Science.gov

Sample records for hybrid optimization algorithm

  1. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins. PMID:25069136

  2. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2014-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  3. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2015-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  4. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  5. Hybrid methods using genetic algorithms for global optimization.

    PubMed

    Renders, J M; Flasse, S P

    1996-01-01

    This paper discusses the trade-off between accuracy, reliability and computing time in global optimization. Particular compromises provided by traditional methods (Quasi-Newton and Nelder-Mead's simplex methods) and genetic algorithms are addressed and illustrated by a particular application in the field of nonlinear system identification. Subsequently, new hybrid methods are designed, combining principles from genetic algorithms and "hill-climbing" methods in order to find a better compromise to the trade-off. Inspired by biology and especially by the manner in which living beings adapt themselves to their environment, these hybrid methods involve two interwoven levels of optimization, namely evolution (genetic algorithms) and individual learning (Quasi-Newton), which cooperate in a global process of optimization. One of these hybrid methods appears to join the group of state-of-the-art global optimization methods: it combines the reliability properties of the genetic algorithms with the accuracy of Quasi-Newton method, while requiring a computation time only slightly higher than the latter. PMID:18263027

  6. A Hybrid Ant Colony Algorithm for Loading Pattern Optimization

    NASA Astrophysics Data System (ADS)

    Hoareau, F.

    2014-06-01

    Electricité de France (EDF) operates 58 nuclear power plant (NPP), of the Pressurized Water Reactor (PWR) type. The loading pattern (LP) optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R&D has developed automatic optimization tools that assist the experts. The latter can resort, for instance, to a loading pattern optimization software based on ant colony algorithm. This paper presents an analysis of the search space of a few realistic loading pattern optimization problems. This analysis leads us to introduce a hybrid algorithm based on ant colony and a local search method. We then show that this new algorithm is able to generate loading patterns of good quality.

  7. Another hybrid conjugate gradient algorithm for unconstrained optimization

    NASA Astrophysics Data System (ADS)

    Andrei, Neculai

    2008-02-01

    Another hybrid conjugate gradient algorithm is subject to analysis. The parameter ? k is computed as a convex combination of beta ^{{HS}}_{k} (Hestenes-Stiefel) and beta ^{{DY}}_{k} (Dai-Yuan) algorithms, i.eE beta ^{C}_{k} = {left( {1 - theta _{k} } right)}beta ^{{HS}}_{k} + theta _{k} beta ^{{DY}}_{k} . The parameter ? k in the convex combination is computed in such a way so that the direction corresponding to the conjugate gradient algorithm to be the Newton direction and the pair (s k , y k ) to satisfy the quasi-Newton equation nabla ^{2} f{left( {x_{{k + 1}} } right)}s_{k} = y_{k} , where s_{k} = x_{{k + 1}} - x_{k} and y_{k} = g_{{k + 1}} - g_{k} . The algorithm uses the standard Wolfe line search conditions. Numerical comparisons with conjugate gradient algorithms show that this hybrid computational scheme outperforms the Hestenes-Stiefel and the Dai-Yuan conjugate gradient algorithms as well as the hybrid conjugate gradient algorithms of Dai and Yuan. A set of 750 unconstrained optimization problems are used, some of them from the CUTE library.

  8. A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis.

    PubMed

    Raja, Chandrasekaran; Gangatharan, Narayanan

    2015-08-01

    Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness. PMID:26093787

  9. An optimized hybrid encode based compression algorithm for hyperspectral image

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Miao, Zhuang; Feng, Weiyi; He, Weiji; Chen, Qian; Gu, Guohua

    2013-12-01

    Compression is a kernel procedure in hyperspectral image processing due to its massive data which will bring great difficulty in date storage and transmission. In this paper, a novel hyperspectral compression algorithm based on hybrid encoding which combines with the methods of the band optimized grouping and the wavelet transform is proposed. Given the characteristic of correlation coefficients between adjacent spectral bands, an optimized band grouping and reference frame selection method is first utilized to group bands adaptively. Then according to the band number of each group, the redundancy in the spatial and spectral domain is removed through the spatial domain entropy coding and the minimum residual based linear prediction method. Thus, embedded code streams are obtained by encoding the residual images using the improved embedded zerotree wavelet based SPIHT encode method. In the experments, hyperspectral images collected by the Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) were used to validate the performance of the proposed algorithm. The results show that the proposed approach achieves a good performance in reconstructed image quality and computation complexity.The average peak signal to noise ratio (PSNR) is increased by 0.21~0.81dB compared with other off-the-shelf algorithms under the same compression ratio.

  10. A homogeneous superconducting magnet design using a hybrid optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ni, Zhipeng; Wang, Qiuliang; Liu, Feng; Yan, Luguang

    2013-12-01

    This paper employs a hybrid optimization algorithm with a combination of linear programming (LP) and nonlinear programming (NLP) to design the highly homogeneous superconducting magnets for magnetic resonance imaging (MRI). The whole work is divided into two stages. The first LP stage provides a global optimal current map with several non-zero current clusters, and the mathematical model for the LP was updated by taking into account the maximum axial and radial magnetic field strength limitations. In the second NLP stage, the non-zero current clusters were discretized into practical solenoids. The superconducting conductor consumption was set as the objective function both in the LP and NLP stages to minimize the construction cost. In addition, the peak-peak homogeneity over the volume of imaging (VOI), the scope of 5 Gauss fringe field, and maximum magnetic field strength within superconducting coils were set as constraints. The detailed design process for a dedicated 3.0 T animal MRI scanner was presented. The homogeneous magnet produces a magnetic field quality of 6.0 ppm peak-peak homogeneity over a 16 cm by 18 cm elliptical VOI, and the 5 Gauss fringe field was limited within a 1.5 m by 2.0 m elliptical region.

  11. A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems.

    PubMed

    Duan, Hai-Bin; Xu, Chun-Fang; Xing, Zhi-Hui

    2010-02-01

    In this paper, a novel hybrid Artificial Bee Colony (ABC) and Quantum Evolutionary Algorithm (QEA) is proposed for solving continuous optimization problems. ABC is adopted to increase the local search capacity as well as the randomness of the populations. In this way, the improved QEA can jump out of the premature convergence and find the optimal value. To show the performance of our proposed hybrid QEA with ABC, a number of experiments are carried out on a set of well-known Benchmark continuous optimization problems and the related results are compared with two other QEAs: the QEA with classical crossover operation, and the QEA with 2-crossover strategy. The experimental comparison results demonstrate that the proposed hybrid ABC and QEA approach is feasible and effective in solving complex continuous optimization problems. PMID:20180252

  12. An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization

    NASA Astrophysics Data System (ADS)

    Kanagaraj, G.; Ponnambalam, S. G.; Jawahar, N.; Mukund Nilakantan, J.

    2014-10-01

    This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.

  13. A hybrid approach using chaotic dynamics and global search algorithms for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Igeta, Hideki; Hasegawa, Mikio

    Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.

  14. Multi Objective Aerodynamic Optimization Using Parallel Nash Evolutionary/deterministic Hybrid Algorithms

    NASA Astrophysics Data System (ADS)

    Tang, Zhili

    2016-06-01

    This paper solved aerodynamic drag reduction of transport wing fuselage configuration in transonic regime by using a parallel Nash evolutionary/deterministic hybrid optimization algorithm. Two sets of parameters are used, namely globally and locally. It is shown that optimizing separately local and global parameters by using Nash algorithms is far more efficient than considering these variables as a whole.

  15. An Etching Yield Parameters Optimization Method Based on Ordinal Optimization and Tabu Search Hybrid Algorithm

    NASA Astrophysics Data System (ADS)

    Ruan, Cong; Sun, Xiao-Min; Song, Yi-Xu

    In this paper, we propose a method to optimize etching yield parameters. By means of defining a fitness function between the actual etching profile and the simulation profile, the etching yield parameters solving problem is transformed into an optimization problem. The problem is nonlinear and high dimensional, and each simulation is computationally expensive. To solve this problem, we need to search a better solution in a multidimensional space. Ordinal optimization and tabu search hybrid algorithm is introduced to solve this complex problem. This method ensures getting good enough solution in an acceptable time. The experimental results illustrate that simulation profile obtained by this method is very similar with the actual etching profile in surface topography. It also proves that our proposed method has feasibility and validity.

  16. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem

    PubMed Central

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171

  17. A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.

    PubMed

    Ali, Ahmed F; Tawhid, Mohamed A

    2016-01-01

    Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time. PMID:27217988

  18. An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization

    PubMed Central

    Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan

    2013-01-01

    A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods. PMID:24348137

  19. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    PubMed

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  20. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    PubMed Central

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  1. Performance optimization of EDFA-Raman hybrid optical amplifier using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Simranjit; Kaler, R. S.

    2015-05-01

    For the first time, a novel net gain analytical model of EDFA-Raman hybrid optical amplifier (HOA) is designed and optimized the various parameters using genetic algorithm. Our method has shown to be robust in the simultaneous analysis of multiple parameters, such as Raman length, EDFA length and its pump powers, to obtained highest possible gain. The optimized HOA is further investigated and characterized on system level in the scenario of 100×10 Gbps dense wavelength division multiplexed (DWDM) system with 25 GHz interval. With an optimized HOA, a flat gain of >18 dB is obtained from frequency region 187 to 189.5 THz with a gain variation of less than 1.35 dB without using any gain flattened technique. The obtained noise figure is also the lowest value (<2 dB/channel) ever reported for proposed hybrid optical amplifier at reduced channel spacing with acceptable bit error rate.

  2. Optimization of hybrid laminated composites using the multi-objective gravitational search algorithm (MOGSA)

    NASA Astrophysics Data System (ADS)

    Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah

    2014-09-01

    The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.

  3. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.

    PubMed

    Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    2015-06-01

    The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively. PMID:25982071

  4. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  5. A hybrid, self-adjusting search algorithm for optimal space trajectory design

    NASA Astrophysics Data System (ADS)

    Bolle, Andrea; Circi, Christian

    2012-08-01

    The aim of the present paper is to propose a hybrid, self adjusting, search algorithm for space trajectory optimization. By taking advantage of both direct and indirect methods, the present algorithm allows the finding of the optimal solution through the introduction of some new control parameters, whose number is smaller than that of the Lagrange multipliers, and whose range is bounded. Eventually, the optimal solution is determined by means of an iterative self-adjustment of the search domain occurring at "runtime", without any correction by an external user. This new set of parameters can be found through a reduction process of the degrees of freedom, obtained through the transversality conditions before entering the search loop. Furthermore, such a process shows that Lagrange multipliers are subject to a deep symmetry mirroring the features of the state vector. The algorithm reliability and efficiency is assessed through some test cases, and by reproducing some optimal transfer trajectories: a full three-dimensional, minimum time Mars mission, an optimal transfer to Jupiter, and finally an injection into a circular Moon orbit.

  6. A hybrid multi-objective evolutionary algorithm for optimal groundwater management under variable density conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Wu, J.

    2011-12-01

    In this study, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to neighborhood step size. The NPTSGA is developed on the thought of integrating genetic algorithm (GA) with a TS based MOEA, niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arose from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA can balance the tradeoff between the intensification of nondomination and the diversification of near Pareto-optimal solutions and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.

  7. Optimization of the Thermosetting Pultrusion Process by Using Hybrid and Mixed Integer Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2013-08-01

    In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based on a sequential combination of a genetic algorithm (GA) and a local search technique to fit the centerline temperature of the composite with the one calculated in the validation case. In the second optimization study, the productivity of the process is improved by using a mixed integer genetic algorithm (MIGA) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed.

  8. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features. PMID:26289628

  9. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    NASA Astrophysics Data System (ADS)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2016-07-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  10. A hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay M.; Murthy, ANN; Chandrashekara, K.

    2012-05-01

    The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to the relevant machines are made. Such problems are not only combinatorial optimization problems, but also happen to be non-deterministic polynomial-time-hard, making it difficult to obtain satisfactory solutions using traditional optimization techniques. In this paper, an attempt has been made to address the machine loading problem with objectives of minimization of system unbalance and maximization of throughput simultaneously while satisfying the system constraints related to available machining time and tool slot designing and using a meta-hybrid heuristic technique based on genetic algorithm and particle swarm optimization. The results reported in this paper demonstrate the model efficiency and examine the performance of the system with respect to measures such as throughput and system utilization.

  11. Reconstruction of the wavefront aberration from real interferometric data using a hybrid evolutionary optimization algorithm with Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Sánchez-Escobar, Juan Jaime; Barbosa Santillán, Liliana Ibeth

    2015-09-01

    This paper describes the use of a hybrid evolutionary optimization algorithm (HEOA) for computing the wavefront aberration from real interferometric data. By finding the near-optimal solution to an optimization problem, this algorithm calculates the Zernike polynomial expansion coefficients from a Fizeau interferogram, showing the validity for the reconstruction of the wavefront aberration. The proposed HEOA incorporates the advantages of both a multimember evolution strategy and locally weighted linear regression in order to minimize an objective function while avoiding premature convergence to a local minimum. The numerical results demonstrate that our HEOA is robust for analyzing real interferograms degraded by noise.

