Hybrid pyramid/neural network object recognition
NASA Astrophysics Data System (ADS)
Anandan, P.; Burt, Peter J.; Pearson, John C.; Spence, Clay D.
1994-02-01
This work concerns computationally efficient computer vision methods for the search for and identification of small objects in large images. The approach combines neural network pattern recognition with pyramid-based coarse-to-fine search, in a way that eliminates the drawbacks of each method when used by itself and, in addition, improves object identification through learning and exploiting the low-resolution image context associated with the objects. The presentation will describe the system architecture and the performance on illustrative problems.
Applications of neural networks in chemical engineering: Hybrid systems
Ferrada, J.J.; Osborne-Lee, I.W. ); Grizzaffi, P.A. )
1990-01-01
Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applications of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.
A neural network hybrid expert system
Goulding, J.R. . Dept. of Mechanical Engineering)
1991-01-01
When knowledge-based expert rules, equations, and proprietary languages extend Computer Aided Design and Computer Aided Manufacturing (CAD CAM) software, previously designed mechanisms can be scaled to satisfy new design requirements in the shortest time. However, embedded design alternatives needed by design engineers during the product conception and rework stages are lacking, and an operator is required who has a thorough understanding of the intended design and the how-to expertise needed to create and optimize the mechanisms. By applying neural network technology to build an expert system, a robust design supervisor system emerged which automated the embedded intellectual operations (e.g. questioning, identifying, selecting, and coordinating the design process) to (1) select the best mechanisms necessary to design a power transmission gearbox from proven solutions; (2) aid the inexperienced operator in developing complex design solutions; and (3) provide design alternatives which add back-to-the-drawing board capabilities to knowledge-based mechanical CAD/CAM software programs. 15 refs., 2 figs.
Hybrid first-principles/neural networks model for column flotation
Gupta, S.; Liu, P.H.; Svoronos, S.A.; Sharma, R.; Abdel-Khalek, N.A.; Cheng, Y.; El-Shall, H.
1999-03-01
A new model for phosphate column flotation is presented which for the first time relates the effects of operating variables such as frother concentration on column performance. This is a hybrid model that combines a first-principles model with artificial neural networks. The first-principles model is obtained from material balances on both phosphate particles and gangue (undesired material containing mostly silica). First-order rates of net attachment are assumed for both. Artificial neural networks relate the attachment rate constants to the operating variables. Experiments were conducted in a 6-in.-dia. (152-mm-dia.) laboratory column to provide data for neural network training and model validation. The model successfully predicts the effects of frother concentration, particle size, air flow rate and bubble diameter on grade and recovery.
Hybrid analog-digital associative neural network
NASA Technical Reports Server (NTRS)
Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Lambe, John J. (Inventor)
1989-01-01
Random access memory is used to store synaptic information in the form of a matrix of rows and columns of binary digits. N rows read in sequence are processed through switches and resistors, and a summing amplifier to N neural amplifiers in sequence, one row for each amplifier, using a first array of sample-and-hold devices S/H1 for commutation. The outputs of the neural amplifiers are stored in a second array of sample-and-hold devices S/H2 so that after N rows are processed, all of said second array of sample-and-hold devices are updated. A second memory may be added for binary values of 0 and -1, and processed simultaneously with the first to provide for values of 1, 0, and -1, the results of which are combined in a difference amplifier.
Adaptive hybrid learning for neural networks.
Smithies, Rob; Salhi, Said; Queen, Nat
2004-01-01
A robust locally adaptive learning algorithm is developed via two enhancements of the Resilient Propagation (RPROP) method. Remaining drawbacks of the gradient-based approach are addressed by hybridization with gradient-independent Local Search. Finally, a global optimization method based on recursion of the hybrid is constructed, making use of tabu neighborhoods to accelerate the search for minima through diversification. Enhanced RPROP is shown to be faster and more accurate than the standard RPROP in solving classification tasks based on natural data sets taken from the UCI repository of machine learning databases. Furthermore, the use of Local Search is shown to improve Enhanced RPROP by solving the same classification tasks as part of the global optimization method. PMID:15006027
Hybrid interior point training of modular neural networks.
Szymanski, P T; Lemmon, M; Bett, C J
1998-03-01
Modular neural networks use a single gating neuron to select the outputs of a collection of agent neurons. Expectation-maximization (EM) algorithms provide one way of training modular neural networks to approximate non-linear functionals. This paper introduces a hybrid interior-point (HIP) algorithm for training modular networks. The HIP algorithm combines an interior-point linear programming (LP) algorithm with a Newton-Raphson iteration in such a way that the computational efficiency of the interior point LP methods is preserved. The algorithm is formally proven to converge asymptotically to locally optimal networks with a total computational cost that scales in a polynomial manner with problem size. Simulation experiments show that the HIP algorithm produces networks whose average approximation error is better than that of EM-trained networks. These results also demonstrate that the computational cost of the HIP algorithm scales at a slower rate than the EM-procedure and that, for small-size networks, the total computational costs of both methods are comparable. PMID:12662833
Unsupervised classification of neural spikes with a hybrid multilayer artificial neural network.
García, P; Suárez, C P; Rodríguez, J; Rodríguez, M
1998-07-01
The understanding of the brain structure and function and its computational style is one of the biggest challenges both in Neuroscience and Neural Computation. In order to reach this and to test the predictions of neural network modeling, it is necessary to observe the activity of neural populations. In this paper we propose a hybrid modular computational system for the spike classification of multiunits recordings. It works with no knowledge about the waveform, and it consists of two moduli: a Preprocessing (Segmentation) module, which performs the detection and centering of spike vectors using programmed computation; and a Processing (Classification) module, which implements the general approach of neural classification: feature extraction, clustering and discrimination, by means of a hybrid unsupervised multilayer artificial neural network (HUMANN). The operations of this artificial neural network on the spike vectors are: (i) compression with a Sanger Layer from 70 points vector to five principal component vector; (ii) their waveform is analyzed by a Kohonen layer; (iii) the electrical noise and overlapping spikes are rejected by a previously unreported artificial neural network named Tolerance layer; and (iv) finally the spikes are labeled into spike classes by a Labeling layer. Each layer of the system has a specific unsupervised learning rule that progressively modifies itself until the performance of the layer has been automatically optimized. The procedure showed a high sensitivity and specificity also when working with signals containing four spike types. PMID:10223516
Neural-network hybrid control for antilock braking systems.
Lin, Chih-Min; Hsu, C F
2003-01-01
The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions. PMID:18238018
A research using hybrid RBF/Elman neural networks for intrusion detection system secure model
NASA Astrophysics Data System (ADS)
Tong, Xiaojun; Wang, Zhu; Yu, Haining
2009-10-01
A hybrid RBF/Elman neural network model that can be employed for both anomaly detection and misuse detection is presented in this paper. The IDSs using the hybrid neural network can detect temporally dispersed and collaborative attacks effectively because of its memory of past events. The RBF network is employed as a real-time pattern classification and the Elman network is employed to restore the memory of past events. The IDSs using the hybrid neural network are evaluated against the intrusion detection evaluation data sponsored by U.S. Defense Advanced Research Projects Agency (DARPA). Experimental results are presented in ROC curves. Experiments show that the IDSs using this hybrid neural network improve the detection rate and decrease the false positive rate effectively.
Yang, Chih-Chung; Bose, N K
2005-05-01
Neural networks have been applied to landmine detection from data generated by different kinds of sensors. Real-valued neural networks have been used for detecting landmines from scattering parameters measured by ground penetrating radar (GPR) after disregarding phase information. This paper presents results using complex-valued neural networks, capable of phase-sensitive detection followed by classification. A two-layer hybrid neural network structure incorporating both supervised and unsupervised learning is proposed to detect and then classify the types of landmines. Tests are also reported on a benchmark data. PMID:15941001
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
A neural networks-based hybrid routing protocol for wireless mesh networks.
Kojić, Nenad; Reljin, Irini; Reljin, Branimir
2012-01-01
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360
A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks
Kojić, Nenad; Reljin, Irini; Reljin, Branimir
2012-01-01
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360
Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system
NASA Astrophysics Data System (ADS)
Manivannan, N.; Neil, M. A. A.
2011-04-01
In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.
NASA Astrophysics Data System (ADS)
Wan, Li; Zhou, Qinghua
2007-10-01
The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2005-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Hybrid Neural Network and Support Vector Machine Method for Optimization
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2007-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
NASA Astrophysics Data System (ADS)
Mantovanelli, Ivana C. C.; Rivera, Elmer Ccopa; da Costa, Aline C.; Filho, Rubens Maciel
In this work a procedure for the development of a robust mathematical model for an industrial alcoholic fermentation process was evaluated. The proposed model is a hybrid neural model, which combines mass and energy balance equations with functional link networks to describe the kinetics. These networks have been shown to have a good nonlinear approximation capability, although the estimation of its weights is linear. The proposed model considers the effect of temperature on the kinetics and has the neural network weights reestimated always so that a change in operational conditions occurs. This allow to follow the system behavior when changes in operating conditions occur.
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450
Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450
NASA Astrophysics Data System (ADS)
Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.
2016-04-01
This paper presents a hybrid neural network approach to model magnetic hysteresis at macro-magnetic scale. That approach aims to be coupled together with numerical treatments of magnetic hysteresis such as FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, allowing a complete computer simulation with acceptable run times. The proposed Hybrid Neural System consists of four inputs representing the magnetic induction and magnetic field components at each time step and it is trained by 2D and scalar measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the Hybrid Neural System returns the predicted value of the field H at the same time step. Within the Hybrid Neural System, a suitably trained neural network is used for predicting the hysteretic behavior of the material to be modeled. Validations with experimental tests and simulations for symmetric, non-symmetric and minor loops are presented.
NASA Astrophysics Data System (ADS)
Liao, Xiaofeng; Wong, Kwok-Wo
2003-04-01
In this paper, the dynamical characteristics of hybrid bidirectional associative memory neural networks with constant transmission delays are investigated. Without assuming symmetry of synaptic connection weights and monotonicity and differentiability of activation functions, Halanay-type inequalities (which are different from the approach of constructing Lyapunov functionals) are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Our results are less conservative and restrictive than previously known results.
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2014-12-01
In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. PMID:25233483
Hybrid neural network and rule-based pattern recognition system capable of self-modification
Glover, C.W.; Silliman, M.; Walker, M.; Spelt, P.F. ); Rao, N.S.V. . Dept. of Computer Science)
1990-01-01
This paper describes a hybrid neural network and rule-based pattern recognition system architecture which is capable of self-modification or learning. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. The hybrid system employs a hierarchical architecture, and it can be interfaced with one or more sensors. Feature extraction routines operating on raw sensor data produce feature vectors which serve as inputs to neural network classifiers at the next level in the hierarchy. These low-level neural networks are trained to provide further discrimination of the sensor data. A set of feature vectors is formed from a concatenation of information from the feature extraction routines and the low-level neural network results. A rule-based classifier system uses this feature set to determine if certain expected environmental states, conditions, or objects are present in the sensors' current data stream. The rule-based system has been given an a priori set of models of the expected environmental states, conditions, or objects which it is expected to identify. The rule-based system forms many candidate directed graphs of various combinations of incoming features vectors, and it uses a suitably chosen metric to measure the similarity between candidate and model directed graphs. The rule-based system must decide if there is a match between one of the candidate graphs and a model graph. If a match is found, then the rule-based system invokes a routine to create and train a new high-level neural network from the appropriate feature vector data to recognize when this model state is present in future sensor data streams. 12 refs., 3 figs.
Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.
Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao
2015-02-01
This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research. PMID:25608292
NASA Astrophysics Data System (ADS)
Kusnandar, Dadan; Mara, Muhlasah Novitasari; Debataraja, Naomi Nessyana
2015-12-01
A diagnostics model was proposed to estimate the mean sea level change by hybridizing exponential smoothing and neural network. The model integrated the linear characteristics of the exponential smoothing model and the nonlinear pattern of the neural network. Mean sea level data were obtained from the measurements of Jason-2 satellite altimeter mission from 2008 - 2014. The results showed that the diagnostic model obtained by hybridization of the exponential smoothing and neural network model provide an alternative prediction model for the mean sea level change in South China Sea.
NASA Astrophysics Data System (ADS)
Liao, Xiaofeng; Wong, Kwok-Wo; Yang, Shizhong
2003-09-01
In this Letter, the characteristics of the convergence dynamics of hybrid bidirectional associative memory neural networks with distributed transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the Lyapunov functionals are constructed and the generalized Halanay-type inequalities are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Some examples are given to illustrate the correctness of our results.
Meier, E.; Morgan, M. J.; Biedron, S. G.; LeBlanc, G.; Wu, J.
2009-01-01
This paper describes the implementation of a neural network hybrid controller for energy stabilization at the Australian Synchrotron Linac. The structure of the controller consists of a neural network (NNET) feed forward control, augmented by a conventional Proportional-Integral (PI) feedback controller to ensure stability of the system. The system is provided with past states of the machine in order to predict its future state, and therefore apply appropriate feed forward control. The NNET is able to cancel multiple frequency jitter in real-time. When it is not performing optimally due to jitter changes, the system can successfully be augmented by the PI controller to attenuate the remaining perturbations. With a view to control the energy and bunch length at the FERMI{at}Elettra Free Electron Laser (FEL), the present study considers a neural network hybrid feed forward-feedback type of control to rectify limitations related to feedback systems, such as poor response for high jitter frequencies or limited bandwidth, while ensuring robustness of control. The Australian Synchrotron Linac is equipped with a beam position monitor (BPM), that was provided by Sincrotrone Trieste from a former transport line thus allowing energy measurements and energy control experiments. The present study will consequently focus on correcting energy jitter induced by variations in klystron phase and voltage.
NASA Astrophysics Data System (ADS)
Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.
2013-03-01
Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.
Gong, Dawei; Lewis, Frank L; Wang, Liping; Xu, Ke
2016-05-01
In this paper, a novel pinning synchronization (synchronization with pinning control) scheme for an array of neural networks with hybrid coupling is investigated. The main contributions are as follows: (1) A novel pinning control strategy is proposed for the first time. Pinning control schemes are introduced as an array of column vector. The controllers are designed as simple linear systems, which are easy to be analyzed or tested. (2) Augmented Lyapunov-Krasovskii functional (LKF) is applied to introduce more relax variables, which can alleviate the requirements of the positive definiteness of the matrix. (3) Based on the appropriate LKF, by introducing some free weighting matrices, some novel synchronization criteria are derived. Furthermore, the proposed pinning control scheme described by column vector can also be expanded to almost all the other array of neural networks. Finally, numerical examples are provided to show the effectiveness of the proposed results. PMID:26922719
Hybrid information privacy system: integration of chaotic neural network and RSA coding
NASA Astrophysics Data System (ADS)
Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.
2005-03-01
Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.
Smith, Patrick I.
2003-09-23
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing
NASA Astrophysics Data System (ADS)
Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline
2013-04-01
Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.
Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control
Kocaturk, Mehmet; Gulcur, Halil Ozcan; Canbeyli, Resit
2015-01-01
In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) as a practical platform for the development of novel brain–machine interface (BMI) controllers, which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons, which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two-target reaching task in one-dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN) simulations with powerful online data visualization tools and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired BMI controllers. We believe that the BNDE is the first implementation, which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations. PMID:26321943
Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control.
Kocaturk, Mehmet; Gulcur, Halil Ozcan; Canbeyli, Resit
2015-01-01
In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) as a practical platform for the development of novel brain-machine interface (BMI) controllers, which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons, which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two-target reaching task in one-dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN) simulations with powerful online data visualization tools and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired BMI controllers. We believe that the BNDE is the first implementation, which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations. PMID:26321943
A hybrid deep neural network and physically based distributed model for river stage prediction
NASA Astrophysics Data System (ADS)
hitokoto, Masayuki; sakuraba, Masaaki
2016-04-01
We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network
Monitoring near burner slag deposition with a hybrid neural network system
NASA Astrophysics Data System (ADS)
Tan, C. K.; Wilcox, S. J.; Ward, J.; Lewitt, M.
2003-07-01
This paper is concerned with the development of a system to detect and monitor slag growth in the near burner region in a pulverized-fuel (pf) fired combustion rig. These slag deposits are commonly known as 'eyebrows' and can markedly affect the stability of the burner. The study thus involved a series of experiments with two different coals over a range of burner conditions using a 150 kW pf burner fitted with simulated eyebrows. These simulated eyebrows consisted of annular refractory inserts mounted immediately in front of the original burner quarl. Data obtained by monitoring the infra-red radiation and sound emitted by the flame were processed to yield time and frequency-domain features, which were then used to train and test a hybrid neural network. This hybrid 'intelligent' system was based on self organizing map and radial-basis-function neural networks. This system was able to classify different sized eyebrows with a success rate of at least 99.5%. Consequently, it is possible not only to detect the presence of an eyebrow by monitoring the flame, but also the network can provide an estimate of the size of the deposit, over a reasonably large range of conditions.
a Hybrid Approach of Neural Network with Particle Swarm Optimization for Tobacco Pests Prediction
NASA Astrophysics Data System (ADS)
Lv, Jiake; Wang, Xuan; Xie, Deti; Wei, Chaofu
Forecasting pests emergence levels plays a significant role in regional crop planting and management. The accuracy, which is derived from the accuracy of the forecasting approach used, will determine the economics of the operation of the pests prediction. Conventional methods including time series, regression analysis or ARMA model entail exogenous input together with a number of assumptions. The use of neural networks has been shown to be a cost-effective technique. But their training, usually with back-propagation algorithm or other gradient algorithms, is featured with some drawbacks such as very slow convergence and easy entrapment in a local minimum. This paper presents a hybrid approach of neural network with particle swarm optimization for developing the accuracy of predictions. The approach is applied to forecast Alternaria alternate Keissl emergence level of the WuLong Country, one of the most important tobacco planting areas in Chongqing. Traditional ARMA model and BP neural network are investigated as comparison basis. The experimental results show that the proposed approach can achieve better prediction performance.
A robust hybrid VLSI neural network architecture for a smart optical sensor
NASA Astrophysics Data System (ADS)
Djahanshahi, Hormoz
This thesis introduces a novel approach to the design of circuits found in a very large scale integration (VLSI) implementation of an artificial neural network. A robust hybrid architecture with analog and digital elements has been developed for a fully-parallel single-chip realization of multilayer neural networks. The proposed architecture is highly modular and creates regular silicon structures that well suit a VLSI realization. The architecture employs an innovative universal building block consisting of an improved digital-analog multiplier, a new analog active nonlinear resistor and a digital weight register. The key circuit called a unified synapse-neuron allows one to realize a self-scaling sigmoidal neuron characteristic that does not have to be constantly redesigned to accommodate a varying dynamic input range that is dependent upon the number of synaptic weights connected to the input of the neuron. The effects of synaptic weight quantization noise are also shown to be reduced using a stochastic model developed in the thesis. A new resistive-type neuron circuit is presented that exhibits inherently low characteristic variations based on analyses, simulations and fabrication measurements. Moreover, as each neuron is realized by a number of compact sub-neurons that are distributed over the die area, the effects of process variations on the neuron's characteristics are minimized due to the distributed averaging effect that takes place. Increased robustness is achieved as there is a simultaneous reduction of both digital quantization effects and analog variation effects. The distributed nature of the analog neuron also has the potential to contribute to increased fault tolerance for certain types of neuron circuit failure. Circuit design, implementation and characterization are performed in a standard CMOS process at 5V and 3.3V supply voltages so as to lead to an optimized design. The purpose for this research was to develop a smart non-contact optical
NASA Astrophysics Data System (ADS)
Manivannan, Nadarajah; Neil, Mark A. A.; Balachandran, Wamadeva
2012-05-01
A new interpolation algorithm is proposed and demonstrated to perform automatic angle measurement of two-dimensional (2D) objects. The proposed algorithm works in conjunction with optical correlator neural network hybrid architecture (OCNN). The OCNN is trained with a combined algorithm of direct binary search and error back propagation. Input of the OCNN is presented with an image whose angle of rotation is to be measured, and output from the OCNN is fed into the proposed interpolation algorithm, which finally produces the rotation angle of the input image. Results of both computer simulation and experimental set-up are presented for an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer neural network. We obtained very low experimental mean absolute error of 3.18 deg with standard deviation of 2.9 deg.
A hybrid neural network structure for application to nondestructive TRU waste assay
Becker, G.
1995-12-31
The determination of transuranic (TRU) and associated radioactive material quantities entrained in waste forms is a necessary component. of waste characterization. Measurement performance requirements are specified in the National TRU Waste Characterization Program quality assurance plan for which compliance must be demonstrated prior to the transportation and disposition of wastes. With respect to this criterion, the existing TRU nondestructive waste assay (NDA) capability is inadequate for a significant fraction of the US Department of Energy (DOE) complex waste inventory. This is a result of the general application of safeguard-type measurement and calibration schemes to waste form configurations. Incompatibilities between such measurement methods and actual waste form configurations complicate regulation compliance demonstration processes and illustrate the need for an alternate measurement interpretation paradigm. Hence, it appears necessary to supplement or perhaps restructure the perceived solution and approach to the waste NDA problem. The first step is to understand the magnitude of the waste matrix/source attribute space associated with those waste form configurations in inventory and how this creates complexities and unknowns with respect to existing NDA methods. Once defined and/or bounded, a conceptual method must be developed that specifies the necessary tools and the framework in which the tools are used. A promising framework is a hybridized neural network structure. Discussed are some typical complications associated with conventional waste NDA techniques and how improvements can be obtained through the application of neural networks.
NASA Astrophysics Data System (ADS)
D'Andrea, Eleonora; Pagnotta, Stefano; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Palleschi, Vincenzo; Lazzerini, Beatrice
2015-03-01
A `hybrid' method is proposed for the quantitative analysis of materials by LIBS, combining the precision of the calibration-free LIBS (CF-LIBS) algorithm with the quickness of artificial neural networks. The method allows the precise determination of the samples' composition even in the presence of relatively large laser fluctuations and matrix effects. To show the strength and robustness of this approach, a number of synthetic LIBS spectra of Cu-Ni binary alloys with different composition were computer-simulated, in correspondence of different plasma temperatures, electron number densities and ablated mass. The CF-LIBS/ANN approach here proposed demonstrated to be capable, after appropriate training, of `learning' the basic physical relations between the experimentally measured line intensities and the plasma parameters. Because of that the composition of the sample can be correctly determined, as in CF-LIBS measurements, but in a much shorter time.
Reddick, W E; Mulhern, R K; Elkin, T D; Glass, J O; Merchant, T E; Langston, J W
1998-05-01
In the treatment of children with brain tumors, balancing the efficacy of treatment against commonly observed side effects is difficult because of a lack of quantitative measures of brain damage that can be correlated with the intensity of treatment. We quantitatively assessed volumes of brain parenchyma on magnetic resonance (MR) images using a hybrid combination of the Kohonen self-organizing map for segmentation and a multilayer backpropagation neural network for tissue classification. Initially, we analyzed the relationship between volumetric differences and radiologists' grading of atrophy in 80 subjects. This investigation revealed that brain parenchyma and white matter volumes significantly decreased as atrophy increased, whereas gray matter volumes had no relationship with atrophy. Next, we compared 37 medulloblastoma patients treated with surgery, irradiation, and chemotherapy to 19 patients treated with surgery and irradiation alone. This study demonstrated that, in these patients, chemotherapy had no significant effect on brain parenchyma, white matter, or gray matter volumes. We then investigated volumetric differences due to cranial irradiation in 15 medulloblastoma patients treated with surgery and radiation therapy, and compared these with a group of 15 age-matched patients with low-grade astrocytoma treated with surgery alone. With a minimum follow-up of one year after irradiation, all radiation-treated patients demonstrated significantly reduced white matter volumes, whereas gray matter volumes were relatively unchanged compared with those of age-matched patients treated with surgery alone. These results indicate that reductions in cerebral white matter: 1) are correlated significantly with atrophy; 2) are not related to chemotherapy; and 3) are correlated significantly with irradiation. This hybrid neural network analysis of subtle brain volume differences with magnetic resonance may constitute a direct measure of treatment-induced brain damage
Glover, C.W.; Spelt, P.F.
1990-01-01
This paper presents a report of work-in-progress on a project to combine Artificial Neural Networks (ANNs) and Expert Systems (ESs) into a hybrid, self-improving pattern recognition system. The purpose of this project is to explore methods of combining multiple classifiers into a Hybrid Intelligent Perception (HIP) System. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. ANNs and ESs have different strengths and weaknesses, which are being exploited in this project in such a way that they are complementary to each other: Strengths in one system make up for weaknesses in the other, and vice versa. There is presently considerable interest in the AI community in ways to exploit the strengths of these methodologies to produce an intelligent system which is more robust and flexible than one using either technology alone. Perception, which involves both data-driven (bottom-up) and concept-driven (top-down) processing, is a process which seems especially well-suited to displaying the capabilities of such a hybrid system. This work has been funded for the past six months by an Oak Ridge National Laboratory seed grant, and most of the system components are operating in both the PC and the hypercube computer environments. Here we report on the efforts to develop the low-level ANNs and a graphic representation of their knowledge, and discuss ways of using an ES to integrate and supervise the entire system. 11 refs., 3 figs.
Wan-Mamat, Wan Mohd Fahmi; Isa, Nor Ashidi Mat; Wahab, Habibah A; Wan-Mamat, Wan Mohd Fairuz
2009-01-01
An intelligent prediction system has been developed to discriminate drug-like and non drug-like molecules pattern. The system is constructed by using the application of advanced version of standard multilayer perceptron (MLP) neural network called Hybrid Multilayer Perceptron (HMLP) neural network and trained using Modified Recursive Prediction Error (MRPE) training algorithm. In this work, a well understood and easy excess Rule of Five + Veber filter properties are selected as the topological descriptor. The main idea behind the selection of this simple descriptor is to assure that the system could be used widely, beneficial and more advantageous regardless at all user level within a drug discovery organization. PMID:19964424
Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks
ERIC Educational Resources Information Center
Ray, Loye Lynn
2014-01-01
The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…
Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods
Upadhyaya, B.R.; Yan, W.
1993-11-01
The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods.
Production of Engineered Fabrics Using Artificial Neural Network-Genetic Algorithm Hybrid Model
NASA Astrophysics Data System (ADS)
Mitra, Ashis; Majumdar, Prabal Kumar; Banerjee, Debamalya
2015-10-01
The process of fabric engineering which is generally practised in most of the textile mills is very complicated, repetitive, tedious and time consuming. To eliminate this trial and error approach, a new approach of fabric engineering has been attempted in this work. Data sets of construction parameters [comprising of ends per inch, picks per inch, warp count and weft count] and three fabric properties (namely drape coefficient, air permeability and thermal resistance) of 25 handloom cotton fabrics have been used. The weights and biases of three artificial neural network (ANN) models developed for the prediction of drape coefficient, air permeability and thermal resistance were used to formulate the fitness or objective function and constraints of the optimization problem. The optimization problem was solved using genetic algorithm (GA). In both the fabrics which were attempted for engineering, the target and simulated fabric properties were very close. The GA was able to search the optimum set of fabric construction parameters with reasonably good accuracy except in case of EPI. However, the overall result is encouraging and can be improved further by using larger data sets of handloom fabrics by hybrid ANN-GA model.
NASA Technical Reports Server (NTRS)
Baram, Yoram
1992-01-01
Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.
Hybrid feedback feedforward: An efficient design of adaptive neural network control.
Pan, Yongping; Liu, Yiqi; Xu, Bin; Yu, Haoyong
2016-04-01
This paper presents an efficient hybrid feedback feedforward (HFF) adaptive approximation-based control (AAC) strategy for a class of uncertain Euler-Lagrange systems. The control structure includes a proportional-derivative (PD) control term in the feedback loop and a radial-basis-function (RBF) neural network (NN) in the feedforward loop, which mimics the human motor learning control mechanism. At the presence of discontinuous friction, a sigmoid-jump-function NN is incorporated to improve control performance. The major difference of the proposed HFF-AAC design from the traditional feedback AAC (FB-AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as RBF-NN inputs. Yet, such a slight modification leads to several attractive properties of HFF-AAC, including the convenient choice of an approximation domain, the decrease of the number of RBF-NN inputs, and semiglobal practical asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach possesses the following two distinctive features: (i) all above attractive properties are achieved by a much simpler control scheme; (ii) the bounds of plant uncertainties are not required to be known. Consequently, the proposed approach guarantees a minimum configuration of the control structure and a minimum requirement of plant knowledge for the AAC design, which leads to a sharp decrease of implementation cost in terms of hardware selection, algorithm realization and system debugging. Simulation results have demonstrated that the proposed HFF-AAC can perform as good as or even better than the traditional FB-AAC under much simpler control synthesis and much lower computational cost. PMID:26890657
NASA Astrophysics Data System (ADS)
Harmon, Frederick G.
2005-11-01
Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.
Ritter, G.X.; Sussner, P.
