Science.gov

Sample records for hybrid membrane process

  1. Study on removal of cadmium by hybrid liquid membrane process.

    PubMed

    Mortaheb, Hamid R; Zolfaghari, Alireza; Mokhtarani, Babak; Amini, Mohammad H; Mandanipour, Valiollah

    2010-05-15

    Removal of cadmium as a hazardous heavy metal is studied by applying a new design of hybrid cell for liquid membrane process. Tri-iso-octyl amine (TIOA) is used as the carrier in the organic phase. The concentration of cadmium in the samples is measured by atomic absorption spectroscopy. The effect of various parameters including type of supporting membrane, pH of feed and stripping phases, initial concentration of cadmium, carrier concentration, solvent nature, and also organic film resistance on mass transfer rate and removal efficiency are studied. The effect of temperature on mass transfer flux is studied by proposing a prediction model. The optimum carrier concentration is found to be about 0.05 M. The appropriate values of pH for feed and stripping phases are about 3 and 13, respectively. PMID:20060214

  2. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  3. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  4. Energy minimization of separation processes using conventional/membrane hybrid systems

    SciTech Connect

    Gottschlich, D.E.; Roberts, D.L. )

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  5. A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment.

    PubMed

    Zhang, Yong; Zhao, Peng; Li, Jie; Hou, Deyin; Wang, Jun; Liu, Huijuan

    2016-10-01

    A novel catalytic ozonation membrane reactor (COMR) coupling homogeneous catalytic ozonation and direct contact membrane distillation (DCMD) was developed for refractory saline organic pollutant treatment from wastewater. An ozonation process took place in the reactor to degrade organic pollutants, whilst the DCMD process was used to recover ionic catalysts and produce clean water. It was found that 98.6% total organic carbon (TOC) and almost 100% salt were removed and almost 100% metal ion catalyst was recovered. TOC in the permeate water was less than 16 mg/L after 5 h operation, which was considered satisfactory as the TOC in the potassium hydrogen phthalate (KHP) feed water was as high as 1000 mg/L. Meanwhile, the membrane distillation flux in the COMR process was 49.8% higher than that in DCMD process alone after 60 h operation. Further, scanning electron microscope images showed less amount and smaller size of contaminants on the membrane surface, which indicated the mitigation of membrane fouling. The tensile strength and FT-IR spectra tests did not reveal obvious changes for the polyvinylidene fluoride membrane after 60 h operation, which indicated the good durability. This novel COMR hybrid process exhibited promising application prospects for saline organic wastewater treatment. PMID:27372262

  6. A simple and transferable all-atom/coarse-grained hybrid model to study membrane processes.

    PubMed

    Genheden, Samuel; Essex, Jonathan W

    2015-10-13

    We present an efficient all-atom/coarse-grained hybrid model and apply it to membrane processes. This model is an extension of the all-atom/ELBA model applied previously to processes in water. Here, we improve the efficiency of the model by implementing a multiple-time step integrator that allows the atoms and the coarse-grained beads to be propagated at different timesteps. Furthermore, we fine-tune the interaction between the atoms and the coarse-grained beads by computing the potential of mean force of amino acid side chain analogs along the membrane normal and comparing to atomistic simulations. The model was independently validated on the calculation of small-molecule partition coefficients. Finally, we apply the model to membrane peptides. We studied the tilt angle of the Walp23 and Kalp23 helices in two different model membranes and the stability of the glycophorin A dimer. The model is efficient, accurate, and straightforward to use, as it does not require any extra interaction particles, layers of atomistic solvent molecules or tabulated potentials, thus offering a novel, simple approach to study membrane processes. PMID:26574264

  7. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Sadler, Mary E; Greiner, Anthony D; Aguinaldo, Jorge; Min, Kyungnan; Zhang, Kai; Arabi, Sara; Burbano, Marie S; Kent, Fraser; Shoaf, Robert

    2015-10-01

    This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:26420079

  8. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Burbano, Marie S; Sadler, Mary E; Diamond, Jason; Baker, Simon; Greiner, Anthony D; Arabi, Sara; Wong, Joseph; Doody, Alexandra; Padhye, Lokesh P; Sears, Keith; Kistenmacher, Peter; Kent, Fraser; Tootchi, Leila; Aguinaldo, Jorge; Saddredini, Sara; Schilling, Bill; Min, Kyungnan; McCandless, Robert; Danker, Bryce; Gamage, Neranga P; Wang, Sunny; Aerts, Peter

    2016-10-01

    This review, for literature published in 2015, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:27620084

  9. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  10. Ammonia removal in the carbon contactor of a hybrid membrane process.

    PubMed

    Stoquart, Céline; Servais, Pierre; Barbeau, Benoit

    2014-12-15

    The hybrid membrane process (HMP) coupling powdered activated carbon (PAC) and low-pressure membrane filtration is emerging as a promising new option to remove dissolved contaminants from drinking water. Yet, defining optimal HMP operating conditions has not been confirmed. In this study, ammonia removal occurring in the PAC contactor of an HMP was simulated at lab-scale. Kinetics were monitored using three PAC concentrations (1-5-10 g L(-1)), three PAC ages (0-10-60 days), two temperatures (7-22 °C), in ambient influent condition (100 μg N-NH4 L(-1)) as well as with a simulated peak pollution scenario (1000 μg N-NH4L(-1)). The following conclusions were drawn: i) Using a colonized PAC in the HMP is essential to reach complete ammonia removal, ii) an older PAC offers a higher resilience to temperature decrease as well as lower operating costs; ii) PAC concentration inside the HMP reactor is not a key operating parameter as under the conditions tested, PAC colonization was not limited by the available surface; iii) ammonia flux limited biomass growth and iv) hydraulic retention time was a critical parameter. In the case of a peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed reaching a 50% ammonia removal. Finally, a kinetic model based on these experiments is proposed to predict ammonia removal occurring in the PAC reactor of the HMP. The model determines the relative importance of the adsorption and biological oxidation of ammonia on colonized PAC, and demonstrates the combined role of nitrification and residual adsorption capacity of colonized PAC. PMID:25459222

  11. Membrane/distillation hybrid process research and development. Final report, phase II

    SciTech Connect

    Mazanec, T.J.

    1997-07-01

    This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

  12. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal.

    PubMed

    Zhang, Wei; Zhang, Xiaojian; Li, Yonghong; Wang, Jun; Chen, Chao

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the effect of particles, NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF. Particles, NOM and their mixture were spiked in tap water to simulate raw water. Exponential relationship, (J(P)/J(P0) = a x exp{-k[t-(n-1)T]}), was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well. In this equation, coefficient a was determined by the value of J(P)/J(P0) at the beginning of a filtration cycle, reflecting the flux recovery after backwashing, that is, the irreversible fouling. The coefficient k reflected the trend of flux dynamics. Integrated total permeability (SigmaJ(P)) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios. According to the results, there was an additive effect on membrane flux by NOM and particles during solo UF process. This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant, which further delayed the decrease of membrane flux and benefited flux recovery by backwashing. The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing. PMID:22432326

  13. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    PubMed Central

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  14. Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants

    SciTech Connect

    2010-07-01

    IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

  15. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    SciTech Connect

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  16. A hybrid silicon membrane spatial light modulator for optical information processing

    NASA Technical Reports Server (NTRS)

    Pape, D. R.; Hornbeck, L. J.

    1984-01-01

    A new two dimensional, fast, analog, electrically addressable, silicon based membrane spatial light modulator (SLM) was developed for optical information processing applications. Coherent light reflected from the mirror elements is phase modulated producing an optical Fourier transform of an analog signal input to the device. The DMD architecture and operating parameters related to this application are presented. A model is developed that describes the optical Fourier transform properties of the DMD.

  17. The hybrid process TiO(2)/PAC: performance of membrane filtration.

    PubMed

    Ziegmann, Markus; Saravia, Florencia; Torres, Pabla A; Frimmel, Fritz H

    2010-01-01

    In investigations concerning the photocatalytic degradation by TiO(2) usually filter discs with a pore size of 0.22 mum and 0.45 mum are used for the removal of photocatalyst particles in aqueous suspensions. In this study the effective rejection of suspended particles by microfiltration in different types of membrane modules and with different membrane materials was investigated. Furthermore, Powdered Activated Carbon (PAC), which can be used to gain an increase in photocatalytic degradation rates, was investigated concerning its influence on the membrane performance. It is shown that by membrane filtration with a pore size above 0.1 mum, irrespective of the experimental conditions, no complete removal can be achieved. However, UV irradiation was found to improve the removal efficiency for all types of tested membrane materials. The addition of PAC also led to a higher performance of membrane filtration with regard to particle rejection. In long-term experiments with a hollow fibre membrane module in the presence of PAC a five-fold decrease of TiO(2) particles in the permeate could be proven. Besides, it was shown that added PAC can shield the membrane regarding the abrasivity of TiO(2), which could otherwise lead to the destruction of the membrane. Therewith PAC exhibits another crucial advantage besides its synergetic effect in photodegradation. PMID:20818066

  18. Floc characterization and membrane fouling of polyferric-polymer dual/composite coagulants in coagulation/ultrafiltration hybrid process.

    PubMed

    Rong, Hongyan; Gao, Baoyu; Li, Junchao; Zhang, Bei; Sun, Shenglei; Wang, Yan; Yue, Qinyan; Li, Qian

    2013-12-15

    Papermaking sludge and spent pickling liquor were recycled to synthesize a macromolecular lignin-acrylamide polymer (LA) and polyferric chloride (PFC), respectively. The dual-coagulant PFC-LA (PFC and LA were dosed orderly), composite coagulant PFCLA (PFC and LA premixed before dosed) and PFC were used in coagulation/ultrafiltration hybrid process in surface water treatment. The objectives of this paper are to comparatively investigate final water quality after coagulation and coagulation/ultrafiltration process and floc properties, including floc size, strength, recoverability and floc structure, with or without LA addition. Additionally, the relationship between membrane fouling and floc characteristics was discussed. The results showed that best final water quality was obtained by PFC-LA, sequentially followed by PFCLA and PFC. Floc size, growth rate, strength and recoverability as well as fractal dimension were also in the order of PFC-LA>PFCLA>PFC. The maximum permeate fluxes before and after backwash operation were obtained by PFC-LA, which gave the largest and most compact flocs. Coagulation suspension after breakage resulted in much more serious membrane fouling for PFC, whereas permeate flux slightly decreased when LA was used in combination with PFC. PMID:24144372

  19. Bench-Scale Development of a Hybrid Membrane-Absorption CO{sub 2} Capture Process: Preliminary Cost Assessment

    SciTech Connect

    Freeman, Brice; Kniep, Jay; Pingjiao, Hao; Baker, Richard; Rochelle, Gary; Chen, Eric; Frailie, Peter; Ding, Junyuan; Zhang, Yue

    2014-03-31

    This report describes a study of capture costs for a hybrid membrane-absorption capture system based on Membrane Technology and Research, Inc. (MTR)’s low-pressure membrane contactors and the University of Texas at Austin’s 5 m piperazine (PZ) Advanced Flash Stripper (AFS; 5 m PZ AFS) based CO2 capture system. The report is submitted for NETL review, and may be superseded by a final topical report on this topic that will be submitted to satisfy the Task 2 report requirement of the current project (DE-FE0013118).

  20. Enzyme catalytic membrane based on a hybrid mesoporous membrane.

    PubMed

    Fu, Wensheng; Yamaguchi, Akira; Kaneda, Hideaki; Teramae, Norio

    2008-02-21

    Immobilization of glucose oxidase (GOD) within a hybrid mesoporous membrane with 12 nm pore diameter was successfully achieved, resulting in catalytically high efficiency during flow of a glucose solution across the membrane. PMID:18253526

  1. Hybrid quantum information processing

    SciTech Connect

    Furusawa, Akira

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  2. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    EPA Science Inventory

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  3. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    PubMed

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system. PMID:23957893

  4. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    PubMed

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. PMID:22682269

  5. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution.

    PubMed

    Qiu, Guanglei; Law, Yi-Ming; Das, Subhabrata; Ting, Yen-Peng

    2015-05-19

    We report a hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) for direct phosphorus recovery from municipal wastewater in the course of its treatment. In the process, a forward osmosis (FO) membrane and a microfiltration (MF) membrane are operated in parallel in a bioreactor. FO membrane rejects the nutrients (e.g., PO4(3-), Ca(2+), Mg(2+), etc.) and results in their enrichment in the bioreactor. The nutrients are subsequently extracted via the MF membrane. Phosphorus is then recovered from the nutrients enriched MF permeate via precipitation without addition of an external source of calcium or magnesium. The use of seawater brine as a draw solution (DS) is another novel aspect of the system. The process achieved 90% removal of total organic carbon and 99% removal of NH4(+)-N. 97.9% of phosphate phosphorus (PO4(3-)-P) was rejected by the FO membrane and enriched within the bioreactor. >90% phosphorus recovery was achieved at pH 9.0. The precipitates were predominantly amorphous calcium phosphate with a phosphorus content of 11.1-13.3%. In principal, this process can recover almost all the phosphorus, apart from that assimilated by bacteria for growth. Global evaluation showed an overall phosphorus recovery of 71.7% over 98 days. PMID:25919506

  6. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1998-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  7. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1999-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  8. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, N.K.; Brinker, C.J.

    1999-08-10

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  9. Microfabrication of hybrid fluid membrane for microengines

    NASA Astrophysics Data System (ADS)

    Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.

    2015-12-01

    This paper describes the microfabrication and dynamic characterization of thick membranes providing a technological solution for microengines. The studied membranes are called hybrid fluid-membrane (HFM) and consist of two thin membranes that encapsulate an incompressible fluid. This work details the microelectromechanical system (MEMS) scalable fabrication and characterization of HFMs. The membranes are composite structures based on Silicon spiral springs embedded in a polymer (RTV silicone). The anodic bonding of multiple stacks of Si/glass structures, the fluid filling and the sealing have been demonstrated. Various HFMs were successfully fabricated and their dynamic characterization demonstrates the agreement between experimental and theoretical results.

  10. Hybrid image processing

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1990-01-01

    Partly-digital, partly-optical 'hybrid' image processing attempts to use the properties of each domain to synergistic advantage: while Fourier optics furnishes speed, digital processing allows the use of much greater algorithmic complexity. The video-rate image-coordinate transformation used is a critical technology for real-time hybrid image-pattern recognition. Attention is given to the separation of pose variables, image registration, and both single- and multiple-frame registration.

  11. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  12. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  13. A polishing hybrid AER/UF membrane process for the treatment of a high DOC content surface water.

    PubMed

    Humbert, H; Gallard, H; Croué, J-P

    2012-03-15

    The efficacy of a combined AER/UF (Anion Exchange Resin/Ultrafiltration) process for the polishing treatment of a high DOC (Dissolved Organic Carbon) content (>8 mgC/L) surface water was investigated at lab-scale using a strong base AER. Both resin dose and bead size had a significant impact on the kinetic removal of DOC for short contact times (i.e. <15 min). For resin doses higher than 700 mg/L and median bead sizes below 250 μm DOC removal remained constant after 30 min of contact time with very high removal rates (80%). Optimum AER treatment conditions were applied in combination with UF membrane filtration on water previously treated by coagulation-flocculation (i.e. 3 mgC/L). A more severe fouling was observed for each filtration run in the presence of AER. This fouling was shown to be mainly reversible and caused by the progressive attrition of the AER through the centrifugal pump leading to the production of resin particles below 50 μm in diameter. More important, the presence of AER significantly lowered the irreversible fouling (loss of permeability recorded after backwash) and reduced the DOC content of the clarified water to l.8 mgC/L (40% removal rate), concentration that remained almost constant throughout the experiment. PMID:22200260

  14. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    PubMed

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane. PMID:26673736

  15. Chitosan-silica hybrid porous membranes.

    PubMed

    Pandis, Christos; Madeira, Sara; Matos, Joana; Kyritsis, Apostolos; Mano, João F; Ribelles, José Luis Gómez

    2014-09-01

    Chitosan-silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol-gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.2 wt.%. Sol-gel reactions took place with Tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) acting as silica precursors. GPTMS served also as a coupling agent between the free amino groups of chitosan and the silica network. The morphology study of the composite revealed that the silica phase appears as a layer covering the chitosan membrane pore walls. The mechanical properties of the hybrids were characterized by means of compressive stress-strain measurements. By immersion in water the hybrids exhibit an increase in elastic modulus up to two orders of magnitude. PMID:25063153

  16. Ultrasonic Membrane Processing

    NASA Astrophysics Data System (ADS)

    Kentish, Sandra; Ashokkumar, Muthupandian

    A membrane is a sermipermeable material that permits the passage of some molecules while retaining others. Ultrasound can enhance membrane operation through the asymmetric collapse of cavitating bubbles and through the turbulence associated with acoustic streaming. The added turbulence can lead to a looser, more porous fouling cake layer and may agglomerate fine particles, reducing pore blockage and cake compaction.These effects are dependent upon the ultrasonic intensity, the operating pressure, crossflow velocity and solids concentration.Membrane cleaning can also be enhanced by the use of ultrasound, but this application may not be economic when used in isolation. One of the greatest challenges facing the technology is the generation of a uniform acoustic field across the entire membrane surface in a full-scale module.

  17. Olefin separation membrane and process

    DOEpatents

    Pinnau, I.; Toy, L.G.; Casillas, C.

    1997-09-23

    A membrane and process are disclosed for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5{times}10{sup {minus}6}cm{sup 3}(STP)/cm{sup 2}{center_dot}s{center_dot}cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment. 4 figs.

  18. Olefin separation membrane and process

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  19. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water

    PubMed Central

    Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong

    2016-01-01

    The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption–desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes. PMID:26754440

  20. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water.

    PubMed

    Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong

    2016-01-01

    The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes. PMID:26754440

  1. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong

    2016-01-01

    The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes.

  2. Hybrid quantum information processing

    NASA Astrophysics Data System (ADS)

    Furusawa, Akira

    2013-03-01

    There are two types of schemes for quantum information processing (QIP). One is based on qubits, and the other is based on continuous variables (CVs), where the computational basis for qubit QIP is { | 0 > , | 1 > } and that for CV QIP is { | x > } (- ∞ < x < ∞). A universal gate set for qubit QIP is {`bit flip'σx, `phase flip'σz, `Hadamard gate'H, ` π / 8 gate', `controlled NOT (CNOT) gate'}. Similarly, a universal gate set for CV QIP is {` x-displacement' D& circ; (x) , ` p-displacement' D& circ; (ip) , `Fourier gate' F& circ;, `cubic phase gate'e ikxcirc;3, `quantum non-demolition (QND) gate'}. There is one-to-one correspondence between them. CV version of `bit flip'σx is ` x-displacement' D& circ; (x) , which changes the value of the computational basis. Similarly, CV version of `phase flip'σz is ` p-displacement' D& circ; (ip) , where `phase flip'σz switches the ``value'' of `conjugate basis' of qubit { | + > , | - > } (| +/- > = (| 0 > +/- | 1 >) / √{ 2}) and ` p-displacement' D& circ; (ip) changes the value of CV conjugate basis { | p > }. `Hadamard' and `Fourier' gates transform computational bases to respective conjugate bases. CV version of ` π / 8 gate' is a `cubic phase gate'e ikxcirc;3, and CV version of CNOT gate is a QND gate. However, the origin of nonlinearity for QIP is totally different, here the very basic nonlinear operation is calculation of multiplication and of course it is the heart of information processing. The nonlinearity of qubit QIP comes from a CNOT gate, while that of CV QIP comes from a cubic phase gate. Since nonlinear operations are harder to realize compared to linear operations, the most difficult operation for qubit is a CNOT gate, while the counter part, a QND gate, is not so difficult. CNOT and QND gates are both entangling gates, it follows that creating entanglement is easier for CV QIP compared to qubit QIP. Here, creating entanglement is the heart of QIP. So, it is a big advantage of CV QIP. On

  3. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  4. Amyloid-carbon hybrid membranes for universal water purification.