  12. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment

    PubMed Central

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127

  13. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    PubMed

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127

  14. Effective hybrid teaching-learning-based optimization algorithm for balancing two-sided assembly lines with multiple constraints

    NASA Astrophysics Data System (ADS)

    Tang, Qiuhua; Li, Zixiang; Zhang, Liping; Floudas, C. A.; Cao, Xiaojun

    2015-09-01

    Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost function. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.

  15. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm

    NASA Astrophysics Data System (ADS)

    Lian, Jijian; He, Longjun; Ma, Bin; Li, Huokun; Peng, Wenxiang

    2013-09-01

    Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures.

  16. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design

    USGS Publications Warehouse

    Chiu, Y.-C.; Nishikawa, T.; Martin, P.

    2012-01-01

    Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctive-use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water-delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources. ?? 2011, National Ground Water Association.

  17. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design

    USGS Publications Warehouse

    Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter

    2012-01-01

    Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.

  18. A multilevel ant colony optimization algorithm for classical and isothermic DNA sequencing by hybridization with multiplicity information available.

    PubMed

    Kwarciak, Kamil; Radom, Marcin; Formanowicz, Piotr

    2016-04-01

    The classical sequencing by hybridization takes into account a binary information about sequence composition. A given element from an oligonucleotide library is or is not a part of the target sequence. However, the DNA chip technology has been developed and it enables to receive a partial information about multiplicity of each oligonucleotide the analyzed sequence consist of. Currently, it is not possible to assess the exact data of such type but even partial information should be very useful. Two realistic multiplicity information models are taken into consideration in this paper. The first one, called "one and many" assumes that it is possible to obtain information if a given oligonucleotide occurs in a reconstructed sequence once or more than once. According to the second model, called "one, two and many", one is able to receive from biochemical experiment information if a given oligonucleotide is present in an analyzed sequence once, twice or at least three times. An ant colony optimization algorithm has been implemented to verify the above models and to compare with existing algorithms for sequencing by hybridization which utilize the additional information. The proposed algorithm solves the problem with any kind of hybridization errors. Computational experiment results confirm that using even the partial information about multiplicity leads to increased quality of reconstructed sequences. Moreover, they also show that the more precise model enables to obtain better solutions and the ant colony optimization algorithm outperforms the existing ones. Test data sets and the proposed ant colony optimization algorithm are available on: http://bioserver.cs.put.poznan.pl/download/ACO4mSBH.zip. PMID:26878124

  19. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining

    PubMed Central

    Salehi, Mojtaba

    2010-01-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020

  20. Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification.

    PubMed

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud

    2015-01-01

    The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets. PMID:26120567

  1. Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification

    PubMed Central

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud

    2015-01-01

    The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets. PMID:26120567

  2. Optimal clustering of MGs based on droop controller for improving reliability using a hybrid of harmony search and genetic algorithms.

    PubMed

    Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M

    2016-03-01

    This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. PMID:26767800

  3. Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm

    PubMed Central

    Wang, Ke; Zhao, Jie; Cheng, Qiang; Dong, Di Sha; Cui, Tie Jun

    2014-01-01

    A broadband and broad-angle low-scattering metasurface is designed, fabricated, and characterized. Based on the optimization algorithm and far-field scattering pattern analysis, we propose a rapid and efficient method to design metasurfaces, which avoids the large amount of time-consuming electromagnetic simulations. Full-wave simulation and measurement results show that the proposed metasurface is insensitive to the polarization of incident waves, and presents good scattering-reduction properties for oblique incident waves. PMID:25089367

  4. Identification of gene knockout strategies using a hybrid of an ant colony optimization algorithm and flux balance analysis to optimize microbial strains.

    PubMed

    Lu, Shi Jing; Salleh, Abdul Hakim Mohamed; Mohamad, Mohd Saberi; Deris, Safaai; Omatu, Sigeru; Yoshioka, Michifumi

    2014-09-28

    Reconstructions of genome-scale metabolic networks from different organisms have become popular in recent years. Metabolic engineering can simulate the reconstruction process to obtain desirable phenotypes. In previous studies, optimization algorithms have been implemented to identify the near-optimal sets of knockout genes for improving metabolite production. However, previous works contained premature convergence and the stop criteria were not clear for each case. Therefore, this study proposes an algorithm that is a hybrid of the ant colony optimization algorithm and flux balance analysis (ACOFBA) to predict near optimal sets of gene knockouts in an effort to maximize growth rates and the production of certain metabolites. Here, we present a case study that uses Baker's yeast, also known as Saccharomyces cerevisiae, as the model organism and target the rate of vanillin production for optimization. The results of this study are the growth rate of the model organism after gene deletion and a list of knockout genes. The ACOFBA algorithm was found to improve the yield of vanillin in terms of growth rate and production compared with the previous algorithms. PMID:25462325

  5. An example image super-resolution algorithm based on modified k-means with hybrid particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Feng, Kunpeng; Zhou, Tong; Cui, Jiwen; Tan, Jiubin

    2014-11-01

    This paper presents a novel example-based super-resolution (SR) algorithm with improved k-means cluster. In this algorithm, genetic k-means (GKM) with hybrid particle swarm optimization (HPSO) is employed to improve the reconstruction of high-resolution (HR) images, and a pre-processing of classification in frequency is used to accelerate the procedure. Self-redundancy across different scales of a natural image is also utilized to build attached training set to expand example-based information. Meanwhile, a reconstruction algorithm based on hybrid supervise locally linear embedding (HSLLE) is proposed which uses training sets, high-resolution images and self-redundancy across different scales of a natural image. Experimental results show that patches are classified rapidly in training set processing session and the runtime of reconstruction is half of traditional algorithm at least in super-resolution session. And clustering and attached training set lead to a better recovery of low-resolution (LR) image.

  6. Optimal seismic design of reinforced concrete structures under time-history earthquake loads using an intelligent hybrid algorithm

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Sadjad; Khatibinia, Mohsen

    2015-03-01

    A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads.

  7. Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers.

    PubMed

    Neto, B; Teixeira, A L J; Wada, N; André, P S

    2007-12-24

    In this paper, we propose an efficient and accurate method that combines the Genetic Algorithm (GA) with the Nelder-Mead method in order to obtain the gain optimization of distributed Raman amplifiers. By using these two methods together, the advantages of both are combined: the convergence of the GA and the high accuracy of the Nelder-Mead. To enhance the convergence of the GA, several features were examined and correlated with fitting errors. It is also shown that when the right moment to switch between methods is chosen, the computation time can be reduced by a factor of two. PMID:19551045

  8. Protein Tertiary Structure Prediction Based on Main Chain Angle Using a Hybrid Bees Colony Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Mahmood, Zakaria N.; Mahmuddin, Massudi; Mahmood, Mohammed Nooraldeen

    Encoding proteins of amino acid sequence to predict classified into their respective families and subfamilies is important research area. However for a given protein, knowing the exact action whether hormonal, enzymatic, transmembranal or nuclear receptors does not depend solely on amino acid sequence but on the way the amino acid thread folds as well. This study provides a prototype system that able to predict a protein tertiary structure. Several methods are used to develop and evaluate the system to produce better accuracy in protein 3D structure prediction. The Bees Optimization algorithm which inspired from the honey bees food foraging method, is used in the searching phase. In this study, the experiment is conducted on short sequence proteins that have been used by the previous researches using well-known tools. The proposed approach shows a promising result.

  9. Structure Design of the 3-D Braided Composite Based on a Hybrid Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ke

    Three-dimensional braided composite has the better designable characteristic. Whereas wide application of hollow-rectangular-section three-dimensional braided composite in engineering, optimization design of the three-dimensional braided composite made by 4-step method were introduced. Firstly, the stiffness and damping characteristic analysis of the composite is presented. Then, the mathematical models for structure design of the three-dimensional braided composite were established. The objective functions are based on the specific damping capacity and stiffness of the composite. The design variables are the braiding parameters of the composites and sectional geometrical size of the composite. The optimization problem is solved by using ant colony optimization (ACO), contenting the determinate restriction. The results of numeral examples show that the better damping and stiffness characteristic could be obtained. The method proposed here is useful for the structure design of the kind of member and its engineering application.

  10. A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1991-01-01

    The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.

  11. HOPSPACK: Hybrid Optimization Parallel Search Package.

    SciTech Connect

    Gray, Genetha A.; Kolda, Tamara G.; Griffin, Joshua; Taddy, Matt; Martinez-Canales, Monica

    2008-12-01

    In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel SearchPackage), a new software platform which facilitates combining multiple optimization routines into asingle, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The frameworkis designed such that existing optimization source code can be easily incorporated with minimalcode modification. By maintaining the integrity of each individual solver, the strengths and codesophistication of the original optimization package are retained and exploited.4

  12. A color image watermarking scheme based on hybrid classification method: Particle swarm optimization and k-nearest neighbor algorithm

    NASA Astrophysics Data System (ADS)

    Fındık, Oğuz; Babaoğlu, İsmail; Ülker, Erkan

    2010-12-01

    In this paper, a novel robust watermarking technique using particle swarm optimization and k-nearest neighbor algorithm is introduced to protect the intellectual property rights of color images in the spatial domain. In the embedding process, the color image is separated into non-overlapping blocks and each bit of the binary watermark is embedded into the individual blocks. Then, in order to extract the embedded watermark, features are obtained from watermark embedded blocks using the symmetric cross-shape kernel. These features are used to generate two centroids belonging to each binary (1 and 0) value of the watermark implementing particle swarm optimization. Subsequently, the embedded watermark is extracted by evaluating these centroids utilizing k-nearest neighbor algorithm. According to the test results, embedded watermark is extracted successfully even if the watermarked image is exposed to various image processing attacks.

  13. An Algorithmic Framework for Multiobjective Optimization

    PubMed Central

    Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  14. An algorithmic framework for multiobjective optimization.

    PubMed

    Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  15. Genetic algorithm and particle swarm optimization combined with Powell method

    NASA Astrophysics Data System (ADS)

    Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui

    2013-10-01

    In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.

  16. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  17. POWER (power optimization for wireless energy requirements): A MATLAB based algorithm for design of hybrid energy systems

    NASA Astrophysics Data System (ADS)

    Cook, K. A.; Albano, F.; Nevius, P. E.; Sastry, A. M.

    We have expanded and implemented an algorithm for selecting power supplies into a turnkey MATLAB code, "POWER" (power optimization for wireless energy requirements). Our algorithm uses three approaches to system design, specifying either: (1) a single, aggregate power profile; (2) a power system designed to satisfy several power ranges (micro-, milli- and Watt); or (3) a power system designed to be housed within specified spaces within the system. POWER was verified by conducting two case studies on hearing prosthetics: the TICA (LZ 3001) (Baumann group at the Tübingen University) and Amadeus cochlear implant (CI) (WIMS-ERC at the University of Michigan) based on a volume constraint of 2 cm 3. The most suitable solution identified by POWER for the TICA device came from Approach 1, wherein one secondary cell provided 26,000 cycles of 16 h operation. POWER identified Approach 2 as the solution for the WIMS-ERC Amadeus CI, which consisted of 1 cell for the microWatt power range and 1 cell for the milliWatt range (4.43 cm 3, ∼55% higher than the target volume), and provided 3280 cycles of 16 h operation (including re-charge of the batteries). Future work will be focused on continuously improving our present tool.

  18. A Hybrid Differential Invasive Weed Algorithm for Congestion Management

    NASA Astrophysics Data System (ADS)

    Basak, Aniruddha; Pal, Siddharth; Pandi, V. Ravikumar; Panigrahi, B. K.; Das, Swagatam

    This work is dedicated to solve the problem of congestion management in restructured power systems. Nowadays we have open access market which pushes the power system operation to their limits for maximum economic benefits but at the same time making the system more susceptible to congestion. In this regard congestion management is absolutely vital. In this paper we try to remove congestion by generation rescheduling where the cost involved in the rescheduling process is minimized. The proposed algorithm is a hybrid of Invasive Weed Optimization (IWO) and Differential Evolution (DE). The resultant hybrid algorithm was applied on standard IEEE 30 bus system and observed to beat existing algorithms like Simple Bacterial foraging (SBF), Genetic Algorithm (GA), Invasive Weed Optimization (IWO), Differential Evolution (DE) and hybrid algorithms like Hybrid Bacterial Foraging and Differential Evolution (HBFDE) and Adaptive Bacterial Foraging with Nelder Mead (ABFNM).

  19. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  20. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  1. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  2. A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains.

    PubMed

    Choon, Yee Wen; Mohamad, Mohd Saberi; Deris, Safaai; Illias, Rosli Md; Chong, Chuii Khim; Chai, Lian En

    2014-03-01

    Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene deletion strategy. Consequently, the computation time increases exponentially with the increase in the size of the problem. Hence, we propose an extension of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by integrating OptKnock into BAFBA to validate the result. This paper presents a number of computational experiments to test on the performance and capability of BAFBA. Escherichia coli, Bacillus subtilis and Clostridium thermocellum are the model organisms in this paper. Also included is the identification of potential reactions to improve the production of succinic acid, lactic acid and ethanol, plus the discussion on the changes in the flux distribution of the predicted mutants. BAFBA shows potential in suggesting the non-intuitive gene knockout strategies and a low variability among the several runs. The results show that BAFBA is suitable, reliable and applicable in predicting optimal gene knockout strategy. PMID:23892659

  3. A hybrid model of support vector regression with genetic algorithm for forecasting adsorption of malachite green onto multi-walled carbon nanotubes: central composite design optimization.