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Hybrid neural network and statistical classification algorithms in computer-assisted diagnosis
NASA Astrophysics Data System (ADS)
Stotzka, Rainer
2000-06-01
The development of computer assisted diagnosis systems for image-patterns is still in the early stages compared to the powerful image and object recognition capabilities of the human eye and visual cortex. Rules have to be defined and features have to be found manually in digital images to come to an automatic classification. The extraction of discriminating features is especially in medical applications a very time consuming process. The quality of the defined features influences directly the classification success. Artificial neural networks are in principle able to solve complex recognition and classification tasks, but their computational expenses restrict their use to small images. A new improved image object classification scheme consists of neural networks as feature extractors and common statistical discrimination algorithms. Applied to the recognition of different types of tumor nuclei images this system is able to find differences which are barely discernible by human eyes.
NASA Astrophysics Data System (ADS)
Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.
2013-03-01
In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-02-01
Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.
NASA Astrophysics Data System (ADS)
Kumar, Somesh; Pratap Singh, Manu; Goel, Rajkumar; Lavania, Rajesh
2013-12-01
In this work, the performance of feedforward neural network with a descent gradient of distributed error and the genetic algorithm (GA) is evaluated for the recognition of handwritten 'SWARS' of Hindi curve script. The performance index for the feedforward multilayer neural networks is considered here with distributed instantaneous unknown error i.e. different error for different layers. The objective of the GA is to make the search process more efficient to determine the optimal weight vectors from the population. The GA is applied with the distributed error. The fitness function of the GA is considered as the mean of square distributed error that is different for each layer. Hence the convergence is obtained only when the minimum of different errors is determined. It has been analysed that the proposed method of a descent gradient of distributed error with the GA known as hybrid distributed evolutionary technique for the multilayer feed forward neural performs better in terms of accuracy, epochs and the number of optimal solutions for the given training and test pattern sets of the pattern recognition problem.
NASA Astrophysics Data System (ADS)
Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.
2016-09-01
Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.
Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N
2006-07-01
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased. PMID:16878583
Cellular neural network-based hybrid approach toward automatic image registration
NASA Astrophysics Data System (ADS)
Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar
2013-01-01
Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.
1991-01-01
A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.
A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Xiao, Fei; Nichol, Janet; Fung, Jimmy; Kim, Jhoon; Campbell, James; Chan, P. W.
2015-05-01
Dust storms are known to have adverse effects on human health and significant impact on weather, air quality, hydrological cycle, and ecosystem. Atmospheric dust loading is also one of the large uncertainties in global climate modeling, due to its significant impact on the radiation budget and atmospheric stability. Observations of dust storms in humid tropical south China (e.g. Hong Kong), are challenging due to high industrial pollution from the nearby Pearl River Delta region. This study develops a method for dust storm detection by combining ground station observations (PM10 concentration, AERONET data), geostationary satellite images (MTSAT), and numerical weather and climatic forecasting products (WRF/Chem). The method is based on a hybrid neural network (NN) retrieval model for two scales: (i) a NN model for near real-time detection of dust storms at broader regional scale; (ii) a NN model for detailed dust storm mapping for Hong Kong and Taiwan. A feed-forward multilayer perceptron (MLP) NN, trained using back propagation (BP) algorithm, was developed and validated by the k-fold cross validation approach. The accuracy of the near real-time detection MLP-BP network is 96.6%, and the accuracies for the detailed MLP-BP neural network for Hong Kong and Taiwan is 74.8%. This newly automated multi-scale hybrid method can be used to give advance near real-time mapping of dust storms for environmental authorities and the public. It is also beneficial for identifying spatial locations of adverse air quality conditions, and estimates of low visibility associated with dust events for port and airport authorities.
Exploring neural network technology
Naser, J.; Maulbetsch, J.
1992-12-01
EPRI is funding several projects to explore neural network technology, a form of artificial intelligence that some believe may mimic the way the human brain processes information. This research seeks to provide a better understanding of fundamental neural network characteristics and to identify promising utility industry applications. Results to date indicate that the unique attributes of neural networks could lead to improved monitoring, diagnostic, and control capabilities for a variety of complex utility operations. 2 figs.
Neural network and rough set hybrid scheme for prediction of missing associations.
Anitha, A; Acharjya, D P
2015-01-01
Currently, internet is the best tool for distributed computing, which involves spreading of data geographically. But, retrieving information from huge data is critical and has no relevance unless it provides certain information. Prediction of missing associations can be viewed as fundamental problems in machine learning where the main objective is to determine decisions for the missing associations. Mathematical models such as naive Bayes structure, human composed network structure, Bayesian network modelling, etc., were developed to this end. But, it has certain limitations and failed to include uncertainties. Therefore, effort has been made to process inconsistencies in the data with the introduction of rough set theory. This paper uses two processes, pre-process and post-process, to predict the decisions for the missing associations in the attribute values. In preprocess, rough set is used to reduce the dimensionality, whereas neural network is used in postprocess to explore the decision for the missing associations. A real-life example is provided to show the viability of the proposed research. PMID:26642360
NASA Astrophysics Data System (ADS)
Gusken, Edmilton; Salgado, Ricardo M.; Rossell, Carlos E. V.; Ohishi, Takaaki; Suzuki, Carlos K.
2008-04-01
Bioethanol is produced by bio-chemical process that converts sugar or biomass feedstock into ethanol. After bio-chemical process, the solution is distilled under controlled conditions of pressure and temperature, in order to obtain an ethanol-water solution. However, the ethanol concentration analysis is generally performed off-line and, sometimes, a re-distillation process becomes necessary. In this research, an optical apparatus based on Fresnel reflection has been used in combination with artificial neural networks for determination of bioethanol concentration in hydro-alcoholic solution at any temperature. The volumetric concentration and temperature effect was investigated. This intelligent system can effectively detect and update in real-time the correction of distillation parameters to reduce losses of bioethanol and also to improve the quality in a production plant.
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605
Frost, William N; Wang, Jean; Brandon, Christopher J
2007-05-15
Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations. PMID:17306887
Maji, Debapriya; Santara, Anirban; Ghosh, Sambuddha; Sheet, Debdoot; Mitra, Pabitra
2015-08-01
Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large-scale screening is the inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a computational imaging framework using deep and ensemble learning based hybrid architecture for reliable detection of blood vessels in fundus color images. A deep neural network (DNN) is used for unsupervised learning of vesselness dictionaries using sparse trained denoising auto-encoders (DAE), followed by supervised learning of the DNN response using a random forest for detecting vessels in color fundus images. In experimental evaluation with the DRIVE database, we achieve the objective of vessel detection with max. avg. accuracy of 0.9327 and area under ROC curve of 0.9195. PMID:26736930
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-01-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
Zhou, Qingping; Jiang, Haiyan; Wang, Jianzhou; Zhou, Jianling
2014-10-15
Exposure to high concentrations of fine particulate matter (PM₂.₅) can cause serious health problems because PM₂.₅ contains microscopic solid or liquid droplets that are sufficiently small to be ingested deep into human lungs. Thus, daily prediction of PM₂.₅ levels is notably important for regulatory plans that inform the public and restrict social activities in advance when harmful episodes are foreseen. A hybrid EEMD-GRNN (ensemble empirical mode decomposition-general regression neural network) model based on data preprocessing and analysis is firstly proposed in this paper for one-day-ahead prediction of PM₂.₅ concentrations. The EEMD part is utilized to decompose original PM₂.₅ data into several intrinsic mode functions (IMFs), while the GRNN part is used for the prediction of each IMF. The hybrid EEMD-GRNN model is trained using input variables obtained from principal component regression (PCR) model to remove redundancy. These input variables accurately and succinctly reflect the relationships between PM₂.₅ and both air quality and meteorological data. The model is trained with data from January 1 to November 1, 2013 and is validated with data from November 2 to November 21, 2013 in Xi'an Province, China. The experimental results show that the developed hybrid EEMD-GRNN model outperforms a single GRNN model without EEMD, a multiple linear regression (MLR) model, a PCR model, and a traditional autoregressive integrated moving average (ARIMA) model. The hybrid model with fast and accurate results can be used to develop rapid air quality warning systems. PMID:25089688
Advances in neural networks research: an introduction.
Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar
2009-01-01
The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications. PMID:19632811
Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.
Yeh, Chi-Yuan; Jeng, Wen-Hau Roger; Lee, Shie-Jue
2011-12-01
We propose a novel approach for building a type-2 neural-fuzzy system from a given set of input-output training data. A self-constructing fuzzy clustering method is used to partition the training dataset into clusters through input-similarity and output-similarity tests. The membership function associated with each cluster is defined with the mean and deviation of the data points included in the cluster. Then a type-2 fuzzy Takagi-Sugeno-Kang IF-THEN rule is derived from each cluster to form a fuzzy rule base. A fuzzy neural network is constructed accordingly and the associated parameters are refined by a hybrid learning algorithm which incorporates particle swarm optimization and a least squares estimation. For a new input, a corresponding crisp output of the system is obtained by combining the inferred results of all the rules into a type-2 fuzzy set, which is then defuzzified by applying a refined type reduction algorithm. Experimental results are presented to demonstrate the effectiveness of our proposed approach. PMID:22010148
Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud
2015-01-01
The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets. PMID:26120567
Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud
2015-01-01
The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets. PMID:26120567
Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579
Neural networks for aircraft control
NASA Technical Reports Server (NTRS)
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
Critical Branching Neural Networks
ERIC Educational Resources Information Center
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
NASA Technical Reports Server (NTRS)
Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.
1993-01-01
A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.
SOM-based Hybrid Neural Network Model for Flood Inundation Extent Forecasting
NASA Astrophysics Data System (ADS)
Chang, Li-Chiu; Shen, Hung-Yu; Chang, Fi-John
2014-05-01
In recent years, the increasing frequency and severity of floods caused by climate change and/or land overuse has been reported both nationally and globally. Therefore, estimation of flood depths and extents may provide disaster information for alleviating risk and loss of life and property. The conventional inundation models commonly need a huge amount of computational time to carry out a high resolution spatial inundation map. Moreover, for implementing appropriate mitigation strategies of various flood conditions, different flood scenarios and the corresponding mitigation alternatives are required. Consequently, it is difficult to reach real-time forecast of the inundation extent by conventional inundation models. This study proposed a SOM-RNARX model, for on-line forecasting regional flood inundation depths and extents. The SOM-RNARX model is composed of SOM (Self-Organizing Map) and RNARX (recurrent configuration of nonlinear autoregressive with exogenous inputs). The SOM network categorizes various flood inundation maps of the study area to produce a meaningful regional flood topological map. The RNARX model is built to forecast the total flooded volume of the study area. To find the neuron with the closest total inundated volume to the forecasted total inundated volumes, the forecasted value is used to adjust the weights (inundated depths) of the closest neuron and obtain a regional flood inundation map. The proposed methodology was trained and tested based on a large number of inundation data generated by a well validated two-dimensional simulation model in Yilan County, Taiwan. For comparison, the CHIM (clustering-based hybrid inundation model) model which was issued by Chang et al. (2010) was performed. The major difference between these two models is that CHIM classify flooding characteristics, and SOM-RNARX extracts the relationship between rainfall pattern and flooding spatial distribution. The results show that (1)two models can adequately provide on
2016-01-01
The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today’s increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong’s Hang Seng futures, Japan’s NIKKEI 225 futures, Singapore’s MSCI futures, South Korea’s KOSPI 200 futures, and Taiwan’s TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692
Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Jiang, Yuan Yuan; Kim, Sung Min
2015-01-01
This paper focuses on the improvement of the diagnostic accuracy of focal liver lesions by quantifying the key features of cysts, hemangiomas, and malignant lesions on ultrasound images. The focal liver lesions were divided into 29 cysts, 37 hemangiomas, and 33 malignancies. A total of 42 hybrid textural features that composed of 5 first order statistics, 18 gray level co-occurrence matrices, 18 Law's, and echogenicity were extracted. A total of 29 key features that were selected by principal component analysis were used as a set of inputs for a feed-forward neural network. For each lesion, the performance of the diagnosis was evaluated by using the positive predictive value, negative predictive value, sensitivity, specificity, and accuracy. The results of the experiment indicate that the proposed method exhibits great performance, a high diagnosis accuracy of over 96% among all focal liver lesion groups (cyst vs. hemangioma, cyst vs. malignant, and hemangioma vs. malignant) on ultrasound images. The accuracy was slightly increased when echogenicity was included in the optimal feature set. These results indicate that it is possible for the proposed method to be applied clinically. PMID:26405925
Chan Phooi M'ng, Jacinta; Mehralizadeh, Mohammadali
2016-01-01
The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today's increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong's Hang Seng futures, Japan's NIKKEI 225 futures, Singapore's MSCI futures, South Korea's KOSPI 200 futures, and Taiwan's TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692
Quang, Daniel; Xie, Xiaohui
2016-01-01
Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for non-coding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the function of non-coding DNA can have enormous benefit for both basic science and translational research because over 98% of the human genome is non-coding and 93% of disease-associated variants lie in these regions. To address this need, we propose DanQ, a novel hybrid convolutional and bi-directional long short-term memory recurrent neural network framework for predicting non-coding function de novo from sequence. In the DanQ model, the convolution layer captures regulatory motifs, while the recurrent layer captures long-term dependencies between the motifs in order to learn a regulatory ‘grammar’ to improve predictions. DanQ improves considerably upon other models across several metrics. For some regulatory markers, DanQ can achieve over a 50% relative improvement in the area under the precision-recall curve metric compared to related models. We have made the source code available at the github repository http://github.com/uci-cbcl/DanQ. PMID:27084946
Quang, Daniel; Xie, Xiaohui
2016-06-20
Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for non-coding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the function of non-coding DNA can have enormous benefit for both basic science and translational research because over 98% of the human genome is non-coding and 93% of disease-associated variants lie in these regions. To address this need, we propose DanQ, a novel hybrid convolutional and bi-directional long short-term memory recurrent neural network framework for predicting non-coding function de novo from sequence. In the DanQ model, the convolution layer captures regulatory motifs, while the recurrent layer captures long-term dependencies between the motifs in order to learn a regulatory 'grammar' to improve predictions. DanQ improves considerably upon other models across several metrics. For some regulatory markers, DanQ can achieve over a 50% relative improvement in the area under the precision-recall curve metric compared to related models. We have made the source code available at the github repository http://github.com/uci-cbcl/DanQ. PMID:27084946
Stochastic cellular automata model of neural networks.
Goltsev, A V; de Abreu, F V; Dorogovtsev, S N; Mendes, J F F
2010-06-01
We propose a stochastic dynamical model of noisy neural networks with complex architectures and discuss activation of neural networks by a stimulus, pacemakers, and spontaneous activity. This model has a complex phase diagram with self-organized active neural states, hybrid phase transitions, and a rich array of behaviors. We show that if spontaneous activity (noise) reaches a threshold level then global neural oscillations emerge. Stochastic resonance is a precursor of this dynamical phase transition. These oscillations are an intrinsic property of even small groups of 50 neurons. PMID:20866454
Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.
2003-12-01
This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.
Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S
2005-01-01
A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission. PMID:16112553
Hyperbolic Hopfield neural networks.
Kobayashi, M
2013-02-01
In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states. PMID:24808287
Target detection using multilayer feedforward neural networks
NASA Astrophysics Data System (ADS)
Scherf, Alan V.; Scott, Peter A.
1991-08-01
Multilayer feedforward neural networks have been integrated with conventional image processing techniques to form a hybrid target detection algorithm for use in the F/A-18 FLIR pod advanced air-to-air track-while-scan mode. The network has been trained to detect and localize small targets in infrared imagery. Comparative performance between this target detection technique is evaluated.
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.
Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579
Regional flood inundation nowcast using hybrid SOM and dynamic neural networks
NASA Astrophysics Data System (ADS)
Chang, Li-Chiu; Shen, Hung-Yu; Chang, Fi-John
2014-11-01
This study proposes a hybrid SOM-R-NARX methodology for nowcasting multi-step-ahead regional flood inundation maps during typhoon events. The core idea is to form a meaningful topology of inundation maps and then real-time update the selected inundation map according to a forecasted total inundated volume. The methodology includes three major schemes: (1) configuring the self-organizing map (SOM) to categorize a large number of regional inundation maps into a meaningful topology; (2) building a recurrent configuration of nonlinear autoregressive with exogenous inputs (R-NARX) to forecast the total inundated volume; and (3) adjusting the weights of the selected neuron in the constructed SOM based on the forecasted total inundated volume to obtain a real-time adapted regional inundation map. The proposed models are trained and tested based on a large number of inundation data sets collected in an inundation-prone region (270 km2) in the Yilan County, Taiwan. The results show that (1) the SOM-R-NARX model can suitably forecast multi-step-ahead regional inundation maps; and (2) the SOM-R-NARX model consistently outperforms the comparative model in providing regional inundation maps with smaller forecast errors and higher correlation (RMSE < 0.1 m and R2 > 0.9 in most cases). The proposed modelling approach offers an insightful and promising methodology for real-time forecasting 2-dimensional visible inundation maps during storm events.
Neural Networks and Micromechanics
NASA Astrophysics Data System (ADS)
Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.
The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.
Generalized Adaptive Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
Multifunctional hybrid optical/digital neural net
NASA Astrophysics Data System (ADS)
Casasent, David P.
1990-08-01
A multi-functional hybrid neural net is described. It is hybrid since it uses a digital hardware Hecht-Nielsen Corporation (HNC) neural net for adaptive learning and an optical neural net for on-line processing/classification. It is also hybrid in its combination of pattern recognition and neural net techniques. The system is multi-functional. It can function as an optimization and adaptive pattern recognition neural net as well as an auto and heteroassociative processor. I . W. JTRODUCTION Neural nets (NNs) have recently received enormous attention [1 -2] with increasing attention to the use of optical processors and a variety of new learning algorithms. Section 2 describes our hybrid NN with attention to Its fabrication and the role for optical and digital processors. Section 3 details Its use as an associative processor. Section 4 highlights is use in 3 optimization NN problems (a mixture NN a multitarget tracker (MTT) NN and a matrix inversion NN). Section 5 briefly notes it use as a production NN system and symbolic NN. Section 6 describes its use as an adaptive pattern recognition (PR) NN (that marries PR and NN techniques). 2. HYBRID ARCHITECTURE Figure 1 shows our basic hybrid NN [3]. The optical portion of the system is a matrix-vector (M-V) processor whose vector output P3 is the product of the vector at P1 and the matrix at P2. An HNC digital hardware NN is used during learning determine the interconnection weights forP2. If P2 is a spatial light modulator (SLM) its contents can be updated (using gated learning) from thedigital NN. The operations in most adaptive PR NN learning algorithms are sufficiently complex thatthey are best implemented digitally. In addition the learning operations required are often not well suited for optical realization for optimization NNs the weights are fixed and in adaptive learning learning is off-line and once completed the weights can often be fixed. Four gates are shown that determine the final output or the new P1
Improved Autoassociative Neural Networks
NASA Technical Reports Server (NTRS)
Hand, Charles
2003-01-01
Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.
NASA Technical Reports Server (NTRS)
Villarreal, James A.
1991-01-01
A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.
Parallel processing neural networks
Zargham, M.
1988-09-01
A model for Neural Network which is based on a particular kind of Petri Net has been introduced. The model has been implemented in C and runs on the Sequent Balance 8000 multiprocessor, however it can be directly ported to different multiprocessor environments. The potential advantages of using Petri Nets include: (1) the overall system is often easier to understand due to the graphical and precise nature of the representation scheme, (2) the behavior of the system can be analyzed using Petri Net theory. Though, the Petri Net is an obvious choice as a basis for the model, the basic Petri Net definition is not adequate to represent the neuronal system. To eliminate certain inadequacies more information has been added to the Petri Net model. In the model, a token represents either a processor or a post synaptic potential. Progress through a particular Neural Network is thus graphically depicted in the movement of the processor tokens through the Petri Net.
Neural networks for triggering
Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.
Uniformly sparse neural networks
NASA Astrophysics Data System (ADS)
Haghighi, Siamack
1992-07-01
Application of neural networks to problems with a large number of sensory inputs is severely limited when the processing elements (PEs) need to be fully connected. This paper presents a new network model in which a trade off between the number of connections to a node and the number of processing layers can be made. This trade off is an important issue in the VLSI implementation of neural networks. The performance and capability of a hierarchical pyramidal network architecture of limited fan-in PE layers is analyzed. Analysis of this architecture requires the development of a new learning rule, since each PE has access to limited information about the entire network input. A spatially local unsupervised training rule is developed in which each PE optimizes the fraction of its output variance contributed by input correlations, resulting in PEs behaving as adaptive local correlation detectors. It is also shown that the output of a PE optimally represents the mutual information among the inputs to that PE. Applications of the developed model in image compression and motion detection are presented.
High-performance neural networks. [Neural computers
Dress, W.B.
1987-06-01
The new Forth hardware architectures offer an intermediate solution to high-performance neural networks while the theory and programming details of neural networks for synthetic intelligence are developed. This approach has been used successfully to determine the parameters and run the resulting network for a synthetic insect consisting of a 200-node ''brain'' with 1760 interconnections. Both the insect's environment and its sensor input have thus far been simulated. However, the frequency-coded nature of the Browning network allows easy replacement of the simulated sensors by real-world counterparts.
Program Helps Simulate Neural Networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1992-01-01
Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.
NASA Astrophysics Data System (ADS)
Cheng, Meng-Bi; Su, Wu-Chung; Tsai, Ching-Chih
2012-03-01
This article presents a robust tracking controller for an uncertain mobile manipulator system. A rigid robotic arm is mounted on a wheeled mobile platform whose motion is subject to nonholonomic constraints. The sliding mode control (SMC) method is associated with the fuzzy neural network (FNN) to constitute a robust control scheme to cope with three types of system uncertainties; namely, external disturbances, modelling errors, and strong couplings in between the mobile platform and the onboard arm subsystems. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that the tracking error dynamics and the FNN weighting updates are ensured to be stable with uniform ultimate boundedness (UUB).
Kepler, T.B.
1989-01-01
After a brief introduction to the techniques and philosophy of neural network modeling by spin glass inspired system, the author investigates several properties of these discrete models for autoassociative memory. Memories are represented as patterns of neural activity; their traces are stored in a distributed manner in the matrix of synaptic coupling strengths. Recall is dynamic, an initial state containing partial information about one of the memories evolves toward that memory. Activity in each neuron creates fields at every other neuron, the sum total of which determines its activity. By averaging over the space of interaction matrices with memory constraints enforced by the choice of measure, we show that the exist universality classes defined by families of field distributions and the associated network capacities. He demonstrates the dominant role played by the field distribution in determining the size of the domains of attraction and present, in two independent ways, an expression for this size. He presents a class of convergent learning algorithms which improve upon known algorithms for producing such interaction matrices. He demonstrates that spurious states, or unexperienced memories, may be practically suppressed by the inducement of n-cycles and chaos. He investigates aspects of chaos in these systems, and then leave discrete modeling to implement the analysis of chaotic behavior on a continuous valued network realized in electronic hardware. In each section he combine analytical calculation and computer simulations.
Accelerating Learning By Neural Networks
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.
Metzler, R; Kinzel, W; Kanter, I
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random. PMID:11088736
NASA Astrophysics Data System (ADS)
Yang, J.-S.; Yu, S.-P.; Liu, G.-M.
2013-12-01
In order to increase the accuracy of serial-propagated long-range multi-step-ahead (MSA) prediction, which has high practical value but also great implementary difficulty because of huge error accumulation, a novel wavelet neural network hybrid model - CDW-NN - combining continuous and discrete wavelet transforms (CWT and DWT) and neural networks (NNs), is designed as the MSA predictor for the effective long-term forecast of hydrological signals. By the application of 12 types of hybrid and pure models in estuarine 1096-day river stages forecasting, the different forecast performances and the superiorities of CDW-NN model with corresponding driving mechanisms are discussed. One type of CDW-NN model, CDW-NF, which uses neuro-fuzzy as the forecast submodel, has been proven to be the most effective MSA predictor for the prominent accuracy enhancement during the overall 1096-day long-term forecasts. The special superiority of CDW-NF model lies in the CWT-based methodology, which determines the 15-day and 28-day prior data series as model inputs by revealing the significant short-time periodicities involved in estuarine river stage signals. Comparing the conventional single-step-ahead-based long-term forecast models, the CWT-based hybrid models broaden the prediction range in each forecast step from 1 day to 15 days, and thus reduce the overall forecasting iteration steps from 1096 steps to 74 steps and finally create significant decrease of error accumulations. In addition, combination of the advantages of DWT method and neuro-fuzzy system also benefits filtering the noisy dynamics in model inputs and enhancing the simulation and forecast ability for the complex hydro-system.
Flexible body control using neural networks
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1992-01-01
Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.
Dynamic interactions in neural networks
Arbib, M.A. ); Amari, S. )
1989-01-01
The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of intelligent machines. This volume presents models and data on the dynamic interactions occurring in the brain, and exhibits the dynamic interactions between research in computational neuroscience and in neural computing. The authors present current research, future trends and open problems.
Neural network applications in telecommunications
NASA Technical Reports Server (NTRS)
Alspector, Joshua
1994-01-01
Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.
Neural Networks for the Beginner.
ERIC Educational Resources Information Center
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
Neural Network Development Tool (NETS)
NASA Technical Reports Server (NTRS)
Baffes, Paul T.
1990-01-01
Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.
He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong
2016-03-01
In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. PMID:26685746
Neural networks for calibration tomography
NASA Technical Reports Server (NTRS)
Decker, Arthur
1993-01-01
Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.
Deinterlacing using modular neural network
NASA Astrophysics Data System (ADS)
Woo, Dong H.; Eom, Il K.; Kim, Yoo S.
2004-05-01
Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Hybrid network intrusion detection
NASA Astrophysics Data System (ADS)
Tahmoush, David
2014-05-01
We report on a machine learning classifier that can be used to discover the patterns hidden within large networking data flows. It utilizes an existing intrusion detection system (IDS) as an oracle to learn a faster, less resource intensive normalcy classifier as a front-end to a hybrid network IDS. This system has the capability to recognize new attacks that are similar to known attack signatures. It is also more highly scalable and distributable than the signature-based IDS. The new hybrid design also allows distributed updates and retraining of the normalcy classifier to stay up-to-date with current threats.
Neural Networks for Readability Analysis.
ERIC Educational Resources Information Center
McEneaney, John E.
This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual snapshots"…
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd.; Gital, Abdulsalam Ya’u; Shuib, Liyana; Abubakar, Adamu I.; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. Methods/Findings The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. Conclusion An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper. PMID:26305483
Neural Networks Of VLSI Components
NASA Technical Reports Server (NTRS)
Eberhardt, Silvio P.
1991-01-01
Concept for design of electronic neural network calls for assembly of very-large-scale integrated (VLSI) circuits of few standard types. Each VLSI chip, which contains both analog and digital circuitry, used in modular or "building-block" fashion by interconnecting it in any of variety of ways with other chips. Feedforward neural network in typical situation operates under control of host computer and receives inputs from, and sends outputs to, other equipment.
Patil, R.B.
1995-05-01
Traditional neural networks like multi-layered perceptrons (MLP) use example patterns, i.e., pairs of real-valued observation vectors, ({rvec x},{rvec y}), to approximate function {cflx f}({rvec x}) = {rvec y}. To determine the parameters of the approximation, a special version of the gradient descent method called back-propagation is widely used. In many situations, observations of the input and output variables are not precise; instead, we usually have intervals of possible values. The imprecision could be due to the limited accuracy of the measuring instrument or could reflect genuine uncertainty in the observed variables. In such situation input and output data consist of mixed data types; intervals and precise numbers. Function approximation in interval domains is considered in this paper. We discuss a modification of the classical backpropagation learning algorithm to interval domains. Results are presented with simple examples demonstrating few properties of nonlinear interval mapping as noise resistance and finding set of solutions to the function approximation problem.
Correlational Neural Networks.
Chandar, Sarath; Khapra, Mitesh M; Larochelle, Hugo; Ravindran, Balaraman
2016-02-01
Common representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace. AE-based methods learn a common representation by minimizing the error of reconstructing the two views. Each of these approaches has its own advantages and disadvantages. For example, while CCA-based approaches outperform AE-based approaches for the task of transfer learning, they are not as scalable as the latter. In this work, we propose an AE-based approach, correlational neural network (CorrNet), that explicitly maximizes correlation among the views when projected to the common subspace. Through a series of experiments, we demonstrate that the proposed CorrNet is better than AE and CCA with respect to its ability to learn correlated common representations. We employ CorrNet for several cross-language tasks and show that the representations learned using it perform better than the ones learned using other state-of-the-art approaches. PMID:26654210
Neural-Network-Development Program
NASA Technical Reports Server (NTRS)
Phillips, Todd A.
1993-01-01
NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.
