travel at speeds in excess of Mach 2, is the source of intensive study at NASA. In particular, polymer matrix composites are being strongly considered for use in primary and secondary structures due to their high strength to weight ratio and the options of property tailoring. However, an added difficulty in the use of polymer based materials is that their properties change significantly over time, especially at the elevated temperatures that will be experienced during flight, and prediction of properties based on irregular thermal and mechanical loading is extremely difficult. This study focused on one aspect of long-term polymer composite behavior: physical aging. When a polymer is cooled to below its glass transition temperature, the material is not in thermodynamic equilibrium and the free volume and enthalpy evolve over time to approach their equilibrium values. During this time, the mechanical properties change significantly and this change is termed physical aging. This work begins with a review of the concepts of physical aging on a pure polymer system. The effective time theory, which can be used to predict long term behavior based on short term data, is mathematically formalized. The effects of aging to equilibrium are proven and discussed. The theory developed for polymers is then applied first to a unidirectional composite, then to a general laminate. Comparison to experimental data is excellent. It is shown that the effects of aging on the long-term properties of composites can be counter-intuitive, stressing the importance of the development and use of a predictive theory to analyze structures.

  9. The effects of environmental aging on the durability of glass/epoxy composites

    NASA Astrophysics Data System (ADS)

    Kajorncheappunngam, Somjai

    1999-11-01

    Glass fiber reinforced plastics (GFRPs) are beginning to be used as structural materials in construction. However, their mechanical properties can degrade after prolonged exposure to the environment. Understanding this degradation was the focus of this research. Epoxy neat resin and glass/epoxy composite samples were soaked in four different solutions (distilled water, saturated salt solution, 5 M NaOH, and 1 M HCl solution) for 5 months. The samples were also subjected to a combination of temperature and sustained load at room temperature and at 60°C. The glass transition temperature (Tg), storage modulus, tensile strength, and strain at failure were measured. The fracture surface of samples used in the tensile test were examined using a SEM. Results showed that immersion in aging media lowers Tg and enhances apparent phase separation in the samples due to polymer plasticization. At the elevated temperature, the Tg and the stiffness increased owing to continued resin curing. Sustained load, at the level used, had little effect on the mechanical behavior of the aged samples. At room temperature, water had the greatest influence in reducing the stiffness of epoxy neat resin samples. Combined effect of elevated temperature and sustained load caused an increase in Tg and a gain in stiffness in both epoxy neat resin and composite samples. This result is attributed more to the effect of temperature rather than to the effect of sustained load. At room temperature, glass/epoxy composite samples soaked in acid solution showed the highest reduction in tensile strength; this failure was the result of fiber damage. Other composite samples soaked in water and alkali were found to fail by adhesive failure mode. At 60°C, alkali was found to be the most damaging solution to glass/epoxy composite samples in terms of tensile strength. Here the composite samples failed under fiber failure mode while the composite samples soaked in water and acid solution failed under adhesive

  10. Individual Aerosol Particles from Biomass Burning in Southern Africa Compositions and Aging of Inorganic Particles. 2; Compositions and Aging of Inorganic Particles

    NASA Technical Reports Server (NTRS)

    Li, Jia; Posfai, Mihaly; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen- bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  11. Electrical Bistabilities and Memory Mechanisms of Organic Bistable Devices Fabricated Utilizing CdSe/ZnS Nanoparticles Embedded in Polystyrene and Poly(4-vinylphenol) Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Son, Dong Ick; Yoo, Chan Ho; Jung, Jae Hun; Kim, Tae Whan

    2010-01-01

    The electrical bistabilities of core/shell CdSe/ZnS nanoparticles embedded in polystyrene (PS) and poly(4-vinylphenol) (PVP) hybrid polymer composites were investigated. Transmission electron microscopy images showed that CdSe/ZnS nanoparticles were formed inside the hybrid polymer matrix. Current-voltage (I-V) measurement at 300 K of Al/(PS + PVP)/(CdSe/ZnS nanoparticles)/(PS + PVP)/indium-tin oxide/glass devices showed electrical bistability behavior. The memory mechanisms of the organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in hybrid polymer composites are described on the basis of the I-V results.

  12. Conception axiomatique des joints hybrides a recouvrement simple en materiaux composites

    NASA Astrophysics Data System (ADS)

    Ouellet, Marc

    Minimizing weight is a primary objective in every system design in the aerospace and automotive industry. Therefore, the use of composite materials has become an integral part of the design of mechanical components. However, in composite structure design, their complexity normally makes it impossible to design them as a single part. This leads to the necessity of using joints. Sadly, these joints introduce discontinuities in the stress distribution within the components and are often the sites of stress concentration. Therefore, they may limit the performance of a structure, in addition to increasing the overall mass significantly due to the use of mechanical fasteners such as bolts and rivets. This is why bonded joints are increasingly popular. They are much lighter than bolted or riveted joints and are often more rigid. Unfortunately, it is very difficult to inspect a bonded joint for defects since the presence of cracks in the adhesive cannot be observed with the naked eye. The main objective of this work is to propose a new design methodology for hybrid joints. To accomplish this, it is necessary to establish reliable analysis tools to improve our understanding of the behavior of these joints when subjected to an external force. A better understanding of the interactions between the parameters is also required. To improve our knowledge on the subject, a literature review was conducted. This review was structured as to emphasize on the behavior of hybrid single lap joints when subjected to an external force in tension. Following this literature review, an analysis of the stress distribution within the joint was carried out using a finite element model. The model and the results were compared with those from two papers in order to validate the quality of representation. Subsequently, a modification was made to an existing analytical model in order to add the bolts' preload as a parameter. These two models, namely the finite element model and the analytical model

  13. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

    PubMed Central

    Güngör, Merve Bankoğlu; Bal, Bilge Turhan; Ünver, Senem; Doğan, Aylin

    2016-01-01

    PURPOSE The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS 120 specimens (10×10×2 mm) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with 125 µm grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin. PMID:27555894

  14. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The "Multigroup γ-ray Analysis Method for Uranium" (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  15. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.

    PubMed

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-06-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment. PMID:27390396

  16. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women

    PubMed Central

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-01-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment. PMID:27390396

  17. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions.

    PubMed

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-13

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca(2+), Li(+), Na(+), NH4(+)) at concentrations up to 25 mM. This material can be combined further with disposable chips, demonstrating its promise as an effective ion-selective sensing component for practical applications. PMID:26703780

  18. Hybrid-particulate composites based on an epoxy matrix, a reactive rubber, and glass beads: Morphology, viscoelastic, and mechanical properties

    SciTech Connect

    Maazouz, A.; Sautereau, H.; Gerard, J.F. . Lab. des Materiaux Macromoleculaires)

    1993-10-20

    The deformation and fracture behaviors of hybrid-particulate epoxy composites have been examined. These materials were based on a DGEBA/DDA matrix with various volume fractions of glass beads and different rubber contents. Young's modulus, yield stress, dynamic mechanical spectra, and fracture energy have been determined at room temperature. The Kerner model fits well the Young's modulus for the hybrid complexes with various glass bead contents. The analysis of the relaxation peak recorded from viscoelastic measurements allow us to discuss the influence of the introduction of the glass beads on the mobility of macromolecular chains and the characteristics of the rubber-separated phase. The fracture energy displays a strong improvement and synergism effect due to the presence of both kinds of particles. The toughening mechanisms were discussed.

  19. The Effects of Fiber Surface Modification and Thermal Aging on Composite Toughness And its Measurement

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Madhukar, Madhu; Papadopoulos, Demetrios; Inghram, Linda; McCorkle, Linda

    1997-01-01

    A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and (I) fiber-matrix bonding, (2) Mode II interlaminar fracture toughness, and (3) failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests definitely showed that, for aging times up to 1000 hr, the aging process caused no observable changes in the bulk of the three composite materials that---would degrade the shear properties of the material. Comparisons between the interlaminar shear strength (ILSS) measured by the short beam shear tests and the GII c test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU-4 fiber resulted in weight losses about twice those experienced by the AS-4 reinforced composites, the ones with the best TOS.

  20. On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Grayson, Michael A.

    1999-01-01

    A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.

  1. Age-dependent changes in the sphingolipid composition of CD4+ T cell membranes and immune synapses implicate glucosylceramides in age-related T cell dysfunction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphingolipid (SL4) composition can influence the biophysical properties of cell membranes. Additionally, specific SL modulate signaling pathways involved in proliferation, senescence, and apoptosis. We investigated age-dependent changes in the SL composition of CD4+ T cells, and the impact of these ...

  2. Long-term influence of physical aging processes in epoxy matrix composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    Selected mechanical properties of (plus or minus 45 degree sub 4s) graphite/epoxy composites were found to be affected by sub T sub g annealing. Postcured specimens of Thornel 300 graphite/Narmco 5208 epoxy were sub T sub G annealed at 413 K (140 C) for ca. 10 to the first through 10 to the fifth powers min., with a prior quenching from above T sub g. The ultimate tensile strength, strain-to-break, and toughness of the composite were found to decrease as a function of sub T sub g annealing time. The time-dependent change in properties can be explained on the basis of physical aging which is related to free volume changes in the non-equilibrium glassy state of network epoxies. The results imply possible changes in composite properties with service time.

  3. Sources of variability in peat composition and the role of peat age

    NASA Astrophysics Data System (ADS)

    Leifeld, Jens

    2016-04-01

    During peat formation decaying plant material undergoes partial decomposition that continuously transform its organic matter. As part of this transformation, aromatic moieties such as plant-borne polyphenols are considered to accumulate relative to more labile compounds such as carbohydrates. Here, 13C CPMAS-NMR data from 71 peat samples from sites across Europe (61°48' N - 46°49' N) are analyzed for their variability. Sites differ in their degree of peat disturbance and range from natural to long-term drained and thus strongly degraded. Application of a molecular mixing model to the NMR data indicated that, on average, peat consists by 27, 22, 21, 18, and 11 % of carbohydrates, aliphatics, aromatics, proteins, and char, respectively. Compositional variability was most pronounced for aromatics and carbohydrates. So far, half of the samples was age-dated using 14C. Calibrated 14C ages in the data set range from recent to c. 10000 years BP. Relationships between peat composition and age were non-linear and highly significant. Aromatic moieties accumulated with increasing peat age whereas O-containing moieties relatively declined, in line with a decrease in molar O/C ratios. The relative accumulation of aromatics was 250 % during 10000 years whereas O-containing moieties declined relatively by 65 %. About half of this selective accumulation and degradation occurred during the first 2000 years of peat accumulation, thereby reflecting higher microbial transformation rates during initial phases of built-up. Char content increased with peat age, possibly indicating selective preservation of char during peat formation. C/N ratios correlated significantly but bi-modal with age. The analysis shows that peat age is a reliable proxy for organic matter transformation in peatlands. Because rates and degree of transformation are derived from multiple sites, the found relationships seem to reveal a general pattern, at least for the studied boreal and temperate systems.

  4. Specimen geometry effects on graphite/PMR-15 composites during thermo-oxidative aging

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.; Meyers, A.

    1986-01-01

    Studies were conducted to establish the effects of specimen geometry on the thermo-oxidative stability and the mechanical properties retention of unidirectional Celion 12000 graphite fiber reinforced PMR-15 polyimide composites. Weight loss, flexural strength and interlaminar shear strength are measured at isothermal aging times as long as 1639 hr at a temperature of 316 C for three different specimen geometries. It is found that the three different types of specimen surfaces exhibit different values of weight loss/unit area. The mechanical properties retention is also found to be dependent on geometry for these composites. The interlaminar shear strength decreases significantly over the complete range of aging times. The flexural strength retention starts showing geometric dependency after about 1000 hr of aging at 316C. Weight loss fluxes, associated with the three different types of exposed surfaces, are calculated and used to develop an empirical mathematical model for predicting the weight loss behavior of unidirectional composites of arbitrary geometries. Data are presented comparing experimentally determined weight loss with weight loss values predicted using the empirical model.

  5. Body Composition, Sarcopenia, and Suicidal Ideation in Elderly Koreans: Hallym Aging Study.

    PubMed

    Kim, Jeong-Hyeon; Kim, Dong-Hyun; Park, Yong Soon

    2016-04-01

    This study was conducted to assess the relationship between body composition and suicidal ideation among the Korean elderly population (n = 302; ≥ 65 years) who participated in the Hallym Aging Study in 2010. Body composition was measured using dual-energy X-ray absorptiometry, and obesity was measured by the indices of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and body fat percentage. Sarcopenia was defined as presence of both low muscle mass and low muscle function. Suicidal ideation was assessed using the Beck Scale for Suicide Ideation. We found no differences in body composition measures between subjects with suicidal ideation and those without. In the logistic regression analyses, there were no significant relationships for suicidal ideation according to body composition measures, including BMI, WC, WHR, WHtR, and body fat percentage in both sexes. After adjusting for age, smoking status, alcohol drinking, regular exercise, medical comorbidities, monthly income, education level, and presence of depressive symptoms, the odds ratio (OR) of suicidal ideation was higher in elderly men with sarcopenia compared to those without, whereas no significant relationships were observed in elderly women (OR 8.28, 95% confidence interval [CI] 1.20-61.34 in men; OR 0.79, 95% CI 0.07-8.43 in women). Sarcopenia is closely associated with an increased risk of suicidal ideation in elderly men. PMID:27051246

  6. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  7. Body Composition, Sarcopenia, and Suicidal Ideation in Elderly Koreans: Hallym Aging Study

    PubMed Central

    2016-01-01

    This study was conducted to assess the relationship between body composition and suicidal ideation among the Korean elderly population (n = 302; ≥ 65 years) who participated in the Hallym Aging Study in 2010. Body composition was measured using dual-energy X-ray absorptiometry, and obesity was measured by the indices of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and body fat percentage. Sarcopenia was defined as presence of both low muscle mass and low muscle function. Suicidal ideation was assessed using the Beck Scale for Suicide Ideation. We found no differences in body composition measures between subjects with suicidal ideation and those without. In the logistic regression analyses, there were no significant relationships for suicidal ideation according to body composition measures, including BMI, WC, WHR, WHtR, and body fat percentage in both sexes. After adjusting for age, smoking status, alcohol drinking, regular exercise, medical comorbidities, monthly income, education level, and presence of depressive symptoms, the odds ratio (OR) of suicidal ideation was higher in elderly men with sarcopenia compared to those without, whereas no significant relationships were observed in elderly women (OR 8.28, 95% confidence interval [CI] 1.20–61.34 in men; OR 0.79, 95% CI 0.07–8.43 in women). Sarcopenia is closely associated with an increased risk of suicidal ideation in elderly men. PMID:27051246

  8. Behavioural early-life exposures and body composition at age 15 years

    PubMed Central

    Leary, S D; Lawlor, D A; Davey Smith, G; Brion, M J; Ness, A R

    2015-01-01

    Background/Objectives: Previous studies have demonstrated associations between some early-life exposures and later obesity, but most have used body mass index in childhood or adulthood as the outcome. The objective of this study was to investigate whether early-life exposures were associated with directly measured fat and lean mass in adolescence. Subjects/Methods: This study used data on 4750 mother–offspring pairs, collected as a part of the Avon Longitudinal Study of Parents and Children, Bristol, UK between 1991 and 1992; associations between behavioural exposures occurring from conception up to 5 years of age (maternal and paternal smoking during pregnancy, breastfeeding, age at introduction to solids, dietary patterns and physical inactivity during early childhood) and offspring body composition measured by dual-energy X-ray absorptiometry at ~15 years were assessed. Results: After full adjustment for potential confounders, maternal smoking during pregnancy, having a junk food diet and spending more time watching television in early childhood were all associated with higher fat mass at age 15, whereas maternal smoking, having a healthy diet and playing computer games more frequently in early childhood were all associated with a higher lean mass at age 15. Associations with paternal smoking were generally weaker for both fat and lean mass, but as there was no strong statistical evidence for maternal vs paternal differences, confounding by social factors rather than a direct effect of maternal smoking cannot be ruled out. Early feeding was not associated with fat or lean mass at age 15. Conclusions: This study does not provide compelling evidence for associations between most early-life factors and body composition in adolescence. However, possible associations with dietary patterns and physical inactivity in early childhood require further investigation in other cohorts that have direct measurements of adolescent body composition. PMID:25664839

  9. Fatigue and Damage Tolerance Analysis of a Hybrid Composite Tapered Flexbeam

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffrey R.; Dobyns, Al

    2001-01-01

    The behavior of nonlinear tapered composite flexbeams under combined axial tension and cyclic bending loading was studied using coupon test specimens and finite element (FE) analyses. The flexbeams used a hybrid material system of graphite/epoxy and glass/epoxy and had internal dropped plies, dropped in an overlapping stepwise pattern. Two material configurations, differing only in the use of glass or graphite plies in the continuous plies near the midplane, were studied. Test specimens were cut from a full-size helicopter tail-rotor flexbeam and were tested in a hydraulic load frame under combined constant axialtension load and transverse cyclic bending loads. The first determination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group in the tapered region of the flexbeam, near the thick end. Delaminations grew slowly and stably, toward the thick end of the flexbeam, at the interfaces above and below the dropped-ply region. A 2D finite element model of the flexbeam was developed. The model was analyzed using a geometrically non-linear analysis with both the ANSYS and ABAQUS FE codes. The global responses of each analysis agreed well with the test results. The ANSYS model was used to calculate strain energy release rates (G) for delaminations initiating at two different ply-ending locations. The results showed that delaminations were more inclined to grow at the locations where they were observed in the test specimens. Both ANSYS and ABAQUS were used to calculate G values associated with delamination initiating at the observed location but growing in different interfaces, either above or below the ply-ending group toward the thick end, or toward the thin end from the tip of the resin pocket. The different analysis codes generated the same trends and comparable peak values, within 5-11 % for each delamination path. Both codes showed that delamination toward the thick region was largely mode II, and toward the thin

  10. Hybrid solar cells of micro/mesoporous Zn( and its graphite composites sensitized by CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Islam, SM Z.; Gayen, Taposh; Tint, Naing; Shi, Lingyan; Ebrahim, Amani M.; Seredych, Mykola; Bandosz, Teresa J.; Alfano, Robert

    2014-01-01

    Quantum efficiencies (QEs) of innovative hybrid solar cells fabricated using micro/mesoporous zinc (hydr)oxide and its graphite-based composites sensitized by semiconductor quantum dots (SQDs) are reported. High absorption coefficient of CdSe SQDs and the wide band gap of zinc (hydr)oxide and its composites with graphite oxide (GO) are essential to achieve solar cells of higher QEs. Hybrid solar cells are fabricated from zinc (hydr)oxide and its composites (with 2 and 5 wt.% of graphite oxides, termed as, ZnGO-2 and ZnGO-5, respectively) while using potassium iodide or perovskite as an electrolyte. A two-photon fluorescence (TPF) imaging technique was used to determine the internal structure of the solar cell device. The photocurrent and current-voltage measurements were used to measure short-circuit current and open-circuit voltage to calculate the fill factor and QE of these solar cells. The highest QE (up to ˜10.62%) is realized for a ZnGO-2-based solar cell using potassium iodide as its electrolyte and the CdSe quantum dot as its sensitizer.