    PubMed

    Ghaedi, M; Dashtian, K; Ghaedi, A M; Dehghanian, N

    2016-05-11

    The aim of this work is the study of the predictive ability of a hybrid model of support vector regression with genetic algorithm optimization (GA-SVR) for the adsorption of malachite green (MG) onto multi-walled carbon nanotubes (MWCNTs). Various factors were investigated by central composite design and optimum conditions was set as: pH 8, 0.018 g MWCNTs, 8 mg L(-1) dye mixed with 50 mL solution thoroughly for 10 min. The Langmuir, Freundlich, Temkin and D-R isothermal models are applied to fitting the experimental data, and the data was well explained by the Langmuir model with a maximum adsorption capacity of 62.11-80.64 mg g(-1) in a short time at 25 °C. Kinetic studies at various adsorbent dosages and the initial MG concentration show that maximum MG removal was achieved within 10 min of the start of every experiment under most conditions. The adsorption obeys the pseudo-second-order rate equation in addition to the intraparticle diffusion model. The optimal parameters (C of 0.2509, σ(2) of 0.1288 and ε of 0.2018) for the SVR model were obtained based on the GA. For the testing data set, MSE values of 0.0034 and the coefficient of determination (R(2)) values of 0.9195 were achieved. PMID:27119755

  4. Hybrid Ant Algorithm and Applications for Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Xiao, Zhang; Jiang-qing, Wang

    Ant colony optimization (ACO) is a metaheuristic method that inspired by the behavior of real ant colonies. ACO has been successfully applied to several combinatorial optimization problems, but it has some short-comings like its slow computing speed and local-convergence. For solving Vehicle Routing Problem, we proposed Hybrid Ant Algorithm (HAA) in order to improve both the performance of the algorithm and the quality of solutions. The proposed algorithm took the advantages of Nearest Neighbor (NN) heuristic and ACO for solving VRP, it also expanded the scope of solution space and improves the global ability of the algorithm through importing mutation operation, combining 2-opt heuristics and adjusting the configuration of parameters dynamically. Computational results indicate that the hybrid ant algorithm can get optimal resolution of VRP effectively.

  5. Algorithms for bilevel optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.

  6. Hybrid undulator numerical optimization

    SciTech Connect

    Hairetdinov, A.H.; Zukov, A.A.

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  7. HYBRID FAST HANKEL TRANSFORM ALGORITHM FOR ELECTROMAGNETIC MODELING

    EPA Science Inventory

    A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram ...

  8. Constrained Multiobjective Biogeography Optimization Algorithm

    PubMed Central

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  9. Constrained multiobjective biogeography optimization algorithm.

    PubMed

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  10. The theory of hybrid stochastic algorithms

    SciTech Connect

    Kennedy, A.D. . Supercomputer Computations Research Inst.)

    1989-11-21

    These lectures introduce the family of Hybrid Stochastic Algorithms for performing Monte Carlo calculations in Quantum Field Theory. After explaining the basic concepts of Monte Carlo integration we discuss the properties of Markov processes and one particularly useful example of them: the Metropolis algorithm. Building upon this framework we consider the Hybrid and Langevin algorithms from the viewpoint that they are approximate versions of the Hybrid Monte Carlo method; and thus we are led to consider Molecular Dynamics using the Leapfrog algorithm. The lectures conclude by reviewing recent progress in these areas, explaining higher-order integration schemes, the asymptotic large-volume behaviour of the various algorithms, and some simple exact results obtained by applying them to free field theory. It is attempted throughout to give simple yet correct proofs of the various results encountered. 38 refs.

  11. Multilevel algorithms for nonlinear optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.

  12. A Winner Determination Algorithm for Combinatorial Auctions Based on Hybrid Artificial Fish Swarm Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Genrang; Lin, ZhengChun

    The problem of winner determination in combinatorial auctions is a hotspot electronic business, and a NP hard problem. A Hybrid Artificial Fish Swarm Algorithm(HAFSA), which is combined with First Suite Heuristic Algorithm (FSHA) and Artificial Fish Swarm Algorithm (AFSA), is proposed to solve the problem after probing it base on the theories of AFSA. Experiment results show that the HAFSA is a rapidly and efficient algorithm for The problem of winner determining. Compared with Ant colony Optimization Algorithm, it has a good performance with broad and prosperous application.

  13. Hybrid algorithm for NARX network parameters' determination using differential evolution and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Salami, M. J. E.; Tijani, I. B.; Abdullateef, A. I.; Aibinu, M. A.

    2013-12-01

    A hybrid optimization algorithm using Differential Evolution (DE) and Genetic Algorithm (GA) is proposed in this study to address the problem of network parameters determination associated with the Nonlinear Autoregressive with eXogenous inputs Network (NARX-network). The proposed algorithm involves a two level optimization scheme to search for both optimal network architecture and weights. The DE at the upper level is formulated as combinatorial optimization to search for the network architecture while the associated network weights that minimize the prediction error is provided by the GA at the lower level. The performance of the algorithm is evaluated on identification of a laboratory rotary motion system. The system identification results show the effectiveness of the proposed algorithm for nonparametric model development.

  14. Hybrid optimization methods for Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Datta, D.; Sen, M. K.

    2014-12-01

    FWI is slowly becoming the mainstream method to estimate velocity models of the subsurface from seismic data. Typically it makes use of a gradient descent approach in which a model update is computed by back propagating the residual seismograms and cross correlating with the forward propagating wavefields at each grid point in the subsurface model. FWI is a local optimization technique, which requires the starting model to be very close to the true model. Because the objective function is multimodal with many local minima, the requirement of good starting model becomes essential. A starting model is generated using travel time tomography. We propose two hybrid FWI algorithms one of which generates a very good starting model for a conventional FWI and the other, which works with a population of models uses gradient information from multiple starting locations in guiding the search. The first approach uses a sparse parameterization of model space using non-oscillatory splines, whose coeffiencts are estimated using an optimization algorithm like very fast simulated annealing (VFSA) by minimizing the misfit between the observed and synthetic data. The estimated velocity model is then used as a starting model for gradient-based FWI. This is done in the shot domain by converting the end-on marine geometry to a split spread geometry using the principle of reciprocity. The second approach is to uses an alternate global optimization algorithm called particle swarm optimization (PSO) where PSO update rules are applied. However, we employ a new gradient guided PSO that exploits the gradient information as well. This approach avoids the local minima and converges faster than a conventional PSO. We demonstrate our methods with application to 2D marine data sets from offshore India. Each line comprises over 1000 shots; our hybrid methods produce geologically meaningful velocity models fairly rapidly on a GPU cluster. We show that starting with the hybrid model gives a much

  15. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  16. Economic Dispatch Using Genetic Algorithm Based Hybrid Approach

    SciTech Connect

    Tahir Nadeem Malik; Aftab Ahmad; Shahab Khushnood

    2006-07-01

    Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)

  17. A novel stochastic optimization algorithm.

    PubMed

    Li, B; Jiang, W

    2000-01-01

    This paper presents a new stochastic approach SAGACIA based on proper integration of simulated annealing algorithm (SAA), genetic algorithm (GA), and chemotaxis algorithm (CA) for solving complex optimization problems. SAGACIA combines the advantages of SAA, GA, and CA together. It has the following features: (1) it is not the simple mix of SAA, GA, and CA; (2) it works from a population; (3) it can be easily used to solve optimization problems either with continuous variables or with discrete variables, and it does not need coding and decoding,; and (4) it can easily escape from local minima and converge quickly. Good solutions can be obtained in a very short time. The search process of SAGACIA can be explained with Markov chains. In this paper, it is proved that SAGACIA has the property of global asymptotical convergence. SAGACIA has been applied to solve such problems as scheduling, the training of artificial neural networks, and the optimizing of complex functions. In all the test cases, the performance of SAGACIA is better than that of SAA, GA, and CA. PMID:18244742

  18. Wind farm optimization using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Ituarte-Villarreal, Carlos M.

    In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a

  19. Hybrid Optimization Parallel Search PACKage

    Energy Science and Technology Software Center (ESTSC)

    2009-11-10

    HOPSPACK is open source software for solving optimization problems without derivatives. Application problems may have a fully nonlinear objective function, bound constraints, and linear and nonlinear constraints. Problem variables may be continuous, integer-valued, or a mixture of both. The software provides a framework that supports any derivative-free type of solver algorithm. Through the framework, solvers request parallel function evaluation, which may use MPI (multiple machines) or multithreading (multiple processors/cores on one machine). The framework providesmore » a Cache and Pending Cache of saved evaluations that reduces execution time and facilitates restarts. Solvers can dynamically create other algorithms to solve subproblems, a useful technique for handling multiple start points and integer-valued variables. HOPSPACK ships with the Generating Set Search (GSS) algorithm, developed at Sandia as part of the APPSPACK open source software project.« less

  20. A Hybrid Evolutionary Algorithm for Wheat Blending Problem

    PubMed Central

    Bonyadi, Mohammad Reza; Michalewicz, Zbigniew; Barone, Luigi

    2014-01-01

    This paper presents a hybrid evolutionary algorithm to deal with the wheat blending problem. The unique constraints of this problem make many existing algorithms fail: either they do not generate acceptable results or they are not able to complete optimization within the required time. The proposed algorithm starts with a filtering process that follows predefined rules to reduce the search space. Then the linear-relaxed version of the problem is solved using a standard linear programming algorithm. The result is used in conjunction with a solution generated by a heuristic method to generate an initial solution. After that, a hybrid of an evolutionary algorithm, a heuristic method, and a linear programming solver is used to improve the quality of the solution. A local search based posttuning method is also incorporated into the algorithm. The proposed algorithm has been tested on artificial test cases and also real data from past years. Results show that the algorithm is able to find quality results in all cases and outperforms the existing method in terms of both quality and speed. PMID:24707222

  1. A Novel Hybrid Self-Adaptive Bat Algorithm

    PubMed Central

    Fister, Iztok; Brest, Janez

    2014-01-01

    Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction. PMID:25187904

  2. An efficient algorithm for function optimization: modified stem cells algorithm

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  3. An Adaptive Hybrid Algorithm for Global Network Alignment.

    PubMed

    Xie, Jiang; Xiang, Chaojuan; Ma, Jin; Tan, Jun; Wen, Tieqiao; Lei, Jinzhi; Nie, Qing

    2016-01-01

    It is challenging to obtain reliable and optimal mapping between networks for alignment algorithms when both nodal and topological structures are taken into consideration due to the underlying NP-hard problem. Here, we introduce an adaptive hybrid algorithm that combines the classical Hungarian algorithm and the Greedy algorithm (HGA) for the global alignment of biomolecular networks. With this hybrid algorithm, every pair of nodes with one in each network is first aligned based on node information (e.g., their sequence attributes) and then followed by an adaptive and convergent iteration procedure for aligning the topological connections in the networks. For four well-studied protein interaction networks, i.e., C.elegans, yeast, D.melanogaster, and human, applications of HGA lead to improved alignments in acceptable running time. The mapping between yeast and human PINs obtained by the new algorithm has the largest value of common gene ontology (GO) terms compared to those obtained by other existing algorithms, while it still has lower Mean normalized entropy (MNE) and good performances on several other measures. Overall, the adaptive HGA is effective and capable of providing good mappings between aligned networks in which the biological properties of both the nodes and the connections are important. PMID:27295633

  4. Hybrid intelligent algorithms for industrial production planning

    NASA Astrophysics Data System (ADS)

    Vasant, P.

    2012-11-01

    In this paper, the main significant contributions of a new non-linear membership function using fuzzy approach to capture and describe vagueness in the technological coefficients of constraints in the industrial production planning problems has been investigated thoroughly. This non-linear membership function is flexible and convenience to the decision makers in their decision making process. Secondly, a nonlinear objective function in the form of cubic function for fuzzy optimization problems is successfully solved by 15 hybrid and non-hybrid optimization techniques from the area of soft computing and classical approaches. An intelligent performance analysis table is tabulated to the convenience of decision makers and implementers to select the niche optimization techniques to apply in real word problem solving approach particularly related to industrial engineering problems.

  5. Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Jirapong, Peeraool; Ongsakul, Weerakorn

    2008-10-01

    This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.

  6. Parallel algorithms for unconstrained optimizations by multisplitting

    SciTech Connect

    He, Qing

    1994-12-31

    In this paper a new parallel iterative algorithm for unconstrained optimization using the idea of multisplitting is proposed. This algorithm uses the existing sequential algorithms without any parallelization. Some convergence and numerical results for this algorithm are presented. The experiments are performed on an Intel iPSC/860 Hyper Cube with 64 nodes. It is interesting that the sequential implementation on one node shows that if the problem is split properly, the algorithm converges much faster than one without splitting.

  7. Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems.