Neural networks: Application to medical imaging
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Sridevi, K; Sivaraman, E; Mullai, P
2014-08-01
In a hybrid upflow anaerobic sludge blanket (HUASB) reactor, biodegradation in association with biohydrogen production was studied using distillery wastewater as substrate. The experiments were carried out at ambient temperature (34±1°C) and acidophilic pH of 6.5 with constant hydraulic retention time (HRT) of 24h at various organic loading rates (OLRs) (1-10.2kgCODm(-3)d(-1)) in continuous mode. A maximum hydrogen production rate of 1300mLd(-1) was achieved. A back propagation neural network (BPNN) model with network topology of 4-20-1 using Levenberg-Marquardt (LM) algorithm was developed and validated. A total of 231 data points were studied to examine the performance of the HUASB reactor in acclimatisation and operation phase. The statistical qualities of BPNN models were significant due to the high correlation coefficient, R(2), and lower mean absolute error (MAE) between experimental and simulated data. From the results, it was concluded that BPNN modelling could be applied in HUASB reactor for predicting the biodegradation and biohydrogen production using distillery wastewater. PMID:24746339
Powder processing of hybrid titanium neural electrodes
NASA Astrophysics Data System (ADS)
Lopez, Jose Luis, Jr.
A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.
Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.
Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert
2015-08-01
Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing. PMID:26737158
Multiprocessor Neural Network in Healthcare.
Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes
2015-01-01
A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc. PMID:26152990
Thounaojam, Umeshkanta S; Cui, Jianxia; Norman, Sharon E; Butera, Robert J; Canavier, Carmen C
2014-05-01
In order to study the ability of coupled neural oscillators to synchronize in the presence of intrinsic as opposed to synaptic noise, we constructed hybrid circuits consisting of one biological and one computational model neuron with reciprocal synaptic inhibition using the dynamic clamp. Uncoupled, both neurons fired periodic trains of action potentials. Most coupled circuits exhibited qualitative changes between one-to-one phase-locking with fairly constant phasic relationships and phase slipping with a constant progression in the phasic relationships across cycles. The phase resetting curve (PRC) and intrinsic periods were measured for both neurons, and used to construct a map of the firing intervals for both the coupled and externally forced (PRC measurement) conditions. For the coupled network, a stable fixed point of the map predicted phase locking, and its absence produced phase slipping. Repetitive application of the map was used to calibrate different noise models to simultaneously fit the noise level in the measurement of the PRC and the dynamics of the hybrid circuit experiments. Only a noise model that added history-dependent variability to the intrinsic period could fit both data sets with the same parameter values, as well as capture bifurcations in the fixed points of the map that cause switching between slipping and locking. We conclude that the biological neurons in our study have slowly-fluctuating stochastic dynamics that confer history dependence on the period. Theoretical results to date on the behavior of ensembles of noisy biological oscillators may require re-evaluation to account for transitions induced by slow noise dynamics. PMID:24830924
Neural network ultrasound image analysis
NASA Astrophysics Data System (ADS)
Schneider, Alexander C.; Brown, David G.; Pastel, Mary S.
1993-09-01
Neural network based analysis of ultrasound image data was carried out on liver scans of normal subjects and those diagnosed with diffuse liver disease. In a previous study, ultrasound images from a group of normal volunteers, Gaucher's disease patients, and hepatitis patients were obtained by Garra et al., who used classical statistical methods to distinguish from among these three classes. In the present work, neural network classifiers were employed with the same image features found useful in the previous study for this task. Both standard backpropagation neural networks and a recently developed biologically-inspired network called Dystal were used. Classification performance as measured by the area under a receiver operating characteristic curve was generally excellent for the back propagation networks and was roughly comparable to that of classical statistical discriminators tested on the same data set and documented in the earlier study. Performance of the Dystal network was significantly inferior; however, this may be due to the choice of network parameter. Potential methods for enhancing network performance was identified.
Plant Growth Models Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Centroid calculation using neural networks
NASA Astrophysics Data System (ADS)
Himes, Glenn S.; Inigo, Rafael M.
1992-01-01
Centroid calculation provides a means of eliminating translation problems, which is useful for automatic target recognition. a neural network implementation of centroid calculation is described that used a spatial filter and a Hopfield network to determine the centroid location of an object. spatial filtering of a segmented window creates a result whose peak vale occurs at the centroid of the input data set. A Hopfield network then finds the location of this peak and hence gives the location of the centroid. Hardware implementations of the networks are described and simulation results are provided.
Neural Networks for Flight Control
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
Neural networks and applications tutorial
NASA Astrophysics Data System (ADS)
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Artificial neural networks in medicine
Keller, P.E.
1994-07-01
This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.
Neural networks for handwriting recognition
NASA Astrophysics Data System (ADS)
Kelly, David A.
1992-09-01
The market for a product that can read handwritten forms, such as insurance applications, re- order forms, or checks, is enormous. Companies could save millions of dollars each year if they had an effective and efficient way to read handwritten forms into a computer without human intervention. Urged on by the potential gold mine that an adequate solution would yield, a number of companies and researchers have developed, and are developing, neural network-based solutions to this long-standing problem. This paper briefly outlines the current state-of-the-art in neural network-based handwriting recognition research and products. The first section of the paper examines the potential market for this technology. The next section outlines the steps in the recognition process, followed by a number of the basic issues that need to be dealt with to solve the recognition problem in a real-world setting. Next, an overview of current commercial solutions and research projects shows the different ways that neural networks are applied to the problem. This is followed by a breakdown of the current commercial market and the future outlook for neural network-based handwriting recognition technology.
How Neural Networks Learn from Experience.
ERIC Educational Resources Information Center
Hinton, Geoffrey E.
1992-01-01
Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…
Model Of Neural Network With Creative Dynamics
NASA Technical Reports Server (NTRS)
Zak, Michail; Barhen, Jacob
1993-01-01
Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.
Analysis of complex systems using neural networks
Uhrig, R.E. . Dept. of Nuclear Engineering Oak Ridge National Lab., TN )
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems.
Analysis of complex systems using neural networks
Uhrig, R.E. |
1992-12-31
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems.
Ho, Cheng-I; Lin, Min-Der; Lo, Shang-Lien
2010-07-01
A methodology based on the integration of a seismic-based artificial neural network (ANN) model and a geographic information system (GIS) to assess water leakage and to prioritize pipeline replacement is developed in this work. Qualified pipeline break-event data derived from the Taiwan Water Corporation Pipeline Leakage Repair Management System were analyzed. "Pipe diameter," "pipe material," and "the number of magnitude-3( + ) earthquakes" were employed as the input factors of ANN, while "the number of monthly breaks" was used for the prediction output. This study is the first attempt to manipulate earthquake data in the break-event ANN prediction model. Spatial distribution of the pipeline break-event data was analyzed and visualized by GIS. Through this, the users can swiftly figure out the hotspots of the leakage areas. A northeastern township in Taiwan, frequently affected by earthquakes, is chosen as the case study. Compared to the traditional processes for determining the priorities of pipeline replacement, the methodology developed is more effective and efficient. Likewise, the methodology can overcome the difficulty of prioritizing pipeline replacement even in situations where the break-event records are unavailable. PMID:19468847
Overview of artificial neural networks.
Zou, Jinming; Han, Yi; So, Sung-Sau
2008-01-01
The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter. PMID:19065803
Analog neural network-based helicopter gearbox health monitoring system.
Monsen, P T; Dzwonczyk, M; Manolakos, E S
1995-12-01
The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage. PMID:8550948
Neural Networks For Visual Telephony
NASA Astrophysics Data System (ADS)
Gottlieb, A. M.; Alspector, J.; Huang, P.; Hsing, T. R.
1988-10-01
By considering how an image is processed by the eye and brain, we may find ways to simplify the task of transmitting complex video images over a telecommunication channel. Just as the retina and visual cortex reduce the amount of information sent to other areas of the brain, electronic systems can be designed to compress visual data, encode features, and adapt to new scenes for video transmission. In this talk, we describe a system inspired by models of neural computation that may, in the future, augment standard digital processing techniques for image compression. In the next few years it is expected that a compact low-cost full motion video telephone operating over an ISDN basic access line (144 KBits/sec) will be shown to be feasible. These systems will likely be based on a standard digital signal processing approach. In this talk, we discuss an alternative method that does not use standard digital signal processing but instead uses eletronic neural networks to realize the large compression necessary for a low bit-rate video telephone. This neural network approach is not being advocated as a near term solution for visual telephony. However, low bit rate visual telephony is an area where neural network technology may, in the future, find a significant application.
Validation and regulation of medical neural networks.
Rodvold, D M
2001-01-01
Using artificial neural networks (ANNs) in medical applications can be challenging because of the often-experimental nature of ANN construction and the "black box" label that is frequently attached to them. In the US, medical neural networks are regulated by the Food and Drug Administration. This article briefly discusses the documented FDA policy on neural networks and the various levels of formal acceptance that neural network development groups might pursue. To assist medical neural network developers in creating robust and verifiable software, this paper provides a development process model targeted specifically to ANNs for critical applications. PMID:11790274
Ca^2+ Dynamics and Propagating Waves in Neural Networks with Excitatory and Inhibitory Neurons.
NASA Astrophysics Data System (ADS)
Bondarenko, Vladimir E.
2008-03-01
Dynamics of neural spikes, intracellular Ca^2+, and Ca^2+ in intracellular stores was investigated both in isolated Chay's neurons and in the neurons coupled in networks. Three types of neural networks were studied: a purely excitatory neural network, with only excitatory (AMPA) synapses; a purely inhibitory neural network with only inhibitory (GABA) synapses; and a hybrid neural network, with both AMPA and GABA synapses. In the hybrid neural network, the ratio of excitatory to inhibitory neurons was 4:1. For each case, we considered two types of connections, ``all-with-all" and 20 connections per neuron. Each neural network contained 100 neurons with randomly distributed connection strengths. In the neural networks with ``all-with-all" connections and AMPA/GABA synapses an increase in average synaptic strength yielded bursting activity with increased/decreased number of spikes per burst. The neural bursts and Ca^2+ transients were synchronous at relatively large connection strengths despite random connection strengths. Simulations of the neural networks with 20 connections per neuron and with only AMPA synapses showed synchronous oscillations, while the neural networks with GABA or hybrid synapses generated propagating waves of membrane potential and Ca^2+ transients.
Terminal attractors in neural networks
NASA Technical Reports Server (NTRS)
Zak, Michail
1989-01-01
A new type of attractor (terminal attractors) for content-addressable memory, associative memory, and pattern recognition in artificial neural networks operating in continuous time is introduced. The idea of a terminal attractor is based upon a violation of the Lipschitz condition at a fixed point. As a result, the fixed point becomes a singular solution which envelopes the family of regular solutions, while each regular solution approaches such an attractor in finite time. It will be shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the synaptic weights. The applications of terminal attractors for content-addressable and associative memories, pattern recognition, self-organization, and for dynamical training are illustrated.
Devices and circuits for nanoelectronic implementation of artificial neural networks
NASA Astrophysics Data System (ADS)
Turel, Ozgur
Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.
The LILARTI neural network system
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
The hysteretic Hopfield neural network.
Bharitkar, S; Mendel, J M
2000-01-01
A new neuron activation function based on a property found in physical systems--hysteresis--is proposed. We incorporate this neuron activation in a fully connected dynamical system to form the hysteretic Hopfield neural network (HHNN). We then present an analog implementation of this architecture and its associated dynamical equation and energy function.We proceed to prove Lyapunov stability for this new model, and then solve a combinatorial optimization problem (i.e., the N-queen problem) using this network. We demonstrate the advantages of hysteresis by showing increased frequency of convergence to a solution, when the parameters associated with the activation function are varied. PMID:18249816
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Not Available
1991-01-01
The present conference discusses such topics as the self-organization of nonnumeric data sets, higher-order data compression with neural networks, approaches to connectionist pattern synthesis, a time-varying recurrent neural system for convex programming, a fuzzy associative memory for conceptual design, sensor failure detection and recovery via neural networks, genetic optimization of self-organizing feature maps, a maximum neural network for the max-cut problem, a neural-network LSI chip with on-chip learning, an optoelectronic adaptive resonance unit, an adaptive fuzzy system for transform image coding, a neural model of image velocity encoding, and incremental learning with rule-based neural networks. Also discussed are the induction of neural networks for parallel binary operations, hybrid learning in expert networks, self-organizing modular neural networks, connectionist category formation, period-doublings to chaos in a simple neural network, the optimal adaptive classifier design criterion, fuzzy neuron models, associative memory networks, adaptive transfer functions, spatiotemporal correlation in the cerebellum, prejuditial searches and the pole balancer, linear quadratic regulation via neural networks, the global optimization of a neural network, neural network analysis of DNA sequences, map learning using an associative-memory neural network, a pairing strategy in an associative memory classifier, neural networks for music composition, and a neural network for motion computation.
Load forecasting using artificial neural networks
Pham, K.D.
1995-12-31
Artificial neural networks, modeled after their biological counterpart, have been successfully applied in many diverse areas including speech and pattern recognition, remote sensing, electrical power engineering, robotics and stock market forecasting. The most commonly used neural networks are those that gained knowledge from experience. Experience is presented to the network in form of the training data. Once trained, the neural network can recognized data that it has not seen before. This paper will present a fundamental introduction to the manner in which neural networks work and how to use them in load forecasting.
Nonlinear PLS modeling using neural networks
Qin, S.J.; McAvoy, T.J.
1994-12-31
This paper discusses the embedding of neural networks into the framework of the PLS (partial least squares) modeling method resulting in a neural net PLS modeling approach. By using the universal approximation property of neural networks, the PLS modeling method is genealized to a nonlinear framework. The resulting model uses neural networks to capture the nonlinearity and keeps the PLS projection to attain robust generalization property. In this paper, the standard PLS modeling method is briefly reviewed. Then a neural net PLS (NNPLS) modeling approach is proposed which incorporates feedforward networks into the PLS modeling. A multi-input-multi-output nonlinear modeling task is decomposed into linear outer relations and simple nonlinear inner relations which are performed by a number of single-input-single-output networks. Since only a small size network is trained at one time, the over-parametrized problem of the direct neural network approach is circumvented even when the training data are very sparse. A conjugate gradient learning method is employed to train the network. It is shown that, by analyzing the NNPLS algorithm, the global NNPLS model is equivalent to a multilayer feedforward network. Finally, applications of the proposed NNPLS method are presented with comparison to the standard linear PLS method and the direct neural network approach. The proposed neural net PLS method gives better prediction results than the PLS modeling method and the direct neural network approach.
Neural network modeling of emotion
NASA Astrophysics Data System (ADS)
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Neural networks for aircraft system identification
NASA Technical Reports Server (NTRS)
Linse, Dennis J.
1991-01-01
Artificial neural networks offer some interesting possibilities for use in control. Our current research is on the use of neural networks on an aircraft model. The model can then be used in a nonlinear control scheme. The effectiveness of network training is demonstrated.
Neural networks and MIMD-multiprocessors
NASA Technical Reports Server (NTRS)
Vanhala, Jukka; Kaski, Kimmo
1990-01-01
Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.
Neural-Network Computer Transforms Coordinates
NASA Technical Reports Server (NTRS)
Josin, Gary M.
1990-01-01
Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.
Neural Networks in Nonlinear Aircraft Control
NASA Technical Reports Server (NTRS)
Linse, Dennis J.
1990-01-01
Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.
Satellite image analysis using neural networks
NASA Technical Reports Server (NTRS)
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
Constructive neural network learning algorithms
Parekh, R.; Yang, Jihoon; Honavar, V.
1996-12-31
Constructive Algorithms offer an approach for incremental construction of potentially minimal neural network architectures for pattern classification tasks. These algorithms obviate the need for an ad-hoc a-priori choice of the network topology. The constructive algorithm design involves alternately augmenting the existing network topology by adding one or more threshold logic units and training the newly added threshold neuron(s) using a stable variant of the perception learning algorithm (e.g., pocket algorithm, thermal perception, and barycentric correction procedure). Several constructive algorithms including tower, pyramid, tiling, upstart, and perception cascade have been proposed for 2-category pattern classification. These algorithms differ in terms of their topological and connectivity constraints as well as the training strategies used for individual neurons.
Adaptive optimization and control using neural networks
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Complexity matching in neural networks
NASA Astrophysics Data System (ADS)
Usefie Mafahim, Javad; Lambert, David; Zare, Marzieh; Grigolini, Paolo
2015-01-01
In the wide literature on the brain and neural network dynamics the notion of criticality is being adopted by an increasing number of researchers, with no general agreement on its theoretical definition, but with consensus that criticality makes the brain very sensitive to external stimuli. We adopt the complexity matching principle that the maximal efficiency of communication between two complex networks is realized when both of them are at criticality. We use this principle to establish the value of the neuronal interaction strength at which criticality occurs, yielding a perfect agreement with the adoption of temporal complexity as criticality indicator. The emergence of a scale-free distribution of avalanche size is proved to occur in a supercritical regime. We use an integrate-and-fire model where the randomness of each neuron is only due to the random choice of a new initial condition after firing. The new model shares with that proposed by Izikevich the property of generating excessive periodicity, and with it the annihilation of temporal complexity at supercritical values of the interaction strength. We find that the concentration of inhibitory links can be used as a control parameter and that for a sufficiently large concentration of inhibitory links criticality is recovered again. Finally, we show that the response of a neural network at criticality to a harmonic stimulus is very weak, in accordance with the complexity matching principle.
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Neural network based system for equipment surveillance
Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.
1998-01-01
A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.
Neural network modeling of distillation columns
Baratti, R.; Vacca, G.; Servida, A.
1995-06-01
Neural network modeling (NNM) was implemented for monitoring and control applications on two actual distillation columns: the butane splitter tower and the gasoline stabilizer. The two distillation columns are in operation at the SARAS refinery. Results show that with proper implementation techniques NNM can significantly improve column operation. The common belief that neural networks can be used as black-box process models is not completely true. Effective implementation always requires a minimum degree of process knowledge to identify the relevant inputs to the net. After background and generalities on neural network modeling, the paper describes efforts on the development of neural networks for the two distillation units.
Electronic neural networks for global optimization
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.
1990-01-01
An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.
Aerodynamic Design Using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.
2003-01-01
The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.
Neural networks for nuclear spectroscopy
Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.
1995-12-31
In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.
Neural Network Classifies Teleoperation Data
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido
1994-01-01
Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Ozone Modeling Using Neural Networks.
NASA Astrophysics Data System (ADS)
Narasimhan, Ramesh; Keller, Joleen; Subramaniam, Ganesh; Raasch, Eric; Croley, Brandon; Duncan, Kathleen; Potter, William T.
2000-03-01
Ozone models for the city of Tulsa were developed using neural network modeling techniques. The neural models were developed using meteorological data from the Oklahoma Mesonet and ozone, nitric oxide, and nitrogen dioxide (NO2) data from Environmental Protection Agency monitoring sites in the Tulsa area. An initial model trained with only eight surface meteorological input variables and NO2 was able to simulate ozone concentrations with a correlation coefficient of 0.77. The trained model was then used to evaluate the sensitivity to the primary variables that affect ozone concentrations. The most important variables (NO2, temperature, solar radiation, and relative humidity) showed response curves with strong nonlinear codependencies. Incorporation of ozone concentrations from the previous 3 days into the model increased the correlation coefficient to 0.82. As expected, the ozone concentrations correlated best with the most recent (1-day previous) values. The model's correlation coefficient was increased to 0.88 by the incorporation of upper-air data from the National Weather Service's Nested Grid Model. Sensitivity analysis for the upper-air variables indicated unusual positive correlations between ozone and the relative humidity from 500 hPa to the tropopause in addition to the other expected correlations with upper-air temperatures, vertical wind velocity, and 1000-500-hPa layer thickness. The neural model results are encouraging for the further use of these systems to evaluate complex parameter cosensitivities, and for the use of these systems in automated ozone forecast systems.
Three dimensional living neural networks
NASA Astrophysics Data System (ADS)
Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.
2015-08-01
We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.
Artificial neural networks in neurosurgery.
Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali
2015-03-01
Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery. PMID:24987050
Computational acceleration using neural networks
NASA Astrophysics Data System (ADS)
Cadaret, Paul
2008-04-01
The author's recent participation in the Small Business Innovative Research (SBIR) program has resulted in the development of a patent pending technology that enables the construction of very large and fast artificial neural networks. Through the use of UNICON's CogniMax pattern recognition technology we believe that systems can be constructed that exploit the power of "exhaustive learning" for the benefit of certain types of complex and slow computational problems. This paper presents a theoretical study that describes one potentially beneficial application of exhaustive learning. It describes how a very large and fast Radial Basis Function (RBF) artificial Neural Network (NN) can be used to implement a useful computational system. Viewed another way, it presents an unusual method of transforming a complex, always-precise, and slow computational problem into a fuzzy pattern recognition problem where other methods are available to effectively improve computational performance. The method described recognizes that the need for computational precision in a problem domain sometimes varies throughout the domain's Feature Space (FS) and high precision may only be needed in limited areas. These observations can then be exploited to the benefit of overall computational performance. Addressing computational reliability, we describe how existing always-precise computational methods can be used to reliably train the NN to perform the computational interpolation function. The author recognizes that the method described is not applicable to every situation, but over the last 8 months we have been surprised at how often this method can be applied to enable interesting and effective solutions.
A new formulation for feedforward neural networks.
Razavi, Saman; Tolson, Bryan A
2011-10-01
Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization. PMID:21859600
Drift chamber tracking with neural networks
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.
Extrapolation limitations of multilayer feedforward neural networks
NASA Technical Reports Server (NTRS)
Haley, Pamela J.; Soloway, Donald
1992-01-01
The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.
Coherence resonance in bursting neural networks
NASA Astrophysics Data System (ADS)
Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.
2015-10-01
Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.
Not Available
1991-01-01
The present conference the application of neural networks to associative memories, neurorecognition, hybrid systems, supervised and unsupervised learning, image processing, neurophysiology, sensation and perception, electrical neurocomputers, optimization, robotics, machine vision, sensorimotor control systems, and neurodynamics. Attention is given to such topics as optimal associative mappings in recurrent networks, self-improving associative neural network models, fuzzy activation functions, adaptive pattern recognition with sparse associative networks, efficient question-answering in a hybrid system, the use of abstractions by neural networks, remote-sensing pattern classification, speech recognition with guided propagation, inverse-step competitive learning, and rotational quadratic function neural networks. Also discussed are electrical load forecasting, evolutionarily stable and unstable strategies, the capacity of recurrent networks, neural net vs control theory, perceptrons for image recognition, storage capacity of bidirectional associative memories, associative random optimization for control, automatic synthesis of digital neural architectures, self-learning robot vision, and the associative dynamics of chaotic neural networks.
From Classical Neural Networks to Quantum Neural Networks
NASA Astrophysics Data System (ADS)
Tirozzi, B.
2013-09-01
First I give a brief description of the classical Hopfield model introducing the fundamental concepts of patterns, retrieval, pattern recognition, neural dynamics, capacity and describe the fundamental results obtained in this field by Amit, Gutfreund and Sompolinsky,1 using the non rigorous method of replica and the rigorous version given by Pastur, Shcherbina, Tirozzi2 using the cavity method. Then I give a formulation of the theory of Quantum Neural Networks (QNN) in terms of the XY model with Hebbian interaction. The problem of retrieval and storage is discussed. The retrieval states are the states of the minimum energy. I apply the estimates found by Lieb3 which give lower and upper bound of the free-energy and expectation of the observables of the quantum model. I discuss also some experiment and the search of ground state using Monte Carlo Dynamics applied to the equivalent classical two dimensional Ising model constructed by Suzuki et al.6 At the end there is a list of open problems.
Neural Network Algorithm for Particle Loading
J. L. V. Lewandowski
2003-04-25
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.
Adaptive Neurons For Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Radiation Behavior of Analog Neural Network Chip
NASA Technical Reports Server (NTRS)
Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.
1996-01-01
A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. PMID:20713305
Creativity in design and artificial neural networks
Neocleous, C.C.; Esat, I.I.; Schizas, C.N.
1996-12-31
The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.
Self-organization of neural networks
NASA Astrophysics Data System (ADS)
Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann
1984-05-01
The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.
Advanced telerobotic control using neural networks
NASA Technical Reports Server (NTRS)
Pap, Robert M.; Atkins, Mark; Cox, Chadwick; Glover, Charles; Kissel, Ralph; Saeks, Richard
1993-01-01
Accurate Automation is designing and developing adaptive decentralized joint controllers using neural networks. We are then implementing these in hardware for the Marshall Space Flight Center PFMA as well as to be usable for the Remote Manipulator System (RMS) robot arm. Our design is being realized in hardware after completion of the software simulation. This is implemented using a Functional-Link neural network.
Neural network based architectures for aerospace applications
NASA Technical Reports Server (NTRS)
Ricart, Richard
1987-01-01
A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.
Applications of Neural Networks in Finance.
ERIC Educational Resources Information Center
Crockett, Henry; Morrison, Ronald
1994-01-01
Discusses research with neural networks in the area of finance. Highlights include bond pricing, theoretical exposition of primary bond pricing, bond pricing regression model, and an example that created networks with corporate bonds and NeuralWare Neuralworks Professional H software using the back-propagation technique. (LRW)
A Survey of Neural Network Publications.
ERIC Educational Resources Information Center
Vijayaraman, Bindiganavale S.; Osyk, Barbara
This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…
Introduction to Concepts in Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
A Model for Improving the Learning Curves of Artificial Neural Networks
2016-01-01
In this article, the performance of a hybrid artificial neural network (i.e. scale-free and small-world) was analyzed and its learning curve compared to three other topologies: random, scale-free and small-world, as well as to the chemotaxis neural network of the nematode Caenorhabditis Elegans. One hundred equivalent networks (same number of vertices and average degree) for each topology were generated and each was trained for one thousand epochs. After comparing the mean learning curves of each network topology with the C. elegans neural network, we found that the networks that exhibited preferential attachment exhibited the best learning curves. PMID:26901646
Enhancing neural-network performance via assortativity.
de Franciscis, Sebastiano; Johnson, Samuel; Torres, Joaquín J
2011-03-01
The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations--assortativity--on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information. PMID:21517565
Enhancing neural-network performance via assortativity
Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.
2011-03-15
The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.
Neural network and letter recognition
Lee, Hue Yeon.
1989-01-01
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C-layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the Gabor transform. Pattern dependent choice of center and wavelengths of Gabor filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets.
Sunspot prediction using neural networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Baffes, Paul
1990-01-01
The earliest systematic observance of sunspot activity is known to have been discovered by the Chinese in 1382 during the Ming Dynasty (1368 to 1644) when spots on the sun were noticed by looking at the sun through thick, forest fire smoke. Not until after the 18th century did sunspot levels become more than a source of wonderment and curiosity. Since 1834 reliable sunspot data has been collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Naval Observatory. Recently, considerable effort has been placed upon the study of the effects of sunspots on the ecosystem and the space environment. The efforts of the Artificial Intelligence Section of the Mission Planning and Analysis Division of the Johnson Space Center involving the prediction of sunspot activity using neural network technologies are described.
Moon, S W; Kong, S G
2001-01-01
This paper presents a novel block-based neural network (BBNN) model and the optimization of its structure and weights based on a genetic algorithm. The architecture of the BBNN consists of a 2D array of fundamental blocks with four variable input/output nodes and connection weights. Each block can have one of four different internal configurations depending on the structure settings, The BBNN model includes some restrictions such as 2D array and integer weights in order to allow easier implementation with reconfigurable hardware such as field programmable logic arrays (FPGA). The structure and weights of the BBNN are encoded with bit strings which correspond to the configuration bits of FPGA. The configuration bits are optimized globally using a genetic algorithm with 2D encoding and modified genetic operators. Simulations show that the optimized BBNN can solve engineering problems such as pattern classification and mobile robot control. PMID:18244385
Neural networks: a biased overview
Domany, E.
1988-06-01
An overview of recent activity in the field of neural networks is presented. The long-range aim of this research is to understand how the brain works. First some of the problems are stated and terminology defined; then an attempt is made to explain why physicists are drawn to the field, and their main potential contribution. In particular, in recent years some interesting models have been introduced by physicists. A small subset of these models is described, with particular emphasis on those that are analytically soluble. Finally a brief review of the history and recent developments of single- and multilayer perceptrons is given, bringing the situation up to date regarding the central immediate problem of the field: search for a learning algorithm that has an associated convergence theorem.
Wavelet differential neural network observer.
Chairez, Isaac
2009-09-01
State estimation for uncertain systems affected by external noises is an important problem in control theory. This paper deals with a state observation problem when the dynamic model of a plant contains uncertainties or it is completely unknown. Differential neural network (NN) approach is applied in this uninformative situation but with activation functions described by wavelets. A new learning law, containing an adaptive adjustment rate, is suggested to imply the stability condition for the free parameters of the observer. Nominal weights are adjusted during the preliminary training process using the least mean square (LMS) method. Lyapunov theory is used to obtain the upper bounds for the weights dynamics as well as for the mean squared estimation error. Two numeric examples illustrate this approach: first, a nonlinear electric system, governed by the Chua's equation and second the Lorentz oscillator. Both systems are assumed to be affected by external perturbations and their parameters are unknown. PMID:19674951
Introduction to artificial neural networks.