  11. Synthesis of g-C3N4/NaTaO3 Hybrid Composite Photocatalysts and Their Photocatalytic Activity Under Simulated Solar Light Irradiation.

    PubMed

    Kim, Tae-Ho; Jo, Yong-Hyun; Soo-Wohn; Adhikari, Rajesh; Cho, Sung-Hun

    2015-09-01

    This Paper reports the photocatalytic activity of g-C3N4/NaTaO3 hybrid composite photocatalysts synthesized by ball-mill method. The g-C3N4 and NaTaO3 were individually prepared by Solid state reaction and microwave hydrothermal process, respectively. The g-C3N4/NaTaO3 composite showed the enhanced photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light irradiation. The results revealed that the band-gap energy absorption edge of hybrid composite samples was shifted to a longer wavelength as compared to NaTaO3 and the 50 wt% g-C3N4/NaTaO3 hybrid composite exhibited the highest percentage (99.6%) of degradation of Rh. B and the highest reaction rate constant (0.013 min(-1)) in 4 h which could be attributed to the enhanced absorption of the hybrid composite photocatalyst in the UV-Vis region. Hence, these results suggest that the g-C3N4/NaTaO3 hybrid composite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial NaTaO3. PMID:26716296

  12. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  13. Myosin heavy chain composition in the rat diaphragm - Effect of age and exercise training

    NASA Technical Reports Server (NTRS)

    Gosselin, Luc E.; Betlach, Michael; Vailas, Arthur C.; Greaser, Marion L.; Thomas, D. P.

    1992-01-01

    The effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Treadmill running at 75 percent maximal oxygen consumption resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23mo) trained animals (P less than 0.05). It was found that the ratio of fast to slow MHC was significantly higher (P less than 0.005) in the crural compared with costal diaphragm region in both age groups. A significant age-related increase in persentage of slow MHC was observed in both diaphragm regions. The relative proportion of slow MHC in either costal or crural region was not changed by exercise training.

  14. Age, education, and earnings in the course of Brazilian development: does composition matter?

    PubMed Central

    de Lima Amaral, Ernesto Friedrich; Potter, Joseph E.; Hamermesh, Daniel S.; Rios-Neto, Eduardo Luiz Goncalves

    2015-01-01

    BACKGROUND The impacts of shifts in the age distribution of the working-age population have been studied in relation to the effect of the baby boom generation on the earnings of different cohorts in the U.S. However, this topic has received little attention in the context of the countries of Asia and Latin America, which are now experiencing substantial shifts in their age-education distributions. OBJECTIVE In this analysis, we estimate the impact of the changing relative size of the adult male population, classified by age and education groups, on the earnings of employed men living in 502 Brazilian local labor markets during four time periods between 1970 and 2000. METHODS Taking advantage of the huge variation across Brazilian local labor markets and demographic census micro-data, we used fixed effects models to demonstrate that age education group size depresses earnings. RESULTS These effects are more detrimental among age-education groups with higher education, but they are becoming less negative over time. The decrease in the share of workers with the lowest level of education has not led to gains in the earnings of these workers in recent years. CONCLUSIONS These trends might be a consequence of technological shifts and increasing demand for labor with either education or experience. Compositional shifts are influential, which suggests that this approach could prove useful in studying this central problem in economic development. PMID:26146484

  15. Structure and composition of arytenoid cartilage of the bullfrog (Lithobates catesbeianus) during maturation and aging.

    PubMed

    Laureano, Priscila Eliane dos Santos; Oliveira, Kris Daiana Silva; de Aro, Andrea Aparecida; Gomes, Laurecir; Pimentel, Edson Rosa; Esquisatto, Marcelo Augusto Marretto

    2015-10-01

    The aging process induces progressive and irreversible changes in the structural and functional organization of animals. The objective of this study was to evaluate the effects of aging on the structure and composition of the extracellular matrix of the arytenoid cartilage found in the larynx of male bullfrogs (Lithobates catesbeianus) kept in captivity for commercial purposes. Animals at 7, 180 and 1080 days post-metamorphosis (n=10/age) were euthanized and the cartilage was removed and processed for structural and biochemical analysis. For the structural analyses, cartilage sections were stained with picrosirius, toluidine blue, Weigert's resorcin-fuchsin and Von Kossa stain. The sections were also submitted to immunohistochemistry for detection of collagen types I and II. Other samples were processed for the ultrastructural and cytochemical analysis of proteoglycans. Histological sections were used to chondrocyte count. The number of positive stainings for proteoglycans was quantified by ultrastructural analysis. For quantification and analysis of glycosaminoglycans were used the dimethyl methylene blue and agarose gel electrophoresis methods. The chloramine T method was used for hydroxyproline quantification. At 7 days, basophilia was observed in the pericellular and territorial matrix, which decreased in the latter over the period studied. Collagen fibers were arranged perpendicular to the major axis of the cartilaginous plate and were thicker in older animals. Few calcification areas were observed at the periphery of the cartilage specimens in 1080-day-old animals. Type II collagen was present throughout the stroma at the different ages. Elastic fibers were found in the stroma and perichondrium and increased with age in the two regions. Proteoglycan staining significantly increased from 7 to 180 days and reduced at 1080 days. The amount of total glycosaminoglycans was higher in 180-day-old animals compared to the other ages, with marked presence of

  16. Color and opacity of composites protected with surface sealants and submitted to artificial accelerated aging

    PubMed Central

    Aguilar, Fabiano Gamero; Roberti Garcia, Lucas da Fonseca; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2012-01-01

    Objectives: To evaluate the color similarity, stability and opacity of composites (TPH, Charisma, and Concept, shade A2) protected with surface sealants (Fortify Plus and Biscover) and cyanoacrylate (Super Bonder). Methods: Forty specimens of each composite were made and separated into 4 groups (n=10) according to the surface protection: GI - without sealant; GII - cyanoacrylate; GIII - Fortify Plus; GIV - Biscover. Color and opacity readings were taken before and after Artificial Acelerated Aging (AAA) and the values obtained for color stability were submitted to statistical analysis by 2-way ANOVA and Bonferroni’s test (P<.05). The values acquired for color similarity were submitted to 1-way ANOVA and Tukey’s test (P<.05). The specimen sufaces were compared before and after AAA using Scanning Electronic Microscopy (SEM). Results: Studied composites did not present the same values for the coordinates L*, a* and b * before AAA, indicating that there was no color similarity among them. All composites presented color alteration after AAA with clinically unacceptable values. Protected groups presented lower opacity variation after AAA, in comparison with the control goup. SEM evaluation demonstrated that AAA increased the surface irregularities in all of the studied groups. Conclusion: Surface sealants were not effective in maintaining composite color, but were able to maintain opacity. PMID:22229004

  17. Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek; Balandin, Alexander A.

    2012-02-01

    The authors report on synthesis and thermal properties of the electrically conductive thermal interface materials with the hybrid graphene-metal particle fillers. The thermal conductivity of resulting composites was increased by ˜500% in a temperature range from 300 K to 400 K at a small graphene loading fraction of 5-vol.-%. The unusually strong enhancement of thermal properties was attributed to the high intrinsic thermal conductivity of graphene, strong graphene coupling to matrix materials, and the large range of the length-scale—from nanometers to micrometers—of the graphene and silver particle fillers. The obtained results are important for the thermal management of advanced electronics and optoelectronics.

  18. The Effects of Fiber Surface Modification and Thermal Aging on Composite Toughness and Its Measurement

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Madhukar, Madhu; Papadopolous, Demetrios S.; Inghram, Linda; Mccorkle, Linda

    1995-01-01

    A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and fiber-matrix bonding, Mode 2 interlaminar fracture toughness, and failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests showed that, for times up to 1000 hr, the aging process caused no changes in the bulk of the three composite materials that would degrade the shear properties of the material. Comparisons between the interlaminar shear strengths (ILSS) measured by the short beam shear tests and the GIIC test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU 1 fiber resulted in weight losses about twice those experienced by the AS 1 reinforced composites, the ones with the best TOS.

  19. Composites

    SciTech Connect

    Chou, T.; McCullough, R.L.; Pipes, R.B.

    1986-10-01

    The degree of control over material properties that is typified by hybrid composites is transforming engineering design. In part because homogeneous materials such as metals and alloys do not offer comparable control, specifying a material and designing a component have traditionally taken place separately. As composites begin to replace traditional materials in fields and such as aerospace, component design and the specification of a material are merging and becoming aspects of a single process. The controllable microstructure of a composite allows it to be tailored to match the distribution of stresses to which it will be subject. At the same time components must come to reflect the distinctive nature of composites: their directional properties and the intricate forms they can be given through processes such as injection molding, filament winding and three-dimensional weaving. The complexity inherent in conceiving components and their materials at the same time suggests engineering design will grow increasingly dependent on computers and multidisciplinary teams. Such an approach will harness the full potential of composites for the technologies of the future. 10 figures.

  20. Hybrid composite membranes based on polyethylene separator and Al2O3 nanoparticles for lithium-ion batteries.

    PubMed

    Shin, Won-Kyung; Lee, Yoon-Sung; Kim, Dong-Won

    2013-05-01

    A hybrid composite membrane is prepared by coating nano-sized Al2O3 powder (13 and 50 nm) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VdF-co-HFP)) binder on both sides of polyethylene separator. The composite membrane shows better thermal stability and improved wettability for organic liquid electrolyte than polyethylene separator, due to the presence of heat-resistant Al2O3 particles with high-surface area in the coating layer. By using the composite membrane, the lithium-ion cells composed of carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode are assembled and their cycling performances are evaluated. The cells assembled with the composite membranes are proven to have better capacity retention than the cell prepared with polyethylene separator, due to the enhanced ability to retain the electrolyte solution in the cell. The cell assembled with the composite membrane containing 13 nm-sized Al2O3 particles has an initial discharge capacity of 173.2 mA h g(-1) with good capacity retention. PMID:23858932

  1. Structure Design of the 3-D Braided Composite Based on a Hybrid Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ke

    Three-dimensional braided composite has the better designable characteristic. Whereas wide application of hollow-rectangular-section three-dimensional braided composite in engineering, optimization design of the three-dimensional braided composite made by 4-step method were introduced. Firstly, the stiffness and damping characteristic analysis of the composite is presented. Then, the mathematical models for structure design of the three-dimensional braided composite were established. The objective functions are based on the specific damping capacity and stiffness of the composite. The design variables are the braiding parameters of the composites and sectional geometrical size of the composite. The optimization problem is solved by using ant colony optimization (ACO), contenting the determinate restriction. The results of numeral examples show that the better damping and stiffness characteristic could be obtained. The method proposed here is useful for the structure design of the kind of member and its engineering application.

  2. Quantifying the aging response and nutrient composition for muscles of the beef round.

    PubMed

    Dixon, C L; Woerner, D R; Tokach, R J; Chapman, P L; Engle, T E; Tatum, J D; Belk, K E

    2012-03-01

    The objective of this study was to determine the optimal postmortem aging period and nutrient composition for Beef Value Cuts of the round. Forty USDA Select and 40 Premium USDA Choice beef carcasses were selected from a commercial beef packing plant in Colorado over a 12-wk period. The bottom and inside rounds were collected from both sides of each carcass for further fabrication into the following muscles: adductor, gastrocnemius, gracilis, pectineus, and superficial digital flexor. Each pair of muscles was cut into 7 steaks and randomly assigned to 1 of the following aging periods: 2, 4, 6, 10, 14, 21, and 28 d, and placed in refrigerated storage (2°C, never frozen). Upon completion of the designated aging period, steaks were removed from storage, cooked to a peak internal temperature of 72°C, and evaluated using Warner-Bratzler shear force (WBSF). A 2-way interaction was detected (P < 0.05) between individual muscle and postmortem aging period. The WBSF of all muscles except the superficial digital flexor decreased with increased time of postmortem aging. Quality grade did not affect (P > 0.05) WBSF values for the adductor, gastrocnemius, pectineus, and superficial digital flexor muscles. Exponential decay models were used to predict the change in WBSF from 2 to 28 d postmortem (aging response). The adductor, gastrocnemius, Select gracilis, Premium Choice gracilis, and pectineus required 21, 14, 23, 23, and 25 d, respectively, to complete the majority of the aging response. To determine the nutrient composition of the adductor, gastrocnemius, gracilis, pectineus, semimembranosus, and superficial digital flexor, bottom and inside rounds were collected from 10 USDA Select and 10 Premium USDA Choice carcasses and fabricated into the respective muscles, cut into 2.54-cm cubes, frozen (-20°C), and then homogenized. The adductor, gracilis, pectineus, semimembranosus, and superficial digital flexor were analyzed for DM, moisture, CP, and ash percentages. All

  3. Preparation and Characterization of Chemically Synthesized Hybrid Composites for Bone Tissue Regeneration

    NASA Astrophysics Data System (ADS)

    Raucci, M. G.; Guarino, V.; Ambrosio, L.

    2008-08-01

    The aim of this study concerns the development of bioresorbable composite materials for bone repair and regeneration. Hydroxyapatite loaded composites were synthesized by a colloidal non-aqueous chemical precipitation technique at room temperature. This study describes the synthesis and characterization of HA/PCL composite material, in order to verify the interaction between the ceramic and the polymer phases by a morphological investigation.

  4. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  5. Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering

    SciTech Connect

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra E-mail: vrreddy.ugcdaecsr@nic.in; Gupta, S. M.; Chauhan, N.; Gupta, Ajay

    2015-04-15

    Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 BaTi{sub 0.95}Sn{sub 0.05}O{sub 3} (BTSO)- 0.1 Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (NZFO) prepared with microwave assisted radiant hybrid sintering (MARH) are reported. Phase purity and isovalent substitution of Ti{sup 4+} by Sn{sup 4+} of the samples is confirmed from x-ray diffraction and {sup 119}Sn Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO) phase in the ferroelectric (BTSO) matrix as evidenced from back-scattered scanning electron micrographs.

  6. Novel Hybrid Ablative/Ceramic Layered Composite for Earth Re-entry Thermal Protection: Microstructural and Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Triantou, K.; Mergia, K.; Marinou, A.; Vekinis, G.; Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.