    PubMed

    Dresselhaus, Thomas; Yang, Jack; Kumbhar, Sadhana; Waller, Mark P

    2013-04-01

    Accurate modeling of molecular systems requires a good knowledge of the structure; therefore, conformation searching/optimization is a routine necessity in computational chemistry. Here we present a hybrid metaheuristic optimization (HMO) algorithm, which combines ant colony optimization (ACO) and particle swarm optimization (PSO) for the optimization of molecular systems. The HMO implementation meta-optimizes the parameters of the ACO algorithm on-the-fly by the coupled PSO algorithm. The ACO parameters were optimized on a set of small difluorinated polyenes where the parameters exhibited small variance as the size of the molecule increased. The HMO algorithm was validated by searching for the closed form of around 100 molecular balances. Compared to the gradient-based optimized molecular balance structures, the HMO algorithm was able to find low-energy conformations with a 87% success rate. Finally, the computational effort for generating low-energy conformation(s) for the phenylalanyl-glycyl-glycine tripeptide was approximately 60 CPU hours with the ACO algorithm, in comparison to 4 CPU years required for an exhaustive brute-force calculation. PMID:26583559

  8. A Hybrid Parallel Preconditioning Algorithm For CFD

    NASA Technical Reports Server (NTRS)

    Barth,Timothy J.; Tang, Wei-Pai; Kwak, Dochan (Technical Monitor)

    1995-01-01

    A new hybrid preconditioning algorithm will be presented which combines the favorable attributes of incomplete lower-upper (ILU) factorization with the favorable attributes of the approximate inverse method recently advocated by numerous researchers. The quality of the preconditioner is adjustable and can be increased at the cost of additional computation while at the same time the storage required is roughly constant and approximately equal to the storage required for the original matrix. In addition, the preconditioning algorithm suggests an efficient and natural parallel implementation with reduced communication. Sample calculations will be presented for the numerical solution of multi-dimensional advection-diffusion equations. The matrix solver has also been embedded into a Newton algorithm for solving the nonlinear Euler and Navier-Stokes equations governing compressible flow. The full paper will show numerous examples in CFD to demonstrate the efficiency and robustness of the method.

  9. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  10. Hybrid evolutionary algorithms for network-centric command and control

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Nichols, Tom

    2006-05-01

    Network-centric force optimization is the problem of threat engagement and dynamic Weapon-Target Allocation (WTA) across the force. The goal is to allocate and schedule defensive weapon resources over a given period of time so as to achieve certain battle management objectives subject to resource and temporal constraints. The problem addresses in this paper is one of dynamic WTA and involves optimization across both resources (weapons) and time. We henceforth refer to this problem as the Weapon Allocation and Scheduling problem (WAS). This paper addresses and solves the WAS problem for two separate battle management objectives: (1) Threat Kill Maximization (TKM), and (2) Asset Survival Maximization (ASM). Henceforth, the WAS problems for the above objectives are referred to as the WAS-TKM and WAS-ASM, respectively. Both WAS problems are NP-complete problem and belong to a class of multiple-resource-constrained optimal scheduling problems. While the above objectives appear to be intuitively similar from a battle management perspective, the two optimal scheduling problems are quite different in their complexity. We present a hybrid genetic algorithm (GA) that is a combination of a traditional genetic algorithm and a simulated annealing-type algorithm for solving these problems. The hybrid GA approach proposed here uses a simulated annealing-type heuristics to compute the fitness of a GA-selected population. This step also optimizes the temporal dimension (scheduling) under resource and temporal constraints and is significantly different for the WAS-TKM and WAS-ASM problems. The proposed method provides schedules that are near optimal in short cycle times and have minimal perturbation from one cycle to the next.

  11. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check.

  12. Intelligent perturbation algorithms to space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.

  13. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.

    PubMed

    Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng

    2013-09-01

    The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences. PMID:23824509

  14. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  15. An optimal structural design algorithm using optimality criteria

    NASA Technical Reports Server (NTRS)

    Taylor, J. E.; Rossow, M. P.

    1976-01-01

    An algorithm for optimal design is given which incorporates several of the desirable features of both mathematical programming and optimality criteria, while avoiding some of the undesirable features. The algorithm proceeds by approaching the optimal solution through the solutions of an associated set of constrained optimal design problems. The solutions of the constrained problems are recognized at each stage through the application of optimality criteria based on energy concepts. Two examples are described in which the optimal member size and layout of a truss is predicted, given the joint locations and loads.

  16. The theory of variational hybrid quantum-classical algorithms

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán

    2016-02-01

    Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through a relaxation of exponential operator splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.

  17. Improved Clonal Selection Algorithm Combined with Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Wang, Wei; Dai, Hongwei; Li, Fangjia; Tang, Zheng

    Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques.

  18. Global and Local Optimization Algorithms for Optimal Signal Set Design

    PubMed Central

    Kearsley, Anthony J.

    2001-01-01

    The problem of choosing an optimal signal set for non-Gaussian detection was reduced to a smooth inequality constrained mini-max nonlinear programming problem by Gockenbach and Kearsley. Here we consider the application of several optimization algorithms, both global and local, to this problem. The most promising results are obtained when special-purpose sequential quadratic programming (SQP) algorithms are embedded into stochastic global algorithms.

  19. Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding

    PubMed Central

    Wang, Siao-En; Guo, Jian-Horn

    2014-01-01

    A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the “dummy node” is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389

  20. Path planning using a hybrid evolutionary algorithm based on tree structure encoding.

    PubMed

    Ju, Ming-Yi; Wang, Siao-En; Guo, Jian-Horn

    2014-01-01

    A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the "dummy node" is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389

  1. Hybrid Evolutionary-Heuristic Algorithm for Capacitor Banks Allocation

    NASA Astrophysics Data System (ADS)

    Barukčić, Marinko; Nikolovski, Srete; Jović, Franjo

    2010-11-01

    The issue of optimal allocation of capacitor banks concerning power losses minimization in distribution networks are considered in this paper. This optimization problem has been recently tackled by application of contemporary soft computing methods such as: genetic algorithms, neural networks, fuzzy logic, simulated annealing, ant colony methods, and hybrid methods. An evolutionaryheuristic method has been proposed for optimal capacitor allocation in radial distribution networks. An evolutionary method based on genetic algorithm is developed. The proposed method has a reduced number of parameters compared to the usual genetic algorithm. A heuristic stage is used for improving the optimal solution given by the evolutionary stage. A new cost-voltage node index is used in the heuristic stage in order to improve the quality of solution. The efficiency of the proposed two-stage method has been tested on different test networks. The quality of solution has been verified by comparison tests with other methods on the same test networks. The proposed method has given significantly better solutions for time dependent load in the 69-bus network than found in references.

  2. A comprehensive review of swarm optimization algorithms.

    PubMed

    Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655

  3. A Comprehensive Review of Swarm Optimization Algorithms

    PubMed Central

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655

  4. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    SciTech Connect

    Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  5. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm.

    PubMed

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395

  6. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  7. A Novel Particle Swarm Optimization Algorithm for Global Optimization

    PubMed Central

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387

  8. A Novel Particle Swarm Optimization Algorithm for Global Optimization.

    PubMed

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387

  9. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  10. Acoustic Radiation Optimization Using the Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Jeon, Jin-Young; Okuma, Masaaki

    The present paper describes a fundamental study on structural bending design to reduce noise using a new evolutionary population-based heuristic algorithm called the particle swarm optimization algorithm (PSOA). The particle swarm optimization algorithm is a parallel evolutionary computation technique proposed by Kennedy and Eberhart in 1995. This algorithm is based on the social behavior models for bird flocking, fish schooling and other models investigated by zoologists. Optimal structural design problems to reduce noise are highly nonlinear, so that most conventional methods are difficult to apply. The present paper investigates the applicability of PSOA to such problems. Optimal bending design of a vibrating plate using PSOA is performed in order to minimize noise radiation. PSOA can be effectively applied to such nonlinear acoustic radiation optimization.

  11. Algorithmic Differentiation for Calculus-based Optimization

    NASA Astrophysics Data System (ADS)

    Walther, Andrea

    2010-10-01

    For numerous applications, the computation and provision of exact derivative information plays an important role for optimizing the considered system but quite often also for its simulation. This presentation introduces the technique of Algorithmic Differentiation (AD), a method to compute derivatives of arbitrary order within working precision. Quite often an additional structure exploitation is indispensable for a successful coupling of these derivatives with state-of-the-art optimization algorithms. The talk will discuss two important situations where the problem-inherent structure allows a calculus-based optimization. Examples from aerodynamics and nano optics illustrate these advanced optimization approaches.

  12. Traffic sharing algorithms for hybrid mobile networks

    NASA Technical Reports Server (NTRS)

    Arcand, S.; Murthy, K. M. S.; Hafez, R.

    1995-01-01

    In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.

  13. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  14. Optimizing hybrid spreading in metapopulations.

    PubMed

    Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M

    2015-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics. PMID:25923411

  15. Optimizing Hybrid Spreading in Metapopulations

    PubMed Central

    Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.

    2015-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics. PMID:25923411

  16. Global search algorithm for optimal control

    NASA Technical Reports Server (NTRS)

    Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.

    1970-01-01

    Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer.

  17. Adaptive Cuckoo Search Algorithm for Unconstrained Optimization

    PubMed Central

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971

  18. Adaptive cuckoo search algorithm for unconstrained optimization.

    PubMed

    Ong, Pauline

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971

  19. Evolutionary Algorithm for Optimal Vaccination Scheme

    NASA Astrophysics Data System (ADS)

    Parousis-Orthodoxou, K. J.; Vlachos, D. S.

    2014-03-01

    The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease.

  20. Global Optimality of the Successive Maxbet Algorithm.

    ERIC Educational Resources Information Center

    Hanafi, Mohamed; ten Berge, Jos M. F.

    2003-01-01

    It is known that the Maxbet algorithm, which is an alternative to the method of generalized canonical correlation analysis and Procrustes analysis, may converge to local maxima. Discusses an eigenvalue criterion that is sufficient, but not necessary, for global optimality of the successive Maxbet algorithm. (SLD)

  1. Restarted local search algorithms for continuous black box optimization.

    PubMed

    Pošík, Petr; Huyer, Waltraud

    2012-01-01

    Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method. PMID:22779407

  2. Generation of Compliant Mechanisms using Hybrid Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Deb, K.

    2014-10-01

    Compliant mechanism is a single piece elastic structure which can deform to perform the assigned task. In this work, compliant mechanisms are evolved using a constraint based bi-objective optimization formulation which requires one user defined parameter ( η). This user defined parameter limits a gap between a desired path and an actual path traced by the compliant mechanism. The non-linear and discrete optimization problems are solved using the hybrid Genetic Algorithm (GA) wherein domain specific initialization, two-dimensional crossover operator and repairing techniques are adopted. A bit-wise local search method is used with elitist non-dominated sorting genetic algorithm to further refine the compliant mechanisms. Parallel computations are performed on the master-slave architecture to reduce the computation time. A parametric study is carried out for η value which suggests a range to evolve topologically different compliant mechanisms. The applied and boundary conditions to the compliant mechanisms are considered the variables that are evolved by the hybrid GA. The post-analysis of results unveils that the complaint mechanisms are always supported at unique location that can evolve the non-dominated solutions.

  3. Two-stage hybrid optimization of fiber Bragg gratings for design of linear phase filters.

    PubMed

    Zheng, Rui Tao; Ngo, Nam Quoc; Le Binh, Nguyen; Tjin, Swee Chuan

    2004-12-01

    We present a new hybrid optimization method for the synthesis of fiber Bragg gratings (FBGs) with complex characteristics. The hybrid optimization method is a two-tier search that employs a global optimization algorithm [i.e., the tabu search (TS) algorithm] and a local optimization method (i.e., the quasi-Netwon method). First the TS global optimization algorithm is used to find a "promising" FBG structure that has a spectral response as close as possible to the targeted spectral response. Then the quasi-Newton local optimization method is applied to further optimize the FBG structure obtained from the TS algorithm to arrive at a targeted spectral response. A dynamic mechanism for weighting of different requirements of the spectral response is employed to enhance the optimization efficiency. To demonstrate the effectiveness of the method, the synthesis of three linear-phase optical filters based on FBGs with different grating lengths is described. PMID:15603077

  4. Algorithms for optimal dyadic decision trees

    SciTech Connect

    Hush, Don; Porter, Reid

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  5. Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems

    NASA Astrophysics Data System (ADS)

    Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao

    Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.

  6. Concurrent genetic algorithms for optimization of large structures

    SciTech Connect

    Adeli, H.; Cheng, N. )

    1994-07-01

    In a recent article, the writers presented an augmented Lagrangian genetic algorithm for optimization of structures. The optimization of large structures such as high-rise building structures and space stations with several hundred members by the hybrid genetic algorithm requires the creation of thousands of strings in the population and the corresponding large number of structural analyses. In this paper, the writers extend their previous work by presenting two concurrent augmented Lagrangian genetic algorithms for optimization of large structures utilizing the multiprocessing capabilities of high-performance computers such as the Cray Y-MP 8/864 supercomputer. Efficiency of the algorithms has been investigated by applying them to four space structures including two high-rise building structures. It is observed that the performance of both algorithms improves with the size of the structure, making them particularly suitable for optimization of large structures. A maximum parallel processing speed of 7.7 is achieved for a 35-story tower (with 1,262 elements and 936 degrees of freedom), using eight processors. 9 refs.