Grossi, Enzo; Buscema, Massimo
2007-12-01
The coupling of computer science and theoretical bases such as nonlinear dynamics and chaos theory allows the creation of 'intelligent' agents, such as artificial neural networks (ANNs), able to adapt themselves dynamically to problems of high complexity. ANNs are able to reproduce the dynamic interaction of multiple factors simultaneously, allowing the study of complexity; they can also draw conclusions on individual basis and not as average trends. These tools can offer specific advantages with respect to classical statistical techniques. This article is designed to acquaint gastroenterologists with concepts and paradigms related to ANNs. The family of ANNs, when appropriately selected and used, permits the maximization of what can be derived from available data and from complex, dynamic, and multidimensional phenomena, which are often poorly predictable in the traditional 'cause and effect' philosophy. PMID:17998827
Neural networks for damage identification
Paez, T.L.; Klenke, S.E.
1997-11-01
Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2003-12-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2004-09-30
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2004-03-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2002-09-30
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, online, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce {sub x} emissions and improve heat rate
VLSI Cells Placement Using the Neural Networks
Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah
2008-06-12
The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network.
Neural networks and orbit control in accelerators
Bozoki, E.; Friedman, A.
1994-07-01
An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to `kicks` and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given.
Neural network regulation driven by autonomous neural firings
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2016-07-01
Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.
Coronary Artery Diagnosis Aided by Neural Network
NASA Astrophysics Data System (ADS)
Stefko, Kamil
2007-01-01
Coronary artery disease is due to atheromatous narrowing and subsequent occlusion of the coronary vessel. Application of optimised feed forward multi-layer back propagation neural network (MLBP) for detection of narrowing in coronary artery vessels is presented in this paper. The research was performed using 580 data records from traditional ECG exercise test confirmed by coronary arteriography results. Each record of training database included description of the state of a patient providing input data for the neural network. Level and slope of ST segment of a 12 lead ECG signal recorded at rest and after effort (48 floating point values) was the main component of input data for neural network was. Coronary arteriography results (verified the existence or absence of more than 50% stenosis of the particular coronary vessels) were used as a correct neural network training output pattern. More than 96% of cases were correctly recognised by especially optimised and a thoroughly verified neural network. Leave one out method was used for neural network verification so 580 data records could be used for training as well as for verification of neural network.
Unsupervised neural networks for solving Troesch's problem
NASA Astrophysics Data System (ADS)
Muhammad, Asif Zahoor Raja
2014-01-01
In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.
Rogers, S.K.
1990-01-01
The present conference discusses artificial neural networks (ANNs) for automatic target recognition, theory of networks for learning, abductive networks, target recognition in parallel networks, ANN recognition of atomic and molecular species, multispectral image fusion with ANNs, radar warning/emitter identification processing by ANNs, IR target motion estimation by ANNs, and the analog hardware implementation of neocognition networks. Also discussed are a multidimensional Kohonen net on a HyperCube, robot learning, probabilistic neural networks, ANNs for interpolation and extrapolation, knowledge-base browsing with hybrid distributed/local connectionist networks, predicate calculus for ANNs, abductive networks for electronic warfare, uncertainty computations in ANNs, and the classification power of multiple-layer ANNs.
An overview on development of neural network technology
NASA Technical Reports Server (NTRS)
Lin, Chun-Shin
1993-01-01
The study has been to obtain a bird's-eye view of the current neural network technology and the neural network research activities in NASA. The purpose was two fold. One was to provide a reference document for NASA researchers who want to apply neural network techniques to solve their problems. Another one was to report out survey results regarding NASA research activities and provide a view on what NASA is doing, what potential difficulty exists and what NASA can/should do. In a ten week study period, we interviewed ten neural network researchers in the Langley Research Center and sent out 36 survey forms to researchers at the Johnson Space Center, Lewis Research Center, Ames Research Center and Jet Propulsion Laboratory. We also sent out 60 similar forms to educators and corporation researchers to collect general opinions regarding this field. Twenty-eight survey forms, 11 from NASA researchers and 17 from outside, were returned. Survey results were reported in our final report. In the final report, we first provided an overview on the neural network technology. We reviewed ten neural network structures, discussed the applications in five major areas, and compared the analog, digital and hybrid electronic implementation of neural networks. In the second part, we summarized known NASA neural network research studies and reported the results of the questionnaire survey. Survey results show that most studies are still in the development and feasibility study stage. We compared the techniques, application areas, researchers' opinions on this technology, and many aspects between NASA and non-NASA groups. We also summarized their opinions on difficulties encountered. Applications are considered the top research priority by most researchers. Hardware development and learning algorithm improvement are the next. The lack of financial and management support is among the difficulties in research study. All researchers agree that the use of neural networks could result in
Neural Network Prediction of New Aircraft Design Coefficients
NASA Technical Reports Server (NTRS)
Norgaard, Magnus; Jorgensen, Charles C.; Ross, James C.
1997-01-01
This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.
Data compression using artificial neural networks
Watkins, B.E.
1991-09-01
This thesis investigates the application of artificial neural networks for the compression of image data. An algorithm is developed using the competitive learning paradigm which takes advantage of the parallel processing and classification capability of neural networks to produce an efficient implementation of vector quantization. Multi-Stage, tree searched, and classification vector quantization codebook design are adapted to the neural network design to reduce the computational cost and hardware requirements. The results show that the new algorithm provides a substantial reduction in computational costs and an improvement in performance.
Description of interatomic interactions with neural networks
NASA Astrophysics Data System (ADS)
Hajinazar, Samad; Shao, Junping; Kolmogorov, Aleksey N.
Neural networks are a promising alternative to traditional classical potentials for describing interatomic interactions. Recent research in the field has demonstrated how arbitrary atomic environments can be represented with sets of general functions which serve as an input for the machine learning tool. We have implemented a neural network formalism in the MAISE package and developed a protocol for automated generation of accurate models for multi-component systems. Our tests illustrate the performance of neural networks and known classical potentials for a range of chemical compositions and atomic configurations. Supported by NSF Grant DMR-1410514.
Neural network with formed dynamics of activity
Dunin-Barkovskii, V.L.; Osovets, N.B.
1995-03-01
The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.
Multispectral-image fusion using neural networks
NASA Astrophysics Data System (ADS)
Kagel, Joseph H.; Platt, C. A.; Donaven, T. W.; Samstad, Eric A.
1990-08-01
A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard a circuit card assembly and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations results and a description of the prototype system are presented. 1.
Multispectral image fusion using neural networks
NASA Technical Reports Server (NTRS)
Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.
1990-01-01
A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.
Stock market index prediction using neural networks
NASA Astrophysics Data System (ADS)
Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok
1994-03-01
A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.
A neural network prototyping package within IRAF
NASA Technical Reports Server (NTRS)
Bazell, D.; Bankman, I.
1992-01-01
We outline our plans for incorporating a Neural Network Prototyping Package into the IRAF environment. The package we are developing will allow the user to choose between different types of networks and to specify the details of the particular architecture chosen. Neural networks consist of a highly interconnected set of simple processing units. The strengths of the connections between units are determined by weights which are adaptively set as the network 'learns'. In some cases, learning can be a separate phase of the user cycle of the network while in other cases the network learns continuously. Neural networks have been found to be very useful in pattern recognition and image processing applications. They can form very general 'decision boundaries' to differentiate between objects in pattern space and they can be used for associative recall of patterns based on partial cures and for adaptive filtering. We discuss the different architectures we plan to use and give examples of what they can do.
Fuzzy Neural Networks for water level and discharge forecasting
NASA Astrophysics Data System (ADS)
Alvisi, Stefano; Franchini, Marco
2010-05-01
A new procedure for water level (or discharge) forecasting under uncertainty using artificial neural networks is proposed: uncertainty is expressed in the form of a fuzzy number. For this purpose, the parameters of the neural network, namely, the weights and biases, are represented by fuzzy numbers rather than crisp numbers. Through the application of the extension principle, the fuzzy number representative of the output variable (water level or discharge) is then calculated at each time step on the basis of a set of crisp inputs and fuzzy parameters of the neural network. The proposed neural network thus allows uncertainty to be taken into account at the forecasting stage not providing only deterministic or crisp predictions, but rather predictions in terms of 'the discharge (or level) will fall between two values, indicated according to the level of credibility considered, whereas it will take on a certain value when the level of credibility is maximum'. The fuzzy parameters of the neural network are estimated using a calibration procedure that imposes a constraint whereby for an assigned h-level the envelope of the corresponding intervals representing the outputs (forecasted levels or discharges, calculated at different points in time) must include a prefixed percentage of observed values. The proposed model is applied to two different case studies. Specifically, the data related to the first case study are used to develop and test a flood event-based water level forecasting model, whereas the data related to the latter are used for continuous discharge forecasting. The results obtained are compared with those provided by other data-driven models - Bayesian neural networks (Neal, R.M. 1992, Bayesian training of backpropagation networks by the hybrid Monte Carlo method. Tech. Rep. CRG-TR-92-1, Dep. of Comput. Sci., Univ. of Toronto, Toronto, Ont., Canada.) and the Local Uncertainty Estimation Model (Shrestha D.L. and Solomatine D.P. 2006, Machine learning
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
ERIC Educational Resources Information Center
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the characteristics…
Results of the neural network investigation
NASA Astrophysics Data System (ADS)
Uvanni, Lee A.
1992-04-01
Rome Laboratory has designed and implemented a neural network based automatic target recognition (ATR) system under contract F30602-89-C-0079 with Booz, Allen & Hamilton (BAH), Inc., of Arlington, Virginia. The system utilizes a combination of neural network paradigms and conventional image processing techniques in a parallel environment on the IE- 2000 SUN 4 workstation at Rome Laboratory. The IE-2000 workstation was designed to assist the Air Force and Department of Defense to derive the needs for image exploitation and image exploitation support for the late 1990s - year 2000 time frame. The IE-2000 consists of a developmental testbed and an applications testbed, both with the goal of solving real world problems on real-world facilities for image exploitation. To fully exploit the parallel nature of neural networks, 18 Inmos T800 transputers were utilized, in an attempt to provide a near- linear speed-up for each subsystem component implemented on them. The initial design contained three well-known neural network paradigms, each modified by BAH to some extent: the Selective Attention Neocognitron (SAN), the Binary Contour System/Feature Contour System (BCS/FCS), and Adaptive Resonance Theory 2 (ART-2), and one neural network designed by BAH called the Image Variance Exploitation Network (IVEN). Through rapid prototyping, the initial system evolved into a completely different final design, called the Neural Network Image Exploitation System (NNIES), where the final system consists of two basic components: the Double Variance (DV) layer and the Multiple Object Detection And Location System (MODALS). A rapid prototyping neural network CAD Tool, designed by Booz, Allen & Hamilton, was used to rapidly build and emulate the neural network paradigms. Evaluation of the completed ATR system included probability of detections and probability of false alarms among other measures.
Parameter extraction with neural networks
NASA Astrophysics Data System (ADS)
Cazzanti, Luca; Khan, Mumit; Cerrina, Franco
1998-06-01
In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs
Imbibition well stimulation via neural network design
Weiss, William
2007-08-14
A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.
Using Neural Networks for Sensor Validation
NASA Technical Reports Server (NTRS)
Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William
1998-01-01
This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.
Constructive Autoassociative Neural Network for Facial Recognition
Fernandes, Bruno J. T.; Cavalcanti, George D. C.; Ren, Tsang I.
2014-01-01
Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network). CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature. PMID:25542018
Radar signal categorization using a neural network
NASA Technical Reports Server (NTRS)
Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.
1991-01-01
Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.
Using neural networks in software repositories
NASA Technical Reports Server (NTRS)
Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.
1992-01-01
The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.
Limitations of opto-electronic neural networks
NASA Technical Reports Server (NTRS)
Yu, Jeffrey; Johnston, Alan; Psaltis, Demetri; Brady, David
1989-01-01
Consideration is given to the limitations of implementing neurons, weights, and connections in neural networks for electronics and optics. It is shown that the advantages of each technology are utilized when electronically fabricated neurons are included and a combination of optics and electronics are employed for the weights and connections. The relationship between the types of neural networks being constructed and the choice of technologies to implement the weights and connections is examined.
Neural network simulations of the nervous system.
van Leeuwen, J L
1990-01-01
Present knowledge of brain mechanisms is mainly based on anatomical and physiological studies. Such studies are however insufficient to understand the information processing of the brain. The present new focus on neural network studies is the most likely candidate to fill this gap. The present paper reviews some of the history and current status of neural network studies. It signals some of the essential problems for which answers have to be found before substantial progress in the field can be made. PMID:2245130
Neural-Network Controller For Vibration Suppression
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Wang, Shyh Jong
1995-01-01
Neural-network-based adaptive-control system proposed for vibration suppression of flexible space structures. Controller features three-layer neural network and utilizes output feedback. Measurements generated by various sensors on structure. Feed forward path also included to speed up response in case plant exhibits predominantly linear dynamic behavior. System applicable to single-input single-output systems. Work extended to multiple-input multiple-output systems as well.
Optimization neural network for solving flow problems.
Perfetti, R
1995-01-01
This paper describes a neural network for solving flow problems, which are of interest in many areas of application as in fuel, hydro, and electric power scheduling. The neural network consist of two layers: a hidden layer and an output layer. The hidden units correspond to the nodes of the flow graph. The output units represent the branch variables. The network has a linear order of complexity, it is easily programmable, and it is suited for analog very large scale integration (VLSI) realization. The functionality of the proposed network is illustrated by a simulation example concerning the maximal flow problem. PMID:18263420
A neural network simulation package in CLIPS
NASA Technical Reports Server (NTRS)
Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John
1990-01-01
The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.
Speech synthesis with artificial neural networks
NASA Astrophysics Data System (ADS)
Weijters, Ton; Thole, Johan
1992-10-01
The application of neural nets to speech synthesis is considered. In speech synthesis, the main efforts so far have been to master the grapheme to phoneme conversion. During this conversion symbols (graphemes) are converted into other symbols (phonemes). Neural networks, however, are especially competitive for tasks in which complex nonlinear transformations are needed and sufficient domain specific knowledge is not available. The conversion of text into speech parameters appropriate as input for a speech generator seems such a task. Results of a pilot study in which an attempt is made to train a neural network for this conversion are presented.
A neural network for visual pattern recognition
Fukushima, K.
1988-03-01
A modeling approach, which is a synthetic approach using neural network models, continues to gain importance. In the modeling approach, the authors study how to interconnect neurons to synthesize a brain model, which is a network with the same functions and abilities as the brain. The relationship between modeling neutral networks and neurophysiology resembles that between theoretical physics and experimental physics. Modeling takes synthetic approach, while neurophysiology or psychology takes an analytical approach. Modeling neural networks is useful in explaining the brain and also in engineering applications. It brings the results of neurophysiological and psychological research to engineering applications in the most direct way possible. This article discusses a neural network model thus obtained, a model with selective attention in visual pattern recognition.
Maximus-AI: Using Elman Neural Networks for Implementing a SLMR Trading Strategy
NASA Astrophysics Data System (ADS)
Marques, Nuno C.; Gomes, Carlos
This paper presents a stop-loss - maximum return (SLMR) trading strategy based on improving the classic moving average technical indicator with neural networks. We propose an improvement in the efficiency of the long term moving average by using the limited recursion in Elman Neural Networks, jointly with hybrid neuro-symbolic neural network, while still fully keeping all the learning capabilities of non-recursive parts of the network. Simulations using Eurostoxx50 financial index will illustrate the potential of such a strategy for avoiding negative asset returns and decreasing the investment risk.
The H1 neural network trigger project
NASA Astrophysics Data System (ADS)
Kiesling, C.; Denby, B.; Fent, J.; Fröchtenicht, W.; Garda, P.; Granado, B.; Grindhammer, G.; Haberer, W.; Janauschek, L.; Kobler, T.; Koblitz, B.; Nellen, G.; Prevotet, J.-C.; Schmidt, S.; Tzamariudaki, E.; Udluft, S.
2001-08-01
We present a short overview of neuromorphic hardware and some of the physics projects making use of such devices. As a concrete example we describe an innovative project within the H1-Experiment at the electron-proton collider HERA, instrumenting hardwired neural networks as pattern recognition machines to discriminate between wanted physics and uninteresting background at the trigger level. The decision time of the system is less than 20 microseconds, typical for a modern second level trigger. The neural trigger has been successfully running for the past four years and has turned out new physics results from H1 unobtainable so far with other triggering schemes. We describe the concepts and the technical realization of the neural network trigger system, present the most important physics results, and motivate an upgrade of the system for the future high luminosity running at HERA. The upgrade concentrates on "intelligent preprocessing" of the neural inputs which help to strongly improve the networks' discrimination power.
Optical neural stimulation modeling on degenerative neocortical neural networks
NASA Astrophysics Data System (ADS)
Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Arce-Diego, J. L.
2015-07-01
Neurodegenerative diseases usually appear at advanced age. Medical advances make people live longer and as a consequence, the number of neurodegenerative diseases continuously grows. There is still no cure for these diseases, but several brain stimulation techniques have been proposed to improve patients' condition. One of them is Optical Neural Stimulation (ONS), which is based on the application of optical radiation over specific brain regions. The outer cerebral zones can be noninvasively stimulated, without the common drawbacks associated to surgical procedures. This work focuses on the analysis of ONS effects in stimulated neurons to determine their influence in neuronal activity. For this purpose a neural network model has been employed. The results show the neural network behavior when the stimulation is provided by means of different optical radiation sources and constitute a first approach to adjust the optical light source parameters to stimulate specific neocortical areas.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
San, Phyo Phyo; Ling, Sai Ho; Nuryani; Nguyen, Hung
2014-08-01
This paper focuses on the hybridization technology using rough sets concepts and neural computing for decision and classification purposes. Based on the rough set properties, the lower region and boundary region are defined to partition the input signal to a consistent (predictable) part and an inconsistent (random) part. In this way, the neural network is designed to deal only with the boundary region, which mainly consists of an inconsistent part of applied input signal causing inaccurate modeling of the data set. Owing to different characteristics of neural network (NN) applications, the same structure of conventional NN might not give the optimal solution. Based on the knowledge of application in this paper, a block-based neural network (BBNN) is selected as a suitable classifier due to its ability to evolve internal structures and adaptability in dynamic environments. This architecture will systematically incorporate the characteristics of application to the structure of hybrid rough-block-based neural network (R-BBNN). A global training algorithm, hybrid particle swarm optimization with wavelet mutation is introduced for parameter optimization of proposed R-BBNN. The performance of the proposed R-BBNN algorithm was evaluated by an application to the field of medical diagnosis using real hypoglycemia episodes in patients with Type 1 diabetes mellitus. The performance of the proposed hybrid system has been compared with some of the existing neural networks. The comparison results indicated that the proposed method has improved classification performance and results in early convergence of the network. PMID:24122616
Fuzzy logic and neural networks
Loos, J.R.
1994-11-01
Combine fuzzy logic`s fuzzy sets, fuzzy operators, fuzzy inference, and fuzzy rules - like defuzzification - with neural networks and you can arrive at very unfuzzy real-time control. Fuzzy logic, cursed with a very whimsical title, simply means multivalued logic, which includes not only the conventional two-valued (true/false) crisp logic, but also the logic of three or more values. This means one can assign logic values of true, false, and somewhere in between. This is where fuzziness comes in. Multi-valued logic avoids the black-and-white, all-or-nothing assignment of true or false to an assertion. Instead, it permits the assignment of shades of gray. When assigning a value of true or false to an assertion, the numbers typically used are {open_quotes}1{close_quotes} or {open_quotes}0{close_quotes}. This is the case for programmed systems. If {open_quotes}0{close_quotes} means {open_quotes}false{close_quotes} and {open_quotes}1{close_quotes} means {open_quotes}true,{close_quotes} then {open_quotes}shades of gray{close_quotes} are any numbers between 0 and 1. Therefore, {open_quotes}nearly true{close_quotes} may be represented by 0.8 or 0.9, {open_quotes}nearly false{close_quotes} may be represented by 0.1 or 0.2, and {close_quotes}your guess is as good as mine{close_quotes} may be represented by 0.5. The flexibility available to one is limitless. One can associate any meaning, such as {open_quotes}nearly true{close_quotes}, to any value of any granularity, such as 0.9999. 2 figs.
On sparsely connected optimal neural networks
Beiu, V.; Draghici, S.
1997-10-01
This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.
Artificial Neural Networks and Instructional Technology.
ERIC Educational Resources Information Center
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Neural-Network Modeling Of Arc Welding
NASA Technical Reports Server (NTRS)
Anderson, Kristinn; Barnett, Robert J.; Springfield, James F.; Cook, George E.; Strauss, Alvin M.; Bjorgvinsson, Jon B.
1994-01-01
Artificial neural networks considered for use in monitoring and controlling gas/tungsten arc-welding processes. Relatively simple network, using 4 welding equipment parameters as inputs, estimates 2 critical weld-bead paramaters within 5 percent. Advantage is computational efficiency.
Higher-Order Neural Networks Recognize Patterns
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen
1996-01-01
Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.
Orthogonal Patterns In A Binary Neural Network
NASA Technical Reports Server (NTRS)
Baram, Yoram
1991-01-01
Report presents some recent developments in theory of binary neural networks. Subject matter relevant to associate (content-addressable) memories and to recognition of patterns - both of considerable importance in advancement of robotics and artificial intelligence. When probed by any pattern, network converges to one of stored patterns.
Comparing artificial and biological dynamical neural networks
NASA Astrophysics Data System (ADS)
McAulay, Alastair D.
2006-05-01
Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.
Electronic device aspects of neural network memories
NASA Technical Reports Server (NTRS)
Lambe, J.; Moopenn, A.; Thakoor, A. P.
1985-01-01
The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.
Improving neural network performance on SIMD architectures
NASA Astrophysics Data System (ADS)
Limonova, Elena; Ilin, Dmitry; Nikolaev, Dmitry
2015-12-01
Neural network calculations for the image recognition problems can be very time consuming. In this paper we propose three methods of increasing neural network performance on SIMD architectures. The usage of SIMD extensions is a way to speed up neural network processing available for a number of modern CPUs. In our experiments, we use ARM NEON as SIMD architecture example. The first method deals with half float data type for matrix computations. The second method describes fixed-point data type for the same purpose. The third method considers vectorized activation functions implementation. For each method we set up a series of experiments for convolutional and fully connected networks designed for image recognition task.
Evolutionary swarm neural network game engine for Capture Go.
Cai, Xindi; Venayagamoorthy, Ganesh K; Wunsch, Donald C
2010-03-01
Evaluation of the current board position is critical in computer game engines. In sufficiently complex games, such a task is too difficult for a traditional brute force search to accomplish, even when combined with expert knowledge bases. This motivates the investigation of alternatives. This paper investigates the combination of neural networks, particle swarm optimization (PSO), and evolutionary algorithms (EAs) to train a board evaluator from zero knowledge. By enhancing the survivors of an EA with PSO, the hybrid algorithm successfully trains the high-dimensional neural networks to provide an evaluation of the game board through self-play. Experimental results, on the benchmark game of Capture Go, demonstrate that the hybrid algorithm can be more powerful than its individual parts, with the system playing against EA and PSO trained game engines. Also, the winning results of tournaments against a Hill-Climbing trained game engine confirm that the improvement comes from the hybrid algorithm itself. The hybrid game engine is also demonstrated against a hand-coded defensive player and a web player. PMID:20005671
Real-time neural network based camera localization and its extension to mobile robot control.
Choi, D H; Oh, S Y
1997-06-01
The feasibility of using neural networks for camera localization and mobile robot control is investigated here. This approach has the advantages of eliminating the laborious and error-prone process of imaging system modeling and calibration procedures. Basically, two different approaches of using neural networks are introduced of which one is a hybrid approach combining neural networks and the pinhole-based analytic solution while the other is purely neural network based. These techniques have been tested and compared through both simulation and real-time experiments and are shown to yield more precise localization than analytic approaches. Furthermore, this neural localization method is also shown to be directly applicable to the navigation control of an experimental mobile robot along the hallway purely guided by a dark wall strip. It also facilitates multi-sensor fusion through the use of multiple sensors of different types for control due to the network's capability of learning without models. PMID:9427102
Learning and diagnosing faults using neural networks
NASA Technical Reports Server (NTRS)
Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis
1990-01-01
Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.
A neural network approach to cloud classification
NASA Technical Reports Server (NTRS)
Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.
1990-01-01
It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.
Neural network technologies for image classification
NASA Astrophysics Data System (ADS)
Korikov, A. M.; Tungusova, A. V.
2015-11-01
We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.
Using Neural Networks to Describe Tracer Correlations
NASA Technical Reports Server (NTRS)
Lary, D. J.; Mueller, M. D.; Mussa, H. Y.
2003-01-01
Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.
Using neural networks for process planning
NASA Astrophysics Data System (ADS)
Huang, Samuel H.; Zhang, HongChao
1995-08-01
Process planning has been recognized as an interface between computer-aided design and computer-aided manufacturing. Since the late 1960s, computer techniques have been used to automate process planning activities. AI-based techniques are designed for capturing, representing, organizing, and utilizing knowledge by computers, and are extremely useful for automated process planning. To date, most of the AI-based approaches used in automated process planning are some variations of knowledge-based expert systems. Due to their knowledge acquisition bottleneck, expert systems are not sufficient in solving process planning problems. Fortunately, AI has developed other techniques that are useful for knowledge acquisition, e.g., neural networks. Neural networks have several advantages over expert systems that are desired in today's manufacturing practice. However, very few neural network applications in process planning have been reported. We present this paper in order to stimulate the research on using neural networks for process planning. This paper also identifies the problems with neural networks and suggests some possible solutions, which will provide some guidelines for research and implementation.
Neural network training with global optimization techniques.
Yamazaki, Akio; Ludermir, Teresa B
2003-04-01
This paper presents an approach of using Simulated Annealing and Tabu Search for the simultaneous optimization of neural network architectures and weights. The problem considered is the odor recognition in an artificial nose. Both methods have produced networks with high classification performance and low complexity. Generalization has been improved by using the backpropagation algorithm for fine tuning. The combination of simple and traditional search methods has shown to be very suitable for generating compact and efficient networks. PMID:12923920
Fuzzy neural network with fast backpropagation learning
NASA Astrophysics Data System (ADS)
Wang, Zhiling; De Sario, Marco; Guerriero, Andrea; Mugnuolo, Raffaele
1995-03-01
Neural filters with multilayer backpropagation network have been proved to be able to define mostly all linear or non-linear filters. Because of the slowness of the networks' convergency, however, the applicable fields have been limited. In this paper, fuzzy logic is introduced to adjust learning rate and momentum parameter depending upon output errors and training times. This makes the convergency of the network greatly improved. Test curves are shown to prove the fast filters' performance.
Stability of Stochastic Neutral Cellular Neural Networks
NASA Astrophysics Data System (ADS)
Chen, Ling; Zhao, Hongyong
In this paper, we study a class of stochastic neutral cellular neural networks. By constructing a suitable Lyapunov functional and employing the nonnegative semi-martingale convergence theorem we give some sufficient conditions ensuring the almost sure exponential stability of the networks. The results obtained are helpful to design stability of networks when stochastic noise is taken into consideration. Finally, two examples are provided to show the correctness of our analysis.
Genomic Networks of Hybrid Sterility
Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.
2014-01-01
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is
Can neural networks compete with process calculations
Blaesi, J.; Jensen, B.
1992-12-01
Neural networks have been called a real alternative to rigorous theoretical models. A theoretical model for the calculation of refinery coker naphtha end point and coker furnace oil 90% point already was in place on the combination tower of a coking unit. Considerable data had been collected on the theoretical model during the commissioning phase and benefit analysis of the project. A neural net developed for the coker fractionator has equalled the accuracy of theoretical models, and shown the capability to handle normal operating conditions. One disadvantage of a neural network is the amount of data needed to create a good model. Anywhere from 100 to thousands of cases are needed to create a neural network model. Overall, the correlation between theoretical and neural net models for both the coker naphtha end point and the coker furnace oil 90% point was about .80; the average deviation was about 4 degrees. This indicates that the neural net model was at least as capable as the theoretical model in calculating inferred properties. 3 figs.
Comparative study of different wavelet based neural network models for rainfall-runoff modeling
NASA Astrophysics Data System (ADS)
Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.
2014-07-01
The use of wavelet transformation in rainfall-runoff modeling has become popular because of its ability to simultaneously deal with both the spectral and the temporal information contained within time series data. The selection of an appropriate wavelet function plays a crucial role for successful implementation of the wavelet based rainfall-runoff artificial neural network models as it can lead to further enhancement in the model performance. The present study is therefore conducted to evaluate the effects of 23 mother wavelet functions on the performance of the hybrid wavelet based artificial neural network rainfall-runoff models. The hybrid Multilayer Perceptron Neural Network (MLPNN) and the Radial Basis Function Neural Network (RBFNN) models are developed in this study using both the continuous wavelet and the discrete wavelet transformation types. The performances of the 92 developed wavelet based neural network models with all the 23 mother wavelet functions are compared with the neural network models developed without wavelet transformations. It is found that among all the models tested, the discrete wavelet transform multilayer perceptron neural network (DWTMLPNN) and the discrete wavelet transform radial basis function (DWTRBFNN) models at decomposition level nine with the db8 wavelet function has the best performance. The result also shows that the pre-processing of input rainfall data by the wavelet transformation can significantly increases performance of the MLPNN and the RBFNN rainfall-runoff models.