    2015-04-01

    In view of spacecraft re-entry applications into planetary atmospheres, hybrid thermal protection systems based on layered composites of ablative materials and ceramic matrix composites are investigated. Joints of ASTERM™ lightweight ablative material with Cf/SiC (SICARBON™) were fabricated using commercial high temperature inorganic adhesives. Sound joints without defects are produced and very good bonding of the adhesive with both base materials is observed. Mechanical shear tests under ambient conditions and in liquid nitrogen show that mechanical failure always takes place inside the ablative material with no decohesion of the interface of the adhesive layer with the bonded materials. Surface treatment of the ablative surface prior to bonding enhances both the shear strength and the ultimate shear strain by up to about 60%.

  7. Hybrid α-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode

    PubMed Central

    Jiang, Hong; Ma, Haifeng; Jin, Ying; Wang, Lanfang; Gao, Feng; Lu, Qingyi

    2016-01-01

    In this study, we report a facile fabrication of ultrathin two-dimensional (2D) nanosheet hybrid composite, α-Fe2O3 nanosheet@Ni(OH)2 nanosheet, by a two-step hydrothermal method to achieve high specific capacitance and good stability performance at high charging/discharging rates when serving as electrode material of supercapacitors. The α-Fe2O3@Ni(OH)2 hybrid electrode not only has a smooth decrease of the specific capacitance with increasing current density, compared with the sharp decline of single component of Ni(OH)2 electrode, but also presents excellent rate capability with a specific capacitance of 356 F/g at a current density of 16 A/g and excellent cycling stability (a capacity retention of 93.3% after 500 cycles), which are superior to the performances of Ni(OH)2 with a lower specific capacitance of 132 F/g and a lower capacity retention of 81.8% at 16 A/g. The results indicate such hybrid structure would be promising as excellent electrode material for good performances at high current densities in the future. PMID:27553663

  8. Hybrid α-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode.

    PubMed

    Jiang, Hong; Ma, Haifeng; Jin, Ying; Wang, Lanfang; Gao, Feng; Lu, Qingyi

    2016-01-01

    In this study, we report a facile fabrication of ultrathin two-dimensional (2D) nanosheet hybrid composite, α-Fe2O3 nanosheet@Ni(OH)2 nanosheet, by a two-step hydrothermal method to achieve high specific capacitance and good stability performance at high charging/discharging rates when serving as electrode material of supercapacitors. The α-Fe2O3@Ni(OH)2 hybrid electrode not only has a smooth decrease of the specific capacitance with increasing current density, compared with the sharp decline of single component of Ni(OH)2 electrode, but also presents excellent rate capability with a specific capacitance of 356 F/g at a current density of 16 A/g and excellent cycling stability (a capacity retention of 93.3% after 500 cycles), which are superior to the performances of Ni(OH)2 with a lower specific capacitance of 132 F/g and a lower capacity retention of 81.8% at 16 A/g. The results indicate such hybrid structure would be promising as excellent electrode material for good performances at high current densities in the future. PMID:27553663

  9. Preparation and Evaluation of Hybrid Composites of Chemical Fuel and Multi-walled Carbon Nanotubes in the Study of Thermopower Waves.

    PubMed

    Hwang, Hayoung; Yeo, Taehan; Cho, Yonghwan; Shin, Dongjoon; Choi, Wonjoon

    2015-01-01

    When a chemical fuel at a certain position in a hybrid composite of the fuel and a micro/nanostructured material is ignited, chemical combustion occurs along the interface between the fuel and core materials. Simultaneously, dynamic changes in thermal and chemical potentials across the micro/nanostructured materials result in concomitant electrical energy generation induced by charge transfer in the form of a high-output voltage pulse. We demonstrate the entire procedure of a thermopower wave experiment, from synthesis to evaluation. Thermal chemical vapor deposition and the wet impregnation process are respectively employed for the synthesis of a multi-walled carbon nanotube array and a hybrid composite of picric acid/sodium azide/multi-walled carbon nanotubes. The prepared hybrid composites are used to fabricate a thermopower wave generator with connecting electrodes. The combustion of the hybrid composite is initiated by laser heating or Joule-heating, and the corresponding combustion propagation, direct electrical energy generation, and real-time temperature changes are measured using a high-speed microscopy system, an oscilloscope, and an optical pyrometer, respectively. Furthermore, the crucial strategies to be adopted in the synthesis of hybrid composite and initiation of their combustion that enhance the overall thermopower wave energy transfer are proposed. PMID:25938793

  10. Maize hybrids derived from GM positive and negative segregant inbreds are compositionally equivalent: any observed differences are associated with conventional backcrossing practices.

    PubMed

    Venkatesh, Tyamagondlu V; Bell, Erin; Bickel, Anna; Cook, Kevin; Alsop, Benjamin; van de Mortel, Martijn; Feng, Ping; Willse, Alan; Perez, Tim; Harrigan, George G

    2016-02-01

    In this study, we show that compositional differences in grain harvested from genetically modified (GM) maize hybrids derived from near-isogenic trait-positive and trait-negative segregant inbreds are more likely related to backcrossing practices than to the GM trait. To demonstrate this, four paired GM trait-positive (NK603: herbicide tolerance) and trait-negative near-isogenic inbred male lines were generated. These were crossed with two different females (testers) to create a series of trait-positive and trait-negative hybrid variants. The hypothesis was, that compositional variation within the hybrid variants would reflect differences associated with backcrossing practices and provide context to any observed differences between GM and non-GM hybrids. The F1 hybrids, as well as corresponding conventional comparator hybrids, were grown concurrently at four field sites across the United States during the 2013 season. Grain was harvested for compositional analysis; proximates (protein, starch, and oil), amino acids, fatty acids, minerals, tocopherols (α-, δ-, γ-), β-carotene, phytic acid, and raffinose were measured. Statistical analysis showed that within each hybrid tester set, there were very few significant (p < 0.05) differences between the paired trait-positive and trait-negative hybrids or between the conventional comparators and the trait-positive or trait-negative hybrids. Assessments of the magnitudes of differences and variance component analysis highlighted that growing location, and the tester used in hybrid formation, had a markedly greater effect on composition than did the GM trait. Significantly, for each tester set, compositional differences within the trait-positive and trait-negative hybrid variants were greater than differences between the GM and non-GM comparators. Overall, GM trait insertion is not intrinsically a meaningful contributor to compositional variation, and observed differences between GM and non-GM comparators typically

  11. Compositional differences between near-isogenic GM and conventional maize hybrids are associated with backcrossing practices in conventional breeding.

    PubMed

    Venkatesh, Tyamagondlu V; Cook, Kevin; Liu, Bing; Perez, Timothy; Willse, Alan; Tichich, Ryan; Feng, Ping; Harrigan, George G

    2015-02-01

    Here, we show that differences between genetically modified (GM) and non-GM comparators cannot be attributed unequivocally to the GM trait, but arise because of minor genomic differences in near-isogenic lines. Specifically, this study contrasted the effect of three GM traits (drought tolerance, MON 87460; herbicide resistance, NK603; insect protection, MON 89034) on maize grain composition relative to the effects of residual genetic variation from backcrossing. Important features of the study included (i) marker-assisted backcrossing to generate genetically similar inbred variants for each GM line, (ii) high-resolution genotyping to evaluate the genetic similarity of GM lines to the corresponding recurrent parents and (iii) introgression of the different GM traits separately into a wide range of genetically distinct conventional inbred lines. The F1 hybrids of all lines were grown concurrently at three replicated field sites in the United States during the 2012 growing season, and harvested grain was subjected to compositional analysis. Proximates (protein, starch and oil), amino acids, fatty acids, tocopherols and minerals were measured. The number of statistically significant differences (α = 0.05), as well as magnitudes of difference, in mean levels of these components between corresponding GM variants was essentially identical to that between GM and non-GM controls. The largest sources of compositional variation were the genetic background of the different conventional inbred lines (males and females) used to generate the maize hybrids and location. The lack of any compositional effect attributable to GM suggests the development of modern agricultural biotechnology has been accompanied by a lack of any safety or nutritional concerns. PMID:25196222

  12. Mechanism of high dielectric performance of polymer composites induced by BaTiO3-supporting Ag hybrid fillers

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Yang, Wenhu; Yu, Shuhui; Luo, Suibin; Sun, Rong

    2014-03-01

    BaTiO3-supporting Ag hybrid particles (BT-Ag) with varied fraction of Ag were synthesized by reducing silver nitrate in the glycol solution containing BaTiO3 (BT) suspensions. The Ag nano particles with a size of about 20 nm were discretely grown on the surface of the BT. The dielectric performance of the composites containing the BT-Ag as fillers in the matrix of polyvinylidene fluoride (PVDF) was investigated. The relative permittivity (ɛr) of the BT-Ag/PVDF composites increased prominently with the increase of BT-Ag loading amount, and the typical conductive path of the conductor/polymer system was not observed even with a high loading of BT-Ag. The ɛr at 100 Hz for the three BT-(0.31, 0.49, 0.61)Ag/PVDF composites at room temperature were 283, 350, and 783, respectively. The ɛr of the composites was enhanced by more than 3 times compared with that of the composite containing untreated BT nanoparticles at frequencies over 1 kHz and the loss tangent (tan δ) was less than 0.1 which should be attributed to the low conductivity of the composites. Theoretical calculations based on the effective medium percolation theory model and series-parallel model suggested that the enhanced permittivity of BT-Ag/PVDF composites should arise from the ultrahigh permittivity of BT-Ag fillers, which was over 104 and associated with the content of Ag deposited on the surface of BT.

  13. Pedestrian dynamics in single-file movement of crowd with different age compositions.

    PubMed

    Cao, Shuchao; Zhang, Jun; Salden, Daniel; Ma, Jian; Shi, Chang'an; Zhang, Ruifang

    2016-07-01

    An aging population is bringing new challenges to the management of escape routes and facility design in many countries. This paper investigates pedestrian movement properties of crowd with different age compositions. Three pedestrian groups are considered: young student group, old people group, and mixed group. It is found that traffic jams occur more frequently in mixed group due to the great differences of mobilities and self-adaptive abilities among pedestrians. The jams propagate backward with a velocity 0.4m/s for global density ρ_{g}≈1.75m^{-1} and 0.3m/s for ρ_{g}>2.3m^{-1}. The fundamental diagrams of the three groups are obviously different from each other and cannot be unified into one diagram by direct nondimensionalization. Unlike previous studies, three linear regimes in mixed group but only two regimes in young student group are observed in the headway-velocity relation, which is also verified in the fundamental diagram. Different ages and mobilities of pedestrians in a crowd cause the heterogeneity of system and influence the properties of pedestrian dynamics significantly. It indicates that the density is not the only factor leading to jams in pedestrian traffic. The composition of crowd has to be considered in understanding pedestrian dynamics and facility design. PMID:27575153

  14. Performance of aged cement-polymer composite immobilizing borate waste simulates during flooding scenarios

    NASA Astrophysics Data System (ADS)

    Eskander, S. B.; Bayoumi, T. A.; Saleh, H. M.

    2012-01-01

    An advanced composite of cement and water extended polyester based on the recycled Poly(ethylene terephthalate) waste was developed to incorporate the borate waste. Previous studies have reported the characterizations of the waste form (cement-polymer composite immobilizing borate waste simulates) after 28 days of curing time. The current work studied the performance of waste form aged for 7 years and subjected to flooding scenario during 260 days using three types of water. The state of waste form was assessed at the end of each definite interval of the water infiltration through visual examination and mechanical measurement. Scanning electron microscopy, infrared spectroscopy, X-ray diffraction and thermal analyses were used to investigate the changes that may occur in the microstructure of the waste form under aging and flooding effects. The actual experimental results indicated reasonable evidence for the durable waste form. Acceptable consistency was confirmed for the waste form even after aging 7 years and exposure to flooding scenario for 260 days.

  15. Pedestrian dynamics in single-file movement of crowd with different age compositions

    NASA Astrophysics Data System (ADS)

    Cao, Shuchao; Zhang, Jun; Salden, Daniel; Ma, Jian; Shi, Chang'an; Zhang, Ruifang

    2016-07-01

    An aging population is bringing new challenges to the management of escape routes and facility design in many countries. This paper investigates pedestrian movement properties of crowd with different age compositions. Three pedestrian groups are considered: young student group, old people group, and mixed group. It is found that traffic jams occur more frequently in mixed group due to the great differences of mobilities and self-adaptive abilities among pedestrians. The jams propagate backward with a velocity 0.4 m /s for global density ρg≈1.75 m-1 and 0.3 m /s for ρg>2.3 m-1 . The fundamental diagrams of the three groups are obviously different from each other and cannot be unified into one diagram by direct nondimensionalization. Unlike previous studies, three linear regimes in mixed group but only two regimes in young student group are observed in the headway-velocity relation, which is also verified in the fundamental diagram. Different ages and mobilities of pedestrians in a crowd cause the heterogeneity of system and influence the properties of pedestrian dynamics significantly. It indicates that the density is not the only factor leading to jams in pedestrian traffic. The composition of crowd has to be considered in understanding pedestrian dynamics and facility design.

  16. Dry Sliding Wear Behavior of 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Show, Bijay Kumar; Mondal, Dipak Kumar; Maity, Joydeep

    2014-09-01

    In this research work, the dry sliding wear behavior of 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) hybrid composite was investigated at low sliding speed (1 m/s) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion (along with associated subsurface cracking and delamination) and microcutting abrasion at lower load. While at higher load, abrasive wear involving microcutting and microploughing along with adherent oxide formation was observed. The overall wear rate increased with increasing normal load. The massive particle clusters as well as individual reinforcement particles were found to stand tall to resist abrasive wear. Besides, at higher load, the generation of adherent nodular tribo-oxide through nucleation and epitaxial growth on existing Al2O3 particles lowered down the wear rate. Accordingly, at any normal load, 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) hybrid composite exhibited superior wear resistance (lower overall wear rate) than the reported wear resistance of monolithic 6351 Al alloy.

  17. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Cunha, C.; Panseri, S.; Iannazzo, D.; Piperno, A.; Pistone, A.; Fazio, M.; Russo, A.; Marcacci, M.; Galvagno, S.

    2012-11-01

    A straightforward technique for functionalization of multiwalled carbon nanotubes (MWCNTs) with magnetite (Fe3O4) nanoparticles was developed. Iron oxide nanoparticles were deposited on MWCNT surfaces by a deposition-precipitation method using Fe3+/Fe2+ salts precursors in basic solution. The characterizations by HRTEM, XRD, SEM/EDX, AAS and TPR analyses confirmed the successful formation of magnetic iron oxide nanoparticles on the MWCNT surface. Fe3O4/MWCNT hybrid composites were analysed in vitro by incubation with mesenchymal stem cells for 1, 3 and 7 days, either in the presence or absence of a static magnetic field. Analysis of cell proliferation was performed by the MTT assay, quantification of cellular stress was performed by the Lactate Dehydrogenase assay and analysis of cell morphology was performed by actin immunofluorescence and scanning electron microscopy. Results demonstrate that the introduction of magnetite into the MWCNT structure increases biocompatibility of oxidized MWCNTs. In addition, the presence of a static magnetic field further increases Fe3O4/MWCNT influence on cell behaviour. These results demonstrate this novel Fe3O4/MWCNT hybrid composite has good potential for tissue engineering applications.

  18. Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe3O4 hybrid composite by a solvothermal reaction.

    PubMed

    Liu, Yue-Wen; Guan, Meng-Xue; Feng, Lan; Deng, Shun-Liu; Bao, Jian-Feng; Xie, Su-Yuan; Chen, Zhong; Huang, Rong-Bin; Zheng, Lan-Sun

    2013-01-18

    A superparamagnetic reduced graphene oxide-Fe(3)O(4) hybrid composite (rGO-Fe(3)O(4)) was prepared via a facile and straightforward method through the solvothermal reaction of iron (III) acetylacetonate (Fe(acac)(3)) and graphene oxide (GO) in ethylenediamine (EDA) and water. By this method, chemical reduction of GO as well as the formation of Fe(3)O(4) nanoparticles (NPs) can be achieved in one step. The Fe(3)O(4) NPs are firmly deposited on the surfaces of rGO, avoiding their reassembly to graphite. The rGO sheets prevent the agglomeration of Fe(3)O(4) NPs and enable a uniform dispersion of these metal oxide particles. The size distribution and coverage density of Fe(3)O(4) NPs deposited on rGO can be controlled by varying the initial mass ratio of GO and iron precursor, Fe(acac)(3). With an initial mass ratio of GO and Fe(acac)(3) of 5:5, the surfaces of rGO sheets are densely covered by spherical Fe(3)O(4) NPs with an average size of 19.9 nm. The magnetic-functionalized rGO hybrid exhibits a good magnetic property and the specific saturation magnetization (M(s)) is 13.2 emu g(-1). The adsorption test of methylene blue from aqueous solution demonstrates the potential application of this rGO-Fe(3)O(4) hybrid composite in removing organic dyes from polluted water. PMID:23220906

  19. Hybrid composites, state-of-the-art review: Analysis, design, application and fabrication

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.