  7. Iterative phase retrieval algorithms. I: optimization.

    PubMed

    Guo, Changliang; Liu, Shi; Sheridan, John T

    2015-05-20

    Two modified Gerchberg-Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input-output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems. PMID:26192504

  8. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  9. Feature Selection via Modified Gravitational Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2015-03-01

    Feature selection is the process of selecting a subset of relevant and most informative features, which efficiently represents the input data. We proposed a feature selection algorithm based on n-dimensional gravitational optimization algorithm (NGOA), which is based on the principle of gravitational fields. The objective function of optimization algorithm is a non-linear function of variables, which are called masses and defined based on extracted features. The forces between the masses as well as their new locations are calculated using the value of the objective function and the values of masses. We extracted variety of features applying different wavelet transforms and statistical methods on FLAIR and T1-weighted MR brain images. There are two classes of normal and abnormal tissues. Extracted features are divided into groups of five features. The best feature is selected in each group using N-dimensional gravitational optimization algorithm and support vector machine classifier. Then the selected features from each group make several groups of five features again and so on till desired number of features is selected. The advantage of NGOA algorithm is that the possibility of being drawn into a local optimal solution is very low. The experimental results show that our method outperforms some standard feature selection algorithms on both real-data and simulated brain tumor data.

  10. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy.

    PubMed

    Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui

    2016-01-01

    For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And H ε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy. PMID:27057159

  11. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy

    PubMed Central

    Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui

    2016-01-01

    For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy. PMID:27057159

  12. A Cuckoo Search Algorithm for Multimodal Optimization

    PubMed Central

    2014-01-01

    Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850

  13. A cuckoo search algorithm for multimodal optimization.

    PubMed

    Cuevas, Erik; Reyna-Orta, Adolfo

    2014-01-01

    Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850

  14. A novel bee swarm optimization algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush

    2010-10-01

    The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.

  15. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137

  16. A Novel Hybrid Statistical Particle Swarm Optimization for Multimodal Functions and Frequency Control of Hybrid Wind-Solar System

    NASA Astrophysics Data System (ADS)

    Verma, Harish Kumar; Jain, Cheshta

    2015-07-01

    In this article, a hybrid algorithm of particle swarm optimization (PSO) with statistical parameter (HSPSO) is proposed. Basic PSO for shifted multimodal problems have low searching precision due to falling into a number of local minima. The proposed approach uses statistical characteristics to update the velocity of the particle to avoid local minima and help particles to search global optimum with improved convergence. The performance of the newly developed algorithm is verified using various standard multimodal, multivariable, shifted hybrid composition benchmark problems. Further, the comparative analysis of HSPSO with variants of PSO is tested to control frequency of hybrid renewable energy system which comprises solar system, wind system, diesel generator, aqua electrolyzer and ultra capacitor. A significant improvement in convergence characteristic of HSPSO algorithm over other variants of PSO is observed in solving benchmark optimization and renewable hybrid system problems.

  17. Full Glowworm Swarm Optimization Algorithm for Whole-Set Orders Scheduling in Single Machine

    PubMed Central

    Yu, Zhang; Yang, Xiaomei

    2013-01-01

    By analyzing the characteristics of whole-set orders problem and combining the theory of glowworm swarm optimization, a new glowworm swarm optimization algorithm for scheduling is proposed. A new hybrid-encoding schema combining with two-dimensional encoding and random-key encoding is given. In order to enhance the capability of optimal searching and speed up the convergence rate, the dynamical changed step strategy is integrated into this algorithm. Furthermore, experimental results prove its feasibility and efficiency. PMID:24294135

  18. Calibration of visual model for space manipulator with a hybrid LM-GA algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Wensong; Wang, Zhongyu

    2016-01-01

    A hybrid LM-GA algorithm is proposed to calibrate the camera system of space manipulator to improve its locational accuracy. This algorithm can dynamically fuse the Levenberg-Marqurdt (LM) algorithm and Genetic Algorithm (GA) together to minimize the error of nonlinear camera model. LM algorithm is called to optimize the initial camera parameters that are generated by genetic process previously. Iteration should be stopped if the optimized camera parameters meet the accuracy requirements. Otherwise, new populations are generated again by GA and optimized afresh by LM algorithm until the optimal solutions meet the accuracy requirements. A novel measuring machine of space manipulator is designed to on-orbit dynamic simulation and precision test. The camera system of space manipulator, calibrated by hybrid LM-GA algorithm, is used for locational precision test in this measuring instrument. The experimental results show that the mean composite errors are 0.074 mm for hybrid LM-GA camera calibration model, 1.098 mm for LM camera calibration model, and 1.202 mm for GA camera calibration model. Furthermore, the composite standard deviations are 0.103 mm for the hybrid LM-GA camera calibration model, 1.227 mm for LM camera calibration model, and 1.351 mm for GA camera calibration model. The accuracy of hybrid LM-GA camera calibration model is more than 10 times higher than that of other two methods. All in all, the hybrid LM-GA camera calibration model is superior to both the LM camera calibration model and GA camera calibration model.

  19. Algorithm Optimally Allocates Actuation of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Motaghedi, Shi

    2007-01-01

    A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as sub-algorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.

  20. Protein structure optimization with a "Lamarckian" ant colony algorithm.

    PubMed

    Oakley, Mark T; Richardson, E Grace; Carr, Harriet; Johnston, Roy L

    2013-01-01

    We describe the LamarckiAnt algorithm: a search algorithm that combines the features of a "Lamarckian" genetic algorithm and ant colony optimization. We have implemented this algorithm for the optimization of BLN model proteins, which have frustrated energy landscapes and represent a challenge for global optimization algorithms. We demonstrate that LamarckiAnt performs competitively with other state-of-the-art optimization algorithms. PMID:24407312

  1. Parallel Algorithms for Graph Optimization using Tree Decompositions

    SciTech Connect

    Weerapurage, Dinesh P; Sullivan, Blair D; Groer, Christopher S

    2013-01-01

    Although many NP-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of required dynamic programming tables and excessive running times of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree-decomposition based approach to solve maximum weighted independent set. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.

  2. Parallel Algorithms for Graph Optimization using Tree Decompositions

    SciTech Connect

    Sullivan, Blair D; Weerapurage, Dinesh P; Groer, Christopher S

    2012-06-01

    Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.

  3. Hybrid response surface methodology-genetic algorithm optimization of ultrasound-assisted transesterification of waste oil catalysed by immobilized lipase on mesoporous silica/iron oxide magnetic core-shell nanoparticles.

    PubMed

    Karimi, Mahmoud; Keyhani, Alireza; Akram, Asadolah; Rahman, Masoud; Jenkins, Bryan; Stroeve, Pieter

    2013-01-01

    The production ofbiodiesel by transesterification of waste cooking oil (WCO) to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy demand. An environmentally benign process for the enzymatic transesterification using immobilized lipase has attracted considerable attention for biodiesel production. Here, a superparamagnetic, high surface area substrate for lipase immobilization is evaluated. These immobilization substrates are composed of mesoporous silica/superparamagnetic iron oxide core-shell nanoparticles. The effects of methanol ratio to WCO, lipase concentration, water content and reaction time on the synthesis of biodiesel were analysed by utilizing the response surface methodology (RSM). A quadratic response surface equation for calculating fatty acid methyl ester (FAME) content as the objective function was established based on experimental data obtained in accordance with the central composite design. The RSM-based model was then used as the fitness function for genetic algorithm (GA) to optimize its input space. Hybrid RSM-GA predicted the maximum FAME content (91%) at the optimum level of medium variables: methanol ratio to WCO, 4.34; lipase content, 43.6%; water content, 10.22%; and reaction time, 6h. Moreover, the immobilized lipase could be used for four times without considerable loss of the activity. PMID:24350474

  4. Ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with hybrid artificial neural network-genetic algorithm for speciation and optimized determination of ferro and ferric in environmental water samples.

    PubMed

    Saeidi, Iman; Barfi, Behruz; Asghari, Alireza; Gharahbagh, Abdorreza Alavi; Barfi, Azadeh; Peyrovi, Moazameh; Afsharzadeh, Maryam; Hojatinasab, Mostafa

    2015-10-01

    A novel and environmentally friendly ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with a hybrid artificial neural network (ANN)-genetic algorithm (GA) strategy was developed for ferro and ferric ions speciation as model analytes. Different parameters such as type and volume of extraction solvent, amounts of chelating agent, volume and pH of sample, ionic strength, stirring rate, and extraction time were investigated. Much more effective parameters were firstly examined based on one-variable-at-a-time design, and obtained results were used to construct an independent model for each parameter. The models were then applied to achieve the best and minimum numbers of candidate points as inputs for the ANN process. The maximum extraction efficiencies were achieved after 9 min using 22.0 μL of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as the acceptor phase and 10 mL of sample at pH = 7.0 containing 64.0 μg L(-1) of benzohydroxamic acid (BHA) as the complexing agent, after the GA process. Once optimized, analytical performance of the method was studied in terms of linearity (1.3-316 μg L(-1), R (2) = 0.999), accuracy (recovery = 90.1-92.3%), and precision (relative standard deviation (RSD) <3.1). Finally, the method was successfully applied to speciate the iron species in the environmental and wastewater samples. PMID:26383736

  5. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  6. Optimization of a chemical identification algorithm

    NASA Astrophysics Data System (ADS)

    Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren

    2010-04-01

    A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.

  7. Hybridization of decomposition and local search for multiobjective optimization.

    PubMed

    Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto

    2014-10-01

    Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems. PMID:25222724

  8. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue

    2016-01-01

    A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.

  9. Nonlinear Global Optimization Using Curdling Algorithm

    Energy Science and Technology Software Center (ESTSC)

    1996-03-01

    An algorithm for performing curdling optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single external extremal points. The program is interactive and collects information on control parameters and constraints using menus. For up to four dimensions, function convergence is displayed graphically. Because the algorithm does not compute derivatives,more » gradients or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. Constraints are handled as being initially fuzzy, but become tighter with each iteration.« less

  10. Optimized TRIAD Algorithm for Attitude Determination

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    TRIAD is a well known simple algorithm that generates the attitude matrix between two coordinate systems when the components of two abstract vectors are given in the two systems. TRIAD however, is sensitive to the order in which the algorithm handles the vectors, such that the resulting attitude matrix is influenced more by the vector processed first. In this work we present a new algorithm, which we call Optimized TRIAD, that blends in a specified manner the two matrices generated by TRIAD when processing one vector first, and then when processing the other vector first. On the average, Optimized TRIAD yields a matrix which is better than either one of the two matrices in that is ti the closest to the correct matrix. This result is demonstrated through simulation.

  11. Hybrid metrology universal engine: co-optimization

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Osorio, Carmen; Tsai, Jamie; Bozdog, Cornel; Sendelbach, Matthew; Grubner, Eyal; Koret, Roy; Wolfling, Shay

    2014-04-01

    In recent years Hybrid Metrology has emerged as an option for enhancing the performance of existing measurement toolsets and is currently implemented in production1. Hybrid Metrology is the practice to combine measurements from multiple toolset types in order to enable or improve the measurement of one or more critical parameters. While all applications tried before were improved through standard (sequential) hybridization of data from one toolset to another, advances in device architecture, materials and processes made possible to find one case that demanded a much deeper understanding of the physical basis of measurements and simultaneous optimization of data. This paper presents the first such work using the concept of co-optimization based hybridization, where image analysis parameters of CD-SEM (critical dimensions Scanning Electron Microscope) are modulated by profile information from OCD (optical critical dimension - scatterometry) while the OCD extracted profile is concurrently optimized through addition of the CD-SEM CD results. Test vehicle utilized in this work is the 14nm technology node based FinFET High-k/Interfacial layer structure.

  12. Optimization methods applied to hybrid vehicle design

    NASA Technical Reports Server (NTRS)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  13. Optimal configuration algorithm of a satellite transponder

    NASA Astrophysics Data System (ADS)

    Sukhodoev, M. S.; Savenko, I. I.; Martynov, Y. A.; Savina, N. I.; Asmolovskiy, V. V.

    2016-04-01

    This paper describes the algorithm of determining the optimal transponder configuration of the communication satellite while in service. This method uses a mathematical model of the pay load scheme based on the finite-state machine. The repeater scheme is shown as a weighted oriented graph that is represented as plexus in the program view. This paper considers an algorithm example for application with a typical transparent repeater scheme. In addition, the complexity of the current algorithm has been calculated. The main peculiarity of this algorithm is that it takes into account the functionality and state of devices, reserved equipment and input-output ports ranged in accordance with their priority. All described limitations allow a significant decrease in possible payload commutation variants and enable a satellite operator to make reconfiguration solutions operatively.

  14. Reactive power optimization by genetic algorithm

    SciTech Connect

    Iba, Kenji )

    1994-05-01

    This paper presents a new approach to optimal reactive power planning based on a genetic algorithm. Many outstanding methods to this problem have been proposed in the past. However, most of these approaches have the common defect of being caught to a local minimum solution. The integer problem which yields integer value solutions for discrete controllers/banks still remains as a difficult one. The genetic algorithm is a kind of search algorithm based on the mechanics of natural selection and genetics. This algorithm can search for a global solution using multiple paths and treat integer problems naturally. The proposed method was applied to practical 51-bus and 224-bus systems to show its feasibility and capabilities. Although this method is not as fast as sophisticated traditional methods, the concept is quite promising and useful.

  15. The genetic algorithms for trajectory optimization

    NASA Astrophysics Data System (ADS)

    Janin, G.; Gomez-Tierno, M. A.

    1985-10-01

    Possible difficulties encountered when solving space flight trajectory optimization problems are recalled. The need of a global optimization scheme is realized. Nondeterministic methods, called here stochastic methods, seem to be good candidates for solving these types of problems. A particular class of such methods, modelled upon search strategies employed in natural adaptation, is proposed here: the genetic algorithms. Two models, the mutation-selection and the crossover-selection, are discussed and remarks resulting from applications to test problems and space flight problems are made. It is concluded that a considerable effort is still needed for developing efficient schemes using genetic algorithms. However, they appear to offer an entirely original way for solving a large class of global optimization problems and they are particularly well-suited for parallel processing to be used in the fifth generation computers.

  16. A Multiobjective Optimal Design of a Hybrid Power Source System for a Railway Vehicle

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoyuki; Wakao, Shinji; Kondo, Keiichiro

    In this paper, we study an optimal design for a hybrid power source railway vehicle as an alternative to diesel railway vehicles. The hybrid power source railway vehicle is assumed to be composed of the fuel cell and the electric double layer capacitor. We apply the multiobjective optimization based on the genetic algorithm for the vehicle design, aiming at reduction of both initial cost and energy consumption. The pareto optimal solutions are obtained using the multiobjective optimization. First we develop a simulation model of the hybrid power source railway vehicle and its electric power control methods. Next we derive the pareto optimal solutions as a result of the multiobjective optimization. Finally, we categorize the pareto optimal solutions to some groups, which enables us to elucidate characteristics of the pareto optimal solutions. Consequently, using the multiobjective optimization approach we effectively comprehend the problem characteristics and can obtain the plural valuable solutions.

  17. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    NASA Astrophysics Data System (ADS)

    Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-01

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO-ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO-ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO-ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO-ACO is a very powerful tool for parameter estimation with high accuracy and low deviations.

  18. Optimization Algorithms in Optimal Predictions of Atomistic Properties by Kriging.

    PubMed

    Di Pasquale, Nicodemo; Davie, Stuart J; Popelier, Paul L A

    2016-04-12

    The machine learning method kriging is an attractive tool to construct next-generation force fields. Kriging can accurately predict atomistic properties, which involves optimization of the so-called concentrated log-likelihood function (i.e., fitness function). The difficulty of this optimization problem quickly escalates in response to an increase in either the number of dimensions of the system considered or the size of the training set. In this article, we demonstrate and compare the use of two search algorithms, namely, particle swarm optimization (PSO) and differential evolution (DE), to rapidly obtain the maximum of this fitness function. The ability of these two algorithms to find a stationary point is assessed by using the first derivative of the fitness function. Finally, the converged position obtained by PSO and DE is refined through the limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm, which belongs to the class of quasi-Newton algorithms. We show that both PSO and DE are able to come close to the stationary point, even in high-dimensional problems. They do so in a reasonable amount of time, compared to that with the Newton and quasi-Newton algorithms, regardless of the starting position in the search space of kriging hyperparameters. The refinement through L-BFGS-B is able to give the position of the maximum with whichever precision is desired. PMID:26930135

  19. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  20. Study of a global search algorithm for optimal control.

    NASA Technical Reports Server (NTRS)

    Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.

    1967-01-01

    Adaptive random search algorithm utilizing boundary cost-function hypersurfaces measurement to implement Pontryagin maximum principle, discussing hybrid computer use, iterative solution and convergence properties

  1. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    SciTech Connect

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion. Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.

  2. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE PAGESBeta

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  3. A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning.

    PubMed

    Wu, Xing; Rózycki, Paweł; Wilamowski, Bogdan M

    2015-08-01

    Single-layer feedforward networks (SLFNs) have been proven to be a universal approximator when all the parameters are allowed to be adjustable. It is widely used in classification and regression problems. The SLFN learning involves two tasks: determining network size and training the parameters. Most current algorithms could not be satisfactory to both sides. Some algorithms focused on construction and only tuned part of the parameters, which may not be able to achieve a compact network. Other gradient-based optimization algorithms focused on parameters tuning while the network size has to be preset by the user. Therefore, trial-and-error approach has to be used to search the optimal network size. Because results of each trial cannot be reused in another trial, it costs much computation. In this paper, a hybrid constructive (HC)algorithm is proposed for SLFN learning, which can train all the parameters and determine the network size simultaneously. At first, by combining Levenberg-Marquardt algorithm and least-square method, a hybrid algorithm is presented for training SLFN with fixed network size. Then,with the hybrid algorithm, an incremental constructive scheme is proposed. A new randomly initialized neuron is added each time when the training entrapped into local minima. Because the training continued on previous results after adding new neurons, the proposed HC algorithm works efficiently. Several practical problems were given for comparison with other popular algorithms. The experimental results demonstrated that the HC algorithm worked more efficiently than those optimization methods with trial and error, and could achieve much more compact SLFN than those construction algorithms. PMID:25216485

  4. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications

    PubMed Central

    2012-01-01

    Background Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. Results In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Conclusions Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications. PMID:22369626

  5. Stroke volume optimization: the new hemodynamic algorithm.

    PubMed

    Johnson, Alexander; Ahrens, Thomas

    2015-02-01

    Critical care practices have evolved to rely more on physical assessments for monitoring cardiac output and evaluating fluid volume status because these assessments are less invasive and more convenient to use than is a pulmonary artery catheter. Despite this trend, level of consciousness, central venous pressure, urine output, heart rate, and blood pressure remain assessments that are slow to be changed, potentially misleading, and often manifested as late indications of decreased cardiac output. The hemodynamic optimization strategy called stroke volume optimization might provide a proactive guide for clinicians to optimize a patient's status before late indications of a worsening condition occur. The evidence supporting use of the stroke volume optimization algorithm to treat hypovolemia is increasing. Many of the cardiac output monitor technologies today measure stroke volume, as well as the parameters that comprise stroke volume: preload, afterload, and contractility. PMID:25639574

  6. Algorithm For Optimal Control Of Large Structures

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Garba, John A..; Utku, Senol

    1989-01-01

    Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.

  7. Genetic algorithm optimization of atomic clusters

    SciTech Connect

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |

    1996-12-31

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.

  8. Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian

    2011-06-01

    Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.

  9. A Hybrid Monkey Search Algorithm for Clustering Analysis

    PubMed Central

    Chen, Xin; Zhou, Yongquan; Luo, Qifang

    2014-01-01

    Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis. PMID:24772039

  10. Multidisciplinary design optimization using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Unal, Resit

    1994-12-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  11. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  12. A hybrid fast Hankel transform algorithm for electromagnetic modeling

    USGS Publications Warehouse

    Anderson, W.L.

    1989-01-01

    A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram (called HYBFHT) written in standard Fortran-77 provides a simple user interface to call either subalgorithm. The hybrid approach is an attempt to combine the best features of the two subalgorithms to minimize the user's coding requirements and to provide fast execution and good accuracy for a large class of electromagnetic problems involving various related Hankel transform sets with multiple arguments. Special cases of Hankel transforms of double-order and double-argument are discussed, where use of HYBFHT is shown to be advantageous for oscillatory kernal functions. -Author

  13. Near-optimal geostationary transfer maneuvers with cooperative en-route inspection using hybrid optimal control

    NASA Astrophysics Data System (ADS)

    Showalter, Daniel J.; Black, Jonathan T.

    2014-12-01

    This research investigates the performance of bi-level hybrid optimal control algorithms in the solution of minimum delta-velocity geostationary transfer maneuvers with cooperative en-route inspection. The maneuvers, introduced here for the first time, are designed to populate a geostationary constellation of space situational awareness satellites while providing additional characterization of objects in lower-altitude orbit regimes. The maneuvering satellite, called the chaser, performs a transfer from low Earth orbit to geostationary orbit, during which it performs an inspection of one of several orbiting targets in conjunction with a ground site for the duration of the target's line-of-site contact with that site. A three-target scenario is used to test the performance of multiple bi-level hybrid optimal control algorithms. A bi-level hybrid algorithm is then utilized to solve fifteen-, and thirty-target scenarios and shown to have increasing benefit to complete enumeration as the number of targets is increased. Results indicate that the en-route inspection can be accomplished for a small increase in the delta-velocity required for a simple transfer to geostationary orbit given the same initial conditions.

  14. Optimal caching algorithm based on dynamic programming

    NASA Astrophysics Data System (ADS)

    Guo, Changjie; Xiang, Zhe; Zhong, Yuzhuo; Long, Jidong

    2001-07-01

    With the dramatic growth of multimedia streams, the efficient distribution of stored videos has become a major concern. There are two basic caching strategies: the whole caching strategy and the caching strategy based on layered encoded video, the latter can satisfy the requirement of the highly heterogeneous access to the Internet. Conventional caching strategies assign each object a cache gain by calculating popularity or density popularity, and determine which videos and which layers should be cached. In this paper, we first investigate the delivery model of stored video based on proxy, and propose two novel caching algorithms, DPLayer (for layered encoded caching scheme) and DPWhole (for whole caching scheme) for multimedia proxy caching. The two algorithms are based on the resource allocation model of dynamic programming to select the optimal subset of objects to be cached in proxy. Simulation proved that our algorithms achieve better performance than other existing schemes. We also analyze the computational complexity and space complexity of the algorithms, and introduce a regulative parameter to compress the states space of the dynamic programming problem and reduce the complexity of algorithms.

  15. Bell-Curve Based Evolutionary Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.

    1998-01-01

    The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.

  16. Algorithms for optimizing CT fluence control

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).

  17. Hybrid intelligent optimization methods for engineering problems

    NASA Astrophysics Data System (ADS)

    Pehlivanoglu, Yasin Volkan

    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and

  18. Intervals in evolutionary algorithms for global optimization

    SciTech Connect

    Patil, R.B.

    1995-05-01

    Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.

  19. Material design using surrogate optimization algorithm

    NASA Astrophysics Data System (ADS)

    Khadke, Kunal R.

    Nanocomposite ceramics have been widely studied in order to tailor desired properties at high temperatures. Methodologies for development of material design are still under effect . While finite element modeling (FEM) provides significant insight on material behavior, few design researchers have addressed the design paradox that accompanies this rapid design space expansion. A surrogate optimization model management framework has been proposed to make this design process tractable. In the surrogate optimization material design tool, the analysis cost is reduced by performing simulations on the surrogate model instead of high density finite element model. The methodology is incorporated to find the optimal number of silicon carbide (SiC) particles, in a silicon-nitride Si3N 4 composite with maximum fracture energy [2]. Along with a deterministic optimization algorithm, model uncertainties have also been considered with the use of robust design optimization (RDO) method ensuring a design of minimum sensitivity to changes in the parameters. These methodologies applied to nanocomposites design have a signicant impact on cost and design cycle time reduced.

  20. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    PubMed

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  1. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    PubMed Central

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  2. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    PubMed

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  3. Global optimization algorithm for heat exchanger networks

    SciTech Connect

    Quesada, I.; Grossmann, I.E. )

    1993-03-01

    This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem is used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.

  4. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  5. Analysis and optimization of hybrid electric vehicle thermal management systems

    NASA Astrophysics Data System (ADS)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  6. Lunar Habitat Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  7. Optimization Algorithm for Designing Diffractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Agudelo, Viviana A.; Orozco, Ricardo Amézquita

    2008-04-01

    Diffractive Optical Elements (DOEs) are commonly used in many applications such as laser beam shaping, recording of micro reliefs, wave front analysis, metrology and many others where they can replace single or multiple conventional optical elements (diffractive or refractive). One of the most versatile way to produce them, is to use computer assisted techniques for their design and optimization, as well as optical or electron beam micro-lithography techniques for the final fabrication. The fundamental figures of merit involved in the optimization of such devices are both the diffraction efficiency and the signal to noise ratio evaluated in the reconstructed wave front at the image plane. A design and optimization algorithm based on the error—reduction method (Gerchberg and Saxton) is proposed to obtain binary discrete phase-only Fresnel DOEs that will be used to produce specific intensity patterns. Some experimental results were obtained using a spatial light modulator acting as a binary programmable diffractive phase element. Although the DOEs optimized here are discrete in phase, they present an acceptable signal noise relation and diffraction efficiency.

  8. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  9. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    PubMed

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  10. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    PubMed Central

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  11. Instrument design and optimization using genetic algorithms

    SciTech Connect

    Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-10-15

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.

  12. A Hybrid Shortest Path Algorithm for Navigation System

    NASA Astrophysics Data System (ADS)

    Cho, Hsun-Jung; Lan, Chien-Lun

    2007-12-01

    Combined with Geographic Information System (GIS) and Global Positioning System (GPS), the vehicle navigation system had become a quite popular product in daily life. A key component of the navigation system is the Shortest Path Algorithm. Navigation in real world must face a network consists of tens of thousands nodes and links, and even more. Under the limited computation capability of vehicle navigation equipment, it is difficult to satisfy the realtime response requirement that user expected. Hence, this study focused on shortest path algorithm that enhances the computation speed with less memory requirement. Several well-known algorithms such as Dijkstra, A* and hierarchical concepts were integrated to build hybrid algorithms that reduce searching space and improve searching speed. Numerical examples were conducted on Taiwan highway network that consists of more than four hundred thousands of links and nearly three hundred thousands of nodes. This real network was divided into two connected sub-networks (layers). The upper layer is constructed by freeways and expressways; the lower layer is constructed by local networks. Test origin-destination pairs were chosen randomly and divided into three distance categories; short, medium and long distances. The evaluation of outcome is judged by actual length and travel time. The numerical example reveals that the hybrid algorithm proposed by this research might be tens of thousands times faster than traditional Dijkstra algorithm; the memory requirement of the hybrid algorithm is also much smaller than the tradition algorithm. This outcome shows that this proposed algorithm would have an advantage over vehicle navigation system.