Artificial neural networks for small dataset analysis.
Pasini, Antonello
2015-05-01
Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654
Kannada character recognition system using neural network
NASA Astrophysics Data System (ADS)
Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.
2013-03-01
Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.
Classification of radar clutter using neural networks.
Haykin, S; Deng, C
1991-01-01
A classifier that incorporates both preprocessing and postprocessing procedures as well as a multilayer feedforward network (based on the back-propagation algorithm) in its design to distinguish between several major classes of radar returns including weather, birds, and aircraft is described. The classifier achieves an average classification accuracy of 89% on generalization for data collected during a single scan of the radar antenna. The procedures of feature selection for neural network training, the classifier design considerations, the learning algorithm development, the implementation, and the experimental results of the neural clutter classifier, which is simulated on a Warp systolic computer, are discussed. A comparative evaluation of the multilayer neural network with a traditional Bayes classifier is presented. PMID:18282874
Critical and resonance phenomena in neural networks
NASA Astrophysics Data System (ADS)
Goltsev, A. V.; Lopes, M. A.; Lee, K.-E.; Mendes, J. F. F.
2013-01-01
Brain rhythms contribute to every aspect of brain function. Here, we study critical and resonance phenomena that precede the emergence of brain rhythms. Using an analytical approach and simulations of a cortical circuit model of neural networks with stochastic neurons in the presence of noise, we show that spontaneous appearance of network oscillations occurs as a dynamical (non-equilibrium) phase transition at a critical point determined by the noise level, network structure, the balance between excitatory and inhibitory neurons, and other parameters. We find that the relaxation time of neural activity to a steady state, response to periodic stimuli at the frequency of the oscillations, amplitude of damped oscillations, and stochastic fluctuations of neural activity are dramatically increased when approaching the critical point of the transition.
Web traffic prediction with artificial neural networks
NASA Astrophysics Data System (ADS)
Gluszek, Adam; Kekez, Michal; Rudzinski, Filip
2005-02-01
The main aim of the paper is to present application of the artificial neural network in the web traffic prediction. First, the general problem of time series modelling and forecasting is shortly described. Next, the details of building of dynamic processes models with the neural networks are discussed. At this point determination of the model structure in terms of its inputs and outputs is the most important question because this structure is a rough approximation of the dynamics of the modelled process. The following section of the paper presents the results obtained applying artificial neural network (classical multilayer perceptron trained with backpropagation algorithm) to the real-world web traffic prediction. Finally, we discuss the results, describe weak points of presented method and propose some alternative approaches.
Artificial neural networks for small dataset analysis
2015-01-01
Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654
Signal dispersion within a hippocampal neural network
NASA Technical Reports Server (NTRS)
Horowitz, J. M.; Mates, J. W. B.
1975-01-01
A model network is described, representing two neural populations coupled so that one population is inhibited by activity it excites in the other. Parameters and operations within the model represent EPSPs, IPSPs, neural thresholds, conduction delays, background activity and spatial and temporal dispersion of signals passing from one population to the other. Simulations of single-shock and pulse-train driving of the network are presented for various parameter values. Neuronal events from 100 to 300 msec following stimulation are given special consideration in model calculations.
Autonomous robot behavior based on neural networks
NASA Astrophysics Data System (ADS)
Grolinger, Katarina; Jerbic, Bojan; Vranjes, Bozo
1997-04-01
The purpose of autonomous robot is to solve various tasks while adapting its behavior to the variable environment, expecting it is able to navigate much like a human would, including handling uncertain and unexpected obstacles. To achieve this the robot has to be able to find solution to unknown situations, to learn experienced knowledge, that means action procedure together with corresponding knowledge on the work space structure, and to recognize working environment. The planning of the intelligent robot behavior presented in this paper implements the reinforcement learning based on strategic and random attempts for finding solution and neural network approach for memorizing and recognizing work space structure (structural assignment problem). Some of the well known neural networks based on unsupervised learning are considered with regard to the structural assignment problem. The adaptive fuzzy shadowed neural network is developed. It has the additional shadowed hidden layer, specific learning rule and initialization phase. The developed neural network combines advantages of networks based on the Adaptive Resonance Theory and using shadowed hidden layer provides ability to recognize lightly translated or rotated obstacles in any direction.
Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.
Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki
2015-05-01
Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets. PMID:25014967
Experimental fault characterization of a neural network
NASA Technical Reports Server (NTRS)
Tan, Chang-Huong
1990-01-01
The effects of a variety of faults on a neural network is quantified via simulation. The neural network consists of a single-layered clustering network and a three-layered classification network. The percentage of vectors mistagged by the clustering network, the percentage of vectors misclassified by the classification network, the time taken for the network to stabilize, and the output values are all measured. The results show that both transient and permanent faults have a significant impact on the performance of the measured network. The corresponding mistag and misclassification percentages are typically within 5 to 10 percent of each other. The average mistag percentage and the average misclassification percentage are both about 25 percent. After relearning, the percentage of misclassifications is reduced to 9 percent. In addition, transient faults are found to cause the network to be increasingly unstable as the duration of a transient is increased. The impact of link faults is relatively insignificant in comparison with node faults (1 versus 19 percent misclassified after relearning). There is a linear increase in the mistag and misclassification percentages with decreasing hardware redundancy. In addition, the mistag and misclassification percentages linearly decrease with increasing network size.
A neural network with modular hierarchical learning
NASA Technical Reports Server (NTRS)
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
Neural network tomography: network replication from output surface geometry.
Minnett, Rupert C J; Smith, Andrew T; Lennon, William C; Hecht-Nielsen, Robert
2011-06-01
Multilayer perceptron networks whose outputs consist of affine combinations of hidden units using the tanh activation function are universal function approximators and are used for regression, typically by reducing the MSE with backpropagation. We present a neural network weight learning algorithm that directly positions the hidden units within input space by numerically analyzing the curvature of the output surface. Our results show that under some sampling requirements, this method can reliably recover the parameters of a neural network used to generate a data set. PMID:21377326
An introduction to neural networks: A tutorial
Walker, J.L.; Hill, E.V.K.
1994-12-31
Neural networks are a powerful set of mathematical techniques used for solving linear and nonlinear classification and prediction (function approximation) problems. Inspired by studies of the brain, these series and parallel combinations of simple functional units called artificial neurons have the ability to learn or be trained to solve very complex problems. Fundamental aspects of artificial neurons are discussed, including their activation functions, their combination into multilayer feedforward networks with hidden layers, and the use of bias neurons to reduce training time. The back propagation (of errors) paradigm for supervised training of feedforward networks is explained. Then, the architecture and mathematics of a Kohonen self organizing map for unsupervised learning are discussed. Two example problems are given. The first is for the application of a back propagation neural network to learn the correct response to an input vector using supervised training. The second is a classification problem using a self organizing map and unsupervised training.
Development of programmable artificial neural networks
NASA Technical Reports Server (NTRS)
Meade, Andrew J.
1993-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
Auto-associative nanoelectronic neural network
Nogueira, C. P. S. M.; Guimarães, J. G.
2014-05-15
In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.
Constructive approximate interpolation by neural networks
NASA Astrophysics Data System (ADS)
Llanas, B.; Sainz, F. J.
2006-04-01
We present a type of single-hidden layer feedforward neural networks with sigmoidal nondecreasing activation function. We call them ai-nets. They can approximately interpolate, with arbitrary precision, any set of distinct data in one or several dimensions. They can uniformly approximate any continuous function of one variable and can be used for constructing uniform approximants of continuous functions of several variables. All these capabilities are based on a closed expression of the networks.
Digital Neural Networks for New Media
NASA Astrophysics Data System (ADS)
Spaanenburg, Lambert; Malki, Suleyman
Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.
Optoelectronic Integrated Circuits For Neural Networks
NASA Technical Reports Server (NTRS)
Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.
1990-01-01
Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.
Psychometric Measurement Models and Artificial Neural Networks
ERIC Educational Resources Information Center
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Active Sampling in Evolving Neural Networks.
ERIC Educational Resources Information Center
Parisi, Domenico
1997-01-01
Comments on Raftopoulos article (PS 528 649) on facilitative effect of cognitive limitation in development and connectionist models. Argues that the use of neural networks within an "Artificial Life" perspective can more effectively contribute to the study of the role of cognitive limitations in development and their genetic basis than can using…
Localizing Tortoise Nests by Neural Networks
2016-01-01
The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition. PMID:26985660
Neural network application to comprehensive engine diagnostics
NASA Technical Reports Server (NTRS)
Marko, Kenneth A.
1994-01-01
We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.
Localizing Tortoise Nests by Neural Networks.
Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita
2016-01-01
The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition. PMID:26985660
Nonlinear Time Series Analysis via Neural Networks
NASA Astrophysics Data System (ADS)
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Negative transfer problem in neural networks
NASA Astrophysics Data System (ADS)
Abunawass, Adel M.
1992-07-01
Harlow, 1949, observed that when human subjects were trained to perform simple discrimination tasks over a sequence of successive training sessions (trials), their performance improved as a function of the successive sessions. Harlow called this phenomena `learning-to- learn.' The subjects acquired knowledge and improved their ability to learn in future training sessions. It seems that previous training sessions contribute positively to the current one. Abunawass & Maki, 1989, observed that when a neural network (using the back-propagation model) is trained over successive sessions, the performance and learning ability of the network degrade as a function of the training sessions. In some cases this leads to a complete paralysis of the network. Abunawass & Maki called this phenomena the `negative transfer' problem, since previous training sessions contribute negatively to the current one. The effect of the negative transfer problem is in clear contradiction to that reported by Harlow on human subjects. Since the ability to model human cognition and learning is one of the most important goals (and claims) of neural networks, the negative transfer problem represents a clear limitation to this ability. This paper describes a new neural network sequential learning model known as Adaptive Memory Consolidation. In this model the network uses its past learning experience to enhance its future learning ability. Adaptive Memory Consolidation has led to the elimination and reversal of the effect of the negative transfer problem. Thus producing a `positive transfer' effect similar to Harlow's learning-to-learn phenomena.
Foetal ECG recovery using dynamic neural networks.
Camps-Valls, Gustavo; Martínez-Sober, Marcelino; Soria-Olivas, Emilio; Magdalena-Benedito, Rafael; Calpe-Maravilla, Javier; Guerrero-Martínez, Juan
2004-07-01
Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both
Optimal input sizes for neural network de-interlacing
NASA Astrophysics Data System (ADS)
Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee
2009-02-01
Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.
[Application of artificial neural networks in infectious diseases].
Xu, Jun-fang; Zhou, Xiao-nong
2011-02-28
With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years. PMID:21823326
Algorithm For A Self-Growing Neural Network
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.
1996-01-01
CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
Application of BP Neural Network Based on Genetic Algorithm in Quantitative Analysis of Mixed GAS
NASA Astrophysics Data System (ADS)
Chen, Hongyan; Liu, Wenzhen; Qu, Jian; Zhang, Bing; Li, Zhibin
Aiming at the problem of mixed gas detection in neural network and analysis on the principle of gas detection. Combining BP algorithm of genetic algorithm with hybrid gas sensors, a kind of quantitative analysis system of mixed gas is designed. The local minimum of network learning is the main reason which affects the precision of gas analysis. On the basis of the network study to improve the learning algorithms, the analyses and tests for CO, CO2 and HC compounds were tested. The results showed that the above measures effectively improve and enhance the accuracy of the neural network for gas analysis.
Intrinsic adaptation in autonomous recurrent neural networks.
Marković, Dimitrije; Gros, Claudius
2012-02-01
A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, bursting, or chaotic activity patterns. We study the influence of nonsynaptic plasticity on the default dynamical state of recurrent neural networks. The nonsynaptic adaption considered acts on intrinsic neural parameters, such as the threshold and the gain, and is driven by the optimization of the information entropy. We observe, in the presence of the intrinsic adaptation processes, three distinct and globally attracting dynamical regimes: a regular synchronized, an overall chaotic, and an intermittent bursting regime. The intermittent bursting regime is characterized by intervals of regular flows, which are quite insensitive to external stimuli, interceded by chaotic bursts that respond sensitively to input signals. We discuss these findings in the context of self-organized information processing and critical brain dynamics. PMID:22091667
Zhang, Mei; Hu, Yueming; Wang, Tao; Zhu, Jinhui
2009-12-01
This paper addresses the predicting problem of peritoneal fluid absorption rate(PFAR). An innovative predicting model was developed, which employed the improved genetic algorithm embedded in neural network for predicting the important PFAR index in the peritoneal dialysis treatment process of renal failure. The significance of PFAR and the complexity of dialysis process were analyzed. The improved genetic algorithm was used for defining the initial weight and bias of neural network, and then the neural network was used for finding out the optimal predicting model of PFAR. This method utilizes the global search capability of genetic algorithm and the local search advantage of neural network completely. For the purpose of showing the validity of the model, the improved optimal predicting model is compared with the standard hybrid method of genetic algorithm and neural network. The simulation results show that the predicting accuracy of the improved optimal neural network is greatly improved and the learning process needs less time. PMID:20095466
NASA Astrophysics Data System (ADS)
Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.
2016-02-01
Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.
Saeidi, Iman; Barfi, Behruz; Asghari, Alireza; Gharahbagh, Abdorreza Alavi; Barfi, Azadeh; Peyrovi, Moazameh; Afsharzadeh, Maryam; Hojatinasab, Mostafa
2015-10-01
A novel and environmentally friendly ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with a hybrid artificial neural network (ANN)-genetic algorithm (GA) strategy was developed for ferro and ferric ions speciation as model analytes. Different parameters such as type and volume of extraction solvent, amounts of chelating agent, volume and pH of sample, ionic strength, stirring rate, and extraction time were investigated. Much more effective parameters were firstly examined based on one-variable-at-a-time design, and obtained results were used to construct an independent model for each parameter. The models were then applied to achieve the best and minimum numbers of candidate points as inputs for the ANN process. The maximum extraction efficiencies were achieved after 9 min using 22.0 μL of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as the acceptor phase and 10 mL of sample at pH = 7.0 containing 64.0 μg L(-1) of benzohydroxamic acid (BHA) as the complexing agent, after the GA process. Once optimized, analytical performance of the method was studied in terms of linearity (1.3-316 μg L(-1), R (2) = 0.999), accuracy (recovery = 90.1-92.3%), and precision (relative standard deviation (RSD) <3.1). Finally, the method was successfully applied to speciate the iron species in the environmental and wastewater samples. PMID:26383736
Classifying multispectral data by neural networks
NASA Technical Reports Server (NTRS)
Telfer, Brian A.; Szu, Harold H.; Kiang, Richard K.
1993-01-01
Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data.
Color control of printers by neural networks
NASA Astrophysics Data System (ADS)
Tominaga, Shoji
1998-07-01
A method is proposed for solving the mapping problem from the 3D color space to the 4D CMYK space of printer ink signals by means of a neural network. The CIE-L*a*b* color system is used as the device-independent color space. The color reproduction problem is considered as the problem of controlling an unknown static system with four inputs and three outputs. A controller determines the CMYK signals necessary to produce the desired L*a*b* values with a given printer. Our solution method for this control problem is based on a two-phase procedure which eliminates the need for UCR and GCR. The first phase determines a neural network as a model of the given printer, and the second phase determines the combined neural network system by combining the printer model and the controller in such a way that it represents an identity mapping in the L*a*b* color space. Then the network of the controller part realizes the mapping from the L*a*b* space to the CMYK space. Practical algorithms are presented in the form of multilayer feedforward networks. The feasibility of the proposed method is shown in experiments using a dye sublimation printer and an ink jet printer.
Evolutionary artificial neural networks for hydrological systems forecasting
NASA Astrophysics Data System (ADS)
Chen, Yung-hsiang; Chang, Fi-John
2009-03-01
SummaryThe conventional ways of constructing artificial neural network (ANN) for a problem generally presume a specific architecture and do not automatically discover network modules appropriate for specific training data. Evolutionary algorithms are used to automatically adapt the network architecture and connection weights according to the problem environment without substantial human intervention. To improve on the drawbacks of the conventional optimal process, this study presents a novel evolutionary artificial neural network (EANN) for time series forecasting. The EANN has a hybrid procedure, including the genetic algorithm and the scaled conjugate gradient algorithm, where the feedforward ANN architecture and its connection weights of neurons are simultaneously identified and optimized. We first explored the performance of the proposed EANN for the Mackey-Glass chaotic time series. The performance of the different networks was evaluated. The excellent performance in forecasting of the chaotic series shows that the proposed algorithm concurrently possesses efficiency, effectiveness, and robustness. We further explored the applicability and reliability of the EANN in a real hydrological time series. Again, the results indicate the EANN can effectively and efficiently construct a viable forecast module for the 10-day reservoir inflow, and its accuracy is superior to that of the AR and ARMAX models.
A Topological Perspective of Neural Network Structure
NASA Astrophysics Data System (ADS)
Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle
The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.
Fuzzy logic and neural network technologies
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
a Heterosynaptic Learning Rule for Neural Networks
NASA Astrophysics Data System (ADS)
Emmert-Streib, Frank
In this article we introduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.
Controlling neural network responsiveness: tradeoffs and constraints
Keren, Hanna; Marom, Shimon
2014-01-01
In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input–output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860
Computationally Efficient Neural Network Intrusion Security Awareness
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Neural network construction via back-propagation
Burwick, T.T.
1994-06-01
A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima.
Multiscale Modeling of Cortical Neural Networks
NASA Astrophysics Data System (ADS)
Torben-Nielsen, Benjamin; Stiefel, Klaus M.
2009-09-01
In this study, we describe efforts at modeling the electrophysiological dynamics of cortical networks in a multi-scale manner. Specifically, we describe the implementation of a network model composed of simple single-compartmental neuron models, in which a single complex multi-compartmental model of a pyramidal neuron is embedded. The network is capable of generating Δ (2 Hz, observed during deep sleep states) and γ (40 Hz, observed during wakefulness) oscillations, which are then imposed onto the multi-compartmental model, thus providing realistic, dynamic boundary conditions. We furthermore discuss the challenges and chances involved in multi-scale modeling of neural function.
Tumor Diagnosis Using Backpropagation Neural Network Method
NASA Astrophysics Data System (ADS)
Ma, Lixing; Looney, Carl; Sukuta, Sydney; Bruch, Reinhard; Afanasyeva, Natalia
1998-05-01
For characterization of skin cancer, an artificial neural network (ANN) method has been developed to diagnose normal tissue, benign tumor and melanoma. The pattern recognition is based on a three-layer neural network fuzzy learning system. In this study, the input neuron data set is the Fourier Transform infrared (FT-IR)spectrum obtained by a new Fiberoptic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) spectroscopy method in the range of 1480 to 1850 cm-1. Ten input features are extracted from the absorbency values in this region. A single hidden layer of neural nodes with sigmoids activation functions clusters the feature space into small subclasses and the output nodes are separated in different nonconvex classes to permit nonlinear discrimination of disease states. The output is classified as three classes: normal tissue, benign tumor and melanoma. The results obtained from the neural network pattern recognition are shown to be consistent with traditional medical diagnosis. Input features have also been extracted from the absorbency spectra using chemical factor analysis. These abstract features or factors are also used in the classification.
Neural networks in the process industries
Ben, L.R.; Heavner, L.
1996-12-01
Neural networks, or more precisely, artificial neural networks (ANNs), are rapidly gaining in popularity. They first began to appear on the process-control scene in the early 1990s, but have been a research focus for more than 30 years. Neural networks are really empirical models that approximate the way man thinks neurons in the human brain work. Neural-net technology is not trying to produce computerized clones, but to model nature in an effort to mimic some of the brain`s capabilities. Modeling, for the purposes of this article, means developing a mathematical description of physical phenomena. The physics and chemistry of industrial processes are usually quite complex and sometimes poorly understood. Our process understanding, and our imperfect ability to describe complexity in mathematical terms, limit fidelity of first-principle models. Computational requirements for executing these complex models are a further limitation. It is often not possible to execute first-principle model algorithms at the high rate required for online control. Nevertheless, rigorous first principle models are commonplace design tools. Process control is another matter. Important model inputs are often not available as process measurements, making real-time application difficult. In fact, engineers often use models to infer unavailable measurements. 5 figs.
Adaptive Neural Networks for Automatic Negotiation
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
2007-12-26
The use of fuzzy logic and fuzzy neural networks has been found effective for the modelling of the uncertain relations between the parameters of a negotiation procedure. The problem with these configurations is that they are static, that is, any new knowledge from theory or experiment lead to the construction of entirely new models. To overcome this difficulty, we apply in this work, an adaptive neural topology to model the negotiation process. Finally a simple simulation is carried in order to test the new method.
Pruning Neural Networks with Distribution Estimation Algorithms
Cantu-Paz, E
2003-01-15
This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than the original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.
Membership generation using multilayer neural network
NASA Technical Reports Server (NTRS)
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Computational capabilities of recurrent NARX neural networks.
Siegelmann, H T; Horne, B G; Giles, C L
1997-01-01
Recently, fully connected recurrent neural networks have been proven to be computationally rich-at least as powerful as Turing machines. This work focuses on another network which is popular in control applications and has been found to be very effective at learning a variety of problems. These networks are based upon Nonlinear AutoRegressive models with eXogenous Inputs (NARX models), and are therefore called NARX networks. As opposed to other recurrent networks, NARX networks have a limited feedback which comes only from the output neuron rather than from hidden states. They are formalized by y(t)=Psi(u(t-n(u)), ..., u(t-1), u(t), y(t-n(y)), ..., y(t-1)) where u(t) and y(t) represent input and output of the network at time t, n(u) and n(y) are the input and output order, and the function Psi is the mapping performed by a Multilayer Perceptron. We constructively prove that the NARX networks with a finite number of parameters are computationally as strong as fully connected recurrent networks and thus Turing machines. We conclude that in theory one can use the NARX models, rather than conventional recurrent networks without any computational loss even though their feedback is limited. Furthermore, these results raise the issue of what amount of feedback or recurrence is necessary for any network to be Turing equivalent and what restrictions on feedback limit computational power. PMID:18255858
Generalization of features in the assembly neural networks.
Goltsev, Alexander; Wunsch, Donald C
2004-02-01
The purpose of the paper is an experimental study of the formation of class descriptions, taking place during learning, in assembly neural networks. The assembly neural network is artificially partitioned into several sub-networks according to the number of classes that the network has to recognize. The features extracted from input data are represented in neural column structures of the sub-networks. Hebbian neural assemblies are formed in the column structure of the sub-networks by weight adaptation. A specific class description is formed in each sub-network of the assembly neural network due to intersections between the neural assemblies. The process of formation of class descriptions in the sub-networks is interpreted as feature generalization. A set of special experiments is performed to study this process, on a task of character recognition using the MNIST database. PMID:15034946
Experiments in Neural-Network Control of a Free-Flying Space Robot
NASA Technical Reports Server (NTRS)
Wilson, Edward
1995-01-01
Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
VLSI implementable neural networks for target tracking
NASA Astrophysics Data System (ADS)
Himes, Glenn S.; Inigo, Rafael M.; Narathong, Chiewcharn
1991-08-01
This paper describes part of an integrated system for target tracking. The image is acquired, edge detected, and segmented by a subsystem not discussed in this paper. Algorithms to determine the centroid of a windowed target using neural networks are developed. Further, once the target centroid is determined, it is continuously updated in order to track the trajectory, since the centroid location is not dependent on scaling or rotation on the optical axis. The image is then mapped to a log-spiral grid. A conformal transformation is used to map the log-spiral grid to a computation plane in which rotations and scalings are transformed to displacements along the vertical and horizonal axes, respectively. The images in this plane are used for recognition. The recognition algorithms are the subject of another paper. A second neural network, also described in this paper, is then used to determine object rotation and scaling. The algorithm used by this network is an original line correlator tracker which, as the name indicates, uses linear instead of 2D correlations. Simulation results using ICBM images are presented for both the centroid neural net and the rotation-scaling detection network.
Functional expansion representations of artificial neural networks
NASA Technical Reports Server (NTRS)
Gray, W. Steven
1992-01-01
In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.
Correcting wave predictions with artificial neural networks
NASA Astrophysics Data System (ADS)
Makarynskyy, O.; Makarynska, D.
2003-04-01
The predictions of wind waves with different lead times are necessary in a large scope of coastal and open ocean activities. Numerical wave models, which usually provide this information, are based on deterministic equations that do not entirely account for the complexity and uncertainty of the wave generation and dissipation processes. An attempt to improve wave parameters short-term forecasts based on artificial neural networks is reported. In recent years, artificial neural networks have been used in a number of coastal engineering applications due to their ability to approximate the nonlinear mathematical behavior without a priori knowledge of interrelations among the elements within a system. The common multilayer feed-forward networks, with a nonlinear transfer functions in the hidden layers, were developed and employed to forecast the wave characteristics over one hour intervals starting from one up to 24 hours, and to correct these predictions. Three non-overlapping data sets of wave characteristics, both from a buoy, moored roughly 60 miles west of the Aran Islands, west coast of Ireland, were used to train and validate the neural nets involved. The networks were trained with error back propagation algorithm. Time series plots and scatterplots of the wave characteristics as well as tables with statistics show an improvement of the results achieved due to the correction procedure employed.
Convolutional Neural Network Based dem Super Resolution
NASA Astrophysics Data System (ADS)
Chen, Zixuan; Wang, Xuewen; Xu, Zekai; Hou, Wenguang
2016-06-01
DEM super resolution is proposed in our previous publication to improve the resolution for a DEM on basis of some learning examples. Meanwhile, the nonlocal algorithm is introduced to deal with it and lots of experiments show that the strategy is feasible. In our publication, the learning examples are defined as the partial original DEM and their related high measurements due to this way can avoid the incompatibility between the data to be processed and the learning examples. To further extent the applications of this new strategy, the learning examples should be diverse and easy to obtain. Yet, it may cause the problem of incompatibility and unrobustness. To overcome it, we intend to investigate a convolutional neural network based method. The input of the convolutional neural network is a low resolution DEM and the output is expected to be its high resolution one. A three layers model will be adopted. The first layer is used to detect some features from the input, the second integrates the detected features to some compressed ones and the final step transforms the compressed features as a new DEM. According to this designed structure, some learning DEMs will be taken to train it. Specifically, the designed network will be optimized by minimizing the error of the output and its expected high resolution DEM. In practical applications, a testing DEM will be input to the convolutional neural network and a super resolution will be obtained. Many experiments show that the CNN based method can obtain better reconstructions than many classic interpolation methods.
Character Recognition Using Genetically Trained Neural Networks
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of
Neural networks as a control methodology
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1990-01-01
While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.
On lateral competition in dynamic neural networks
Bellyustin, N.S.
1995-02-01
Artificial neural networks connected homogeneously, which use retinal image processing methods, are considered. We point out that there are probably two different types of lateral inhibition for each neural element by the neighboring ones-due to the negative connection coefficients between elements and due to the decreasing neuron`s response to a too high input signal. The first case characterized by stable dynamics, which is given by the Lyapunov function, while in the second case, stability is absent and two-dimensional dynamic chaos occurs if the time step in the integration of model equations is large enough. The continuous neural medium approximation is used for analytical estimation in both cases. The result is the partition of the parameter space into domains with qualitatively different dynamic modes. Computer simulations confirm the estimates and show that joining two-dimensional chaos with symmetries provided by the initial and boundary conditions may produce patterns which are genuine pieces of art.
Neural network for tsunami and runup forecast
NASA Astrophysics Data System (ADS)
Namekar, Shailesh; Yamazaki, Yoshiki; Cheung, Kwok Fai
2009-04-01
This paper examines the use of neural network to model nonlinear tsunami processes for forecasting of coastal waveforms and runup. The three-layer network utilizes a radial basis function in the hidden, middle layer for nonlinear transformation of input waveforms near the tsunami source. Events based on the 2006 Kuril Islands tsunami demonstrate the implementation and capability of the network. Division of the Kamchatka-Kuril subduction zone into a number of subfaults facilitates development of a representative tsunami dataset using a nonlinear long-wave model. The computed waveforms near the tsunami source serve as the input and the far-field waveforms and runup provide the target output for training of the network through a back-propagation algorithm. The trained network reproduces the resonance of tsunami waves and the topography-dominated runup patterns at Hawaii's coastlines from input water-level data off the Aleutian Islands.
Identification of finite state automata with a class of recurrent neural networks.