    1977-01-01

    The areas of constituents and types of hybrids, analytical methods, design methods, applications, and fabrication procedures are discussed. The review summarizes significant contributions in each area and points out areas for further research. The description of each significant contribution is supplemented with pertinent illustrations and references.

  20. Oil productivity and composition of sunflower as a function of hybrid and planting date

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower (Helianthus annuus L.) is potential cash crop for the southeastern United States for production of cooking oil or biodiesel. Two years of experiments were conducted to evaluate the effect of location (five locations in Mississippi), planting date (April 20, May 20, and June 20), and hybrid...

  1. Time-Dependent Behavior of a Graphite/Thermoplastic Composite and the Effects of Stress and Physical Aging

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1995-01-01

    Experimental studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. Isothermal tensile creep/aging test techniques developed for polymers were adapted for testing of the composite material. Time dependent transverse and shear compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(8) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress.

  2. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for

  3. Realistic modeling of environmental tracer migration and composite age distributions in a pine beetle impacted watershed

    NASA Astrophysics Data System (ADS)

    Engdahl, N. B.; Maxwell, R. M.

    2013-12-01

    Descriptions of age in hydrologic systems are often limited to the residence time in the surface water system or the subsurface with little consideration of the interaction between the two, or the different ways geochemical tracers are altered in each domain. Understanding the way tracer concentrations change in each domain is essential to accurate estimation of age, but few models have explicitly modeled the fully coupled system or considered distributions of age. This work presents a numerical laboratory that is specifically designed to investigate composite age distributions (CADs) and their connections to tracer concentrations. The CAD is defined here as the combination of the residence time distributions for surface flows, vadose zone, and groundwater systems, providing an accounting for the total time a discrete fluid parcel has spent within the integrated hydrologic system. CADs are generated by particle tracking through a fully integrated flow model and it is straight forward to realistically simulate the transport of environmental tracers such as 85-Krypton and 39-Argon that can be used for estimating water ages. This framework allows explicit modeling of the different processes in each domain that affect tracer concentrations including the mixing of different source waters, partial equilibrium with the atmosphere through the vadose zone, evaporative enrichment in surface flows, and diffusive fractionation in the subsurface. Transient forcings, such as seasonal or daily variations in precipitation, can also be simulated and the effects of this transience on concentrations and age distributions can easily be investigated. The model domain used to demonstrate these tools is based on a well-defined watershed within Rocky Mountain National Park. The mountain pine beetle has devastated the park's forests and the massive tree-kill has begun to affect the quality and distribution of the water resources. Accurate modeling of the CADs in the park is a crucial step

  4. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  5. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  6. Association of Eating Behavior With Nutritional Status and Body Composition in Primary School-Aged Children.

    PubMed

    Tay, Chee Wee; Chin, Yit Siew; Lee, Shoo Thien; Khouw, Ilse; Poh, Bee Koon

    2016-07-01

    Problematic eating behaviors during childhood may lead to positive energy balance and obesity. Therefore, this study aims to investigate the association of eating behaviors with nutritional status and body composition in Malaysian children aged 7 to 12 years. A total of 1782 primary schoolchildren were randomly recruited from 6 regions in Malaysia. The multidimensional Children's Eating Behaviour Questionnaire (CEBQ) was reported by parents to determine the 8 different dimensions of eating styles among children. Body mass index (BMI), BMI-for-age Z-score, waist circumference, and body fat percentage were assessed. Linear regression analyses revealed that both food responsiveness and desire to drink subscales were positively associated with a child's body adiposity, whereas satiety responsiveness, slowness in eating, and emotional undereating subscales were negatively associated with adiposity (all P < .05). A multidimensional eating style approach based on the CEBQ is needed to promote healthy eating behaviors in order to prevent excessive weight gain and obesity problems among Malaysian children. PMID:27252248

  7. Light Plains in the South-Pole Aitken Basin: Surface Ages and Mineralogical Composition

    NASA Astrophysics Data System (ADS)

    Thiessen, F.; Hiesinger, H.; van der Bogert, C. H.; Pasckert, J. H.; Robinson, M. S.

    2012-04-01

    We studied light plains in the north-eastern South-Pole Aitken basin to investigate their origin, ages, and mineralogical composition. Light plains, also known as the Cayley Formation, occur on the near- and farside of the Moon. Due to their smooth texture, lower crater densities, and occurrence as crater fills, they were thought to be of volcanic origin [e.g., 1]. However, Apollo 16 samples of light plains deposits were in fact highly brecciated rocks [2]. Therefore, the Imbrium and Orientale impacts were thought to have formed light plains because they reshaped the surface thousands of kilometers from their impact sites. Subsequent studies revealed varying surface ages of light plains [e.g., 3] and different mineralogical compositions, which are in some cases more highland-like and in others more mare-like. Hence, an origin solely from the Imbrium and/or Orientale impacts is unlikely. Thus, the question whether light plains formed due to large impacts or regional cratering, or through endogenic processes remains open. We performed crater size-frequency measurements [e.g., 4] on Lunar Reconnaissance Orbiter Wide Angle Camera images and obtained absolute model ages between 3.43 and 3.81 Ga. We observed neither a distinctive peak of light plains ages nor clustering of similar ages in any specific regions of the studied area. Due to the fact that the derived ages vary as much as 380 Ma, an origin by a single event seems unlikely. Moreover, some ages even post-date the Imbrium and Orientale impacts, and thus an origin related to those impacts is not likely. Examination of multispectral data from Clementine [5] shows that the Ti abundances vary between 0.2 and 3 wt % and Fe abundances between 12.5 and 19 wt %. We observed a regional difference in distribution: light plains units within the Apollo basin have lower Fe and Ti values and are more highland-like, whereas light plains outside the Apollo basin show higher Fe and Ti values and are more mare-like. Furthermore, M

  8. Wear mechanisms in hybrid composites of graphite-20 pct SiC in A356 aluminum alloy (Al-7 pct Si-0. 3 pct Mg)

    SciTech Connect

    Ames, W.; Alpas, A.T. . Dept. of Mechanical Engineering)

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 pct Si-0.3 pct Mg) matrix composites reinforced with 20 vol pct SiC particles and 3 or 10 vol pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X0ray diffractometry (XRD). The wear resistance of 3 pct graphite-20 pct SiC-A356 hybrid composite was comparable to 20 pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 pct graphite 20 pct SiC-A356 was 1 to 2 times higher than 10 pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 pct and 10 pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites.

  9. Age dependence of the chemical composition of stars in globular clusters

    NASA Astrophysics Data System (ADS)

    Kipper, T.

    An overview of recent investigations of the age dependence of the chemical composition of stars in globular clusters is presented. Attention is given to two contradictory hypotheses on the issue of cluster age and metallicity. According to Carney (1980), there is a metallicity-age dependence. According to Gratton (1985), all globular clusters are the same age - approximately 16 x 10 exp 9 years old. The metallicity of the most metal-abundant clusters is discussed. The Fe/H metallicity of the object 47 Tuc is determined to range from -1.1 to -0.4. The chemical homogeneity of clusters is examined. Spectral investigations of NGC 6752 stars from the main sequence up to the upper part of the giants' branch did not show Fe/H dispersion. The study by Cohen (1980) of the relative distribution of heavy elements in clusters of different metallicity show that in spite of the significant difference in Fe/H (up to 2.0 dex) the relative abundances are quite similar.

  10. Detection of transverse cracking in a hybrid composite laminate using acoustic emission

    NASA Astrophysics Data System (ADS)

    Jong, Hwai-Jiang

    Transverse cracking detection in a uniaxially-loaded symmetric cross-ply hybrid laminate containing 0° IM7/8552 carbon/epoxy and a very thin 90° 52/8552 glass/epoxy layer is studied using the acoustic emission (AE) technique. By conducting modal-based AE experiments and analysis, we investigate some parameters that can be used as the waveform signatures to identify transverse crack growth in the hybrid laminate. Wave dispersion relations of the hybrid laminate are established, and a comparison with those from a material homogenization model based on the equivalent stiffness is made. It is found that material homogenization is not accurate for predicting wave dispersion in the hybrid laminate. Wave dispersion for a homogeneous IM7/8552 unidirectional plate is also constructed. Cut-off frequencies belonging to various wave modes are discussed concerning their significance in interpreting AE signals. The wave attenuation behaviors that exist in the hybrid laminate and in the homogeneous IM7/8552 plate are compared and discussed using the finite element method (FEM). The use of singular elements dealing with the high strain gradient near the crack tip is addressed for convergence purposes. It is shown by the FEM results and demonstrated in the AE experiments that wave attenuation in the cross-ply hybrid laminate is much stronger than in the plain IM7/8552 plate. A simple calibration method for the AE sensors is discussed. Some important aspects in conducting an AE experiment, such as the sensor averaging effect and sensor frequency response range, are addressed. A new source location method based on the waveform's first peak search and the associated primary frequency content is proposed. The accuracy of the source location method is verified by pencil-lead break experiments. The so-called symmetric energy fraction (SEF) of the AE signals in conjunction with the finite element analysis result in identification of the transverse cracking event. Lastly, a material

  11. Synthesis of Cu-Deficient and Zn-Graded Cu-In-Zn-S Quantum Dots and Hybrid Inorganic-Organic Nanophosphor Composite for White Light Emission.

    PubMed

    Ilaiyaraja, P; Mocherla, Pavana S V; Srinivasan, T K; Sudakar, C

    2016-05-18

    Cu-deficient graded-zinc Cu-In-Zn-S (CIZS) quantum dots (QDs) were synthesized by a two-step solvothermal method. These CIZS QDs exhibited size and composition tunable photoluminescence characteristics with emission color tunable from greenish-yellow to orange to red with a relatively high quantum yield between 45 and 60%. Novel white-light-emitting (WLE) hybrid composite is fabricated by integrating the blue-emissive 1,4-bis-2-(5-phenyl oxazolyl)-benzene (POPOP) organic fluorophore and quaternary CIZS inorganic QDs. Integrating CIZS QDs with POPOP fluorophore resulted in series of tunable emission colors with CIE coordinates lying in a straight line between the coordinates of the end member. WLE was shown for hybrid mixture comprising 0.5 nM of POPOP and 3 mg/mL of CIZS QDs with color coordinates (0.3312, 0.3324). Thin films of this hybrid mixture in PMMA matrix coated on UV-LED or on glass substrates with UV backlit light also showed broadband WLE with ideal CIE color coordinates of (0.34, 0.33), high color-rendering index value of 92, and correlated color temperature value of 5143 K. The hybrid composite exhibit Forster resonance energy transfer cascading from POPOP to CIZS which results in emission covering the entire visible spectral range. POPOP and CIZS QDs hybrid composite is a versatile material for WLED applications. PMID:27135154

  12. A hybrid Brownian dynamics/constitutive model for yielding, aging, and rejuvenation in deforming polymeric glasses.

    PubMed

    Zou, Weizhong; Larson, Ronald G

    2016-08-10

    We present a hybrid model for polymeric glasses under deformation that combines a minimal model of segmental dynamics with a beads-and-springs model of a polymer, solved by Brownian dynamics (BD) simulations, whose relaxation is coupled to the segmental dynamics through the drag coefficient of the beads. This coarse-grained model allows simulations that are much faster than molecular dynamics and successfully capture the entire range of mechanical response including yielding, plastic flow, strain-hardening, and incomplete strain recovery. The beads-and-springs model improves upon the dumbbell model for glassy polymers proposed by Fielding et al. (Phys. Rev. Lett., 2012, 108, 048301) by capturing the small elastic recoil seen experimentally without the use of ad hoc adjustments of parameters required in the model of Fielding et al. With appropriate choice of parameters, predictions of creep, recovery, and segmental relaxation are found to be in good agreement with poly(methylmethacrylate) (PMMA) data of Lee et al. (Science, 2009, 323, 231-234). Our model shows dramatic differences in behavior of the segmental relaxation time between extensional creep and steady extension, and between extension and shear. The non-monotonic response of the segmental relaxation time to extensional creep and the small elastic recovery after removal of stress are shown to arise from sub-chains that are trapped between folds, and that become highly oriented and stretched at strains of order unity, connecting the behavior of glassy polymers under creep to that of dilute polymer solutions under fast extensional flows. We are also able to predict the effects of polymer pre-orientation in the parallel or orthogonal direction on the subsequent response to extensional deformation. PMID:27453365

  13. Hybrid local FEM/global LISA modeling of guided wave propagation and interaction with damage in composite structures

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2015-03-01

    This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate

  14. Wear mechanisms in hybrid composites of Graphite-20 Pct SiC in A356 Aluminum Alloy (Al-7 Pct Si-0.3 Pct Mg)

    NASA Astrophysics Data System (ADS)

    Ames, W.; Alpas, A. T.

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg) matrix composites reinforced with 20 vol Pct SiC particles and 3 or 10 vol Pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X-ray diffractometry (XRD). The wear resistance of 3 Pct graphite-20 Pct SiC-A356 hybrid composite was comparable to 20 Pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 Pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 Pct graphite 20 Pct SiC-A356 was 1 to 2 times higher than 10 Pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 Pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 Pct and 10 Pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites. Tribolayers, mainly consisting of a compacted mixture of graphite, iron oxides, and aluminum, were generated on the surfaces of the hybrid composites. In the hybrid composites, the elimination of the severe wear (and hence the improvement in seizure resistance) was attributed to the reduction in friction-induced surface heating due to the presence of graphite- and iron

  15. Effects of Aerobic Dance on Physical Work Capacity, Cardiovascular Function and Body Composition of Middle-Age Women.

    ERIC Educational Resources Information Center

    Dowdy, Deborah B.; And Others

    1985-01-01

    This study proposed to determine the effects of aerobics on physical work capacity, cardiovascular function and body composition of 28 women aged 25 to 44 years. Measurements taken after a conditioning program showed significant changes in work capacity and cardiovascular function for the conditioned group but no change in body composition.…

  16. Role of physical activity and sleep duration in growth and body composition of preschool-aged children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of physical activity patterns and sleep duration on growth and body composition of preschool-aged children remains unresolved. Aims were (1) to delineate cross-sectional associations among physical activity components, sleep, total energy expenditure (TEE), and body size and composition; ...

  17. Effect of Nanoclay Reinforcement on the Friction Braking Performance of Hybrid Phenolic Friction Composites

    NASA Astrophysics Data System (ADS)

    Singh, Tej; Patnaik, Amar; Satapathy, Bhabani K.; Kumar, Mukesh; Tomar, Bharat S.

    2013-03-01

    Friction composite formulation consisting of decreasing nanoclay/lapinus fibres content, increasing graphite/aramid fibres content, and master batch of phenolic/barite is designed, fabricated, and characterized for their mechanical, thermo-mechanical, and tribological studies in braking situations. A standard test protocol is adopted for evaluating braking performance. The nanoclay content (≤2.25 wt.%) enhances hardness, impact strength, storage, and loss modulus characteristics of the friction composites. Such composites exhibit higher friction stability as well as variability coefficient. However, composites with higher content of nanoclay (~2.75 wt.%) exhibit moderate level of stability coefficient and minimum variability coefficient. Fade performance improves with nanoclay content whereas friction fluctuations increase continuously with increasing nanoclay content. The disc temperature continuously rises with nanoclay contents, it becomes maximum for nanoclay content 2.75 wt.%. The same composition found to be effective in arresting temperature rise, arrests fading, improves recovery, moderate stability with minimum variability coefficient, and higher level of μ-performance hence recommended. The wear performance deteriorates with lapinus/nanoclay content and improves with the amount of aramid/graphite in the friction composites. Worn surface morphology study (using SEM) reveals the associated wear mechanisms responsible for wear of investigated composites. XRD study confirms the presence and dispersion of nanoclay with other composite ingredients.

  18. Damage analysis of CF/AF hybrid fabric reinforced plastic laminated composites with scanned image microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, Chiaki; Kasano, Hideaki; Shull, Peter J.

    2004-07-01

    The article presents an experimental study that has been conducted to evaluate the impact loading damage within hybrid fabric laminates-carbon and Aramid fibers. The experiments have been undertaken on a series of interply hybrid specimens with different preprags stacking sequences. Impact damage was created using an air-gun like impact device propelling spherical steel balls with diameters of 5.0mm and 10.0mm and having velocities of 113m/s and 40m/s respectively. The resulting specimen surface and internal damage (e.g., micro-cracking and debonding) was visualized nondestructively by a scanning acoustic microscope (SAM) while further interrogation of specific internal damage was visualized using a scanning electron microscope (SEM) on cross-sectioned panels.