  13. An adaptive metamodel-based global optimization algorithm for black-box type problems

    NASA Astrophysics Data System (ADS)

    Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan

    2015-11-01

    In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.

  14. Constrained Multi-Level Algorithm for Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi

    The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in

  15. A quadratic weight selection algorithm. [for optimal flight control

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1981-01-01

    A new numerical algorithm is presented which determines a positive semi-definite state weighting matrix in the linear-quadratic optimal control design problem. The algorithm chooses the weighting matrix by placing closed-loop eigenvalues and eigenvectors near desired locations using optimal feedback gains. A simplified flight control design example is used to illustrate the algorithms capabilities.

  16. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    NASA Astrophysics Data System (ADS)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  17. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks. PMID:24729969

  18. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    PubMed Central

    Li, Shan; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks. PMID:24729969

  19. A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.

    PubMed

    Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen

    2012-01-01

    Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383

  20. A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning

    PubMed Central

    Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen

    2012-01-01

    Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383

  1. Optimization of air monitoring networks using chemical transport model and search algorithm

    NASA Astrophysics Data System (ADS)

    Araki, Shin; Iwahashi, Koki; Shimadera, Hikari; Yamamoto, Kouhei; Kondo, Akira

    2015-12-01

    Air monitoring network design is a critical issue because monitoring stations should be allocated properly so that they adequately represent the concentrations in the domain of interest. Although the optimization methods using observations from existing monitoring networks are often applied to a network with a considerable number of stations, they are difficult to be applied to a sparse network or a network under development: there are too few observations to define an optimization criterion and the high number of potential monitor location combinations cannot be tested exhaustively. This paper develops a hybrid of genetic algorithm and simulated annealing to combine their power to search a big space and to find local optima. The hybrid algorithm as well as the two single algorithms are applied to optimize an air monitoring network of PM2.5, NO2 and O3 respectively, by minimization of the mean kriging variance derived from simulated values of a chemical transport model instead of observations. The hybrid algorithm performs best among the algorithms: kriging variance is on average about 4% better than for GA and variability between trials is less than 30% compared to SA. The optimized networks for the three pollutants are similar and maps interpolated from the simulated values at these locations are close to the original simulations (RMSE below 9% relative to the range of the field). This also holds for hourly and daily values although the networks are optimized for annual values. It is demonstrated that the method using the hybrid algorithm and the model simulated values for the calculation of the mean kriging variance is of benefit to the optimization of air monitoring networks.

  2. PDE Nozzle Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  3. Optimized Vertex Method and Hybrid Reliability

    NASA Technical Reports Server (NTRS)

    Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.

    2002-01-01

    A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.

  4. A cross-layer optimization algorithm for wireless sensor network

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Liu, Le Qing

    2010-07-01

    Energy is critical for typical wireless sensor networks (WSN) and how to energy consumption and maximize network lifetime are big challenges for Wireless sensor networks; cross layer algorithm is main method to solve this problem. In this paper, firstly, we analyze current layer-based optimal methods in wireless sensor network and summarize the physical, link and routing optimization techniques. Secondly we compare some strategies in cross-layer optimization algorithms. According to the analysis and summary of the current lifetime algorithms in wireless sensor network A cross layer optimization algorithm is proposed,. Then this optimization algorithm proposed in the paper is adopted to improve the traditional Leach routing protocol. Simulation results show that this algorithm is an excellent cross layer algorithm for reducing energy consumption.

  5. Modified artificial bee colony algorithm for reactive power optimization

    NASA Astrophysics Data System (ADS)

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-05-01

    Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.

  6. Armentum: a hybrid direct search optimization methodology

    NASA Astrophysics Data System (ADS)

    Briones, Francisco Zorrilla

    2016-07-01

    Design of experiments (DOE) offers a great deal of benefits to any manufacturing organization, such as characterization of variables and sets the path for the optimization of the levels of these variables (settings) trough the Response surface methodology, leading to process capability improvement, efficiency increase, cost reduction. Unfortunately, the use of these methodologies is very limited due to various situations. Some of these situations involve the investment on production time, materials, personnel, equipment; most of organizations are not willing to invest in these resources or are not capable because of production demands, besides the fact that they will produce non-conformant product (scrap) during the process of experimentation. Other methodologies, in the form of algorithms, may be used to optimize a process. Known as direct search methods, these algorithms search for an optimum on an unknown function, trough the search of the best combination of the levels on the variables considered in the analysis. These methods have a very different application strategy, they search on the best combination of parameters, during the normal production run, calculating the change in the input variables and evaluating the results in small steps until an optimum is reached. These algorithms are very sensible to internal noise (variation of the input variables), among other disadvantages. In this paper it is made a comparison between the classical experimental design and one of these direct search methods, developed by Nelder and Mead (1965), known as the Nelder Mead simplex (NMS), trying to overcome the disadvantages and maximize the advantages of both approaches, trough a proposed combination of the two methodologies.

  7. A hybrid likelihood algorithm for risk modelling.

    PubMed

    Kellerer, A M; Kreisheimer, M; Chmelevsky, D; Barclay, D

    1995-03-01

    The risk of radiation-induced cancer is assessed through the follow-up of large cohorts, such as atomic bomb survivors or underground miners who have been occupationally exposed to radon and its decay products. The models relate to the dose, age and time dependence of the excess tumour rates, and they contain parameters that are estimated in terms of maximum likelihood computations. The computations are performed with the software package EPI-CURE, which contains the two main options of person-by person regression or of Poisson regression with grouped data. The Poisson regression is most frequently employed, but there are certain models that require an excessive number of cells when grouped data are used. One example involves computations that account explicitly for the temporal distribution of continuous exposures, as they occur with underground miners. In past work such models had to be approximated, but it is shown here that they can be treated explicitly in a suitably reformulated person-by person computation of the likelihood. The algorithm uses the familiar partitioning of the log-likelihood into two terms, L1 and L0. The first term, L1, represents the contribution of the 'events' (tumours). It needs to be evaluated in the usual way, but constitutes no computational problem. The second term, L0, represents the event-free periods of observation. It is, in its usual form, unmanageable for large cohorts. However, it can be reduced to a simple form, in which the number of computational steps is independent of cohort size. The method requires less computing time and computer memory, but more importantly it leads to more stable numerical results by obviating the need for grouping the data. The algorithm may be most relevant to radiation risk modelling, but it can facilitate the modelling of failure-time data in general. PMID:7604154

  8. Hybrid protection algorithms based on game theory in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Wu, Jingjing; Hou, Weigang; Liu, Yejun; Zhang, Lincong; Li, Hongming

    2011-12-01

    With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user's utility, the network operator's utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator's utility, while IEP has better user's utility.

  9. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    NASA Astrophysics Data System (ADS)

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  10. A hybrid features based image matching algorithm

    NASA Astrophysics Data System (ADS)

    Tu, Zhenbiao; Lin, Tao; Sun, Xiao; Dou, Hao; Ming, Delie

    2015-12-01

    In this paper, we present a novel image matching method to find the correspondences between two sets of image interest points. The proposed method is based on a revised third-order tensor graph matching method, and introduces an energy function that takes four kinds of energy term into account. The third-order tensor method can hardly deal with the situation that the number of interest points is huge. To deal with this problem, we use a potential matching set and a vote mechanism to decompose the matching task into several sub-tasks. Moreover, the third-order tensor method sometimes could only find a local optimum solution. Thus we use a cluster method to divide the feature points into some groups and only sample feature triangles between different groups, which could make the algorithm to find the global optimum solution much easier. Experiments on different image databases could prove that our new method would obtain correct matching results with relatively high efficiency.

  11. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  12. The ordered clustered travelling salesman problem: a hybrid genetic algorithm.

    PubMed

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148

  13. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  14. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    PubMed

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074

  15. Honey Bees Inspired Optimization Method: The Bees Algorithm.

    PubMed

    Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-01-01

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem. PMID:26462528

  16. Registration of range data using a hybrid simulated annealing and iterative closest point algorithm

    SciTech Connect

    LUCK,JASON; LITTLE,CHARLES Q.; HOFF,WILLIAM

    2000-04-17

    The need to register data is abundant in applications such as: world modeling, part inspection and manufacturing, object recognition, pose estimation, robotic navigation, and reverse engineering. Registration occurs by aligning the regions that are common to multiple images. The largest difficulty in performing this registration is dealing with outliers and local minima while remaining efficient. A commonly used technique, iterative closest point, is efficient but is unable to deal with outliers or avoid local minima. Another commonly used optimization algorithm, simulated annealing, is effective at dealing with local minima but is very slow. Therefore, the algorithm developed in this paper is a hybrid algorithm that combines the speed of iterative closest point with the robustness of simulated annealing. Additionally, a robust error function is incorporated to deal with outliers. This algorithm is incorporated into a complete modeling system that inputs two sets of range data, registers the sets, and outputs a composite model.

  17. Hybrid regularization image restoration algorithm based on total variation

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmin; Wang, Yan

    2013-09-01

    To reduce the noise amplification and ripple phenomenon in the restoration result by using the traditional Richardson-Lucy deconvolution method, a novel hybrid regularization image restoration algorithm based on total variation is proposed in this paper. The key ides is that the hybrid regularization terms are employed according to the characteristics of different regions in the image itself. At the same time, the threshold between the different regularization terms is selected according to the golden section point which takes into account the human eye's visual feeling. Experimental results show that the restoration results of the proposed method are better than that of the total variation Richardson-Lucy algorithm both in PSNR and MSE, and it has the better visual effect simultaneously.

  18. Analysis of an Optimized MLOS Tomographic Reconstruction Algorithm and Comparison to the MART Reconstruction Algorithm

    NASA Astrophysics Data System (ADS)

    La Foy, Roderick; Vlachos, Pavlos

    2011-11-01

    An optimally designed MLOS tomographic reconstruction algorithm for use in 3D PIV and PTV applications is analyzed. Using a set of optimized reconstruction parameters, the reconstructions produced by the MLOS algorithm are shown to be comparable to reconstructions produced by the MART algorithm for a range of camera geometries, camera numbers, and particle seeding densities. The resultant velocity field error calculated using PIV and PTV algorithms is further minimized by applying both pre and post processing to the reconstructed data sets.

  19. Linear antenna array optimization using flower pollination algorithm.

    PubMed

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance. PMID:27066339

  20. Hybrid Training Method for MLP: Optimization of Architecture and Training.

    PubMed

    Zanchettin, C; Ludermir, T B; Almeida, L M

    2011-08-01

    The performance of an artificial neural network (ANN) depends upon the selection of proper connection weights, network architecture, and cost function during network training. This paper presents a hybrid approach (GaTSa) to optimize the performance of the ANN in terms of architecture and weights. GaTSa is an extension of a previous method (TSa) proposed by the authors. GaTSa is based on the integration of the heuristic simulated annealing (SA), tabu search (TS), genetic algorithms (GA), and backpropagation, whereas TSa does not use GA. The main advantages of GaTSa are the following: a constructive process to add new nodes in the architecture based on GA, the ability to escape from local minima with uphill moves (SA feature), and faster convergence by the evaluation of a set of solutions (TS feature). The performance of GaTSa is investigated through an empirical evaluation of 11 public-domain data sets using different cost functions in the simultaneous optimization of the multilayer perceptron ANN architecture and weights. Experiments demonstrated that GaTSa can also be used for relevant feature selection. GaTSa presented statistically relevant results in comparison with other global and local optimization techniques. PMID:21317085

  1. Specific optimization of genetic algorithm on special algebras

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim; Novak, Vilem; Dyba, Martin; Schenk, Jiri

    2016-06-01

    Searching for complex finite algebras can be succesfully done by the means of genetic algorithm as we showed in former works. This genetic algorithm needs specific optimization of crossover and mutation. We present details about these optimizations which are already implemented in software application for this task - EQCreator.

  2. An Effective Hybrid Cuckoo Search Algorithm with Improved Shuffled Frog Leaping Algorithm for 0-1 Knapsack Problems

    PubMed Central

    Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun

    2014-01-01

    An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940

  3. An effective hybrid cuckoo search algorithm with improved shuffled frog leaping algorithm for 0-1 knapsack problems.

    PubMed

    Feng, Yanhong; Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun

    2014-01-01

    An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940

  4. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  5. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  6. A convergent hybrid decomposition algorithm model for SVM training.

    PubMed

    Lucidi, Stefano; Palagi, Laura; Risi, Arnaldo; Sciandrone, Marco

    2009-06-01

    Training of support vector machines (SVMs) requires to solve a linearly constrained convex quadratic problem. In real applications, the number of training data may be very huge and the Hessian matrix cannot be stored. In order to take into account this issue, a common strategy consists in using decomposition algorithms which at each iteration operate only on a small subset of variables, usually referred to as the working set. Training time can be significantly reduced by using a caching technique that allocates some memory space to store the columns of the Hessian matrix corresponding to the variables recently updated. The convergence properties of a decomposition method can be guaranteed by means of a suitable selection of the working set and this can limit the possibility of exploiting the information stored in the cache. We propose a general hybrid algorithm model which combines the capability of producing a globally convergent sequence of points with a flexible use of the information in the cache. As an example of a specific realization of the general hybrid model, we describe an algorithm based on a particular strategy for exploiting the information deriving from a caching technique. We report the results of computational experiments performed by simple implementations of this algorithm. The numerical results point out the potentiality of the approach. PMID:19435679

  7. Transonic Wing Shape Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  8. A new algorithm for L2 optimal model reduction

    NASA Technical Reports Server (NTRS)

    Spanos, J. T.; Milman, M. H.; Mingori, D. L.

    1992-01-01

    In this paper the quadratically optimal model reduction problem for single-input, single-output systems is considered. The reduced order model is determined by minimizing the integral of the magnitude-squared of the transfer function error. It is shown that the numerator coefficients of the optimal approximant satisfy a weighted least squares problem and, on this basis, a two-step iterative algorithm is developed combining a least squares solver with a gradient minimizer. Convergence of the proposed algorithm to stationary values of the quadratic cost function is proved. The formulation is extended to handle the frequency-weighted optimal model reduction problem. Three examples demonstrate the optimization algorithm.

  9. Optimization of aeroelastic composite structures using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Manan, A.; Vio, G. A.; Harmin, M. Y.; Cooper, J. E.

    2010-02-01

    The flutter/divergence speed of a simple rectangular composite wing is maximized through the use of different ply orientations. Four different biologically inspired optimization algorithms (binary genetic algorithm, continuous genetic algorithm, particle swarm optimization, and ant colony optimization) and a simple meta-modeling approach are employed statistically on the same problem set. In terms of the best flutter speed, it was found that similar results were obtained using all of the methods, although the continuous methods gave better answers than the discrete methods. When the results were considered in terms of the statistical variation between different solutions, ant colony optimization gave estimates with much less scatter.

  10. Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    PubMed Central

    Loewe, Axel; Wilhelms, Mathias; Schmid, Jochen; Krause, Mathias J.; Fischer, Fathima; Thomas, Dierk; Scholz, Eberhard P.; Dössel, Olaf; Seemann, Gunnar

    2016-01-01

    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non

  11. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    PubMed Central

    Amudha, P.; Karthik, S.; Sivakumari, S.

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different. PMID:26221625

  12. A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data.

    PubMed

    Crevecoeur, Guillaume; Hallez, Hans; Van Hese, Peter; D'Asseler, Yves; Dupré, Luc; Van de Walle, Rik

    2008-08-01

    Epilepsy is a neurological disorder caused by intense electrical activity in the brain. The electrical activity, which can be modelled through the superposition of several electrical dipoles, can be determined in a non-invasive way by analysing the electro-encephalogram. This source localization requires the solution of an inverse problem. Locally convergent optimization algorithms may be trapped in local solutions and when using global optimization techniques, the computational effort can become expensive. Fast recovery of the electrical sources becomes difficult that way. Therefore, there is a need to solve the inverse problem in an accurate and fast way. This paper performs the localization of multiple dipoles using a global-local hybrid algorithm. Global convergence is guaranteed by using space mapping techniques and independent component analysis in a computationally efficient way. The accuracy is locally obtained by using the Recursively Applied and Projected-MUltiple Signal Classification (RAP-MUSIC) algorithm. When using this hybrid algorithm, a four times faster solution is obtained. PMID:18427852

  13. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features.

    PubMed

    Amudha, P; Karthik, S; Sivakumari, S

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different. PMID:26221625

  14. Automated design of multiphase space missions using hybrid optimal control

    NASA Astrophysics Data System (ADS)

    Chilan, Christian Miguel

    A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving the associated continuous optimal control problem. This strategy, however, will most likely yield a sub-optimal solution, as the problem is sophisticated for several reasons. For example, the number of events in the optimal mission structure is not known a priori and the system equations of motion change depending on what event is current. In this work a framework for the automated design of multiphase space missions is presented using hybrid optimal control (HOC). The method developed uses two nested loops: an outer-loop that handles the discrete dynamics and finds the optimal mission structure in terms of the categorical variables, and an inner-loop that performs the optimization of the corresponding continuous-time dynamical system and obtains the required control history. Genetic algorithms (GA) and direct transcription with nonlinear programming (NLP) are introduced as methods of solution for the outer-loop and inner-loop problems, respectively. Automation of the inner-loop, continuous optimal control problem solver, required two new technologies. The first is a method for the automated construction of the NLP problems resulting from the use of a direct solver for systems with different structures, including different numbers of categorical events. The method assembles modules, consisting of parameters and constraints appropriate to each event, sequentially according to the given mission structure. The other new technology is for a robust initial guess generator required by the inner-loop NLP problem solver. Two new methods were developed for cases including low-thrust trajectories. The first method, based on GA

  15. Abstract models for the synthesis of optimization algorithms.

    NASA Technical Reports Server (NTRS)

    Meyer, G. G. L.; Polak, E.

    1971-01-01

    Systematic approach to the problem of synthesis of optimization algorithms. Abstract models for algorithms are developed which guide the inventive process toward ?conceptual' algorithms which may consist of operations that are inadmissible in a practical method. Once the abstract models are established a set of methods for converting ?conceptual' algorithms falling into the class defined by the abstract models into ?implementable' iterative procedures is presented.

  16. Genetic-Algorithm Tool For Search And Optimization

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven

    1995-01-01

    SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.

  17. Parallel Hybrid Vehicle Optimal Storage System

    NASA Technical Reports Server (NTRS)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  18. Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.

    PubMed

    Ohnishi, Takashi; Suzuki, Masahiko; Kobayashi, Tatsuya; Naomoto, Shinji; Sukegawa, Tomoyuki; Nawata, Atsushi; Haneishi, Hideaki

    2013-01-01

    Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone. PMID:23138929

  19. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    PubMed Central

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416

  20. An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization.

    PubMed

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416

  1. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm

    PubMed Central

    Hoffmann, Thomas J.; Zhan, Yiping; Kvale, Mark N.; Hesselson, Stephanie E.; Gollub, Jeremy; Iribarren, Carlos; Lu, Yontao; Mei, Gangwu; Purdy, Matthew M.; Quesenberry, Charles; Rowell, Sarah; Shapero, Michael H.; Smethurst, David; Somkin, Carol P.; Van den Eeden, Stephen K.; Walter, Larry; Webster, Teresa; Whitmer, Rachel A.; Finn, Andrea; Schaefer, Catherine; Kwok, Pui-Yan; Risch, Neil

    2012-01-01

    Four custom Axiom genotyping arrays were designed for a genome-wide association (GWA) study of 100,000 participants from the Kaiser Permanente Research Program on Genes, Environment and Health. The array optimized for individuals of European race/ethnicity was previously described. Here we detail the development of three additional microarrays optimized for individuals of East Asian, African American, and Latino race/ethnicity. For these arrays, we decreased redundancy of high-performing SNPs to increase SNP capacity. The East Asian array was designed using greedy pairwise SNP selection. However, removing SNPs from the target set based on imputation coverage is more efficient than pairwise tagging. Therefore, we developed a novel hybrid SNP selection method for the African American and Latino arrays utilizing rounds of greedy pairwise SNP selection, followed by removal from the target set of SNPs covered by imputation. The arrays provide excellent genome-wide coverage and are valuable additions for large-scale GWA studies. PMID:21903159

  2. Truss optimization on shape and sizing with frequency constraints based on orthogonal multi-gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Khatibinia, Mohsen; Sadegh Naseralavi, Seyed

    2014-12-01

    Structural optimization on shape and sizing with frequency constraints is well-known as a highly nonlinear dynamic optimization problem with several local optimum solutions. Hence, efficient optimization algorithms should be utilized to solve this problem. In this study, orthogonal multi-gravitational search algorithm (OMGSA) as a meta-heuristic algorithm is introduced to solve truss optimization on shape and sizing with frequency constraints. The OMGSA is a hybrid approach based on a combination of multi-gravitational search algorithm (multi-GSA) and an orthogonal crossover (OC). In multi-GSA, the population is split into several sub-populations. Then, each sub-population is independently evaluated by an improved gravitational search algorithm (IGSA). Furthermore, the OC is used in the proposed OMGSA in order to find and exploit the global solution in the search space. The capability of OMGSA is demonstrated through six benchmark examples. Numerical results show that the proposed OMGSA outperform the other optimization techniques.

  3. Time optimal route planning algorithm of LBS online navigation

    NASA Astrophysics Data System (ADS)

    Li, Yong; Bao, Shitai; Su, Kui; Fang, Qiushui; Yang, Jingfeng

    2011-02-01

    This paper proposes a time optimal route planning optimization algorithm in the mode of LBS online navigation based on the improved Dijkstra algorithms. Combined with the returning real-time location information by on-line users' handheld terminals, the algorithm can satisfy requirement of the optimal time in the mode of LBS online navigation. A navigation system is developed and applied in actual navigation operations. Operating results show that the algorithm could form a reasonable coordination on the basis of shortest route and fastest velocity in the requirement of optimal time. The algorithm could also store the calculated real-time route information in the cache to improve the efficiency of route planning and to reduce the planning time-consuming.

  4. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  5. Genetic optimization of the HSTAMIDS landmine detection algorithm

    NASA Astrophysics Data System (ADS)

    Konduri, Ravi K.; Solomon, Geoff Z.; DeJong, Keith; Duvoisin, Herbert A.; Bartosz, Elizabeth E.

    2004-09-01

    CyTerra's dual sensor HSTAMIDS system has demonstrated exceptional landmine detection capabilities in extensive government-run field tests. Further optimization of the highly successful PentAD-class algorithms for Humanitarian Demining (HD) use (to enhance detection (Pd) and to lower the false alarm rate (FAR)) may be possible. PentAD contains several input parameters, making such optimization computationally intensive. Genetic algorithm techniques, which formerly provided substantial improvement in the detection performance of the metal detector sensor algorithm alone, have been applied to optimize the numerical values of the dual-sensor algorithm parameters. Genetic algorithm techniques have also been applied to choose among several sub-models and fusion techniques to potentially train the HSTAMIDS HD system in new ways. In this presentation we discuss the performance of the resulting algorithm as applied to field data.

  6. A Danger-Theory-Based Immune Network Optimization Algorithm

    PubMed Central

    Li, Tao; Xiao, Xin; Shi, Yuanquan

    2013-01-01

    Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853

  7. Weight minimization of structures for fixed flutter speed via an optimality criterion. [algorithm for lifting surfaces

    NASA Technical Reports Server (NTRS)

    Segenreich, S. A.; Mcintosh, S. C., Jr.

    1975-01-01

    A rigorous optimality criterion is derived and a hybrid weight-reduction algorithm developed for the weight minimization of lifting surfaces with a constraint on flutter speed. The weight-reduction algorithm incorporates a simple recursion formula derived from the optimality criterion. Monotonic weight reduction is accomplished by dynamically adjusting a parameter in the recursion formula so as to achieve a predetermined weight decrease. The algorithm thus combines the simplicity of optimality-criterion methods with the convergence characteristics of mathematical-programming methods. The imposition of the flutter constraint is simplified by forcing to zero the imaginary part of the flutter eigenvalue, with the airspeed fixed. Four examples are discussed. The results suggest that significant improvements in efficiency are possible, in comparison with techniques based purely on mathematical programming.

  8. GenMin: An enhanced genetic algorithm for global optimization

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, I. E.

    2008-06-01

    A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the

  9. Structural Query Optimization in Native XML Databases: A Hybrid Approach

    NASA Astrophysics Data System (ADS)

    Haw, Su-Cheng; Lee, Chien-Sing

    As XML (eXtensible Mark-up Language) is gaining its popularity in data exchange over the Web, querying XML data has become an important issue to be addressed. In native XML databases (NXD), XML documents are usually modeled as trees and XML queries are typically specified in path expression. The primitive structural relationships are Parent-Child (P-C), Ancestor-Descendant (A-D), sibling and ordered query. Thus, a suitable and compact labeling scheme is crucial to identify these relationships and henceforth to process the query efficiently. We propose a novel labeling scheme consisting of < self-level:parent> to support all these relationships efficiently. Besides, we adopt the decomposition-matching-merging approach for structural query processing and propose a hybrid query optimization technique, TwigINLAB to process and optimize the twig query evaluation. Experimental results indicate that TwigINLAB can process all types of XML queries 15% better than the TwigStack algorithm in terms of execution time in most test cases.

  10. Genetic algorithms - What fitness scaling is optimal?

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik; Quintana, Chris; Fuentes, Olac

    1993-01-01

    A problem of choosing the best scaling function as a mathematical optimization problem is formulated and solved under different optimality criteria. A list of functions which are optimal under different criteria is presented which includes both the best functions empirically proved and new functions that may be worth trying.