Won, Sung Hwan; Song, Iickho; Lee, Sun Young; Park, Cheol Hoon
2010-09-01
A class of recurrent neural networks is proposed and proven to be capable of identifying any discrete-time dynamical system. The application of the proposed network is addressed in the encoding, identification, and extraction of finite state automata (FSAs). Simulation results show that the identification of FSAs using the proposed network, trained by the hybrid greedy simulated annealing with a modified cost function in the training stage, generally exhibits better performance than the conventional identification procedures. PMID:20709639
A classifier neural network for rotordynamic systems
NASA Astrophysics Data System (ADS)
Ganesan, R.; Jionghua, Jin; Sankar, T. S.
1995-07-01
A feedforward backpropagation neural network is formed to identify the stability characteristic of a high speed rotordynamic system. The principal focus resides in accounting for the instability due to the bearing clearance effects. The abnormal operating condition of 'normal-loose' Coulomb rub, that arises in units supported by hydrodynamic bearings or rolling element bearings, is analysed in detail. The multiple-parameter stability problem is formulated and converted to a set of three-parameter algebraic inequality equations. These three parameters map the wider range of physical parameters of commonly-used rotordynamic systems into a narrow closed region, that is used in the supervised learning of the neural network. A binary-type state of the system is expressed through these inequalities that are deduced from the analytical simulation of the rotor system. Both the hidden layer as well as functional-link networks are formed and the superiority of the functional-link network is established. Considering the real time interpretation and control of the rotordynamic system, the network reliability and the learning time are used as the evaluation criteria to assess the superiority of the functional-link network. This functional-link network is further trained using the parameter values of selected rotor systems, and the classifier network is formed. The success rate of stability status identification is obtained to assess the potentials of this classifier network. The classifier network is shown that it can also be used, for control purposes, as an 'advisory' system that suggests the optimum way of parameter adjustment.
Stochastic downscaling of precipitation with neural network conditional mixture models
NASA Astrophysics Data System (ADS)
Carreau, Julie; Vrac, Mathieu
2011-10-01
We present a new class of stochastic downscaling models, the conditional mixture models (CMMs), which builds on neural network models. CMMs are mixture models whose parameters are functions of predictor variables. These functions are implemented with a one-layer feed-forward neural network. By combining the approximation capabilities of mixtures and neural networks, CMMs can, in principle, represent arbitrary conditional distributions. We evaluate the CMMs at downscaling precipitation data at three stations in the French Mediterranean region. A discrete (Dirac) component is included in the mixture to handle the "no-rain" events. Positive rainfall is modeled with a mixture of continuous densities, which can be either Gaussian, log-normal, or hybrid Pareto (an extension of the generalized Pareto). CMMs are stochastic weather generators in the sense that they provide a model for the conditional density of local variables given large-scale information. In this study, we did not look for the most appropriate set of predictors, and we settled for a decent set as the basis to compare the downscaling models. The set of predictors includes the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalyses sea level pressure fields on a 6 × 6 grid cell region surrounding the stations plus three date variables. We compare the three distribution families of CMMs with a simpler benchmark model, which is more common in the downscaling community. The difference between the benchmark model and CMMs is that positive rainfall is modeled with a single Gamma distribution. The results show that CMM with hybrid Pareto components outperforms both the CMM with Gaussian components and the benchmark model in terms of log-likelihood. However, there is no significant difference with the log-normal CMM. In general, the additional flexibility of mixture models, as opposed to using a single distribution, allows us to better represent the
Analysis of Stochastic Response of Neural Networks with Stochastic Input
Energy Science and Technology Software Center (ESTSC)
1996-10-10
Software permits the user to extend capability of his/her neural network to include probablistic characteristics of input parameter. User inputs topology and weights associated with neural network along with distributional characteristics of input parameters. Network response is provided via a cumulative density function of network response variable.
Neural dynamics in superconducting networks
NASA Astrophysics Data System (ADS)
Segall, Kenneth; Schult, Dan; Crotty, Patrick; Miller, Max
2012-02-01
We discuss the use of Josephson junction networks as analog models for simulating neuron behaviors. A single unit called a ``Josephson Junction neuron'' composed of two Josephson junctions [1] displays behavior that shows characteristics of single neurons such as action potentials, thresholds and refractory periods. Synapses can be modeled as passive filters and can be used to connect neurons together. The sign of the bias current to the Josephson neuron can be used to determine if the neuron is excitatory or inhibitory. Due to the intrinsic speed of Josephson junctions and their scaling properties as analog models, a large network of Josephson neurons measured over typical lab times contains dynamics which would essentially be impossible to calculate on a computer We discuss the operating principle of the Josephson neuron, coupling Josephson neurons together to make large networks, and the Kuramoto-like synchronization of a system of disordered junctions.[4pt] [1] ``Josephson junction simulation of neurons,'' P. Crotty, D. Schult and K. Segall, Physical Review E 82, 011914 (2010).
Adaptive evolutionary artificial neural networks for pattern classification.
Oong, Tatt Hee; Isa, Nor Ashidi Mat
2011-11-01
This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms. PMID:21968733
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
Training neural networks with heterogeneous data.
Drakopoulos, John A; Abdulkader, Ahmad
2005-01-01
Data pruning and ordered training are two methods and the results of a small theory that attempts to formalize neural network training with heterogeneous data. Data pruning is a simple process that attempts to remove noisy data. Ordered training is a more complex method that partitions the data into a number of categories and assigns training times to those assuming that data size and training time have a polynomial relation. Both methods derive from a set of premises that form the 'axiomatic' basis of our theory. Both methods have been applied to a time-delay neural network-which is one of the main learners in Microsoft's Tablet PC handwriting recognition system. Their effect is presented in this paper along with a rough estimate of their effect on the overall multi-learner system. The handwriting data and the chosen language are Italian. PMID:16095874
A Novel Higher Order Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Xu, Shuxiang
2010-05-01
In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.
Privacy-preserving backpropagation neural network learning.
Chen, Tingting; Zhong, Sheng
2009-10-01
With the development of distributed computing environment , many learning problems now have to deal with distributed input data. To enhance cooperations in learning, it is important to address the privacy concern of each data holder by extending the privacy preservation notion to original learning algorithms. In this paper, we focus on preserving the privacy in an important learning model, multilayer neural networks. We present a privacy-preserving two-party distributed algorithm of backpropagation which allows a neural network to be trained without requiring either party to reveal her data to the other. We provide complete correctness and security analysis of our algorithms. The effectiveness of our algorithms is verified by experiments on various real world data sets. PMID:19709975
Application of neural networks in space construction
NASA Technical Reports Server (NTRS)
Thilenius, Stephen C.; Barnes, Frank
1990-01-01
When trying to decide what task should be done by robots and what tasks should be done by humans with respect to space construction, there has been one decisive barrier which ultimately divides the tasks: can a computer do the job? Von Neumann type computers have great difficulty with problems that the human brain seems to do instantaneously and with little effort. Some of these problems are pattern recognition, speech recognition, content addressable memories, and command interpretation. In an attempt to simulate these talents of the human brain, much research was currently done into the operations and construction of artificial neural networks. The efficiency of the interface between man and machine, robots in particular, can therefore be greatly improved with the use of neural networks. For example, wouldn't it be easier to command a robot to 'fetch an object' rather then having to remotely control the entire operation with remote control?
Automatic breast density classification using neural network
NASA Astrophysics Data System (ADS)
Arefan, D.; Talebpour, A.; Ahmadinejhad, N.; Kamali Asl, A.
2015-12-01
According to studies, the risk of breast cancer directly associated with breast density. Many researches are done on automatic diagnosis of breast density using mammography. In the current study, artifacts of mammograms are removed by using image processing techniques and by using the method presented in this study, including the diagnosis of points of the pectoral muscle edges and estimating them using regression techniques, pectoral muscle is detected with high accuracy in mammography and breast tissue is fully automatically extracted. In order to classify mammography images into three categories: Fatty, Glandular, Dense, a feature based on difference of gray-levels of hard tissue and soft tissue in mammograms has been used addition to the statistical features and a neural network classifier with a hidden layer. Image database used in this research is the mini-MIAS database and the maximum accuracy of system in classifying images has been reported 97.66% with 8 hidden layers in neural network.
Toward modeling a dynamic biological neural network.
Ross, M D; Dayhoff, J E; Mugler, D H
1990-01-01
Mammalian macular endorgans are linear bioaccelerometers located in the vestibular membranous labyrinth of the inner ear. In this paper, the organization of the endorgan is interpreted on physical and engineering principles. This is a necessary prerequisite to mathematical and symbolic modeling of information processing by the macular neural network. Mathematical notations that describe the functioning system were used to produce a novel, symbolic model. The model is six-tiered and is constructed to mimic the neural system. Initial simulations show that the network functions best when some of the detecting elements (type I hair cells) are excitatory and others (type II hair cells) are weakly inhibitory. The simulations also illustrate the importance of disinhibition of receptors located in the third tier in shaping nerve discharge patterns at the sixth tier in the model system. PMID:11538873
Neural Flows in Hopfield Network Approach
NASA Astrophysics Data System (ADS)
Ionescu, Carmen; Panaitescu, Emilian; Stoicescu, Mihai
2013-12-01
In most of the applications involving neural networks, the main problem consists in finding an optimal procedure to reduce the real neuron to simpler models which still express the biological complexity but allow highlighting the main characteristics of the system. We effectively investigate a simple reduction procedure which leads from complex models of Hodgkin-Huxley type to very convenient binary models of Hopfield type. The reduction will allow to describe the neuron interconnections in a quite large network and to obtain information concerning its symmetry and stability. Both cases, on homogeneous voltage across the membrane and inhomogeneous voltage along the axon will be tackled out. Few numerical simulations of the neural flow based on the cable-equation will be also presented.
On analog implementations of discrete neural networks
Beiu, V.; Moore, K.R.
1998-12-01
The paper will show that in order to obtain minimum size neural networks (i.e., size-optimal) for implementing any Boolean function, the nonlinear activation function of the neutrons has to be the identity function. The authors shall shortly present many results dealing with the approximation capabilities of neural networks, and detail several bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions they will show that implementing Boolean functions can be done using neurons having an identity nonlinear function. It follows that size-optimal solutions can be obtained only using analog circuitry. Conclusions, and several comments on the required precision are ending the paper.
Neural network error correction for solving coupled ordinary differential equations
NASA Technical Reports Server (NTRS)
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
Neural network with dynamically adaptable neurons
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.
Reconstructing irregularly sampled images by neural networks
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Yellott, John I., Jr.
1989-01-01
Neural-network-like models of receptor position learning and interpolation function learning are being developed as models of how the human nervous system might handle the problems of keeping track of the receptor positions and interpolating the image between receptors. These models may also be of interest to designers of image processing systems desiring the advantages of a retina-like image sampling array.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, L.J.; Keller, P.E.
1997-10-28
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.
Analog hardware for learning neural networks
NASA Technical Reports Server (NTRS)
Eberhardt, Silvio P. (Inventor)
1991-01-01
This is a recurrent or feedforward analog neural network processor having a multi-level neuron array and a synaptic matrix for storing weighted analog values of synaptic connection strengths which is characterized by temporarily changing one connection strength at a time to determine its effect on system output relative to the desired target. That connection strength is then adjusted based on the effect, whereby the processor is taught the correct response to training examples connection by connection.
Nonvolatile Array Of Synapses For Neural Network
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Elements of array programmed with help of ultraviolet light. A 32 x 32 very-large-scale integrated-circuit array of electronic synapses serves as building-block chip for analog neural-network computer. Synaptic weights stored in nonvolatile manner. Makes information content of array invulnerable to loss of power, and, by eliminating need for circuitry to refresh volatile synaptic memory, makes architecture simpler and more compact.
Diagnosing process faults using neural network models
Buescher, K.L.; Jones, R.D.; Messina, M.J.
1993-11-01
In order to be of use for realistic problems, a fault diagnosis method should have the following three features. First, it should apply to nonlinear processes. Second, it should not rely on extensive amounts of data regarding previous faults. Lastly, it should detect faults promptly. The authors present such a scheme for static (i.e., non-dynamic) systems. It involves using a neural network to create an associative memory whose fixed points represent the normal behavior of the system.
Learning in Neural Networks: VLSI Implementation Strategies
NASA Technical Reports Server (NTRS)
Duong, Tuan Anh
1995-01-01
Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Applying neural networks to optimize instrumentation performance
Start, S.E.; Peters, G.G.
1995-06-01
Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.
Neural network architectures to analyze OPAD data
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1992-01-01
A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.
Neural Network Solves "Traveling-Salesman" Problem
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Program PSNN (Plasma Spectroscopy Neural Network)
Morgan, W.L.; Larsen, J.T.
1993-08-01
This program uses the standard ``delta rule`` back-propagation supervised training algorithm for multi-layer neural networks. The inputs are line intensities in arbitrary units, which are then normalized within the program. The outputs are T{sub e}(eV), N{sub e}(cm{sup {minus}3}), and a fractional ionization, which in our testing using H- and He-like spectra, was N(He)/[N(H) + N(He)].
Analysis of IMS spectra using neural networks
Bell, S.E.
1992-09-01
Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.
Analysis of IMS spectra using neural networks
Bell, S.E.
1992-01-01
Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.
The next generation of neural network chips
Beiu, V.
1997-08-01
There have been many national and international neural networks research initiatives: USA (DARPA, NIBS), Canada (IRIS), Japan (HFSP) and Europe (BRAIN, GALA TEA, NERVES, ELENE NERVES 2) -- just to mention a few. Recent developments in the field of neural networks, cognitive science, bioengineering and electrical engineering have made it possible to understand more about the functioning of large ensembles of identical processing elements. There are more research papers than ever proposing solutions and hardware implementations are by no means an exception. Two fields (computing and neuroscience) are interacting in ways nobody could imagine just several years ago, and -- with the advent of new technologies -- researchers are focusing on trying to copy the Brain. Such an exciting confluence may quite shortly lead to revolutionary new computers and it is the aim of this invited session to bring to light some of the challenging research aspects dealing with the hardware realizability of future intelligent chips. Present-day (conventional) technology is (still) mostly digital and, thus, occupies wider areas and consumes much more power than the solutions envisaged. The innovative algorithmic and architectural ideals should represent important breakthroughs, paving the way towards making neural network chips available to the industry at competitive prices, in relatively small packages and consuming a fraction of the power required by equivalent digital solutions.
CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS
Rajive Ganguli; Daniel E. Walsh; Shaohai Yu
2003-12-05
Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
Shale Gas reservoirs characterization using neural network
NASA Astrophysics Data System (ADS)
Ouadfeul, Sid-Ali; Aliouane, Leila
2014-05-01
In this paper, a tentative of shale gas reservoirs characterization enhancement from well-logs data using neural network is established. The goal is to predict the Total Organic carbon (TOC) in boreholes where the TOC core rock or TOC well-log measurement does not exist. The Multilayer perceptron (MLP) neural network with three layers is established. The MLP input layer is constituted with five neurons corresponding to the Bulk density, Neutron porosity, sonic P wave slowness and photoelectric absorption coefficient. The hidden layer is forms with nine neurons and the output layer is formed with one neuron corresponding to the TOC log. Application to two boreholes located in Barnett shale formation where a well A is used as a pilot and a well B is used for propagation shows clearly the efficiency of the neural network method to improve the shale gas reservoirs characterization. The established formalism plays a high important role in the shale gas plays economy and long term gas energy production.
File access prediction using neural networks.
Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar
2010-06-01
One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors. PMID:20421183
Multiresolution training of Kohonen neural networks
NASA Astrophysics Data System (ADS)
Tamir, Dan E.
2007-09-01
This paper analyses a trade-off between convergence rate and distortion obtained through a multi-resolution training of a Kohonen Competitive Neural Network. Empirical results show that a multi-resolution approach can improve the training stage of several unsupervised pattern classification algorithms including K-means clustering, LBG vector quantization, and competitive neural networks. While, previous research concentrated on convergence rate of on-line unsupervised training. New results, reported in this paper, show that the multi-resolution approach can be used to improve training quality (measured as a derivative of the rate distortion function) on the account of convergence speed. The probability of achieving a desired point in the quality/convergence-rate space of Kohonen Competitive Neural Networks (KCNN) is evaluated using a detailed Monte Carlo set of experiments. It is shown that multi-resolution can reduce the distortion by a factor of 1.5 to 6 while maintaining the convergence rate of traditional KCNN. Alternatively, the convergence rate can be improved without loss of quality. The experiments include a controlled set of synthetic data, as well as, image data. Experimental results are reported and evaluated.
Deep learning in neural networks: an overview.
Schmidhuber, Jürgen
2015-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. PMID:25462637
Neural network method for characterizing video cameras
NASA Astrophysics Data System (ADS)
Zhou, Shuangquan; Zhao, Dazun
1998-08-01
This paper presents a neural network method for characterizing color video camera. A multilayer feedforward network with the error back-propagation learning rule for training, is used as a nonlinear transformer to model a camera, which realizes a mapping from the CIELAB color space to RGB color space. With SONY video camera, D65 illuminant, Pritchard Spectroradiometer, 410 JIS color charts as training data and 36 charts as testing data, results show that the mean error of training data is 2.9 and that of testing data is 4.0 in a 2563 RGB space.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1991-01-01
Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given.
The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element
NASA Technical Reports Server (NTRS)
Deyong, Mark R.; Findley, Randall L.; Fields, Chris
1992-01-01
A hybrid analog-digital neural processing element with the time-dependent behavior of biological neurons has been developed. The hybrid processing element is designed for VLSI implementation and offers the best attributes of both analog and digital computation. Custom VLSI layout reduces the layout area of the processing element, which in turn increases the expected network density. The hybrid processing element operates at the nanosecond time scale, which enables it to produce real-time solutions to complex spatiotemporal problems found in high-speed signal processing applications. VLSI prototype chips have been designed, fabricated, and tested with encouraging results. Systems utilizing the time-dependent behavior of the hybrid processing element have been simulated and are currently in the fabrication process. Future applications are also discussed.
Desynchronization in diluted neural networks
Zillmer, Ruediger; Livi, Roberto; Politi, Antonio; Torcini, Alessandro
2006-09-15
The dynamical behavior of a weakly diluted fully inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochasticlike regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of 'stable chaos', i.e., by observing that the stochasticlike behavior is 'limited' to an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.
Reducing neural network training time with parallel processing
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Lamarsh, William J., II
1995-01-01
Obtaining optimal solutions for engineering design problems is often expensive because the process typically requires numerous iterations involving analysis and optimization programs. Previous research has shown that a near optimum solution can be obtained in less time by simulating a slow, expensive analysis with a fast, inexpensive neural network. A new approach has been developed to further reduce this time. This approach decomposes a large neural network into many smaller neural networks that can be trained in parallel. Guidelines are developed to avoid some of the pitfalls when training smaller neural networks in parallel. These guidelines allow the engineer: to determine the number of nodes on the hidden layer of the smaller neural networks; to choose the initial training weights; and to select a network configuration that will capture the interactions among the smaller neural networks. This paper presents results describing how these guidelines are developed.
A neural network short-term forecast of significant thunderstorms
Mccann, D.W. )
1992-09-01
Neural networks, an artificial-intelligence tools that excels in pattern recognition, are reviewed, and a 3-7-h significant thunderstorm forecast developed with this technique is discussed. Two neural networks learned to forecast significant thunderstorms from fields of surface-based lifted index and surface moisture convergence. These networks are sensitive to the patterns that skilled forecasters recognize as occurring prior to strong thunderstorms. The two neural networks are combined operationally at the National Severe Storm Forecast Center into a single hourly product that enhances pattern-recognition skills. Examples of neural network products are shown, and their potential impact on significant thunderstorm forecasting is demonstrated. 22 refs.
Seismic active control by neural networks.
Tang, Y.
1998-01-01
A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.
Automated brain segmentation using neural networks
NASA Astrophysics Data System (ADS)
Powell, Stephanie; Magnotta, Vincent; Johnson, Hans; Andreasen, Nancy
2006-03-01
Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures such as the thalamus (0.825), caudate (0.745), and putamen (0.755). One of the inputs into the ANN is the apriori probability of a structure existing at a given location. In this previous work, the apriori probability information was generated in Talairach space using a piecewise linear registration. In this work we have increased the dimensionality of this registration using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. The output of the neural network determined if the voxel was defined as one of the N regions used for training. Training was performed using a standard back propagation algorithm. The ANN was trained on a set of 15 images for 750,000,000 iterations. The resulting ANN weights were then applied to 6 test images not part of the training set. Relative overlap calculated for each structure was 0.875 for the thalamus, 0.845 for the caudate, and 0.814 for the putamen. With the modifications on the neural net algorithm and the use of multi-dimensional registration, we found substantial improvement in the automated segmentation method. The resulting segmented structures are as reliable as manual raters and the output of the neural network can be used without additional rater intervention.
Detection of Wildfires with Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Umphlett, B.; Leeman, J.; Morrissey, M. L.
2011-12-01
Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty
Neural network computer simulation of medical aerosols.
Richardson, C J; Barlow, D J
1996-06-01
Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols. PMID:8832491
Classification of Images Acquired with Colposcopy Using Artificial Neural Networks
Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A
2014-01-01
OBJECTIVE To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. PURPOSE Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. RESULTS After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. CONCLUSION Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study. PMID:25374454
Fusing human knowledge with neural networks in machine condition monitoring systems
NASA Astrophysics Data System (ADS)
Melvin, David G.; Penman, J.
1995-04-01
There is currently much interest in the application of artificial neural network (ANN) technology to the field of on-line machine condition monitoring (CM) for complex electro- mechanical systems. In this paper the authors discuss, with the help of an industrial case study, a few of the difficulties inherent in the application of neural network based condition monitoring. A method of overcoming these difficulties by utilizing a combination of human knowledge, encoded using techniques borrowed from fuzzy logic, Kohonen neural networks, and statistical K-means clustering has been constructed. The methodology is discussed in the paper by means of a direct comparison between this new approach and a purely neural approach. An analysis of other situations where this approach would be applicable is also presented and the paper discusses other current research work in the area of hybrid AI technologies which should assist further with the alleviation of the problems under consideration.
Ghaedi, M; Ansari, A; Bahari, F; Ghaedi, A M; Vafaei, A
2015-02-25
In the present study, zinc sulfide nanoparticle loaded on activated carbon (ZnS-NP-AC) simply was synthesized in the presence of ultrasound and characterized using different techniques such as SEM and BET analysis. Then, this material was used for brilliant green (BG) removal. To dependency of BG removal percentage toward various parameters including pH, adsorbent dosage, initial dye concentration and contact time were examined and optimized. The mechanism and rate of adsorption was ascertained by analyzing experimental data at various time to conventional kinetic models such as pseudo-first-order and second order, Elovich and intra-particle diffusion models. Comparison according to general criterion such as relative error in adsorption capacity and correlation coefficient confirm the usability of pseudo-second-order kinetic model for explanation of data. The Langmuir models is efficiently can explained the behavior of adsorption system to give full information about interaction of BG with ZnS-NP-AC. A multiple linear regression (MLR) and a hybrid of artificial neural network and partial swarm optimization (ANN-PSO) model were used for prediction of brilliant green adsorption onto ZnS-NP-AC. Comparison of the results obtained using offered models confirm higher ability of ANN model compare to the MLR model for prediction of BG adsorption onto ZnS-NP-AC. Using the optimal ANN-PSO model the coefficient of determination (R(2)) were 0.9610 and 0.9506; mean squared error (MSE) values were 0.0020 and 0.0022 for the training and testing data set, respectively. PMID:25286113
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Ansari, A.; Bahari, F.; Ghaedi, A. M.; Vafaei, A.
2015-02-01
In the present study, zinc sulfide nanoparticle loaded on activated carbon (ZnS-NP-AC) simply was synthesized in the presence of ultrasound and characterized using different techniques such as SEM and BET analysis. Then, this material was used for brilliant green (BG) removal. To dependency of BG removal percentage toward various parameters including pH, adsorbent dosage, initial dye concentration and contact time were examined and optimized. The mechanism and rate of adsorption was ascertained by analyzing experimental data at various time to conventional kinetic models such as pseudo-first-order and second order, Elovich and intra-particle diffusion models. Comparison according to general criterion such as relative error in adsorption capacity and correlation coefficient confirm the usability of pseudo-second-order kinetic model for explanation of data. The Langmuir models is efficiently can explained the behavior of adsorption system to give full information about interaction of BG with ZnS-NP-AC. A multiple linear regression (MLR) and a hybrid of artificial neural network and partial swarm optimization (ANN-PSO) model were used for prediction of brilliant green adsorption onto ZnS-NP-AC. Comparison of the results obtained using offered models confirm higher ability of ANN model compare to the MLR model for prediction of BG adsorption onto ZnS-NP-AC. Using the optimal ANN-PSO model the coefficient of determination (R2) were 0.9610 and 0.9506; mean squared error (MSE) values were 0.0020 and 0.0022 for the training and testing data set, respectively.
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.
2015-06-01
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.
Marginalization in Random Nonlinear Neural Networks
NASA Astrophysics Data System (ADS)
Vasudeva Raju, Rajkumar; Pitkow, Xaq
2015-03-01
Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.
Neural Network Model of Memory Retrieval
Recanatesi, Stefano; Katkov, Mikhail; Romani, Sandro; Tsodyks, Misha
2015-01-01
Human memory can store large amount of information. Nevertheless, recalling is often a challenging task. In a classical free recall paradigm, where participants are asked to repeat a briefly presented list of words, people make mistakes for lists as short as 5 words. We present a model for memory retrieval based on a Hopfield neural network where transition between items are determined by similarities in their long-term memory representations. Meanfield analysis of the model reveals stable states of the network corresponding (1) to single memory representations and (2) intersection between memory representations. We show that oscillating feedback inhibition in the presence of noise induces transitions between these states triggering the retrieval of different memories. The network dynamics qualitatively predicts the distribution of time intervals required to recall new memory items observed in experiments. It shows that items having larger number of neurons in their representation are statistically easier to recall and reveals possible bottlenecks in our ability of retrieving memories. Overall, we propose a neural network model of information retrieval broadly compatible with experimental observations and is consistent with our recent graphical model (Romani et al., 2013). PMID:26732491
Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K.
2016-01-01
The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process. PMID:26989410
Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K
2016-01-01
The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process. PMID:26989410
Sparse coding for layered neural networks
NASA Astrophysics Data System (ADS)
Katayama, Katsuki; Sakata, Yasuo; Horiguchi, Tsuyoshi
2002-07-01
We investigate storage capacity of two types of fully connected layered neural networks with sparse coding when binary patterns are embedded into the networks by a Hebbian learning rule. One of them is a layered network, in which a transfer function of even layers is different from that of odd layers. The other is a layered network with intra-layer connections, in which the transfer function of inter-layer is different from that of intra-layer, and inter-layered neurons and intra-layered neurons are updated alternately. We derive recursion relations for order parameters by means of the signal-to-noise ratio method, and then apply the self-control threshold method proposed by Dominguez and Bollé to both layered networks with monotonic transfer functions. We find that a critical value αC of storage capacity is about 0.11|a ln a| -1 ( a≪1) for both layered networks, where a is a neuronal activity. It turns out that the basin of attraction is larger for both layered networks when the self-control threshold method is applied.
Advances in Artificial Neural Networks - Methodological Development and Application
Technology Transfer Automated Retrieval System (TEKTRAN)
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Multistage neural network model for dynamic scene analysis
Ajjimarangsee, P.
1989-01-01
This research is concerned with dynamic scene analysis. The goal of scene analysis is to recognize objects and have a meaningful interpretation of the scene from which images are obtained. The task of the dynamic scene analysis process generally consists of region identification, motion analysis and object recognition. The objective of this research is to develop clustering algorithms using neural network approach and to investigate a multi-stage neural network model for region identification and motion analysis. The research is separated into three parts. First, a clustering algorithm using Kohonens' self-organizing feature map network is developed to be capable of generating continuous membership valued outputs. A newly developed version of the updating algorithm of the network is introduced to achieve a high degree of parallelism. A neural network model for the fuzzy c-means algorithm is proposed. In the second part, the parallel algorithms of a neural network model for clustering using the self-organizing feature maps approach and a neural network that models the fuzzy c-means algorithm are modified for implementation on a distributed memory parallel architecture. In the third part, supervised and unsupervised neural network models for motion analysis are investigated. For a supervised neural network, a three layer perceptron network is trained by a series of images to recognize the movement of the objects. For the unsupervised neural network, a self-organizing feature mapping network will learn to recognize the movement of the objects without an explicit training phase.
The strategic organizational use of neural networks: An exploratory study
Wilson, R.L.