  19. Optimization of hybrid laminated composites using the multi-objective gravitational search algorithm (MOGSA)

    NASA Astrophysics Data System (ADS)

    Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah

    2014-09-01

    The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.

  20. Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection.

    PubMed

    Bogaarts, J G; Gommer, E D; Hilkman, D M W; van Kranen-Mastenbroek, V H J M; Reulen, J P H

    2016-08-01

    Automated seizure detection is a valuable asset to health professionals, which makes adequate treatment possible in order to minimize brain damage. Most research focuses on two separate aspects of automated seizure detection: EEG feature computation and classification methods. Little research has been published regarding optimal training dataset composition for patient-independent seizure detection. This paper evaluates the performance of classifiers trained on different datasets in order to determine the optimal dataset for use in classifier training for automated, age-independent, seizure detection. Three datasets are used to train a support vector machine (SVM) classifier: (1) EEG from neonatal patients, (2) EEG from adult patients and (3) EEG from both neonates and adults. To correct for baseline EEG feature differences among patients feature, normalization is essential. Usually dedicated detection systems are developed for either neonatal or adult patients. Normalization might allow for the development of a single seizure detection system for patients irrespective of their age. Two classifier versions are trained on all three datasets: one with feature normalization and one without. This gives us six different classifiers to evaluate using both the neonatal and adults test sets. As a performance measure, the area under the receiver operating characteristics curve (AUC) is used. With application of FBC, it resulted in performance values of 0.90 and 0.93 for neonatal and adult seizure detection, respectively. For neonatal seizure detection, the classifier trained on EEG from adult patients performed significantly worse compared to both the classifier trained on EEG data from neonatal patients and the classier trained on both neonatal and adult EEG data. For adult seizure detection, optimal performance was achieved by either the classifier trained on adult EEG data or the classifier trained on both neonatal and adult EEG data. Our results show that age

  1. Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.; Chhabra, P. S.; Seinfeld, J. H.; Worsnop, D. R.

    2011-03-01

    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2H3O+, to total signal in the component mass spectrum). Such parameterization allows the transformation of large database of ambient OOA components from the f44 (mostly CO2+, likely from acid groups) vs. f43 space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C). Heald et al. (2010) suggested that the bulk composition of OA line up in the Van Krevelen diagram with a slope ~ -1; such slope can potentially arise from the physical mixing of HOA and OOA, and/or from chemical aging of these components. In this study, we find that the OOA components from all sites occupy an area in the Van Krevelen space, with the evolution of OOA following a shallower slope of ~ -0.5, consistent with the additions of both acid and alcohol functional groups without fragmentation, and/or the addition of acid groups with C-C bond breakage. The importance of acid formation in OOA evolution is consistent with increasing f44 in the triangle plot with photochemical age. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies.

  2. Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging

    PubMed Central

    Huang, Bo-Tsang; Chang, Pu-Yuan; Su, Ching-Hua; Chao, Chuck C.-K.; Lin-Chao, Sue

    2012-01-01

    Background Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. Methodology/Principal Findings Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. Conclusions/Significance These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance. PMID:22662195

  3. Core-shell nanostructured hybrid composites for volatile organic compound detection

    PubMed Central

    Tung, Tran Thanh; Losic, Dusan; Park, Seung Jun; Feller, Jean-Francois; Kim, TaeYoung

    2015-01-01

    We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC) vapors based on core-shell hybridized nanostructures of Fe3O4 magnetic nanoparticles (MNPs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs), which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT–PIL-modified Fe3O4 hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe3O4 sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm) and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers. PMID:26357471

  4. Experimental and Numerical Investigations of Textile Hybrid Composites Subjected to Low Velocity Impact Loadings

    PubMed Central

    Chandekar, Gautam S.; Kelkar, Ajit D.

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio. PMID:24719573

  5. Core-shell nanostructured hybrid composites for volatile organic compound detection.

    PubMed

    Tung, Tran Thanh; Losic, Dusan; Park, Seung Jun; Feller, Jean-Francois; Kim, TaeYoung

    2015-01-01

    We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC) vapors based on core-shell hybridized nanostructures of Fe3O4 magnetic nanoparticles (MNPs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs), which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT-PIL-modified Fe3O4 hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT-PIL-modified Fe3O4 sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm) and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT-PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers. PMID:26357471

  6. Experimental and numerical investigations of textile hybrid composites subjected to low velocity impact loadings.

    PubMed

    Chandekar, Gautam S; Kelkar, Ajit D

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio. PMID:24719573

  7. Hybrid rotors in F1F(o) ATP synthases: subunit composition, distribution, and physiological significance.

    PubMed

    Brandt, Karsten; Müller, Volker

    2015-09-01

    The c ring of the Na+ F1F(o) ATP synthase from the anaerobic acetogenic bacterium Acetobacterium woodii is encoded by three different genes: atpE1, atpE2 and atpE3. Subunit c1 is similar to typical V-type c subunits and has four transmembrane helices with one ion binding site. Subunit c2 and c3 are identical at the amino acid level and are typical F-type c subunits with one ion binding site in two transmembrane helices. All three constitute a hybrid F(o)V(o) c ring, the first found in nature. To analyze whether other species may have similar hybrid rotors, we searched every genome sequence publicly available as of 23 February 2015 for F1F(o) ATPase operons that have more than one gene encoding the c subunit. This revealed no other species that has three different c subunit encoding genes but twelve species that encode one F(o)- and one V(o)-type c subunit in one operon. Their c subunits have the conserved binding motif for Na+. The organisms are all anaerobic. The advantage of hybrid c rings for the organisms in their environments is discussed. PMID:25838297

  8. A study on verifying the effectiveness of 4-week composite weight-loss dietary supplement ingestion on body composition and blood lipid changes in middle-aged women

    PubMed Central

    Chun, Yoonseok; Lee, Namju; Park, Sok; Sung, Suhyun; Jung, Matthew; Kim, Jongkyu

    2015-01-01

    Purpose The purpose of this study was to investigate the effectiveness of a composite weight-loss dietary supplement on body composition and blood lipid changes in middle-aged women. Methods Thirty seven middle-aged women living in the Kyunggi area participated in this study and they were randomly divided into 2 groups (Dietary supplement ingestion group; DG, n = 20 and Placebo group; PG, n = 17). Blood draw and dual energy x-ray (DEXA) measurements were conducted to examine changes in body composition and blood lipids. Results There were no significant changes in weight and BMI in both groups. There was an interaction between the composite weight-loss dietary supplement intake and lean body mass in DG and there was a significant decrease in percent body fat in DG. Blood lipid changes in the study results showed that there was no significant difference in TC, TG, and LDL in both groups; however, there was a significant interaction between the composite weight-loss dietary supplement intake and HDL-C as well as an increase in the HDL-C of DG. Conclusion In conclusion, it seems that 4-week ingestion of the composite weight-loss dietary supplement decreased body fat, increased lean body mass, and increased HDL-C. Therefore, the composite weight-loss dietary supplement is expected to prevent obesity and induce health improvements in middle-aged women. PMID:26527460

  9. The history of mare volcanism in the Orientale Basin: Mare deposit ages, compositions and morphologies

    NASA Technical Reports Server (NTRS)

    Kadel, S. D.; Greeley, R.; Neukum, G.; Wagner, R.

    1993-01-01

    The eruptive history of mare basalts in the Orientale Basin has been studied, using Lunar Orbiter 4 high-resolution photographs, Zond 8 photographs, and recently acquired Galileo EM-1 multispectral images. This work represents a refined set of compositional data incorporating the use of a linear mixing model for mare compositions, crater count data, and a comprehensive morphologic analysis of Orientale Basin mare deposits. Evidence for multiple eruptive episodes has been found, with compositions ranging from medium- to high-Ti basalt (less than 4 to greater than 6 wt. percent TiO2). Eruptive styles included flood, rille-forming, and shield-forming eruptions. Impact crater densities of mare units in the Orientale Basin enable determination of the ages of these deposits, using the method of Neukum et al. Earliest eruptions of mare basalt in the basin occurred at greater than or equal to 3.80 Ga and the latest eruptions occurred at about 2.3-2.5 Ga. Hence, mare volcanism occurred over a period of nearly 1.5 Ga.

  10. Anthropometric characteristics and body composition in Mexican older adults: age and sex differences.

    PubMed

    López-Ortega, Mariana; Arroyo, Pedro

    2016-02-14

    Anthropometric reference data for older adults, particularly for the oldest old, are still limited, especially in developing countries. The aim of the present study was to describe sex- and age-specific distributions of anthropometric measurements and body composition in Mexican older adults. The methods included in the present study were assessment of height, weight, BMI, calf circumference (CC), waist circumference (WC) and hip circumference (HC) as well as knee height in a sample of 8883 Mexican adults aged 60 years and above and the estimation of sex- and age-specific differences in these measures. Results of the study (n 7865, 54% women) showed that men are taller, have higher BMI, and larger WC than women, whereas women presented higher prevalence of obesity and adiposity. Overall prevalence of underweight was 2·3% in men and 4·0% in women, with increasing prevalence with advancing age. Significant differences were found by age group for weight, height, WC, HC, CC, BMI and knee height (P<0·001), but no significant differences in waist-hip circumference were observed. Significant differences between men and women were found in height, weight, circumferences, BMI and knee height (P<0·001). These results, which are consistent with studies of older adults in other countries, can be used for comparison with other Mexican samples including populations living in the USA and other countries with similar developmental and socio-economic conditions. This information can also be used as reference in clinical settings as a tool for detection of individuals at risk of either underweight or overweight and obesity. PMID:26597049

  11. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Youn, Duck Hyun; Jo, Changshin; Kim, Jae Young; Lee, Jinwoo; Lee, Jae Sung

    2015-11-01

    An ultrafast and simple strategy to synthesize metal sulfides (MoS2 and WS2) anchored on reduced graphene oxide (RGO) composites is reported as anode materials for lithium ion batteries (LIBs). Metal sulfide nanocrystals with homogeneous dispersion onto conducting RGO sheets are obtained in only 45 s by hybrid microwave annealing (HMA) method. The synthesized materials, especially MoS2/RGO composite, exhibit a high Li capacity, an excellent rate capability, and a stable cycling performance, comparable to the reported best MS2/carbon composite electrodes. The results highlight the effectiveness of HMA method to fabricate the metal sulfide/RGO composites with excellent electric properties.

  12. Effect of cyclical thermal to mechanical properties of Hybrid Laminate Composites (HLC) with skin recycle polypropylene/natural fiber/halloysite and core PP/KF composites

    NASA Astrophysics Data System (ADS)

    Sri Suharty, Neng; Ismail, Hanafi; Suci Handayani, Desi; Diharjo, Kuncoro; Rachman Wibowo, Fajar; Arnita Wuri, Margaretha

    2016-02-01

    This research has successfully synthesized six hybrid laminate composites (HLC). These HLC consist of two layers skin composites and one layer of core PP/KF composites. There are sticked with epoxy adhesive by using cold press method. In this research 6 types of skin are used, namely the rPP (recycled polypropylene, HC1); rPP/DVB/PP-g-AA/KF (HC2); rPP/DVB/PP-g-AA/Hall (HC3); rPP/DVB/PP-g-AA/Hall+ZB (HC4); rPP/DVB/PP-g-AA/KF/Hall (HC5) and rPP/DVB/PP-g-AA/KF/Hall+ZB (HC6) composites. The mechanical properties assessment tensile strength (TS) of various HLC before and after cyclical thermal (CT) was done by ASTM D638. While testing the flame retardant: such as time to ignition (TTI) and burning rate (BR) was done by ASTM D635. Heat stability of HLC can be recognized by conducting the CT treatment. It is to determine the effect of fluctuating heat loads on mechanical properties of HLC materials. The TS result of five HLCs (HC2, HC3, HC4, HC5 and HC6) before CT treatment were higher than HC1 (blank HLC). Those five HLC are also able to increase the TTI and reduce the BR compared to HC1. The CT treatment conditions performed at 45 oC as much as 125 times. After CT treatment, the TS values only slightly decline compared to before CT treatment.

  13. Thermo-Mechanical Properties of SiC/SiC Composites with Hybrid CVI-PIP Matrices

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; DiCarlo, J. A.

    2004-01-01

    For long term structural service, the upper temperature capability for slurry-cast melt infiltrated (MI) SiC/SiC composites is limited to approx. 1315 C because of silicon reaction with the SiC fibers. For applications requiring material temperatures in excess of 1315 C, alternate methods of manufacturing the SiC matrices without silicon are being investigated, such as a hybrid combination of CVI and PIP. In this study, stacked fabric plies of Sylramic i-BN SiC fibers were coated with a CVI BN interface layer followed by a partial CVI SiC matrix. The remaining porosity in the SiC/SiC preforms was then infiltrated with silicon carbide matrix by PIP. Thermo-mechanical property measurements indicate that these composites are stable to 1700 C in inert environments under no load conditions for 100 h and under load conditions to 1450 C in air for 300 h. The advantages, disadvantages, and potential of this composite system for high temperature applications will be discussed.

  14. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    PubMed Central

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  15. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    NASA Astrophysics Data System (ADS)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-03-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  16. Enhanced Electrochemical Performance of Ultracentrifugation-Derived nc-Li3VO4/MWCNT Composites for Hybrid Supercapacitors.

    PubMed

    Iwama, Etsuro; Kawabata, Nozomi; Nishio, Nagare; Kisu, Kazuaki; Miyamoto, Junichi; Naoi, Wako; Rozier, Patrick; Simon, Patrice; Naoi, Katsuhiko

    2016-05-24

    Nanocrystalline Li3VO4 dispersed within multiwalled carbon nanotubes (MWCNTs) was prepared using an ultracentrifugation (uc) process and electrochemically characterized in Li-containing electrolyte. When charged and discharged down to 0.1 V vs Li, the material reached 330 mAh g(-1) (per composite) at an average voltage of about 1.0 V vs Li, with more than 50% capacity retention at a high current density of 20 A g(-1). This current corresponds to a nearly 500C rate (7.2 s) for a porous carbon electrode normally used in electric double-layer capacitor devices (1C = 40 mA g(-1) per activated carbon). The irreversible structure transformation during the first lithiation, assimilated as an activation process, was elucidated by careful investigation of in operando X-ray diffraction and X-ray absorption fine structure measurements. The activation process switches the reaction mechanism from a slow "two-phase" to a fast "solid-solution" in a limited voltage range (2.5-0.76 V vs Li), still keeping the capacity as high as 115 mAh g(-1) (per composite). The uc-Li3VO4 composite operated in this potential range after the activation process allows fast Li(+) intercalation/deintercalation with a small voltage hysteresis, leading to higher energy efficiency. It offers a promising alternative to replace high-rate Li4Ti5O12 electrodes in hybrid supercapacitor applications. PMID:27158830

  17. Hydrothermal synthesis and characterization of hybrid Al/ZnO-GO composite for significant photodegrdation of dyes

    NASA Astrophysics Data System (ADS)

    Lellala, Kashinath; Namratha, K.; Sudhakar, K.; Byrappa, K.

    2016-05-01

    In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of the reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.

  18. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    PubMed

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  19. An in vitro evaluation of microleakage in class V preparations restored with Hybrid versus Silorane composites

    PubMed Central

    Umer, Fahad; Naz, Farah; Khan, Farhan Raza

    2011-01-01

    Aim: To compare the difference in microleakage values using conventional and new low-shrink Silorane composites using the dye penetration method. Background: With improvement in adhesive technology, problems associated with composites have been largely overcome. However, microleakage due to polymerization shrinkage still remains a challenge. New Silorane-based composites are alleged to have less than 1% polymerization shrinkage, which would potentially decrease the microleakage, and hence, resolve this longstanding issue. Materials and Methods: The teeth were randomly divided into three groups (A,B, and C). Group A was restored with conventional composite (Valux™ Plus), with a total-etch protocol, Group B was restored with conventional composite, with a self-etch protocol, and group C were restored with a silorane-based composite (Filtek TMP90). Thermocycling at 200 cycles between 5 and 55°C ± 2°C with a dwell time of 60 seconds was conducted. The teeth were stained with methylene blue dye and then sectioned and viewed under a dissection microscope, afer which the microleakage was evaluated. Results: The interexaminer reliability was evaluated using the kappa score, which was acceptable (61 – 78%). The total-etch group performed statistically and significantly better (P < 0.001) at the occlusal margin and was marginally and statistically significant (P = 0.05) at the gingival margin compared to the self-etch conventional and Silorane groups. Conclusions: The Silorane composite did not perform better than the conventional composites, however, it may have its uses and requires further research. PMID:21814346

  20. Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.