    PubMed

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films. PMID:26809058

  5. Amyloid–carbon hybrid membranes for universal water purification

    NASA Astrophysics Data System (ADS)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  6. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  7. Effect of membrane and process characteristics on cost and energy usage for separating alcohol–water mixtures using a hybrid vapor stripping–vapor permeation process

    EPA Science Inventory

    BACKGROUND: Alcohols, including ethanol and butanol, are receiving increased attention as renewable liquid biofuels. Alcohol concentrations may be low in a biological process due to product inhibition and, for non-starch feedstocks, limited substrate concentrations. The result is...

  8. Optical Hybrid Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

  9. Energy-efficient wastewater treatment via the air-based, hybrid membrane biofilm reactor (hybrid MfBR).

    PubMed

    Aybar, M; Pizarro, G; Boltz, J P; Downing, L; Nerenberg, R

    2014-01-01

    We used modeling to predict the energy and cost savings associated with the air-based, hybrid membrane-biofilm reactor (hybrid MfBR). This process is obtained by replacing fine-bubble diffusers in conventional activated sludge with air-supplying, hollow-fiber membrane modules. Evaluated processes included removal of chemical oxygen demand (COD), combined COD and total nitrogen (TN) removal, and hybrid growth (biofilm and suspended). Target concentrations of COD and TN were based on high-stringency water reuse scenarios. Results showed reductions in power requirements as high as 86%. The decrease mainly resulted from the dramatically lower air flows for the MBfR, resulting from its higher oxygen-transfer efficiencies. When the MBfR was used for COD and TN removal, savings up to US$200/1,000 m(3) of treated water were predicted. Cost savings were highly sensitive to the costs of the membrane modules and electrical power. The costs were also very sensitive to membrane oxidation flux for ammonia, and the membrane life. These results suggest the hybrid MBfR may provide significant savings in energy and costs. Further research on the identified key parameters can help confirm these modeling predictions and facilitate scale-up. PMID:24759536

  10. Engineering hybrid exosomes by membrane fusion with liposomes

    PubMed Central

    Sato, Yuko T.; Umezaki, Kaori; Sawada, Shinichi; Mukai, Sada-atsu; Sasaki, Yoshihiro; Harada, Naozumi; Shiku, Hiroshi; Akiyoshi, Kazunari

    2016-01-01

    Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze–thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems. PMID:26911358

  11. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  12. Stabilization of concentration fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel

    2012-02-01

    Finite-size domains have been observed at the surface of cells. These lipids ``rafts'' are stable nanodomains enriched in saturated lipids and cholesterol. While line tension favors macrodomains, one explanation for raft stabilization suggests that the membrane composition is tuned close to a spinodal temperature. From this point of view, rafts are long-lived concentration fluctuations in the mixed phase. We propose a ternary mixture model for the cell membrane that includes hybrid lipids which have one saturated and one unsaturated hydrocarbon chain. Finite amount of hybrid lipids reduces the packing incompatibility at the saturated/unsaturated lipid interface and stabilizes the concentration fluctuations. Hybrid-Hybrid interactions are included in the model and further increase the life-time of the rafts and decrease their length-scales. Moreover, the hybrid has extra orientational degrees of freedom that may lead to modulated phases.

  13. Nanodevices based on Membrane-Carbon Nanotube Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Jin, Hye Jun; Kim, Tae Hyun; Namgung, Seon; Hong, Seunghun; Lee, Sang Hun; Park, Tai Hyun

    2010-03-01

    Proteins in cell membrane have been drawing attention due to their versatile functionalities such as ion transfer for neuronal activity and selective binding for sensory systems. However, it is still very difficult to manipulate and study those proteins because they easily lose their functionalities without lipid membranes. We developed a method to coat lipid membranes containing various functional membrane proteins on single-walled carbon nanotube (swCNT)-based field effect transistors (FETs). In this hybrid structure, the activity of membrane proteins can be monitored by underlying swCNT-FETs, allowing us to easily study the functionalities of membrane proteins. Furthermore, we built advanced devices based on these hybrid structures. For an example, we coated lipid membrane containing `olfactory receptors' on swCNT-FETs, resulting in `bioelectric nose' systems. The bioelectric nose system had high sensitivity and human nose-like selectivity to odorant molecules. This talk will also discuss about the future prospect of these membrane-CNT hybrid structures.

  14. CO2-selective, Hybrid Membranes by Silation of Alumina

    SciTech Connect

    Luebke, D.R.; Pennline, H.W.

    2007-09-01

    Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of γ-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated γ-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

  15. Chain ordering of hybrid lipids can stabilize domains in saturated/hybrid/cholesterol lipid membranes

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Brewster, R.; Safran, S. A.

    2010-07-01

    We use a liquid-crystal model to predict that hybrid lipids (lipids that have one saturated and one unsaturated tail) can stabilize line interfaces between domains in mixed membranes of saturated lipids, hybrid lipids, and cholesterol (SHC membranes). The model predicts the phase separation of SHC membranes with both parabolic and loop binodals depending on the cholesterol concentration, modeled via an effective pressure. In some cases, the hybrid lipids can reduce the line tension to zero in SHC membranes at temperatures that approach the critical temperature as the pressure is increased. The differences in the hybrid saturated tail conformational order in bulk and at the interface are responsible for the reduction of the line tension.

  16. Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel A.

    2013-09-01

    A recently proposed ternary mixture model is used to predict fluctuation domain lifetimes in the one phase region. The membrane is made of saturated, unsaturated, and hybrid lipids that have one saturated and one unsaturated hydrocarbon chain. The hybrid lipid is a natural linactant which can reduce the packing incompatibility between saturated and unsaturated lipids. The fluctuation lifetimes are predicted as a function of the hybrid lipid fraction and the fluctuation domain size. These lifetimes can be increased by up to three orders of magnitude compared to the case of no hybrids. With hybrid, small length scale fluctuations have sizable amplitudes even close to the critical temperature and, hence, benefit from enhanced critical slowing down. The increase in lifetime is particularly important for nanometer scale fluctuation domains where the hybrid orientation and the other lipids composition are highly coupled.

  17. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

    2015-02-01

    Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

  18. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    PubMed

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass. PMID:26606088

  19. Process of treating cellulosic membrane and alkaline with membrane separator

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  20. Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Barile, Christopher J.; Tse, Edmund C. M.; Li, Ying; Sobyra, Thomas B.; Zimmerman, Steven C.; Hosseini, Ali; Gewirth, Andrew A.

    2014-06-01

    Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general.

  1. Membranes for environmentally friendly energy processes.

    PubMed

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  2. Membranes for Environmentally Friendly Energy Processes

    PubMed Central

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  3. Hybrid integration process for the development of multisensor chips

    NASA Astrophysics Data System (ADS)

    Jin, Na; Liu, Weiguo

    A novel hybrid integration process had been developed for the integration of single crystal pyroelectric detector with readout IC based on a thinning and anisotropic conduction tape bonding technique. We report our recent progress in applying the hybrid integration process for the fabrication of a multisensor chip with thermal and sound detectors integrated. The sound detector in the multisensor chip is based on thinned single crystal quartz, while the thermal detector in the chip is making use of thinned PLZT ceramic wafer. A membrane transfer process (MTP) was applied for the thinning and integration of the single crystal and ceramic wafers.

  4. Bioactive cell-like hybrids coassembled from (glyco)dendrimersomes with bacterial membranes

    PubMed Central

    Xiao, Qi; Yadavalli, Srujana S.; Zhang, Shaodong; Sherman, Samuel E.; Fiorin, Elodie; da Silva, Louise; Wilson, Daniela A.; Hammer, Daniel A.; André, Sabine; Gabius, Hans-Joachim; Klein, Michael L.; Goulian, Mark; Percec, Virgil

    2016-01-01

    A library of amphiphilic Janus dendrimers including two that are fluorescent and one glycodendrimer presenting lactose were used to construct giant dendrimersomes and glycodendrimersomes. Coassembly with the components of bacterial membrane vesicles by a dehydration–rehydration process generated giant cell-like hybrid vesicles, whereas the injection of their ethanol solution into PBS produced monodisperse nanometer size assemblies. These hybrid vesicles contain transmembrane proteins including a small membrane protein, MgrB, tagged with a red fluorescent protein, lipopolysaccharides, and glycoproteins from the bacterium Escherichia coli. Incorporation of two colored fluorescent probes in each of the components allowed fluorescence microscopy to visualize and demonstrate coassembly and the incorporation of functional membrane channels. Importantly, the hybrid vesicles bind a human galectin, consistent with the display of sugar moieties from lipopolysaccharides or possibly glycosylated membrane proteins. The present coassembly method is likely to create cell-like hybrids from any biological membrane including human cells and thus may enable practical application in nanomedicine. PMID:26884210

  5. Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study.

    PubMed

    Makaruk, A; Miltner, M; Harasek, M

    2013-01-01

    Membrane gas permeation using glassy membranes proved to be a suitable method for biogas upgrading and natural gas substitute production on account of low energy consumption and high compactness. Glassy membranes are very effective in the separation of bulk carbon dioxide and water from a methane-containing stream. However, the content of hydrogen sulfide can be lowered only partially. This work employs process modeling based upon the finite difference method to evaluate a hybrid membrane system built of a combination of rubbery and glassy membranes. The former are responsible for the separation of hydrogen sulfide and the latter separate carbon dioxide to produce standard-conform natural gas substitute. The evaluation focuses on the most critical upgrading parameters like achievable gas purity, methane recovery and specific energy consumption. The obtained results indicate that the evaluated hybrid membrane configuration is a potentially efficient system for the biogas processing tasks that do not require high methane recoveries, and allows effective desulfurization for medium and high hydrogen sulfide concentrations without additional process steps. PMID:23168631

  6. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  7. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos G.

    1997-05-20

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  8. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  9. Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane.

    PubMed

    Zhang, Yuqing; Jin, Zhenhua; Shan, Xing; Sunarso, Jaka; Cui, Ping

    2011-02-15

    Polysulfone (PSF) membranes are broadly applied in many fields owing to good physicochemical stability, resistance to oxidation and chlorine. But when treated with wastewater containing oil, PSF membranes are easy to be contaminated for its hydrophobicity, which can result in the declining of flux and lifespan of the membrane and limit their application in large scale. To enhance the capability of PSF membrane in the above circumstances, phosphorylated Zr-doped hybrid silica particles (SZP particles) were firstly prepared. SZP particles have various point defects inside their structure and lots of hydroxide radicals on their surface. SZP particles were added to the porous matrix of PSF to prepare a novel composite membrane (SZP/PSF) through a phase inversion process. Finally, the optimum preparation conditions of SZP/PSF composite membranes were determined. The optimum conditions are: the mass ratio of PSF, PEG400 and SZP is 12:10:10; ultrasound 10 min inside each 30 min; the pre-evaporating time is 10s. Optimized SZP/PSF composite membrane was characterized by scanning electron microscope (SEM) and ultrafiltration experiment. The results indicate that SZP particles can be uniformly dispersed in SZP/PSF composite membranes with excellent hydrophilic property, antifouling capability and tensile strength. Therefore, it can be concluded that the optimized SZP/PSF composite membrane is desirable in the treatment of wastewater containing oil and wastewater. PMID:21122987

  10. Controlling potassium selectivity and proton blocking in a hybrid biological/solid-state polymer nanoporous membrane

    NASA Astrophysics Data System (ADS)

    Balme, Sébastien; Picaud, Fabien; Kraszewski, Sebastian; Déjardin, Philippe; Janot, Jean Marc; Lepoitevin, Mathilde; Capomanes, Jhon; Ramseyer, Christophe; Henn, François

    2013-04-01

    Specific separations of protons and cations are usually performed by electromembrane processes, which require external electric energy. An easier process would be using a membrane able to separate both entities by passive diffusion. Presently, such synthetic nanoporous membranes do not exist. Here, we report the production of a robust hybrid biological/artificial solid-state membrane, which allows selective permeation of alkali metal cations without competing or concurrent permeation of protons. This membrane is simple to prepare and is based on the hydrophobic nature of the polymeric pore walls, and the confined gramicidin A molecules within. This work opens a new route for separation in the domain of nanobiofiltration, especially for tunable nanodevices based on differential ion conduction, with a fundamental understanding of the confinement mechanism.Specific separations of protons and cations are usually performed by electromembrane processes, which require external electric energy. An easier process would be using a membrane able to separate both entities by passive diffusion. Presently, such synthetic nanoporous membranes do not exist. Here, we report the production of a robust hybrid biological/artificial solid-state membrane, which allows selective permeation of alkali metal cations without competing or concurrent permeation of protons. This membrane is simple to prepare and is based on the hydrophobic nature of the polymeric pore walls, and the confined gramicidin A molecules within. This work opens a new route for separation in the domain of nanobiofiltration, especially for tunable nanodevices based on differential ion conduction, with a fundamental understanding of the confinement mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00564j

  11. A Novel Matrix for Immobilizing Protein: Supported Hybrid Nano C60-Lipid Membrane.

    PubMed

    He, Lulu; Yue, Qiulin; Zhang, Lele; Zhang, Xin

    2016-06-01

    Supported hybrid nano C60-lipid membrane based on cysteamine monolayer was made on gold electrode. Hemoglobin (Hb) could be immobilized in the membrane firmly because the membrane can supply a biological environment for Hb. The electrochemical behavior of Hb in the membrane was investigated by cyclic voltammetry. As a good electron mediator, C60 could make the electron transfer of the protein in hybrid C60-lipid membrane more accessible. PMID:27427649

  12. Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering

    PubMed Central

    Cardoso, Guinea BC; Machado-Silva, Amália B; Sabino, Marco; Santos Jr, Arnaldo R; Zavaglia, Cecília AC

    2014-01-01

    We investigated the potential use of 3D hybrid membrane: poly (ε-caprolactone) (PCL) mesh using rotary jet spinning with subsequent chitosan (CH) coating. The morphological examinations by scanning electron microscopy (SEM) were proved the efficiency of this technique on obtaining relative homogeneous PCL fiber mats (15,49 ± 4,1µm), with high surface porosity (1,06 ± 0,41µm) and effective CH coating. The feasibility of rotary jet spinning allowed the solvent evaporation during the process; this fact was verified by differential scanning calorimetry (DSC), indeed also had verified changes in thermal properties on the hybrid membrane, since the present of CH. It was investigated the mechanical properties of the hybrid membrane and CH film, the data were that the samples presents good tensile modulus but low strain at the break. In addition, it was verified the biocompatibility properties in vitro using Vero cells. PCL mesh demonstrated cells more spread vastly in the pore surface, with attachments in between fibers indicating the potential for cell adhesion. The films samples (CH and hybrid membrane) resulted in a cells layer on the surfaces with an intense staining (metachromasy), which is the result of cells more active. The cell counting -5 days of culture- and the MTT assay -21 days of culture- demonstrated that the materials tested proved to be different from the positive control and equal to each other and this fact, in our view, this indicates a satisfactory proliferation. Thus, based on the results here, this novel hybrid membrane provides an attractive material for tissue engineering applications. PMID:25093398

  13. Optical signal processing: Hybrid success

    NASA Astrophysics Data System (ADS)

    Hayden, Michael

    2007-03-01

    Despite two decades of work geared towards improving the nonlinear optical properties of organic molecules, practical organic light modulators have not yet reached the market in large numbers. New organic-inorganic hybrid approaches may revolutionize the field.

  14. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model

    NASA Astrophysics Data System (ADS)

    Dora Tang, T.-Y.; Rohaida Che Hak, C.; Thompson, Alexander J.; Kuimova, Marina K.; Williams, D. S.; Perriman, Adam W.; Mann, Stephen

    2014-06-01

    Mechanisms of prebiotic compartmentalization are central to providing insights into how protocellular systems emerged on the early Earth. Protocell models are based predominantly on the membrane self-assembly of fatty-acid vesicles, although membrane-free scenarios that involve liquid-liquid microphase separation (coacervation) have also been considered. Here we integrate these alternative models of prebiotic compartmentalization and develop a hybrid protocell model based on the spontaneous self-assembly of a continuous fatty-acid membrane at the surface of preformed coacervate microdroplets prepared from cationic peptides/polyelectrolytes and adenosine triphosphate or oligo/polyribonucleotides. We show that the coacervate-supported membrane is multilamellar, and mediates the selective uptake or exclusion of small and large molecules. The coacervate interior can be disassembled without loss of membrane integrity, and fusion and growth of the hybrid protocells can be induced under conditions of high ionic strength. Our results highlight how notions of membrane-mediated compartmentalization, chemical enrichment and internalized structuration can be integrated in protocell models via simple chemical and physical processes.

  15. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model.

    PubMed

    Dora Tang, T-Y; Rohaida Che Hak, C; Thompson, Alexander J; Kuimova, Marina K; Williams, D S; Perriman, Adam W; Mann, Stephen

    2014-06-01

    Mechanisms of prebiotic compartmentalization are central to providing insights into how protocellular systems emerged on the early Earth. Protocell models are based predominantly on the membrane self-assembly of fatty-acid vesicles, although membrane-free scenarios that involve liquid-liquid microphase separation (coacervation) have also been considered. Here we integrate these alternative models of prebiotic compartmentalization and develop a hybrid protocell model based on the spontaneous self-assembly of a continuous fatty-acid membrane at the surface of preformed coacervate microdroplets prepared from cationic peptides/polyelectrolytes and adenosine triphosphate or oligo/polyribonucleotides. We show that the coacervate-supported membrane is multilamellar, and mediates the selective uptake or exclusion of small and large molecules. The coacervate interior can be disassembled without loss of membrane integrity, and fusion and growth of the hybrid protocells can be induced under conditions of high ionic strength. Our results highlight how notions of membrane-mediated compartmentalization, chemical enrichment and internalized structuration can be integrated in protocell models via simple chemical and physical processes. PMID:24848239

  16. Fundamental Studies of Novel Zwitterionic Hybrid Membranes: Kinetic Model and Mechanism Insights into Strontium Removal

    PubMed Central

    Zhu, Wen; Li, Meng

    2014-01-01

    A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models). Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was found that the adsorption of strontium ions on these zwitterionic hybrid membranes fitted well with the Lagergren pseudo-second order model. Mechanism insights suggested that diffusion-chemisorption was one of the main adsorption mechanisms. Boyd equation exhibited that film-diffusion mechanism might be the control process during the starting period. These findings are very useful in strontium removal from the stimulated radioactive wastewater. PMID:25405224

  17. Removal of heavy metals by hybrid electrocoagulation and microfiltration processes.

    PubMed

    Keerthi; Vinduja, V; Balasubramanian, N

    2013-01-01

    This study is based on the investigation of the performance of electrocoagulation (EC), followed by the microfiltration process for heavy metal removal in synthetic model waste water containing Zn2+, Ni2+ and Cd2+ ions. Effects of initial concentration, current density and pH on metal removal were analysed to optimize the EC process. The optimized EC process was then integrated with dead-end microfiltration (MF) and was found that the hybrid process was capable of 99% removal of heavy metals. The cake layer formed over the membrane by the hybrid process was analysed through scanning electron microscope-energy-dispersive X-ray spectroscopy. The particle size analysis of the sludge formed during EC was done to investigate the fouling caused during the process. PMID:24527655

  18. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    PubMed Central

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-01-01

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase. PMID:26938567

  19. Hybrid and Mixed Matrix Membranes for Separations from Fermentations.

    PubMed

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-01-01

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase. PMID:26938567

  20. Novel polymer and inorganic/organic hybrid composite materials for proton exchange membrane applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhiwei

    In this study, various novel proton exchange membranes (PEM) have been synthesized and investigated for high temperature PEM applications. Sulfonic acid functionalized polysilsesquioxane hybrid membranes with the empirical formula of R-Si-(O)1.5 consist of a highly cross-linked Si-O backbone and pendant organic side chain R, which is terminated in a proton conducting functional group (i.e., sulfonic acid). The membranes exhibited excellent proton conductivities (sigma) of >10-2 S/cm under low humidity conditions and a wide range of temperatures. The fuel cell (FC) performance of the membranes under low humidity conditions has been evaluated. Acid-doped linear meta-polyaniline membranes have been prepared through solution casting of m-PANI. The obtained membrane shows good proton conductivities at temperatures above 100°C, achieving 10-2.7 S/cm under 120°C and practically no humidity conditions. The effects of doping acids, doping levels and humidity on the conductivity are discussed. Polyethylenimine (PEI)/SiO2 nanocomposites membranes have been synthesized through sol-gel processes. The introduction of SiO2 clusters into high molecule weight, linear PEI greatly improved its thermal stability at high temperatures and O2 atmosphere. During the sol-gel processes, trifluoromethanesulfonimide (HTFSI) was added to dope the amine groups of PEI and form immobilized proton-conducting ionic liquids, which provide the hybrid membranes with proton-conducting behavior. The resultant membranes show good proton conductivities at high temperatures and low to zero humidity conditions. The effects of temperature, humidity and mobility of active groups on the conductivity are discussed. Various organic amine/HTFSI ionic group functionalized polysilsesquioxane hybrid membranes have been prepared. The Si-O backbone provides excellent thermal/chemical/mechanical properties and the HTFSI-doped amine end groups provide the proton conducting properties. The membranes exhibited proton

  1. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes.