1990-01-01
Management of emerging technologies in organizations may be handled by neural networks, a brain metaphor' of information processing. In this study, technical and managerial issues surrounding the implementation of a neural network in an organizational decision setting are investigated. The study has three main emphases. (1) An exploratory experimental effort studied the effects of a number of technical implementation factors on accuracy of a trained neural network. Results indicated that composition of the training set evaluation set can significantly effect the actual and perceived decision-making accuracy. (2) A decision-support framework illustrated further important issues that must be considered in appropriately using a neural network. The importance of using a multiplicity of trained networks to assist the decision-making process was shown. (3) It was shown how a neural-network approach provides improved managerial decision support for product screening. The study illustrated that proper use of neural information processing can provide significant organizational benefits.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
Facial expression recognition using constructive neural networks
NASA Astrophysics Data System (ADS)
Ma, Liying; Khorasani, Khashayar
2001-08-01
The computer-based recognition of facial expressions has been an active area of research for quite a long time. The ultimate goal is to realize intelligent and transparent communications between human beings and machines. The neural network (NN) based recognition methods have been found to be particularly promising, since NN is capable of implementing mapping from the feature space of face images to the facial expression space. However, finding a proper network size has always been a frustrating and time consuming experience for NN developers. In this paper, we propose to use the constructive one-hidden-layer feed forward neural networks (OHL-FNNs) to overcome this problem. The constructive OHL-FNN will obtain in a systematic way a proper network size which is required by the complexity of the problem being considered. Furthermore, the computational cost involved in network training can be considerably reduced when compared to standard back- propagation (BP) based FNNs. In our proposed technique, the 2-dimensional discrete cosine transform (2-D DCT) is applied over the entire difference face image for extracting relevant features for recognition purpose. The lower- frequency 2-D DCT coefficients obtained are then used to train a constructive OHL-FNN. An input-side pruning technique previously proposed by the authors is also incorporated into the constructive OHL-FNN. An input-side pruning technique previously proposed by the authors is also incorporated into the constructive learning process to reduce the network size without sacrificing the performance of the resulting network. The proposed technique is applied to a database consisting of images of 60 men, each having the resulting network. The proposed technique is applied to a database consisting of images of 60 men, each having 5 facial expression images (neutral, smile, anger, sadness, and surprise). Images of 40 men are used for network training, and the remaining images are used for generalization and
Applying neural networks to ultrasonographic texture recognition
NASA Astrophysics Data System (ADS)
Gallant, Jean-Francois; Meunier, Jean; Stampfler, Robert; Cloutier, Jocelyn
1993-09-01
A neural network was trained to classify ultrasound image samples of normal, adenomatous (benign tumor) and carcinomatous (malignant tumor) thyroid gland tissue. The samples themselves, as well as their Fourier spectrum, miscellaneous cooccurrence matrices and 'generalized' cooccurrence matrices, were successively submitted to the network, to determine if it could be trained to identify discriminating features of the texture of the image, and if not, which feature extractor would give the best results. Results indicate that the network could indeed extract some distinctive features from the textures, since it could accomplish a partial classification when trained with the samples themselves. But a significant improvement both in learning speed and performance was observed when it was trained with the generalized cooccurrence matrices of the samples.
DC motor speed control using neural networks
NASA Astrophysics Data System (ADS)
Tai, Heng-Ming; Wang, Junli; Kaveh, Ashenayi
1990-08-01
This paper presents a scheme that uses a feedforward neural network for the learning and generalization of the dynamic characteristics for the starting of a dc motor. The goal is to build an intelligent motor starter which has a versatility equivalent to that possessed by a human operator. To attain a fast and safe starting from stall for a dc motor a maximum armature current should be maintained during the starting period. This can be achieved by properly adjusting the armature voltage. The network is trained to learn the inverse dynamics of the motor starting characteristics and outputs a proper armature voltage. Simulation was performed to demonstrate the feasibility and effectiveness of the model. This study also addresses the network performance as a function of the number of hidden units and the number of training samples. 1.
Dynamic Artificial Neural Networks with Affective Systems
Schuman, Catherine D.; Birdwell, J. Douglas
2013-01-01
Artificial neural networks (ANNs) are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP) and long term depression (LTD), and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance. PMID:24303015
Application of an artificial neural network to pump card diagnosis
Ashenayi, K. ); Lea, J.F. ); Kemp, F. , Dallas, TX ); Nazi, G.A.
1994-12-01
Beam pumping is the most frequently used artificial-lift technique for oil production. Downhole pump cards are used to evaluate performance of the pumping unit. Pump cards can be generated from surface dynamometer cards using a 1D wave equation with viscous damping, as suggested by Gibbs and Neely. Pump cards contain significant information describing the behavior of the pump. However, interpretation of these cards is tedious and time-consuming; hence, an automated system capable of interpreting these cards could speed interpretation and warn of pump failures. This work presents the results of a DOS-based computer program capable of correctly classifying pump cards. The program uses a hybrid artificial neural network (ANN) to identify significant features of the pump card. The hybrid ANN uses classical and sinusoidal perceptrons. The network is trained using an error-back-propagation technique. The program correctly identified pump problems for more than 180 different training and test pump cards. The ANN takes a total of 80 data points as input. Sixty data points are collected from the pump card perimeter, and the remaining 20 data points represent the slope at selected points on the pump card perimeter. Pump problem conditions are grouped into 11 distinct classes. The network is capable of identifying one or more of these problem conditions for each pump card. Eight examples are presented and discussed.
One pass learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2016-01-01
Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance. PMID
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
Classification of behavior using unsupervised temporal neural networks
Adair, K.L.; Argo, P.
1998-03-01
Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem.
Proceedings of intelligent engineering systems through artificial neural networks
Dagli, C.H. . Dept. of Engineering Management); Kumara, S.R. . Dept. of Industrial Management Systems Engineering); Shin, Y.C. . School of Mechanical Engineering)
1991-01-01
This book contains the edited versions of the technical presentation of ANNIE '91, the first international meeting on Artificial Neural Networks in Engineering. The conference covered the theory of Artificial Neural Networks and its contributions in the engineering domain and attracted researchers from twelve countries. The papers in this edited book are grouped into four categories: Artificial Neural Network Architectures; Pattern Recognition; Adaptive Control, Diagnosis and Process Monitoring; and Neuro-Engineering Systems.
Geophysical phenomena classification by artificial neural networks
NASA Technical Reports Server (NTRS)
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
Geophysical phenomena classification by artificial neural networks
Gough, M.P.; Bruckner, J.R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN`s) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN`s were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
Neural network model for extracting optic flow.
Tohyama, Kazuya; Fukushima, Kunihiko
2005-01-01
When we travel in an environment, we have an optic flow on the retina. Neurons in the area MST of macaque monkeys are reported to have a very large receptive field and analyze optic flows on the retina. Many MST-cells respond selectively to rotation, expansion/contraction and planar motion of the optic flow. Many of them show position-invariant responses to optic flow, that is, their responses are maintained during the shift of the center of the optic flow. It has long been suggested mathematically that vector-field calculus is useful for analyzing optic flow field. Biologically, plausible neural network models based on this idea, however, have little been proposed so far. This paper, based on vector-field hypothesis, proposes a neural network model for extracting optic flows. Our model consists of hierarchically connected layers: retina, V1, MT and MST. V1-cells measure local velocity. There are two kinds of MT-cell: one is for extracting absolute velocities, the other for extracting relative velocities with their antagonistic inputs. Collecting signals from MT-cells, MST-cells respond selectively to various types of optic flows. We demonstrate through a computer simulation that this simple network is enough to explain a variety of results of neurophysiological experiments. PMID:16112546
Physical connections between different SSVEP neural networks
Wu, Zhenghua
2016-01-01
This work investigates the mechanism of the Steady-State Visual Evoked Potential (SSVEP). One theory suggests that different SSVEP neural networks exist whose strongest response are located in different frequency bands. This theory is based on the fact that there are similar SSVEP frequency-amplitude response curves in these bands. Previous studies that employed simultaneous stimuli of different frequencies illustrated that the distribution of these networks were similar, but did not discuss the physical connection between them. By comparing the SSVEP power and distribution under a single-eye stimulus and a simultaneous, dual-eye stimulus, this work demonstrates that the distributions of different SSVEP neural networks are similar to each other and that there should be physical overlapping between them. According to the band-pass filter theory in a signal transferring channel, which we propose in this work for the first time, there are different amounts of neurons that are involved under repetitive stimuli of different frequencies and that the response intensity of each neuron is similar to each other so that the total response (i.e., the SSVEP) that is observed from the scalp is different. PMID:26952961
Neural networks for LED color control
NASA Astrophysics Data System (ADS)
Ashdown, Ian E.
2004-01-01
The design and implementation of an architectural dimming control for multicolor LED-based lighting fixtures is complicated by the need to maintain a consistent color balance under a wide variety of operating conditions. Factors to consider include nonlinear relationships between luminous flux intensity and drive current, junction temperature dependencies, LED manufacturing tolerances and binning parameters, device aging characteristics, variations in color sensor spectral responsitivities, and the approximations introduced by linear color space models. In this paper we formulate this problem as a nonlinear multidimensional function, where maintaining a consistent color balance is equivalent to determining the hyperplane representing constant chromaticity. To be useful for an architectural dimming control design, this determination must be made in real time as the lighting fixture intensity is adjusted. Further, the LED drive current must be continuously adjusted in response to color sensor inputs to maintain constant chromaticity for a given intensity setting. Neural networks are known to be universal approximators capable of representing any continuously differentiable bounded function. We therefore use a radial basis function neural network to represent the multidimensional function and provide the feedback signals needed to maintain constant chromaticity. The network can be trained on the factory floor using individual device measurements such as spectral radiant intensity and color sensor characteristics. This provides a flexible solution that is mostly independent of LED manufacturing tolerances and binning parameters.
Neural network and its application to CT imaging
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.
1997-02-01
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Using Neural Networks to Describe Complex Phase Transformation Behavior
Vitek, J.M.; David, S.A.
1999-05-24
Final microstructures can often be the end result of a complex sequence of phase transformations. Fundamental analyses may be used to model various stages of the overall behavior but they are often impractical or cumbersome when considering multicomponent systems covering a wide range of compositions. Neural network analysis may be a useful alternative method of identifying and describing phase transformation beavior. A neural network model for ferrite prediction in stainless steel welds is described. It is shown that the neural network analysis provides valuable information that accounts for alloying element interactions. It is suggested that neural network analysis may be extremely useful for analysis when more fundamental approaches are unavailable or overly burdensome.
Optical-Correlator Neural Network Based On Neocognitron
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Neural networks and their application to nuclear power plant diagnosis
Reifman, J.
1997-10-01
The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.
Neural network models: Insights and prescriptions from practical applications
Samad, T.
1995-12-31
Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.
Application of artificial neural networks to composite ply micromechanics
NASA Technical Reports Server (NTRS)
Brown, D. A.; Murthy, P. L. N.; Berke, L.
1991-01-01
Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.
Monitoring the particle size in CFB using fuzzy neural network
Ma, L.; Chen, H.; Tian, Z.; He, W.
1999-07-01
The particle size and particle size distributions (PSDs) affect the performance of a circulating fluidized (CFB) boiler. For improving the efficiency of analysis of particle size to monitor the particle size and particle size distribution, a fuzzy neural network (FNN) model is presented. Because the pressure fluctuant frequency and particle size have some non-linear relationship, the FNN models the relationship between the pressure fluctuant frequencies along CFB boiler height and particle size sampled from CFB boiler by neural network training. A hybrid fuzzy neural network parameter training method is presented to identify the model parameters, which combine the gradient back propagation (BP) algorithm and least square estimation (LSE) algorithm to estimate unknown non-linear parameter and linear parameter respectively. When the FNN training procedure converges, the parameters, which reflect the non-linear relationship between frequency and particle, are determined for a given operational condition of CFB boiler. In operating CFB boilers, the coal particle size at high temperature changes with combustion and its values are unknown, however, pressure fluctuation frequency can be obtained easily. In this case, FNN can predict the particle size and PSDs along the CFB boiler height according to the pressure fluctuation frequency. To validate the FNN model effect of analyzing the particle size, data from experiment are used with fluidized gas velocity equal to 41.82 cm/s. The predictive error of FNN model is 3.839%. It is proved that the model not only identifies the non-linear relationship between particle size and pressure fluctuation frequency with high precision but also can adaptively learn the data information without expert knowledge by adjusting its own parameters. It operates quickly and can satisfy the real-time request of monitoring the particle size and its distribution in CFB boilers.
Predicate calculus for an architecture of multiple neural networks
NASA Astrophysics Data System (ADS)
Consoli, Robert H.
1990-08-01
Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.
Artificial neural networks and Abelian harmonic analysis
NASA Astrophysics Data System (ADS)
Rodriguez, Domingo; Pertuz-Campo, Jairo
1991-12-01
This work deals with the use of artificial neural networks (ANN) for the digital processing of finite discrete time signals. The effort concentrates on the efficient replacement of fast Fourier transform (FFT) algorithms with ANN algorithms in certain engineering and scientific applications. The FFT algorithms are efficient methods of computing the discrete Fourier transform (DFT). The ubiquitous DFT is utilized in almost every digital signal processing application where harmonic analysis information is needed. Applications abound in areas such as audio acoustics, geophysics, biomedicine, telecommunications, astrophysics, etc. To identify more efficient methods to obtain a desired spectral information will result in a reduction in the computational effort required to implement these applications.
Convolution neural networks for ship type recognition
NASA Astrophysics Data System (ADS)
Rainey, Katie; Reeder, John D.; Corelli, Alexander G.
2016-05-01
Algorithms to automatically recognize ship type from satellite imagery are desired for numerous maritime applications. This task is difficult, and example imagery accurately labeled with ship type is hard to obtain. Convolutional neural networks (CNNs) have shown promise in image recognition settings, but many of these applications rely on the availability of thousands of example images for training. This work attempts to under- stand for which types of ship recognition tasks CNNs might be well suited. We report the results of baseline experiments applying a CNN to several ship type classification tasks, and discuss many of the considerations that must be made in approaching this problem.
Artificial Neural Network applied to lightning flashes
NASA Astrophysics Data System (ADS)
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Solving inversion problems with neural networks
NASA Technical Reports Server (NTRS)
Kamgar-Parsi, Behzad; Gualtieri, J. A.
1990-01-01
A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.
Digital Image Compression Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Finite time stabilization of delayed neural networks.
Wang, Leimin; Shen, Yi; Ding, Zhixia
2015-10-01
In this paper, the problem of finite time stabilization for a class of delayed neural networks (DNNs) is investigated. The general conditions on the feedback control law are provided to ensure the finite time stabilization of DNNs. Then some specific conditions are derived by designing two different controllers which include the delay-dependent and delay-independent ones. In addition, the upper bound of the settling time for stabilization is estimated. Under fixed control strength, discussions of the extremum of settling time functional are made and a switched controller is designed to optimize the settling time. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results. PMID:26264170
An efficient neural network approach to dynamic robot motion planning.
Yang, S X; Meng, M
2000-03-01
In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies. PMID:10935758
Resource constrained design of artificial neural networks using comparator neural network
NASA Technical Reports Server (NTRS)
Wah, Benjamin W.; Karnik, Tanay S.
1992-01-01
We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.
Neural network identifications of spectral signatures
Gisler, G.; Borel, C.
1996-02-01
We have investigated the application of neural nets to the determination of fundamental leaf canopy parameters from synthetic spectra. We describe some preliminary runs in which we separately determine leaf chemistry, leaf structure, leaf area index, and soil characteristics, and then we perform a simultaneous determination of all these parameters in a single neural network run with synthetic six-band Landsat data. We find that neural nets offer considerable promise in the determination of fundamental parameters of agricultural and environmental interest from broad-band multispectral data. The determination of the quantities of interest is frequently performed with accuracies of 5% or better, though as expected, the accuracy of determination in any one parameter depends to some extent on the value of other parameters, most importantly the leaf area index. Soil characterization, for example, is best done at low lai, while leaf chemistry is most reliably done at high lai. We believe that these techniques, particularly when implemented in fast parallel hardware and mounted directly on remote sensing platforms, will be useful for various agricultural and environmental applications.
Distributed neural computations for embedded sensor networks
NASA Astrophysics Data System (ADS)
Peckens, Courtney A.; Lynch, Jerome P.; Pei, Jin-Song
2011-04-01
Wireless sensing technologies have recently emerged as an inexpensive and robust method of data collection in a variety of structural monitoring applications. In comparison with cabled monitoring systems, wireless systems offer low-cost and low-power communication between a network of sensing devices. Wireless sensing networks possess embedded data processing capabilities which allow for data processing directly at the sensor, thereby eliminating the need for the transmission of raw data. In this study, the Volterra/Weiner neural network (VWNN), a powerful modeling tool for nonlinear hysteretic behavior, is decentralized for embedment in a network of wireless sensors so as to take advantage of each sensor's processing capabilities. The VWNN was chosen for modeling nonlinear dynamic systems because its architecture is computationally efficient and allows computational tasks to be decomposed for parallel execution. In the algorithm, each sensor collects it own data and performs a series of calculations. It then shares its resulting calculations with every other sensor in the network, while the other sensors are simultaneously exchanging their information. Because resource conservation is important in embedded sensor design, the data is pruned wherever possible to eliminate excessive communication between sensors. Once a sensor has its required data, it continues its calculations and computes a prediction of the system acceleration. The VWNN is embedded in the computational core of the Narada wireless sensor node for on-line execution. Data generated by a steel framed structure excited by seismic ground motions is used for validation of the embedded VWNN model.
Phase diagram of spiking neural networks
Seyed-allaei, Hamed
2015-01-01
In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters – excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli. PMID:25788885
Statistical process control using optimized neural networks: a case study.
Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid
2014-09-01
The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. PMID:24210290
Multisensory integration substantiates distributed and overlapping neural networks.
Pasqualotto, Achille
2016-01-01
The hypothesis that highly overlapping networks underlie brain functions (neural reuse) is decisively supported by three decades of multisensory research. Multisensory areas process information from more than one sensory modality and therefore represent the best examples of neural reuse. Recent evidence of multisensory processing in primary visual cortices further indicates that neural reuse is a basic feature of the brain. PMID:27562234
Neural Networks for Signal Processing and Control
NASA Astrophysics Data System (ADS)
Hesselroth, Ted Daniel
Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual
Energy coding in neural network with inhibitory neurons.
Wang, Ziyin; Wang, Rubin; Fang, Ruiyan
2015-04-01
This paper aimed at assessing and comparing the effects of the inhibitory neurons in the neural network on the neural energy distribution, and the network activities in the absence of the inhibitory neurons to understand the nature of neural energy distribution and neural energy coding. Stimulus, synchronous oscillation has significant difference between neural networks with and without inhibitory neurons, and this difference can be quantitatively evaluated by the characteristic energy distribution. In addition, the synchronous oscillation difference of the neural activity can be quantitatively described by change of the energy distribution if the network parameters are gradually adjusted. Compared with traditional method of correlation coefficient analysis, the quantitative indicators based on nervous energy distribution characteristics are more effective in reflecting the dynamic features of the neural network activities. Meanwhile, this neural coding method from a global perspective of neural activity effectively avoids the current defects of neural encoding and decoding theory and enormous difficulties encountered. Our studies have shown that neural energy coding is a new coding theory with high efficiency and great potential. PMID:25806094
A convolutional neural network neutrino event classifier
Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M. D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P.
2016-09-01
Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmore » the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.« less
Neural networks for fault location in substations
Alves da Silva, A.P.; Silveira, P.M. da; Lambert-Torres, G.; Insfran, A.H.F.
1996-01-01
Faults producing load disconnections or emergency situations have to be located as soon as possible to start the electric network reconfiguration, restoring normal energy supply. This paper proposes the use of artificial neural networks (ANNs), of the associative memory type, to solve the fault location problem. The main idea is to store measurement sets representing the normal behavior of the protection system, considering the basic substation topology only, into associated memories. Afterwards, these memories are employed on-line for fault location using the protection system equipment status. The associative memories work correctly even in case of malfunction of the protection system and different pre-fault configurations. Although the ANNs are trained with single contingencies only, their generalization capability allows a good performance for multiple contingencies. The resultant fault location system is in operation at the 500 kV gas-insulated substation of the Itaipu system.
Programmable synaptic chip for electronic neural networks
NASA Technical Reports Server (NTRS)
Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.
1988-01-01
A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.
Orthogonal patterns in binary neural networks
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
A binary neural network that stores only mutually orthogonal patterns is shown to converge, when probed by any pattern, to a pattern in the memory space, i.e., the space spanned by the stored patterns. The latter are shown to be the only members of the memory space under a certain coding condition, which allows maximum storage of M=(2N) sup 0.5 patterns, where N is the number of neurons. The stored patterns are shown to have basins of attraction of radius N/(2M), within which errors are corrected with probability 1 in a single update cycle. When the probe falls outside these regions, the error correction capability can still be increased to 1 by repeatedly running the network with the same probe.
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
FPGA-based artificial neural network using CORDIC modules
NASA Astrophysics Data System (ADS)
Liddicoat, Albert A.; Slivovsky, Lynne A.; McLenegan, Tim; Heyer, Don
2006-08-01
Artificial neural networks have been used in applications that require complex procedural algorithms and in systems which lack an analytical mathematic model. By designing a large network of computing nodes based on the artificial neuron model, new solutions can be developed for computational problems in fields such as image processing and speech recognition. Neural networks are inherently parallel since each neuron, or node, acts as an autonomous computational element. Artificial neural networks use a mathematical model for each node that processes information from other nodes in the same region. The information processing entails computing a weighted average computation followed by a nonlinear mathematical transformation. Some typical artificial neural network applications use the exponential function or trigonometric functions for the nonlinear transformation. Various simple artificial neural networks have been implemented using a processor to compute the output for each node sequentially. This approach uses sequential processing and does not take advantage of the parallelism of a complex artificial neural network. In this work a hardware-based approach is investigated for artificial neural network applications. A Field Programmable Gate Arrays (FPGAs) is used to implement an artificial neuron using hardware multipliers, adders and CORDIC functional units. In order to create a large scale artificial neural network, area efficient hardware units such as CORDIC units are needed. High performance and low cost bit serial CORDIC implementations are presented. Finally, the FPGA resources and the performance of a hardware-based artificial neuron are presented.
USING A NEURAL NETWORK TO PREDICT ELECTRICITY GENERATION
The paper discusses using a neural network to predict electricity generation. uch predictions are important in developing forecasts of air pollutant release and in evaluating the effectiveness of alternative policies which may reduce pollution. eural network model (NUMOD) that pr...
Microarray data classified by artificial neural networks.
Linder, Roland; Richards, Tereza; Wagner, Mathias
2007-01-01
Systems biology has enjoyed explosive growth in both the number of people participating in this area of research and the number of publications on the topic. The field of systems biology encompasses the in silico analysis of high-throughput data as provided by DNA or protein microarrays. Along with the increasing availability of microarray data, attention is focused on methods of analyzing the expression rates. One important type of analysis is the classification task, for example, distinguishing different types of cell functions or tumors. Recently, interest has been awakened toward artificial neural networks (ANN), which have many appealing characteristics such as an exceptional degree of accuracy. Nonlinear relationships or independence from certain assumptions regarding the data distribution are also considered. The current work reviews advantages as well as disadvantages of neural networks in the context of microarray analysis. Comparisons are drawn to alternative methods. Selected solutions are discussed, and finally algorithms for the effective combination of multiple ANNs are presented. The development of approaches to use ANN-processed microarray data applicable to run cell and tissue simulations may be slated for future investigation. PMID:18220242
Sentence alignment using feed forward neural network.
Fattah, Mohamed Abdel; Ren, Fuji; Kuroiwa, Shingo
2006-12-01
Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature. PMID:17285688
Multiresolution neural networks for mammographic mass detection
NASA Astrophysics Data System (ADS)
Spence, Clay D.; Sajda, Paul
1999-01-01
We have previously presented a hierarchical pyramid/neural network (HPNN) architecture which combines multi-scale image processing techniques with neural networks. This coarse-to- fine HPNN was designed to learn large-scale context information for detecting small objects. We have developed a similar architecture to detect mammographic masses (malignant tumors). Since masses are large, extended objects, the coarse-to-fine HPNN architecture is not suitable for the problem. Instead we constructed a fine-to- coarse HPNN architecture which is designed to learn small- scale detail structure associated with the extended objects. Our initial result applying the fine-to-coarse HPNN to mass detection are encouraging, with detection performance improvements of about 30%. We conclude that the ability of the HPNN architecture to integrate information across scales, from fine to coarse in the case of masses, makes it well suited for detecting objects which may have detail structure occurring at scales other than the natural scale of the object.
Boundary Depth Information Using Hopfield Neural Network
NASA Astrophysics Data System (ADS)
Xu, Sheng; Wang, Ruisheng
2016-06-01
Depth information is widely used for representation, reconstruction and modeling of 3D scene. Generally two kinds of methods can obtain the depth information. One is to use the distance cues from the depth camera, but the results heavily depend on the device, and the accuracy is degraded greatly when the distance from the object is increased. The other one uses the binocular cues from the matching to obtain the depth information. It is more and more mature and convenient to collect the depth information of different scenes by stereo matching methods. In the objective function, the data term is to ensure that the difference between the matched pixels is small, and the smoothness term is to smooth the neighbors with different disparities. Nonetheless, the smoothness term blurs the boundary depth information of the object which becomes the bottleneck of the stereo matching. This paper proposes a novel energy function for the boundary to keep the discontinuities and uses the Hopfield neural network to solve the optimization. We first extract the region of interest areas which are the boundary pixels in original images. Then, we develop the boundary energy function to calculate the matching cost. At last, we solve the optimization globally by the Hopfield neural network. The Middlebury stereo benchmark is used to test the proposed method, and results show that our boundary depth information is more accurate than other state-of-the-art methods and can be used to optimize the results of other stereo matching methods.
Parameter incremental learning algorithm for neural networks.
Wan, Sheng; Banta, Larry E
2006-11-01
In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658
Prospecting droughts with stochastic artificial neural networks
NASA Astrophysics Data System (ADS)
Ochoa-Rivera, Juan Camilo
2008-04-01
SummaryA non-linear multivariate model based on an artificial neural network multilayer perceptron is presented, that includes a random component. The developed model is applied to generate monthly streamflows, which are used to obtain synthetic annual droughts. The calibration of the model was undertaken using monthly streamflow records of several geographical sites of a basin. The model calibration consisted of training the neural network with the error back-propagation learning algorithm, and adding a normally distributed random noise. The model was validated by comparing relevant statistics of synthetic streamflow series to those of historical records. Annual droughts were calculated from the generated streamflow series, and then the expected values of length, intensity and magnitude of the droughts were assessed. An exercise on identical basis was made applying a second order auto-regressive multivariate model, AR(2), to compare its results with those of the developed model. The proposed model outperforms the AR(2) model in reproducing the future drought scenarios.
Temporal-kernel recurrent neural networks.
Sutskever, Ilya; Hinton, Geoffrey
2010-03-01
A Recurrent Neural Network (RNN) is a powerful connectionist model that can be applied to many challenging sequential problems, including problems that naturally arise in language and speech. However, RNNs are extremely hard to train on problems that have long-term dependencies, where it is necessary to remember events for many timesteps before using them to make a prediction. In this paper we consider the problem of training RNNs to predict sequences that exhibit significant long-term dependencies, focusing on a serial recall task where the RNN needs to remember a sequence of characters for a large number of steps before reconstructing it. We introduce the Temporal-Kernel Recurrent Neural Network (TKRNN), which is a variant of the RNN that can cope with long-term dependencies much more easily than a standard RNN, and show that the TKRNN develops short-term memory that successfully solves the serial recall task by representing the input string with a stable state of its hidden units. PMID:19932002
Ordinal neural networks without iterative tuning.
Fernández-Navarro, Francisco; Riccardi, Annalisa; Carloni, Sante
2014-11-01
Ordinal regression (OR) is an important branch of supervised learning in between the multiclass classification and regression. In this paper, the traditional classification scheme of neural network is adapted to learn ordinal ranks. The model proposed imposes monotonicity constraints on the weights connecting the hidden layer with the output layer. To do so, the weights are transcribed using padding variables. This reformulation leads to the so-called inequality constrained least squares (ICLS) problem. Its numerical solution can be obtained by several iterative methods, for example, trust region or line search algorithms. In this proposal, the optimum is determined analytically according to the closed-form solution of the ICLS problem estimated from the Karush-Kuhn-Tucker conditions. Furthermore, following the guidelines of the extreme learning machine framework, the weights connecting the input and the hidden layers are randomly generated, so the final model estimates all its parameters without iterative tuning. The model proposed achieves competitive performance compared with the state-of-the-art neural networks methods for OR. PMID:25330430
A neural network model of harmonic detection
NASA Astrophysics Data System (ADS)
Lewis, Clifford F.
2003-04-01
Harmonic detection theories postulate that a virtual pitch is perceived when a sufficient number of harmonics is present. The harmonics need not be consecutive, but higher harmonics contribute less than lower harmonics [J. Raatgever and F. A. Bilsen, in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, 1992), pp. 215-222 M. K. McBeath and J. F. Wayand, Abstracts of the Psychonom. Soc. 3, 55 (1998)]. A neural network model is presented that has the potential to simulate this operation. Harmonics are first passed through a bank of rounded exponential filters with lateral inhibition. The results are used as inputs for an autoassociator neural network. The model is trained using harmonic data for symphonic musical instruments, in order to test whether it can self-organize by learning associations between co-occurring harmonics. It is shown that the trained model can complete the pattern for missing-fundamental sounds. The Performance of the model in harmonic detection will be compared with experimental results for humans.