    PubMed

    Pärnik, Tiit; Ivanova, Hiie; Keerberg, Olav; Vardja, Rael; Niinemets, Ulo

    2014-06-01

    The growth rate of triploid European aspen (Populus tremula L.) and hybrid aspen (P. tremula × Populus tremuloides Michx.) significantly exceeds that of diploid aspen, but the underlying physiological controls of the superior growth rates of these genotypes are not known. We tested the hypothesis that the superior growth rate of triploid and hybrid aspen reflects their greater net photosynthesis rate. Micropropagated clonal plants varying in age from 2.5 to 19 months were used to investigate the ploidy and plant age interaction. The quantum yield of net CO2 fixation (Φ) in leaves of young 2.5-month-old hybrid aspen was lower than that of diploid and triploid trees. However, Φ in 19-month-old hybrid aspen was equal to that in triploid aspen and higher than that in diploid aspen. Φ and the rate of light-saturated net photosynthesis (ANS) increased with plant age, largely due to higher leaf dry mass per unit area in older plants. ANS in leaves of 19-month-old trees was highest in hybrid, medium in triploid and lowest in diploid aspen. Light-saturated photosynthesis had a broad temperature optimum between 20 and 35 °C. Rate of respiration in the dark (RDS) did not vary among the genotypes in 2.5-month-old plants, and the shape of the temperature response was also similar. RDS increased with plant age, but RDS was still not significantly different among the leaves of 19-month-old diploid and triploid aspen, but it was significantly lower in leaves of 19-month-old hybrid plants. The initial differences in the growth of plants with different ploidy were minor up to the age of 19 months, but during the next 2 years, the growth rate of hybrid aspen exceeded that of triploid plants by 2.7 times and of diploid plants by five times, in line with differences in ANS of 19-month-old plants of these species. It is suggested that differences in photosynthesis and growth became more pronounced with tree aging, indicating that ontogeny plays a key role in the expression of

  1. A hybrid Brownian Dynamics model for yielding, aging, and rejuvenation in deforming polymeric glasses

    NASA Astrophysics Data System (ADS)

    Zou, Weizhong; Larson, Ronald

    2015-03-01

    We describe the rheology of polymeric glasses by combining a simple constitutive equation for the fast segmental modes, borrowed from Fielding, et al., with Brownian dynamics (BD) simulations of the slow polymer modes. The BD simulations determine the polymeric stress from ensembles of finitely extensible bead-spring chains, where the bead drag coefficient is governed by solutions to the equation for segmental relaxation. Thus the model treats the short glassy segmental mode as ``solvent'' for the polymer modes. With rubbery modulus for the slow-relaxing polymer modes as one of our model parameters, stress-dependent relaxation, physical aging, flow rejuvenation as well as strain-hardening and recovery can be successfully accounted for in uniaxial extension and steady shear, without the use of an artificial ``crinkle factor'' used to account for recoil dynamics in previous work. Our simulation results remarkably agree with the experimental data from Lee et al. A comparison between our model and the barrier-hopping theory is also made. The authors acknowledge discussions with M. E. Cates and S. M. Fielding.

  2. Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.

  3. MnO2@KCu7S4 NWs hybrid compositions for high-power all-solid-state supercapacitor

    NASA Astrophysics Data System (ADS)

    Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo

    2015-01-01

    Here we present a high-power all-solid-state supercapacitor based on a novel structure of MnO2@KCu7S4 NWs. The electrodes exhibit excellent electrochemical performance with large specific capacitance of 533 F g-1 and the maximum power density 2.02 kW kg-1, still hold 85% of the capacitance over 6000 cycles. Besides, we also explored the effect of temperature on the capacitance. When compared with capacitance at different temperatures, the specific capacity at 80 °C demonstrates significantly higher. Moreover, two supercapacitors in series can power 41 light-emitting diodes (LEDs) about 4 min. These results suggest that such MnO2@KCu7S4 hybrid composite is promising for next generation high-performance supercapacitors.

  4. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  5. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.

    PubMed

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-01-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage. PMID:27406239

  6. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    PubMed Central

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-01-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage. PMID:27406239

  7. A mass reduction effort of the electric and hybrid vehicle. [composite door panels

    NASA Technical Reports Server (NTRS)

    Freeman, R. B.; Jahnle, H. A.

    1980-01-01

    Weight reduction, cost competitiveness, and elimination of the intrusion beam resulted from the redesign and fabrication using composite materials of the door outer panel and intrusion beam from a Chevrolet Impala. The basis of the redesign involved replacing these two steel parts with a single compression molding using the unique approach of simultaneously curing a sheet molding compound outside panel with a continuous glass fiber intrusion strap. A weight reduction of nearly 11 pounds per door was achieved. Additional weight savings are possible by taking advantage of the elimination of the intrusion beam to design thinner door structures. The parts consolidation approach allows the composite structure to be cost competitive with the original steel design for both the lower production car models and for the near to midterm production vehicles using current state of the art composite production techniques. The design, prototype fabrication, costing, material, properties and compression molding production requirements are discussed.

  8. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    PubMed Central

    2011-01-01

    In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417

  9. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation.

    PubMed

    Feng, Lili; Gao, Guo; Huang, Peng; Wang, Xiansong; Zhang, Chunlei; Zhang, Jiali; Guo, Shouwu; Cui, Daxiang

    2011-01-01

    In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417

  10. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Feng, Lili; Gao, Guo; Huang, Peng; Wang, Xiansong; Zhang, Chunlei; Zhang, Jiali; Guo, Shouwu; Cui, Daxiang

    2011-10-01

    In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  11. Growth, body composition, immune response and resistance to Streptococcus iniae of hybrid tilapia, Oreochromis niloticus x O. aureaus, fed diets containing various levels of linoleic and linolenic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various levels of dietary linoleic (LA) and linolenic acids (LN) on growth, body proximate and fatty acid composition, immune response and resistance to Streptococcus iniae of juvenile, sex-reversed all-male hybrid tilapia, Oreochromis niloticus x O. areaus, were evaluated. A basal pu...

  12. Compositional assessments of key maize populations: B73 hybrids of the nested association mapping founder lines and diverse landrace inbred lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study provides an assessment of compositional diversity in maize B73 hybrids derived from both the nested association mapping (NAM) founder lines and from a geographically diverse collection of landrace accessions from North and South America. The NAM founders represent a key population...

  13. Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.

  14. A preliminary analysis of lunar extra-mare basalts - Distribution, compositions, ages, volumes, and eruption styles

    NASA Technical Reports Server (NTRS)

    Whitford-Stark, J. L.

    1982-01-01

    Extra-mare basalts occupy 8.5% of the lunar basalt area and comprise 1% of the total mare basalt volume. They are preferentially located where the crust is thin and topographically low. In terms of age, eruption style, and composition they are as variable as the mare basalts. In some instances extrusion in extra-mare craters was preceded by floor-fracturing whereas in other cases it apparently was not. The volume of lava erupted may have been controlled more by the volume of magma produced than by hydrostatic effects. A minimum of nearly 1300 separate basalt eruptions is indicated; the true value could be nearer 30,000 separate eruptions.

  15. Aging results for PRD 49 III/epoxy and Kevlar 49/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1983-01-01

    Kevlar 49/epoxy composite is growing in use as a structural material because of its high strength-to-weight ratio. Currently, it is used for the Trident rocket motor case and for various pressure vessels on the Space Shuttle. In 1979, the initial results for aging of filament-wound cylindrical pressure vessels which were manufactured with preproduction Kevlar 49 (Hamstad, 1979) were published. This preproduction fiber was called PRD 49 III. This report updates the continuing study to 10-year data and also presents 7.5-year data for spherical pressure vessels wound with production Kevlar 49. For completeness, this report will again describe the specimens of the original study with PRD 49 as well as specimens for the new study with Kevlar 49.

  16. Perfluorocyclobutyl polymer thin-film composite membrane fabrication, plasticization and physical aging

    NASA Astrophysics Data System (ADS)

    Zhou, Jinxiang

    My research consists of three parts: 1) study of perfluorocyclobutyl (PFCB) thin film formation, 2) development and characterization of PFCB thin-film composite membranes, and 3) elucidation of the roles that plasticization and physical aging play on PFCB thin-film performance. In part 1, I conducted comprehensive research to understand how PFCB thin films form by the method of dip coating. Through the control of solvents, polymer solution concentrations, and withdrawal speeds, a series of PFCB thin films were formed on silicon wafers. Film thickness and refractive index were characterized by ellipsometry. Results suggested that when the withdrawal speeds are higher than 50 mm/min, film thickness increases with increasing withdrawal speeds, as it is predicted in the proposed extension of the Landau-Levich model. When the withdrawal speeds are lower than 50 mm/min, film thickness increases with decreasing withdrawal speeds, which could be explained by the phenomenon of PFCB surface excess. Subsequent surface tension studies proved the existence of this surface excess. Surface images of these films were measured by atomic force microscope. Films prepared from tetrahydrofuran and chloroform yielded uniform nanolayers. However, films prepared using acetone as solvent yielded a partial dewetting pattern, which could be explained by a surface depletion layer of pure solvent between the bulk PFCB/acetone solution and the substrate. Based on the knowledge generated in part 1, I developed, from scratch, procedures to prepare PFCB TFC membranes that were free of major defects. I used mathematical models based on resistance in series to predict composite membrane performance. In many cases, surface defects are the major reason for poor separation ability of TFC membranes. Mathematical analysis showed that the surface defects are less critical in thinner films but are still an important factor causing selectivity loss. Surface defects occur mainly from polymer dewetting on the

  17. Novel polymer and inorganic/organic hybrid composite materials for proton exchange membrane applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhiwei

    In this study, various novel proton exchange membranes (PEM) have been synthesized and investigated for high temperature PEM applications. Sulfonic acid functionalized polysilsesquioxane hybrid membranes with the empirical formula of R-Si-(O)1.5 consist of a highly cross-linked Si-O backbone and pendant organic side chain R, which is terminated in a proton conducting functional group (i.e., sulfonic acid). The membranes exhibited excellent proton conductivities (sigma) of >10-2 S/cm under low humidity conditions and a wide range of temperatures. The fuel cell (FC) performance of the membranes under low humidity conditions has been evaluated. Acid-doped linear meta-polyaniline membranes have been prepared through solution casting of m-PANI. The obtained membrane shows good proton conductivities at temperatures above 100°C, achieving 10-2.7 S/cm under 120°C and practically no humidity conditions. The effects of doping acids, doping levels and humidity on the conductivity are discussed. Polyethylenimine (PEI)/SiO2 nanocomposites membranes have been synthesized through sol-gel processes. The introduction of SiO2 clusters into high molecule weight, linear PEI greatly improved its thermal stability at high temperatures and O2 atmosphere. During the sol-gel processes, trifluoromethanesulfonimide (HTFSI) was added to dope the amine groups of PEI and form immobilized proton-conducting ionic liquids, which provide the hybrid membranes with proton-conducting behavior. The resultant membranes show good proton conductivities at high temperatures and low to zero humidity conditions. The effects of temperature, humidity and mobility of active groups on the conductivity are discussed. Various organic amine/HTFSI ionic group functionalized polysilsesquioxane hybrid membranes have been prepared. The Si-O backbone provides excellent thermal/chemical/mechanical properties and the HTFSI-doped amine end groups provide the proton conducting properties. The membranes exhibited proton

  18. Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation.

    PubMed

    Peffers, Mandy J; Thorpe, Chavaunne T; Collins, John A; Eong, Robin; Wei, Timothy K J; Screen, Hazel R C; Clegg, Peter D

    2014-09-12

    Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging. PMID:25077967

  19. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  20. The Effects of Age on the Yield and Composition of the Essential Oils of Calendula officinalis

    NASA Astrophysics Data System (ADS)

    Okoh, O. O.; Sadimenko, A. A.; Afolayan, A. J.

    The variations in the yield and composition of the essential oils from Calendula officinalis L. (Asteraceae) cultivated in Alice, Eastern Cape of South Africa are reported. Essential oils of this plant were obtained by hydrodistillation using the Clevenger apparatus and analysis was performed by GC-MS. The yield in essential oil showed a maximum at the full flowering stage (0.97%) and a minimum during the pre-flowering stage (0.13%). The compositions also showed different patterns at different phases of the vegetative cycle. Sesquiterpenes (α-cadinene, α-cadinol, T-muurolol and epi-bicyclosesquiphellandrene) and monoterpenes (limonene, 1, 8-cineole and trans-β-ocimene) showed the highest correlations with the age of the plant. Aiming the use of essential oil as a food ingredient, the most interesting stage is the post-flowering period, the essential oil at this time being rich in α-cadinene, α-cadinol, t-muurolol, limonene, 1,8-cineole, with P-cymene present at lower levels. α-cadinene is an important flavouring agent in baked foods, candy and chewing gum and also used as a fragrance in cosmetics and detergents. T-muurolol and α-cadinol are important antimicrobial agents.

  1. Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Buseck, Peter R.

    2015-01-01

    Sea salt is one of the most abundant types of natural aerosol particles and significantly influences local and global climate. It is an important constituent of samples collected between June 10 and 15 in the Los Angeles area during the 2010 CalNex campaign. The sea-salt particles reacted with other species in the atmosphere and became Na-bearing aerosol (NaA) particles. Using transmission electron microscopy, we found that Na occurred in almost half of all analyzed particles (∼3500), although commonly only in minor amounts. Almost all the NaA particles contained S but not Cl, suggesting that Cl was depleted through particle formation to sulfate, nitrate, or both in the urban atmosphere. We observed both rounded and euhedral NaA particles. The rounded ones consisted mainly of aged sea salt (>12 h) that had reacted extensively with sulfate, whereas the euhedral ones occurred in samples from relatively fresh marine air. The shapes and compositions of NaA particles changed within 3 h in the urban atmosphere. Moreover, our calculations indicate that light scattering from NaA particles depends on their shapes (e.g., roughly spherical, flat, or elongated). These compositions and shapes affect hygroscopicities and light scattering, respectively, both of which influence their climate effects.

  2. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGESBeta

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  3. Lipid composition of the Antarctic fish Pleuragramma antarcticum. Influence of age class

    NASA Astrophysics Data System (ADS)

    Mayzaud, P.; Chevallier, J.; Tavernier, E.; Moteki, M.; Koubbi, P.

    2011-08-01

    Larvae and juvenile stages of Pleuragramma antarcticum have been collected in the Dumont D’Urville Sea (East Antarctica) during summer 2008 on board the TRV Umitaka Maru during the CEAMARC survey. Detailed analyses of their lipid class and fatty acid compositions were carried out. P. antarcticum showed a pronounced ontogenic lipid accumulation with increasing size. Larvae displayed a dominance of polar lipids (83% of total lipids) and low percentage of triglycerides (7%). Conversely juveniles showed an increasing accumulation of triglycerides (up to 72.4%). The fatty acid composition of polar lipids remained rather stable between stages with 22:6n-3 and 20:5n-3 as dominant contributors. The relatively minor ontogenic changes, e.g. increase of monounsaturated and decrease of C18 polyunsaturated fatty acids, may reflect the influence of differences in diet. Triglycerides showed that all three age classes are well segregated in term of fatty acid composition. Larvae triglycerides are characterized by significant percentages of 16:0, 20:5n-3, 20:6n-3 and to a minor extent 18:4n-3, which suggest a prymnesiophyte based diet. Juveniles are characterized by larger percentages of C20:1 and C22:1 acids, considered as markers of Calanus type copepods. The increasing contribution of 18:1n-9 in the triglycerides of the older juveniles suggests a gradual and increasing shift from a copepod dominant diet to an euphausiid dominant diet. Fatty acid trophic markers pattern suggests a shift from a phytophagous and omnivorous diet for larvae to a carnivorous diet for juveniles.

  4. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    NASA Astrophysics Data System (ADS)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  5. Repair potential of a laboratory-processed nano-hybrid resin composite.

    PubMed

    Dall'oca, Susanna; Papacchini, Federica; Radovic, Ivana; Polimeni, Antonella; Ferrari, Marco

    2008-12-01

    The purpose of this study was to compare the 24-h composite-to-composite microtensile bond strength of Gradia Forte (GF) repaired with the same or a different material after different surface treatments. Different groups were set up, in which composite blocks of GF were subjected to the following treatments: Group 1, sandblasting with 50-microm aluminum oxide and 37% phosphoric acid etching (PA); Group 2, bur roughening and etching with 37% PA; Group 3, etching with 37% PA only. In all groups, a bonding resin was used as an intermediate agent prior to layering of the repair material (Gradia Direct (GD), Gradia (G), or GF). Bond strengths were then determined and analysed statistically. Scanning electron microscopy (SEM) evaluation of substrates and bonded interfaces was also performed. Surface treatment (P < 0.001) and repair materials (P < 0.001) were factors that significantly affected repair strength, whereas their interaction (P = 0.31) had no significant effect. Group 3 showed significantly superior repair strength to Groups 1 and 2, whereas Group 2 showed significantly weaker repair strength to Groups 1 and 3. Irrespective of surface treatment, GD and G gave similar results, which were better than those obtained using GF. The lowest probability of failure was found for GD and G in Group 3, whereas the highest was found for GF in Groups 1 and 2. Premature failures occurred mainly with G and GF. No pre-testing failures were found in the sandblasting/GD subgroup. Surface-treated composites showed different textures under SEM, whereas composite-repair bonds showed comparable interfacial features. PMID:19106467

  6. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  7. Preparation and Characteristics of Al Matrix Composites Reinforced with ZnWO4 Coated (WO3p + ABOw) Hybrid Reinforcements

    NASA Astrophysics Data System (ADS)

    Feng, Y. C.; Cao, G. J.; Fan, G. H.; Wang, L. P.; Geng, L.