    PubMed

    Hu, Yaoxin; Wei, Jing; Liang, Yan; Zhang, Huacheng; Zhang, Xiwang; Shen, Wei; Wang, Huanting

    2016-02-01

    A defect-free zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) membrane with a thickness of 100 nm was prepared using two-dimensional (2D) ZIF-8/GO hybrid nanosheets as seeds. Hybrid nanosheets with a suitable amount of ZIF-8 nanocrystals were essential for producing a uniform seeding layer that facilitates fast crystal intergrowth during membrane formation. Moreover, the seeding layer acts as a barrier between two different synthesis solutions, and self-limits crystal growth and effectively eliminates defects during the contra-diffusion process. The resulting ultrathin membranes show excellent molecular sieving gas separation properties, such as with a high CO2 /N2 selectivity of 7.0. This 2D nano-hybrid seeding strategy can be readily extended to the fabrication of other defect-free and ultrathin MOF or zeolite molecular sieving membranes for a wide range of separation applications. PMID:26710246

  2. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  3. Dehydration processes using membranes with hydrophobic coating

    SciTech Connect

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  4. Applications of membrane processes for in-process materials recycling

    SciTech Connect

    Kim, B.M.; Thornton, R.F.; Shapiro, A.P.; Freshour, A.R.; El-Shoubary, Y.

    1996-12-31

    Zero discharge of wastes should be the ultimate goal of manufacturers. Waste reduction lowers costs and lessens liability associated with plant effluents. One approach toward this goal is elimination or minimization of wastes by in-process recycling of waste materials. We have examined opportunities for waste minimization for many equipment manufacturing plants and have evaluated membrane processes for in-process recycling. Membrane processes evaluated include vibrating membranes for suspended solid removal, ion exchange membranes for acid recovery, reverse osmosis and electrodialysis for dissolved salt removal, microporous membranes for recycling of machining coolants, oil emulsions, alkaline cleaners and others. This paper presents several examples of evaluations of membrane processes for materials recycling in manufacturing plants. 5 figs., 1 tab.

  5. 2010 Membranes: Materials & Processes Gordon Research Conference

    SciTech Connect

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  6. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    PubMed

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-01

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO. PMID:26024066

  7. Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Wang, Yang; You, Yuting; Meng, Hao; Zhang, Jianghua; Xu, Xinxin

    2012-12-01

    The TiO2 nanoparticles entrapped poly(vinylidenefluoride) (PVDF) hybrid membranes were prepared through impregnating the pre-treated PVDF film in the TiO2 suspension. SEM, XRD, TG and ATR-IR analyses were used to character the hybrid membranes. The results showed that the TiO2 nanoparticles with average size about 44 nm were deposited on the surface and inner pores of PVDF films. The pre-treatment of PVDF with cetyltrimethyl ammonium bromide (CTAB) is benefit for TiO2loading. The ATR-IR spectra revealed that physical interaction played important role in the construction of hybrid membranes. The adsorption behavior of Cu2+ on the hybrid membranes was studied, and a promoted adsorption and elution efficiency of PVDF/TiO2 hybrid membranes were observed compared with that of the pristine PVDF film. Meanwhile, the surface contact angle, pure water flux and static adsorption of bovine serum albumin (BSA) on the hybrid membranes were also measured to study the effects of TiO2 nanoparticles. It was found that the TiO2 nanoparticles improved the surface hydrophilicity and permeability of PVDF membranes, and the decreasing adsorption capacity of BSA indicated the promoted antifouling ability of PVDF membranes. Such the PVDF/TiO2 hybrid membranes exhibit potential applications in the separation and pre-concentration of metal ions.

  8. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    PubMed

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect. PMID:22896716

  9. Hybrid membrane contactor system for creating semi-breathing air

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  10. Hybrid assemblies of fluorescent nanocrystals and membrane proteins in liposomes.

    PubMed

    De Leo, Vincenzo; Catucci, Lucia; Falqui, Andrea; Marotta, Roberto; Striccoli, Marinella; Agostiano, Angela; Comparelli, Roberto; Milano, Francesco

    2014-02-18

    Because of the growing potential of nanoparticles in biological and medical applications, tuning and directing their properties toward a high compatibility with the aqueous biological milieu is of remarkable relevance. Moreover, the capability to combine nanocrystals (NCs) with biomolecules, such as proteins, offers great opportunities to design hybrid systems for both nanobiotechnology and biomedical technology. Here we report on the application of the micelle-to-vesicle transition (MVT) method for incorporation of hydrophobic, red-emitting CdSe@ZnS NCs into the bilayer of liposomes. This method enabled the construction of a novel hybrid proteo-NC-liposome containing, as model membrane protein, the photosynthetic reaction center (RC) of Rhodobacter sphaeroides. Electron microscopy confirmed the insertion of NCs within the lipid bilayer without significantly altering the structure of the unilamellar vesicles. The resulting aqueous NC-liposome suspensions showed low turbidity and kept unaltered the wavelengths of absorbance and emission peaks of the native NCs. A relative NC fluorescence quantum yield up to 8% was preserved after their incorporation in liposomes. Interestingly, in proteo-NC-liposomes, RC is not denatured by Cd-based NCs, retaining its structural and functional integrity as shown by absorption spectra and flash-induced charge recombination kinetics. The outlined strategy can be extended in principle to any suitably sized hydrophobic NC with similar surface chemistry and to any integral protein complex. Furthermore, the proposed approach could be used in nanomedicine for the realization of theranostic systems and provides new, interesting perspectives for understanding the interactions between integral membrane proteins and nanoparticles, i.e., in nanotoxicology studies. PMID:24460372

  11. MEMBRANE PROCESSING OF COTTAGE CHEESE WHEY

    EPA Science Inventory

    A full-scale whey processing plant using membranes was constructed to process 300,000 pounds per day of cottage cheese whey. The two-step system uses ultrafiltration (UF) and reverse osmosis (RO) according to a design previously demonstrated in the Phase I portion of this project...

  12. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    NASA Astrophysics Data System (ADS)

    El-Safty, Sherif A.; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-09-01

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of <= 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  13. Spin-Controlled Photoluminescence in Hybrid Nanoparticles Purple Membrane System

    PubMed Central

    2016-01-01

    Spin-dependent photoluminescence (PL) quenching of CdSe nanoparticles (NPs) has been explored in the hybrid system of CdSe NP purple membrane, wild-type bacteriorhodopsin (bR) thin film on a ferromagnetic (Ni-alloy) substrate. A significant change in the PL intensity from the CdSe NPs has been observed when spin-specific charge transfer occurs between the retinal and the magnetic substrate. This feature completely disappears in a bR apo membrane (wild-type bacteriorhodopsin in which the retinal protein covalent bond was cleaved), a bacteriorhodopsin mutant (D96N), and a bacteriorhodopsin bearing a locked retinal chromophore (isomerization of the crucial C13=C14 retinal double bond was prevented by inserting a ring spanning this bond). The extent of spin-dependent PL quenching of the CdSe NPs depends on the absorption of the retinal, embedded in wild-type bacteriorhodopsin. Our result suggests that spin-dependent charge transfer between the retinal and the substrate controls the PL intensity from the NPs. PMID:27018195

  14. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    PubMed

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications. PMID:25113310

  15. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.

    PubMed

    Malaeb, Lilian; Katuri, Krishna P; Logan, Bruce E; Maab, Husnul; Nunes, S P; Saikaly, Pascal E

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m(2) (6.8 W/m(3)) with the biocathode, compared to 0.82 W/m(2) (14.5 W/m(3)) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. PMID:24016059

  16. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Rong-Qiang; Woo, Jung-Je; Seo, Seok-Jun; Lee, Jae-Suk; Moon, Seung-Hyeon

    2008-05-01

    A series of new covalent organic/inorganic hybrid proton-conductive membranes, each with a semi-interpenetrating polymer network (semi-IPN), for direct methanol fuel cell (DMFC) applications is prepared through the following sequence: (i) copolymerization of impregnated styrene (St), p-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) within a supporting polyvinyl chloride (PVC) film; (ii) reaction of the chloromethyl group with 3-(methylamine)propyl-trimethoxysilane (MAPTMS); (ii) a sol-gel process under acidic conditions; (iv) a sulfonation reaction. The developed membranes are characterized in terms of Fourier transform infrared/attenuated total reflectance (FTIR/ATR), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDXA), elemental analysis (EA) and thermogravimetric analysis (TGA), which confirm the formation of the target membranes. The developed copolymer chains are interpenetrating with the PVC matrix to form the semi-IPN structure, and the inorganic silica is covalently bound to the copolymers. These features provide the membranes with high mechanical strength. The effect of silica content is investigated. As the silica content increases, proton conductivity and water content decrease, whereas oxidative stability is improved. In particular, methanol permeability and methanol uptake are reduced largely by the silica. The ratio of proton conductivity to methanol permeability for the hybrid membranes is higher than that of Nafion 117. All these properties make the hybrid membranes a potential candidate for DMFC applications.

  17. Proton conductive inorganic-organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Umeda, Junji; Suzuki, Masashi; Kato, Masaki; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu

    Proton conductive sol-gel derived hybrid membranes were synthesized from aromatic derivatives of methoxysilanes and ethyl 2-[3-(dihydroxyphosphoryl)-2-oxapropyl]acrylate (EPA). Two aromatic derivatives of methoxysilanes with different number of methoxy groups were used as the starting materials. Hybrid membranes from difunctional (methyldimethoxysilylmethyl)styrene (MDMSMS(D))/EPA revealed a higher chemical stability and mechanical properties than those from monofunctional (dimethylmethoxysilylmethyl)styrene (DMMSMS(M))/EPA. The membrane-electrode assembly (MEA) using the hybrid membranes as electrolytes worked as a fuel cell at 100 °C under saturated humidity. The DMMSMS(M)/EPA membrane-based MEA showed a larger current density than that from MDMSMS(D)/EPA. On the other hand, the MDMSMS(D)/EPA membrane-based MEA exhibited higher open circuit voltages than the DMMSMS(M)/EPA-based MEA, and was stable during fuel cell operation at 80 °C at least for 48 h.

  18. Bridged polysilsesquioxanes: Hybrid organic-inorganic materials as fuel cell polyelectrolyte membranes and functional nanoparticles

    NASA Astrophysics Data System (ADS)

    Khiterer, Mariya

    2007-05-01

    This dissertation describes the design, fabrication, and characterization of organic-inorganic hybrid materials. Several classes of bridged polysilsesquioxanes are presented. The first class is a membrane material suitable for fuel cell technology as a proton conducting polyelectrolyte. The second class includes hybrid nanoparticles for display device applications and chromatographic media. Chapter 1 is an introduction to hybrid organic-inorganic materials. Sol-gel chemistry is discussed, followed by a survey of prominent examples of silica hybrids. Examples of physical organic-silica blends and covalent organo-silicas, including ORMOCERSRTM, polyhedral oligomeric silsesquioxanes, and bridged polysilsesquioxanes are discussed. Bridged polysilsesquioxanes are described in great detail. Monomer synthesis, sol-gel chemistry, processing, characterization, and physical properties are included. Chapter 2 describes the design of polyelectrolyte bridged polysilsesquioxane membranes. The materials contain covalently bound sulfonic acid groups originating from the corresponding disulfides. These organic-inorganic hybrid materials integrate a network supporting component which is systematically changed to fine-tune their physical properties. The membranes are characterized as PEM fuel cell electrolytes, where proton conductivities of 4-6 mS cm-1 were measured. In Chapter 3 techniques for the preparation of bridged polysilsesquioxane nanoparticles are described. An inverse water-in-oil microemulsion polymerization method is developed to prepare cationic nanoparticles, including viologen-bridged materials with applications in electrochromic display devices. An aqueous ammonia system is used to prepare neutral nanoparticles containing hydrocarbon bridging groups, which have potential applications as chromatographic media. Chapter 4 describes electrochromic devices developed in collaboration with the Heflin group of Virginia Tech, which incorporate viologen bridged nanoparticles

  19. Processes of particle deposition in membrane operation and fabrication.

    PubMed

    Wiesner, M R; Tarabara, V; Cortalezzi, M

    2005-01-01

    The processes that control particle deposition on surfaces that are of interest in understanding operational aspects of membrane filtration, also hold significance in controlling the morphology of particle deposits as intermediate steps in membrane fabrication. This paper summarizes processes controlling particle deposit morphology. The implications of these processes for understanding membrane fouling by particles and in fabricating membranes are then considered. PMID:16003995

  20. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system.

    PubMed

    Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang

    2014-01-01

    This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions. PMID:24622553

  1. Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole

    NASA Astrophysics Data System (ADS)

    Pan, Haiyan; Zhang, Yuanyuan; Pu, Hongting; Chang, Zhihong

    2014-10-01

    A new series of organic-inorganic hybrid proton exchange membranes (PEMs) were prepared using sulfonated polyimides containing benzimidazole (SPIBIs) and glycidyl ether of polyhedral oligomeric silsesquioxanes (G-POSS). SPIBIs were synthesized using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 5-amino-2-(4-aminophenyl) benzimidazole (APBIA) and 4,4‧-diaminodiphenyl ether-2,2‧-disulfonic acid (ODADS). The organic-inorganic cross-linked membranes can be prepared by SPIBIs with G-POSS by a thermal treatment process. The cross-linking density of the membranes was evaluated by gel fractions. The water uptake, swelling ratio, mechanical property, thermal behavior, proton conductivity, oxidative and hydrolytic stability of the cross-linked organic-inorganic membranes were intensively investigated. All the cross-linked membranes exhibit high cross-linking density for the gel fraction higher than 70%. Compared to pristine membranes (SPIBIs) and membranes without benzimidazole groups (SPI), the anti-free-radical oxidative and hydrolytic stabilities of cross-linked membranes are significantly higher. The anti-free-oxidative stability of SPIBI-100-P (cross-linked SPIBI membrane with 100% degree of sulfonation) is nearly four-fold higher than that of SPIBI-100. The proton conductivity of the cross-linked membranes ranges from 10-3 S cm-1 to 10-2 S cm-1 depending both on the degree of sulfonation (DS) of the SPIBI and temperature.

  2. Biofouling potential reductions using a membrane hybrid system as a pre-treatment to seawater reverse osmosis.

    PubMed

    Jeong, Sanghyun; Kim, Lan Hee; Kim, Sung-Jo; Nguyen, Tien Vinh; Vigneswaran, Saravanamuthu; Kim, In S

    2012-07-01

    Biofouling on reverse osmosis (RO) membranes is the most serious problem which affects desalination process efficiency and increases operation cost. The biofouling cannot be effectively removed by the conventional pre-treatment traditionally used in desalination plants. Hybrid membrane systems coupling the adsorption and/or coagulation with low-pressure membranes can be a sustainable pre-treatment in reducing membrane fouling and at the same time improving the feed water quality to the seawater reverse osmosis. The addition of powder activated carbon (PAC) of 1.5 g/L into submerged membrane system could help to remove significant amount of both hydrophobic compounds (81.4%) and hydrophilic compounds (73.3%). When this submerged membrane adsorption hybrid system (SMAHS) was combined with FeCl(3) coagulation of 0.5 mg of Fe(3+)/L, dissolved organic carbon removal efficiency was excellent even with lower dose of PAC (0.5 g/L). Detailed microbial studies conducted with the SMAHS and the submerged membrane coagulation-adsorption hybrid system (SMCAHS) showed that these hybrid systems can significantly remove the total bacteria which contain also live cells. As a result, microbial adenosine triphosphate (ATP) as well as total ATP concentrations in treated seawater and foulants was considerably decreased. The bacteria number in feed water prior to RO reduced from 5.10E(+06) cells/mL to 3.10E(+03) cells/mL and 9.30E(+03) cells/mL after SMAHS and SMCAHS were applied as pre-treatment, respectively. These led to a significant reduction of assimilable organic carbon (AOC) by 10.1 μg/L acetate-C when SMCAHS was used as a pre-treatment after 45-h RO operation. In this study, AOC method was modified to measure the growth of bacteria in seawater by using the Pseudomonas P.60 strain. PMID:22238012

  3. Ambipolar solution-processed hybrid perovskite phototransistors

    PubMed Central

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tom

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications. PMID:26345730

  4. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a

  5. Membrane Separation Processes at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2002-01-01

    The primary focus of Kennedy Space Center's gas separation activities has been for carbon dioxide, nitrogen, and argon used in oxygen production technologies for Martian in-situ resource utilization (ISRU) projects. Recently, these studies were expanded to include oxygen for regenerative life support systems. Since commercial membrane systems have been developed for separation of carbon dioxide, nitrogen, and oxygen, initially the studies focused on these membrane systems, but at lower operating temperatures and pressures. Current investigations art examining immobilized liquids and solid sorbents that have the potential for higher selectivity and lower operating temperatures. The gas separation studies reported here use hollow fiber membranes to separate carbon dioxide, nitrogen, and argon in the temperature range from 230 to 300 K. Four commercial membrane materials were used to obtain data at low feed and permeate pressures. These data were used with a commercial solution-diffusion modeling tool to design a system to prepare a buffer gas from the byproduct of a process to capture Martian carbon dioxide. The system was designed to operate, at 230 K with a production rate 0.1 sLpm; Feed composition 30% CO2, 44% N2, and 26% Ar; Feed pressure 104 kPa (780); and Permeate pressure 1 kPa (6 torr); Product concentration 600 ppm CO2. This new system was compared with a similar system designed to operate at ambient temperatures (298 K). The systems described above, along with data, test apparatus, and models are presented.