Speaker Verification Using Subword Neural Tree Networks.
NASA Astrophysics Data System (ADS)
Liou, Han-Sheng
1995-01-01
In this dissertation, a new neural-network-based algorithm for text-dependent speaker verification is presented. The algorithm uses a set of concatenated Neural Tree Networks (NTN's) trained on subword units to model a password. In contrast to the conventional stochastic approaches which model the subword units by Hidden Markov Models (HMM's), the new approach utilizes the discriminative training scheme to train a NTN for each subword unit. Two types of subword unit are investigated, phone-like units (PLU's) and HMM state-based units (HSU's). The training of the models includes the following steps. The training utterances of a password is first segmented into subword units using a HMM-based segmentation method. A NTN is then trained for each subword unit. In order to retrieve the temporal information which is relatively important in text-dependent speaker verification, the proposed paradigm integrates the discriminatory ability of the NTN with the temporal models of the HMM. A new scoring method using phonetic weighting to improve the speaker verification performance is also introduced. The proposed algorithms are evaluated by experiments on a TI isolated-word database, YOHO database, and several hundred utterances collected over telephone channel. Performance improvements are obtained over conventional techniques.
Neural network for photoplethysmographic respiratory rate monitoring
NASA Astrophysics Data System (ADS)
Johansson, Anders
2001-10-01
The photoplethysmographic signal (PPG) includes respiratory components seen as frequency modulation of the heart rate (respiratory sinus arrhythmia, RSA), amplitude modulation of the cardiac pulse, and respiratory induced intensity variations (RIIV) in the PPG baseline. The aim of this study was to evaluate the accuracy of these components in determining respiratory rate, and to combine the components in a neural network for improved accuracy. The primary goal is to design a PPG ventilation monitoring system. PPG signals were recorded from 15 healthy subjects. From these signals, the systolic waveform, diastolic waveform, respiratory sinus arrhythmia, pulse amplitude and RIIV were extracted. By using simple algorithms, the rates of false positive and false negative detection of breaths were calculated for each of the five components in a separate analysis. Furthermore, a simple neural network (NN) was tried out in a combined pattern recognition approach. In the separate analysis, the error rates (sum of false positives and false negatives) ranged from 9.7% (pulse amplitude) to 14.5% (systolic waveform). The corresponding value of the NN analysis was 9.5-9.6%.
Neural network analysis for hazardous waste characterization
Misra, M.; Pratt, L.Y.; Farris, C.
1995-12-31
This paper is a summary of our work in developing a system for interpreting electromagnetic (EM) and magnetic sensor information from the dig face characterization experimental cell at INEL to determine the depth and nature of buried objects. This project contained three primary components: (1) development and evaluation of several geophysical interpolation schemes for correcting missing or noisy data, (2) development and evaluation of several wavelet compression schemes for removing redundancies from the data, and (3) construction of two neural networks that used the results of steps (1) and (2) to determine the depth and nature of buried objects. This work is a proof-of-concept study that demonstrates the feasibility of this approach. The resulting system was able to determine the nature of buried objects correctly 87% of the time and was able to locate a buried object to within an average error of 0.8 feet. These statistics were gathered based on a large test set and so can be considered reliable. Considering the limited nature of this study, these results strongly indicate the feasibility of this approach, and the importance of appropriate preprocessing of neural network input data.
Efficiently passing messages in distributed spiking neural network simulation
Thibeault, Corey M.; Minkovich, Kirill; O'Brien, Michael J.; Harris, Frederick C.; Srinivasa, Narayan
2013-01-01
Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance. In this paper we explore spike message passing using different mechanisms provided by the Message Passing Interface (MPI). A specific implementation, MVAPICH, designed for high-performance clusters with Infiniband hardware is employed. The focus is on providing information about these mechanisms for users of commodity high-performance spiking simulators. In addition, a novel hybrid method for spike exchange was implemented and benchmarked. PMID:23772213
Altered Synchronizations among Neural Networks in Geriatric Depression
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G.; Steffens, David C.
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression. PMID:26180795
Neural network classifier of attacks in IP telephony
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Voznak, Miroslav; Mehic, Miralem; Partila, Pavol; Mikulec, Martin
2014-05-01
Various types of monitoring mechanism allow us to detect and monitor behavior of attackers in VoIP networks. Analysis of detected malicious traffic is crucial for further investigation and hardening the network. This analysis is typically based on statistical methods and the article brings a solution based on neural network. The proposed algorithm is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. Information about attacks on these honeypots is collected on a centralized server and then classified. This classification is based on different mechanisms. One of them is based on the multilayer perceptron neural network. The article describes inner structure of used neural network and also information about implementation of this network. The learning set for this neural network is based on real attack data collected from IP telephony honeypot called Dionaea. We prepare the learning set from real attack data after collecting, cleaning and aggregation of this information. After proper learning is the neural network capable to classify 6 types of most commonly used VoIP attacks. Using neural network classifier brings more accurate attack classification in a distributed system of honeypots. With this approach is possible to detect malicious behavior in a different part of networks, which are logically or geographically divided and use the information from one network to harden security in other networks. Centralized server for distributed set of nodes serves not only as a collector and classifier of attack data, but also as a mechanism for generating a precaution steps against attacks.
Altered Synchronizations among Neural Networks in Geriatric Depression.
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression. PMID:26180795
NASA Astrophysics Data System (ADS)
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2016-06-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
Random neural network recognition of shaped objects in strong clutter
NASA Astrophysics Data System (ADS)
Bakircioglu, Hakan; Gelenbe, Erol
1998-04-01
Detecting objects in images containing strong clutter is an important issue in a variety of applications such as medical imaging and automatic target recognition. Artificial neural networks are used as non-parametric pattern recognizers to cope with different problems due to their inherent ability to learn from training data. In this paper we propose a neural approach based on the Random Neural Network model (Gelenbe 1989, 1990, 1991, 1993), to detect shaped targets with the help of multiple neural networks whose outputs are combined for making decisions.
Syntactic neural network for character recognition
NASA Astrophysics Data System (ADS)
Jaravine, Viktor A.
1992-08-01
This article presents a synergism of syntactic 2-D parsing of images and multilayered, feed- forward network techniques. This approach makes it possible to build a written text reading system with absolute recognition rate for unambiguous text strings. The Syntactic Neural Network (SNN) is created during image parsing process by capturing the higher order statistical structure in the ensemble of input image examples. Acquired knowledge is stored in the form of hierarchical image elements dictionary and syntactic network. The number of hidden layers and neuron units is not fixed and is determined by the structural complexity of the teaching set. A proposed syntactic neuron differs from conventional numerical neuron by its symbolic input/output and usage of the dictionary for determining the output. This approach guarantees exact recognition of an image that is a combinatorial variation of the images from the training set. The system is taught to generalize and to make stochastic parsing of distorted and shifted patterns. The generalizations enables the system to perform continuous incremental optimization of its work. New image data learned by SNN doesn''t interfere with previously stored knowledge, thus leading to unlimited storage capacity of the network.
Improved Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1995-01-01
Improved method of adjoint-operator learning reduces amount of computation and associated computational memory needed to make electronic neural network learn temporally varying pattern (e.g., to recognize moving object in image) in real time. Method extension of method described in "Adjoint-Operator Learning for a Neural Network" (NPO-18352).
A Neural Network Approach to the Classification of Autism.
ERIC Educational Resources Information Center
Cohen, Ira L.; And Others
1993-01-01
Neural network technology was compared with simultaneous and stepwise linear discriminant analysis in terms of their ability to classify and predict persons (n=138) as having autism or mental retardation. The neural network methodology was superior in both classifying groups and in generalizing to new cases that were not part of the training…
Multiple image sensor data fusion through artificial neural networks
Technology Transfer Automated Retrieval System (TEKTRAN)
With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...
Using Neural Networks to Predict MBA Student Success
ERIC Educational Resources Information Center
Naik, Bijayananda; Ragothaman, Srinivasan
2004-01-01
Predicting MBA student performance for admission decisions is crucial for educational institutions. This paper evaluates the ability of three different models--neural networks, logit, and probit to predict MBA student performance in graduate programs. The neural network technique was used to classify applicants into successful and marginal student…
Application of four-layer neural network on information extraction.
Han, Min; Cheng, Lei; Meng, Hua
2003-01-01
This paper applies neural network to extract marsh information. An adaptive back-propagation algorithm based on a robust error function is introduced to build a four-layer neural network, and it is used to classify Thematic Mapper (TM) image of Zhalong Wetland in China and then extract marsh information. Comparing marsh information extraction results of the four-layer neural network with three-layer neural network and the maximum likelihood classifier, conclusion can be drawn as follows: the structure of the four-layer neural network and the adaptive back-propagation algorithm based on the robust error function is effective to extract marsh information. The four-layer neural network adopted in this paper succeeded in building the complex model of TM image, and it avoided the problem of great storage of remotely sensed data, and the adaptive back-propagation algorithm speeded up the descending of error. Above all, the four-layer neural network is superior to the three-layer neural network and the maximum likelihood classifier in the accuracy of the total classification and marsh information extraction. PMID:12850006
The use of neural networks for approximation of nuclear data
Korovin, Yu. A.; Maksimushkina, A. V.
2015-12-15
The article discusses the possibility of using neural networks for approximation or reconstruction of data such as the reaction cross sections. The quality of the approximation using fitting criteria is also evaluated. The activity of materials under irradiation is calculated from data obtained using neural networks.
Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1993-01-01
Electronic neural networks made to synthesize initially unknown mathematical models of time-dependent phenomena or to learn temporally evolving patterns by use of algorithms based on adjoint operators. Algorithms less complicated, involve less computation and solve learning equations forward in time possibly simultaneously with equations of evolution of neural network, thereby both increasing computational efficiency and making real-time applications possible.
Neural Network Simulation Package from Ohio State University
Wickham, K.L.
1990-08-01
This report describes the Neural Network Simulation Package acquired from Ohio State University. The package known as Neural Shell V2.1 was evaluated and benchmarked at the INEL Supercomputing Center (ISC). The emphasis was on the Back Propagation Net which is currently considered one of the more promising types of neural networks. This report also provides additional documentation that may be helpful to anyone using the package.
Information processing in neural networks with the complex dynamic thresholds
NASA Astrophysics Data System (ADS)
Kirillov, S. Yu.; Nekorkin, V. I.
2016-06-01
A control mechanism of the information processing in neural networks is investigated, based on the complex dynamic threshold of the neural excitation. The threshold properties are controlled by the slowly varying synaptic current. The dynamic threshold shows high sensitivity to the rate of the synaptic current variation. It allows both to realize flexible selective tuning of the network elements and to provide nontrivial regimes of neural coding.
NASA Astrophysics Data System (ADS)
Bruton, C. P.; West, M. E.
2013-12-01
Earthquakes and seismicity have long been used to monitor volcanoes. In addition to time, location, and magnitude of an earthquake, the characteristics of the waveform itself are important. For example, low-frequency or hybrid type events could be generated by magma rising toward the surface. A rockfall event could indicate a growing lava dome. Classification of earthquake waveforms is thus a useful tool in volcano monitoring. A procedure to perform such classification automatically could flag certain event types immediately, instead of waiting for a human analyst's review. Inspired by speech recognition techniques, we have developed a procedure to classify earthquake waveforms using artificial neural networks. A neural network can be "trained" with an existing set of input and desired output data; in this case, we use a set of earthquake waveforms (input) that has been classified by a human analyst (desired output). After training the neural network, new waveforms can be classified automatically as they are presented. Our procedure uses waveforms from multiple stations, making it robust to seismic network changes and outages. The use of a dynamic time-delay neural network allows waveforms to be presented without precise alignment in time, and thus could be applied to continuous data or to seismic events without clear start and end times. We have evaluated several different training algorithms and neural network structures to determine their effects on classification performance. We apply this procedure to earthquakes recorded at Mount Spurr and Katmai in Alaska, and Uturuncu Volcano in Bolivia.
Application of neural networks to health monitoring of bridge structures
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Yeh, ShyChing
2000-06-01
A procedure based on the use of artificial neural networks for the identification of dynamic system is developed and applied to the bridge structure under earthquake excitation. This neural network-based approach is also applied for the detection of changes in the characteristics of structure- unknown system. Based on the vibration measurement from a linear/healthy system to train the neural network for identification purposes, then the trained network is fed comparable vibration measurements from the same structure under different episodes of response in order to monitor the nonlinearity of the system. The learning ability of the network is examined for the use of multiple inputs. The effects of the network parameters on learning and accuracy of predictions are discussed. Based on this study it is found that the configuration of neural network model is the same as NARMA model and has the potential for structural damage detection.
Thermoelastic steam turbine rotor control based on neural network
NASA Astrophysics Data System (ADS)
Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.
2015-12-01
Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.
Investigation of efficient features for image recognition by neural networks.
Goltsev, Alexander; Gritsenko, Vladimir
2012-04-01
In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. PMID:22391231
Neural network controller development for a magnetically suspended flywheel energy storage system
NASA Technical Reports Server (NTRS)
Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.
1994-01-01
A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.
Neural Networks Used to Compare Designed and Measured Time-Average Patterns
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1999-01-01
Electronic time-average holograms are convenient for comparing the measured vibration modes of fan blades with those calculated by finite-element models. At the NASA Lewis Research Center, neural networks recently were trained to perform what had been a simple visual comparison of the predictions of the design models with the measurements. Finite-element models were used to train neural networks to recognize damage and strain information encoded in subtle changes in the time-average patterns of cantilevers. But the design-grade finite element models were unable to train the neural networks to detect damage in complex blade shapes. The design-model-generated patterns simply did not agree well enough with the measured patterns. Instead, hybrid-training records, with measured time-average patterns as the input and model-generated strain information as the output, were used to effect successful training.
Control chart pattern recognition using K-MICA clustering and neural networks.
Ebrahimzadeh, Ataollah; Addeh, Jalil; Rahmani, Zahra
2012-01-01
Automatic recognition of abnormal patterns in control charts has seen increasing demands nowadays in manufacturing processes. This paper presents a novel hybrid intelligent method (HIM) for recognition of the common types of control chart pattern (CCP). The proposed method includes two main modules: a clustering module and a classifier module. In the clustering module, the input data is first clustered by a new technique. This technique is a suitable combination of the modified imperialist competitive algorithm (MICA) and the K-means algorithm. Then the Euclidean distance of each pattern is computed from the determined clusters. The classifier module determines the membership of the patterns using the computed distance. In this module, several neural networks, such as the multilayer perceptron, probabilistic neural networks, and the radial basis function neural networks, are investigated. Using the experimental study, we choose the best classifier in order to recognize the CCPs. Simulation results show that a high recognition accuracy, about 99.65%, is achieved. PMID:22035774
Pattern Recognition Using The Ring-Wedge Detector And Neural-Network Software
NASA Astrophysics Data System (ADS)
George, Nicholas; Wang, Shen-Ge; Venable, Dennis L.
1989-10-01
In pattern recognition and in optical metrology, optical transform systems have been widely applied. Their use is particularly appropriate when the object is detailed and the recognition depends upon features that can be coarsely sampled in the transform space. Now with the advent of neural-network software, it is shown that the major difficulty in applying this optoelectronic hybrid is overcome. Using the ring-wedge photodetector and neural-network software, we illustrate the classification technique using thumbprints. This is a problem of known difficulty to us. Instead of a 4 person-month effort to devise software for its solution, we find that a 4-hour effort is all that is required. Other experiments also discussed are the sorting of photographs of cats and dogs, particulate suspensions, and image quality of digital halftones. All of these are shown to be promising examples for the application of the ring-wedge detector and neural-network software.
Quantum neural networks: Current status and prospects for development
NASA Astrophysics Data System (ADS)
Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.
2014-11-01
The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.
Estimation of bullet striation similarity using neural networks.
Banno, Atsuhiko
2004-05-01
A new method that searches for similar striation patterns using neural networks is described. Neural networks have been developed based on the human brain, which is good at pattern recognition. Therefore, neural networks would be expected to be effective in identifying striated toolmarks on bullets. The neural networks used in this study deal with binary signals derived from striation images. This signal plays a significant role in identification, because this signal is the key to the individually of the striations. The neural network searches a database for similar striations by means of these binary signals. The neural network used here is a multilayer network consisting of 96 neurons in the input layer, 15 neurons in the middle, and one neuron in the output layer. Two signals are inputted into the network and a score is estimated based on the similarity of these signals. For this purpose, the network is assigned to a previous learning. To initially test the validity of the procedure, the network identifies artificial patterns that are randomly produced on a personal computer. The results were acceptable and showed robustness for the deformation of patterns. Moreover, with ten unidentified bullets and ten database bullets, the network consistently was able to select the correct pair. PMID:15171166
Object Recognition by a Hopfield Neural Network
NASA Astrophysics Data System (ADS)
Li, Wei; Nasrabadi, Nasser M.
1990-03-01
A model-based object recognition technique is introduced in this paper to identify and locate an object in any position and orientation. The test scenes could consist of an isolated object or several partially overlapping objects. A cooperative feature matching technique is proposed which is implemented by a Hopfield neural network. The proposed matching technique uses the parallelism of the neural network to globally match all the objects (they may be overlapping or touching) in the input scene against all the object models in the model-database at the same time. For each model, distinct features such as curvature points (corners) are extracted and a graph consisting of a number of nodes connected by arcs is constructed. Each node in the graph represents a feature which has a numerical feature value and is connected to other nodes by an arc representing the relationship or compatibility between them. Object recognition is formulated as matching a global model graph, representing all the object models, with an input scene graph representing a single object or several overlapping objects. A 2-dimensional Hopfield binary neural network is implemented to perform a subgraph isomorphism to obtain the optimal compatible matching features between the two graphs. The synaptic interconnection weights between neurons are designed such that matched features belonging to the same model receive excitatory supports, and matched features belonging to different models receive an inhibitory support or a mutual support depending on whether the input scene is an isolated object or several overlapping objects. The coordinate transformation for mapping each pair of matched nodes from the model onto the input scene is calculated, followed by a simple clustering technique to eliminate any false matches. The orientation and the position of objects in the scene are then calculated by averaging the transformation of correct matched nodes. Some simulation results are shown to illustrate the
Sea level forecasts using neural networks
NASA Astrophysics Data System (ADS)
Röske, Frank
1997-03-01
In this paper, a new method for predicting the sea level employing a neural network approach is introduced. It was designed to improve the prediction of the sea level along the German North Sea Coast under standard conditions. The sea level at any given time depends upon the tides as well as meteorological and oceanographic factors, such as the winds and external surges induced by air pressure. Since tidal predictions are already sufficiently accurate, they have been subtracted from the observed sea levels. The differences will be predicted up to 18 hours in advance. In this paper, the differences are called anomalies. The prediction of the sea level each hour is distinguished from its predictions at the times of high and low tide. For this study, Cuxhaven was selected as a reference site. The predictions made using neural networks were compared for accuracy with the prognoses prepared using six models: two hydrodynamic models, a statistical model, a nearest neighbor model, which is based on analogies, the persistence model, and the verbal forecasts that are broadcast and kept on record by the Sea Level Forecast Service of the Federal Maritime and Hydrography Agency (BSH) in Hamburg. Predictions were calculated for the year 1993 and compared with the actual levels measured. Artificial neural networks are capable of learning. By applying them to the prediction of sea levels, learning from past events has been attempted. It was also attempted to make the experiences of expert forecasters objective. Instead of using the wide-spread back-propagation networks, the self-organizing feature map of Kohonen, or “Kohonen network”, was applied. The fundamental principle of this network is the transformation of the signal similarity into the neighborhood of the neurons while preserving the topology of the signal space. The self-organization procedure of Kohonen networks can be visualized. To make predictions, these networks have been subdivided into a part describing the
Application of artificial neural networks in nonlinear analysis of trusses
NASA Technical Reports Server (NTRS)
Alam, J.; Berke, L.
1991-01-01
A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods.
Massively parallel neural network intelligent browse
NASA Astrophysics Data System (ADS)
Maxwell, Thomas P.; Zion, Philip M.
1992-04-01
A massively parallel neural network architecture is currently being developed as a potential component of a distributed information system in support of NASA's Earth Observing System. This architecture can be trained, via an iterative learning process, to recognize objects in images based on texture features, allowing scientists to search for all patterns which are similar to a target pattern in a database of images. It may facilitate scientific inquiry by allowing scientists to automatically search for physical features of interest in a database through computer pattern recognition, alleviating the need for exhaustive visual searches through possibly thousands of images. The architecture is implemented on a Connection Machine such that each physical processor contains a simulated 'neuron' which views a feature vector derived from a subregion of the input image. Each of these neurons is trained, via the perceptron rule, to identify the same pattern. The network output gives a probability distribution over the input image of finding the target pattern in a given region. In initial tests the architecture was trained to separate regions containing clouds from clear regions in 512 by 512 pixel AVHRR images. We found that in about 10 minutes we can train a network to perform with high accuracy in recognizing clouds which were texturally similar to a target cloud group. These promising results suggest that this type of architecture may play a significant role in coping with the forthcoming flood of data from the Earth-monitoring missions of the major space-faring nations.
Neural network classification of sweet potato embryos
NASA Astrophysics Data System (ADS)
Molto, Enrique; Harrell, Roy C.
1993-05-01
Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.
Antagonistic neural networks underlying differentiated leadership roles
Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.
2014-01-01
The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074
Antagonistic neural networks underlying differentiated leadership roles.
Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I
2014-01-01
The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074
Fault classification by neural networks and fuzzy logic
Chwan-Hwa ``John`` Wu; Chihwen Li; Shih, H.; Alexion, C.C.; Ovick, N.L.; Murphy, J.H.
1995-01-25
A neural fuzzy-based and a backpropagation neural network-based fault classifier for a three-phase motor will be described in this paper. In order to acquire knowledge, the neural fuzzy classifier incorporates a learning technique to automatically generate membership functions for fuzzy rules, and the backpropagation algorithm is used to train the neural network model. Therefore, in this paper, the preprocessing of signals, fuzzy and neural models, training methods, implementations for real-time response and testing results will be discussed in detail. Furthermore, the generalization capabilities of the neural fuzzy- and backpropagation-based classifiers for waveforms with varying magnitudes, frequencies, noises and positions of spikes and chops in a cycle of a sine wave will be investigated, and the computation requirements needed to achieve real-time response for both fuzzy and neural methods will be compared. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}
Hybrid stochastic simplifications for multiscale gene networks
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-01-01
Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554
Neural network analysis of W UMa eclipsing binaries
NASA Astrophysics Data System (ADS)
Zeraatgari, F. Z.; Abedi, A.; Farshad, M.; Ebadian, M.; Riazi, N.
2015-04-01
We try five different artificial neural models, four models based on PNN (Perceptron Neural Network), and one using GRNN (Generalized Regression Neural Network) as tools for the automated light curve analysis of W UMa-type eclipsing binary systems. These algorithms, which are inspired by the Rucinski method, are designed and trained using MATLAB 7.6. A total of 17,820 generated contact binary light curves are first analyzed using a truncated cosine series with 11 coefficients and the most significant coefficients are applied as inputs of the neural models. The required sample light curves are systematically generated, using the WD2007 program (Wilson and Devinney 2007). The trained neural models are then applied to estimate the geometrical parameters of seven W UMa-type systems. The efficiency of different neural network models are then evaluated and compared to find the most efficient one.
Deep Neural Networks with Multistate Activation Functions
Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile
2015-01-01
We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739
Continuous neural network with windowed Hebbian learning.
Fotouhi, M; Heidari, M; Sharifitabar, M
2015-06-01
We introduce an extension of the classical neural field equation where the dynamics of the synaptic kernel satisfies the standard Hebbian type of learning (synaptic plasticity). Here, a continuous network in which changes in the weight kernel occurs in a specified time window is considered. A novelty of this model is that it admits synaptic weight decrease as well as the usual weight increase resulting from correlated activity. The resulting equation leads to a delay-type rate model for which the existence and stability of solutions such as the rest state, bumps, and traveling fronts are investigated. Some relations between the length of the time window and the bump width is derived. In addition, the effect of the delay parameter on the stability of solutions is shown. Also numerical simulations for solutions and their stability are presented. PMID:25677526
Stationary and integrated autoregressive neural network processes.
Trapletti, A; Leisch, F; Hornik, K
2000-10-01
We consider autoregressive neural network (AR-NN) processes driven by additive noise and demonstrate that the characteristic roots of the shortcuts-the standard conditions from linear time-series analysis-determine the stochastic behavior of the overall AR-NN process. If all the characteristic roots are outside the unit circle, then the process is ergodic and stationary. If at least one characteristic root lies inside the unit circle, then the process is transient. AR-NN processes with characteristic roots lying on the unit circle exhibit either ergodic, random walk, or transient behavior. We also analyze the class of integrated AR-NN (ARI-NN) processes and show that a standardized ARI-NN process "converges" to a Wiener process. Finally, least-squares estimation (training) of the stationary models and testing for nonstationarity is discussed. The estimators are shown to be consistent, and expressions on the limiting distributions are given. PMID:11032041
Microturbine control based on fuzzy neural network
NASA Astrophysics Data System (ADS)
Yan, Shijie; Bian, Chunyuan; Wang, Zhiqiang
2006-11-01
As microturbine generator (MTG) is a clean, efficient, low cost and reliable energy supply system. From outside characteristics of MTG, it is multi-variable, time-varying and coupling system, so it is difficult to be identified on-line and conventional control law adopted before cannot achieve desirable result. A novel fuzzy-neural networks (FNN) control algorithm was proposed in combining with the conventional PID control. In the paper, IF-THEN rules for tuning were applied by a first-order Sugeno fuzzy model with seven fuzzy rules and the membership function was given as the continuous GAUSSIAN function. Some sample data were utilized to train FNN. Through adjusting shape of membership function and weight continually, objective of auto-tuning fuzzy-rules can be achieved. The FNN algorithm had been applied to "100kW Microturbine control and power converter system". The results of simulation and experiment are shown that the algorithm can work very well.
Delayed switching applied to memristor neural networks
NASA Astrophysics Data System (ADS)
Wang, Frank Z.; Helian, Na; Wu, Sining; Yang, Xiao; Guo, Yike; Lim, Guan; Rashid, Md Mamunur
2012-04-01
Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the "delayed switching effect." In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.
Associated neural network independent component analysis structure
NASA Astrophysics Data System (ADS)
Kim, Keehoon; Kostrzweski, Andrew
2006-05-01
Detection, classification, and localization of potential security breaches in extremely high-noise environments are important for perimeter protection and threat detection both for homeland security and for military force protection. Physical Optics Corporation has developed a threat detection system to separate acoustic signatures from unknown, mixed sources embedded in extremely high-noise environments where signal-to-noise ratios (SNRs) are very low. Associated neural network structures based on independent component analysis are designed to detect/separate new acoustic sources and to provide reliability information. The structures are tested through computer simulations for each critical component, including a spontaneous detection algorithm for potential threat detection without a predefined knowledge base, a fast target separation algorithm, and nonparametric methodology for quantified confidence measure. The results show that the method discussed can separate hidden acoustic sources of SNR in 5 dB noisy environments with an accuracy of 80%.
The Neural Network In Coordinate Transformation
NASA Astrophysics Data System (ADS)
Urusan, Ahmet Yucel
2011-12-01
In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.
Hopf bifurcation stability in Hopfield neural networks.
Marichal, R L; González, E J; Marichal, G N
2012-12-01
In this paper we consider a simple discrete Hopfield neural network model and analyze local stability using the associated characteristic model. In order to study the dynamic behavior of the quasi-periodic orbit, the Hopf bifurcation must be determined. For the case of two neurons, we find one necessary condition that yields the Hopf bifurcation. In addition, we determine the stability and direction of the Hopf bifurcation by applying normal form theory and the center manifold theorem. An example is given and a numerical simulation is performed to illustrate the results. We analyze the influence of bias weights on the stability of the quasi-periodic orbit and study the phase-locking phenomena for certain experimental results with Arnold Tongues in a particular weight configuration. PMID:23037776
Neural network-based sensor signal accelerator.
Vogt, M. C.
2000-10-16
A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.
Artificial neural network for multifunctional areas.
Riccioli, Francesco; El Asmar, Toufic; El Asmar, Jean-Pierre; Fagarazzi, Claudio; Casini, Leonardo
2016-01-01
The issues related to the appropriate planning of the territory are particularly pronounced in highly inhabited areas (urban areas), where in addition to protecting the environment, it is important to consider an anthropogenic (urban) development placed in the context of sustainable growth. This work aims at mathematically simulating the changes in the land use, by implementing an artificial neural network (ANN) model. More specifically, it will analyze how the increase of urban areas will develop and whether this development would impact on areas with particular socioeconomic and environmental value, defined as multifunctional areas. The simulation is applied to the Chianti Area, located in the province of Florence, in Italy. Chianti is an area with a unique landscape, and its territorial planning requires a careful examination of the territory in which it is inserted. PMID:26718948