    2013-02-01

    In this article, a ZnWO4 coating was prepared successfully on the surfaces of WO3 particulates and Al18B4O33 whiskers by a chemical precipitation method. Then the Al matrix composite with coated reinforcements was fabricated by a squeeze casting technique. Scanning electronic microscope analysis shows that a thin coating is coated on the surfaces of reinforcements. Differential thermal analysis and x-ray diffraction (XRD) results show that the Zn(OH)2 decomposes at 248°C and that the ZnWO4 is produced by reaction WO3 with ZnO at 716°C. Transmission electronic microscope and XRD analysis show that the coating of ZnWO4 is effective to prevent interfacial reaction between the WO3 particle and the Al matrix. The mechanical property testing shows that the ultimate tensile strength, elastic modulus, and elongation of the hybrid composites with coated reinforcements are improved greatly by introduction of ZnWO4 coating.

  8. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness

    NASA Technical Reports Server (NTRS)

    Seale, M. D.; Madaras, E. I.

    1999-01-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  9. Effects of molecular liposomal hybrid compositions with oxidized dextrans and isonicotinic acid hydrazide on production of granulocytic macrophage colony-stimulating factor by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-10-01

    The effects of molecular liposomal hybrid compositions consisting of liposomes (200-450 nm) containing oxidized dextrans (dextranals; 35-60 kDa) conjugated with isonicotinic acid hydrazide (dextrazides), their components, and native dextrans on the production of granulocytic macrophage CSF by peritoneal macrophages were studied in vitro. Dextranals proved to be more potent inductors of granulocytic macrophage CSF than native dextrans. Conjugation of nicotinic acid hydrazide with dextranals did not modify their capacity to stimulate the production of granulocytic macrophage CSF. Liposomes in the molecular liposomal hybrid compositions did not attenuate the dextrazide capacity to stimulate the production of granulocytic macrophage CSF. Molecular liposomal compositions containing 60 kDa dextrazide exhibited the most potent stimulatory effect on macrophage production of granulocytic macrophage CSF. PMID:20396775

  10. Enhanced surface photovoltage response of ZnO nanorod based inorganic/organic hybrid junctions by constructing embedded bulk composite structures

    NASA Astrophysics Data System (ADS)

    Kang, Dawei; Liu, Aimin; Bian, Jiming; Hu, Zengquan; Liu, Yiting; Qiao, Fen

    2013-02-01

    Two kinds of inorganic/organic hybrid junctions based on ZnO nanorods (NRs), i.e. two-layer planar heterojunction and embedded bulk composite structures, were fabricated on ITO glass substrates. Surface photovoltage (SPV) methods based on a Kelvin probe and a lock-in amplifier were respectively utilized to study the photogenerated charges at the surface and the interface in the ZnO-based hybrid junctions. Results indicate that the lock-in SPV response of the bulk composite structure is much higher than its planar counterpart in terms of intensity and spectral range. Therefore, ZnO NR/PF (poly(9,9-di-n-octylfluorenyl-2,7-diyl)) embedded bulk composite structures are more suitable and preferred for photovoltaic application.

  11. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures.

    PubMed

    Zanin, H; May, P W; Hamanaka, M H M O; Corat, E J

    2013-12-11

    A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump together to form a microstructured surface. Field-emission tests of this new composite material show the typical low threshold voltages for carbon nanotube structures (2 V μm(-1)) but with greatly increased emission current, better stability, and longer lifetime. PMID:24224845

  12. Time dependent behavior of a graphite/thermoplastic composite and the effects of stress and physical aging

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1993-01-01

    Two complimentary studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. The first of these studies, experimental in nature, used isothermal tensile creep/aging test techniques developed for polymers and adapted them for testing of the composite material. From these tests, the time dependent transverse (S22) and shear (S66) compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(sub g) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress. The second part of the study relied upon isothermal uniaxial tension tests of IM7/8320 to determine the effects of physical aging on the nonlinear material behavior at elevated temperature. An elastic/viscoplastic constitutive model was used to quantify the effects of aging on the rate-independent plastic and rate-dependent viscoplastic response. Sensitivity of the material constants required by the model to aging time were determined for aging times up to 65 hours. Verification of the analytical model indicated that the effects of prior aging on the nonlinear stress/strain/time data of matrix dominated laminates can be predicted.

  13. Objective estimation of patient age through a new composite scale for facial aging assessment: The face - Objective assessment scale.

    PubMed

    La Padula, Simone; Hersant, Barbara; SidAhmed, Mounia; Niddam, Jeremy; Meningaud, Jean Paul

    2016-07-01

    Most patients requesting aesthetic rejuvenation treatment expect to look healthier and younger. Some scales for ageing assessment have been proposed, but none is focused on patient age prediction. The aim of this study was to develop and validate a new facial rating scale assessing facial ageing sign severity. One thousand Caucasian patients were included and assessed. The Rasch model was used as part of the validation process. A score was attributed to each patient, based on the scales we developed. The correlation between the real age and scores obtained, the inter-rater reliability and test-retest reliability were analysed. The objective was to develop a tool enabling the assigning of a patient to a specific age range based on the calculated score. All scales exceeded criteria for acceptability, reliability and validity. The real age strongly correlated with the total facial score in both sex groups. The test-retest reliability confirmed this strong correlation. We developed a facial ageing scale which could be a useful tool to assess patients before and after rejuvenation treatment and an important new metrics to be used in facial rejuvenation and regenerative clinical research. PMID:27221225

  14. Development of Hybrid Braided Composite Rods for Reinforcement and Health Monitoring of Structures

    PubMed Central

    Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A. Gomes

    2014-01-01

    In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible. PMID:24574867

  15. Development of hybrid braided composite rods for reinforcement and health monitoring of structures.

    PubMed

    Rana, Sohel; Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A Gomes

    2014-01-01

    In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible. PMID:24574867

  16. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  17. Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    1998-01-01

    Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix

  18. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior.

    PubMed

    Cardoso, Flavia F; Ferrandini, Peterson L; Lopes, Eder S N; Cremasco, Alessandra; Caram, Rubens

    2014-04-01

    The correlation between the composition, aging heat treatments, microstructural features and mechanical properties of β Ti alloys is of primary significance because it is the foundation for developing and improving new Ti alloys for orthopedic biomaterials. However, in the case of Ti-Mo alloys, this correlation is not fully described in the literature. Therefore, the purpose of this study was to experimentally investigate the effect of composition and aging heat treatments on the microstructure, Vickers hardness and elastic modulus of Ti-Mo alloys. These alloys were solution heat-treated and water-quenched, after which their response to aging heat treatments was investigated. Their microstructure, Vickers hardness and elastic modulus were evaluated, and the results allow us to conclude that stabilization of the β phase is achieved with nearly 10% Mo when a very high cooling rate is applied. Young's modulus was found to be more sensitive to phase variations than hardness. In all of the compositions, the highest hardness values were achieved by aging at 723K, which was attributed to the precipitation of α and ω phases. All of the compositions aged at 573K, 623K and 723K showed overaging within 80h. PMID:24394773

  19. Photocurrent enhancement in hybrid cadmium sulfide/conjugated polyaniline nanofiber composites by introducing iodine

    NASA Astrophysics Data System (ADS)

    Hu, Chenglong; Chen, Shaoyun; Peng, Sha; Liu, Xueqing; Liu, Jiyan

    2015-12-01

    In this paper, the effect of iodine on the photocurrent of conjugated polymer/inorganic semiconductor nanocomposites is investigated. Via a redox process, iodine nanoparticles are coated on the surface of highly active nanofiber of conjugated polyaniline (PANI), forming an electron donor (i.e., I2@PANI). After subsequent incorporation of CdS nanoparticles (serving as electron acceptors), the photocurrent of the I2@PANI-CdS system is greatly enhanced as compared to that of the PANI-CdS hybrid. This obvious enhancement is due to the fact that the existence of I2 causes significant improvement in the charge transfer, which has favorable penetration ability into the porous semiconductor film, fast charge transfer and relatively slow recombination with injected photoelectrons. As a result, the total concentration of charge carriers in the CdS nanoparticles may increase as compared to that in bulk CdS. As a result, the photocurrent of CdS in I2@PANI-CdS nanocomposites is remarkably enhanced.

  20. Mechanical Analysis of Hybrid Textile Composites with NiTi Wires

    NASA Astrophysics Data System (ADS)

    Villa, Elena; Arnaboldi, Sergio; Tuissi, Ausonio; Giacomelli, Marco; Turco, Elena

    2009-08-01

    Hybrid textile structures composed by polyamide (PA), Lycra (or Elastane EL), and NiTi thin wires were manufactured. The fabrics were realized by knitting Lycra (EL) as weft and warp filaments and a coupled PA/NiTi yarn through in-laying technique. Superelastic NiTi wire with diameter of 50 μm in both straight annealed and snake-like form and shape memory with a snake-like memorized form were used. The polyamide filament used coupled with the NiTi wire has a diameter around 140 μm, while the textile structure is composed by various Lycra filaments, characterized by different diameters. The textile structures were realized by a circular machine appropriately equipped and used in order to minimize problems related to the use of the thin NiTi alloy filament. To study the influence of NiTi filaments on mechanical properties, specimens taken from textile fabric were analyzed by using a DMA Q800 TA Instruments, equipped with a tension film clamp, in static and dynamic conditions. Force/strain measurements up to 150% in elongation and Tandelta versus frequency were carried out on fabrics with and without NiTi filaments. Finally, some tests strain recovery under load versus temperature are conducted.

  1. Long-term hygrothermal effects on damage tolerance of hybrid composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Ishai, Ori; Hiel, Clement; Luft, Michael

    1995-01-01

    A sandwich construction, composed of hybrid carbon-glass fiber-reinforced plastic skins and a syntactic foam core, was selected as the design concept for a wind tunnel compressor blade application, where high damage tolerance and durability are of major importance. Beam specimens were prepared from open-edge and encapsulated sandwich panels which had previously been immersed in water at different temperatures for periods of up to about two years in the extreme case. Moisture absorption and strength characteristics, as related to time of exposure to hygrothermal conditions, were evaluated for the sandwich specimens and their constituents (skins and foam). After different exposure periods, low-velocity impact damage was inflicted on most sandwich specimens and damage characteristics were related to impact energy. Eventually, the residual compressive strengths of the damaged (and undamaged) beams were determined flexurally. Test results show that exposure to hygrothermal conditions leads to significant strength reductions for foam specimens and open-edge sandwich panels, compared with reference specimens stored at room temperature. In the case of skin specimens and for beams prepared from encapsulated sanwich panels that had previously been exposed to hygrothermal conditions, moisture absorption was found to improve strength as related to the reference case. The beneficial effect of moisture on skin performance was, however, limited to moisture contents below 1% (at 50 C and lower temperatures). Above this moisture level and at higher temperatures, strength degradation of the skin seems to prevail.

  2. Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: A composition dependent study

    SciTech Connect

    Hemalatha, K.S.; Rukmani, K.; Suriyamurthy, N.; Nagabhushana, B.M.

    2014-03-01

    Graphical abstract: - Highlights: • ZnO nanoparticles were prepared by solution combustion method. • PVA–ZnO nanocomposites were synthesized by solution casting method. • Doped and undoped films were characterized using different techniques. • Red shift in optical band gap was observed in Nanocomposite films with respect to nano ZnO. • Photoluminescence intensity was found to be optimum for PVA–10 mol% ZnO nanocomposite film. - Abstract: Nanocomposites of poly vinyl alcohol (PVA) and ZnO have been synthesized using the solution casting technique for different concentrations of nano ZnO powder prepared by low temperature solution combustion method. The formation of polymer nanocomposite and changes in the structural and micro structural properties of the materials were investigated by X-ray diffraction, Energy dispersive X ray spectroscopy and optical microscopy techniques (FTIR and UV–Visible). The surface morphology of PVA–ZnO nanocomposite films were elucidated using Scanning Electron Microscopy. The optical absorption spectrum of nano ZnO shows blue shift in the optical band gap energy with respect to characteristic bulk ZnO at room temperature, whereas PVA–ZnO hybrid films show red shift with respect to nano ZnO. The photoluminescence studies show that the intensity of the blue emission (470 nm) varies with change in concentration of ZnO with an optimum intensity observed at 10 mol% of ZnO.

  3. Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland.

    PubMed

    Samoticha, Justyna; Wojdyło, Aneta; Golis, Tomasz

    2017-01-15

    The study evaluated fruit quality parameters and chemical properties (soluble solids, pH, total acidity and total sugars content, phenolic compounds and antioxidant activity (ABTS, FRAP and ORAC methods)) of 30 grape cultivars of white, red and pink grape, as 28 interspecific hybrids and 2 Vitis vinifera L. popularly grown in Poland. Some of them were analyzed for the first time. A total of 49 polyphenolic compounds were identified by LC-PDA-QTOF/MS and quantified by UPLC-PDA-FL, as 26 anthocyanins, 9 flavonols and flavons, 7 phenolic acids, 6 flavan-3-ols, and 1 stilbene. The content of total polyphenols ranged from 1037.0 (Cascade cv.) to 5759.1mg/100gdm (Roesler cv.). However, the content of stilbene represented by trans resveratrol-3-glucoside was only 18.5-70.5mg/100gdm. Red grape cultivars like Roesler, Rothay and Swenson Red were characterized by the highest content of bioactive compounds and antioxidant activity (significantly more than 24, 12 and 53mmol TE/100gdm, by ABTS, FRAP and ORAC, respectively). Average total acidity and soluble solids for white (0.95g of tartaric acid in 100gfm and 17.1°Bx, respectively) and for red and pink (0.93g of tartaric acid in 100gfm and 17.4°Bx, respectively) cultivars were not significantly different (p>0.05). PMID:27542475

  4. Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America.