  6. Hybrid DPWM with Process and Temperature Calibration

    NASA Astrophysics Data System (ADS)

    Lu, Jing

    In this thesis, a 12-bit high resolution, power and area efficiency hybrid DPWM with process and temperature calibration is proposed for DPWM controller IC for DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential segmented tapped delay line structure and a 6-bit counter-comparator structure, resulting in a power and area saving solution. Furthermore, the 6-bit differential segmented delay line structure serves as the clock to the high 6-bit counter-comparator structure, thus a high frequency clock is eliminated and power is significantly saved. In order to have simple delay cell and flexible delay time controllability, voltage controlled inverter is adopted to build the differential delay cell, which allows fine-tuning of the delay time. The process and temperature calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs, and a lookup table. The monitor circuits sense the process and temperature variations, and the flash ADC converts the data into digital code. The lookup table combines both the process and the temperature digital information and provides an appropriate value to the control voltage of the differential delay cell. The complete circuits design has been verified under different corners of CMOS 0.11um process technology node.

  7. Reactive dye house wastewater treatment. Use of hybrid technology: Membrane, sonication followed by wet oxidation

    SciTech Connect

    Dhale, A.D.; Mahajani, V.V.

    1999-05-01

    To address problems associated with treatment of an aqueous waste stream from a reactive dye house, a model dye, turquoise blue CI25, was studied. A hybrid technology, membrane separation followed by sonication and wet oxidation, has been demonstrated to treat the wastewater for reuse and discharge. Experiments were first performed with the reactive dye solution in water. A nanofiltration membrane (MPT 30) was found to be suitable to concentrate the dye. The concentrate was then treated with a wet oxidation process. Kinetics studies were performed with and without catalyst, in the temperature range of 170--215 C. The color destruction achieved was > 99%. After process parameters were fixed, studies were conducted with the actual dye waste stream. The actual waste stream was found to be refractory for wet oxidation under the above conditions. Sonication of the concentrate obtained after membrane filtration, in the presence of CuSO{sub 4}, made the waste stream amenable to wet oxidation. Sonication followed by wet oxidation was found to be more effective at near neutral conditions as compared to basic conditions.

  8. FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER

    SciTech Connect

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-09-01

    This report summarizes results from all of the membrane testing completed to date at the Savannah River National Laboratory (SRNL) for the sulfur dioxide-depolarized electrolyzer (SDE). Several types of commercially-available membranes have been analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid (PFSA), sulfonated polyether-ketone-ketone (SPEKK), and polybenzimidazole membranes (PBI). Of these membrane types, the poly-benzimidazole membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Several experimental membranes have also been analyzed including hydrated sulfonated Diels-Alder polyphenylenes (SDAPP) membranes from Sandia National Laboratory, perfluorosulfonimide (PFSI) and sulfonated perfluorocyclobutyl aromatic ether (S-PFCB) prepared by Clemson University, hydrated platinum-treated PFSA prepared by Giner Electrochemical Systems (GES) and Pt-Nafion{reg_sign} 115 composites prepared at SRNL. The chemical stability, SO{sub 2} transport and ionic conductivity characteristics have been measured for several commercially available and experimental proton-conducting membranes. Commercially available PFSA membranes such as the Nafion{reg_sign} series exhibited excellent chemical stability and ionic conductivity in sulfur dioxide saturated sulfuric acid solutions. Sulfur dioxide transport in the Nafion{reg_sign} membranes varied proportionally with the thickness and equivalent weight of the membrane. Although the SO{sub 2} transport in the Nafion{reg_sign} membranes is higher than desired, the excellent chemical stability and conductivity makes this membrane the best commercially-available membrane at this time. Initial results indicated that a modified Nafion{reg_sign} membrane incorporating Pt nanoparticles exhibited significantly reduced SO{sub 2} transport. Reduced SO{sub 2} transport was also measured with commercially available PBI membrane and several experimental membranes produced

  9. Combustion Processes in Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Venkateswaran,S.; Merkle, C. L.

    1996-01-01

    In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. Hybrid propulsion systems use a solid fuel such as hydroxyl-terminated polybutadiene (HTPB) along with a gaseous/liquid oxidizer. The performance of hybrid combustors depends on the convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid phase, and the turbulent combustion processes in the gaseous phases. These processes in combination specify the regression rates of the fuel surface and thereby the utilization efficiency of the fuel. In this paper, we employ computational fluid dynamics (CFD) techniques in order to gain a quantitative understanding of the physical trends in hybrid rocket combustors. The computational modeling is tailored to ongoing experiments at Penn State that employ a two dimensional slab burner configuration. The coordinated computational/experimental effort enables model validation while providing an understanding of the experimental observations. Computations to date have included the full length geometry with and with the aft nozzle section as well as shorter length domains for extensive parametric characterization. HTPB is sed as the fuel with 1,3 butadiene being taken as the gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The fuel regression rate is specified using an Arrhenius rate reaction, which the fuel surface temperature is given by an energy balance involving gas-phase convection and radiation as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two step global reaction is used. The standard kappa - epsilon model is used for turbulence closure. Radiation is presently treated using a simple diffusion approximation which is valid for large optical path lengths, representative of radiation from soot particles. Computational results are obtained to determine the trends in the fuel burning or

  10. Natural organic matter removal and fouling in a low pressure hybrid membrane systems.

    PubMed

    Uyak, Vedat; Akdagli, Muge; Cakmakci, Mehmet; Koyuncu, Ismail

    2014-01-01

    The objective of this study was to investigate powdered activated carbon (PAC) contribution to natural organic matter (NOM) removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP) increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters. PMID:24523651

  11. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  12. Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity.

    PubMed

    Song, Kaili; Gao, Aiqin; Cheng, Xi; Xie, Kongliang

    2015-10-01

    The functional nano-hybrid surface containing multi-walled carbon nanotubes (MWCNT) on chitosan incorporated with the cationic chitosan (C-CS), MWCNTs and silicon couple agent (KH-560) was designed and prepared. The nano-hybrid membranes (NHM) containing MWCNTs were modified by perfluorooctanesulfonyl fluoride (PFOSF). The superhydrophobic multi-functional membranes with biological activity and superhydrophobic surface were obtained. The incorporated MWCNTs improved the roughness of the nano-hybrid membranes. The perfluorinated end groups of the nano-hybrid membrane surface provided low energy surface. The antibacterial activity, surface superhydrophobicity and mechanical property of the perfluorinated nano-hybrid membranes (PFNM) were discussed. Their morphological structures and surface ingredients were characterized by energy dispersive X-ray spectrometer (SEM-EDX). The PFNMs had excellent antibacterial property and superhydrophobicity. The novel nano-hybrid membranes with excellent antibacterial, superhydrophbic, and mechanical properties have potential applications in the food engineering, bioengineering fields and medical materials. PMID:26076639

  13. A parylene coating process for hybrid circuits

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The parylene coating process developed during this program consists of (1) obtaining a hybrid cover with a hole in it, (2) sealing of the circuit with a hole in the cover, (3) parylene coating through the hole with the external leads protected from parylene by appropriate fixturing, and (4) sealing of the hole by soldering a pretinned kovar tab. Development of the above process required optimization of the parylene coater parameters to obtain a uniform consistent coating which could offer adequate protection to the circuits, fixture design for packages of various types, determination of the size of the deposition hole, and the amount of dimer charge per run, a process to hermetically seal the deposition holes and establishment of quality control techniques or acceptance criteria for the deposited film.

  14. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    NASA Astrophysics Data System (ADS)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  15. Evaluation method of membrane performance in membrane distillation process for seawater desalination.

    PubMed

    Chung, Seungjoon; Seo, Chang Duck; Choi, Jae-Hoon; Chung, Jinwook

    2014-01-01

    Membrane distillation (MD) is an emerging desalination technology as an energy-saving alternative to conventional distillation and reverse osmosis method. The selection of appropriate membrane is a prerequisite for the design of an optimized MD process. We proposed a simple approximation method to evaluate the performance of membranes for MD process. Three hollow fibre-type commercial membranes with different thicknesses and pore sizes were tested. Experimental results showed that one membrane was advantageous due to the highest flux, whereas another membrane was due to the lowest feed temperature drop. Regression analyses and multi-stage calculations were used to account for the trade-offeffects of flux and feed temperature drop. The most desirable membrane was selected from tested membranes in terms of the mean flux in a multi-stage process. This method would be useful for the selection of the membranes without complicated simulation techniques. PMID:25145166

  16. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: comparison of Ti, Fe and Mn oxide coated membranes for water quality.

    PubMed

    Byun, S; Davies, S H; Alpatova, A L; Corneal, L M; Baumann, M J; Tarabara, V V; Masten, S J

    2011-01-01

    In this study the performance of catalytic membranes in a hybrid ozonation-ceramic membrane filtration system was investigated. The catalytic membranes were produced by coating commercial ceramic ultrafiltration membranes with manganese or iron oxide nanoparticles using a layer-by-layer self-assembly technique. A commercial membrane with a titanium oxide filtration layer was also evaluated. The performance of the coated and uncoated membranes was evaluated using water from a borderline eutrophic lake. The permeate flux and removal of the organic matter was found to depend on the type of the metal oxide present on the membrane surface. The performance of the manganese oxide coated membrane was superior to that of the other membranes tested, showing the fastest recovery in permeate flux when ozone was applied and the greatest reduction in the total organic carbon (TOC) in the permeate. The removal of trihalomethanes (THMs) and haloacetic acids (HAAs) precursors using the membrane coated 20 times with manganese oxide nanoparticles was significantly better than that for the membranes coated with 30 or 40 times with manganese oxide nanoparticles or 40 times with iron oxide nanoparticles. PMID:20822791

  17. Efficacy of hybrid adsorption/membrane pretreatment for low pressure membrane.

    PubMed

    Malczewska, B; Benjamin, M M

    2016-08-01

    Fouling by natural organic matter (NOM) is a major obstacle when water from natural sources is treated using low-pressure membranes. Prior research by our group has demonstrated that passing natural water through a thin, pre-deposited layer of heated aluminum oxide particles (HAOPs) can remove substantial amounts of NOM from the feed and thereby reduce the fouling rate of downstream membranes. The work reported here explored the technical efficacy of such a pretreatment process under more challenging (and therefore realistic) conditions than reported earlier. Several analytical techniques were applied to the feed and permeate in an attempt to identify the key fouling components. The results demonstrate that a HAOPs layer can be pre-deposited on a stainless steel mesh and then be readily washed off at the end of a filtration cycle with very little irreversible fouling due to residual NOM or HAOPs left on the mesh. In addition, the pretreatment step removes enough foulant to allow a downstream UF membrane to operate at significantly higher fluxes than when conventional pretreatment is applied. HAOPs pretreatment also reduced the formation of chlorinated and brominated trihalomethanes (THM4) by more than 67% and of haloacetic acids (HAA9) by 64%-88% in simulated distribution system (SDS) tests. PMID:27174606

  18. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams. PMID:26946435

  19. Manipulating Migration Behavior of Magnetic Graphene Oxide via Magnetic Field Induced Casting and Phase Separation toward High-Performance Hybrid Ultrafiltration Membranes.

    PubMed

    Xu, Zhiwei; Wu, Tengfei; Shi, Jie; Wang, Wei; Teng, Kunyue; Qian, Xiaoming; Shan, Mingjing; Deng, Hui; Tian, Xu; Li, Cuiyu; Li, Fengyan

    2016-07-20

    Hybrid membranes blended with nanomaterials such as graphene oxide (GO) have great opportunities in water applications due to their multiple functionalities, but they suffer from low modification efficiency of nanomaterials due to the fact that plenty of the nanomaterials are embedded within the polymer matrix during the blending process. Herein, a novel Fe3O4/GO-poly(vinylidene fluoride) (Fe3O4/GO-PVDF) hybrid ultrafiltration membrane was developed via the combination of magnetic field induced casting and a phase inversion technique, during which the Fe3O4/GO nanocomposites could migrate toward the membrane top surface due to magnetic attraction and thereby render the surface highly hydrophilic with robust resistance to fouling. The blended Fe3O4/GO nanocomposites migrated to the membrane surface with the magnetic field induced casting, as verified by X-ray photoelectron spectroscopy, elemental analysis, and energy dispersive X-ray spectroscopy. As a result, the novel membranes exhibited significantly improved hydrophilicity (with a contact angle of 55.0°) and water flux (up to 595.39 L m(-2) h(-1)), which were improved by 26% and 206%, 12% and 49%, 25% and 154%, and 11% and 33% compared with those of pristine PVDF membranes and PVDF hybrid membranes blended with GO, Fe3O4, and Fe3O4/GO without the assistance of magnetic field during membrane casting, respectively. Besides, the novel membranes showed high rejection of bovine serum albumin (>92%) and high flux recovery ratio (up to 86.4%). Therefore, this study presents a novel strategy for developing high-performance hybrid membranes via manipulating the migration of nanomaterials to the membrane surface rather than embedding them in the membrane matrix. PMID:27355273

  20. Observable quantities for electrodiffusion processes in membranes.

    PubMed

    Garrido, Javier

    2008-03-13

    Electrically driven ion transport processes in a membrane system are analyzed in terms of observable quantities, such as the apparent volume flow, the time dependence of the electrolyte concentration in one cell compartment, and the electrical potential difference between the electrodes. The relations between the fluxes and these observable quantities are rigorously deduced from balances for constituent mass and solution volume. These relations improve the results for the transport coefficients up to 25% with respect to those obtained using simplified expressions common in the literature. Given the practical importance of ionic transport numbers and the solvent transference number in the phenomenological description of electrically driven processes, the transport equations are presented using the electrolyte concentration difference and the electric current as the drivers of the different constituents. Because various electric potential differences can be used in this traditional irreversible thermodynamics approach, the advantages of the formulation of the transport equations in terms of concentration difference and electric current are emphasized. PMID:18284224

  1. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  2. Separation of Molybdenum-Uranium by a Process Combining Ion Exchange Resin and Membranes

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Setti, L.; Djennane, A.; Melikchi, R.

    The purpose of this study is to determine whether the electrodeionization with ion-exchange resin is suitable for removing uranium from a solution containing molybdenum. A hybrid process combining ion exchange (resins and membranes) using electric current. For this electroextraction process, the cation exchange resin is introduced into an electrodialysis cell and compressed between two cations exchange membranes. We have investigated a continuous electroextraction process. As important result we note that: The factor of selectivity,r, for molybdenum versus uranium is superior to 3; the concentration in radio active element (U3O8) is lower than 1.5 mg L-1 and small cell voltage is observed.

  3. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose objective is to develop hydrogen-selective membranes for an innovative gas-separation process based on a water-gas-shift membrane reactor (WGS-MR) for the production of hydrogen.

  4. Membrane processing of fruit juices and beverages: a review.

    PubMed

    Girard, B; Fukumoto, L R

    2000-01-01

    Membrane technology for the processing of fruit juices and beverages has been applied mainly for clarification using ultrafiltration and microfiltration, and for concentration using reverse osmosis. The effects of product preparation, membrane selection, and operating parameters are important factors influencing filtration rate and product quality. Technological advances related to the development of new membranes, improvement in process engineering, and better understanding of fruit beverage constituents have expanded the range of membrane separation processes. Developments in novel membrane processes, including electrodialysis and pervaporation, increased the array of applications in combination with other technologies for alternate uses in fruit juices and beverages. PMID:10890454

  5. Membrane processing of fruit juices and beverages: a review.

    PubMed

    Girard, B; Fukumoto, L R

    2000-03-01

    Membrane technology for the processing of fruit juices and beverages has been applied mainly for clarification using ultrafiltration and microfiltration, and for concentration using reverse osmosis. The effects of product preparation, membrane selection, and operating parameters are important factors influencing filtration rate and product quality. Technological advances related to the development of new membranes, improvement in process engineering, and better understanding of fruit beverage constituents have expanded the range of membrane separation processes. Developments in novel membrane processes, including electrodialysis and pervaporation, increased the array of applications in combination with other technologies for alternate uses in fruit juices and beverages. PMID:10770272

  6. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.

    PubMed

    Hancock, Nathan T; Black, Nathan D; Cath, Tzahi Y

    2012-03-15

    The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact. PMID:22209275

  7. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation.

    PubMed

    Biswal, Bishnu P; Chaudhari, Harshal D; Banerjee, Rahul; Kharul, Ulhas K

    2016-03-24

    Highly flexible, TpPa-1@PBI-BuI and TpBD@PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced. PMID:26865381

  8. Electric Characteristics of Hybrid Polymer Membranes Composed of Two Lipid Species

    NASA Astrophysics Data System (ADS)

    Oohira, Koji; Toko, Kiyoshi; Akiyama, Hideyuki; Yoshihara, Hiroshi; Yamafuji, Kaoru

    1995-09-01

    Electric characteristics of hybrid polymer membranes composed of two lipid species were studied, where one lipid species is positively charged in aqueous solution and the other is negatively charged. As a result, it was found that the hybrid membranes responded to taste substances in different ways according to the molar mixing ratio of these two kinds of lipids, and also showed different response characteristics from those of the single-lipid membranes. The membranes with the mixing ratio around 50% exhibited the largest responses to HCl (sourness) and monosodium glutamate (umami). Moreover, good quantitative agreements with the observed data on the response electric potential were obtained using a theory describing both the changes in surface electric potential and surface charge density with taste substances.

  9. Reconstitution of the membrane protein OmpF into biomimetic block copolymer-phospholipid hybrid membranes.

    PubMed

    Bieligmeyer, Matthias; Artukovic, Franjo; Nussberger, Stephan; Hirth, Thomas; Schiestel, Thomas; Müller, Michaela

    2016-01-01

    Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  10. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    PubMed Central

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  11. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    SciTech Connect

    Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

    2002-09-20

    The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

  12. Enhanced performance of polyimide hybrid membranes for benzene separation by incorporating three-dimensional silver-graphene oxide.

    PubMed

    Dai, Shi-Qi; Jiang, Yang-Yang; Wang, Ting; Wu, Li-Guang; Yu, Xin-Yi; Lin, Jun-Ze; Shi, Shen-Xuan-Xiang

    2016-09-15

    Graphene oxide-Ag nanoparticle composites were prepared through impregnation reduction using different reactants. Transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy analyses were performed to characterize differences in the morphologies of three different Ag-GO composites. Scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry analyses were also applied to evaluate the morphology and thermal stability of the hybrid membranes. Swelling-sorption and pervaporation experiments of benzene and cyclohexane were conducted to evaluate the separation performance of hybrid membranes containing different Ag-GO composites. Results demonstrated that small Ag nanoparticles generated through impregnation reduction using Ag(NH3)2(+) and PEG were homogeneously distributed in the hybrid membranes because of moderate reduction rate. The polymide (PI) hybrid membrane exhibited high separation performance. Increase in Ag content in the Ag-GO samples led to the formation of Ag particles on the GO surface; these particles enhanced the separation performance of the hybrid membranes. When Ag-GO samples with 15 mass percent added, the hybrid membrane showed the highest separation performance and its maximum separation factor in the pervaporation experiments reached 35. It is more than three times higher than that of the GO/PI hybrid membrane. Moreover, large Ag particles were formed and aggregated during the preparation and polymerization of Ag-GO samples with high Ag contents; these particles reduced the separation performance of the hybrid membranes. PMID:27295318

  13. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    PubMed

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover. PMID:18605587

  14. Hybrid Processing of Measurable and Subjective Data

    SciTech Connect

    COOPER, J. ARLIN; ROGINSKI, ROBERT J.

    2001-10-01

    Conventional systems surety analysis is basically restricted to measurable or physical-model-derived data. However, most analyses, including high-consequence system surety analysis, must also utilize subjective information. In order to address this need, there has been considerable effort on analytically incorporating engineering judgment. For example, Dempster-Shafer theory establishes a framework in which frequentist probability and Bayesian incorporation of new data are subsets. Although Bayesian and Dempster-Shafer methodology both allow judgment, neither derives results that can indicate the relative amounts of subjective judgment and measurable data in the results. The methodology described in this report addresses these problems through a hybrid-mathematics-based process that allows tracking of the degree of subjective information in the output, thereby providing more informative (as well as more appropriate) results. In addition, most high consequence systems offer difficult-to-analyze situations. For example, in the Sandia National Laboratories nuclear weapons program, the probability that a weapon responds safely when exposed to an abnormal environment (e.g., lightning, crush, metal-melting temperatures) must be assured to meet a specific requirement. There are also non-probabilistic DOE and DoD requirements (e.g., for determining the adequacy of positive measures). The type of processing required for these and similar situations transcends conventional probabilistic and human factors methodology. The results described herein address these situations by efficiently utilizing subjective and objective information in a hybrid mathematical structure in order to directly apply to the surety assessment of high consequence systems. The results can also improve the quality of the information currently provided to decision-makers. To this end, objective inputs are processed in a conventional manner; while subjective inputs are derived from the combined engineering

  15. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling. PMID:26031758

  16. Organic-inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid

    NASA Astrophysics Data System (ADS)

    Cui, Xuejun; Zhong, Shuangling; Wang, Hongyan

    A series of silicon-containing polyacrylate nanoparticles (SiPANPs) were successfully synthesized by simple emulsifier-free emulsion polymerization technique. The resulting latex particles were characterized by Fourier transform infrared (FTIR) spectrometry, dynamic light scattering (DLS) analysis, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The SiPANP membranes and SiPANP/phosphotungstic acid (SiPANP/PWA) hybrid membranes were also prepared and characterized to evaluate their potential as proton exchange membranes in proton exchange membrane fuel cell (PEMFC). Compared with the pure SiPANP membrane, the hybrid membranes displayed lower thermal stability. However, the degradation temperatures were still above 190 °C, satisfying the requirement of thermal stability for PEMFC operation. In addition, the hybrid membranes showed lower water uptake but higher proton conductivity than the SiPANP precursor. The proton conductivity of the hybrid membranes was in the range of 10 -3 to 10 -2 S cm -1 and increased gradually with PWA content and temperature. The excellent hydrolytic stability was also observed in the hybrid membranes because of the existence of crosslinked silica network. The good thermal stability, reasonable water uptake, excellent hydrolytic stability, suitable proton conductivity and cost effectiveness make these hybrids quite attractive as proton exchange membranes for PEMFC applications.

  17. Valorization of artichoke wastewaters by integrated membrane process.

    PubMed

    Conidi, C; Cassano, A; Garcia-Castello, E

    2014-01-01

    In this work an integrated membrane system was developed on laboratory scale to fractionate artichoke wastewaters. In particular, a preliminary ultrafiltration (UF) step, based on the use of hollow fibre membranes, was investigated to remove suspended solids from an artichoke extract. The clarified solution was then submitted to a nanofiltration (NF) step. Two different 2.5 × 21 in. spiral-wound membranes (Desal DL and NP030) with different properties were investigated. Both membranes showed a high rejection towards the phenolic compounds analysed (chlorogenic acid, cynarin and apigenin-7-O-glucoside) and, consequently, towards the total antioxidant activity (TAA). On the other hand, the Desal DL membrane was characterized by a high rejection towards sugar compounds (glucose, fructose and sucrose) (100%) when compared with the NP030 membrane (4.02%). The performance of selected membranes in terms of permeate flux, fouling index and water permeability recovery was also evaluated. On the base of experimental results, an integrated membrane process for the fractionation of artichoke wastewaters was proposed. This conceptual process design permitted to obtain different valuable products: a retentate fraction (from the NP030 membrane) enriched in phenolic compounds suitable for nutraceutical, cosmeceutical or food application; a retentate fraction (from the Desal DL membrane), enriched in sugar compounds, of interest for food applications; a clear permeate (from the Desal DL membrane) which can be reused as process water or for membrane cleaning. PMID:24125635

  18. Transport processes of the legume symbiosome membrane

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Day, David A.; Smith, Penelope M. C.

    2014-01-01

    The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome. PMID:25566274

  19. The influence of zeolite (clinoptilolite) on the performance of a hybrid membrane bioreactor.

    PubMed

    Rezaei, M; Mehrnia, M R

    2014-04-01

    This work aims to investigate the effect of clinoptilolite on the performance of membrane bioreactor (MBR). The control membrane bioreactor without clinoptilolite (CMBR) and the hybrid membrane bioreactor with clinoptilolite (HMBR), in two parallel simultaneous MBRs within long and short term filtration experiments, were studied. Sludge properties, transmembrane pressure (TMP) rise as an index for membrane fouling and nutrient removal from synthetic wastewater in the CMBR and HMBR were compared. In HMBR, sludge properties improvement such as 22.5% rise in MLSS, 7% more accumulation of large particles, reduction of soluble microbial products (SMP) to half of this value in CMBR, no increase in sludge volume index (SVI) and 66% TMP reduced. The results of short term filtration showed that the trend of TMP increase in terms of flux will be slower in HMBR. Improvement of biological wastewater treatment quality and ease of membrane operation are concluded from this study. PMID:24583211

  20. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  1. Cross-linked hybrid nanofiltration membrane with antibiofouling properties and self-assembled layered morphology.

    PubMed

    Singh, Ajay K; Prakash, S; Kulshrestha, Vaibhav; Shahi, Vinod K

    2012-03-01

    A new siloxane monomer, 3-(3-(diethoxy(2-(5-(4-(10-ethoxy-4-hydroxy-2,2-dimethyl-11-oxa-2-ammonio-6-aza-10-silatridecan-10-yl)phenyl)-1,3,4-oxadi azol-2-ylthio)ethyl)silyl)propylamino)-2-hydroxy-N,N,N-trimethylpropan-1-aminium chloride (OA), was synthesized by reported 3-((4-(5-(2-((3-aminopropyl) diethoxysilyl)ethylthio)-1,3,4-oxadiazol-2-yl)phenyl) diethoxysilyl)propan-1-amine (APDSMO) and glycidyltrimethylammonium chloride (GDTMAC) by epoxide ring-opening reaction. OA-poly(vinyl alcohol) (PVA) hybrid antibiofouling nanofilter (NF) membranes were prepared by acid-catalyzed sol-gel followed by formal cross-linking. Membranes showed wormlike arrangement and self-assembled layered morphology with varying OA content. Hybrid NF membrane, especially OA-6, showed low surface roughness, high hydrophilic nature, low biofouling, high cross-linking density, thermal and mechanical stablility, solvent- and chlorine-tolerant nature, along with good permeability and salt rejection. Prepared OA-6 hybrid NF membrane can be used efficiently for desalting and purification of water with about 2.0 g/L salt content (groundwater in major part of India). The described method provides novel route for producing antibiofouling membranes of diversified applications. PMID:22360398

  2. Thermodynamic Analysis of Nanoporous Membrane Separation Processes

    NASA Astrophysics Data System (ADS)

    Rogers, David; Rempe, Susan

    2011-03-01

    We give an analysis of desalination energy requirements in order to quantify the potential for future improvements in desalination membrane technology. Our thermodynamic analysis makes it possible to draw conclusions from the vast array of equilibrium molecular dynamics simulations present in the literature as well as create a standardized comparison for measuring and reporting experimental reverse osmosis material efficiency. Commonly employed methods for estimating minimum desalination energy costs have been revised to include operations at positive input stream recovery ratios using a thermodynamic cycle analogous to the Carnot cycle. Several gaps in the statistical mechanical theory of irreversible processes have also been identified which may in the future lead to improved communication between materials engineering models and statistical mechanical simulation. Simulation results for silica surfaces and nanochannels are also presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.

    PubMed

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-01

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications. PMID:27232262

  4. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-01

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion–GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  5. Sulfonated poly(ether ether ketone)/clay-SO 3H hybrid proton exchange membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Tiezhu; Cui, Zhiming; Zhong, Shuangling; Shi, Yuhua; Zhao, Chengji; Zhang, Gang; Shao, Ke; Na, Hui; Xing, Wei

    A new type of sulfonated clay (clay-SO 3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO 3H was 51.8 mequiv. (100 g) -1, which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO 3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO 3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method. The performances of hybrid membranes for direct methanol fuel cells (DMFCs) in terms of mechanical and thermal properties, water uptake, water retention, methanol permeability and proton conductivity were investigated. The mechanical and thermal properties of the SPEEK membranes had been improved by introduction of clay and clay-SO 3H, obviously. The water desorption coefficients of the SPEEK and hybrid membranes were studied at 80 °C. The results showed that the addition of the inorganic part into SPEEK membrane enhanced the water retention of the membrane. Both methanol permeability and proton conductivity of the hybrid membranes decreased in comparison to the pristine SPEEK membrane. However, it was worth noting that higher selectivity defined as ratio of proton conductivity to methanol permeability of the SPEEK/clay-SO 3H-1 hybrid membrane with 1 wt.% clay-SO 3H was obtained than that of the pristine SPEEK membrane. These results showed that the SPEEK/clay-SO 3H hybrid membrane with 1 wt.% clay-SO 3H had potential usage of a proton exchange membrane (PEM) for DMFCs.

  6. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem; Lu, Yao; Zhu, Jiadeng; Zhang, Xiangwu

    2016-05-01

    Silica/polyacrylonitrile (SiO2/PAN) hybrid nanofiber membranes were fabricated by using sol-gel and electrospinning techniques and their electrochemical performance was evaluated for use as separators in lithium-ion batteries. The aim of this study was to design high-performance separator membranes with enhanced electrochemical performance and good thermal stability compared to microporous polyolefin membranes. In this study, SiO2 nanoparticle content up to 27 wt% was achieved in the membranes by using sol-gel technique. It was found that SiO2/PAN hybrid nanofiber membranes had superior electrochemical performance with good thermal stability due to their high SiO2 content and large porosity. Compared with commercial microporous polyolefin membranes, SiO2/PAN hybrid nanofiber membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN hybrid nanofiber membranes with different SiO2 contents (0, 16, 19 and 27 wt%) were also assembled into lithium/lithium iron phosphate cells, and high cell capacities and good cycling performance were demonstrated at room temperature. In addition, cells using SiO2/PAN hybrid nanofiber membranes with high SiO2 contents showed superior C-rate performance compared to those with low SiO2 contents and commercial microporous polyolefin membrane.

  7. Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane.

    PubMed

    He, Xuemei; Du, Mei; Li, Hui; Zhou, Tianchi

    2016-01-01

    In this research, chitosan/oxidized starch/silica (CS/OSR/Silica) hybrid membrane was prepared by using oxidized starch and 3-aminopropyltriethoxysilane (APTES) as cross-linking agents. The characterizations of the hybrid membrane were investigated by using attenuated total reflection (ATR) spectroscopy, scanning electron microscopy (SEM), thermogravimetry (TG) analysis and swelling measurement. The CS/OSR/Silica hybrid membrane exhibited the improved thermal stability and low degree of swelling in water. The adsorption properties of the CS/OSR/Silica hybrid membrane were studied by using two direct dyes (Blue 71 and Red 31). The results indicated the adsorption capacity of the CS/OSR/Silica hybrid membrane was found optimal at pH 9.82 and temperature 60°C for Blue 71 and Red 31. The adsorption kinetic data followed pseudo-second order kinetic model and the adsorption behavior of the two dyes on the hybrid membrane fitted well with the Freundlich model. The CS/OSR/Silica hybrid membrane can be used as an appropriate biosorbent for removal of direct dyes from colored wastewater. PMID:26546868

  8. Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology

    SciTech Connect

    Heberle, Frederick A; Doktorova, Milka; Goh, Shih Lin; Standaert, Robert F; Katsaras, John; Feigenson, Gerald

    2013-01-01

    Nanometer-scale domains in cholesterolrich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chainasymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.

  9. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology.

    PubMed

    Heberle, Frederick A; Doktorova, Milka; Goh, Shih Lin; Standaert, Robert F; Katsaras, John; Feigenson, Gerald W

    2013-10-01

    Nanometer-scale domains in cholesterol-rich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chain-asymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains. PMID:24041024

  10. Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng

    2015-12-01

    Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.

  11. Synthesis of crystallization-distillation hybrid separation processes

    SciTech Connect

    Berry, D.A.; Ng, K.M.

    1997-07-01

    A systematic method to synthesize crystallization-distillation hybrid separation processes is presented. Two classes of hybrids are identified for binary mixtures. The first bypasses azeotropes and tangent pinches, while the second bypasses eutectics. Guidelines for flow-sheet selection are proposed based on an analysis of simple eutectic, constant relative volatility systems. In addition, the hybrids are compared to both extractive and adductive crystallization in order to determine the conditions under which solvent-based crystallization techniques outperform the proposed hybrid configurations. The method is extended to ternary mixture. The use of stream combination and complex distillation columns is also considered.

  12. Mem-PHybrid: hybrid features-based prediction system for classifying membrane protein types.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2012-05-01

    Membrane proteins are a major class of proteins and encoded by approximately 20% to 30% of genes in most organisms. In this work, a two-layer novel membrane protein prediction system, called Mem-PHybrid, is proposed. It is able to first identify the protein query as a membrane or nonmembrane protein. In the second level, it further identifies the type of membrane protein. The proposed Mem-PHybrid prediction system is based on hybrid features, whereby a fusion of both the physicochemical and split amino acid composition-based features is performed. This enables the proposed Mem-PHybrid to exploit the discrimination capabilities of both types of feature extraction strategy. In addition, minimum redundancy and maximum relevance has also been applied to reduce the dimensionality of a feature vector. We employ random forest, evidence-theoretic K-nearest neighbor, and support vector machine (SVM) as classifiers and analyze their performance on two datasets. SVM using hybrid features yields the highest accuracy of 89.6% and 97.3% on dataset1 and 91.5% and 95.5% on dataset2 for jackknife and independent dataset tests, respectively. The enhanced prediction performance of Mem-PHybrid is largely attributed to the exploitation of the discrimination power of the hybrid features and of the learning capability of SVM. Mem-PHybrid is accessible at http://www.111.68.99.218/Mem-PHybrid. PMID:22342883

  13. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. PMID:27176649

  14. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Colom, Adai; Casuso, Ignacio; Rico, Felix; Scheuring, Simon

    2013-07-01

    High-speed atomic force microscopy is a powerful tool for studying structure and dynamics of proteins. So far, however, high-speed atomic force microscopy was restricted to well-controlled molecular systems of purified proteins. Here we integrate an optical microscopy path into high-speed atomic force microscopy, allowing bright field and fluorescence microscopy, without loss of high-speed atomic force microscopy performance. This hybrid high-speed atomic force microscopy/optical microscopy setup allows positioning of the high-speed atomic force microscopy tip with high spatial precision on an optically identified zone of interest on cells. We present movies at 960 ms per frame displaying aquaporin-0 array and single molecule dynamics in the plasma membrane of intact eye lens cells. This hybrid setup allows high-speed atomic force microscopy imaging on cells about 1,000 times faster than conventional atomic force microscopy/optical microscopy setups, and allows first time visualization of unlabelled membrane proteins on a eukaryotic cell under physiological conditions. This development advances high-speed atomic force microscopy from molecular to cell biology to analyse cellular processes at the membrane such as signalling, infection, transport and diffusion.

  15. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional

  16. All-solid-state supercapacitor using a Nafion ® polymer membrane and its hybridization with a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Won; Ahn, Hyo-Jin; Sung, Yung-Eun

    An all-solid-state supercapacitor is fabricated and optimized using a Nafion ® membrane and an ionomer. The device shows good capacitance (ca. 200 F g -1) as demonstrated by cyclic voltammograms (CVs) and charge-discharge curves. The supercapacitor exhibits a relatively stable capacitance during l0,000 cycles of operation. A hybrid system comprising a direct methanol fuel cell (DMFC) and an all-solid-state supercapacitor has been designed and tested. It is confirmed that the power discharged by the supercapacitor is transferred effectively to the DMFC. The power of the hybrid is immediately improved by 30% compared with that of a DMFC alone operating at 25 °C. The possibilities of using this system for high energy and high instantaneous power devices and integrated fabrication processes are discussed.

  17. Hybrid membrane--PSA system for separating oxygen from air

    DOEpatents

    Staiger, Chad L.; Vaughn, Mark R.; Miller, A. Keith; Cornelius, Christopher J.

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  18. [Nitric Oxide Removal with a Fe-TiO₂/PSF Hybrid Catalytic Membrane Bioreactor].

    PubMed

    Li, Bao-ren; Chen, Zhou-yang; Wang, Jian-bin; Zhang, Zai-li; Fan, Qing-juan; Wei, Zai-shan

    2016-03-15

    The Fe-doped titanium dioxide (Fe-TiO₂) was prepared by the sol-gel method and was loaded on polysulfone (PSF) hollow fiber membrane. A novel Fe-TiO₂/PSF hybrid catalytic membrane biofilm reactor (HCMBfR) was investigated for nitric oxide removal, to further improve the elimination capacity. HCMBfR exhibited a good stability in the 180-day operation period, the NO removal efficiency was up to 93.2% and the maximum elimination capacity reached 167.1 g · (m³ · h)⁻1. The additional use of the biofilm to wet Fe-TiO₂/PSF membrane catalysis reactor led to the enhancement of NO removal efficiency from 59. 5% to 66% . The NO removal efficiency in the intimate coupling of Fe-TiO₂/PSF hybrid catalytic membrane and biofilm reactor ( HCMBfR) increased from 1.4% to 13% as compared to that of the membrane biofilm reactor (MBfR) only. The optimal illumination intensity, gas residence time, pH and nC/nN were 670 lx, 9 a, 6.8-7.2 and 3.7, respectively. PMID:27337874

  19. A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery

    PubMed Central

    Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Sun, Jian-Xin; Bai, Feng-Wu; Yang, Shang-Tian

    2014-01-01

    The carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) hybrid membrane was fabricated to evaluate its potential for butanol recovery from acetone-butanol-ethanol (ABE) fermentation broth. Compared with the homogeneous PDMS membrane, the CNTs filled into the PDMS membrane were beneficial for the improvement of butanol recovery in butanol flux and separation factor. The CNTs acting as sorption-active sites with super hydrophobicity could give an alternative route for mass transport through the inner tubes or along the smooth surface. The maximum total flux and butanol separation factor reached up to 244.3 g/m2·h and 32.9, respectively, when the PDMS membrane filled with 10 wt% CNTs was used to separate butanol from the butanol/water solution at 80°C. In addition, the butanol flux and separation factor increased dramatically as temperature increased from 30°C to 80°C in feed solution since the higher temperature produced more free volumes in polymer chains to facilitate butanol permeation. A similar increase was also observed when butanol titer in solution increased from 10 g/L to 25 g/L. Overall, the CNTs/PDMS hybrid membrane with higher butanol flux and selectivity should have good potential for pervaporation separation of butanol from ABE fermentation broth. PMID:25081019

  20. Hybrid Filtering in Semantic Query Processing

    ERIC Educational Resources Information Center

    Jeong, Hanjo

    2011-01-01

    This dissertation presents a hybrid filtering method and a case-based reasoning framework for enhancing the effectiveness of Web search. Web search may not reflect user needs, intent, context, and preferences, because today's keyword-based search is lacking semantic information to capture the user's context and intent in posing the search query.…

  1. Technical and economical evaluation of water recycling in the carwash industry with membrane processes.

    PubMed

    Boussu, K; Eelen, D; Vanassche, S; Vandecasteele, C; Van der Bruggen, B; Van Baelen, G; Colen, W; Vanassche, S

    2008-01-01

    In the carwash industry, water recycling is necessary to be in accordance with present and upcoming environmental laws. As this is not possible with traditional techniques, membrane processes (like ultrafiltration (UF) and nanofiltration (NF)) are technically and economically evaluated in this study. Concerning the technical part, there needs to be a compromise between a high permeate permeability on the one hand and a high permeate purity on the other hand. Depending on the use of the purified wastewater, ultrafiltration (to recycle wastewater in the main wash cycle) or nanofiltration (to recycle wastewater in the rinsing step) would be the optimal choice. Concerning the financial part, the implementation of membrane processes in the wastewater purification installation is economically feasible, especially when expensive tap water is used as pure water. These positive evaluations imply that membrane processes can be useful to recycle wastewater in the carwash industry, on condition that the right membrane type (with the least membrane fouling) and the right process format (e.g., hybrid process of UF and/or NF with a biological treatment) is selected. PMID:18441443

  2. Tailoring the Separation Behavior of Polymer-Supported Organosilica Layered-Hybrid Membranes via Facile Post-Treatment Using HCl and HN3 Vapors.

    PubMed

    Gong, Genghao; Nagasawa, Hiroki; Kanezashi, Masakoto; Tsuru, Toshinori

    2016-05-01

    A promising layered-hybrid membrane consisting of a microporous organosilica active layer deposited onto a porous polymer support was prepared via a facile sol-gel spin-coating process. Subsequently, the pore sizes and structures of the organosilica top layers on the membrane surface were tuned at mild temperature combined with vapor treatment from either hydrochloric acid (HVT) or ammonia (AVT), thereby tailoring the desalination performance of the membranes during reverse osmosis (RO) processing. The effects of HVT and AVT on the pore size, structure, and morphology of organosilica layers and on the separation performances of membranes were investigated in detail. We confirmed that both HVT and AVT processes accelerated the condensation of silanol (Si-OH) in the organosilica layer, which led to dense silica networks. The layered-hybrid membranes after HVT showed an improved salt rejection and reduced water flux, while membranes after AVT exhibited a decrease in both salt rejection and water permeability. We found that HVT gave rise to smoother and denser organosilica layers, while AVT produced large voids and formed pinholes due to Ostwald ripening. These conclusions were supported by a comparative analysis of the results obtained via FTIR, TG-MS, SPM, and RO desalination. PMID:27070105

  3. [Membrane permeability of brain cell processes after death].

    PubMed

    Agafonov, V A

    1975-07-01

    Experiments were conducted on rats. A study was made of persistence of semipermeability of the membranes of the cell processes of the brain (contraction) with the action of a hypertonic buffer at various periods after death. The membranes of the processes proved to retain the property of semi-permeability even 48 hours after death. Prefixation of the postmortem material in the glutaraldehyde did not influence the sensitivity of the membranes of the processes to the osmotic strength of the surrounding solution. PMID:1227661

  4. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO).

    PubMed

    Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940

  5. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)

    PubMed Central

    Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940

  6. Mass transfer of large molecules through collagen and collagen-silica hybrid membranes

    NASA Astrophysics Data System (ADS)

    Jofre-Lora, Pedro

    Diabetes is a growing concern in the United States and around the world that must be addressed through new treatment options. Current standard treatment options of diabetes are limiting and have tremendous impacts on patient's lives. Emerging therapies, such as the implantation of encapsulated islets, are promising treatment options, but have not yet materialized due to unsolved problems with material properties. Hybrid silica-collagen membranes address some of these unsolved problems and are a promising material for cell encapsulation. However, the mass transfer properties of large molecules, such as insulin, TNF-alpha, IL1beta, and other important proteins in the etiology of diabetes, through these hybrid membranes are poorly characterized. In order to begin characterizing these properties, a device was constructed to accurately and efficiently measure the mass transfer of other similar large molecules, fluorescein isothiocyanate dextrans (FITC-dextran), through collagen-silica hybrid membranes. The device was used to measure diffusion coefficients of 4, 20, 40, and 150 kDa FITC-dextrans through non-silicified and silicified samples of 200 and 1000 Pa porcine skin collagen. Diffusion coefficients were found to be in the 10-7-10-6 cm2s -1 range, which is in agreement with previously published data for similar molecules through similar hydrogels. The effects of collagen stiffness, FITC-dextran molecular weight, and silicification treatment on diffusion were investigated. It was found that collagen stiffness and FITC-dextran molecular weight had a negative correlation with diffusion, whereas silicification treatment had no global impact on diffusion. The device created, and the results of this preliminary investigation, can be used to develop collagen-silica hybrid membranes as an alternative material for cell encapsulation in a forward-design manner.

  7. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    NASA Astrophysics Data System (ADS)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  8. NOVEL COMPOSITE MEMBRANES AND PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Ben Bikson; Sal Giglia; Jibin Hao

    2003-03-01

    In the second phase of this project, the newly developed membrane module for natural gas dehydration was tested and evaluated in a pilot plant located at a commercial natural gas treatment site. This phase was undertaken jointly with UOP LLC, our commercialization partner. The field test demonstrated that a commercial-size membrane module for natural gas dehydration was successfully manufactured. The membrane module operated reliably over 1000 psi differential pressure across the membrane in the field test. The effects of feed gas pressure, permeate gas pressure, feed flow rate, purge ratio (flow rate ratio of permeate outlet to feed), and feed gas dew point on the membrane module performance were determined and found to meet the design expectations. Although water vapor permeance was lower than expected, substantial natural gas dehydration was demonstrated with low purge ratio. For example, dew point was suppressed by as much as 30 F with only about 2 {approx} 3% purge ratio. However the bore side pressure drops were significantly higher than the projected value from the fluid dynamic calculation. It is likely that not all the fibers were open in either the sweep or the permeate tube sheet end. This could help to explain the relatively low water vapor permeances that were measured in the field. An economic evaluation of the membrane process and the traditional Triethylene Glycol (TEG) process to dehydrate natural gas was performed and the economics of the two processes were compared. Two sets of membrane module performance properties were used in the economic analysis of the membrane process. One was from the results of this field test and the other from the results of the previous small-scale test with a medium pressure membrane variant conducted at 750 psig. The membrane process was competitive with the TEG process for the natural gas feed flow rate below 10 MMSCFD for the membrane with previously measured water vapor permeance. The membrane process was

  9. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  10. Effectiveness of Water Desalination by Membrane Distillation Process

    PubMed Central

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  11. Effectiveness of water desalination by membrane distillation process.

    PubMed

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  12. Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system.

    PubMed

    Schäfer, A I; Broeckmann, A; Richards, B S

    2007-02-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem. PMID:17328215

  13. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    PubMed

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling. PMID:25461944

  14. Post-hybridization recovery of membrane filter-bound DNA for enzymatic DNA amplification.

    PubMed

    Chong, K Y; Chen, C M; Choo, K B

    1993-04-01

    We describe here a simple and rapid method for enzymatic DNA amplification using DNA template recovered from membrane filters previously used in hybridization analysis. This is done by first solubilizing membrane pieces carrying DNA of interest in dimethyl sulfoxide, followed by isopropanol precipitation and polymerase chain reaction amplification. The source of membrane-bound DNA successfully tested includes plasmid and human leukocyte DNA and DNA immobilized on bacterial colony filters and plaque lifts. The sensitivity of the procedure is such that DNA recovered from 0.5 microgram of filter-bound total human DNA was enough for PCR amplification of a 0.3-kb fragment. Our protocol will be useful for recycling of scarce DNA samples for cloning and sequencing purposes. PMID:8476600

  15. Development of sulfonated FEP Nafion hybrid proton exchange membranes for PEFC

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Fujii, K.; Mitani, N.; Matsuura, A.; Kakigi, T.; Muto, F.; Li, J.; Oshima, A.; Washio, M.

    2007-12-01

    The performance of polymer electrolyte fuel cell (PEFC) is affected by an interfacial property between a proton exchange membrane (PEM) and electrodes. Thus, to develop a well-laminated membrane electrode assembly (MEA), a hybrid PEM (FN) was fabricated by mixing a radiation grafted membrane (sulfonated FEP) with ionomer (Nafion ® dispersion) which is applied to coat the interface of the PEM and electrodes. The obtained FN, sulfonated FEP and Nafion ®112 were characterized in terms of water uptake, ion exchange capacity (IEC), polarization performance and electrochemical impedance. FN showed high IEC and water uptake, which would induce the highest ionic conductivity (IC) among tested PEMs. In terms of FN, the interface between the PEM and electrodes should have been improved because FN showed the lowest charge transfer resistance than other tested PEMs. The high IC and improved interface between the PEM and electrodes resulted in the best cell performance of FN in tested PEMs.

  16. Electrically Conductive Diamond Membrane for Electrochemical Separation Processes.

    PubMed

    Gao, Fang; Nebel, Christoph E

    2016-07-20

    Electrochemically switchable selective membranes play an important role in selective filtration processes such as water desalination, industrial waste treatment, and hemodialysis. Currently, membranes for these purposes need to be optimized in terms of electrical conductivity and stability against fouling and corrosion. In this paper, we report the fabrication of boron-doped diamond membrane by template diamond growth on quartz fiber filters. The morphology and quality of the diamond coating are characterized via SEM and Raman spectroscopy. The membrane is heavily boron doped (>10(21) cm(-3)) with >3 V potential window in aqueous electrolyte. By applying a membrane potential against the electrolyte, the redox active species can be removed via flow-through electrolysis. Compared to planar diamond electrodes, the ∼250 times surface enlargement provided by such a membrane ensures an effective removal of target chemicals from the input electrolyte. The high stability of diamond enables the membrane to not only work at high membrane bias but also to be self-cleaning via in situ electrochemical oxidation. Therefore, we believe that the diamond membrane presented in this paper will provide a solution to future selective filtration applications especially in extreme conditions. PMID:27396448

  17. Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-07-01

    Hybrid membranes of sulfonated poly(ether ether ketone) (SPEEK) and mesoporous silica SBA-15 are prepared with various mass ratios for vanadium redox flow battery (VRB) application and investigated in detail. The hybrid membranes are dense and homogeneous with no visible hole as the SEM and EDX images shown. With the increasing of SBA-15 mass ratio, the physicochemical property, VO2+ permeability, mechanical property and thermal stability of hybrid membranes exhibit good trends, which can be attributed to the interaction between SPEEK and SBA-15. The hybrid membrane with 20 wt.% SBA-15 (termed as S/SBA-15 20) shows the VRB single cell performance of CE 96.3% and EE 88.1% at 60 mA cm-2 due to its good balance of proton conductivity and VO2+ permeability, while Nafion 117 membrane shows the cell performance of CE 92.2% and EE 81.0%. Besides, the S/SBA-15 20 membrane shows stable cell performance of highly stable efficiency and slower discharge capacity decline during 120 cycles at 60 mA cm-2. Therefore, the SPEEK/SBA-15 hybrid membranes with optimized mass ratio and excellent VRB performance can be achieved, exhibiting good potential usage in VRB systems.

  18. What Do We Learn from Docutainment? Processing Hybrid Television Documentaries

    ERIC Educational Resources Information Center

    Glaser, Manuela; Garsoffky, Barbel; Schwan, Stephan

    2012-01-01

    This study examined how hybrid documentary formats, which embed educational contents into narratives, are cognitively processed. Based on existing research and theories, two reception modes were identified: processing with a focus on the narrative plotline and processing with a focus on the thematic structure. In two experiments, two markers of…

  19. Butterfly genomics sheds light on the process of hybrid speciation.

    PubMed

    Nadeau, Nicola

    2014-09-01

    How common is hybridization between species and what effect does it have on the evolutionary process? Can hybridization generate new species and what indeed is a species? In this issue, Gompert et al. (2014) show how massive, genome-scale data sets can be used to shed light on these questions. They focus on the Lycaeides butterflies, and in particular, several populations from the western USA, which have characteristics suggesting that they may contain hybrids of two or more different species (Gompert et al. 2006). They demonstrate that these populations do contain mosaic genomes made up of components from different parental species. However, this appears to have been largely driven by historical admixture, with more recent processes appearing to be isolating the populations from each other. Therefore, these populations are on their way to becoming distinct species (if they are not already) but have arisen following extensive hybridization between other distinct populations or species (Fig. 1). PMID:25208505

  20. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit. PMID:26926200

  1. [Super sweet corn hybrids adaptability for industrial processing. I freezing].

    PubMed

    Alfonzo, Braunnier; Camacho, Candelario; Ortiz de Bertorelli, Ligia; De Venanzi, Frank

    2002-09-01

    With the purpose of evaluating adaptability to the freezing process of super sweet corn sh2 hybrids Krispy King, Victor and 324, 100 cobs of each type were frozen at -18 degrees C. After 120 days of storage, their chemical, microbiological and sensorial characteristics were compared with a sweet corn su. Industrial quality of the process of freezing and length and number of rows in cobs were also determined. Results revealed yields above 60% in frozen corns. Length and number of rows in cobs were acceptable. Most of the chemical characteristics of super sweet hybrids were not different from the sweet corn assayed at the 5% significance level. Moisture content and soluble solids of hybrid Victor, as well as total sugars of hybrid 324 were statistically different. All sh2 corns had higher pH values. During freezing, soluble solids concentration, sugars and acids decreased whereas pH increased. Frozen cobs exhibited acceptable microbiological rank, with low activities of mesophiles and total coliforms, absence of psychrophiles and fecal coliforms, and an appreciable amount of molds. In conclusion, sh2 hybrids adapted with no problems to the freezing process, they had lower contents of soluble solids and higher contents of total sugars, which almost doubled the amount of su corn; flavor, texture, sweetness and appearance of kernels were also better. Hybrid Victor was preferred by the evaluating panel and had an outstanding performance due to its yield and sensorial characteristics. PMID:12448345

  2. CO₂ Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO₂ permeance

  3. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge.

    PubMed

    Xu, Meilan; Wen, Xianghua; Yu, Zhiyong; Li, Yushan; Huang, Xia

    2011-05-01

    Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. PMID:21421308

  4. Mixtures of Supported and Hybrid Lipid Membranes on Heterogeneously Modified Silica Nanoparticles

    PubMed Central

    Piper-Feldkamp, Aundrea R.; Wegner, Maria; Brzezinski, Peter; Reed, Scott M.

    2013-01-01

    Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an interstitial water layer. A fluorescence-quenching assay that utilized a pore-forming peptide was used to demonstrate the existence of two separate lipid leaflets. In this assay, fluorescence was quenched by dithionite in roughly equal proportions prior to and after addition of melittin. When a hydrophobic modifier, octadecyltriethoxysilane, was co-deposited on the nanoparticles with DETAS, there was a decrease in the amount of supported bilayer on the nanoparticles and an increase in the quantity of hybrid membrane. This allowed for a controlled mixture of two distinct types of membranes on a single substrate, one separated by a water cushion and the other anchored directly on the surface, thereby providing a new mimic of cellular membranes. PMID:23387352

  5. Membrane applications and research in food processing: An assessment

    SciTech Connect

    Mohr, C.M.; Leeper, S.A.; Engelau, D.E.; Charboneau, B.L.

    1988-08-01

    This assessment is intended to aid in planning separations research and development projects aimed at reducing energy consumption in the food industry. The food processing industry uses approximately 1.5 quadrillion Btu per year, 2% of the US national annual energy consumption. Food processing involves a variety of liquid feed, product, and waste streams and makes extensive use of thermal operations such as drying, evaporation, pasteurization, and distillation. As such, it is a candidate for energy conservation through the use of membrane separations. The assessment is organized according to Standard Industry Classification (SIC) Code for the food industry. Individual subindustries considered are: (a) Meat Processing, Dairy Products, Preserved Fruit and Vegetables, Grain Milling, Bakery Products, Sugar and Confectionery products, Edible Fats and Oils, and Beverages. Topics covered include: (a) background information on food processing and membrane separations, (b) a review of current and developing membrane separations for the food industry, (c) energy consumption and processes used in individual subindustries, (d) separations in the subindustries that could be augmented or replaced by membrane processes, (e) industry practices and market conditions that could affect adoption of new technologies, and (f) prioritized recommendations for DOE-OIP supported research to further use of membrane separations in the food industry. 435 refs.

  6. Use of membranes for ethylene recovery in polymerization processes

    SciTech Connect

    Dembicki, D.R.; Coan, F.L.; Glassford, C.L.; Overman, D.C.

    1986-11-18

    This patent describes an improved process for manufacture of ethylene polymers wherein the improvement comprises: (a) contacting at least part of the gas mixture remaining after polymerization containing unconverted ethylene monomer with a normally solid, semi-permeable, asymmetric, water-dry, cellulose triacetate hollow fiber membrane at conditions which promote selective permeation of ethylene through the membrane; and (b) recycling the ethylene-enriched permeate as feed for the ethylene polymerization.

  7. Quantum-Classical Hybrid for Information Processing

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source

  8. Membrane processes and devices for separation of bioactive peptides.

    PubMed

    Bazinet, Laurent; Firdaous, Loubna

    2009-01-01

    In recent years, functional foods and nutraceuticals has attracted much attention, particularly for their impact on human health and prevention of certain diseases. Consequently, the production and properties of bioactive peptides has received an increasing scientific interest over the past few years. Considering that most functional peptides are present in complex matrices containing a large number of hydrolyzed protein fractions, their separation and purification are required. Conventional pressure-driven processes can be used for amino acids and peptides separation but are limited by their fouling problems and their low selectivity when separating similar sized biomolecules. To improve the separation efficiency, an external electric field was applied during pressure-driven filtration. However, the pressure gradient brings about the accumulation of peptides at the nearby membrane surface and affects the membrane transport selectivity. Processes combining an electrical field as a driving force to porous membranes have been developed for the separation of biopeptides to obtain better purified products. Compounds of higher molecular weights than the membrane cut-off can be separated. The first trials were carried-out to perform the separation of amino acids and peptides with a filtration module specially designed and using one ultrafiltration membrane. More recently, electrodialysis with ultrafiltration membranes has been developed to fractionate simultaneously acidic and basic peptides, using a conventional electrodialysis cell, in which some ion exchange membranes are replaced by ultrafiltration ones. The perspectives in this field will be the understanding of the interactions of peptides and membrane as well as the development of new membrane materials limitating or increasing these interactions to improve the selectivity and the yield of production of specific peptides. This review article also discusses recent patents related to bioactive peptides. PMID

  9. Synthesis of Discrete Alkyl-Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes.

    PubMed

    Yi, Deliang; Xu, Chenglong; Tang, Ruidie; Zhang, Xuehua; Caruso, Frank; Wang, Yajun

    2016-07-11

    We report the synthesis of highly flexible and mechanically robust hybrid silica nanowires (NWs) which can be used as novel building blocks to construct superhydrophobic functional materials with three-dimensional macroporous networks. The hybrid silica NWs, with an average diameter of 80 nm and tunable length of up to 12 μm, are prepared by anisotropic deposition of the hydrolyzed tetraethylorthosilicate in water/n-pentanol emulsions. A mechanistic investigation reveals that the trimethoxy(octadecyl)silane introduced to the water-oil interface in the synthesis plays key roles in stabilizing the water droplets to sub-100 nm and also growing a layer of octadecyl groups on the NW surface. This work opens a solution-based route for the one-pot preparation of monodisperse, hydrophobic silica NWs and represents an important step toward the bottom-up construction of 3D superhydrophobic materials and macroporous membranes. PMID:27278242

  10. Process, including membrane separation, for separating hydrogen from hydrocarbons

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  11. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes.

    PubMed

    She, Qianhong; Jin, Xue; Li, Qinghua; Tang, Chuyang Y

    2012-05-01

    Osmotically driven membrane processes, such as forward osmosis (FO) and pressure retarded osmosis (PRO), are attracting increasing interest in research and applications in environment and energy related fields. In this study, we systematically investigated the alginate fouling on an osmotic membrane during FO operation using four types of draw solutions (NaCl, MgCl(2), CaCl(2) and Ca(NO(3))(2)) to elucidate the relationships between reverse (from draw solution to feed solution) and forward (from feed solution to draw solution) solute diffusion, and membrane fouling. At the same water flux level (achieved by adjusting the draw solution concentration), the greatest reverse solute diffusion rate was observed for NaCl draw solution, followed by Ca(NO(3))(2) draw solution, and then CaCl(2) draw solution and MgCl(2) draw solution, the order of which was consistent with that of their solute permeability coefficients. Moreover, the reverse solute diffusion of draw solute (especially divalent cation) can change the feed solution chemistry and thus enhance membrane fouling by alginate, the extent of which is related to the rate of the reverse draw solute diffusion and its ability to interact with the foulant. The extent of fouling for the four types of draw solution followed an order of Ca(NO(3))(2) > CaCl(2) > MgCl(2) > NaCl. On the other hand, the rate of forward diffusion of feed solute (e.g., Na(+)) was in turn promoted under severe membrane fouling in active layer facing draw solution orientation, which may be attributed to the fouling enhanced concentration polarization (pore clogging enhanced ICP and cake enhanced concentration polarization). The enhanced concentration polarization can lead to additional water flux reduction and is an important mechanism governing the water flux behavior during FO membrane fouling. Findings have significant implications for the draw solution selection and membrane fouling control in osmotically driven membrane processes. PMID:22386887

  12. Hybrid Fluorinated and Hydrogenated Double-Chain Surfactants for Handling Membrane Proteins.

    PubMed

    Legrand, Fréderic; Breyton, Cécile; Guillet, Pierre; Ebel, Christine; Durand, Grégory

    2016-01-15

    Two hybrid fluorinated double-chain surfactants with a diglucosylated polar head were synthesized. The apolar domain consists of a perfluorohexyl main chain and a butyl hydrogenated branch as a side chain. They were found to self-assemble into small micelles at low critical micellar concentrations, demonstrating that the short branch increases the overall hydrophobicity while keeping the length of the apolar domain short. They were both able to keep the membrane protein bacteriorhodopsin stable, one of them for at least 3 months. PMID:26694765

  13. Towards Self-Assembled Hybrid Artificial Cells: Novel Bottom-Up Approaches to Functional Synthetic Membranes

    PubMed Central

    Brea, Roberto J.; Hardy, Michael D.; Devaraj, Neal K.

    2015-01-01

    There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing “hybrid” artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology. PMID:26149747

  14. Alternative Ultrafiltration Membrane Testing for the SRS Baseline Process

    SciTech Connect

    N. R. Mann; R. S. Herbst; T. G. Garn; M. R. Poirier; S. D. Fink

    2004-06-01

    The ability to more rapidly process high-level waste sludge and supernate, without sacrificing cost savings, continues to be a crucial challenge facing the Savannah River Site (SRS). There has, to date, not been any extensive investigation of alternative filter technologies for the SRS baseline process. To address this problem, a focused investigation into alternative, state-of-the art filtration technologies to facilitate the strontium and actinide removal process, which can be cost effectively implemented in existing facilities and current equipment designs, was completed. Filter technologies manufactured by Mott (0.1 µm and 0.5 µm) Graver (0.07 µm), Pall (0.1 µm and 0.8 µm) and GKN (0.1 µm) were evaluated. Membranes had a nominal inside diameter of 3/8 inches and an active membrane length of 2 feet. The investigation was performed in two phases. The first phase of testing evaluated the consistency or variability in flux through the different membranes using water and a standard 5.0 wt% strontium carbonate slurry. The second phase of testing evaluated the achievable permeate flux and clarity through the various membranes using the SRS average salt supernate simulant at solids loadings of 0.06, 0.29 and 4.5 wt%. Membrane variation data indicate that membranes having an asymmetric ceramic coating (Pall 0.1 µm and Graver 0.07 µm), typically displayed the lowest variability with water. Membranes without a ceramic asymmetric coating (Mott 0.5 µm and GKN 0.1 µm) displayed the highest variability. This is most likely associated with the experimental uncertainties in measuring large volumes of permeate in a short amount of time and to the impact of impurities in the water. In general, variability ranging from 4-56% was observed when using water for all membranes. In the case of variation testing using strontium carbonate, variability decreased to 3-12%. In addition, membrane structure or composition had little effect on the variability. Data obtained from SRS

  15. Aerobic composting leachate treatment by the combination of membrane processes.

    PubMed

    Çakmakci, Mehmet; Özyaka, Vahide Seyda

    2013-02-01

    The main product of the conversion process of organic wastes to a useful organic fertilizer, known as compost, has gained an increasing interest in management of organic wastes recently. One of the main problems arising in the composting facilities is the high organic loaded leachate. In this study, a treatability experiment for composting leachate from a full-scale composting facility was carried out with the combination of membrane processes. The parameters such as chemical oxygen demand, total organic carbon, Cl⁻ and NH₄⁺ were analysed to evaluate the membrane treatment performances of single and combined membrane systems consisting centrifuge, cartridge filter, ultrafiltration and nanofiltration membranes. The removal efficiencies of all pollutants were observed between 4.4 and 98%. The highest removal efficiencies were observed with the nanofiltration membrane (NF90) having a lower molecular weight cut-off than the others used in this study. It was observed that the effluent of NF90 membrane did not exceed the allowed maximum COD value. PMID:23076267

  16. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  17. Direct detection of DNA conformation in hybridization processes.

    PubMed

    Papadakis, George; Tsortos, Achilleas; Bender, Florian; Ferapontova, Elena E; Gizeli, Electra

    2012-02-21

    DNA hybridization studies at surfaces normally rely on the detection of mass changes as a result of the addition of the complementary strand. In this work we propose a mass-independent sensing principle based on the quantitative monitoring of the conformation of the immobilized single-strand probe and of the final hybridized product. This is demonstrated by using a label-free acoustic technique, the quartz crystal microbalance (QCM-D), and oligonucleotides of specific sequences which, upon hybridization, result in DNAs of various shapes and sizes. Measurements of the acoustic ratio ΔD/ΔF in combination with a "discrete molecule binding" approach are used to confirm the formation of straight hybridized DNA molecules of specific lengths (21, 75, and 110 base pairs); acoustic results are also used to distinguish between single- and double-stranded molecules as well as between same-mass hybridized products with different shapes, i.e., straight or "Y-shaped". Issues such as the effect of mono- and divalent cations to hybridization and the mechanism of the process (nucleation, kinetics) when it happens on a surface are carefully considered. Finally, this new sensing principle is applied to single-nucleotide polymorphism detection: a DNA hairpin probe hybridized to the p53 target gene gave products of distinct geometrical features depending on the presence or absence of the SNP, both readily distinguishable. Our results suggest that DNA conformation probing with acoustic wave sensors is a much more improved detection method over the popular mass-related, on/off techniques offering higher flexibility in the design of solid-phase hybridization assays. PMID:22248021

  18. Evaluation of different configurations of hybrid membrane bioreactors for treatment of domestic wastewater.

    PubMed

    Cuevas-Rodríguez, G; Cervantes-Avilés, P; Torres-Chávez, I; Bernal-Martínez, A

    2015-01-01

    Four membrane bioreactors (MBRs) with the same dimensions were studied for 180 days: three hybrid growth membrane bioreactors with biofilm attached in different packing media and a conventional MBR (C-MBR). The four MBRs had an identical membrane module of hollow fiber with a nominal porous diameter of 0.4 μm. The MBRs were: (1) a C-MBR; (2) a moving bed membrane bioreactor (MB-MBR), which was packed with 2 L of carrier Kaldnes-K1, presenting an exposed surface area of 678.90 m²/m³; (3) a non-submerged organic fixed bed (OFB-MBR) packed with 6.5 L of organic packing media composed of a mixture of cylindrical pieces of wood, providing an exposed surface area of 178.05 m²/m³; and (4) an inorganic fixed bed non-submerged membrane bioreactor (IFB-MBR) packed with 6 L of spherical volcanic pumice stone with an exposed surface area of 526.80 m²/m³. The four MBRs were fed at low organic loading (0.51 ± 0.19 kgCOD/m³ d). The results were recorded according to the behavior of the total resistance, transmembrane pressure (TMP), permeability, and removal percentages of the nutrients during the experimental time. The results showed that the MB-MBR presented the better performance on membrane filtration, while the higher nutrient removals were detected in the OFB-MBR and IFB-MBR. PMID:25714631

  19. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system.

    PubMed

    Jöckel, Andreas; Faber, Aline; Kampschulte, Tobias; Korppi, Maria; Rakher, Matthew T; Treutlein, Philipp

    2015-01-01

    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane, the mass of which exceeds that of the atomic ensemble by a factor of 10(10). The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and is enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. PMID:25420032

  20. An adsorption-photocatalysis hybrid process using multi-functional-nanoporous materials for wastewater reclamation.

    PubMed

    Vimonses, Vipasiri; Jin, Bo; Chow, Christopher W K; Saint, Christopher

    2010-10-01

    In this study, two of our recently developed laboratory scale wastewater treatment systems, fluidized-bed reactor (FBR) using formulated clay mixture absorbents (clay-FBR adsorption) and an annular slurry photoreactor (ASP) using TiO(2) impregnated kaolin catalysts (TiO(2)-K-ASP) were integrated as an adsorption-photocatalysis hybrid process to treat municipal wastewater as alternative secondary and tertiary treatment for wastewater reclamation. Primary effluent from sewage and secondary effluent from a membrane bioreactor treatment process were used to assess chemical removal capabilities of the FBR and ASP systems, and the hybrid process. The formulated clays-FBR system demonstrated the prevailing removal efficiency toward PO(4)(3-), NO(3)(-) and suspended solids. The TiO(2)-K-ASP showed superior degradation of dissolved organic content; while the presence of inorganic ions caused a detrimental effect on its performance. The integration of the adsorption and degradation system as a hybrid treatment process resulted in a synergetic enhancement for the chemical removal efficiency. Complete elimination of PO(4)(3-) content was obtained in the adsorption stage; while 30% and 65% NO(3)(-) removal were obtained from the hybrid treatment of the primary and secondary effluents, respectively. The corresponding COD reduction during the photodegradation was further investigated by the high-performance size exclusion chromatography technique, where it revealed the shift of apparent molecular weight of the dissolved organic contaminants toward the smaller region. This present study demonstrated that this adsorption-photocatalysis hybrid technology can be used as a feasible alternative treatment process for wastewater reclamation. PMID:20619869

  1. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multi-barrier treatment.

    PubMed

    Sudhakaran, Sairam; Maeng, Sung Kyu; Amy, Gary

    2013-07-01

    Organic micropollutants (OMPs) represent a major constraint in drinking water supply. In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. PMID:23664475

  2. Alcohol from membrane processed concentrated cheese whey

    SciTech Connect

    Rajagopalan, K.; Kosikowskik, F.V.

    1982-01-01

    A fermentable whey substrate in the form of a high solids permeate was obtained by reconstituting spray-dried whey powder to 36% total solids followed by ultrafiltration to separate the protein. The high solids permeate was demineralized to permit rapid yeast growth. The final permeate with 24% lactose and at pH 4.8 gave high yields of EtOH rapidly upon inoculation with lactose-fermenting yeasts. One yeast species, Kluyveromyces fragilis NRRL Y 2415, yielded 108.8 g of EtOH/L, giving 84.3% of the theoretical maximum. Batch EtOH productivity was 3.2 g/L/h. The cost analysis of the ultrafiltration-fermentation process is highly favorable, if evaporation instead of the widely used reverse osmosis is employed for preconcentration of whey.

  3. New nanocomposite hybrid inorganic-organic proton-conducting membranes based on functionalized silica and PTFE.

    PubMed

    Di Noto, Vito; Piga, Matteo; Giffin, Guinevere A; Negro, Enrico; Furlan, Claudio; Vezzù, Keti

    2012-09-01

    Two types of new nanocomposite proton-exchange membranes, consisting of functionalized and pristine nanoparticles of silica and silicone rubber (SR) embedded in a polytetrafluoroethylene (PTFE) matrix, were prepared. The membrane precursor was obtained from a mechanical rolling process, and the SiO₂ nanoparticles were functionalized by soaking the membranes in a solution of 2-(4-chlorosulfonylphenyl)ethyl trichlorosilane (CSPhEtCS). The membranes exhibit a highly compact morphology and a lack of fibrous PTFE. At 125 °C, the membrane containing the functionalized nanoparticles has an elastic modulus (2.2 MPa) that is higher than that of pristine Nafion (1.28 MPa) and a conductivity of 3.6×10⁻³  S cm⁻¹ despite a low proton-exchange capacity (0.11 meq g⁻¹). The good thermal and mechanical stability and conductivity at T>100 °C make these membranes a promising low-cost material for application in proton-exchange membrane fuel cells operating at temperatures higher than 100 °C. PMID:22807005

  4. CRADA Final Report: Process development for hybrid solar cells

    SciTech Connect

    Ager, Joel W

    2011-02-14

    TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

  5. Hybrid systems for enhanced process control

    SciTech Connect

    Wildman, D.; Ekmann, J.

    1994-12-31

    In this study, a probe is positioned in the mixing zone of two air streams. The goal is to maintain the probe at the location of minimum temperature variation. A neural network was trained to predict this position based on air stream temperatures and flow rates. An expert system calls the network and positions the probe. The position that the neural network predicts is a quantity difficult to measure on-line. Without the information from the neural network, the expert system can not position the probe. With the information, the expert system maintains it at the desired location. This study demonstrates how artificial intelligence could be used to enhance a process control system so that a process functions at a more optimal performance.

  6. Solute coupled diffusion in osmotically driven membrane processes.

    PubMed

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process. PMID:19764248

  7. Integrated forward osmosis-membrane distillation process for human urine treatment.

    PubMed

    Liu, Qianliang; Liu, Caihong; Zhao, Lei; Ma, Weichao; Liu, Huiling; Ma, Jun

    2016-03-15

    This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine. PMID:26773483

  8. Hybrid Discrete-Continuous Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich

    2003-01-01

    This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.

  9. A bio-hybrid anaerobic treatment of papaya processing wastes

    SciTech Connect

    Yang, P.Y.; Chou, C.Y.

    1987-01-01

    Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

  10. Thermal casting process for the preparation of anisotropic membranes and the resultant membrane

    DOEpatents

    Caneba, Gerard T. M.; Soong, David S.

    1987-01-01

    A method for providing anisotropic polymer membranes from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  11. Hybrid process for nitrogen oxides reduction

    SciTech Connect

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  12. A Hybrid Model for Erythrocyte Membrane: A Single Unit of Protein Network Coupled with Lipid Bilayer

    PubMed Central

    Zhu, Qiang; Vera, Carlos; Asaro, Robert J.; Sche, Paul; Sung, L. Amy

    2007-01-01

    To investigate the nanomechanics of the erythrocyte membrane we developed a hybrid model that couples the actin-spectrin network to the lipid bilayer. This model features a Fourier space Brownian dynamics model of the bilayer, a Brownian dynamics model of the actin protofilament, and a modified wormlike-chain model of the spectrin (including a cable-dynamics model to predict the oscillation in tension). This model enables us to predict the nanomechanics of single or multiple units of the protein network, the lipid bilayer, and the effect of their interactions. The present work is focused on the attitude of the actin protofilament at the equilibrium states coupled with the elevations of the lipid bilayer through their primary linkage at the suspension complex in deformations. Two different actin-spectrin junctions are considered at the junctional complex. With a point-attachment junction, large pitch angles and bifurcation of yaw angles are predicted. Thermal fluctuations at bifurcation may lead to mode-switching, which may affect the network and the physiological performance of the membrane. In contrast, with a wrap-around junction, pitch angles remain small, and the occurrence of bifurcation is greatly reduced. These simulations suggest the importance of three-dimensional molecular junctions and the lipid bilayer/protein network coupling on cell membrane mechanics. PMID:17449663

  13. Palladium coated porous anodic alumina membranes for gas reforming processes

    NASA Astrophysics Data System (ADS)

    Wu, Jeremy P.; Brown, Ian W. M.; Bowden, Mark E.; Kemmitt, Timothy

    2010-11-01

    Nanostructured ceramic membranes with ultrathin coatings of palladium metal have been demonstrated to separate hydrogen gas from a gas mixture containing nitrogen with 10% carbon dioxide and 10% hydrogen at temperatures up to 550 °C. The mechanically robust and thermally durable membranes were fabricated using a combination of conventional and high-efficiency anodisation processes on high purity aluminium foils. A pH-neutral plating solution has also been developed to enable electroless deposition of palladium metal on templates which were normally prone to chemical corrosion in strong acid or base environment. Activation and thus seeding of palladium nuclei on the surface of the template were essential to ensure uniform and fast deposition, and the thickness of the metal film was controlled by time of deposition. The palladium coated membranes showed improved hydrogen selectivity with increased temperature as well as after prolonged exposure to hydrogen, demonstrating excellent potential for gas separation technologies.

  14. Thermal casting process for the preparation of membranes

    DOEpatents

    Caneba, G.T.M.; Soong, D.S.

    1985-07-10

    Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  15. Polymeric membrane and process for separating aliphatically unsaturated hydrocarbons

    SciTech Connect

    Ho, W.S.W.

    1991-05-14

    This patent describes a process for separating at least one unsaturated hydrocarbon from a hydrocarbon feed stream containing. It comprises: contacting the feed stream against a first side of a solid, homogeneous membrane consisting essentially of a hydrophilic polymer selected from the group consisting of polyvinylalcohol, polyvinylacetate, sulfonyl containing polymers, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, copolymers thereof, and blends thereof, and a metal or metal ion capable of reversibly complexing with the unsaturated hydrocarbon, the metal or metal ion is distributed homogeneously in the hydrophilic polymer; and withdrawing at a second side of the membrane a permeate comprising the unsaturated hydrocarbon in higher concentration than in the feed stream; whereby the membrane provides high permeability and selectivity for unsaturated hydrocarbons and substantially increases the rate at which the permeate is withdrawn.

  16. High mobility solution-processed hybrid light emitting transistors

    NASA Astrophysics Data System (ADS)

    Walker, Bright; Ullah, Mujeeb; Chae, Gil Jo; Burn, Paul L.; Cho, Shinuk; Kim, Jin Young; Namdas, Ebinazar B.; Seo, Jung Hwa

    2014-11-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm2/V s, current on/off ratios of >107, and external quantum efficiency of 10-2% at 2100 cd/m2. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  17. High mobility solution-processed hybrid light emitting transistors

    SciTech Connect

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B. E-mail: seojh@dau.ac.kr; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa E-mail: seojh@dau.ac.kr

    2014-11-03

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm{sup 2}/V s, current on/off ratios of >10{sup 7}, and external quantum efficiency of 10{sup −2}% at 2100 cd/m{sup 2}. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  18. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  19. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Peterson, E. S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W. A.

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  20. Pressure swing permeation: Novel process for gas separation by membranes

    SciTech Connect

    Feng, X.; Pan, C.Y.; Ivory, J.

    2000-04-01

    A novel process for gas separation, called pressure swing permeation, was investigated to elevate the relatively low permeate pressure by pressurization with high-pressure feed gas, thereby reducing or eliminating additional permeate compression costs where a pressurized permeate is required. This process uses two or more membrane modules and operates in a cyclic fashion, with each module repeatedly undergoing the sequential steps of feed admission and permeation, residual removal, permeate reception, permeate pressurization, and product withdrawal. The unsteady-state permeation associated with pressure swing permeation was studied parametrically, and a bench-scale unit compromising two hollow-fiber membrane modules in parallel was tested for H{sub 2}/N{sub 2} separation to demonstrate the effectiveness of the process. The permeate product at a pressure as high as the feed pressure can be produced without using a compressor. This is impossible with traditional steady-state processes where a pressure differential across the membrane must be maintained. The pressure swing permeation is analogous to pressure swing adsorption and has the potential to be synergistically integrated with the pressure swing adsorption process for enhanced separation of gases.

  1. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  2. Optical hybrid analog-digital signal processing based on spike processing in neurons

    NASA Astrophysics Data System (ADS)

    Fok, Mable P.; Tian, Yue; Rosenbluth, David; Deng, Yanhua; Prucnal, Paul R.

    2011-09-01

    Spike processing is one kind of hybrid analog-digital signal processing, which has the efficiency of analog processing and the robustness to noise of digital processing. When instantiated with optics, a hybrid analog-digital processing primitive has the potential to be scalable, computationally powerful, and have high operation bandwidth. These devices open up a range of processing applications for which electronic processing is too slow. Our approach is based on a hybrid analog/digital computational primitive that elegantly implements the functionality of an integrate-and-fire neuron using a Ge-doped non-linear optical fiber and off-the-shelf semiconductor devices. In this paper, we introduce our photonic neuron architecture and demonstrate the feasibility of implementing simple photonic neuromorphic circuits, including the auditory localization algorithm of the barn owl, which is useful for LIDAR localization, and the crayfish tail-flip escape response.

  3. Hybrid processing of stochastic and subjective uncertainty data

    SciTech Connect

    Cooper, J.A.; Ferson, S.; Ginzburg, L.

    1995-11-01

    Uncertainty analyses typically recognize separate stochastic and subjective sources of uncertainty, but do not systematically combine the two, although a large amount of data used in analyses is partly stochastic and partly subjective. We have developed methodology for mathematically combining stochastic and subjective data uncertainty, based on new ``hybrid number`` approaches. The methodology can be utilized in conjunction with various traditional techniques, such as PRA (probabilistic risk assessment) and risk analysis decision support. Hybrid numbers have been previously examined as a potential method to represent combinations of stochastic and subjective information, but mathematical processing has been impeded by the requirements inherent in the structure of the numbers, e.g., there was no known way to multiply hybrids. In this paper, we will demonstrate methods for calculating with hybrid numbers that avoid the difficulties. By formulating a hybrid number as a probability distribution that is only fuzzy known, or alternatively as a random distribution of fuzzy numbers, methods are demonstrated for the full suite of arithmetic operations, permitting complex mathematical calculations. It will be shown how information about relative subjectivity (the ratio of subjective to stochastic knowledge about a particular datum) can be incorporated. Techniques are also developed for conveying uncertainty information visually, so that the stochastic and subjective constituents of the uncertainty, as well as the ratio of knowledge about the two, are readily apparent. The techniques demonstrated have the capability to process uncertainty information for independent, uncorrelated data, and for some types of dependent and correlated data. Example applications are suggested, illustrative problems are worked, and graphical results are given.

  4. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat

    PubMed Central

    Song, Qilu; Wang, Shuping; Zhang, Gaisheng; Li, Ying; Li, Zheng; Guo, Jialin; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2-, H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding. PMID:26379693

  5. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat.

    PubMed

    Song, Qilu; Wang, Shuping; Zhang, Gaisheng; Li, Ying; Li, Zheng; Guo, Jialin; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2 (-), H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding. PMID:26379693

  6. A production parylene coating process for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Kale, V. S.; Riley, T. J.

    1977-01-01

    The real impetus for developing a production parylene coating process for internal hybrid passivation came as a result of the possibility of loose conductive particles in hybrid microelectronic circuits, causing intermittent and sometimes permanent failures. Because of the excellent mechanical properties of parylene, it is capable of securing the loose particles in place and prevent such failures. The process of coating described consists of (1) vaporizing the initial charge, which is in the form of a dimer; (2) conversion of the dimer into a reactive monomer; and (3) deposition and subsequent polymerization of the monomer in the deposition chamber which forms a uniform parylene film over all the cold surfaces in contact. Experimental results are discussed in terms of wire bond reliability, resistor drift, high-temperature storage characteristics of parylene, and coating acceptance standards. It is concluded that internal cavities of microelectronic circuits can be successfully coated with parylene provided appropriate tooling is used to protect external leads from the parylene monomer.

  7. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents.

    PubMed

    Cho, Y S; Lee, J S; Herrmann, H J; Kahng, B

    2016-01-15

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2<τ(g)≤2.5. This pattern reveals a necessary condition for a hybrid transition in cluster aggregation processes, which is comparable to the power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks. PMID:26824550

  8. Application of a hybrid computer to sweep frequency data processing

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Bruton, W. M.

    1973-01-01

    A hybrid computer program is presented which can process as many as 10 channels of sweep frequency data simultaneously. The program needs only the sine sweep signal used to drive the system, and its correponding quadrature component, to process the data. It can handle a maximum frequency range of 0.5 to 500 hertz. Magnitude and phase are calculated at logarithmically spaced points covering the frequency range of interest. When the sweep is completed, these results are stored in digital form. Thus, a tabular listing and/or a plot of any processed data channel or the transfer function relating any two of them is immediately available.

  9. Silica membranes for hydrogen separation in coal gas processing

    SciTech Connect

    Gavalas, G.R.

    1993-01-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO[sub 2] or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO[sub 2] deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO[sub 2], TiO[sub 2], Al[sub 2]O[sub 3] and B[sub 2]O[sub 3] layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 [Angstrom] mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl[sub 4] (or TiCl[sub 4], AlCl[sub 3], BCl[sub 3]) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  10. The Flip-Flop Diffusion Mechanism across Lipids in a Hybrid Bilayer Membrane.

    PubMed

    Barile, Christopher J; Tse, Edmund C M; Li, Ying; Gewargis, John P; Kirchschlager, Nicholas A; Zimmerman, Steven C; Gewirth, Andrew A

    2016-06-01

    In this study, we examine the mechanism of flip-flop diffusion of proton carriers across the lipid layer of a hybrid bilayer membrane (HBM). The HBM consists of a lipid monolayer appended on top of a self-assembled monolayer containing a Cu-based O2 reduction catalyst on a Au electrode. The flip-flop diffusion rates of the proton carriers dictate the kinetics of O2 reduction by the electrocatalyst. By varying both the tail lengths of the proton carriers and the lipids, we find the combinations of lengths that maximize the flip-flop diffusion rate. These experimental results combined with biophysical modeling studies allow us to propose a detailed mechanism for transmembrane flip-flop diffusion in HBM systems, which involves the bending of the alkyl tail of the proton carrier as the rate-determining step. Additional studies with an unbendable proton carrier further validate these mechanistic findings. PMID:27276263

  11. Design, processing and testing of LSI arrays: Hybrid microelectronics task

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.

    1979-01-01

    Mathematical cost factors were generated for both hybrid microcircuit and printed wiring board packaging methods. A mathematical cost model was created for analysis of microcircuit fabrication costs. The costing factors were refined and reduced to formulae for computerization. Efficient methods were investigated for low cost packaging of LSI devices as a function of density and reliability. Technical problem areas such as wafer bumping, inner/outer leading bonding, testing on tape, and tape processing, were investigated.

  12. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  13. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-05-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{trademark} (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described.

  14. Surface-Enhanced Infrared Spectroscopy and Neutron Reflectivity Studies of Ubiquinone in Hybrid Bilayer Membranes under Potential Control.

    PubMed

    Quirk, Amanda; Lardner, Michael J; Tun, Zin; Burgess, Ian J

    2016-03-01

    Surface-enhanced infrared adsorption spectroscopy (SEIRAS) and neutron reflectometry (NR) were employed to characterize ubiquinone (UQ) containing hybrid bilayer membranes. The biomimetic membrane was prepared by fusing phospholipid vesicles on a hydrophobic octadecanethiol monolayer self-assembled on a thin gold film. Using SEIRAS, the assembly of the membrane is monitored in situ. The presence of ubiquinone is verified by the characteristic carbonyl peaks from the quinone ester. A well-ordered distal lipid leaflet results from fusion of vesicles with and without the addition of ubiquinone. With applied potential, the hybrid bilayer membrane in the absence of UQ behaves in the same way as previously reported solid supported phospholipid membranes. When ubiquinone is incorporated in the membrane, electric field induced changes in the distal leaflet are suppressed. Changes in the infrared vibrations of the ubiquinone due to applied potential indicate the head groups are located in both polar and nonpolar environments. The spectroscopic data reveal that the isoprenoid unit of the ubiquinone is likely lying in the midplane of the lipid bilayer while the head has some freedom to move within the hydrophobic core. The SEIRAS experiments show redox behavior of UQ incorporated in a model lipid membrane that are otherwise inaccessible with traditional electrochemistry techniques. PMID:26867110

  15. Membrane-based processes for sustainable power generation using water.

    PubMed

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. PMID:22895336

  16. Separation of bioactive peptides by membrane processes: technologies and devices.

    PubMed

    Bazinet, Laurent; Firdaous, Loubna

    2013-04-01

    Although many patents reported bioactive peptides with numerous demonstrated bioactivities and potential applications, there exist some limitations to the production of large quantities to satisfy the growing market demands. Indeed, considering that most functional peptides are present in complex matrices containing a large number of hydrolyzed protein fractions, their separation and purification are required. Some advances have been made in the use of conventional pressure-driven processes for the continuous production and separation of peptides, however, most of these patented technologies are not scalable and demonstrate a low selectivity when separating similar sized biomolecules. To improve the separation efficiency, the use of an external electric field during pressure-driven filtration was proposed and patented. However, whatever the claims, the pressure gradient brings about the accumulation of peptides at the nearby membrane surface and affects the membrane transport selectivity. To overcome these drawbacks, a recent patent proposed the simultaneous fractionation of acidic and basic peptides, using a conventional electrodialysis cell, in which some ion exchange membranes are replaced by ultrafiltration ones. The perspectives in the field of peptide separation will be the development of new membrane materials and new equipments such as microfluidic devices to improve selectivity and yield of production. PMID:23003009

  17. Solution processed flexible planar hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Gill, Hardeep Singh; Kokil, Akshay; Li, Lian; Mosurkal, Ravi; Kumar, Jayant

    2014-10-01

    Organolead halide perovskites are attracting considerable attention for applications in high performance and flexible hybrid photovoltaic devices. Low temperature solution-processed flexible hybrid solar cells with CH3NH3PbI2Cl, using [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) and Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt- (benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) as electron transport materials were fabricated on ITO coated plastic substrates in planar configuration. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate was employed as the electron blocking layer. Under standard AM 1.5G solar irradiation, these flexible solar cells yielded power conversion efficiencies of 5.14% and 7.05% with the electron transporting materials PCBM and F8BT, respectively.

  18. High-throughput process development: II. Membrane chromatography.

    PubMed

    Rathore, Anurag S; Muthukumar, Sampath

    2014-01-01

    Membrane chromatography is gradually emerging as an alternative to conventional column chromatography. It alleviates some of the major disadvantages associated with the latter including high pressure drop across the column bed and dependence on intra-particle diffusion for the transport of solute molecules to their binding sites within the pores of separation media. In the last decade, it has emerged as a method of choice for final polishing of biopharmaceuticals, in particular monoclonal antibody products. The relevance of such a platform is high in view of the constraints with respect to time and resources that the biopharma industry faces today. This protocol describes the steps involved in performing HTPD of a membrane chromatography step. It describes operation of a commercially available device (AcroPrep™ Advance filter plate with Mustang S membrane from Pall Corporation). This device is available in 96-well format with 7 μL membrane in each well. We discuss the challenges that one faces when performing such experiments as well as possible solutions to alleviate them. Besides describing the operation of the device, the protocol also presents an approach for statistical analysis of the data that is gathered from such a platform. A case study involving use of the protocol for examining ion exchange chromatography of Granulocyte Colony Stimulating Factor (GCSF), a therapeutic product, is briefly discussed. This is intended to demonstrate the usefulness of this protocol in generating data that is representative of the data obtained at the traditional lab scale. The agreement in the data is indeed very significant (regression coefficient 0.99). We think that this protocol will be of significant value to those involved in performing high-throughput process development of membrane chromatography. PMID:24648065

  19. Preconceptual design of a salt splitting process using ceramic membranes

    SciTech Connect

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  20. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    NASA Technical Reports Server (NTRS)

    Gamboa-Vázquez, Sonia; Flynn, Michael; Romero Mangado, Jaione; Parodi, Jurek

    2016-01-01

    Wastewater treatment through Forward Osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flow rates. Membrane fouling can be reversed with the use of antifoulant solutions. The aim of this study is to identify the materials that cause flow rate reduction due to membrane fouling, as well as to evaluate the flux recovery after membrane treatment using commercially available antifoulants. 3D Laser Scanning Microscope images were taken to observe the surface of the membrane. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flow rate recovery after membrane treatment using antifoulants.

  1. Energy management and membrane technology in food and dairy processing

    SciTech Connect

    Not Available

    1983-01-01

    This book presents the papers given at a special food engineering symposium held in conjunction with the Food and Dairy Expo '83 held in Chicago. Topics considered at the symposium included techniques for food plant energy analysis, process modifications to reduce energy usage, cutting energy costs in boiler room operations, selecting motors and lights for energy efficiency, refrigeration heat recovery, integrated energy systems, reverse osmosis and mechanical vapor recompression, evaporation for liquid food concentration, cottage cheese from ultrafiltered skim milk, process cheese production via direct acidification, the outlook for protein concentrate and lactose, permeate from whey ultrafiltration, a consultant's view of cheese and whey processing trends, whey processing research, and on-farm use of membrane systems.

  2. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment.

    PubMed

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun

    2016-03-15

    For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment. PMID:26803266

  3. Polymeric membrane and process for separation of aliphatically unsaturated hydrocarbons

    SciTech Connect

    Ho, W.S.W.

    1991-11-05

    This patent describes a process for separating at least one unsaturated hydrocarbon from a hydrocarbon feed steam containing the unsaturated hydrocarbon. It comprises contacting the feed stream against a first side of a solid, homogeneous membrane comprising a hydrophilic polymer selected from the group consisting of a polyvinylalcohol, polyvinylacetate, sulfonyl-containing polymers, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, copolymers thereof, and blends thereof a transition metal or transition metal ion capable of reversibly complexing with the unsaturated hydrocarbon, and a hydrophilic salt of a Group I metal; and withdrawing at a second side of the membrane a permeate comprising the unsaturated hydrocarbon in higher concentration than in the feed stream. This patent also describes a solid, homogeneous membrane for separating at least one unsaturated hydrocarbon from a hydrocarbon stream containing the unsaturated hydrocarbon. It comprises a hydrophilic polymer selected from the group consisting of polyvinylalcohol, polyvinylacetate, sulfonyl-containing polymers, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, copolymers thereof, and blends thereof, a transition metal or transition metal ion capable of reversibly complexing with the unsaturated hydrocarbon, and a hydrophilic salt of a Group I metal.

  4. Spaceborne Hybrid-FPGA System for Processing FTIR Data

    NASA Technical Reports Server (NTRS)

    Bekker, Dmitriy; Blavier, Jean-Francois L.; Pingree, Paula J.; Lukowiak, Marcin; Shaaban, Muhammad

    2008-01-01

    Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs.

  5. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Dennis Dalrymple

    2003-10-01

    This third quarter report of 2003 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and off-shore applications. CrystaSulf{reg_sign} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant site in west Texas.

  6. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Dennis Dalrymple

    2004-04-01

    This first quarter report of 2004 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and off-shore applications. CrystaSulf{reg_sign} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane while avoiding methane oxidation and fouling due to coking from other hydrocarbon contaminants. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant site in west Texas.

  7. Process of inducing pores in membranes by melittin

    PubMed Central

    Lee, Ming-Tao; Sun, Tzu-Lin; Hung, Wei-Chin; Huang, Huey W.

    2013-01-01

    Melittin is a prototype of the ubiquitous antimicrobial peptides that induce pores in membranes. It is commonly used as a molecular device for membrane permeabilization. Even at concentrations in the nanomolar range, melittin can induce transient pores that allow transmembrane conduction of atomic ions but not leakage of glucose or larger molecules. At micromolar concentrations, melittin induces stable pores allowing transmembrane leakage of molecules up to tens of kilodaltons, corresponding to its antimicrobial activities. Despite extensive studies, aspects of the molecular mechanism for pore formation remain unclear. To clarify the mechanism, one must know the states of the melittin-bound membrane before and after the process. By correlating experiments using giant unilamellar vesicles with those of peptide-lipid multilayers, we found that melittin bound on the vesicle translocated and redistributed to both sides of the membrane before the formation of stable pores. Furthermore, stable pores are formed only above a critical peptide-to-lipid ratio. The initial states for transient and stable pores are different, which implies different mechanisms at low and high peptide concentrations. To determine the lipidic structure of the pore, the pores in peptide–lipid multilayers were induced to form a lattice and examined by anomalous X-ray diffraction. The electron density distribution of lipid labels shows that the pore is formed by merging of two interfaces through a hole. The molecular property of melittin is such that it adsorbs strongly to the bilayer interface. Pore formation can be viewed as the bilayer adopting a lipid configuration to accommodate its excessive interfacial area. PMID:23940362

  8. Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    He, Jinglin; Choe, Song-Yul; Hong, Chang-Oug

    A polymer electrolyte membrane fuel cell (PEM FC) system as a power source used in mobile applications should be able to produce electric power continuously and dynamically to meet the demand of the driver by consuming the fuel, hydrogen. The hydrogen stored in the tank is supplied to the anode of the stack by a fuel delivery system (FDS) that is comprised of supply and recirculation lines controlled by different actuators. Design of such a system and its operation should take into account several aspects, particularly efficient fuel usage and safe operation of the stack. The exiting unconsumed hydrogen is circulated and reused to increase the efficiency and at the same time maintain the humidity in the anode side of the stack, thereby preventing drying and flooding in the channel which can affect the stack performance. A high pressure difference across a cell between the anode and cathode could cause damage on thin layers of the cell components and water imbalance in the membranes. In this paper, we analyze a hybrid fuel delivery system that consists of two supply and two recirculation lines. The major components were a pressure regulator, a flow control valve, an ejector, and a blower. These models were developed and connected in order to analyze dynamic behavior of the fuel delivery system. Based on the models, two control strategies, a decentralized classic proportional and integral control and a state feed-back control were designed and optimized to keep a constant pressure in the anode flow channel and a constant ratio of mass flow rates from recirculation to supply lines. The integrated system with the two different controllers was simulated to evaluate its tracking and rejection performance at different references and disturbances.

  9. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    PubMed

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. PMID:24880609

  10. State of water in hybrid sulfonated poly(ether ether ketone) - silica membranes by 1H solid-state NMR

    NASA Astrophysics Data System (ADS)

    Baias, Maria; Demco, Dan E.; Blümich, Bernhard; Möller, Martin

    2009-04-01

    The state of water in fully hydrated sulfonated poly(ether ether ketone) - silica hybrid proton exchange membranes were characterized in terms of the exchange rate between bound and free water, the water dynamics in each phase, and the relative water populations by 1H ODESSA and transverse magnetization relaxation NMR. The exchange rate, the amount of bound water, and the reorientation of free water molecules increase in the presence of silica particles. The dynamics of bound water was described by the Lévy statistics with a Cauchy propagator. The proton exchange membranes performances could be improved by addition of small concentrations of silica in the range of 5-10 wt.%.