    PubMed

    Bertrand, Benoit; Vaast, Philippe; Alpizar, Edgardo; Etienne, Hervé; Davrieux, Fabrice; Charmetant, Pierre

    2006-09-01

    For buyers of Arabica coffee (Coffea arabica L.) in Central America, elevation and variety are important indicators of quality. We compared coffee produced by three types of varieties established in various trials at elevations ranging from 700-1600 m in three countries (El Salvador, Costa Rica and Honduras). Arabica hybrids resulting from crosses of Sudanese-Ethiopian origins with either traditional varieties or with introgressed lines derived from the hybrid of Timor (C. arabica x Coffea canephora Pierre ex Froehn) were compared with traditional cultivars (TC). Effects of elevation and variety on bean biochemical composition (caffeine, chlorogenic acid, trigonelline, fat and sucrose) were evaluated by predictive models based on calibration of near-infrared (NIR) spectra and by chemometric analysis of the global NIR spectrum. Beverage quality tests were performed by a panel of ten professional cup-tasters. Experiment 1 was carried out on the slopes of the Poas volcano (Costa Rica) with the traditional cultivar 'Caturra'. Experiment 2 compared the three varieties in a network of trials established in three countries of Central America. Significant linear regressions with elevation were observed in Experiment 1 with Caturra and in Experiment 2 for the traditional cultivars, and trends were established relating variation in biochemical compounds and cup quality to elevation. Convergence or divergence of the new hybrids in relation to these trends was observed. For the traditional cultivars, elevation had a significant effect on bean biochemical composition, with chlorogenic acid and fat concentrations increasing with increasing elevation. For the Arabica hybrids, elevation explained little of the variation in chlorogenic acid concentration and none of the variation in fat concentration. Nevertheless, Arabica hybrids had 10-20% higher fat concentrations than the traditional varieties at low elevations and similar fat concentrations at high elevations. The samples

  5. Comparison of bond strength of three adhesives: composite resin, hybrid GIC, and glass-filled GIC.

    PubMed

    Rix, D; Foley, T F; Mamandras, A

    2001-01-01

    The objective of this study was to compare 3 orthodontic adhesives in the areas of shear-peel bond strength, location of adhesive failure, and extent of enamel cracking before bonding and after debonding of orthodontic brackets. The adhesives included a composite resin control (Transbond XT; 3M/Unitek, St Paul, Minn), a resin-modified glass ionomer cement (Fuji Ortho LC; GC America Corp, Alsip, Ill), and a polyacid-modified composite resin under dry and saliva-contaminated conditions (Assure; Reliance Orthodontic Products Inc, Itasca, Ill). Metal brackets were bonded to the buccal surfaces of 160 (4 groups of 40) human premolars. The bonded teeth were stored in deionized water at 37 degrees C for 30 days and thermocycled for 24 hours before debonding with a Universal Instron (Instron Corp, Canton, Mass) testing machine. The extent of cracking in the buccal surfaces was evaluated under 16x magnification before bonding and after debonding. Although the bond strength of the composite resin control (20.19 MPa) was significantly greater (P <.05) than that of the adhesives in the other groups, clinically acceptable shear-peel bond strengths were found for all adhesives (Fuji Ortho LC = 13.57 MPa, Assure-dry = 10.74 MPa, Assure-wet = 10.99 MPa). The bond strength for the Assure adhesive was not significantly affected by saliva contamination. The sample of extracted premolars used in this study displayed a greater frequency of buccal surface enamel cracking (46.7%) than that reported in the literature for in vivo premolars (7.8%-10.2%), which was possibly due to the extraction process. The frequency of enamel cracking in a subset of this sample (n = 34) increased from 46.4% at prebonding to 62.4% at postdebonding as a result of the forces of debonding. PMID:11174538

  6. Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women

    PubMed Central

    Brotman, Rebecca M.; Bradford, L. Latey; Conrad, Melissa; Gajer, Pawel; Ault, Kevin; Peralta, Ligia; Forney, Larry J.; Carlton, Jane M.; Abdo, Zaid; Ravel, Jacques

    2012-01-01

    Objectives Some vaginal bacterial communities are thought to prevent infection by sexually transmitted organisms. Prior work demonstrated that the vaginal microbiota of reproductive-age women cluster into five types of bacterial communities; 4 dominated by Lactobacillus species (L. iners, L. crispatus, L. gasseri, L. jensenii), and one (termed community state type (CST) IV) lacking significant numbers of lactobacilli and characterized by higher proportions of Atopobium, Prevotella, Parvimonas, Sneathia, Gardnerella, Mobiluncus, and other taxa. We sought to evaluate the relationship between vaginal bacterial composition and Trichomonas vaginalis. Methods Self-collected vaginal swabs were obtained cross-sectionally from 394 women equally representing four ethnic/racial groups. T. vaginalis screening was performed using PCR targeting the 18S rRNA and β-tubulin genes. Vaginal bacterial composition was characterized by pyrosequencing of barcoded 16S rRNA genes. A panel of eleven microsatellite markers was used to genotype T. vaginalis. The association between vaginal microbiota and T. vaginalis was evaluated by exact logistic regression. Results T. vaginalis was detected in 2.8% of participants (11/394). Of the eleven T. vaginalis-positive cases, eight (72%) were categorized as CST-IV, two (18%) as communities dominated by L. iners and one (9%) as L. crispatus-dominated (p-value:0.05). CST-IV microbiota were associated with an 8-fold increased odds of detecting T. vaginalis compared to women in the L. crispatus-dominated state (OR:8.26, 95% CI:1.07–372.65). Seven of the 11 T. vaginalis isolates were assigned to two genotypes. Conclusion T. vaginalis was associated with vaginal microbiota consisting of low proportions of lactobacilli and high proportions of Mycoplasma, Parvimonas, Sneathia, and other anaerobes. PMID:23007708

  7. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans. PMID:17705143

  8. Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.; Chhabra, P. S.; Seinfeld, J. H.; Worsnop, D. R.

    2011-07-01

    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2H3O+, to total signal in the component mass spectrum). Such parameterization allows for the transformation of large database of ambient OOA components from the f44 (mostly CO2+, likely from acid groups) vs. f43 space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C) (Van Krevelen, 1950). Heald et al. (2010) examined the evolution of total OA in the Van Krevelen diagram. In this work total OA is deconvolved into components that correspond to primary (HOA and others) and secondary (OOA) organic aerosols. By deconvolving total OA into different components, we remove physical mixing effects between secondary and primary aerosols which allows for examination of the evolution of OOA components alone in the Van Krevelen space. This provides a unique means of following ambient secondary OA evolution that is analogous to and can be compared with trends observed in chamber studies of secondary organic aerosol formation. The triangle plot in Ng et al. (2010) indicates that f44 of OOA components increases with photochemical age, suggesting the importance of acid formation in OOA evolution. Once they are transformed with the new parameterization, the triangle plot of the OOA components from all sites occupy an area in Van Krevelen space which follows a ΔH:C/ΔO:C slope of ~ -0.5. This slope suggests that ambient OOA aging results in net changes in chemical composition that are equivalent to the addition of both acid and alcohol/peroxide functional groups without fragmentation (i.e. C-C bond breakage), and/or the addition of acid groups with fragmentation. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies.

  9. Impact Analysis of Embedded Delamination Location in Hybrid Curved Laminated Composite Stiffened Panel

    NASA Astrophysics Data System (ADS)

    Naini, Jeevan Kumar; P, Ramesh Babu

    2016-02-01

    Modern, aero structures are predominantly of curved construction characterized by a skin and stiffeners. The latest generation of large passenger aircraft also uses mostly composite material in their primary structure and there is trend towards the utilization of bonding of subcomponents. The presence of delamination is a major problem in composite laminated panels and so, it is of great concern to both the academic and aeronautical industrial worlds Indeed delamination can strongly affect the material strength and, sometimes, can cause their breaking up in service. A Pre-damaged configuration is loaded to study the delamination location and mode for delamination initiation and propagation. A parametric study is conducted to investigate the effect of the location of the delamination propagation when delamination is embedded inbetween plies of the skin-stiffener interface, with the cases i) delamination located at front and inbetween plies of the skin-stiffener interface ii) delamination located in middle and inbetween plies of the skin-stiffener interface iii) delamination located at the end and inbetween plies of the skin- stiffener interface. Further the influence of the location of the delamination on load carrying capacity of the panel is investigated. The effect of location of debonds on crack growth and collapse behavior is analyzed using analysis tool. An analysis tool is applied that includes an approach for predicting interlaminar damage initiation and interlaminar damage growth as well as in-plane damage mechanisms to predict the design of defect free panel.

  10. Improvement of FBG/PZT hybrid sensing system for composite materials

    NASA Astrophysics Data System (ADS)

    Komatsuzaki, Shinji; Kojima, Seiji; Hongo, Akihito; Takeda, Nobuo; Koshioka, Yasuhiro

    2008-03-01

    We have been developing a system for monitoring the health of aircraft structures made of composite materials. In this system, the Lamb waves that are generated by lead zirconium titanate PZT actuators travel through the composite material structures and are received by the embedded FBG sensors. To detect any Bragg wavelength change due to the reception of the Lamb wave, an arrayed waveguide grating (AWG) is used, which converts the Bragg wavelength change into an output power change. Since the conversion ratio is largely dependent on the initial Bragg wavelength, a temperture control was necessary for obtaining an optimum condition. However, we have developed a system that uses a denser AWG to eliminate the need for a temperature control. We suceeded in detecting 25 kHz to 1 MHz Lamb waves using our new system. We have also tried calculating the Bragg wavelength change of the obtained waveform, and confirmed that the Bragg wavelength change due to the reception of Lamb waves was less than 1 pico meter.

  11. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    PubMed Central

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-01-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm−2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area. PMID:24603681

  12. Impact Analysis of Embedded Delamination Location in Hybrid Curved Laminated Composite Stiffened Panel

    NASA Astrophysics Data System (ADS)

    Naini, Jeevan Kumar; P, Ramesh Babu

    2016-08-01

    Modern, aero structures are predominantly of curved construction characterized by a skin and stiffeners. The latest generation of large passenger aircraft also uses mostly composite material in their primary structure and there is trend towards the utilization of bonding of subcomponents. The presence of delamination is a major problem in composite laminated panels and so, it is of great concern to both the academic and aeronautical industrial worlds Indeed delamination can strongly affect the material strength and, sometimes, can cause their breaking up in service. A Pre-damaged configuration is loaded to study the delamination location and mode for delamination initiation and propagation. A parametric study is conducted to investigate the effect of the location of the delamination propagation when delamination is embedded inbetween plies of the skin-stiffener interface, with the cases i) delamination located at front and inbetween plies of the skin-stiffener interface ii) delamination located in middle and inbetween plies of the skin-stiffener interface iii) delamination located at the end and inbetween plies of the skin- stiffener interface. Further the influence of the location of the delamination on load carrying capacity of the panel is investigated. The effect of location of debonds on crack growth and collapse behavior is analyzed using analysis tool. An analysis tool is applied that includes an approach for predicting interlaminar damage initiation and interlaminar damage growth as well as in-plane damage mechanisms to predict the design of defect free panel.

  13. Modal Composition and Age of Intrusions in North-Central and Northeast Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; Crafford, A. Elizabeth Jones

    2007-01-01

    pertain to relatively restricted geographic areas and (or) do not include the broad array of data that would best aid interpretation of these rocks. For example, Smith and others (1971) presented potassium-argon geochronologic and basic petrographic data for a limited number of intrusions in northcentral Nevada. Similarly, Silberman and McKee (1971) presented potassium-argon geochronologic data for a significant number of central Nevada intrusions. More recently, Mortensen and others (2000) presented uranium-lead geochronology for a small number of central Nevada intrusions. Sloan and others (2003) released a national geochronologic database that contains age determinations made prior to 1991 for rocks of Nevada. Finally, C.D. Henry (Nevada Bureau of Mines and Geology, written commun., 2006) has assembled geochronologic data for igneous rocks of Nevada produced subsequent to completion of the Sloan and others (2003) compilation. Consequently, although age data for igneous rocks of Nevada have been compiled, data pertaining to other features of these rocks have not been systematically synthesized. Maldonado and others (1988) compiled the distribution and some basic characteristics of intrusions throughout Nevada. Lee (1984), John (1983, 1987, and 1992), John and others (1994), and Ressel (2005) have compiled data that partially characterize intrusions in some parts of the study area. This report documents the first phase of an effort to compile a robust database for study area intrusions; in this initial phase, modal composition and age data are synthesized. In the next phase, geochemical data available for these rocks will be compiled. The ultimate goal is to compile data as a basis for an evaluation of the time-space-compositional evolution of Mesozoic and Cenozoic magmatism in the study area and identification of genetic associations between magmatism and mineralizing processes in this region.

  14. Aging.

    PubMed

    Park, Dong Choon; Yeo, Seung Geun

    2013-09-01

    Aging is initiated based on genetic and environmental factors that operate from the time of birth of organisms. Aging induces physiological phenomena such as reduction of cell counts, deterioration of tissue proteins, tissue atrophy, a decrease of the metabolic rate, reduction of body fluids, and calcium metabolism abnormalities, with final progression onto pathological aging. Despite the efforts from many researchers, the progression and the mechanisms of aging are not clearly understood yet. Therefore, the authors would like to introduce several theories which have gained attentions among the published theories up to date; genetic program theory, wear-and-tear theory, telomere theory, endocrine theory, DNA damage hypothesis, error catastrophe theory, the rate of living theory, mitochondrial theory, and free radical theory. Although there have been many studies that have tried to prevent aging and prolong life, here we introduce a couple of theories which have been proven more or less; food, exercise, and diet restriction. PMID:24653904

  15. Aging

    PubMed Central

    Park, Dong Choon

    2013-01-01

    Aging is initiated based on genetic and environmental factors that operate from the time of birth of organisms. Aging induces physiological phenomena such as reduction of cell counts, deterioration of tissue proteins, tissue atrophy, a decrease of the metabolic rate, reduction of body fluids, and calcium metabolism abnormalities, with final progression onto pathological aging. Despite the efforts from many researchers, the progression and the mechanisms of aging are not clearly understood yet. Therefore, the authors would like to introduce several theories which have gained attentions among the published theories up to date; genetic program theory, wear-and-tear theory, telomere theory, endocrine theory, DNA damage hypothesis, error catastrophe theory, the rate of living theory, mitochondrial theory, and free radical theory. Although there have been many studies that have tried to prevent aging and prolong life, here we introduce a couple of theories which have been proven more or less; food, exercise, and diet restriction. PMID:24653904

  16. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis.

    PubMed

    Tham, Allister Yingwei; Gandhimathi, Chinnasamy; Praveena, Jayaraman; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Kumar, Srinivasan Dinesh

    2016-01-01

    Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM) and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH) nanoparticles initiate human mesenchymal stem cells (MSCs) proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM), contact angle and Fourier transform infrared spectroscopy (FT-IR). The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) MTS assay (Promega, Madison, WI, USA), FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA) dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP) and mineralization was confirmed by using alizarin red (ARS). The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering. PMID

  17. Hybrid methods in planetesimal dynamics: description of a new composite algorithm

    NASA Astrophysics Data System (ADS)

    Glaschke, P.; Amaro-Seoane, P.; Spurzem, R.

    2014-12-01

    The formation and evolution of protoplanetary systems, the breeding grounds of planet formation, is a complex dynamical problem that involves many orders of magnitudes. To serve this purpose, we present a new hybrid algorithm that combines a Fokker-Planck approach with the advantages of a pure direct-summation N-body scheme, with a very accurate integration of close encounters for the orbital evolution of the larger bodies with a statistical model, envisaged to simulate the very large number of smaller planetesimals in the disc. Direct-summation techniques have been historically developed for the study of dense stellar systems such as open and globular clusters and, within some limits imposed by the number of stars, of galactic nuclei. The number of modifications to adapt direct-summation N-body techniques to planetary dynamics is not undemanding and requires modifications. These include the way close encounters are treated, as well as the selection process for the `neighbour radius' of the particles and the extended Hermite scheme, used for the very first time in this work, as well as the implementation of a central potential, drag forces and the adjustment of the regularization treatment. For the statistical description of the planetesimal disc, we employ a Fokker-Planck approach. We include dynamical friction, high- and low-speed encounters, the role of distant encounters as well as gas and collisional damping and then generalize the model to inhomogenous discs. We then describe the combination of the two techniques to address the whole problem of planetesimal dynamics in a realistic way via a transition mass to integrate the evolution of the particles according to their masses.

  18. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis

    PubMed Central

    Tham, Allister Yingwei; Gandhimathi, Chinnasamy; Praveena, Jayaraman; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Kumar, Srinivasan Dinesh

    2016-01-01

    Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM) and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH) nanoparticles initiate human mesenchymal stem cells (MSCs) proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM), contact angle and Fourier transform infrared spectroscopy (FT-IR). The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) MTS assay (Promega, Madison, WI, USA), FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA) dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP) and mineralization was confirmed by using alizarin red (ARS). The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering. PMID

  19. Tracing the pathway of compositional changes in bone mineral with age: Preliminary study of bioapatite aging in hypermineralized dolphin’s bulla

    PubMed Central

    Li, Zhen; Pasteris, Jill D.

    2014-01-01

    Background Studies of mineral compositional effects during bone aging are complicated by the presence of collagen. Methods Hypermineralized bullae of Atlantic bottlenose dolphins of < 3 months, 2.5 years, and 20 years underwent micrometer-scale point analysis by Raman spectroscopy and electron microprobe in addition to bulk analysis for carbon. Results Bulla central areas have a mineral content of ~96 wt.% and 9–10 wt.% carbonate in their bioapatite, which is ~2 wt.% more than edge areas. Ca/P atomic ratios (~1.8) and concentrations of Mg, S, and other minor/trace elements are almost constant in central areas over time. Maturity brings greater over-all homogeneity in mineral content, stoichiometry, and morphology throughout central and edge areas of the bullae. During aging, edge areas become less porous, whereas the concentration of organics in the edge is reduced. Enhancement of coupled substitutions of CO32− for PO43− and Na for Ca during aging increases carbonate content up to ~10 wt.% in the adult bulla. Conclusions 1) Changes in physical properties during aging did not occur simultaneously with changes in chemical properties of the bone mineral. 2) Compositional changes in bone mineral were minor during the neonatal to sub-adult stage, but significant during later maturity. 3) Na and CO3 concentrations covary in a 1:1 molar proportion during aging. 4) The mineral’s crystallinity did not decrease as CO3 concentration increased during aging. General Significance Hypermineralized dolphin’s bulla, due to extreme depletion in collagen, is an ideal material for investigating mineralogical changes in bioapatite during bone aging. PMID:24650888

  20. Fiber reinforced hybrid phenolic foam

    NASA Astrophysics Data System (ADS)

    Desai, Amit

    Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability