Science.gov

Sample records for hybrid organic-inorganic nanomaterials

  1. Hyperbranched polymers and dendrimers as templates for organic/inorganic hybrid nanomaterials.

    PubMed

    Huang, Xinhua; Zheng, Sudan; Kim, Il

    2014-02-01

    This paper reviews the recent research and development of hyperbranched polymers (HPs) and dendrimers, and their use as templates for organic-inorganic hybrid nanomaterials. Hyperbranched polymers (HPs) are highly branched macromolecules with three-dimensional globular structures featuring unique properties such as low viscosity, high solubility, and a large number of terminal functional groups compared to their linear analogs. They are easily prepared by (1) condensation polymerization, (2) self-condensing vinyl copolymerization (SCVCP), and (3) ring-opening multibranch polymerization methods. Organic-inorganic hybrid nanomaterials are synthesized by a template approach using HPs/dendrimers. Monometallic, bimetallic (alloy and core/shell), semiconductor, and metal oxide nanoparticles have been prepared by this route. The dendrimer component of these composites serves not only as a template for preparing the nanoparticles but also as a stabilizer for the nanoparticles. PMID:24749446

  2. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    PubMed

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices. PMID:27093096

  3. Organic/inorganic hybrid coatings for anticorrosion

    NASA Astrophysics Data System (ADS)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  4. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  5. Anticorrosive organic/inorganic hybrid coatings

    NASA Astrophysics Data System (ADS)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  6. Natural hybrid organic-inorganic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  7. Special section guest editorial: Hybrid organic-inorganic solar cells

    DOE PAGESBeta

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  8. Special section guest editorial: Hybrid organic-inorganic solar cells

    SciTech Connect

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  9. Synergistic hybrid organic-inorganic aerogels.

    PubMed

    Wang, Xiao; Jana, Sadhan C

    2013-07-10

    A class of inorganic-organic hybrid mesoporous aerogel structure was synthesized by growing gel in a gel. In Type 1, silica gels were grown inside the macropores of thermoreversible syndiotactic polystyrene (sPS) gel, while Type 2 hybrid aerogels were obtained by thermoreversible gelation of sPS chains in the mesopores of preformed silica gel. The hybrid gels were converted into aerogels by exchanging the solvent with liquid carbon dioxide followed by supercritical drying. The hybrid aerogels presented cocontinuous networks of pearl-necklace silica particles and crystalline strands of sPS and exhibited the "petal effect" due to the presence of superhydrophobic sPS and hygroscopic silica. The compressive modulus and compressive strain show large enhancements over sPS and silica aerogels indicating synergy, although Type 1 hybrid aerogels were found to be more robust. The hybrid aerogels showed fast absorption and high absorption capacity for a representative hydrocarbon liquid. PMID:23773123

  10. Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges.

    PubMed

    Berry, Joseph; Buonassisi, Tonio; Egger, David A; Hodes, Gary; Kronik, Leeor; Loo, Yueh-Lin; Lubomirsky, Igor; Marder, Seth R; Mastai, Yitzhak; Miller, Joel S; Mitzi, David B; Paz, Yaron; Rappe, Andrew M; Riess, Ilan; Rybtchinski, Boris; Stafsudd, Oscar; Stevanovic, Vladan; Toney, Michael F; Zitoun, David; Kahn, Antoine; Ginley, David; Cahen, David

    2015-09-16

    The conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues. PMID:26223962

  11. A hybrid organic-inorganic molecular daisy chain.

    PubMed

    Fernandez, Antonio; Moreno Pineda, Eufemio; Ferrando-Soria, Jesùs; McInnes, Eric J L; Timco, Grigore A; Winpenny, Richard E P

    2015-07-14

    A hybrid organic-inorganic molecular daisy chain has been synthesised in one pot reaction. The molecule contains two {Cr6Zn2} rings linked through an organic molecule that acts as both template and ligand. Magnetic and spectroscopic data reveal the magnetic complexity of the daisy chain, which can be casted to two magnetic isomers through comparison of experimental and simulated data for Cr(III) chains. PMID:26073048

  12. Organic-inorganic hybrids from renewable plant oils and clay.

    PubMed

    Uyama, Hiroshi; Kuwabara, Mai; Tsujimoto, Takashi; Nakano, Mitsuru; Usuki, Arimitsu; Kobayashi, Shiro

    2004-03-15

    This study deals with the preparation and properties of a new class of organic-inorganic hybrids from renewable resources. The hybrids were synthesized by an acid-catalyzed curing of epoxidized triglycerides in the presence of an organophilic montmorillonite (a modified clay). The mechanical properties were improved by the incorporation of clay in the oil-based polymer matrix. The reinforcement effect due to the addition of clay was confirmed by dynamic viscoelasticity analysis. The hybrids showed relatively high thermal stability. The co-curing of epoxidized soybean and linseed oils in the presence of clay produced hybrids with controlled mechanical and coating properties. The barrier property of the hybrid towards water vapor was superior to that of the oil polymer. The development of the present hybrids consisting of inexpensive renewable resources, triglyceride and clay is expected to contribute to global sustainability. PMID:15468227

  13. Organic/inorganic hybrid materials: challenges for ab initio methodology.

    PubMed

    Draxl, Claudia; Nabok, Dmitrii; Hannewald, Karsten

    2014-11-18

    CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in

  14. Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films.

    PubMed

    Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang

    2016-07-13

    Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices. PMID:27267266

  15. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  16. Organic-Inorganic Hybrids Using Novel Phenylethynyl Imide Silanes

    NASA Technical Reports Server (NTRS)

    Park, C.; Lowther, S. E.; Smith, J. G., Jr.

    2001-01-01

    In this presentation, polyimide-silica hybrids using novel phenylethynyl imide silanes are reported. The phenylethynyl group is present in the organic precursor as either a pendent or an end group to bond chemically with the polyimide adhesive containing phenylethynyl groups during processing, while the silane group of the organic precursor would chemically react with the inorganic precursor through oxane bond formation. The chemical compositions of these novel hybrids were examined using X-ray mapping modes of scanning electron microscopy (SEM), which revealed a silicon gradient interphase between the high surface energy substrate and the polyimide adhesive. Novel aromatic phenylethynyl imide silanes (APEISs) and pendent phenylethynyl imide oligomeric disilanes (PPEIDSs) have been synthesized, and sol-gel solutions containing the new silanes, a phenylethynyl terminated imide oligomer (PETI-5), and an inorganic precursor were formulated to develop a gradient hybrid interphase between a titanium alloy and the adhesive. Two different sol-gel systems were investigated to develop organic-inorganic hybrids. Hybrid I was composed of an organic precursor containing both phenylethynyl and silane groups (PPEIDS) and an inorganic precursor. Functional group concentrations were controlled by the variation of the molecular weight of the imide backbone of PPEIDS. Hybrid II was composed of organic and inorganic precursors and a coupling agent containing both phenylethynyl and silane groups. Morphology and chemical composition of the hybrid interphase between the inorganic substrate and the adhesive were investigated, and the bond strength and durability were evaluated using lap shear tests at various conditions. The assessment of how the bonding at an interface is affected by various sol-gel solution compositions and environments is reported.

  17. Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks.

    PubMed

    Chen, Yu; Shi, Jianlin

    2016-05-01

    Organic-inorganic hybrid materials aiming to combine the individual advantages of organic and inorganic components while overcoming their intrinsic drawbacks have shown great potential for future applications in broad fields. In particular, the integration of functional organic fragments into the framework of mesoporous silica to fabricate mesoporous organosilica materials has attracted great attention in the scientific community for decades. The development of such mesoporous organosilica materials has shifted from bulk materials to nanosized mesoporous organosilica nanoparticles (designated as MONs, in comparison with traditional mesoporous silica nanoparticles (MSNs)) and corresponding applications in nanoscience and nanotechnology. In this comprehensive review, the state-of-art progress of this important hybrid nanomaterial family is summarized, focusing on the structure/composition-performance relationship of MONs of well-defined morphology, nanostructure, and nanoparticulate dimension. The synthetic strategies and the corresponding mechanisms for the design and construction of MONs with varied morphologies, compositions, nanostructures, and functionalities are overviewed initially. Then, the following part specifically concentrates on their broad spectrum of applications in nanotechnology, mainly in nanomedicine, nanocatalysis, and nanofabrication. Finally, some critical issues, presenting challenges and the future development of MONs regarding the rational synthesis and applications in nanotechnology are summarized and discussed. It is highly expected that such a unique molecularly organic-inorganic nanohybrid family will find practical applications in nanotechnology, and promote the advances of this discipline regarding hybrid chemistry and materials. PMID:26936391

  18. Layered structures of organic/inorganic hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Minh, Nguyen Viet

    2016-03-01

    Organic-inorganic hybrid halide perovskites, in which the A cations of an ABX3 perovskite are replaced by organic cations, may be used for photovoltaic and solar thermoelectric applications. In this contribution, we systematically study three lead-free hybrid perovskites, i.e., methylammonium tin iodide CH3NH3SnI3 , ammonium tin iodide NH4SnI3 , and formamidnium tin iodide HC (NH2)2SnI3 by first-principles calculations. We find that in addition to the commonly known motif in which the corner-shared SnI6 octahedra form a three-dimensional network, these materials may also favor a two-dimensional (layered) motif formed by alternating layers of the SnI6 octahedra and the organic cations. These two motifs are nearly equal in free energy and are separated by low barriers. These layered structures features many flat electronic bands near the band edges, making their electronic structures significantly different from those of the structural phases composed of three-dimension networks of SnI6 octahedra. Furthermore, because the electronic structures of HC (NH2)2SnI3 are found to be rather similar to those of CH3NH3SnI3 , formamidnium tin iodide may also be promising for the applications of methylammonium tin iodide.

  19. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells.

    PubMed

    Jeon, Taewoo; Jin, Hyeong Min; Lee, Seung Hyun; Lee, Ju Min; Park, Hyung Il; Kim, Mi Kyung; Lee, Keon Jae; Shin, Byungha; Kim, Sang Ouk

    2016-08-23

    Organic-inorganic hybrid perovskites attract enormous research interest for next generation solar energy harvest. Synergistic crystalline structures comprising organic and inorganic components enable solution processing of perovskite films. A reliable crystallization method for perovskites, compatible with fast continuous process over large-area flexible substrates, is crucial for high performance solar cell production. Here, we present laser crystallization of hybrid perovskite solar cells using near-infrared (NIR) laser (λ = 1064 nm). Crystalline morphology of CH3NH3PbI3 (MAPbI3) perovskite films are widely controllable with laser irradiation condition while maintaining film uniformity. Photothermal heating effectively assisted by interfacial photoconversion layers is critical for phase transformation without beam damage of multilayered device structures. Notably, laser crystallization attains higher device performances than conventional thermal annealing. Fast laser crystallization with manufacture level scan rate (1 m min(-1)) demonstrates inverted-type perovskite solar cells with 11.3 and 8.0% efficiencies on typical glass and flexible polymer substrates, respectively, without rigorous device optimization. PMID:27377145

  20. Structural diversity in hybrid organic-inorganic lead iodide materials.

    PubMed

    Weber, Oliver J; Marshall, Kayleigh L; Dyson, Lewis M; Weller, Mark T

    2015-12-01

    The structural chemistry of hybrid organic-inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6](4-) octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4](2-) separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6 octahedra are described. PMID:26634723

  1. Novel organic-inorganic hybrid and nano-structured materials

    NASA Astrophysics Data System (ADS)

    Jin, Danliang

    Organic polymers, i.e. polymethacrylates and polystyrene, and inorganic silica were successfully integrated covalently into one body, i.e. hybrid materials, at molecular level in a continuum ranging from pure polymer to pure silica via the sol-gel process. The synthetic conditions have been systematically studied and optimized. A fast and convenient method for the synthesis of polymethacrylate-silica hybrids with significantly low volume-shrinkages has been developed to address the intrinsic problems of the sol-gel process, i.e. large volume shrinkage and long drying times. The relationship of properties of the hybrids with the structures and organic-inorganic compositions have been established. The density, hardness and thermal stability increase with the silica content. Atomic force microscopy study of the morphology shows that the transparent hybrid materials, in which the polymer chains have a strong and intimate interaction with the silica matrix, have significantly different surface features from a translucent control sample. The compressive behavior of the hybrid materials is completely different from that of traditional composites. Toughness of the hybrid materials can be maximized and the strength can be dramatically increased by varying the silica content. Possible mechanisms for the formation of hybrid materials are proposed. Potential applications of the hybrid materials as dental fillers and cation exchangers were investigated. Amorphous silica was functionalized by doping with optically active compounds such as scD-glucose, diphenyl tartaric acid and maltose. The resultant nano-structured materials show excellent optical transparency to visible light. Optical rotation of the materials in the solid state was demonstrated quantitatively to be the same as that in solution. The specific rotation can be calculated directly according to Biot's equation. A non-surfactant templating approach has been developed for the preparation of mesoporous silica by

  2. Hybrid organic-inorganic systems derived from organotin nanobuilding blocks

    SciTech Connect

    Ribot, F.O.; Eychenne-Baron, C.; Banse, F.; Sanchez, C.

    1996-12-31

    A new synthesis of the macro-cation [(BuSn){sub 12}O{sub 14}(OH){sub 6}]{sup 2+} is described from commercially available and easy to handle BuSnO(OH) and p-toluene sulfonic acid. A crystalline compound, [(BuSn){sub 12}O{sub 14}(OH){sub 6}] (O{sub 3}SC{sub 6}H{sub 4}CH{sub 3}){sub 2}{center_dot}C{sub 4}H{sub 8}O{sub 2}, is obtained. It can react with tetramethylammonium hydroxide to yield the more versatile composition: [(BuSn){sub 12}O{sub 14}(OH){sub 6}](OH){sub 2}. The macro-cations are then used as nanobuilding blocks and assembled in rosary-like structures by carboxy-terminated poly(ethyleneglycol). The resulting system can be pictured as hybrid organic-inorganic alternated block co-polymers. Characterizations were performed with {sup 119}Sn NMR (solution and solid state), {sup 13}C CP-MAS NMR and FT-IR.

  3. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    PubMed Central

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins incorporating silsesquioxane (SSQ) species into the photopolymerized networks were investigated as a route to improve these properties. Thiol- and ene-functionalized SSQs (SH-SSQ and allyl-SSQ, respectively) were synthesized via alkoxysilane hydrolysis/condensation chemistry, using a photopolymerizable monomer [either pentaerythriol tetrakis(3-mercaptopropionate) (PETMP) or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO)] as the reaction solvent. The resulting SSQ-containing solutions (SSQ-PETMP and SSQ-TATATO) were characterized, and their incorporation into photopolymerized networks was evaluated. PMID:21984847

  4. A novel photodiode made of hybrid organic/inorganic nanocomposite

    NASA Astrophysics Data System (ADS)

    Mahmoud, Waleed E.

    2009-08-01

    Novel hybrid organic/inorganic nanocomposites made of metal oxide and conjugated polymer nanocomposite and its application in bulk-heterojunction solar cells were studied. The composite was composed of different concentrations of strontium titanate (SrTiO3) and polyaniline doped phosphoric acid. The optimum concentration of strontium titanate was found to be 0.2 v/v. An inorganic-organic photovoltaic device with a structure of Ag/Pani-H3PO4-SrTiO3/Al has been fabricated. The ideality factor value of the diode was found to be 1.8. This n value of the diode implies a deviation from ideal junction behaviour. The barrier height phib value for the diode was found to be 0.56 eV. The Ag/Pani-H3PO4-SrTiO3/Al diode shows a photovoltaic behaviour with a maximum open-circuit voltage Voc of 2.49 V, and short-circuit current Isc of 5.6 mA under light illumination λ = 460 nm. The conversion efficiency was found to be 5.2%. It is evaluated that the Ag/Pani-H3PO4-SrTiO3/Al diode is a good photodiode with calculated electronic parameters.

  5. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks.

    PubMed

    Schreck, Kathleen M; Leung, Diana; Bowman, Christopher N

    2011-09-15

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (T(g)) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins incorporating silsesquioxane (SSQ) species into the photopolymerized networks were investigated as a route to improve these properties. Thiol- and ene-functionalized SSQs (SH-SSQ and allyl-SSQ, respectively) were synthesized via alkoxysilane hydrolysis/condensation chemistry, using a photopolymerizable monomer [either pentaerythriol tetrakis(3-mercaptopropionate) (PETMP) or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO)] as the reaction solvent. The resulting SSQ-containing solutions (SSQ-PETMP and SSQ-TATATO) were characterized, and their incorporation into photopolymerized networks was evaluated. PMID:21984847

  6. Organic-inorganic hybrid solar cells via electropolymerization

    NASA Astrophysics Data System (ADS)

    Feng, Wenchun

    /ZnO photovoltaics. Our electropolymerization approach to integrate the organic and inorganic phases aims at understanding the chemistry at the interface, and the electronic and morphological properties of the system. This work should be generally applicable to other conjugated polymers and nanostructures, and it contributes to an understanding of organic-inorganic interfaces and electronic structures that may be advantageous to a range of electronic/photonic applications.

  7. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J.; Oyewole, O. K.; Tong, T.; Anye, V. C.; Rwenyagila, E.; Asare, J.; Fashina, A.; Soboyejo, W. O.

    2014-08-21

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  8. Thin Film Solar Cells: Organic, Inorganic and Hybrid

    NASA Technical Reports Server (NTRS)

    Dankovich, John

    2004-01-01

    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  9. Hybrid Organic-Inorganic Perovskites on the Move.

    PubMed

    Egger, David A; Rappe, Andrew M; Kronik, Leeor

    2016-03-15

    Hybrid organic-inorganic perovskites (HOIPs) are crystals with the structural formula ABX3, where A, B, and X are organic and inorganic ions, respectively. While known for several decades, HOIPs have only in recent years emerged as extremely promising semiconducting materials for solar energy applications. In particular, power-conversion efficiencies of HOIP-based solar cells have improved at a record speed and, after only little more than 6 years of photovoltaics research, surpassed the 20% threshold, which is an outstanding result for a solution-processable material. It is thus of fundamental importance to reveal physical and chemical phenomena that contribute to, or limit, these impressive photovoltaic efficiencies. To understand charge-transport and light-absorption properties of semiconducting materials, one often invokes a lattice of ions displaced from their static positions only by harmonic vibrations. However, a preponderance of recent studies suggests that this picture is not sufficient for HOIPs, where a variety of structurally dynamic effects, beyond small harmonic vibrations, arises already at room temperature. In this Account, we focus on these effects. First, we review structure and bonding in HOIPs and relate them to the promising charge-transport and absorption properties of these materials, in terms of favorable electronic properties. We point out that HOIPs are much "softer" mechanically, compared to other efficient solar-cell materials, and that this can result in large ionic displacements at room temperature. We therefore focus next on dynamic structural effects in HOIPs, going beyond a static band-structure picture. Specifically, we discuss pertinent experimental and theoretical findings as to phase-transition behavior and molecular/octahedral rearrangements. We then discuss atomic diffusion phenomena in HOIPs, with an emphasis on the migration of intrinsic and extrinsic ionic species. From this combined perspective, HOIPs appear as highly

  10. Organic/Inorganic Hybrid Nanocomposite Infrared Photodetection by Intraband Absorption

    NASA Astrophysics Data System (ADS)

    Lantz, Kevin Richard

    The ability to detect infrared radiation is vital for a host of applications that include optical communication, medical diagnosis, thermal imaging, atmospheric monitoring, and space science. The need to actively cool infrared photon detectors increases their operation cost and weight, and the focus of much recent research has been to limit the dark current and create room-temperature infrared photodetectors appropriate for mid-to-long-wave infrared detection. Quantum dot infrared photodetectors (QDIPs) provide electron quantum confinement in three dimensions and have been shown to demonstrate high temperature operation (T>150 K) due to lower dark currents. However, these inorganic devices have not achieved sensitivity comparable to state-of-the-art photon detectors, due in large part to the inability to control the uniformity (size and shape) of QDs during strained-layer epitaxy. The purpose of this dissertation research was to investigate the feasibility of room-temperature infrared photodetection that could overcome the shortfalls of QDIPs by using chemically synthesized inorganic colloidal quantum dots (CQDs). CQDs are coated with organic molecules known as surface ligands that prevent the agglomeration of dots while in solution. When CQDs are suspended in a semiconducting organic polymer, these materials are known as organic/inorganic hybrid nanocomposites. The novel approach investigated in this work was to use intraband transitions in the conduction band of the polymer-embedded CQD for room-temperature photodetection in the mid-wave, and possibly long-wave, infrared ranges. Hybrid nanocomposite materials promise room-temperature operation due to: (i) large bandgaps of the inorganic CQDs and the semiconducting polymer that reduce thermionic emission; and (ii) low dark current due to the three-dimensional electron confinement in the CQD and low carrier mobility in the semiconducting polymer. The primary material system investigated in this research was Cd

  11. Organic-inorganic hybrid nanostructures for solar cell applications

    NASA Astrophysics Data System (ADS)

    AbdulAlmohsin, Samir M.

    The enticing electro-optical properties of nanostructured materials such as carbon nanotubes, graphene, CdS nanocrystals and ZnO nanowrie bring new vigor into the innovation of photovoltaics. The main purpose of this dissertation is to develop novel nano-structured materials for low cost solar cell applications. Fabrication, characterization, and solar cell application of organic-inorganic hybrid structures are the main focus of this research. Polyaniline (PANI)/multi-walled carbon nanotube (MWNT) composite films were synthesized by an electrochemical polymerization of aniline with airbrushed MWNTs on ITO substrates. It was found that the incorporation of MWNTs in PANI effectively increase the film conductivity with a percolation threshold of 5% of nanotubes in the composite. The solar cell performance strongly depends on the conductivity of the composite films, which can be tuned by adjusting nanotube concentration. A higher conductivity resulted in a better cell performance, resulting from an efficient charge collection. This study indicates that PANI/MWNT composite films with optimized conductivity are potentially useful for low-cost hybrid solar cell applications. CdS nanocrystal-sensitized solar cells (NCSSCs) were investigated by using polyaniline (PANI) as a replacement for conventional platinum counter electrode. The growth time of the nanocrystals significantly affects the solar cell performance. At an optimum growth, the NCSSCs exhibit 0.83% of the conversion efficiency in comparison to 0.13% for the identical cells without CdS nanocrystals. Electrochemical impedance spectroscopy showed that the charge transfer in the solar cells with CdS nanocrystals was improved. The enhanced overall energy conversion efficiency by nanocrystals is attributed to improved light absorption and suppressed recombination rate of interfacial charges at the injection, resulting in significantly improved charge transfer and electron lifetime. In addition, the PANI electrodes

  12. Air stable organic-inorganic nanoparticles hybrid solar cells

    DOEpatents

    Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.

    2015-09-29

    A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.

  13. High capacitance hybrid organic-inorganic gate dielectrics for solution-processable electronic technologies

    NASA Astrophysics Data System (ADS)

    Everaerts, Ken

    Solution-processable materials offer enormous opportunity in designing lightweight, flexible, and low-cost electronic technologies. Dielectric materials and the different classes of semiconductors (derived from organics, inorganics, or nanomaterials) comprise the two most important components in transistors, which are the basic building blocks of all modern electronic devices. New semiconductors such as single-walled carbon nanotubes (SWCNTs) and inorganic amorphous oxide semiconductors (AOSs), including indium gallium zinc oxide (IGZO), are envisioned for high performance applications as a possible replacement for silicon within integrated circuits, display backplane technologies, or high throughput inkjet printing technologies that can be low in cost and waste. These new semiconductors, amongst others, require corresponding advances in gate dielectric materials to support optimum device function. Herein we describe research surrounding the advancement of organic-inorganic hybrid gate dielectric materials for use in thin-film transistor (TFT) architectures. We describe the reasoning, the strategy, and the properties of a new hafnium oxide-based self-assembled nanodielectric (Hf-SAND), and examine in detail the chemical structure/formation, and electronic performance. Record setting capacitance can be achieved by using thin multilayers of Hf-SAND (1.1 μF/cm2). Application of this new dielectric to the aforementioned SWCNT and IGZO semiconductors in an effort to demonstrate technological feasibility, yield record field-effect mobilities (20-130 cm2V-1s-1) and large ON state transconductances (up to 5 mS) at very low operating voltages (< 3 V), while retaining the ability to be processed completely from solution and in ambient atmosphere. These TFT performance metrics are examined in detail, and placed in perspective in relation to the Hf-SAND dielectric properties. Finally, we present some forward looking statements to help identify further opportunities for

  14. [Functionalization of screen printed electrodes with organic-inorganic hybrid nano-composites for bio-sensing applications].

    PubMed

    Shumyantseva, V V; Bulko, T V; Kuzikov, A V; Khan, R; Archakov, A I

    2015-01-01

    New types of organic-inorganic hybrid nanocomposites based on nanosized Titanium (IV) oxide TiO2 (<100 nm particle size) and carbon nanotubes (CNT, outer diameter 10-15 nm, inner diamentre 2-6 nm, length 0.1-10 µm) and phosphatidilcholine were elaborated for improvement of analytical characteristics of screen printed electrodes. These nanomaterials were employed as an interface for the immobilization of skeletal myoglobin. Electrochemical behavior of myoglobin on such interfaces was characterized with cyclic voltammetry (CV) and square wave voltammetry (SWV). Direct unmediated electron transfer between myoglobin and electrodes modified with organic-inorganic hybrid nanocomposites was registered. TiO2 film and CNT film are biocompartible nanomaterials for myoglobin as was demonstrated with UV-Vis spectra. The midpoint potential of Fe3+/Fe2+ pair of myoglobin corresponded to Е1/2=-0,263 V for CNT film, and Е1/2=-0,468 V for TiO2 nanocomposite (vs. Ag/AgCl reference electrode). PMID:26350738

  15. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor

    NASA Astrophysics Data System (ADS)

    Sun, Jiayu; Ge, Jiechao; Liu, Weimin; Lan, Minhua; Zhang, Hongyan; Wang, Pengfei; Wang, Yanming; Niu, Zhongwei

    2013-12-01

    This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2

  16. Hybrid organic-inorganic network coatings for protecting metal substrates from abrasion and corrosion

    SciTech Connect

    Jordens, K.; Wilkes, G.

    1996-12-31

    Ceramers or Ormocers are hybrid organic-inorganic materials first created a decade ago, and are the subject of a recent review article. Recent research from the authors laboratory in this area of materials science has focused on synthesizing protective coatings for (soft) polymeric substrates, i.e. polycarbonate. The authors have now extended the application of such coatings to metallic substrates.

  17. Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels

    NASA Technical Reports Server (NTRS)

    Evans, Owen R. (Inventor); Dong, Wenting (Inventor); Deshpande, Kiranmayi (Inventor)

    2015-01-01

    Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.

  18. Biomedical Applications of Magnetically Functionalized Organic/Inorganic Hybrid Nanofibers.

    PubMed

    Lee, Hwa-Jeong; Lee, Sang Joon; Uthaman, Saji; Thomas, Reju George; Hyun, Hoon; Jeong, Yong Yeon; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Nanofibers are one-dimensional nanomaterial in fiber form with diameter less than 1 µm and an aspect ratio (length/diameter) larger than 100:1. Among the different types of nanoparticle-loaded nanofiber systems, nanofibers loaded with magnetic nanoparticles have gained much attention from biomedical scientists due to a synergistic effect obtained from the unique properties of both the nanofibers and magnetic nanoparticles. These magnetic nanoparticle-encapsulated or -embedded nanofiber systems can be used not only for imaging purposes but also for therapy. In this review, we focused on recent advances in nanofibers loaded with magnetic nanoparticles, their biomedical applications, and future trends in the application of these nanofibers. PMID:26084046

  19. Biomedical Applications of Magnetically Functionalized Organic/Inorganic Hybrid Nanofibers

    PubMed Central

    Lee, Hwa-Jeong; Lee, Sang Joon; Uthaman, Saji; Thomas, Reju George; Hyun, Hoon; Jeong, Yong Yeon; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Nanofibers are one-dimensional nanomaterial in fiber form with diameter less than 1 µm and an aspect ratio (length/diameter) larger than 100:1. Among the different types of nanoparticle-loaded nanofiber systems, nanofibers loaded with magnetic nanoparticles have gained much attention from biomedical scientists due to a synergistic effect obtained from the unique properties of both the nanofibers and magnetic nanoparticles. These magnetic nanoparticle-encapsulated or -embedded nanofiber systems can be used not only for imaging purposes but also for therapy. In this review, we focused on recent advances in nanofibers loaded with magnetic nanoparticles, their biomedical applications, and future trends in the application of these nanofibers. PMID:26084046

  20. Organic-inorganic hybrid gels for the selective absorption of oils from water.

    PubMed

    Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal

    2016-06-01

    Organic-inorganic hybrid gels were synthesized by the condensation of a linear aliphatic diol (1,8-octanediol) and altering the chain length of the alkyltriethoxysilanes (from ethyltriethoxysilane to hexadecyltrimethoxysilane) through a bulk polymerization process without using any initiator, activator, catalyst, or solvent for the selective removal of oils from water. Fourier transform infrared spectroscopy (FTIR) and solid-state (13)C and (29)Si cross-polarization magic-angle spinning nuclear magnetic resonance (CPMAS NMR) were used for the structural analysis of hybrid gels. Thermal properties of the hybrid gels were determined by thermogravimetric analysis (TGA). Oil absorbency of organic-inorganic hybrid gels was determined by oil absorption tests. The results showed that hybrid gels have high and fast absorption capacities and excellent reusability. Good selectivity, high thermal stability, low density, and excellent recyclability for the oil removal give the material potential applications. PMID:26939691

  1. Low consumption power variable optical attenuator with sol-gel derived organic/inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Li, Dongxiao; Zhang, Yanwu; Liu, Liying; Xu, Lei

    2006-06-01

    An integrated optical waveguide variable optical attenuator (VOA) made of organic/inorganic hybrid materials was fabricated. At 1550 nm, the VOA showed a very low activation power of about 13 mW, due to the large thermo-optic coefficients of the hybrid materials. The optical power attenuations achieved were more than 25 dB for both TE and TM polarization. The response time of the device was less than 4.7 ms.

  2. Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures

    NASA Astrophysics Data System (ADS)

    Chanyawadee, S.; Lagoudakis, P. G.; Harley, R. T.; Lidzey, D. G.; Henini, M.

    2008-05-01

    Nonradiative energy transfer from a GaAs quantum well to a thin overlayer of an infrared organic semiconductor dye is unambiguously demonstrated. The dynamics of exciton transfer are studied in the time domain by using pump-probe spectroscopy at the donor site and fluorescence spectroscopy at the acceptor site. The effect is observed as simultaneous increase in the population decay rate at the donor and of the rise time of optical emission at the acceptor sites. The hybrid configuration under investigation provides an alternative nonradiative, noncontact pumping route to electrical carrier injection that overcomes the losses imposed by the associated low carrier mobility of organic emitters.

  3. Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake.

    PubMed

    Pandey, Sadanand; Mishra, Shivani B

    2011-09-15

    Organic-inorganic hybrid of chitosan and nanoclay (Cloisite 10A) was chosen to develop a nanomaterial with combine properties of hydrophilicity of an organic polycation and adsorption capacity of inorganic polyanion. The chitosan/clay nanocomposite (CCN) was prepared by solvent casting method. The material synthesis was found most efficient in adsorbent behavior was studied in detail taking Cr(VI) as representative ion. The chemical, structural and textural characteristics of the material were determined by FTIR, XRD, TEM, SEM and EDAX analysis. XRD and TEM results indicated that an exfoliated structure was formed with addition of small amounts of MMT-Na+(montmorillonite-Na(+)) to the chitosan matrix. These composite material were used for the removal of chromium(VI) from aqueous solution. The conditions for the adsorption by the composite have been optimized and kinetics and thermodynamic studies were performed. Though the adsorption takes place in wide pH range, pH 3 was found most suitable and at this pH the adsorption data were modeled using the Langmuir and Freundlich isotherms at 15 °C and 35 °C, where the data fitted satisfactorily to Langmuir isotherms, the R(2) values being 0.998 and 0.999 respectively indicating unilayer adsorption. Based on Langmuir model, Q(o) was calculated to be 357.14 mg/g. The adsorption showed pseudo second order kinetics with a rate constant of 8.0763 × 10(-4) g mg(-1) min(-1) at 100 ppm Cr(VI) concentration. PMID:21679960

  4. Laser desorption ionization mass spectrometry of peptides on a hybrid CHCA organic-inorganic matrix.

    PubMed

    Fleith, Clément; Cantel, Sonia; Subra, Gilles; Mehdi, Ahmad; Ciccione, Jeremie; Martinez, Jean; Enjalbal, Christine

    2014-08-01

    We report applications of new hybrid organic-inorganic silica based materials as laser desorption/ionization (LDI)-promoting surfaces for high-throughput identification of peptides. The driving force of our work was to design a new material composed of a conventional MALDI matrix covalently attached to silica with a high organic/inorganic ratio in order to improve the UV absorption by such LDI hybrid matrices. Amorphous CHCA-functionalized silica presenting an organic content up to 1.3 mmol g(-1) (around 40% in weight from TGA and elementary analysis measurements) gave very interesting LDI performances in terms of detection sensitivity as well as relative ionization discrepancy (spectral suppression) through the analyses of small synthetic peptide mixtures (550-1300 Da) taking CHCA and amorphous silica as model matrices for control experiments. PMID:24910856

  5. Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization.

    PubMed

    Chu, Xinbo; Guan, Min; Li, Linsen; Zhang, Yang; Zhang, Feng; Li, Yiyang; Zhu, Zhanping; Wang, Baoqiang; Zeng, Yiping

    2012-09-26

    An organic/inorganic hybrid up-conversion device was demonstrated in this work, which can convert near-infrared light (NIR) to visible green at high conversion efficiency. The upconverter was fabricated by integrating an In(0.12)Ga(0.88)As/GaAs multiquantum wells (MQWs) photodetector (PD) with an organic light emitting diode (OLED). The up-conversion efficiency of 4.0 W/W % was obtained at 20 V under NIR illumination of 1 mW/mm(2) at room temperature by optimizing the structure of the PD unit and adding MoO(3) doped perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) as interfacial layer of OLED. Meanwhile, the green light output induced by NIR achieved 6050 cd/m(2), which proves that the organic/inorganic hybrid upconverter an excellent candidate that can be applied in light converter field. PMID:22931090

  6. Molecular Origin of Properties of Organic-Inorganic Hybrid Perovskites: The Big Picture from Small Clusters.

    PubMed

    Fang, Hong; Jena, Puru

    2016-04-21

    We show that the electronic properties, including the band gap, the gap deformation potential, and the exciton binding energy as well as the chemical stability of organic-inorganic hybrid perovskites can be traced back to their corresponding molecular motifs. This understanding allows one to quickly estimate the properties of the bulk semiconductors from their corresponding molecular building blocks. New hybrid perovskite admixtures are proposed by replacing halogens with superhalogens having compatible ionic radii. The mechanism of the boron-hydride based hybrid perovskite reacting with water is investigated by using a cluster model. PMID:27064550

  7. 45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene.

    PubMed

    Fabbri, Paola; Valentini, Luca; Hum, Jasmin; Detsch, Rainer; Boccaccini, Aldo R

    2013-10-01

    Highly porous 45S5 Bioglass®-based scaffolds fabricated by a foam replication technique were coated with electrically conductive organic-inorganic hybrid layers containing graphene by a solution method. α,ω-Triethoxysilane terminated poly (ethylene glycol) and tetraethoxysilane were used as the precursors of the organic-inorganic hybrid coatings, that contained 1.5 wt.% of homogeneously dispersed graphene nanoplatelets. The resulting coated scaffolds retained their original high porosity and interconnected pore structure after coating. The presence of graphene did not impair the bioactivity of the scaffolds in simulated body fluid. Initial tests carried out using MG-63 cells demonstrated that both uncoated scaffolds and scaffolds coated with organic/inorganic hybrids containing graphene offered the cultured cells an adequate surface for cell attachment, spreading and expression of extracellular matrix. The results showed that scaffolds coated with graphene are biocompatible and they can support cellular activity. The electrical conductivity introduced by the coating might have the potential to increase tissue growth when cell culture is carried out under an applied electric field. PMID:23910254

  8. Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium (III) complexes bonded

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Li, Zhiqiang; Xu, Yang; Wang, Yige

    2016-05-01

    In this work, a novel red-emitting organic-inorganic hybrid material with europium (III) lanthanide β-diketonate complexes linked to a zirconia was reported, which was realized by adduct formation with zirconia-tethered terpyridine moieties. Luminescence enhancement of the hybrid material has been observed compared with pure Eu(tta)3·2H2O. Transparent and strongly luminescent thin films based on PMMA were also prepared at room temperature, which are highly luminescent under UV-light irradiation and possess a promising prospect in the area of optics.

  9. Organic-inorganic hybrid saponites obtained by intercalation of titano-silsesquioxane.

    PubMed

    Carniato, Fabio; Bisio, Chiara; Gatti, Giorgio; Guidotti, Matteo; Sordelli, Laura; Marchese, Leonardo

    2011-03-01

    The synthesis and characterization of two bifunctional composite materials based on synthetic saponite clays is here presented. These materials were prepared by intercalation of a Ti-containing aminopropylisobutyl polyhedral oligomeric silsesquioxane (Ti-NH(2) POSS) in synthetic saponite samples containing interlayer sodium (Na-SAP) or protons (H-SAP). Hybrid organic-inorganic materials, Ti-NHM-1 and Ti-NHM-2, were obtained upon ion exchange. Structural, spectroscopic, and thermal properties of both hybrid materials were investigated in detail along with their catalytic activity in cyclohexene oxidation. PMID:21120985

  10. Organosilica: Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks (Adv. Mater. 17/2016).

    PubMed

    Chen, Yu; Shi, Jianlin

    2016-05-01

    Organic-inorganic hybrid materials can combine the advantages of organic and inorganic materials, and overcome their drawbacks accordingly. On page 3235, Y. Chen and J. L. Shi review and discuss research progress on the design, synthesis, structure, and composition control of organic-inorganic hybrid mesoporous organosilica nanoparticles (MONs). Extensive applications of MONs in nanotechnology, mainly in nanomedicine, nanocatalysis and nanofabrication are discussed. PMID:27122112

  11. New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods.

    PubMed

    Garavand, Ali; Dadkhah Tehrani, Abbas

    2016-11-01

    Organic-inorganic functional hybrid materials play a major role in the development of advanced functional materials and recently have gained growing interest of the worldwide community. In this context, new hybrid organic-inorganic gel consisting of cellulose nanowhisker xanthate (CNWX) and S-H functionalized polypseudorotaxane (PPR) as organic parts of gel and gold nanorods (GNRs) as inorganic cross-linking agent were prepared. Firstly, thiolated α-cyclodextrin (α-CD-SH) was threaded onto poly-(ethylene glycol) bis (mercaptoethanoate ester) (PEG-SH) to give polypseudorotaxane (PPR) and then it reacted with GNRs in the presence of CNWX to give the new hybrid gel material. The new synthesized gel and its components characterized by spectroscopic measurement methods such as FT-IR, UV-vis and NMR spectroscopy. Interestingly, hybrid gel showed new polygonal plate like morphology with 45-60nm thickness and 400-600nm width. The obtained gel may have potential application in many fields especially in biomedical applications. PMID:27516265

  12. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    PubMed

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors. PMID:25924299

  13. Ruthenium cation substitutional doping for efficient charge carrier transfer in organic/inorganic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Kong, Degui; Jin, Xiao; Sun, Weifu; Du, Jiaxing; Tong, Jifeng; Chen, Changyong; Yang, Xuwei; Cheng, Yuanyuan; Li, Qinghua

    2015-01-01

    Solution-processed organic/inorganic hybrid solar cells have emerged as a new platform for low-cost optoelectronics. At the heart of photovoltaic devices lies the matching of a junction, which requires the suitable energy level alignment of n-type and p-type semiconductors. Incorporating foreign ions into bulk semiconductors has been largely employed for many decades, yet electronically active doping in energy level control of the hybrid bulk heterojunctions has been rarely involved and the demonstration of robust functional optoelectronic devices had thus far been elusive. Herein, we introduce Ru ions into TiO2 to decorate the energy level of the acceptor to gain better energy level alignment between the donor and acceptor. By reducing the 'excess' energy offset between the n-type and p-type semiconductors, the electron transfer becomes faster, thus leading to a notable enhancement in power conversion efficiency, i.e., from 2.20% to 2.89%. The results demonstrate that the energy level can be controlled effectively by the versatile Ru dopants. This work opens an effective route for accelerating the charge carrier transfer at the interface and achieving high-performance organic/inorganic hybrid optoelectronic devices.

  14. Hard X-rays for processing hybrid organic-inorganic thick films.

    PubMed

    Jiang, Yu; Carboni, Davide; Pinna, Alessandra; Marmiroli, Benedetta; Malfatti, Luca; Innocenzi, Plinio

    2016-01-01

    Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness. PMID:26698073

  15. Polymeric media comprising polybenzimidazoles N-substituted with organic-inorganic hybrid moiety

    DOEpatents

    Klaehn, John R [Idaho Falls, ID; Peterson, Eric S [Idaho Falls, ID; Wertsching, Alan K [Idaho Falls, ID; Orme, Christopher J [Shelley, ID; Luther, Thomas A [Idaho Falls, ID; Jones, Michael G [Pocatello, ID

    2009-12-15

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety may be included in a separator medium. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The separatory medium may exhibit an H.sub.2, Ar, N.sub.2, O.sub.2, CH.sub.3, or CO.sub.2 gas permeability greater than the gas permeability of a comparable separatory medium comprising the PBI compound without substitution. The separatory medium may further include an electronically conductive medium and/or ionically conductive medium. The separatory medium may be used as a membrane (semi-permeable, permeable, and non-permeable), a barrier, an ion exhcange media, a filter, a gas chromatography coating (such as stationary phase coating in affinity chromatography), etc.

  16. Excited state and charge dynamics of hybrid organic/inorganic heterojunctions. I. Theory

    NASA Astrophysics Data System (ADS)

    Renshaw, C. Kyle; Forrest, Stephen R.

    2014-07-01

    The different cohesive forces that bond organic (i.e. excitonic) and inorganic semiconductors lead to widely disparate dielectric constants, charge mobilities, and other fundamental optoelectronic properties that make junctions between these materials interesting for numerous practical applications. Yet, there are no detailed theories addressing charge and energy transport across interfaces between these hybrid systems. Here, we develop a comprehensive physical model describing charge transport and photocurrent generation based on first-principles charge and excited state dynamics at the organic/inorganic heterojunction. We consider interfaces that are trap-free, as well as those with an exponential distribution of trap states. We find that the hybrid charge-transfer state resulting from photon absorption near the junction that subsequently migrates to the heterointerface is often unstable at room temperature, leading to its rapid dissociation into free charges that are collected at the device contacts. In the companion Paper II [A. Panda et al., Phys. Rev. B 90, 045303 (2014), 10.1103/PhysRevB.90.045303], we apply our theories to understanding the optical and electronic properties of archetype organic/inorganic heterojunction diodes. Our analysis provides insights for developing high performance optoelectronic devices whose properties are otherwise inaccessible to either conventional excitonic or inorganic semiconductor junctions.

  17. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly.

    PubMed

    Zhai, Halei; Chu, Xiaobin; Li, Li; Xu, Xurong; Tang, Ruikang

    2010-11-01

    An understanding of controlled formation of biomimetic mesocrystals is of great importance in materials chemistry and engineering. Here we report that organic-inorganic hybrid plates and even mesocrystals can be conveniently synthesized using a one-pot reaction in a mixed system of protein (bovine serum albumin (BSA)), surfactant (sodium bis(2-ethylhexyl) sulfosuccinate (AOT)) and supersaturated calcium phosphate solution. The morphologies of calcium-phosphate-based products are analogous to the general inorganic crystals but they have abnormal and interesting substructures. The hybrids are constructed by the alternate stacking of organic layer (thickness of 1.31 nm) and well-crystallized inorganic mineral layer (thickness of 2.13 nm) at the nanoscale. Their morphologies (spindle, rhomboid and round) and sizes (200 nm-2 μm) can be tuned gradually by changing BSA, AOT and calcium phosphate concentrations. This modulation effect can be explained by a competition between the anisotropic and isotropic assembly of the ultrathin plate-like units. The anisotropic assembly confers mesocrystal characteristics on the hybrids while the round ones are the results of isotropic assembly. However, the basic lamellar organic-inorganic substructure remains unchanged during the hybrid formation, which is a key factor to ensure the self-assembly from molecule to micrometre scale. A morphological ternary diagram of BSA-AOT-calcium phosphate is used to describe this controlled formation process, providing a feasible strategy to prepare the required materials. This study highlights the cooperative effect of macromolecule (frame structure), small biomolecule (binding sites) and mineral phase (main component) on the generation and regulation of biomimetic hybrid mesocrystals. PMID:20944837

  18. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly

    NASA Astrophysics Data System (ADS)

    Zhai, Halei; Chu, Xiaobin; Li, Li; Xu, Xurong; Tang, Ruikang

    2010-11-01

    An understanding of controlled formation of biomimetic mesocrystals is of great importance in materials chemistry and engineering. Here we report that organic-inorganic hybrid plates and even mesocrystals can be conveniently synthesized using a one-pot reaction in a mixed system of protein (bovine serum albumin (BSA)), surfactant (sodium bis(2-ethylhexyl) sulfosuccinate (AOT)) and supersaturated calcium phosphate solution. The morphologies of calcium-phosphate-based products are analogous to the general inorganic crystals but they have abnormal and interesting substructures. The hybrids are constructed by the alternate stacking of organic layer (thickness of 1.31 nm) and well-crystallized inorganic mineral layer (thickness of 2.13 nm) at the nanoscale. Their morphologies (spindle, rhomboid and round) and sizes (200 nm-2 μm) can be tuned gradually by changing BSA, AOT and calcium phosphate concentrations. This modulation effect can be explained by a competition between the anisotropic and isotropic assembly of the ultrathin plate-like units. The anisotropic assembly confers mesocrystal characteristics on the hybrids while the round ones are the results of isotropic assembly. However, the basic lamellar organic-inorganic substructure remains unchanged during the hybrid formation, which is a key factor to ensure the self-assembly from molecule to micrometre scale. A morphological ternary diagram of BSA-AOT-calcium phosphate is used to describe this controlled formation process, providing a feasible strategy to prepare the required materials. This study highlights the cooperative effect of macromolecule (frame structure), small biomolecule (binding sites) and mineral phase (main component) on the generation and regulation of biomimetic hybrid mesocrystals.

  19. Bridged polysilsesquioxanes: Hybrid organic-inorganic materials as fuel cell polyelectrolyte membranes and functional nanoparticles

    NASA Astrophysics Data System (ADS)

    Khiterer, Mariya

    2007-05-01

    This dissertation describes the design, fabrication, and characterization of organic-inorganic hybrid materials. Several classes of bridged polysilsesquioxanes are presented. The first class is a membrane material suitable for fuel cell technology as a proton conducting polyelectrolyte. The second class includes hybrid nanoparticles for display device applications and chromatographic media. Chapter 1 is an introduction to hybrid organic-inorganic materials. Sol-gel chemistry is discussed, followed by a survey of prominent examples of silica hybrids. Examples of physical organic-silica blends and covalent organo-silicas, including ORMOCERSRTM, polyhedral oligomeric silsesquioxanes, and bridged polysilsesquioxanes are discussed. Bridged polysilsesquioxanes are described in great detail. Monomer synthesis, sol-gel chemistry, processing, characterization, and physical properties are included. Chapter 2 describes the design of polyelectrolyte bridged polysilsesquioxane membranes. The materials contain covalently bound sulfonic acid groups originating from the corresponding disulfides. These organic-inorganic hybrid materials integrate a network supporting component which is systematically changed to fine-tune their physical properties. The membranes are characterized as PEM fuel cell electrolytes, where proton conductivities of 4-6 mS cm-1 were measured. In Chapter 3 techniques for the preparation of bridged polysilsesquioxane nanoparticles are described. An inverse water-in-oil microemulsion polymerization method is developed to prepare cationic nanoparticles, including viologen-bridged materials with applications in electrochromic display devices. An aqueous ammonia system is used to prepare neutral nanoparticles containing hydrocarbon bridging groups, which have potential applications as chromatographic media. Chapter 4 describes electrochromic devices developed in collaboration with the Heflin group of Virginia Tech, which incorporate viologen bridged nanoparticles

  20. Organic-inorganic hybrid foams with diatomite addition: Effect on functional properties

    NASA Astrophysics Data System (ADS)

    Verdolotti, L.; D'Auria, M.; Lavorgna, M.; Vollaro, P.; Iannace, S.; Capasso, I.; Galzerano, B.; Caputo, D.; Liguori, B.

    2016-05-01

    Organic-inorganic hybrid foams were prepared by using metakaolin, diatomite as a partial (or total) replacement of metakaolin, as matrix, silicon and whipped protein as pore forming. The foamed systems were hardened at defined temperature and time and then characterized by mechanical point of view through compression tests and by functional point of view through fire reaction and acoustic tests. The experimental findings highlighted that the replacement of diatomite in the formulation affected the morphological structure of the foams and consequently their mechanical properties. In particular, the consolidation mechanism in the diatomite based-hybrid foams changed from geopolymerization to a silicate polycondensation mechanism. Therefore, mechanical performances enhanced with increasing of the diatomite content. Fire reaction tests, such as non-combustibility and cone calorimeter tests, showed positive thermal inertia of samples regardless of the content of diatomite.

  1. Solution-processed hybrid organic-inorganic complementary thin-film transistor inverter

    NASA Astrophysics Data System (ADS)

    Cheong, Heajeong; Kuribara, Kazunori; Ogura, Shintaro; Fukuda, Nobuko; Yoshida, Manabu; Ushijima, Hirobumi; Uemura, Sei

    2016-04-01

    We investigated hybrid organic-inorganic complementary inverters with a solution-processed indium-gallium-zinc-oxide (IGZO) n-channel thin-film transistor (TFT) and p-channel TFTs using the high-uniformity polymer poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrolo-1,4(2H,5H)-dione-alt-5,5-di(thiophene-2-yl)-2,2-(E)-2-(2-(thiophen-2-yl)vinyl)thiophene] (PDVT-10). The IGZO TFT was fabricated at 150 °C for 1 min. It showed a high field-effect mobility of 0.9 cm2·V-1·s-1 and a high on/off current ratio of 107. A hybrid complementary inverter was fabricated by combining IGZO with a PDVT-10 thin-film transistor and its operation was confirmed.

  2. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. PMID:26624204

  3. Solution-processible organic-inorganic hybrid bipolar field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chae, Gil Jo; Kim, Kang Dae; Cho, Shinuk; Walker, Bright; Seo, Jung Hwa

    2016-04-01

    Organic-inorganic hybrid bipolar field-effect transistors (HBFETs) comprising a layer of p-type organic poly(3-hexylthiophene) (P3HT) separated from a parallel layer of n-type inorganic zinc oxide (ZnO) were demonstrated by solution processing. In order to achieve balanced hole and electron mobilities, we initially optimized the hole-transporting P3HT channel by the addition of the polar non-solvent acetonitrile (AN) to P3HT solutions in chloroform, which induced a selfassembled nano-fibril morphology and an enhancement of hole mobilities. For the electron channel, a wet-chemically-prepared ZnO layer was optimized by thermal annealing. Unipolar P3HT FET with 5% AN exhibited the highest hole mobility of 7.20 × 10-2 cm2V-1s-1 while the highest electron mobility (3.64 × 10-2 cm2V-1s-1) was observed in unipolar ZnO FETs annealed at 200°C. The organic-inorganic HBFETs consisting of the P3HT layer with 5% AN and ZnO annealed at 200°C exhibited well-balanced hole and electron mobilities of 1.94 × 10-2 cm2V-1s-1 and 1.98 × 10-2 cm2V-1s-1, respectively.

  4. Organic-Inorganic Hybrid Solution-Processed H₂-Evolving Photocathodes.

    PubMed

    Lai, Lai-Hung; Gomulya, Widianta; Berghuis, Matthijs; Protesescu, Loredana; Detz, Remko J; Reek, Joost N H; Kovalenko, Maksym V; Loi, Maria A

    2015-09-01

    Here we report for the first time an H2-evolving photocathode fabricated by a solution-processed organic-inorganic hybrid composed of CdSe and P3HT. The CdSe:P3HT (10:1 (w/w)) hybrid bulk heterojunction treated with 1,2-ethanedithiol (EDT) showed efficient water reduction and hydrogen generation. A photocurrent of -1.24 mA/cm(2) at 0 V versus reversible hydrogen electrode (V(RHE)), EQE of 15%, and an unprecedented Voc of 0.85 V(RHE) under illumination of AM1.5G (100 mW/cm(2)) in mild electrolyte were observed. Time-resolved photoluminescence (TRPL), internal quantum efficiency (IQE), and transient photocurrent measurements were carried out to clarify the carrier dynamics of the hybrids. The exciton lifetime of CdSe was reduced by one order of magnitude in the hybrid blend, which is a sign of the fast charge separation upon illumination. By comparing the current magnitude of the solid-state devices and water-splitting devices made with identical active layers, we found that the interfaces of the water-splitting devices limit the device performance. The electron/hole transport properties investigated by comparing IQE spectra upon front- and back-side illumination evidenced balanced electron/hole transport. The Faradaic efficiency is 80-100% for the hybrid photocathodes with Pt catalysts and ∼70% for the one without Pt catalysts. PMID:26261996

  5. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2016-02-01

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities. PMID:26645733

  6. ABX3-Type Organic-Inorganic Hybrid Phase Transition Material: 1-Pentyl-3-methylimidazolium Tribromoplumbate.

    PubMed

    Chen, Tianliang; Zhou, Yuelan; Sun, Zhihua; Zhang, Shuquan; Zhao, Sangen; Tang, Yuanyuan; Ji, Chengmin; Luo, Junhua

    2015-08-01

    A new one-dimensional ABX3-type organic-inorganic hybrid phase transition compound, 1-pentyl-3-methylimidazolium tribromoplumbate (1), where the Pb(II) ion exhibits hemicoordination geometry, resulting in anionic (PbBr3)n chains of an edge-shared PbBr5 polyhedron, has been successfully synthesized. 1 undergoes a reversible second-order phase transition at about 136 K. The dielectric constants of 1 exhibit an obvious steplike anomaly tuned between a high dielectric state in the high-temperature phase and a low state in the low-temperature phase. The origin of its phase transition is ascribed to the order-disorder transformation of the cation coupled with the relative displacement of the Br atoms. These findings provide a new approach to exploring a novel ABX3-type compound with functional phase transition properties. PMID:26168191

  7. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates

    SciTech Connect

    Wen, J.; Jordens, K.; Wilkes, G.L.

    1996-12-31

    Novel abrasion resistant coatings have been successfully prepared by the sol-gel method. These materials are spin coated onto bisphenol-A polycarbonate, diallyl diglycol carbonate resin (CR-39) sheet, aluminum, and steel substrates and are thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that these hybrid organic/inorganic networks partially afford excellent abrasion resistance to the polycarbonate substrates investigated. In addition to having excellent abrasion resistance comparable to current commercial coatings, some newly developed systems are also UV resistant. Similar coating formulations applied to metals can greatly improve the abrasion resistance despite the fact that the coatings are lower in density than their substrates.

  8. Intramolecular and Intermolecular Interactions in Hybrid Organic-Inorganic Alucone Films Grown by Molecular Layer Deposition.

    PubMed

    Park, Yi-Seul; Kim, Hyein; Cho, Boram; Lee, Chaeyun; Choi, Sung-Eun; Sung, Myung Mo; Lee, Jin Seok

    2016-07-13

    Investigation of molecular interactions in polymeric films is crucial for understanding and engineering multiscale physical phenomena correlated to device function and performance, but this often involves a compromise between theoretical and experimental data, because of poor film uniformity. Here, we report the intramolecular and intermolecular interactions inside the ultrathin and conformal hybrid organic-inorganic alucone films grown by molecular layer deposition, based on sequential and self-limiting surface reactions. Varying the carbon chain length of organic precursors, which affects their molecular flexibility, caused intramolecular interactions such as double reactions by bending of the molecular backbone, resulting in formation of hole vacancies in the films. Furthermore, intermolecular interactions in alucone polymeric films are dependent on the thermal kinetics of molecules, leading to binding failures and cross-linking at low and high growth temperatures, respectively. We illustrate these key interactions and identify molecular geometries and potential energies by density functional theory calculations. PMID:27314844

  9. Efficient organic-inorganic hybrid perovskite solar cells processed in air.

    PubMed

    Seetharaman S, Madhu; Nagarjuna, Puvvala; Kumar, P Naresh; Singh, Surya Prakash; Deepa, Melepurath; Namboothiry, Manoj A G

    2014-12-01

    Organic-inorganic hybrid perovskite solar cells with fluorine doped tin oxide/titanium dioxide/CH3NH3PbI3-xClx/poly(3-hexylthiophene)/silver were made in air with more than 50% humidity. The best devices showed an open circuit voltage of 640 mV, a short circuit current density of 18.85 mA cm(-2), a fill factor of 0.407 and a power conversion efficiency of 5.67%. The devices showed external quantum efficiency varying from 60 to 80% over a wavelength region of 350 nm to 750 nm of the solar spectrum. The morphology of the perovskite was investigated using scanning electron microscopy and it was found to be porous in nature. This study provides insights into air-stability of perovskite solar cells. PMID:25315711

  10. Hybrid Organic-Inorganic Coordination Complexes as Tunable Optical Response Materials.

    PubMed

    Travis, Will; Knapp, Caroline E; Savory, Christopher N; Ganose, Alex M; Kafourou, Panagiota; Song, Xingchi; Sharif, Zainab; Cockcroft, Jeremy K; Scanlon, David O; Bronstein, Hugo; Palgrave, Robert G

    2016-04-01

    Novel lead and bismuth dipyrido complexes have been synthesized and characterized by single-crystal X-ray diffraction, which shows their structures to be directed by highly oriented π-stacking of planar fully conjugated organic ligands. Optical band gaps are influenced by the identity of both the organic and inorganic component. Density functional theory calculations show optical excitation leads to exciton separation between inorganic and organic components. Using UV-vis, photoluminescence, and X-ray photoemission spectroscopies, we have determined the materials' frontier energy levels and show their suitability for photovoltaic device fabrication by use of electron- and hole-transport materials such as TiO2 and spiro-OMeTAD respectively. Such organic/inorganic hybrid materials promise greater electronic tunability than the inflexible methylammonium lead iodide structure through variation of both the metal and organic components. PMID:26974692

  11. Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NP) materials with enhanced photoinduced birefringence.

    PubMed

    Nazarova, Dimana; Nedelchev, Lian; Sharlandjiev, Peter; Dragostinova, Violeta

    2013-08-01

    Hybrid materials based on combination of polymers and inorganic nanoparticles (NP) attracted considerable attention in the last decade due to their advantageous electrical, optical, or mechanical properties. Recently, we reported a significant improvement of the photoresponse by doping azopolymers with ZnO NP. To study the influence of the composition of the dopant, in our present work we have synthesized anisotropic organic/inorganic nanocomposite materials by incorporating 5-15 nm sized SiO2 NP in a side-chain azopolymer. As a result we observe an enhancement of the photoinduced birefringence in these composite materials with about 20% compared to the nondoped sample. Additionally, we discuss possible mechanisms leading to this enhancement related with the scattering caused by the NP and the increased mobility of the azochromophores in the vicinity of NP. PMID:23913084

  12. Localization-dependent charge separation efficiency at an organic/inorganic hybrid interface

    NASA Astrophysics Data System (ADS)

    Foglia, Laura; Bogner, Lea; Wolf, Martin; Stähler, Julia

    2016-02-01

    By combining complementary optical techniques, photoluminescence and time-resolved excited state absorption, we achieve a comprehensive picture of the relaxation processes in the organic/inorganic hybrid system SP6/ZnO. We identify two long-lived excited states of the organic molecules of which only the lowest energy one, localized on the sexiphenyl backbone of the molecule, is found to efficiently charge separate to the ZnO conduction band or radiatively recombine. The other state, most likely localized on the spiro-linked biphenyl, relaxes only by intersystem crossing to a long-lived, probably triplet state, thus acting as a sink of the excitation and limiting the charge separation efficiency.

  13. Tunable Radiation Response in Hybrid Organic-Inorganic Gate Dielectrics for Low-Voltage Graphene Electronics.

    PubMed

    Arnold, Heather N; Cress, Cory D; McMorrow, Julian J; Schmucker, Scott W; Sangwan, Vinod K; Jaber-Ansari, Laila; Kumar, Rajan; Puntambekar, Kanan P; Luck, Kyle A; Marks, Tobin J; Hersam, Mark C

    2016-03-01

    Solution-processed semiconductor and dielectric materials are attractive for future lightweight, low-voltage, flexible electronics, but their response to ionizing radiation environments is not well understood. Here, we investigate the radiation response of graphene field-effect transistors employing multilayer, solution-processed zirconia self-assembled nanodielectrics (Zr-SANDs) with ZrOx as a control. Total ionizing dose (TID) testing is carried out in situ using a vacuum ultraviolet source to a total radiant exposure (RE) of 23.1 μJ/cm(2). The data reveal competing charge density accumulation within and between the individual dielectric layers. Additional measurements of a modified Zr-SAND show that varying individual layer thicknesses within the gate dielectric tuned the TID response. This study thus establishes that the radiation response of graphene electronics can be tailored to achieve a desired radiation sensitivity by incorporating hybrid organic-inorganic gate dielectrics. PMID:26882215

  14. High-performance hybrid organic-inorganic solar cell based on planar n-type silicon

    SciTech Connect

    Chi, Dan; Qi, Boyuan; Wang, Jizheng; Qu, Shengchun Wang, Zhanguo

    2014-05-12

    Hybrid organic-inorganic solar cells were fabricated by spin coating the hole transporting conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film on n-type crystalline silicon (n-Si). By incorporating different additives into the PEDOT:PSS, the conductivity and wettability of PEDOT:PSS film are markedly improved, and the device performance is greatly enhanced accordingly. To further optimize the device performance, poly(3-hexylthiophene) (P3HT) layer was inserted between the n-Si and PEDOT:PSS layer. The P3HT layer blocks electrons from diffusing to the PEDOT:PSS, and hence reduces recombination at the anode side. The device eventually exhibits a high power conversion efficiency of 11.52%.

  15. Random Terpolymer Designed with Tunable Fluorescence Lifetime for Efficient Organic/Inorganic Hybrid Solar Cells.

    PubMed

    Li, Qinghua; Jin, Xiao; Song, Yinglin; Zhang, Qin; Xu, Zhongyuan; Chen, Zihan; Cheng, Yuanyuan; Luo, Xubiao

    2015-08-12

    The long photoluminescence lifetime of the organic semiconductor materials is of great importance in assuring the photoexcited extion to have enough time to achieve successful separation at the interface and improving the performances of organic/inorganic hybrid solar cells. Unfortunately, many efforts have been devoted to the bandgap or molecular energy level control, whereas this viewpoint is rarely referred. Herein, we prepare a random D-A terpolymers based on PZT and BDT cores in conjugation with electron withdrawing BT unit and explore their applications in HSCs. Except for the energy level and the bandgap, the role that monomers ratio plays in photoluminescence lifetime is particularly involved. As a result, the average PL lifetimes of the terpolymer are significantly tuned. The optimized terpolymer exhibits a longer PL lifetime and prominent charge transfer ability, thus leading to a notable enhancement of PCE when compared with its counterparts, although their bandgaps and molecular energy levels are almost the same. PMID:26196279

  16. Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    SciTech Connect

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-02-15

    Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 Degree-Sign C for 2 h and also possesses high total pore volumes (0.41 cm Superscript-Three g{sup -1}) and high specific BET surface area (161 m{sup 2} g{sup -1}), which is nine times larger than that of the pristine (19 m{sup 2} g{sup -1}). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic-inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: Black-Right-Pointing-Pointer A two-step synthesis method was used to prepare the CTAB-Al-MO. Black-Right-Pointing-Pointer The CTAB-Al-MO has the large basal spacing and high specific BET surface area. Black-Right-Pointing-Pointer The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. Black-Right-Pointing-Pointer The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  17. Ag-In-Zn-S quantum dots for hybrid organic-inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Eung-min; Ruankham, Pipat; Lee, Jae-hyeong; Hachiya, Kan; Sagawa, Takashi

    2016-02-01

    Quantum dots of (AgIn)xZn2(1-x)S2 (x = 0.6, 0.8, and 1.0) capped by oleylamine were prepared and applied for hybrid organic-inorganic solar cells consisting of glass-indium-tin-oxide/ZnO/(AgIn)xZn2(1-x)S2/poly(3-hexylthiophene)/MoO3/Ag. The short-circuit current density (Jsc) and open-circuit voltage (Voc) of the hybrid solar cells were measured, and we found a low power conversion efficiency (PCE) below 0.1%. From the incident photon-to-current efficiency (IPCE) profiles of the hybrid devices, there is no marked photocurrent generation from 350 to 700 nm, which is ascribed to the absorption region of (AgIn)xZn2(1-x)S2. To improve the photovoltaic performance, ligand substitution from oleylamine to pyridine was performed. The PCE of the hybrid cell using the pyridine-capped (AgIn)xZn2(1-x)S2 was improved twofold in terms of both Jsc and Voc as compared with that of the oleylamine-capped one. In particular, from the IPCE measurements, a remarkable (more than doubled) enhancement of photocurrent generation from 400 to 450 nm was observed with the pyridine-substituted nanoparticles.

  18. Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells.

    PubMed

    John, Łukasz; Podgórska, Marta; Nedelec, Jean-Marie; Cwynar-Zając, Łucja; Dzięgiel, Piotr

    2016-11-01

    Biomimetic organic-inorganic hybrid bioscaffolds are developed to complement or replace damaged fragments in bone tissue surgery. The aim of this work was to develop a simple and fast method to prepare composite material for bone engineering, avoiding time consuming and complex methodologies. The resulting materials (also called in this work as hybrid composites or hybrid scaffolds) have a three-dimensional macroporous polymer-like network derived from triethoxyvinylsilane (TEVS) and 2-hydroxyethylmethacrylate (HEMA) monomers, with incorporated calcium, strontium, and phosphate ions. The materials were fully characterized using FT-IR, biomineralization studies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, scratch tests, Young's modulus and compressive strength tests, and gas physisorption. We report a comprehensive study on the in vitro effect of novel strontium doped materials on human bone cells. In vitro investigations were conducted using a normal human osteoblast cell line that mimics the cellular events of the in vivo intramembranous bone formation process. The materials do not have a negative impact on the survival of the normal human osteoblasts; moreover, materials doped with strontium show that not only are cells able to survive, but they also attach to and grow on a bioscaffolds surface. For this reason, they may be used in future in vivo experiments. PMID:27524003

  19. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    SciTech Connect

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti

  20. Easily processable multimodal spectral converters based on metal oxide/organic-inorganic hybrid nanocomposites.

    PubMed

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P; Freitas, Vânia T; André, Paulo S; Carlos, Luis D; Ferreira, Rute A S

    2015-10-01

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er(3+), Yb(3+) codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er(3+)- and Yb(3+)-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices. PMID:26374133

  1. Bridged polysilsesquioxane xerogels: A molecular based approach for the preparation of porous hybrid organic-inorganic materials

    SciTech Connect

    Small, J.H.; Shea, K.J.; Loy, D.A.

    1995-06-01

    Bridged polysilsesquioxanes represent an interesting family of hybrid organic-inorganic composite materials. It has been shown that manipulation of the organic bridging component offers the potential for the synthesis of a variety of materials with a range of surface areas and porosities. In addition, incorporation of a heteroatom within the bridging organic component allows for further chemical transformation of the polysilsesquioxane material.

  2. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    PubMed

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors. PMID:26072869

  3. Ratiometric fluorescence detection of silver ions using thioflavin T-based organic/inorganic hybrid supraparticles.

    PubMed

    Li, Yan-Yun; Zhang, Min; Lu, Ling-Fei; Zhu, Anwei; Xia, Fei; Zhou, Tianshu; Shi, Guoyue

    2015-09-01

    In this work, we present a new type of functional organic/inorganic hybrid supraparticle that spontaneously assembles from silver ions (Ag(+)), iodide ions (I(-)) and thioflavin T (ThT) under aqueous solution conditions. ThT alone in aqueous solution was weakly fluorescent with an emission band at 494 nm, which was related to the monomer. However, in the above-mentioned hybrid supraparticle (i.e., ThT@AgI SP) structure, the ThT monomer can form a dimer with a new emission band. The new band shifted to 546 nm and the emission intensity increased. We further present a facile strategy of reversible fluorescence switching of ThT by a simple cation (Ag(+)) and anions (I(-) and S(2-)), which can be employed for the ratiometric fluorescence detection of Ag(+) with high sensitivity and selectivity. The linear range of detecting Ag(+) was from 100 nM to 10 μM, with a limit of detection as low as approximately 50 nM. Moreover, it can be successfully applied for the operation of a logic gate system and to the sensing of Ag(+) in real water samples. PMID:26212864

  4. Synthesis of organic-inorganic hybrid azobenzene materials for the preparation of nanofibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Bućko, Aleksandra; Zielińska, Sonia; Ortyl, Ewelina; Larkowska, Maria; Barille, Regis

    2014-12-01

    The new photochromic hybrid materials containing different mole fractions of highly photoactive 4-[(E)-[4-[ethyl(2-hydroxyethyl)amino]phenyl]azo]-N-(4-methylpyrimidin-2-yl)benzenesulfonamide (SMERe) were prepared by a low temperature sol-gel process. The guest-host systems with triethoxyphenylsilane matrix were obtained. These materials were used to form thin transparent films by a spin-coating technique. Then the ability of thin hybrid films to reversible trans-cis photoisomerization under illumination was investigated using ellipsometry and UV-Vis spectroscopy. The reversible changes of refractive index of the films under illumination were in the range of 0.005-0.056. The maximum absorption of these materials was located at 462-486 nm. Moreover, the organic-inorganic azobenzene materials were used to form nanofibers by electrospinning using various parameters of the process. The microstructure of electrospun fibers depended on sols properties (e.g. concentration and viscosity of the sols) and process conditions (e.g. the applied voltage, temperature or type of the collector) at ambient conditions. The morphology of obtained nanofibers was analyzed by an optical microscopy and scanning electron microscopy. In most instances, the beadless fibers were obtained. The wettability of the surface of electrospun fibers deposited on glass substrates was investigated.

  5. PWA-diureasils organic-inorganic hybrids. Photochromism and effect of the organic chain length

    NASA Astrophysics Data System (ADS)

    Obara, P. A.; Sarmento, V. H. V.; Ribeiro, S. J. L.; Nalin, M.; Molina, C.

    2015-08-01

    Di-ureasil organic-inorganic hybrids have been used together with Phosphotungstic acid (PWA- H3PW12O40) in the preparation of new photochromic materials. PWA was incorporated in different relative concentrations in di-ureasils displaying different organic chain lengths. The structure and photochromic behaviour of these novel material were investigated by means of infrared (FTIR), photoluminescence (PL) and Ultraviolet-Visible (UV-Vis) spectroscopies and Small Angle X-ray Scattering (SAXS) technique as a function of PWA content and also of the polymer chain length. Eu3+ has been incorporated as probe ion. For the short polymer chains, europium and PWA keggin structures are located close to oxygen in the ether type of the polyoxides segments and for the long polymer chain carbonyl groups of the urea units were observed to contribute in the coordination. Moreover, the photochromic effect was followed by UV-Vis measurements which showed that in both hybrid families changing from colorless to blue after UV exposure, and the bleaching process, depend directly on the polymer chain length and the nature of the sites where PWA are coordinated in the matrix.

  6. Rashba and Dresselhaus Effects in Hybrid Organic-Inorganic Perovskites: From Basics to Devices.

    PubMed

    Kepenekian, Mikaël; Robles, Roberto; Katan, Claudine; Sapori, Daniel; Pedesseau, Laurent; Even, Jacky

    2015-12-22

    We use symmetry analysis, density functional theory calculations, and k·p modeling to scrutinize Rashba and Dresselhaus effects in hybrid organic-inorganic halide perovskites. These perovskites are at the center of a recent revolution in the field of photovoltaics but have also demonstrated potential for optoelectronic applications such as transistors and light emitters. Due to a large spin-orbit coupling of the most frequently used metals, they are also predicted to offer a promising avenue for spin-based applications. With an in-depth inspection of the electronic structures and bulk lattice symmetries of a variety of systems, we analyze the origin of the spin splitting in two- and three-dimensional hybrid perovskites. It is shown that low-dimensional nanostructures made of CH3NH3PbX3 (X = I, Br) lead to spin splittings that can be controlled by an applied electric field. These findings further open the door for a perovskite-based spintronics. PMID:26348023

  7. Photoluminescence Mechanism and Photocatalytic Activity of Organic-Inorganic Hybrid Materials Formed by Sequential Vapor Infiltration.

    PubMed

    Akyildiz, Halil I; Stano, Kelly L; Roberts, Adam T; Everitt, Henry O; Jur, Jesse S

    2016-05-01

    Organic-inorganic hybrid materials formed by sequential vapor infiltration (SVI) of trimethylaluminum into polyester fibers are demonstrated, and the photoluminescence of the fibers is evaluated using a combined UV-vis and photoluminescence excitation (PLE) spectroscopy approach. The optical activity of the modified fibers depends on infiltration thermal processing conditions and is attributed to the reaction mechanisms taking place at different temperatures. At low temperatures a single excitation band and dual emission bands are observed, while, at high temperatures, two distinct absorption bands and one emission band are observed, suggesting that the physical and chemical structure of the resulting hybrid material depends on the SVI temperature. Along with enhancing the photoluminescence intensity of the PET fibers, the internal quantum efficiency also increased to 5-fold from ∼4-5% to ∼24%. SVI processing also improved the photocatalytic activity of the fibers, as demonstrated by photodeposition of Ag and Au metal particles out of an aqueous metal salt solution onto fiber surfaces via UVA light exposure. Toward applications in flexible electronics, well-defined patterning of the metallic materials is achieved by using light masking and focused laser rastering approaches. PMID:27063955

  8. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: Synthesis, characterization, and electrochemical applications

    NASA Astrophysics Data System (ADS)

    Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming

    2014-12-01

    A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.

  9. A novel cobalt(II)-molybdenum(V) phosphate organic-inorganic hybrid polymer

    SciTech Connect

    Shi, F.-N.; Almeida Paz, Filipe A.; Girginova, Penka I.; Nogueira, Helena I.S.; Rocha, Joao; Amaral, Vitor S.; Klinowski, Jacek; Trindade, Tito . E-mail: ttrindade@dq.ua.pt

    2006-05-15

    A new organic-inorganic hybrid cobalt(II)-molybdenum(V) phosphate polymer incorporating piperazine (pip) (H{sub 2}pip){sub 3}[Co{sub 3}Mo{sub 12}O{sub 24}(OH){sub 6}(PO{sub 4}){sub 8}(H{sub 1.5}pip){sub 4}].5(H{sub 2}O), was prepared under hydrothermal conditions. As revealed by single-crystal X-ray diffraction studies, the material is modular, built from a secondary building block composed of two anionic hexameric polyoxomolybdophosphate [Mo{sub 6}O{sub 12}(OH){sub 3}(PO{sub 4}){sub 4}]{sup 9-} moieties, bridged by a central octahedral Co{sup 2+} centre. The sandwich-type {l_brace}Co[Mo{sub 6}O{sub 12}(OH){sub 3}(PO{sub 4}){sub 4}]{sub 2}{r_brace}{sup 16-} dimers are connected via tetrahedral Co{sup 2+} metal centres, forming an infinite one-dimensional polymer. The compound constitutes the first example of a reduced sandwich-type cobalt-molybdenum phosphate in which the organic moiety (pip) is effectively coordinated to the inorganic backbone of the polymer, in this case via the tetrahedrally coordinated Co{sup 2+} centres. The magnetic behaviour of this material was investigated in the temperature range 4-298 K.

  10. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  11. Efficient organic-inorganic hybrid perovskites and doped metal oxide heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    Organic-Inorganic hybrid perovskite CH3NH3PbI3 has recently attracted much attention for its high efficient solar energy conversion. This semiconducting pigment with a direct bandgap of 1.55 eV has made it an interesting optical and electronic material over the whole visible solar emission spectrum. The role of hole conducting has been found in this semiconductor that allows perovskite solar cell (PSC) to be formed by CH3NH3PbI3/TiO2 heterojunctions that use TiO2 as scaffold, and carbon as a back contact. We will report a double layer metal doped TiO2/Al2O3 mesoporous scaffold covered by the p-type semiconducting pigment to form a high efficient PSC through solution method. TiO2 and Al2O3 are both large band gap semiconductors that affect conducting and recombination rate in solar cells. One improvement work is doping other metal elements in TiO2 to raise the mobility while extend the recombination time. It has suggested that optimal amounts of doped metals such as Cu, Co, Mn can suppress the reduction of Ti4 + resulting better transportation. TiO2 thin films doped with metals are subjected to the EPR analysis and the results will be correlated with measurements of electronic-optical properties.

  12. Rashba Effect and Carrier Mobility in Hybrid Organic-Inorganic Perovskites.

    PubMed

    Yu, Zhi-Gang

    2016-08-18

    The outstanding photovoltaic performance in hybrid organic-inorganic perovskites (HOIPs) relies on their desirable carrier transport properties. In the HOIPs, strong spin-orbit coupling (SOC) and structural inversion asymmetry give rise to a giant spin splitting in the conduction and valence bands, that is, the Rashba effect (RE), a subject intensively studied in spintronics. Here we show that this giant RE can manifest itself in charge transport and is the key to understanding carrier mobility and its temperature dependence in the HOIPs. The RE greatly enhances acoustic-phonon scattering (APS) and alters the temperature dependence of carrier mobility from T(-3/2) to T(-1). Meanwhile, it reduces polar-optical phonon scattering (POPS). In CH3NH3PbI3, the carrier mobility is limited by the APS for temperatures up to 100 K, above which the POPS becomes dominant. The effective polar coupling is moderate, α = 1.1, indicating that band conduction is still a valid description of charge transport. Our results account for the observed carrier transport behaviors over the entire temperature range and highlight the importance of SOC in charge transport in the HOIPs. PMID:27459897

  13. Mechanism of charge recombination in organic-inorganic hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin; organic Group Team

    2015-03-01

    In the recent popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and open circuit voltages, but the underlying mechanism remains unclear. In this work we study the recombination mechanism in perovskite solar cells and its roles on determining the device performance. Based on macroscopic device model simulations, the recombination resistances (Rrec) under different applied voltages are calculated to characterize the recombination mechanism, and the current density-voltage (J - V) curves are simulated to describe the device performance under at the same time. Through comparison with the impedance spectroscopy (IS) extracted Rrec data, it is found that bimolecular recombination (BR) is the dominant recombination process in the whole applied voltage regime and can determine the open circuit voltage, while the trap-assisted SRH monomolecular recombination (MR) is only important if the trap density is high or the BR rate is significantly reduced. The different electron injection barriers at the contact can induce different patterns for the Rrec- V characteristics. Under the cases of increased band gap or decreased BR rate, the Rrec's are enhanced which leads to high open circuit voltages. We are grateful to the support from the state key laboratory of surface physics, Fudan University.

  14. Optical studies of photoactive states in mixed organic-inorganic hybrid perovskites stabilized in polymers

    NASA Astrophysics Data System (ADS)

    Kardynal, Beata; Xi, Lifei; Salim, Teddy; Borghardt, Sven; Stoica, Toma; Lam, Yeng Ming

    2015-03-01

    Mixed organic-inorganic hybrid perovskites MAX-PbY2(X,Y =I, Br,Cl) have been demonstrated as very attractive materials for absorbers of solar cells and active layers of light emitting diodes and optically driven lasers. The bandgap of the perovskites can be tuned by mixing halogen atoms in different ratios. In this presentation we study mixed MAX-PbY2(X,Y =I, Br, Cl) particles synthesized directly in protective polymer matrices as light emitters. Both, time integrated and time resolved photoluminescence have been used to study the materials. So synthesized MAX-PbX2 are very stable when measured at room temperature and in air with radiative recombination of photogenerated carriers as the main decay path. In contrast, MAX-PbY2 with mixed halogen atoms display luminescence from sub-bandgap states which saturate at higher excitation levels. The density of these states depends on the used polymer matrix and increases upon illumination. We further compare the MAX-PbY2 synthesized in polymers and as films and show that these states are inherent to the material rather than its microstructure. This works has been supported by EU NWs4LIGHT grant.

  15. Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwan Jung, Hyung; Ho Kim, Dong; Su Kim, Chang; Bae, Tae-Sung; Bum Chung, Kwun; Yoon Ryu, Seung

    2013-05-01

    We employed poly(styrenesulfonate)-doped poly (3,4-ethylenedioxythiophene) (PEDOT:PSS) as a p-layer on textured fluorine-tin-oxide (FTO) glass in pin-type hydrogenated amorphous silicon solar cells (a-Si:H SCs). An amorphous tungsten oxide (WO3) layer and gold nanoparticles (Au-NPs) 10 nm in size were included to prevent the degradation and to increase short-circuit current by the Plasmon effect, respectively, between the PEDOT:PSS and intrinsic-Si layer. The energy band between PEDOT:PSS and WO3 was meaningfully adjusted by Au-NPs. The p-type PEDOT:PSS layer in these organic-inorganic hybrid a-Si:H SCs results in an increased conversion efficiency from ˜2.42% to ˜5.49% and an increased open-circuit voltage from ˜0.29 V to ˜0.56 V. PEDOT:PSS on textured FTO glass is sufficiently showing that it can replace the p-type Si layer in pin-type a-Si:H SCs.

  16. Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface.

    PubMed

    Thiyagu, Subramani; Hsueh, Chen-Chih; Liu, Chien-Ting; Syu, Hong-Jhang; Lin, Tzu-Ching; Lin, Ching-Fuh

    2014-03-21

    This paper reports an organic-inorganic hybrid solar cell with a hierarchical surface composed of high density silicon nanoholes and micro-desert textures. High-efficiency organic-inorganic hybrid solar cell Si/PEDOT-PSS with a hierarchical surface, showing a power conversion efficiency of 12%. The structure provides excellent light absorption over 97% for the spectral range of 300 to 1100 nm with a thickness of 60 μm due to internal multiple reflections caused by subwavelength features of high density silicon nanoholes and micro-desert textures. In addition, from the angle of incidence (AOI) observed, even at the large angle of 75°, the reflectance value still exhibits less than 1%. With the advantage of very thin silicon material and inexpensive processing, hybrid silicon/polymer solar cells are promising for various applications and thus could be an economically feasible alternative energy solution in the future. PMID:24522339

  17. Temperature and exposure dependence of hybrid organic-inorganic layer formation by sequential vapor infiltration into polymer fibers.

    PubMed

    Akyildiz, Halil I; Padbury, Richard P; Parsons, Gregory N; Jur, Jesse S

    2012-11-01

    The characteristic processing behavior for growth of a conformal nanoscale hybrid organic-inorganic modification to polyamide 6 (PA6) by sequential vapor infiltration (SVI) is demonstrated. The SVI process is a materials growth technique by which exposure of organometallic vapors to a polymeric material promotes the formation of a hybrid organic-inorganic modification at the near surface region of the polymer. This work investigates the SVI exposure temperature and cycling times of sequential exposures of trimethylaluminum (TMA) on PA6 fiber mats. The result of TMA exposure is the preferential subsurface organic-inorganic growth by diffusion into the polymer and reaction with the carbonyl in PA6. Mass gain, infrared spectroscopy, and transmission electron microscopy analysis indicate enhanced materials growth and uniformity at lower processing temperatures. The inverse relationship between mass gain and exposure temperature is explained by the formation of a hybrid layer that prevents the diffusion of TMA into the polymer to react with the PA6 upon subsequent exposure cycles. As few as 10 SVI exposure cycles are observed to saturate the growth, yielding a modified thickness of ∼75 nm and mass increase of ∼14 wt %. Removal of the inherent PA6 moisture content reduces the mass gain by ∼4 wt % at low temperature exposures. The ability to understand the characteristic growth process is critical for the development of the hybrid materials fabrication and modification techniques. PMID:23050951

  18. Structure/property relations of elastomeric hybrid organic-inorganic composites

    NASA Astrophysics Data System (ADS)

    Miller, Thomas Michael

    Hybrid organic-inorganic composites have been synthesized by the sol-gel processing of triethoxysilane end functionalized poly(tetramethylene oxide) and tetraethxoysilane. The resulting transparent materials are elastomeric gels crosslinked by an amorphous polysilicate phase. Elementary rubber-elasticity theory in conjunction with dynamic mechanical spectroscopy was applied to these seemingly nonideal networks to quantify the change in phase interaction induced by aging the benchmark acid catalyzed gels in a basic solution of 70% ethylamine in water. The change in the average molar mass between crosslinks explained the previously published mechanical and dynamic mechanical results. Furthermore, the application of this theory to these seemingly nonideal networks resulted in network parameters that were in excellent agreement with traditional equilibrium swelling estimates. The work was then extended by utilizing this ethylamine solution to catalyze the sol-gel reaction in-situ. The effect of this change in catalyst upon the oxygen diffisivity of the hybrids as a function of polysilicate loading was investigated using a luminescence based approach. While the diffusivity of the acid catalyzed gels decreased with increasing loading, the base catalyzed gels did not indicating that the polysilicate domains resulting from the base catalysis possess considerable porosity. However, the pores appear to be much too small for Knudsen diffusion, a commonly observed gas separation mechanism in porous ceramic membranes. To investigate the influence of polysilicate network polarity and spatial distribution, the sol-gel processing of the hybrids was adjusted to produce two classes of gels. One exhibited a more discrete polysilicate phase possessing greater network connectivity and reduced silanol content than the other. This was accomplished by using dimethylformamide in place of tetrahydrofuran as the organic solvent constituent of the sol. Poly(methacrylic acid

  19. Application of an ampholine-functionalized hybrid organic-inorganic silica material for the SPE of aromatic amines.

    PubMed

    Chen, Yihui; Wang, Tingting; Ma, Junfeng; Liang, Zhen; Chen, Mingliang; Fang, Jianghua; Gao, Haoqi; Zhang, Lihua; Zhang, Yukui

    2014-01-01

    An SPE cartridge based on an ampholine-functionalized hybrid organic-inorganic silica sorbent has been adopted for the analysis of aromatic amines including 4-aminobiphenyl, benzidine, 2-naphthylamine, p-chloroaniline, 2,4,5-trimethylaniline, and 3,3'-dichlorobenzidine. Crucial variables governing the extraction efficiency of the material such as the pH of sample, sample loading volume, solvent used for elution, and elution volume have been thoroughly optimized. The adsorption capacities for the six aromatic amines ranged from 0.17 to 1.82 μg/mg. The recoveries of aromatic amines spiked in textile samples ranged from 78.9 to 103.0%, with RSDs of 1.1-11.9% (n = 3). Moreover, the extraction efficiency of the ampholine-functionalized hybrid organic-inorganic silica sorbent was at least comparable with that of Oasis WCX. PMID:24178632

  20. Improvement in open circuit voltage of MEHPPV-FeS2 nanoparticle based organic inorganic hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Layek, Animesh; Middya, Somnath; Ray, Partha Pratim

    2013-02-01

    In this study we have synthesized high quality FeS2 nanoparticles by solvothermal route and was applied as semiconducting acceptor in MEHPPV:FeS2 nanoparticle based organic inorganic hybrid solar cells. The open circuit voltage improved from 0.64V to 0.72V of the device due to modification of band gap of donor material by introducing nanoparticles.

  1. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores.

    PubMed

    Kang, En-Hua; Bu, Tianjia; Jin, Pengcheng; Sun, Junqi; Yang, Yanqiang; Shen, Jiacong

    2007-07-01

    Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials. PMID:17555337

  2. Quantum-dot blue light emitting diodes utilizing organic/inorganic hybrid structures

    NASA Astrophysics Data System (ADS)

    Wu, Feifei; Hu, Lian; Zhang, Bingpo; Li, Ruifeng; Wu, Huizhen

    2015-02-01

    We report blue color quantum-dot light-emitting diodes (QDLEDs) using an organic-inorganic hybrid structure and CdZnS-ZnS core-shell quantum-dot emitters. In the device organic ploy(3,4-ethylenedioxythiophene):ploy(styrene sulfonate) (PEDOT:PSS) and NN‧-bis(3-methylphenyl)-NN‧-bis(phenyl)-99-spiro-bifluorene (TPD) thin films are respectively used as the hole-injection layer (HIL) and the hole-transporting layer (HTL), and an inorganic ZnSnO thin film is used as the electron-transporting layer (ETL). In the blue QDLEDs, the function of the TPD-HTL is explored and it is found that the device employing a TPD-HTL exhibits much better optical characteristics compared with that having an identical device layout but without the TPD-HTL. The TPD HTL acts as a transition layer and offers a ladder for the injected holes from PEDOT:PSS to the QDs, leading to an more efficient hole injection. It is further found that the intensity ratio between surface-state emission (SSE) and band-edge emission (BEE) (RS/B) of the two devices shows significant difference at high bias voltages. The SSE becomes more prominent at higher bias voltage in the QDLEDs due to the imbalance injection of holes and electrons. The injected holes firstly encounter the excessive electrons accumulated at the surface of the charged QDs, thus the probability of hole-electron recombination at the QDs surface is greatly enhanced at high bias voltages.

  3. Excited state and charge dynamics of hybrid organic/inorganic heterojunctions. II. Experiment

    NASA Astrophysics Data System (ADS)

    Panda, Anurag; Renshaw, C. Kyle; Oskooi, Ardavan; Lee, Kyusang; Forrest, Stephen R.

    2014-07-01

    In our companion paper (Paper I) [C. K. Renshaw and S. R. Forrest, Phys. Rev. B 90, 045302 (2014), 10.1103/PhysRevB.90.045302], we developed a model for charge transport and photogeneration at hybrid organic/inorganic semiconductor heterojunctions (OI-HJs). Here we apply the model to two planar bilayer hybrid photovoltaic devices: the first using the wide-band gap n-TiO2 in combination with the hole transporting tetraphenyl-dibenzoperiflanthene (DBP), and the second based on the moderate-band gap n-InP and the hole transporting pentacene (PEN). We measure the external quantum efficiency (EQE) and current density vs voltage (J-V) characteristics of both devices as functions of temperature. The EQE spectra for both TiO2/DBP and InP/PEN provide convincing evidence that Frenkel states generated in the organic form hybrid charge transfer excitons (HCTEs) at the OI-HJ that are subsequently dissociated into free charges, and then collected at the opposing electrodes. The dissociation efficiency is found to be strongly influenced by the presence of surface states, particularly in the InP/PEN device. We further develop the J-V model from Paper I to include an analytical expression for space-charge effects in the organic at high currents. Model fits to the J-V data suggest that the temperature-dependent hole mobilities in both DBP and PEN result in increasing space-charge effects at low temperatures. Furthermore, we find that the J-V characteristics of the TiO2/DBP device both in the dark and under illumination are governed by interface recombination. In contrast, the dark current in the InP/PEN device is governed by injection over the OI-HJ barrier, whereas the photocurrent is dominated by interface recombination. This work elucidates the role of the HCTE state in photogeneration, and the applicability of our model to a range of important optoelectronic devices.

  4. Supramolecular organization in organic-inorganic heterogeneous hybrid catalysts formed from polyoxometalate and poly(ampholyte) polymer.

    PubMed

    Raj, Gijo; Swalus, Colas; Guillet, Alain; Devillers, Michel; Nysten, Bernard; Gaigneaux, Eric M

    2013-04-01

    Hybridization of polyoxometalates (POMs) via the formation of an organic-inorganic association constitutes a new route to develop a heterogeneous POM catalyst with tunable functionality imparted through supramolecular assembly. Herein, we report on strategies to obtain tunable well-defined supramolecular architectures of an organic-inorganic heterogeneous hybrid catalyst formed by the association of a hydrophobically substituted polyampholyte copolymer (poly N, N-diallyl-N-hexylamine-alt-maleic acid) and phosphotungstic acid (H3PW12O40) POMs. The self-assembling property of the initial polyampholyte copolymer matrix is modulated by controlling the pH of the hybridization solution. When deposited on a mica surface, isolated, long and extended polymer chains are formed under basic conditions (pH 7.9), while globular or coiled structures are formed under acidic conditions (pH 2). The supramolecular assembly of the POM-polymer hybrid is found to be directed by the type and quantities of charges present on the polyampholyte copolymer, which themselves depend on the pH conditions. The hypothesis is that the Keggin type [PW12O40](3-) anions, which have a size of ~1 nm, electrostatically bind to the positive charge sites of the polymer backbone. The hybrid material stabilized at pH 5.3 consists of POM-decorated polymer chains. Statistical analysis of distances between pairs of POM entities show narrow density distributions, suggesting that POM entities are attached to the polymer chains with a high level of order. Conversely, under acidic conditions (pH 2), the hybrid shows the formation of a core-shell type of structure. The strategies reported here, to tune the supramolecular assembly of organic-inorganic hybrid materials, are highly valuable for the design and a more rational utilization of POM heterogeneous catalysts in several chemical transformations. PMID:23480273

  5. Integrated optical components using hybrid organic-inorganic materials prepared by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Mishechkin, Oleg Viktorovich

    2003-10-01

    A technological platform based on low-temperature hybrid sol-gel method for fabrication of optical waveguides and integrated optical components has been developed. The developed chemistry for doping incorporation in the host network provides a range of refractive indexes (1.444--1.51) critical for device optimization. A passivation method for improving long-term stability of organic-inorganic sol-gel material is reported. The degradation of waveguide loss over time due to moisture adsorption from the atmosphere is drastically suppressed by coating the material with a protective thin SiO2 film. The results indicate a long-term optical loss below 0.3 dB/cm for protected waveguides. The theory of multimode interference couplers employing self-imaging effect is described. A novel approach for design of high-performance MMI devices in low-contrast material is proposed. The design method is based on optimization of refractive index contrast and width of a multimode waveguide (the body of MMI couplers) to achieve a maximum number of constructively interfering modes resulting to the best self-imaging. This optimization is carried out using 3D BPM simulations. This method was applied to design 1 x 4, 1 x 12, and 4 x 4 MMI couplers and led to a superior performance in excess loss, power imbalance in output ports, and polarization sensitivity. Taking advantage of the inherent input-output phase relations in a 4 x 4 MMI coupler, an optical 90° hybrid is realized by incorporation a Y-junction to coherently excite two ports of the coupler. A series of MMI couplers were fabricated and characterized. The experimental results are in good agreement with the design. Measured performance of the sol-gel derived MMI components was compared to analogues fabricated by other technologies. The comparison demonstrates the superior performance of the sol-gel devices. The polarization sensitivity of all fabricated couplers is below 0.05 dB.

  6. Low-cost, high-efficiency organic/inorganic hetero-junction hybrid solar cells for next generation photovoltaic device

    NASA Astrophysics Data System (ADS)

    Pudasaini, P. R.; Ayon, A. A.

    2013-12-01

    Organic/inorganic hybrid structures are considered innovative alternatives for the next generation of low-cost photovoltaic devices because they combine advantages of the purely organic and inorganic versions. Here, we report an efficient hybrid solar cell based on sub-wavelength silicon nanotexturization in combination with the spin-coating of poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The described devices were analyzed by collecting current-voltage and capacitance-voltage measurements in order to explore the organic/inorganic heterojunction properties. ALD deposited ultrathin aluminium oxide was used as a junction passivation layer between the nanotextured silicon surface and the organic polymer. The measured interface defect density of the device was observed to decrease with the inclusion of an ultrathin Al2O3 passivation layer leading to an improved electrical performance. This effect is thought to be ascribed to the suppression of charge recombination at the organic/inorganic interface. A maximum power conversion efficiency in excess of 10% has been achieved for the optimized geometry of the device, in spite of lacking an antireflection layer or back surface field enhancement schemes.

  7. Regulation of responsiveness of phosphorescence toward dissolved oxygen concentration by modulating polymer contents in organic-inorganic hybrid materials.

    PubMed

    Okada, Hiroshi; Tanaka, Kazuo; Chujo, Yoshiki

    2014-06-15

    Platinum(II) octaethylporphyrin (PtOEP)-loaded organic-inorganic hybrids were obtained via the microwave-assisted sol-gel condensation with methyltrimethoxysilane and poly(vinylpyrrolidone). From transparent and homogeneous hybrid films, the strong phosphorescence from PtOEP was observed. Next, the resulting hybrids were immersed in the aqueous buffer, and the emission intensity was monitored by changing the dissolved oxygen level in the buffer. When the hybrid with relatively-higher amount of the silica element, the strong phosphorescence was observed even under the aerobic conditions. In contrast, the emission from the hybrids with lower amounts of the silica element was quenched under the hypoxic conditions. This is, to the best of our knowledge, the first example to demonstrate that the responsiveness of the phosphorescence intensity of PtOEP in hybrid films to the dissolved oxygen concentration in water can be modulated by changing the percentage of the contents in the material. PMID:24794749

  8. Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole

    NASA Astrophysics Data System (ADS)

    Pan, Haiyan; Zhang, Yuanyuan; Pu, Hongting; Chang, Zhihong

    2014-10-01

    A new series of organic-inorganic hybrid proton exchange membranes (PEMs) were prepared using sulfonated polyimides containing benzimidazole (SPIBIs) and glycidyl ether of polyhedral oligomeric silsesquioxanes (G-POSS). SPIBIs were synthesized using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 5-amino-2-(4-aminophenyl) benzimidazole (APBIA) and 4,4‧-diaminodiphenyl ether-2,2‧-disulfonic acid (ODADS). The organic-inorganic cross-linked membranes can be prepared by SPIBIs with G-POSS by a thermal treatment process. The cross-linking density of the membranes was evaluated by gel fractions. The water uptake, swelling ratio, mechanical property, thermal behavior, proton conductivity, oxidative and hydrolytic stability of the cross-linked organic-inorganic membranes were intensively investigated. All the cross-linked membranes exhibit high cross-linking density for the gel fraction higher than 70%. Compared to pristine membranes (SPIBIs) and membranes without benzimidazole groups (SPI), the anti-free-radical oxidative and hydrolytic stabilities of cross-linked membranes are significantly higher. The anti-free-oxidative stability of SPIBI-100-P (cross-linked SPIBI membrane with 100% degree of sulfonation) is nearly four-fold higher than that of SPIBI-100. The proton conductivity of the cross-linked membranes ranges from 10-3 S cm-1 to 10-2 S cm-1 depending both on the degree of sulfonation (DS) of the SPIBI and temperature.

  9. Synthesis of organic-inorganic hybrid fillers at the molecular level and their application to composite resin.

    PubMed

    Anzai, Misaki; Ishikawa, Youichi; Yoshihashi, Kazue; Hirose, Hideharu; Nishiyama, Minoru

    2002-12-01

    The objective of this study was to synthesize a hybrid type filler composed of an organic component with inorganic component at the molecular level and to examine the properties of the filler. The composite resin was prepared by mixing synthesized filler with monomer and its physical properties were also examined. An organic-inorganic hybrid filler was synthesized by using 3-methacryloxypropyltrimethoxysilane (3-MPTS), methyltriethyoxysilane (MTES) and methanol silica sol. Firstly, poly3-methacryloxypropyltrimethoxysilane (poly3-MPTS) was synthesized by polymerization of 3-MPTS. A gelation product was obtained by graft-polymerization of poly3-MPTS with condensed organopolysiloxane after the hydrolysis of 3-MPTS, MTES and methanol silica sol. The gelation product was dried and ground to a filler. From the results of thermogravimetry-differential thermal analysis (TG-DTA), the organic-inorganic hybrid filler was found to be composed of 16.5 wt% organic component, 83.1 wt% inorganic component and 0.4 wt% residual water. A trial composite resin was prepared by mixing 55 wt% dimethacryloxyethyl 2,2,4-trimethylhexamethylene diurethane (UDMA), 15 wt% triethyleneglycol dimethacrylate (TEGDMA), 30 wt% 1-fluoro-1,3,3,5,5-penta (methacryloxyethyleneoxy) cyclotriphosphazene [P3N3(F)1 (EMA)5] as a base monomer and then 32.0 wt% of this monomer was mixed with 68.0 wt % of synthesized filler and a photo initiator, comphorquinone (CQ), was added. Compressive strength of the trial visible-light cured composite resin showed 397.0 MPa, and flexural strength and elastic modulus showed 142.5 MPa and 11.5 GPa, respectively. From the results, it was demonstrated that the present organic-inorganic hybrid filler at the molecular level can be used as a composite resin filler. PMID:12613504

  10. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    SciTech Connect

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-02-24

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  11. Luminescent Organic-Inorganic Hybrids of Functionalized Mesoporous Silica SBA-15 by Thio-Salicylidene Schiff Base

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yan, Bing; Liu, Jin-Liang

    2010-05-01

    Novel organic-inorganic mesoporous luminescent hybrid material N, N'-bis(salicylidene)-thiocarbohydrazide (BSTC-SBA-15) has been obtained by co-condensation of tetraethyl orthosilicate and the organosilane in the presence of Pluronic P123 surfactant as a template. N, N'-bis(salicylidene)-thiocarbohydrazide (BSTC) grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TESPIC) was used as the precursor for the preparation of mesoporous materials. In addition, for comparison, SBA-15 doped with organic ligand BSTC was also synthesized, denoted as BSTC/SBA-15. This organic-inorganic hybrid material was well-characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (HRTEM), and photoluminescence spectra, which reveals that they all have high surface area, uniformity in the mesostructure. The resulting materials (BSTC-SBA-15 and BSTC/SBA-15) exhibit regular uniform microstructures, and no phase separation happened for the organic and the inorganic compounds was covalently linked through Si-O bonds via a self-assemble process. Furthermore, the two materials have different luminescence range: BSTC/SBA-15 presents the strong dominant green luminescence, while BSTC-functionalized material BSTC-SBA-15 shows the dominant blue emission.

  12. Oxygen indicator composed of an organic/inorganic hybrid compound of methylene blue, reductant, surfactant and saponite.

    PubMed

    Sumitani, Makoto; Takagi, Shinsuke; Tanamura, Yoshihiko; Inoue, Haruo

    2004-08-01

    An organic/inorganic hybrid compound consisting of methylene blue, a cationic surfactant and a reductant intercalated into saponite was found to serve as an oxygen indicator that changes color in the presence of oxygen. A mixture of a blue colored dye, methylene blue, a reductant in the form of ascorbic acid or reducing sugar, and cetyltrimethylammonium ion intercalated into synthetic saponite became colorless in an atmosphere having an oxygen concentration of less than 0.1 vol%, and then returned to its blue color as a result of subsequent exposure to air. An oxygen indicator, in the form of a thin film coated on paper prepared by adding a pigment, phloxine B, to the above organic/inorganic hybrid compound, exhibited a pink color at oxygen concentrations of less than 0.1 vol%, and a blue color at oxygen concentrations of higher than 0.5 vol%. In addition, this oxygen indicator exhibited superior photo-fading resistance and storage stability compared with indicators using only methylene blue as the functional dye. PMID:15352503

  13. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes.

    PubMed

    Marini, M; De Niederhausern, S; Iseppi, R; Bondi, M; Sabia, C; Toselli, M; Pilati, F

    2007-04-01

    Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features. PMID:17335284

  14. Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Xu, Weidong; Liu, Lijia; Yang, Linju; Shen, Pengfei; Sun, Baoquan; McLeod, John A

    2016-07-13

    Organic-inorganic lead perovskites have shown great promise as photovoltaic materials, and within this class of materials (CH3NH3)PbI3-xClx is of particular interest. Herein we use soft X-ray spectroscopy and density functional theory calculations to demonstrate that the methylammonium cations in a typical photovoltaic layer may dissociate into a metastable arrangement of CH3I-Pb2 defects and trapped NH3. The possibility that other metastable configurations of the organic components in (CH3NH3)PbI3-xClx is rarely considered but adds an entirely new dimension in understanding the charge trapping, ionic transport, and structural degradation mechanisms in these materials. Understanding the influence of these other configurations is of critical importance for further improving the performance of these photovoltaics. PMID:27337149

  15. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    SciTech Connect

    Pate, Ryan; Lantz, Kevin R.; Stiff-Roberts, Adrienne D.; Dhawan, Anuj; Vo-Dinh, Tuan

    2010-10-08

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 {mu}m laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 {mu}m laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  16. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    PubMed

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days. PMID:25014167

  17. Dehydrocoupling and Silazane Cleavage Routes to Organic-Inorganic Hybrid Polymers with NBN Units in the Main Chain.

    PubMed

    Lorenz, Thomas; Lik, Artur; Plamper, Felix A; Helten, Holger

    2016-06-13

    Despite the great potential of both π-conjugated organoboron polymers and BN-doped polycyclic aromatic hydrocarbons in organic optoelectronics, our knowledge of conjugated polymers with B-N bonds in their main chain is currently scarce. Herein, the first examples of a new class of organic-inorganic hybrid polymers are presented, which consist of alternating NBN and para-phenylene units. Polycondensation with B-N bond formation provides facile access to soluble materials under mild conditions. The photophysical data for the polymer and molecular model systems of different chain lengths reveal a low extent of π-conjugation across the NBN units, which is supported by DFT calculations. The applicability of the new polymers as macromolecular polyligands is demonstrated by a cross-linking reaction with Zr(IV) . PMID:27151314

  18. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst.

    PubMed

    Zhang, Zehui; Dong, Kun; Zhao, Zongbao Kent

    2011-01-17

    A clean, facile, and environment-friendly catalytic method has been developed for the conversion of furfuryl alcohol into alkyl levulinates making use of the novel solid catalyst methylimidazolebutylsulfate phosphotungstate ([MIMBS]₃PW₁₂O₄₀). The solid catalyst is an organic-inorganic hybrid material, which consists of an organic cation and an inorganic anion. A study for optimizing the reaction conditions such as the reaction time, the temperature and the catalyst loading has been performed. Under optimal conditions, a high n-butyl levulinate yield of up to 93 % is obtained. Furthermore, the kinetics of the reaction pathways and the mechanism for the alcoholysis of furfuryl alcohol are discussed. This method is environmentally benign and economical for the conversion of biomass-based derivatives into fine chemicals. PMID:21226220

  19. Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials.

    PubMed

    Yoshimura, Tetsuzo; Iida, Makoto; Nawata, Hideyuki

    2014-06-15

    Self-organization of optical waveguides is observed between two opposed optical fibers placed in a photosensitive organic/inorganic hybrid material, Sunconnect. A luminescent target containing coumarin 481 was deposited onto the edge of one of the two fibers at the core. When a 448-nm write beam was introduced from the other fiber, the write beam and the luminescence from the photoexcited target increased the refractive index of Sunconnect to induce self-focusing. Traces of waveguides were seen to grow from the cores of both fibers and merged into a single self-aligned optical coupling between the fibers. This optical solder functionality enabled increases in both coupling efficiency and tolerance to lateral misalignment of the fibers. PMID:24978520

  20. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jitsui, Yusuke; Ohtani, Naoki

    2012-10-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co- N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found.

  1. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes.

    PubMed

    Jitsui, Yusuke; Ohtani, Naoki

    2012-01-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co-N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found. PMID:23095451

  2. A 3D µPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor.

    PubMed

    Ariza-Avidad, M; Salinas-Castillo, A; Capitán-Vallvey, L F

    2016-03-15

    This work reports on the development of a 3D microfluidic paper-based device (3D µPAD) for glucose detection using organic-inorganic hybrid nanoflower technology to immobilize the bi-enzymatic system (glucose oxidase and horseradish peroxidase). The system is based on nanoflowerssupported on cellulose paper (the microreactor zone) coupled to 3,3',5,5'-tetramethylbenzidine (TMB) as the colorimetric probe in the detection zone. We used a digital camera for the quantitative analysis of glucose with the S coordinate of the HSV color space as the analytical parameter. Under optimal operational conditions, linearity was observed for glucose concentrations up to 300 μM, with a detection limit of 15.6 µM. The biosensor is reusable and remains stable for 75 days in conventional storage conditions. PMID:26386331

  3. Carbon nanotubes noncovalently functionalized by an organic-inorganic hybrid: new building blocks for constructing superhydrophobic conductive coatings.

    PubMed

    Peng, Mao; Qi, Ji; Zhou, Zhi; Liao, Zhangjie; Zhu, Zhongming; Guo, Honglei

    2010-08-17

    A facile method for constructing superhydrophobic, conductive, and transparent/translucent coatings is presented. Pristine multiwalled carbon nanotubes (MWNTs) are first noncovalently (wrapped) modified by an organic-inorganic hybrid of an amphiphilic copolymer of styrene and maleic anhydride and silica with the existence of gamma-aminopropyltriethoxysilane (a silane coupling agent). The modified MWNTs were mixed with tetraethyl orthosilicate in ethanol, air sprayed, coated with a fluoroalkylsilane, and then heat treated to obtain the superhydrophobic, conductive, and transparent/translucent coatings. Scanning electron microscopy shows that the coatings have a micrometer- and nanometer-scale hierarchical structure similar to that of lotus leaves; therefore, they show both high water contact angles (>160 degrees) and low sliding angles (<2 degrees). The coatings also exhibit good transmittance and greatly improved conductivities. This method is convenient, inexpensive, and easy to scale up. Moreover, it does not require any chemical modification of the MWNTs or use any harsh chemicals. PMID:20695543

  4. Morphology and properties of a hybrid organic-inorganic system: Al nanoparticles embedded into CuPc thin film

    SciTech Connect

    Molodtsova, O. V.; Babenkov, S. V.; Aristova, I. M.; Vilkov, O. V.; Aristov, V. Yu.

    2014-04-28

    The evolution of the morphology and the electronic structure of the hybrid organic-inorganic system composed of aluminum nanoparticles (NPs) distributed in an organic semiconductor matrix—copper phthalocyanine (CuPc)—as a function of nominal aluminum content was studied by transmission electron microscopy and by photoemission spectroscopy methods. The aluminum atoms deposited onto the CuPc surface diffuse into the organic matrix and self-assemble to NPs in a well-defined manner with a narrow diameter distribution, which depends on the amount of aluminum that is evaporated onto the CuPc film. We find clear evidence of a charge transfer from Al to CuPc and we have been able to determine the lattice sites where Al ions sit. The finally at high coverage about 64 Å the formation of metallic aluminum overlayer on CuPc thin film takes place.

  5. Photo-responsive properties of azobenzene small molecules in sol-gel hybrid TiO2/ormosil organic-inorganic matrices

    NASA Astrophysics Data System (ADS)

    Que, Wenxiu; Hu, X.; Xia, X. L.; Zhao, L.

    2007-01-01

    Azodye-doped TiO2/ormosil hybrid materials for photonic applications were prepared by a low temperature sol-gel process from an organic-inorganic hybrid system. Acid-catalyzed solutions of γ-glycidoxypropyltrimethoxysilane and methyltrimethoxysilane mixed with tetrapropyl orthotitanate were used as hybrid matrix precursors. The trans-cis-trans photoisomerization of azobenzene small molecules in sol-gel hybrid organic-inorganic matrices was induced by a photoirradiation with UV light and subsequent visible light. It was found that the hybrid film doped with azodyes and heated at a lower temperature was much better for applications in optical storage or optical switch. The planar waveguide properties of the hybrid films were also investigated by using a prism coupling technique. These results indicates that it is possible for the as prepared hybrid films to allow directly integrating on the same chip the optical storage or optical switch devices with the pump source.

  6. Enzymatically degradable hybrid organic-inorganic bridged silsesquioxane nanoparticles for in vitro imaging

    NASA Astrophysics Data System (ADS)

    Fatieiev, Y.; Croissant, J. G.; Julfakyan, K.; Deng, L.; Anjum, D. H.; Gurinov, A.; Khashab, N. M.

    2015-09-01

    We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved. These enzymatically degradable BS NPs were further tested as promising imaging nanoprobes.We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved. These enzymatically degradable BS NPs were further tested as promising imaging nanoprobes. Electronic supplementary information (ESI) available: Detailed synthetic procedure, experimental procedure and Fig. S1-15. See DOI: 10.1039/c5nr03065j

  7. Synthesis and structural characterization of inorganic-organic-inorganic hybrids of dipalladium-substituted γ-Keggin silicodecatungstates.

    PubMed

    Hirano, Tomohisa; Uehara, Kazuhiro; Uchida, Sayaka; Hibino, Mitsuhiro; Kamata, Keigo; Mizuno, Noritaka

    2013-03-01

    Three inorganic-organic-inorganic hybrids of dipalladium-substituted γ-Keggin silicodecatungstates with organic linkers of different lengths, TBA8[{(γ-H2SiW10O36Pd2)(O2C(CH2)nCO2)}2] (n = 1 (II), 3 (III), and 5 (IV), TBA = [(n-C4H9)4N](+)), were synthesized by exchange of the acetate ligands in TBA4[γ-H2SiW10O36Pd2(OAc)2] (ITBA) with malonic, glutaric, and pimelic acids, respectively. The X-ray crystallographic analysis of II, IIIA (IIIA: III with DCE, DCE = 1,2-dichloroethane), and IVA (IVA: IV with 10DCE) revealed that the anion parts of II, IIIA, and IVA were inorganic-organic-inorganic hybrids composed of two dipalladium-substituted γ-Keggin silicodecatungstates connected by two dicarboxylate ligands. In the crystal structure of IVA, 10 DCE molecules per polyanion were present in the vicinity of polyanions. Compound IVB (IVB: IV with 0.2DCE) was obtained by the evacuation of IVA. The DCE sorption-desorption isotherms of IVB showed that the amount of DCE sorbed was saturated at 10.5 mol mol(-1), of which the amount was close to that (10 mol mol(-1)) of crystallographically assigned DCE molecules. In the DCE sorption-desorption isotherms, a low-pressure hysteresis was observed probably because of hydrogen-bonding interaction between DCE molecules and polyanions. The powder X-ray diffraction (XRD) pattern of IVA changed with decrease in the relative DCE vapor pressure to form IVC (IVC: IV with 0.7DCE) at P/P0 = 0.0. The in situ powder XRD study showed reversible structure transformation between IVA and IVC driven by the sorption-desorption of DCE. PMID:23398623

  8. Nb-Ta, Nb-Mo and Nb-V oxides prepared from hybrid organic-inorganic precursors

    SciTech Connect

    Deligne, N.; Bayot, D.; Degand, M.; Devillers, M.

    2007-07-15

    New hybrid organic-inorganic materials based on group 5 elements and a well-defined polymeric matrix have been prepared and used as precursors for Nb-Ta and Nb-Mo mixed oxides. In this non-conventional but easily accessible route to multimetallic oxides, a copolymer of N,N-diallyl-N-hexylamine and maleic acid was synthesised and used as matrix to stabilise inorganic species generated in solution from (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}.4H{sub 2}O, NH{sub 4}VO{sub 3} (gu){sub 3}[Nb(O{sub 2}){sub 4}] and (gu){sub 3}[Ta(O{sub 2}){sub 4}]. Solid-state studies indicate that the homogeneity of the blends can be kept up to about 0.5 mol Nb{sup V} and Ta{sup V} and 0.25 mol V{sup V} per mol of repeat units of the copolymer. The calcination conditions of these homogeneous hybrid precursors were optimised to produce Nb-Mo, Nb-Ta and Nb-V oxides. While the thermal treatment of the Nb-V hybrid blends led only to a mixture of different phases, the characterisation of the final phases by X-ray diffraction (XRD) proved the formation of pure Nb{sub 2}Mo{sub 3}O{sub 14} and showed that Nb-Ta oxides could be synthesised as single phases corresponding to a continuous series of solid solutions. - Graphical abstract: An alternative route based on hybrid organic-inorganic materials was implemented to synthesise Nb-Ta, Nb-Mo and Nb-V oxides. The hybrid materials were prepared by incorporation of inorganic salts based on Nb{sup V}, Ta{sup V}, V{sup V} and Mo{sup VI} in an organic polymer bearing cationic as well as anionic moieties. A thermal treatment of these hybrid blends has allowed the formation of multimetallic oxides.

  9. High-performance organic/inorganic hybrid heterojunction based on Gallium Arsenide (GaAs) substrates and a conjugated polymer

    NASA Astrophysics Data System (ADS)

    Jameel, D. A.; Felix, J. F.; Aziz, M.; Al Saqri, N.; Taylor, D.; de Azevedo, W. M.; da Silva, E. F.; Albalawi, H.; Alghamdi, H.; Al Mashary, F.; Henini, M.

    2015-12-01

    In this paper, we present an extensive study of the electrical properties of organic-inorganic hybrid heterojunctions. Polyaniline (PANI) thin films were deposited by a very simple technique on (1 0 0) and (3 1 1)B n-type Gallium Arsenide (GaAs) substrates to fabricate hybrid devices with excellent electrical properties. The hybrid devices were electrically characterized using current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements in the temperature range 20-440 K. The analysis of I-V characteristics based on the thermionic emission mechanism has shown a decrease of the barrier height and an increase of the ideality factor at lower temperatures for both hybrid devices. The interface states were analyzed by series resistance obtained using the C-G-V methods. The interface state density (Dit) of PANI/(1 0 0) GaAs devices is approximately one order of magnitude higher than that of PANI/(3 1 1)B GaAs devices. This behaviour is attributed to the effect of crystallographic orientation of the substrates, and was confirmed by DLTS results as well. Additionally, the devices show excellent air stability, with rectification ratio values almost unaltered after two years of storage under ambient conditions, making the polyaniline an interesting conductor polymer for future devices applications.

  10. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.

    PubMed

    Huh, Hyun Wook; Zhao, Linlin; Kim, So Yeon

    2015-08-01

    A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs. PMID:25933531

  11. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  12. Characterization and evaluation of C18 HPLC stationary phases based on ethyl-bridged hybrid organic/inorganic particles.

    PubMed

    Wyndham, Kevin D; O'Gara, John E; Walter, Thomas H; Glose, Kenneth H; Lawrence, Nicole L; Alden, Bonnie A; Izzo, Gary S; Hudalla, Christopher J; Iraneta, Pamela C

    2003-12-15

    The characterization and evaluation of three novel 5-microm HPLC column packings, prepared using ethyl-bridged hybrid organic/inorganic materials, is described. These highly spherical hybrid particles, which vary in specific surface area (140, 187, and 270 m(2)/g) and average pore diameter (185, 148, and 108 A), were characterized by elemental analysis, SEM, and nitrogen sorption analysis and were chemically modified in a two-step process using octadecyltrichlorosilane and trimethylchlorosilane. The resultant bonded materials had an octadecyl surface concentration of 3.17-3.35 micromol/m(2), which is comparable to the coverage obtained for an identically bonded silica particle (3.44 micromol/m(2)) that had a surface area of 344 m(2)/g. These hybrid materials were shown to have sufficient mechanical strength under conditions normally employed for traditional reversed-phase HPLC applications, using a high-pressure column flow test. The chromatographic properties of the C(18) bonded hybrid phases were compared to a C(18) bonded silica using a variety of neutral and basic analytes under the same mobile-phase conditions. The hybrid phases exhibited similar selectivity to the silica-based column, yet had improved peak tailing factors for the basic analytes. Column retentivity increased with increasing particle surface area. Elevated pH aging studies of these hybrid materials showed dramatic improvement in chemical stability for both bonded and unbonded hybrid materials compared to the C(18) bonded silica phase, as determined by monitoring the loss in column efficiency through 140-h exposure to a pH 10 triethylamine mobile phase at 50 degrees C. PMID:14670036

  13. Organic/inorganic hybrid pn-junction between copper phthalocyanine and CdSe quantum dot layers as solar cells

    NASA Astrophysics Data System (ADS)

    Saha, Sudip K.; Guchhait, Asim; Pal, Amlan J.

    2012-08-01

    We have introduced an organic/inorganic hybrid pn-junction for solar cell applications. Layers of II-VI quantum dots and a metal-phthalocyanine in sequence have been used as n- and p-type materials, respectively, to form a junction. The film of quantum dots has been formed through a layer-by-layer process by replacing the long-chain ligands of the nanoparticles in each ultrathin layer or a monolayer with short-chain ones so that interparticle distance becomes small leading to a decrease in resistance of the quantum dot layer. With indium tin oxide and Au as electrodes, we have formed an inverted sandwiched structure. These electrodes formed ohmic contacts with the neighboring materials. From the current-voltage characteristics of the hybrid heterostructure, we have inferred formation of a depletion region at the pn-junction that played a key role in charge separation and correspondingly a photocurrent in the external circuit. For comparison, we have also formed and characterized Schottky devices based on components of the pn-junction keeping the electrode combination same. From capacitance-voltage characteristics, we have observed that the depletion region of the hybrid pn-junction was much wider as compared to that in Schottky devices based on components of the junction.

  14. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Rong-Qiang; Woo, Jung-Je; Seo, Seok-Jun; Lee, Jae-Suk; Moon, Seung-Hyeon

    2008-05-01

    A series of new covalent organic/inorganic hybrid proton-conductive membranes, each with a semi-interpenetrating polymer network (semi-IPN), for direct methanol fuel cell (DMFC) applications is prepared through the following sequence: (i) copolymerization of impregnated styrene (St), p-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) within a supporting polyvinyl chloride (PVC) film; (ii) reaction of the chloromethyl group with 3-(methylamine)propyl-trimethoxysilane (MAPTMS); (ii) a sol-gel process under acidic conditions; (iv) a sulfonation reaction. The developed membranes are characterized in terms of Fourier transform infrared/attenuated total reflectance (FTIR/ATR), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDXA), elemental analysis (EA) and thermogravimetric analysis (TGA), which confirm the formation of the target membranes. The developed copolymer chains are interpenetrating with the PVC matrix to form the semi-IPN structure, and the inorganic silica is covalently bound to the copolymers. These features provide the membranes with high mechanical strength. The effect of silica content is investigated. As the silica content increases, proton conductivity and water content decrease, whereas oxidative stability is improved. In particular, methanol permeability and methanol uptake are reduced largely by the silica. The ratio of proton conductivity to methanol permeability for the hybrid membranes is higher than that of Nafion 117. All these properties make the hybrid membranes a potential candidate for DMFC applications.

  15. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    PubMed

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system. PMID:27455702

  16. Hybrid organic inorganic materials: Layered hydroxy double salts intercalated with substituted thiophene monomers

    NASA Astrophysics Data System (ADS)

    Tronto, Jairo; Leroux, Fabrice; Dubois, Marc; Taviot-Gueho, Christine; Valim, João Barros

    2006-05-01

    The present paper describes the synthesis and characterization of Layered Hydroxy Double Salts (HDSs) containing substituted thiophene anions (2-thiophenecarboxylate, 3-thiophenecarboxylate, and 3-thiopheneacetate). The HDSs host was synthesized via hydrothermal method and the organic anions were incorporated between the sheets by anion-exchange reaction. The materials were characterized by powder X-ray diffraction (PXRD), thermal gravimetric (TG) analysis and electron spin resonance (ESR) spectroscopy. For the 2D-hybrid materials, the basal spacing is found to be consistent with the formation of bilayers of the intercalated organic monomers. For the hybrid material formed after intercalation of 3-thiopheneacetate anion, the ESR signals suggest that the monomers connect each other directly forming small oligomers, whereas this process is not occurring for the two other monomers presenting short alkyl chain. The TG analyses show different stages of thermal decomposition between HDSs host and 2D-hybrid materials, underlining the enhanced thermal stability of the hybrid assembly.

  17. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  18. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-02-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  19. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices. PMID:26883532

  20. Solution-processed photodetectors based on organic-inorganic hybrid perovskite and nanocrystalline graphite

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xia, Zhonggao; Du, Songnan; Yuan, Fang; Li, Zigang; Li, Zhenjun; Dai, Qing; Wang, Haolan; Luo, Shiqiang; Zhang, Shengdong; Zhou, Hang

    2016-04-01

    We present here solution-processed photodetectors based on a methyl ammonium lead iodide perovskite (MAPbI3) and nanocrystalline graphite (NCG) hybrid composite. The highest responsivity of the best MAPbI3/NCG photodetector was 795 mA W-1 at 500 nm visible light, which is almost twice as high as that of the NCG-free MAPbI3 photodetector (408 mA W-1). The enhanced performance of the MAPbI3/NCG photodetector arises from the improved charge extraction at the MAPbI3/NCG interface. The dependence of photodetector performance on the mass percentage of NCG (the ratio of NCG to MAPbI3) in the hybrid materials is also reported here, and is correlated to the fabrication process. Moreover, by comparing the responsivity of the devices with different channel lengths, we show that the performance of hybrid photodetectors can be further tuned by tailoring the channel length.

  1. Photoluminescence and quantum yields of organic/inorganic hybrids prepared through formic acid solvolysis

    NASA Astrophysics Data System (ADS)

    Fu, Lianshe; Sá Ferreira, R. A.; Fernandes, M.; Nunes, S. C.; de Zea Bermudez, V.; Hungerford, Graham; Rocha, J.; Carlos, L. D.

    2008-03-01

    Three undoped di-urea cross-linked poly(oxyethylene) (POE)/siloxane hybrid matrices, classed as di-ureasils, incorporating POE segments with different lengths were prepared through the carboxylic acid solvolysis sol-gel method using formic acid. The resulting hybrids were characterized by X-ray diffraction, Fourier transform mid-infrared spectroscopy, 29Si and cross-polarization 13C magic-angle spinning nuclear magnetic resonance and photoluminescence spectroscopy. The hybrids' structure is essentially independent of the polymer chain length and the materials are room temperature white-light emitters with emission quantum yields of ˜10 ± 1% and lifetime average values between 2 and 4 ns. For the di-ureasil host with short polymer chains the solvolysis method favours the increase of the PL quantum yields relatively to conventional sol-gel route.

  2. Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic-inorganic light emitting diode

    NASA Astrophysics Data System (ADS)

    Vitukhnovsky, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-01-01

    We report on the fabrication of a hybrid light-emitting-diode based on colloidal semiconductor CdSe nanoplatelets as emitters and organic TAZ [3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole] and TPD [N, N‧-bis (3-methylphenyl)-N, N‧-bis (phenyl)-benzidine] materials as the electron and hole transporting layers. Electroluminescent and current-voltage characteristics of the developed hybrid device with the turn-on voltage of 5.5 V and the radiation wavelength of 515 nm have been obtained. Semiconductor nanoplatelets like CdSe are attractive for the fabrication of hybrid LEDs with low operating voltages, spectrally pure color and short-wavelength electroluminescence, which is required for RGB devices.

  3. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic-Inorganic Lead Iodide

    NASA Astrophysics Data System (ADS)

    Savory, Christopher N.; Palgrave, Robert G.; Bronstein, Hugo; Scanlon, David O.

    2016-02-01

    The increasing efficiency of the inorganic-organic hybrid halides has revolutionised photovoltaic research. Despite this rapid progress, the significant issues of poor stability and toxicity have yet to be suitably overcome. In this article, we use Density Functional Theory to examine (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), an alternative lead-based hybrid inorganic-organic solar absorber based on a photoactive organic cation. Our results demonstrate that optical properties suitable for photovoltaic applications, in addition to spatial electron-hole separation, are possible but efficient charge transport may be a limiting factor.

  4. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic-Inorganic Lead Iodide.

    PubMed

    Savory, Christopher N; Palgrave, Robert G; Bronstein, Hugo; Scanlon, David O

    2016-01-01

    The increasing efficiency of the inorganic-organic hybrid halides has revolutionised photovoltaic research. Despite this rapid progress, the significant issues of poor stability and toxicity have yet to be suitably overcome. In this article, we use Density Functional Theory to examine (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), an alternative lead-based hybrid inorganic-organic solar absorber based on a photoactive organic cation. Our results demonstrate that optical properties suitable for photovoltaic applications, in addition to spatial electron-hole separation, are possible but efficient charge transport may be a limiting factor. PMID:26858147

  5. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye; Sun, Yiyang; Zhang, Shengbai; Zhang, Peihong

    The quasiparticle band gaps of organic-inorganic hybrid perovskites are often determined (and can be controlled) by various factors, complicating predictive materials optimization. Here we report a comprehensive investigation on the band gap formation mechanism in CH3NH3PbI3 by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Four major factors, namely, quasiparticle self-energy, spin-orbit coupling, volume (lattice constant) effects, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organometal hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap through a lattice distortion mechanism and by controlling the overall lattice constants (thus the chemical bonding of the optically active PbI3-). The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies. This work is supported by the National Natural Science Foundation of China (Grant No. 11328401), NSF (Grant No. DMR-0946404 and DMR-1506669), and the SUNY Networks of Excellence.

  6. Structure and magnetic properties of SiO2/PCL novel sol-gel organic-inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Catauro, Michelina; Bollino, Flavia; Cristina Mozzati, Maria; Ferrara, Chiara; Mustarelli, Piercarlo

    2013-07-01

    Organic-inorganic nanocomposite materials have been synthesized via sol-gel. They consist of an inorganic SiO2 matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si-OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO2/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount.

  7. Organic-inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity

    NASA Astrophysics Data System (ADS)

    Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung

    2016-03-01

    In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.

  8. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers

    NASA Astrophysics Data System (ADS)

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria

    2016-01-01

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system.

  9. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers.

    PubMed

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M; Zacharias, Margit; Asplund, Maria

    2016-01-01

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ± 0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system. PMID:26791399

  10. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers

    PubMed Central

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria

    2016-01-01

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system. PMID:26791399

  11. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells.

    PubMed

    Zhao, Lei; Lin, Zhiqun

    2012-08-22

    Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combined with high electron mobility and size-dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP-NC nanocomposite possessing a well-defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP-NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP-NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field. PMID:22761026

  12. Organic-inorganic hybrid materials: nanoparticle containing organogels with myriad applications.

    PubMed

    Peveler, William J; Bear, Joseph C; Southern, Paul; Parkin, Ivan P

    2014-11-28

    The synthesis of hybrid inorganic-organic materials from a single-component organogelator is reported. Varied functional inorganic materials were included and the resultant physico-chemical properties of the gels are presented. These materials are quick, versatile, can be cast into virtually any form, and the nanoparticles are easily reclaimed. PMID:25302345

  13. Hybrid organic/inorganic thin-film multijunction solar cells exceeding 11% power conversion efficiency.

    PubMed

    Roland, Steffen; Neubert, Sebastian; Albrecht, Steve; Stannowski, Bernd; Seger, Mark; Facchetti, Antonio; Schlatmann, Rutger; Rech, Bernd; Neher, Dieter

    2015-02-18

    Hybrid multijunction solar cells comprising hydrogenated amorphous silicon and an organic bulk heterojunction are presented, reaching 11.7% power conversion efficiency. The benefits of merging inorganic and organic subcells are pointed out, the optimization of the cells, including optical modeling predictions and tuning of the recombination contact are described, and an outlook of this technique is given. PMID:25581318

  14. Synthesis of organic-inorganic hybrid mesoporous tin oxophosphate in the presence of anionic surfactant.

    PubMed

    Mal, Nawal Kishor; Fujiwara, Masahiro; Matsukata, Masahiko

    2005-11-01

    Synthesis of novel mesoporous hybrid tin oxophosphate is reported from phenylphosphonic acid as the only precursor of phosphorus in the presence of anionic surfactant (SDS), which possesses a wormhole mesoporous structure and is stable even after calcination at 550 degrees C. PMID:16228034

  15. Improvement of device performance by using zinc oxide in hybrid organic-inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Hayakawa, Akinobu; Sagawa, Takashi

    2016-02-01

    Zinc oxide (ZnO) nanopowder was applied to hybrid solar cells in combination with poly(3-hexylthiophene). Stability tests of the hybrid solar cell with or without encapsulation with glass and UV cut-off films were performed under 1 sun at 63 °C at a relative humidity of 50%. It was found that the sealed cell showed worse device performance in terms of the loss of the open-circuit voltage (Voc), whereas the unsealed cell exposed to air retained an almost constant Voc for more than 3 d under dark and atmospheric conditions. Placement in O2 atmosphere in the dark led to the recovery of Voc. Cation (Sn4+) doping into ZnO was performed, and the loss of Voc was effectively suppressed through the restraint of the supply of the excited electron from the valence band to the conduction band.

  16. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure. PMID:25822757

  17. Construction & characterization of organic-inorganic hybrid materials for applications in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sharma, Nikhil

    The use of soft matter to direct the organization of hard materials into functional geometries has been a paradigm inspired by nature. Polymer based systems can be engineered to reproducibly adopt nano-scale architectures. Designing interactions between such polymer templates and inorganic nanoparticles gives rise to nano-scale hybrid materials that may be deployable in applications ranging from magnetism to optoelectronics and lasing. In particular, hybrid one dimensional nanostructures exhibit a strong anisotropy in their physical properties. This anisotropy may be utilized for applications that require a directional transfer of signals or an orientation dependent physical response. The construction of one dimensional nanoparticle arrays via polymer based templates is detailed. Nano-scale arrays have been created using self-assembling peptide templates. Peptides adopt secondary and higher order hierarchical conformations in solution. The ability to engineer different types of functionality at precise locations in the assembled architecture presents possibilities of patterning matter at length scales inaccessible by lithographic techniques. Micro-scale particle arrays have been constructed via electrospinning, an electric-field assisted solution spinning technique. Correlations between the structural morphology and the optical behavior of these polymer-particle hybrid arrays have been investigated. Magnetic nanoparticle arrays displaying orientation dependent magnetic behavior have been constructed by coaxial electrospinning.

  18. Solution-processed photodetectors based on organic-inorganic hybrid perovskite and nanocrystalline graphite.

    PubMed

    Wang, Yan; Xia, Zhonggao; Du, Songnan; Yuan, Fang; Li, Zigang; Li, Zhenjun; Dai, Qing; Wang, Haolan; Luo, Shiqiang; Zhang, Shengdong; Zhou, Hang

    2016-04-29

    We present here solution-processed photodetectors based on a methyl ammonium lead iodide perovskite (MAPbI3) and nanocrystalline graphite (NCG) hybrid composite. The highest responsivity of the best MAPbI3/NCG photodetector was 795 mA W(-1) at 500 nm visible light, which is almost twice as high as that of the NCG-free MAPbI3 photodetector (408 mA W(-1)). The enhanced performance of the MAPbI3/NCG photodetector arises from the improved charge extraction at the MAPbI3/NCG interface. The dependence of photodetector performance on the mass percentage of NCG (the ratio of NCG to MAPbI3) in the hybrid materials is also reported here, and is correlated to the fabrication process. Moreover, by comparing the responsivity of the devices with different channel lengths, we show that the performance of hybrid photodetectors can be further tuned by tailoring the channel length. PMID:26978061

  19. Photoconductive properties of organic-inorganic hybrid films of layered perovskite-type niobate.

    PubMed

    Saruwatari, Kazuko; Sato, Hisako; Idei, Tomochika; Kameda, Jun; Yamagishi, Akihiko; Takagaki, Atsushi; Domen, Kazunari

    2005-06-30

    A hybrid film of layered niobate and an organic amphiphile was prepared by the Langmuir-Blodgett (LB) method. Trimethylammonium-exchanged perovskite-type niobates ((CH(3))(3)NHSr(2)Nb(3)O(10)) were exfoliative to form an aqueous suspension. A monolayer of octadecylamine was produced on such an aqueous dispersion as a template for a hybrid film. A hybrid film was transferred as a Y-type LB film onto a hydrophilic glass plate or an ITO substrate. The structure of a deposited film was investigated with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic force microscopy (AFM) measurements, indicating a layer-by-layer structure with a single or double sheet of niobate as an inorganic composite. From the cyclic voltammogram on an ITO electrode modified with the Y-type 10 layered film, the lower edge of the conduction band of a niobate layer was determined to be - 0.6 V (vs Ag/AgCl). ac impedance and dc measurements were carried out on 1, 5, and 10-layered LB films (2 mm (electrode spacing) x 8 mm (width)) with aluminum electrodes. The freshly deposited samples behaved as an insulator under the illumination of 280 nm light (2.04 x 10(16) quanta s(-1)). Photoconductivities appeared, however, when they were preirradiated with a 150 W Xe lamp (ca. 2 x 10(18) quanta s(-1)) for 0.5-8.5 h. The process was denoted as photomodification. From the FT-IR and XRD results, it was deduced that the photomodification of LB films caused the decomposition of organic templates (octadecylammonium) accompanied by the collapse of layer-by-layer structures. dc analyses on the 5- and 10-layered films after photomodification also showed that they behaved as a photosemiconductor under UV light illumination. PMID:16852536

  20. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate

    NASA Astrophysics Data System (ADS)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

    2011-11-01

    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution рН. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with λ max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to λmax=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  1. Gold nanoparticles embedded in organic/inorganic hybrid matrix: electrical and electrochemical behavior (withdrawal notice)

    NASA Astrophysics Data System (ADS)

    Moreira, Sandra D. F. C.; Silva, J. P. B.; Silva, Carlos J. R.; Capan, I.; Gomes, M. J. M.; Costa, Manuel F. M.

    2013-05-01

    Gold nanoparticles (AuNPs) with different diameters, from 3 to 32 nm, were immobilized in amine-alcohol-silicate matrix by mixing a preformed nanoparticle colloid with the precursors of amine-alcohol-silicate (AAs) prior to the solgel transition. These nanocomposites show high optical quality and optical features dictated by the size of the nanoparticle dopants but also present a high degree of flexibility which can largely enhance the range of practical applications. The current-voltage, impedance and capacitance-voltage characteristics of these materials have been measured. The electrochemical and impedimetric results reveal that AuNPs with different sizes give different signals, thus providing useful information that allows the employment of AuNPs in electrochemical biosensors. Capacitance- voltage measurements showed that these composites embedded AuNPs exhibited a large hysteresis window of 2.4V which indicates the possibility of charge storage in the Au nanoparticles embedded AAs hybrids.

  2. Sol-gel synthesis of hybrid organic-inorganic tin oxide based materials

    SciTech Connect

    Ribot, F.O.; Banse, F.; Sanchez, C.

    1994-12-31

    RSn(OAm{sup t}){sub 3} with R = n-butyl, n-butenyl or para-styryl, which are monomeric precursors, have been hydrolyzed. The so-obtained products have been characterized mainly by {sup 119}Sn NMR. In every case, tin expands its coordination from 4 to 5 and 6, and hydrolysis yields tin oxo-hydroxo species of small size. For n-butyl and n-butenyl, a cage-like tin oxo-hydroxo cluster, {l_brace}(RSn){sub 12}({mu}{sub 3}-O){sub 14}({mu}{sub 2}-OH){sub 6}{r_brace}{sup 2+}, was evidenced as the major compound formed. Organic polymerization of the unsaturated organic groups linked to tin was initiated on the hydrolysis products and yielded hybrid systems which can be pictured as tin oxo-hydroxo oligomers attached together by polymeric chains.

  3. Designing artificial photosynthetic devices using hybrid organic-inorganic modules based on polyoxometalates.

    PubMed

    Symes, Mark D; Cogdell, Richard J; Cronin, Leroy

    2013-08-13

    Artificial photosynthesis aims at capturing solar energy and using it to produce storable fuels. However, while there is reason to be optimistic that such approaches can deliver higher energy conversion efficiencies than natural photosynthetic systems, many serious challenges remain to be addressed. Perhaps chief among these is the issue of device stability. Almost all approaches to artificial photosynthesis employ easily oxidized organic molecules as light harvesters or in catalytic centres, frequently in solution with highly oxidizing species. The 'elephant in the room' in this regard is that oxidation of these organic moieties is likely to occur at least as rapidly as oxidation of water, meaning that current device performance is severely curtailed. Herein, we discuss one possible solution to this problem: using self-assembling organic-polyoxometalate hybrid structures to produce compartments inside which the individual component reactions of photosynthesis can occur without such a high incidence of deleterious side reactions. PMID:23816903

  4. Multifunctional hybrid organic-inorganic catalytic materials with a hierarchical system of well-defined micro- and mesopores.

    PubMed

    Corma, Avelino; Díaz, Urbano; García, Teresa; Sastre, Germán; Velty, Alexandra

    2010-10-27

    Novel layered zeolitic organic-inorganic materials (MWW-BTEB) have been synthesized by intercalation and stabilization of arylic silsesquioxane molecules between inorganic zeolitic MWW layers. The organic linkers are conformed by two condensed silyl-arylic groups from disilane molecules, such as 1,4-bis(triethoxysilyl)benzene (BTEB), which react with the external silanol groups of the zeolitic layers. The hybrids contain micropores within the inorganic layers and a well-defined mesoporous system in between the organic linkers. An amination post-treatment introduces basic groups in the organic linkers close to the acid sites present in the structural inorganic counterpart. Through this methodology it has been possible to prepare bifunctional acid-base catalysts where the acid sites are of zeolitic nature located in the inorganic building blocks and the basic sites are part of the organic structure. The resultant materials can act as bifunctional catalysts for performing a two-step cascade reaction that involves the catalytic conversion of benzaldehyde dimethylacetal into benzylidene malononitrile. PMID:20879788

  5. Preparation and transport properties of hybrid organic-inorganic CH3NH3SnBr3 films

    NASA Astrophysics Data System (ADS)

    Chiarella, F.; Ferro, P.; Licci, F.; Barra, M.; Biasiucci, M.; Cassinese, A.; Vaglio, R.

    2007-01-01

    We describe the preparation, structural and transport properties of CH3NH3SnBr3 organic-inorganic hybrid films (500 nm thick), which crystallize as cubic perovskites. They were deposited by single source thermal ablation technique, in a 10-6 mbar vacuum chamber on glass, polymeric and crystalline substrates. X-ray diffraction proved that they were well crystallized and c-axis oriented. Resistivity measurements as a function of temperature showed a semiconductor behaviour. The activation energy, ΔE, was estimated by fitting the linear portions of the resistivity vs. temperature plots and was found to be (0.30±0.01) eV in the 260-230 K temperature interval. A significant change in resistivity was observed at a low temperature T=225 K in coincidence with the structural distortion in the Sn-Br-Sn chains. A field effect device was used to determine the charge carrier type and mobility as a function of temperature and field. The charge carriers were hole type. Their mobility at room temperature was about 10-5 cm2V- 1s- 1. It increased by two orders of magnitude at 320 K and exhibited an almost exponential dependence on the applied gate voltage.

  6. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  7. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites.

    PubMed

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-28

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed. PMID:26705549

  8. Preparation and characterization of superhydrophobic organic-inorganic hybrid cotton fabrics via γ-radiation-induced graft polymerization.

    PubMed

    Gao, Qianhong; Hu, Jiangtao; Li, Rong; Pang, Lijuan; Xing, Zhe; Xu, Lu; Wang, Mouhua; Guo, Xiaojing; Wu, Guozhong

    2016-09-20

    A new kind of non-fluorine-based organic-inorganic hybrid superhydrophobic cotton fabric was successfully prepared by simultaneous radiation-induced graft polymerization of γ-methacryloxypropyl trimethoxy silane (MAPS) and subsequent end-capping modification with hexamethyldisilazane (HMDS). The chemical structure and surface topography of the pristine and modified cotton fabrics were investigated in detail by ATR-FTIR, XPS, (29)Si NMR, SEM and TGA to confirm that the graft reaction and end-capping modification had taken place. The above results demonstrated that the grafting polymerization and following end-capping reaction were completed, and a grafting layer was immobilized onto the surface of the cotton fabric. Surface wettability measurement and oil-water separation showed that the modified cotton surface not only exhibited the superhydrophobicity with a water contact angle of 165°, but also afforded a high efficiency of oil-water separation (96%). In particular, this modified cotton fabric retains superhydrophobicity even after 30 laundering cycles or 400 cycles of abrasion. PMID:27261755

  9. The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer.

    PubMed

    Yang, Tae-Youl; Gregori, Giuliano; Pellet, Norman; Grätzel, Michael; Maier, Joachim

    2015-06-26

    The success of perovskite solar cells has sparked enormous excitement in the photovoltaic community not only because of unexpectedly high efficiencies but also because of the future potential ascribed to such crystalline absorber materials. Far from being exhaustively studied in terms of solid-state properties, these materials surprised by anomalies such as a huge apparent low-frequency dielectric constant and pronounced hysteretic current-voltage behavior. Here we show that methylammonium (but also formamidinium) iodoplumbates are mixed conductors with a large fraction of ion conduction because of iodine ions. In particular, we measure and model the stoichiometric polarization caused by the mixed conduction and demonstrate that the above anomalies can be explained by the build-up of stoichiometric gradients as a consequence of ion blocking interfaces. These findings provide insight into electrical charge transport in the hybrid organic-inorganic lead halide solar cells as well as into new possibilities of improving the photovoltaic performance by controlling the ionic disorder. PMID:25980541

  10. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  11. Three iodometalate organic-inorganic hybrid materials based on methylene blue cation: Syntheses, structures, properties and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chai, Wen-Xiang; Lin, Jian; Song, Li; Qin, Lai-Shun; Shi, Hong-Sheng; Guo, Jia-Yu; Shu, Kang-Ying

    2012-08-01

    The functional dye of methylene blue (MB) has been employed for seeking new organic-inorganic hybrid photochromic materials. Although the photochromism has not been observed yet, three iodometalate compounds, namely (MB) (PbI3) (DMF) (1), (MB)4(Cu2I4)2 (2), and (MB)3(Bi2I9) (DMF)2 (3), have been synthesized and characterized. The iodometalate anion features as a [PbI3]∞- chain in 1, a dinuclear unit of Cu2I42- in 2, and a dinuclear unit of Bi2I93- in 3. Due to the synergy of cations and anions, the MB+ cations present supramolecular column stacks in 1 and 3, but a novel supramolecular octamer structure in 2. Their thermogravimetric analyses reveal that the polymeric inorganic anion structure is helpful to increase the stability of cation whereas the discrete structure is adverse. For seeking some clues which is significant to searching new photochromic systems, the density functional theory (DFT) studies have been performed on 1, in which the electronic structure analyses suggests that the stacking mode of cations and anions could be also an important factor influencing the charge transfer between them. In addition, dielectric hysteresis loop testing has been performed on 1 due to its polar space group of Cc.

  12. Organic-inorganic hybrid fluorous monolithic capillary column for selective solid-phase microextraction of perfluorinated persistent organic pollutants.

    PubMed

    Xiong, Xiyue; Yang, Zihui; Huang, Yongbin; Jiang, Linbo; Chen, Yingzhuang; Shen, Yao; Chen, Bo

    2013-03-01

    A novel construction strategy of monolithic capillary column for selectively enriching perfluorinated persistent organic pollutants was proposed. The organic-inorganic hybrid fluorous monolithic capillary column was synthesized by a "one-pot" approach via the polycondensation of γ-methacryloxypropyltrimethoxy-silane, then in situ copolymerization of 1H,1H,7H-dodecafluoroheptyl methacrylate and vinyl group on the precondensed siloxanes. The obtained monolithic columns were systematically characterized. The results demonstrated that the optimal column possessed good mechanical stability and high permeability. The adsorption capacities of the optimized monolithic column for perfluorooctanoic acid and perfluorooctane sulfonate were 0.257 and 0.513 μg/mg, respectively. Adsorption capacities of the monoliths were proved to increasing with increasing the amounts of fluorinated monomers in the fluorous monoliths. Sodium 1-octanesulfonate, as a comparison compound, was hardly adsorbed on the fluorous monolith. In addition, the trace amounts of perfluorooctanoic acid and perfluorooctane sulfonate in water samples can be successfully concentrated about 160 times to their original concentrations by this monolithic column. These results demonstrated that the capacity and selectivity of the affinity fluorous column is high and can be applied to the selective enrichment for the perfluorinated persistent organic pollutants from environmental samples. PMID:23378177

  13. Dialkylenecarbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group

    SciTech Connect

    Assink, Roger A.; Baugher, Brigitta M.; Beach, James V.; Loy, Douglas A.; Shea, Kenneth J.; Small, James H.; Tran, Joseph

    1999-07-20

    In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing mobilization of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, volubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) and bis(triethoxysilylisobutyl)-carbonate (2). Thermal treatment of the resulting non-porous xerogels and aerogels at 300-350 C resulted in quantitative decarboxylation of the dialkylenecarbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that can not be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

  14. Adsorption and separation of methane/hydrogen in octaphenylsilsesquioxane based covalently-linked organic-inorganic hybrid framework

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Zhang, Hong; Tang, Yong-Jian; Wang, Chao-Yang

    2012-08-01

    The adsorption and separation of CH4/H2 in two covalently-linked organic-inorganic hybrid frameworks polyoctaphenylsilsesquioxane (JUC-Z1) were computationally studied using the Grand Canonical Monte Carlo (GCMC) simulations. The results show that JUC-Z1 with Linde type A (LTA) and polycubane (zeolite code ACO) net topologies can adsorb up to 20.32, 18.57 mmol/g of CH4 and 19.04, 17.89 mmol/g of H2 at 298 K and 10 MPa, respectively. For the adsorption of binary mixture, the selectivity of CH4 over H2 in LTA-JUC-Z1 decrease gradually with the increase of the pressure or the CH4 mole fraction of the mixture. As to ACO-JUC-Z1, the selectivity first increases at low pressure or CH4 mole fraction, and then begins to decrease with the further increase of the corresponding amount. Anyhow, the two materials both exhibit excellent adsorption and separation capacities of CH4/H2.

  15. Synthesis and characterization of nanocomposite organic/inorganic hybrid materials using living cationic polymerization

    NASA Astrophysics Data System (ADS)

    Kim, Iljin

    A series of novel chlorosilyl functional initiators have been prepared and applied for the first time in the living cationic polymerization of isobutylene (IB). Well-defined polyisobutylenes (PIBs) carrying mono-, di-, and trichlorosilyl head-group, and a tert-chloro end-group were synthesized using newly designed silyl-functional initiators in conjunction with TiCl4 in Hex:MeCl (60:40, v:v) at -80°C. End-group analysis by 1H NMR spectroscopy verified the product structure and the survival of the Si-Cl head-groups during the polymerization. The chlorosilyl functional initiators and chlorosilyl functional PIBs have been employed for the synthesis of PIB brushes on planar silicate substrates by the "grafting from" and "grafting to" techniques. Structurally well-defined polymer/inorganic nanocomposites were prepared by surface-initiated living cationic polymerization of isobutylene (IB). The living cationic polymerization of IB was initiated from initiators self-assembled on the surface of silica nanoparticles in the presence of additional soluble "free initiator" with TiCl4 in hexanes/CH3Cl (60/40, v/v) at -80°C. The polymerization displayed the diagnostic criteria for living cationic polymerization and provided densely grafted polymers of controlled molecular weight with an approximate graft density of 3.3 chains/nm 2. The surface-initiated polymerization of IB without added "free initiator" also yielded grafted polymer chains with good molecular weight control and narrow molecular weight distribution (Mw/M n). A series of novel hybrid poly(styryl-POSS), poly(isobutylene- b-(styryl-POSS)), and poly(isobutylene-b-(styryl-POSS)- b-isobutylene) are synthesized and characterized. Living cationic polymerization of styryl-POSS macromer was carried out using the 1-chloro-1-(4-methyphenyl)ethane (p-MeStCl)/TiCl4/MeChx:CH3Cl (60:40, v:v)/-80°C system in the presence of DTBP. Using these conditions, we have synthesized AB diblock, and ABA linear triblock copolymers

  16. Clustomesogens: Liquid Crystalline Hybrid Nanomaterials Containing Functional Metal Nanoclusters.

    PubMed

    Molard, Yann

    2016-08-16

    Inorganic phosphorescent octahedral metal nanoclusters fill the gap between metal complexes and nanoparticles. They are finite groups of metal atoms linked by metal-metal bonds, with an exact composition and structure at the nanometer scale. As their phosphorescence internal quantum efficiency can approach 100%, they represent a very attractive class of molecular building blocks to design hybrid nanomaterials dedicated to light energy conversion, optoelectronic, display, lighting, or theragnostic applications. They are obtained as AnM6X(i)8X(a)6 ternary salt powders (A = alkali cation, M = Mo, Re, W, X(i): halogen inner ligand, X(a) = halogen apical ligand) by high temperature solid state synthesis (750-1200 °C). However, their ceramic-like behavior has largely restricted their use as functional components in the past. Since these last two decades, several groups, including ours, started to tackle the challenge of integrating them in easy-to-process materials. Within this context, we have extensively explored the nanocluster ternary salt specificities to develop a new class of self-organized hybrid organic-inorganic nanomaterials known as clustomesogens. These materials, combine the specific properties of nanoclusters (magnetic, electronic, luminescence) with the anisotropy-related properties of liquid crystals (LCs). This Account covers the research and development of clustomesogens starting from the design concepts and synthesis to their introduction in functional devices. We developed three strategies to build such hybrid super- or supramolecules. In the covalent approach, we capitalized on the apical ligand-metal bond iono-covalent character to graft tailor-made organic LC promoters on the {M6X(i)8}(n+) nanocluster cores. The supramolecular approach relies on the host-guest complexation of the ternary cluster salt alkali cations with functional crown ether macrocycles. We showed that the hybrid LC behavior depends on the macrocycles structural features

  17. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    PubMed

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. PMID:26866821

  18. Mesoporous Silicia Nanowires by Space-Confined Organic-Inorganic Hybrid Self-Assembly

    SciTech Connect

    Lai, Peng

    2007-10-01

    This research focuses on the space-confined self-assembly of P123-silica hybrid solution inside nano-scale channels. Mesoporous silica nanowires with various diameters (10-400nm) were synthesized via sol-gel combined evaporation-induced self-assembly in channels of both anodized aluminum oxide (AAO) and etched polycarbonate (EPC) substrate. Scanning transmission electron microscope (STEM) was utilized to characterize the samples in terms of nanopore size, ordering, and orientation. The mesoporous structures of silica wires formed in EPC channels with diameter less than 400 nm are investigated and reported for the first time. Substrate effect (EPC vs. AAO) and processing condition effect on the morphology of the mesoporous structure of silica wires are presented and discussed. The more ordered and uniform mesoporous structure is preferentially formed in narrower substrate channel confinement. A critical diameter of hard template channels is around 30-50 nm, below which the space confinement effect leads to more uniform nanostructured nanowires, and above which mixed meso-structures usually exist. The formation of various meso-structures of silica wires is sensitive to process conditions.

  19. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.

    PubMed

    Misra, R D K; Depan, D; Shah, J

    2013-08-21

    The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging. PMID:23817610

  20. Characterization of the photosensitive response in polysilane-based organic/inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Chandra, Haripin

    The motivation for the current work stems from a unique application, i.e. the photopatterning of optical functionality in a photosensitive material immediately prior to use. In this case, optical devices such as diffraction gratings and optical interconnects are produced in thin films using integrated photonic sources under relatively uncontrolled environmental conditions. The compatibility of the material photoexcitation mechanism with wavelength and fluence levels available from compact solid-state optical sources and the need to understand the impact of local atmospheric composition and temperature on the photosensitive material response are therefore of primary concern. The primary goal of the current study was to investigate photoexcitation mechanisms and photoinduced optical and structural changes in promising candidate material systems for this application: polysilane and polygermane-based molecular hybrid polymers. The work pursued the development of a fundamental understanding of the key photophysical and photostructural responses of thin films composed of both pure, linear-chain polysilanes and of a Ge-Si copolymer. The effects of molecular modifications to the polymers, including polymer backbone catenate structure and side-group identity, on the optical and photosensitive behavior observed in these systems are examined. Through such effort, an understanding of how such structural characteristics influence key photosensitive properties, i.e. the excitation wavelength and the resulting photoinduced optical property changes, was attained. A related objective in the present work was to characterize the thermal stability of these hybrid polymers, specifically in terms of the effect of thermal treatment on as-deposited and photomodified materials. In this case, an evaluation of the similarities and differences in structural modification in response to both thermal and optical fields was pursued. The primary mechanism associated with the photoinduced phenomena

  1. Laser-induced photopatterning of organic-inorganic TiO2-based hybrid materials with tunable interfacial electron transfer.

    PubMed

    Kuznetsov, A I; Kameneva, O; Bityurin, N; Rozes, L; Sanchez, C; Kanaev, A

    2009-02-28

    Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange. PMID:19209369

  2. Organic-inorganic hybrid nanomaterial as a new fluorescent chemosensor and adsorbent for copper ion.

    PubMed

    Lee, Soo Jin; Lee, Shim Sung; Lah, Myoung Soo; Hong, Jae-Min; Jung, Jong Hwa

    2006-11-21

    Functionalized silica nanotube (FSNT) possessing the phenanthroline moiety as a fluorescent receptor was fabricated by solgel reaction, and the binding ability of FSNT with metal ions was evaluated by fluorophotometry. PMID:17283811

  3. Resistive Switching Behavior in Organic-Inorganic Hybrid CH3 NH3 PbI3-x Clx Perovskite for Resistive Random Access Memory Devices.

    PubMed

    Yoo, Eun Ji; Lyu, Miaoqiang; Yun, Jung-Ho; Kang, Chi Jung; Choi, Young Jin; Wang, Lianzhou

    2015-10-28

    The CH3 NH3 PbI3- x Clx organic-inorganic hybrid perovskite material demonstrates remarkable resistive switching behavior, which can be applicable in resistive random access memory devices. The simply designed Au/CH3 NH3 PbI3- x Clx /FTO structure is fabricated by a low-temperature, solution-processable method, which exhibits remarkable bipolar resistive switching and nonvolatile properties. PMID:26331363

  4. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites

    NASA Astrophysics Data System (ADS)

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-01

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled

  5. The interaction between hybrid organic-inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study.

    PubMed

    Idígoras, J; Todinova, A; Sánchez-Valencia, J R; Barranco, A; Borrás, A; Anta, J A

    2016-05-11

    The interaction of hybrid organic-inorganic halide perovskite and selective contacts is crucial to get efficient, stable and hysteresis-free perovskite-based solar cells. In this report, we analyze the vibrational properties of methylammonium lead halide perovskites deposited on different substrates by infrared absorption (IR) measurements (4000-500 cm(-1)). The materials employed as substrates are not only characterized by different chemical natures (TiO2, ZnO and Al2O3), but also by different morphologies. For all of them, we have investigated the influence of these substrate properties on perovskite formation and its degradation by humidity. The effect of selective-hole contact (Spiro-OmeTad and P3HT) layers on the degradation rate by moisture has also been studied. Our IR results reveal the existence of a strong interaction between perovskite and all ZnO materials considered, evidenced by a shift of the peaks related to the N-H vibrational modes. The interaction even induces a morphological change in ZnO nanoparticles after perovskite deposition, pointing to an acid-base reaction that takes place through the NH3(+) groups of the methylammonium cation. Our IR and X-ray diffraction results also indicate that this specific interaction favors perovskite decomposition and PbI2 formation for ZnO/perovskite films subjected to humid conditions. Although no interaction is observed for TiO2, Al2O3, and the hole selective contact, the morphology and chemical nature of both contacts appear to play an important role in the rate of degradation upon exposure to moisture. PMID:27138224

  6. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    SciTech Connect

    Yang, Wenchao; Yao, Yao Wu, Chang-Qin

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  7. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin

    2015-04-01

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec-V) and the current density-voltage (J-V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec-V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  8. Ampholine-functionalized hybrid organic-inorganic silica material as sorbent for solid-phase extraction of acidic and basic compounds.

    PubMed

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Chen, Mingliang; Nie, Chenggang; Hu, Minjie; Li, Ying; Jia, Zhijian; Fang, Jianghua; Gao, Haoqi

    2013-09-20

    A novel sorbent for solid-phase extraction (SPE) was synthesized by chemical immobilization of ampholine on hybrid organic-inorganic silica material. The ampholine-functionalized hybrid organic-inorganic silica sorbent is consisted of aliphatic amine groups, carboxyl groups and long carbon chains, allowing for extraction of both acidic and basic compounds. The retention properties of the developed sorbent were evaluated for 1-hydroxy-2-naphthoic acid (HNA), 1-naphthoic acid (NA), 3-hydroxybenzoic acid (HBA), benzoic acid (BA), sorbic acid (SA), vanillic aldehyde (VA), butyl 4-hydroxybenzoate (BHB), propyl 4-hydroxybenzoate (PHB), ethyl 4-hydroxybenzoate (EHB), and methyl 4-hydroxybenzoate (MHB). The results show that such a sorbent has three types of interaction, i.e., electrostatic interaction, hydrophobic interaction, and hydrogen bonding, exhibiting high extraction efficiency towards the compounds tested. The adsorption capacities of the analytes ranged from 0.61 to 6.54μgmg(-1). The reproducibility of the sorbent preparation was evaluated at three spiking concentration levels, with relative standard deviations (RSDs) of 1.0-10.5%. The recoveries of ten acidic and basic compounds spiked in beverage Coca-Cola(®) sample ranged from 82.5% to 98.2% with RSDs less than 5.8%. Under optimum conditions, the ampholine-functionalized hybrid organic-inorganic silica sorbent rendered higher extraction efficiency for acidic compounds than that of the commercially available ampholine-functionalized silica particles, and was comparable to that of the commercial Oasis WAX and Oasis WCX. PMID:23953713

  9. Strong and fast-recovery organic/inorganic hybrid AuNPs-supramolecular gels based on loofah-like 3D networks.

    PubMed

    He, Huiwen; Chen, Si; Tong, Xiaoqian; Chen, Yining; Wu, Bozhen; Ma, Meng; Wang, Xiaosong; Wang, Xu

    2016-01-21

    Super strong and fast-recovery organic/inorganic hybrid gold nanoparticle (AuNPs)-supramolecular gels based on a three-dimensional loofah-like nanoscale network self-assembled by polyhedral oligomeric silsesquioxane (POSS) core supramolecular gelators are reported for the first time. Two series of POSS core organic/inorganic hybrid gelators, POSS-BOC-l-Homophenylalanine (POSS-Hpy) and POSS-Boc-Cys(Bzl)-OH (POSS-Cys), with two types of peripherals having different abilities for driving the self-assembly of AuNPs in gels were designed and synthesized, both of which self-assembled into three-dimensional loofah-like nanoscale gel networks producing hybrid physical gels with fast-recovery behaviors. The mechanical properties of the resultant hybrid gels were dramatically increased by as much as 100 times in the system of sulfur containing POSS-Cys gelators without destroying the fast-recovery behaviors, with the addition of AuNPs, which had direct interaction with AuNPs to give S-Au non-covalent driving force to lead AuNPs self-assemble onto the 3D loofah-like network nanofibres in the supramolecular hybrid gel system. However, in the POSS-Hpy gelator system without sulfur, no strong interaction with AuNPs existed and the POSS-Hpy nanocomposites showed no clear changes in morphology, thermal stability or rheological properties, confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), tube-inversion and rotational rheometer measurements. This indicated that the organic/inorganic hybrid gelator POSS-Cys could be applied to the formation of soft materials in which AuNPs were self-assembled and closely arranged into three-dimensional nanoscale networks. This hybrid material has great potential for applications in self-recovery, nano- and micron-scale electronic devices, because it has both a large mechanical strength and a fast-recovery capability. PMID:26568047

  10. Hybrid upconversion nanomaterials for optogenetic neuronal control

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas; Liu, Jing-Jing; Pasquale, Nicholas; Lai, Jinping; McGowan, Heather; Pang, Zhiping P.; Lee, Ki-Bum

    2015-10-01

    Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by embedding upconversion nanomaterials, which can convert NIR light to blue luminescence, into polymeric scaffolds. These hybrid nanomaterial scaffolds allowed for NIR-mediated neuronal stimulation, with comparable efficiency as that of 470 nm blue light. Our platform was optimized for NIR-mediated optogenetic control by balancing multiple physicochemical properties of the nanomaterial (e.g. size, morphology, structure, emission spectra, concentration), thus providing an early demonstration of rationally-designing nanomaterial-based strategies for advanced neural applications.Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by

  11. Characteristics of oxidative homolytic alkylation of imidazoles and organic-inorganic hybrid extended networks from large aromatic building blocks

    NASA Astrophysics Data System (ADS)

    Li, Kunhao

    The discovery of the dramatic in vitro antimalarial activity of 2-iodo-L-histidine and 2-fluoro-L-histidine, as well as their in vivo limitations, has prompted a systematic search for novel 2-substituted imidazoles and bioimidazoles as agents against human malaria. Previous research has shown that the regioselective alkyl free radical substitution on imidazoles and bioimidazoles could serve as a simple and efficient route to a wide variety of 2-alkylimidazoles. In this research, this methodology was successfully extended to include alkyl radicals substituted with various functional groups such as amide or ester. While this novel methodology should be of some synthetic utility when tertiary radicals are used, poorer yields are usually encountered in the cases of primary radicals. In the second part of this dissertation, a series of novel ligands containing multiple ortho-bis(organothio) groups were synthesized and their coordination and network forming properties were studied in the context of crystalline organic-inorganic hybrid extended networks. For the syntheses of HRTTs [2,3,6,7,10,11-hexakis(alkylthio)triphenylenes], a simpler, safer and higher yielding one-pot process was developed. Quenching the hexa-anions (formed when sodium methylthiolate was refluxed with hexabromotriphenylene) with alkyl halides or acid chlorides afforded HRTTs. This newly developed process was also successfully expanded to the pyrene system. In the syntheses of unsymmetrically substituted triphenlyenes, it was shown for the first time that the oxidative cyclization process is applicable to thioether containing systems, pointing to a novel strategy for the preparation of this type of unsymmetrically substituted triphenlyenes. Treating these novel ligands with various metal salts [i.e. bismuth(III) chloride and bismuth(III) bromide] under carefully controlled conditions resulted in a series of air-stable semiconductive coordination networks. Their single crystal structures were

  12. Preparation of an aptamer based organic-inorganic hybrid monolithic column with gold nanoparticles as an intermediary for the enrichment of proteins.

    PubMed

    Zhao, Jin-Cheng; Zhu, Qing-Yun; Zhao, Ling-Yu; Lian, Hong-Zhen; Chen, Hong-Yuan

    2016-08-01

    A novel strategy for the preparation of an aptamer based organic-inorganic hybrid affinity monolithic column was developed successfully using gold nanoparticles (GNPs) as an intermediary for a sandwich structure to realize the functional modification of the surface of the monolithic matrix. This monolithic matrix was facilely pre-synthesized via one-step co-condensation. Due to the high surface-to-volume ratio of GNPs and the large specific surface area of the hybrid matrix, the average coverage density of aptamers on the hybrid monolith reached 342 pmol μL(-1). With the combination of an aptamer based hybrid affinity monolithic column and enzymatic chromogenic assay, the quantitation and detection limits of thrombin were as low as 5 nM and 2 nM, respectively. These results indicated that the GNPs attached monolith provided a novel technique to immobilize aptamers on an organic-inorganic hybrid monolith and it could be used to achieve highly selective recognition and determination of trace proteins. PMID:27307035

  13. Synthesis, structure, and electrochemical properties of nano-layered organic-inorganic perovskites containing Fe(CN)6 3- layers and its application for detection of DNA hybridization

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Liu, Hanxing; Lin, Zhidong; Cao, Minghe; Yu, Zhiyong; Hao, Hua; Guo, Linlin

    2009-07-01

    Steady organic-inorganic perovskite hybrids with [H22-AMP]3/2Fe(CN)6, [H23-AMP]3/2Fe(CN)6 and [H24- AMP]3/2Fe(CN)6 (AMP = aminomethylpyridine) were formed in the air. Each structure shows an unusual layered organic-inorganic structural type. The hybrids enveloped in paraffin, respectively, to prepare hybrid paste electrode (HPE) (HPE-2 with [H22-AMP]3/2Fe(CN)6, HPE-3 with [H23-AMP]3/2Fe(CN)6, HPE-4 with [H24-AMP]3/2Fe(CN)6). Three hybrids in HPEs showed good electrochemical characteristics. The sequence of redox activity is [H24- AMP]3/2Fe(CN)6 > [H22-AMP]3/2Fe(CN)6 > [H23-AMP]3/2Fe(CN)6 and that of electrocatalytical characteristics is [H23- AMP]3/2Fe(CN)6 > [H22-AMP]3/2Fe(CN)6 > [H24-AMP]3/2 Fe(CN)6. Three hybrids have been employed to investigate the interaction between DNA and three hybrids. The results indicate that between [H23-AMP]3/2Fe(CN)6 and DNA is useful and [H23-AMP]3/2Fe(CN)6 can detect the hybridization of DNA. And the interaction between [H22-AMP]3/2Fe(CN)6 and DNA and between [H24-AMP]3/2Fe(CN)6 and DNA is slender. Three HPEs display remarkable electrochemical sensitivity and stability. The variation coefficients (RSD) of repeatedly successive and interval assays are less than 2.5%. The chemical and physical stability of three hybrids is satisfactory.

  14. Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium, trimethylammonium; X=I, Br, Cl) hybrid organic-inorganic materials

    NASA Astrophysics Data System (ADS)

    Mancini, Alessandro; Quadrelli, Paolo; Amoroso, Giuseppe; Milanese, Chiara; Boiocchi, Massimo; Sironi, Angelo; Patrini, Maddalena; Guizzetti, Giorgio; Malavasi, Lorenzo

    2016-08-01

    In this paper we report the synthesis, the crystal structure and the optical response of APbX3 (A=MA, DMA, and TMA; X=I, Br) hybrid organic-inorganic materials including some new phases. We observe that as the cation group increases in size, the optical absorption edge shifts to higher energies with energy steps which are systematic and independent on the anion. A linear correlation between the optical bad gap and the tolerance factor has been shown for the series of samples investigated.

  15. Crystal structure and electric properties of the organic-inorganic hybrid: [(CH2)6(NH3)2]ZnCl4

    NASA Astrophysics Data System (ADS)

    Mostafa, M. F.; El-khiyami, S. S.

    2014-01-01

    The new organic-inorganic hybrid [(CH2)6(NH3)2]ZnCl4, Mr=325.406 crystallized in a triclinic, P1¯, a=7.2816 (5) Å, b=10.0996 (7) Å, c=10.0972 (7) Å, α=74.368 (4)°, β=88.046 (4)°, γ=85.974 (3)°, V=713.24 (9) Å3 and Z=2, Dx=1.486 Mg m-3. Differential thermal scanning and x-ray powder diffraction, permittivity and ac conductivity indicated three phase transitions. Conduction takes place via correlated barrier hopping.

  16. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes

    SciTech Connect

    Kang, Xinhuang; Wang, Jun; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-04-15

    A hybrid organic-inorganic nanocomposite film of chitosan/sol-gel/multi-walled carbon nanotubes was constructed for the immobilization of horseradish peroxidase (HRP). This film was characterized by scanning electron microscopy. Direct electron transfer (DET) and bioelectrocatalysis of HRP incorporated into the composite film were investigated. The results indicate that the film can provide a favorable microenvironment for HRP to perform DET on the surface of glassy carbon electrodes with a pair of quasi-reversible redox waves and to retain its bioelectrocatalytic activity toward hydrogen peroxide.

  17. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material.

    PubMed

    Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E

    2009-12-15

    The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs. PMID:19836554

  18. Organic and organic-inorganic hybrid polymer thin films deposited by PECVD using TEOS and cyclohexene for ULSI interlayer-dielectric application

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon Jin; Nam, Sang-Hun; Kim, Sungsoo; Boo, Jin-Hyo

    2015-11-01

    Organic and organic-inorganic hybrid polymer thin films were deposited on Si(1 0 0) substrates at various ratios of TEOS (tetraethoxysilane) to cyclohexene by the plasma enhanced chemical vapor deposition (PECVD) method. The as-grown polymerized thin films were first analyzed by FT-IR and XPS. The results of FT-IR showed that the hybrid polymer thin films were polymerized with each fragmented precursor. The XPS results showed the chemical species and binding energies of each species. The Si 2p core-level spectra from the hybrid polymer thin film showed the status of the Si oxidation number. Impedance analysis was utilized for the measurement of the capacitance values and I-V curves, and an ultra low-k value and leakage current density of 1.75 and 10-9 A/cm2 at 1 MV/cm were obtained, respectively.

  19. Structural direction of hybrid organic-inorganic materials: Synthesis of vanadium oxyfluoride, copper vanadate, and copper molybdate solid state materials through solvuthermal and solution methods

    NASA Astrophysics Data System (ADS)

    Deburgomaster, Paul

    The vast structural complexity of inorganic oxides with structure directing organocations, nitrogen containing ligands and organophosphonate ligands was explored. The hydrothermal reaction conditions utilized herein include the variables of temperature, pH, fill volume and stoichiometry. The systems studied included: (1) the complex materials rendered from reactions of organoamine cations on the structure of vanadium oxides, oxyfluorides and fluorides. As with other systems, the influence of the mineralizer HF was not limited to pH as fluorine incorporation was not uncommon. In specific cases this coincided with reduction of vanadium sites. (2) The copper-organonitrogen ligand/vanadium oxide/aromatic phosphonate system has been studied. The rigid aromatic di- and tri-phosphonate tethers have provided a series of materials which are structurally distinct from the previously investigated aliphatic series. The inclusion of copper-coordinated nitrogen bi- and tri-dentate ligands also provided structural diversity. Product composition was highly influenced by the HF/V ratio. A similar study was conducted with the ligand 1,4-carboxy-phenylphosphonic acid. (3) The preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class was further evidence of the utility of thermodynamically driven hydrothermal synthesis. (4) While decomposition of the spherical Keplerate molybdenum clusters is encountered under hydrothermal conditions, this highly soluble form of molybdate was investigated for the development of hybrid organic-inorganic room temperature solution synthesis.

  20. All-optical logic gate based on transient grating from disperse red 1 doped organic-inorganic hybrid films with an improved figure of merit

    SciTech Connect

    Gao, Tianxi; Que, Wenxiu Shao, Jinyou; Wang, Yushu

    2015-10-21

    Azobenzene dyes have large refractive index near their main resonance, but the poor figure of merit (FOM) limits their potential for all-optical applications. To improve this situation, disperse red 1 (DR1) molecules were dispersed in a sol-gel germanium/Ormosil organic-inorganic hybrid matrix. Z-scan measurement results showed a good compatibility between the dopant and the matrix, and also, an improved FOM was obtained as compared to the DR1/polymer films reported previously. To demonstrate the all-optical signal processing effect, a cw Nd:YAG laser emitting at 532 nm and a He-Ne laser emitting at 632.8 nm were used as pump and probe beams, respectively. DR1 acts as an initiator of the photo-induced transient holographic grating, which is attributed to the trans-cis-trans photoisomerization. Thus, a three inputs AND all-optical logic gate was achieved by using choppers with different frequencies. The detailed mechanism of operation is discussed. These results indicate that the DR1 doped germanium/Ormosil organic-inorganic hybrid film with an improved FOM has a great potential in all-optical devices around its main resonance.

  1. Thermally Induced Reversible Double Phase Transitions in an Organic-Inorganic Hybrid Iodoplumbate C4H12NPbI3 with Symmetry Breaking.

    PubMed

    Liu, Guangfeng; Liu, Jie; Sun, Zhihua; Zhang, Zhenyi; Chang, Lei; Wang, Junling; Tao, Xutang; Zhang, Qichun

    2016-08-15

    A one-dimensional (1D) organic-inorganic hybrid iodoplumbate crystal (1, C4H12NPbI3, TMAPbI3) can undergo two reversible phase transitions as the temperature decreases. Its dynamic phase-transition behaviors were carefully studied by dielectric measurements, thermal analysis, and variable-temperature crystallographic studies. These results indicate that the phase transitions possess a disorder-order feature with a noncentrosymmetrical intermediate phase structure. Due to the existence of the ordered motion and reorientation of the C4H12N(+) cation, 1 undergoes two phase transitions: the first one from space group P63/m at room temperature to Pm at 163 K with symmetry breaking, and the second one from space group Pm at 163 K to P61 at 142 K with partial symmetry restoration. Our results indicate that there is an existence of a transitional structure with a low symmetry space group during the disorder-order-type phase transitions, which can provide us valuable information to deeply understand the disorder-order phase transition in organic-inorganic hybrids. PMID:27459127

  2. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.

    PubMed

    Chiang, Yi-Fang; Jeng, Jun-Yuan; Lee, Mu-Huan; Peng, Shin-Rung; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin; Hsu, Yao-Jane; Hsu, Ching-Ming

    2014-04-01

    A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar organometallic perovskite-fullerene heterojunction solar cells. We find that the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of indium-tin-oxide (ITO) dominates the voltage output of the device. ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions are investigated to illustrate this phenomenon. The higher work function of the PET/ITO substrate decreases the energy loss of hole transfer from the HOMO of perovskite to ITO and minimizes the energy redundancy of the photovoltage output. The devices using the high work function ITO substrate as contact material show significant open-circuit voltage enhancement (920 mV), with the power conversion efficiency of 4.54%, and these types of extra-thin planar bilayer heterojunction solar cells have the potential advantages of low-cost and lightweight. PMID:24553998

  3. Biodegradable polymer adhesives, hybrids and nanomaterials

    NASA Astrophysics Data System (ADS)

    Mylonakis, Andreas

    Biodegradable polymeric products and organic-inorganic hybrid materials for a diversity of applications are the two main fields on which this research has been focused. A novel biodegradable adhesive, which mimics marine adhesive proteins, has been synthesized by the covalent incorporation of 3,4-dihydroxybenzoic acid onto the chitosan backbone. The adhesive strength of these materials varies with the molecular weight of the polysaccharide, the amount of diphenolics present and the curing time. Infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and ultraviolet-visible spectroscopy (UV) have been used to qualitatively and quantitatively establish the amount of the diphenolic moiety present on the backbone of the biodegradable polymers. The as synthesized polymers combine both the adhesive capability of the diphenolic function and the healing effect of chitosan. The biocompatibility and biodegradability of these modified chitosans offer the promise of utility of these novel materials in dental and medical applications. Organic-inorganic hybrid materials with low volume shrinkage and excellent mechanical properties were synthesized by the covalent incorporation of 2-hydroxyethyl methacrylate and glycidyl methacrylate on pre-hydrolyzed sol-gel silica. These hybrid materials exhibited low volume shrinkage during polymerization and were crack-free during storage for about twelve months. The mechanical properties of these materials are composition dependent. Incorporation of silica effectively increased the compressive yield stress and modulus of the obtained poly(HEMAGMA-silica) hybrid materials. A series of new electroactive hybrid materials have been synthesized by covalent incorporation of polyaniline into polyacrylate-silica hybrids. The formulation involves the radical co-polymerization of glycidyl methacrylate-polyaniline (GMA-PANi) and glycidyl methacrylate2-hydroxyethyl methacrylate-silica (GMA-HEMA-silica) to yield poly

  4. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-06-01

    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  5. A possibility as a new type of thermoelectric application on organic-inorganic hybrid perovsike ABI3 system: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Hong, Jisook; Shim, Ji Hoon; Whangbo, Myung-Hwan; Postech Team

    2015-03-01

    The electronic structures of organic-inorganic hybrid systems ABI3 (A = CH3NH3, NH2CHNH2; B = Sn, Pb; X = I) in the distorted phase from their patent cubic phase are systematically studied using the first-principles calculations. Here, we examine thermoelectric properties for ABI3 compounds based on the DFT electronic structures of their optimized crystal structures. The ABI3 compounds should be considered for good thermoelectric application. We reveal that good thermoelectric performance of ABI3 systems originate from large seebeck coefficients and low thermal conductivities. As a consequence, we predict that ABI3 system is a promising material for new thermoelectric application compared to thermoelectric properties of well-known thermoelectric material Bi2Te3. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2013R1A1A2060341).

  6. Two novel organic-inorganic hybrid materials from tetrachloridometallate(II) salts and 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium.

    PubMed

    Campos-Gaxiola, José J; Arredondo Rea, Susana P; Corral Higuera, Ramón; Höpfl, Herbert; Cruz Enríquez, Adriana

    2015-01-01

    Two organic-inorganic hybrid compounds have been prepared by the combination of the 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium cation with perhalometallate anions to give 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single-crystal X-ray diffraction analysis, showing the formation of a three-dimensional network through X-H...ClnM(-) (X = C, N(+); n = 1, 2; M = Co(II), Zn(II)) hydrogen-bonding interactions and π-π stacking interactions. The title compounds were also characterized by FT-IR spectroscopy and thermogravimetric analysis (TGA). PMID:25567575

  7. Moderate Humidity Delays Electron-Hole Recombination in Hybrid Organic-Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments.

    PubMed

    Long, Run; Fang, Weihai; Prezhdo, Oleg V

    2016-08-18

    Experiments show both positive and negative changes in performance of hybrid organic-inorganic perovskite solar cells upon exposure to moisture. Ab initio nonadiabatic molecular dynamics reveals the influence of humidity on nonradiative electron-hole recombination. In small amounts, water molecules perturb perovskite surface and localize photoexcited electron close to the surface. Importantly, deep electron traps are avoided. The electron-hole overlap decreases, and the excited state lifetime increases. In large amounts, water forms stable hydrogen-bonded networks, has a higher barrier to enter perovskite, and produces little impact on charge localization. At the same time, by contributing high frequency polar vibrations, water molecules increase nonadiabatic coupling and accelerate recombination. In general, short coherence between electron and hole benefits photovoltaic response of the perovskites. The calculated recombination time scales show excellent agreement with experiment. The time-domain atomistic simulations reveal the microscopic effects of humidity on perovskite excited-state lifetimes and rationalize the conflicting experimental observations. PMID:27485025

  8. Design and Simulation of 2×2 MMI Coupler and Thermo-optic Switch Using Sol-Gel Derived Organic-Inorganic Hybrid Material

    NASA Astrophysics Data System (ADS)

    Samah, M. Firdaus A.; Nawabjan, Amirjan; Abdullah, Ahmad Sharmi; Ibrahim, Mohd Haniff; Kassim, Norazan Mohd; Mohamad, Abu Bakar

    2011-05-01

    A new design of Multimode Interference (MMI) thermo-optic switch with improved crosstalk figure is demonstrated in this paper. The device is designed and simulated using BeamProp 3D from Rsoft and 3D BPM CAD softwares. The devices are designed based on sol-gel derived organic-inorganic hybrid material, vinyltriethoxysilane (VTES), tetraethoxysilane (TEOS) and tetrabutoxytitanate (TTBu) or VTT with refractive index of 1.47 as a core and surrounded by silica with refractive index of 1.45 at 1550 nm wavelength. The switching power is 164mW and the simulation result show that the propagation loss of the MMI device is 1.8 dB and zero crosstalk.

  9. High-energy X-ray detection by hafnium-doped organic-inorganic hybrid scintillators prepared by sol-gel method

    SciTech Connect

    Sun, Yan; Koshimizu, Masanori Yahaba, Natsuna; Asai, Keisuke; Nishikido, Fumihiko; Kishimoto, Shunji; Haruki, Rie

    2014-04-28

    With the aim of enhancing the efficiency with which plastic scintillators detect high-energy X-rays, hafnium-doped organic-inorganic hybrid scintillators were fabricated via a sol-gel method. Transmission electron microscopy of sampled material reveals the presence of Hf{sub x}Si{sub 1−x}O{sub 2} nanoparticles, dispersed in a polymer matrix that constitutes the active material of the X-ray detector. With Hf{sub x}Si{sub 1−x}O{sub 2} nanoparticles incorporated in the polymer matrix, the absorption edge and the luminescence wavelength is shifted, which we attribute to Mie scattering. The detection efficiency for 67.4-keV X-rays in a 0.6-mm-thick piece of this material is two times better than the same thickness of a commercial plastic scintillator-NE142.

  10. Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Three-Dimensional Organic-Inorganic Hybrid Compounds and Their Photocatalytic Properties.

    PubMed

    Hu, Jufang; Wang, Yin; Zhang, Xinning; Chi, Yingnan; Yang, Song; Li, Jikun; Hu, Changwen

    2016-08-01

    The controllable synthesis of two vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds, [Co(pn)2]4[HPNb10V(IV)2O40(V(IV)O)4]·17H2O (1) and [Co(pn)2]5[PNb12O40(V(IV)O)6](OH)7·15H2O (2), where pn = 1,2-diaminopropane, is realized by changing the hydrothermal temperature or adding N-(aminoethyl)piperazine as an additive. Both compounds 1 and 2 are structurally characterized by single-crystal/powder X-ray diffraction and IR and X-ray photoelectron spectroscopy. Compound 1 features a new divanadium-substituted Keggin polyoxoniobate capped by four vanadyl groups, and the polyanion in 2 exhibits the highest coordination number (10-connected) in polyoxoniobate chemistry. Moreover, the photocatalytic activities of 1 and 2 for hydrogen evolution are preliminarily assessed. PMID:27442602

  11. Facile preparation of organic-inorganic hybrid polymeric ionic liquid monolithic column with a one-pot process for protein separation in capillary electrochromatography.

    PubMed

    Liu, Cuicui; Deng, Qiliang; Fang, Guozhen; Feng, Xue; Qian, Hailong; Wang, Shuo

    2014-11-01

    An organic-inorganic hybrid monolithic column based on 1-vinyl-3-dodecylimidazolium bromide (VC12Im(+)Br(-)) has been prepared in a single step by combining radical copolymerization with a non-hydrolytic sol-gel (NHSG) process. The NHSG process was significantly shortened to 6 h by using formic acid as catalyst. For comparison, we also prepared polymeric ionic liquid (PIL) monolithic columns by hydrolytic sol-gel and organic polymeric process, respectively. The resulting monolithic columns were characterized by Fourier transform infrared spectra, scanning electron microscopy, and Brunauer-Emmett-Teller. Under the capillary electrochromatography mode, these columns were applied to separate alkylbenzenes, anilines, and proteins, respectively. The results indicated that the NHSG-based hybrid PIL monolithic column exhibited the highest column efficiency among the three types of columns; organic solvent, commonly required by the traditional columns to achieve satisfactory separation efficiency for proteins, was absent in the NHSG-based hybrid PIL monolithic column because of the biocompatibility of the VC12Im(+)Br(-), which was beneficial to analysis of protein containing samples. In order to demonstrate its application potential, the developed NHSG-based hybrid PIL monolithic column was also employed to separate egg white sample. PMID:25277101

  12. Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS)

    NASA Astrophysics Data System (ADS)

    Mosa, J.; Durán, A.; Aparicio, M.

    2015-11-01

    Organic/inorganic hybrid membranes based on (3-glycidoxypropyl) trimethoxysilane (GPTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) have been prepared by sol-gel method and organic polymerisation, as candidate materials for proton exchange membranes in direct alcohol fuel cell (DMFC) applications. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. FTIR, XPS and contact angle were used to characterize and confirm the hybrid structure and oxidation reaction progress. Membranes characterization also includes ion exchange capacity, water uptake, methanol permeability and proton conductivity to confirm their applicability in fuel cells. All the membranes were homogeneous and thermally and chemically resistant. In particular, the hybrid membranes demonstrated proton conductivities as high as 0.16 S cm-1 at high temperature, while exhibiting a low methanol permeability as compared to Nafion®. These results are associated with proton conducting paths through the silica pseudo-PEO network in which sulfonic acid groups work as proton donor.

  13. Thermochemistry of Multiferroic Organic-Inorganic Hybrid Perovskites [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni, and Zn).

    PubMed

    Nagabhushana, G P; Shivaramaiah, Radha; Navrotsky, Alexandra

    2015-08-19

    Organic-inorganic hybrid materials have enormous potential for applications in catalysis, gas storage, sensors, drug delivery, and energy generation, among others. A class of hybrid materials adopts the ABX3 perovskite topology. We report here the synthesis and characterization of an isostructural series of dense hybrid perovskites, [(CH3)2NH2][M(HCOO)3], with M = Mn, Co, Ni, and Zn. These compounds have shown promising multiferroic behavior. Understanding their stability is crucial for their practical application. We report their formation enthalpies based on direct measurement by room-temperature acid solution calorimetry. The enthalpy of formation of this dimethylammonium metal formate series becomes less exothermic in the order Mn, Zn, Co, Ni. The stability of the hybrid perovskite decreases as the tolerance factor increases, unlike trends seen in inorganic perovskites. However, the trends are similar to those seen in a number of ternary transition metal oxides, suggesting that specific bonding interactions rather than geometric factors dominate the energetics. PMID:26214549

  14. A Mechanistic Explanation of the Peculiar Amphiphobic Properties of Hybrid Organic-Inorganic Coatings by Combining XPS Characterization and DFT Modeling.

    PubMed

    Motta, Alessandro; Cannelli, Oliviero; Boccia, Alice; Zanoni, Robertino; Raimondo, Mariarosa; Caldarelli, Aurora; Veronesi, Federico

    2015-09-16

    We report a combined X-ray photoelectron spectroscopy and theoretical modeling analysis of hybrid functional coatings constituted by fluorinated alkylsilane monolayers covalently grafted on a nanostructured ceramic oxide (Al2O3) thin film deposited on aluminum alloy substrates. Such engineered surfaces, bearing hybrid coatings obtained via a classic sol-gel route, have been previously shown to possess amphiphobic behavior (superhydrophobicity plus oleophobicity) and excellent durability, even under simulated severe working environments. Starting from XPS, SEM, and contact angle results and analysis, and combining it with DFT results, the present investigation offers a first mechanistic explanation at a molecular level of the peculiar properties of the hybrid organic-inorganic coating in terms of composition and surface structural arrangements. Theoretical modeling shows that the active fluorinated moiety is strongly anchored on the alumina sites with single Si-O-Al bridges and that the residual valence of Si is saturated by Si-O-Si bonds which form a reticulation with two vicinal fluoroalkylsilanes. The resulting hybrid coating consists of stable rows of fluorinated alkyl chains in reciprocal contact, which form well-ordered and packed monolayers. PMID:26308186

  15. Calcium phosphate-based organic-inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy.

    PubMed

    Nomoto, Takahiro; Fukushima, Shigeto; Kumagai, Michiaki; Miyazaki, Kozo; Inoue, Aki; Mi, Peng; Maeda, Yoshinori; Toh, Kazuko; Matsumoto, Yu; Morimoto, Yuji; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-05-26

    Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors in a light-selective manner. To improve the PDT efficacy, numerous kinds of nanocarriers have been developed to deliver photosensitizers (PSs) selectively into the tumor through leaky tumor-associated vasculature. However, the corresponding prolonged retention of the nanocarrier in the bloodstream may lead to unfavorable photochemical damage to normal tissues such as skin. Here, we report an organic-inorganic hybrid nanocarrier with a pH-responsive on/off switch of PDT efficacy. This hybrid nanocarrier is constructed by hydrothermal synthesis after simple mixing of calcium/phosphate ions, chlorin e6 (amphiphilic low molecular weight PS), and poly(ethylene glycol)-b-poly(aspartic acid) (PEG-PAsp) copolymers in an aqueous solution. The hybrid nanocarrier possesses a calcium phosphate (CaP) core encapsulating the PSs, which is surrounded by a PEG shielding layer. Under physiological conditions (pH 7.4), the nanocarrier suppressed the photochemical activity of PS by lowering the access of oxygen molecules to the incorporated PS, while PDT efficacy was restored in a pH-responsive manner because of the dissolution of CaP and eventual recovery of access between the oxygen and the PS. Owing to this switch, the nanocarrier reduced the photochemical damage in the bloodstream, while it induced effective PDT efficacy inside the tumor cell in response to the acidic conditions of the endo-/lysosomes. PMID:26971562

  16. Fabrication and electrical characterization of a polycarbazole/ZnO based organic-inorganic hybrid heterojunction diode

    NASA Astrophysics Data System (ADS)

    Srivastava, Aditi; Chakrabarti, P.

    2015-12-01

    In the present paper a hybrid heterojuction of an organic and inorganic semiconductor junction diode has been proposed. The p-polycarbazole/n-ZnO hybrid-heterojunction (HHJ) diode has been fabricated and characterized. The organic semiconducting polymer has been deposited on the ITO coated glass by electrochemical method followed by deposition of inorganic ZnO semiconductor by vacuum thermal evaporation method. The electrical parameters such as barrier height, ideality factor, rectification ratio and reverse saturation current are extracted from the measured I-V characteristics of the hybrid heterojunction. The proposed hybrid heterojunction exhibits a very low dark current (∼10-11 A) and is therefore expected to have great commercial applications.

  17. Organic-inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid

    NASA Astrophysics Data System (ADS)

    Cui, Xuejun; Zhong, Shuangling; Wang, Hongyan

    A series of silicon-containing polyacrylate nanoparticles (SiPANPs) were successfully synthesized by simple emulsifier-free emulsion polymerization technique. The resulting latex particles were characterized by Fourier transform infrared (FTIR) spectrometry, dynamic light scattering (DLS) analysis, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The SiPANP membranes and SiPANP/phosphotungstic acid (SiPANP/PWA) hybrid membranes were also prepared and characterized to evaluate their potential as proton exchange membranes in proton exchange membrane fuel cell (PEMFC). Compared with the pure SiPANP membrane, the hybrid membranes displayed lower thermal stability. However, the degradation temperatures were still above 190 °C, satisfying the requirement of thermal stability for PEMFC operation. In addition, the hybrid membranes showed lower water uptake but higher proton conductivity than the SiPANP precursor. The proton conductivity of the hybrid membranes was in the range of 10 -3 to 10 -2 S cm -1 and increased gradually with PWA content and temperature. The excellent hydrolytic stability was also observed in the hybrid membranes because of the existence of crosslinked silica network. The good thermal stability, reasonable water uptake, excellent hydrolytic stability, suitable proton conductivity and cost effectiveness make these hybrids quite attractive as proton exchange membranes for PEMFC applications.

  18. Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells

    PubMed Central

    2011-01-01

    Dispersive SnS2 colloidal quantum dots have been synthesized via hot-injection method. Hybrid photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3",7"dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline SnS2 quantum dots as electron acceptor have been studied. Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process. The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment. AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells. PMID:21711811

  19. Organic-Inorganic Hybrid Ternary Bulk Heterojunction of Nanostructured Perovskite-Low Bandgap Polymer-PCBM for Improved Efficiency of Organic Solar Cells.

    PubMed

    Jeong, Hanbin; Lee, Jae Kwan

    2015-12-30

    A new organic-inorganic ternary bulk heterojunction (TBHJ) hybrid configuration comprised of nanostructured (CH3)3NHPbI3 (MAPbI3) perovskite-low bandgap PCPDTBT-PCBM was investigated. Well-organized TBHJ films were readily prepared by sequential spin-casting of sparsely covered MAPbI3 nano dots and PCPDTBT-PCBM bulk heterojunction (BHJ) composites on ITO/PEDOT:PSS substrates. The TBHJ hybrid device configuration comprising diiooctane (DIO) treated MAPbI3 perovskite nano dots and a PCPDTBT-PCBM BHJ composite processed with DIO additive exhibited excellent performances. The DIO additive played a key role in developing perovskite structures of MAPbI3 nano dots and induced the (110) directional crystallinity growth of longitudinal constructive morphologies such as nano rods. The improved photocurrent and fill factor compared to those of conventional BHJ devices led to an increase in efficiency of ∼28%. This improved photovoltaic performance originated from the higher quantum efficiencies contributed by the charge transfer from nanostructured MAPbI3 perovskite to PCBM. These TBHJs composed of nanostructured MAPbI3 perovskite, PCPDTBT, and PCBM also facilitated the exciton dissociation in the multi-BHJ system between MAPbI3 perovskite, PCPDTBT, and PCBM. PMID:26636343

  20. Formation of gel of preformed size-selected titanium-oxo-alkoxy nanoparticles: towards organic-inorganic hybrid material with efficient interfacial electron transfer

    NASA Astrophysics Data System (ADS)

    Gorbovyi, Pavlo; Uklein, Andrii; Traore, Mamadou; Museur, Luc; Kanaev, Andrei

    2014-12-01

    We report on preparation of a new organic-inorganic hybrid material with high photonic sensitivity, of which the inorganic component is gel of preformed size-selected titanium-oxo-alkoxy (TOA) nanoparticles. The inorganic nanoparticles of 5 nm size are generated in perfect micromixing conditions and assembled into the gel network in monomer HEMA (2-hydroxyethyl methacrylate) solutions at sufficiently slow input of water molecules in neutral pH conditions. The gelation is found to compete with precipitation and is promoted by an increase of the nanoparticle concentration. As a result, homogeneous optical-grade gels are obtained at titanium molar concentrations of 1.5 M and higher. After the organic polymerization, the organicinorganic pHEMA-TOA hybrids (pHEMA = poly(2-hydroxyethyl methacrylate)) show a high quantum yield of photoinduced charges separation (Ti3+/absorbed photons) and storage capacity (Ti3+/Ti4+), respectively 75% and 25%, which confirm the importance of the material nanoscale morphology control.

  1. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    NASA Astrophysics Data System (ADS)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  2. Photovoltaic hybrid device with broad tunable spectral response achieved by organic/inorganic thin-film heteropairing

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; Ullrich, B.

    2002-07-01

    By means of laser deposition, spin casting and vacuum evaporation, optoelectronic hybrid devices were manufactured based upon the thin-film heteropairing of a perylene-derived molecule [di-isoquinoline perylene derivative (DQP)] and CdS. The photovoltaic characteristics of the devices are presented and discussed. We demonstrate that by exploitation of relatively high carrier mobilities in the CdS layer and the high photonic yield and deposition ease of the DQP film, efficient and technologically appealing optoelectronic devices are feasible. In addition, bias dependence of the spectral sensitivity demonstrates the versatility of the introduced device concept in light of photonic sensor applications.

  3. Molecular design and fluorescent whitening emission from novel lanthanide activated organic-inorganic covalently hybrid micro-particles.

    PubMed

    Lu, Hai-Feng; Yan, Bing

    2008-09-01

    A series of potential lanthanide activated fluorescent-whitening hybrid micro-particles has been prepared by sol-gel method. The precursor derived from 2,2'-dipyridylamine derivative modified though hydrogen transfer addition exhibited a self-organization under the coordination to RE(3+) (Eu(3+), Tb(3+), Sm(3+), Dy(3+), respectively) evaluated by SEM (micrometric scale) and X-ray diffraction studies (nanometric scale). The adapting traditional routes used in this paper affected the shape of the materials and can be taken as a new method to control the hydrolysis-polycondensation process. Fourier transform infrared (FTIR), Diffuse reflectance ultraviolet-visible spectra (DRUVS) and (1)H NMR spectra were used to confirm the modifications. These activated phosphors with lanthanide ions represent a novel way to produce fluorescent whitening agents. PMID:18176781

  4. Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW 12 O 40 3- coating deposited on polyester fabrics

    NASA Astrophysics Data System (ADS)

    Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.

    2011-09-01

    A study of the stability of conducting fabrics of polyester (PES) coated with polypyrrole/PW12O403- (organic/inorganic hybrid material) in different pH solutions (1, 7, 13) has been done. Washing tests were also done in views of its possible application in electronic textiles such as antistatic clothing. X-ray photoelectron spectroscopy (XPS) studies have been done to quantify the amount of counter ion that remains in the polymer matrix and determine the doping ratio (N+/N) after the different tests. Scanning electron microscopy (SEM) was also used to observe morphological differences after the different tests. Surface resistivity changes were measured by means of electrochemical impedance spectroscopy (EIS). Scanning electrochemical microscopy (SECM) was employed to measure changes in electroactivity after the different tests. Higher pHs caused a decrease of the doping ratio (N+/N), the loss of part of the counter ions and the decrease of its conducting and electrocatalytic properties. The stability in acid media and neutral media and after the washing test was good. Only at pH 13 the loss of the counter ion was widespread and there was a decrease of its conducting and catalytic properties; although the fabrics continued acting mainly as a conducting material.

  5. Neutron powder diffraction study of the layer organic-inorganic hybrid iron(II) methylphosphonate-hydrate, Fe[(CD 3PO 3)(D 2O)

    NASA Astrophysics Data System (ADS)

    Léone, Philippe; Bellitto, Carlo; Bauer, Elvira M.; Righini, Guido; André, Gilles; Bourée, Françoise

    2008-11-01

    The crystal and magnetic structures of the hybrid organic-inorganic layer compound Fe[(CD 3PO 3)(D 2O)] have been studied by neutron powder diffraction as a function of temperature down to 1.5 K. The neutron diffraction pattern recorded at 200 K shows that the fully deuterated compound crystallizes in one of the two known forms of the undeuterated Fe[(CH 3PO 3)(H 2O)]. The crystal structure is orthorhombic, space group Pmn2 1, with the following unit-cell parameters: a=5.7095(1) Å, b=8.8053(3) Å and c=4.7987(1) Å; Z=2. The crystal structure remains unchanged on cooling from 200 to 1.5 K. Moreover, at low temperature, Fe[(CD 3PO 3)(D 2O)] shows a commensurate magnetic structure ( k=(0,0,0)). As revealed by bulk susceptibility measurements on Fe[(CH 3PO 3)(H 2O)], the magnetic structure corresponds to a canted antiferromagnet with a critical temperature TN=25 K. Neutron powder diffraction reveals that below TN=23.5 K the iron magnetic moments in Fe[(CD 3PO 3)(D 2O)] are antiferromagnetically coupled and oriented along the b-axis, perpendicular to the inorganic layers. No ferromagnetic component is observable in the neutron powder diffraction experiment, due to its too small value (<0.1 μB).

  6. Fabrication of highly hydrophobic organic-inorganic hybrid magnetic polysulfone microcapsules: A lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples.

    PubMed

    Pan, Yanan; Wang, Jiaojiao; Sun, Caiyun; Liu, Xiaoyan; Zhang, Haixia

    2016-05-15

    In this work, three kinds of organic-inorganic hybrid materials (vinyl benzene linear polymer modified SBA-15, attapulgite and halloysite nanotubes) in the shape of powder and the corresponding magnetic polysulfone microcapsules were developed for removal of oil and dyes from environmental aqueous samples, respectively. As determined from the oil and dye adsorption studies, the developed magnetic polysulfone microcapsules exhibited high adsorption capacity of 13.8-17.3g/g for oil. The prepared functionalized materials and the corresponding microcapsules can remove 85.0-91.6% and 81.8-87.8% Sudan I in 80 min and 7.6h, respectively. The results showed a significant improvement in their adsorption capacities and removal efficiencies compared to the parent matrices, indicating that the introducing of the vinyl benzene linear polymer was a major factor in the removal of the hydrophobic pollutants. At the same time, the adsorption capacity for the investigated pollutants also depended on the textural feature of matrix itself. In view of the utilization of low-cost clay minerals (attapulgite and halloysite nanotubes), these proposed functionalized materials and the corresponding magnetic polysulfone microcapsules had a great promise to be used as an efficient sorbent for removal of pollutants from environmental aqueous samples. PMID:26874312

  7. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03mmolg(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters. PMID:27023632

  8. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting.

    PubMed

    Li, Feng; Du, Ping; Chen, Wei; Zhang, Shusheng

    2007-03-01

    A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu(2+), was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu(2+) adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu(2+). The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu(2+) in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption. PMID:17386667

  9. Reinvestigation of hybrid organic-inorganic materials based on molybdate and piperazininum cations: Influence of the synthesis conditions on the chemical composition and characterizations of the photochromic properties

    SciTech Connect

    Coue, Violaine; Dessapt, Remi Bujoli-Doeuff, Martine; Evain, Michel; Jobic, Stephane

    2008-05-15

    The reactivity of the [Mo{sub 7}O{sub 24}]{sup 6-} anion towards the structure directing-reagent piperazine (pipz) has been investigated and new synthetic routes to achieve the known (H{sub 2}pipz){sub 3}[Mo{sub 8}O{sub 27}] 1, (H{sub 2}pipz)[Mo{sub 3}O{sub 10}].H{sub 2}O 2, and (H{sub 2}pipz)[Mo{sub 5}O{sub 16}] 3 molybdenum(VI) containing compounds are proposed. The role of the pH on the stabilization of the different compounds and their interconversion pathways is discussed. Compounds 1 and 2 show photochromic behavior under UV excitation, related to the particular organization of the organic component around the mineral framework. Their optical properties are reported and commented. - Graphical abstract: Three organic-inorganic hybrid materials have been prepared from the investigations of the [Mo{sub 7}O{sub 24}]{sup 6-}/piperazine system in hydrothermal conditions. The role of the pH on the stabilization of the different polyoxomolybdate blocks in the materials i.e. 1/({infinity}) [Mo{sub 3}O{sub 10}]{sup 2-} and 1/({infinity}) [Mo{sub 8}O{sub 27}]{sup 6-} chains and 2/({infinity}) [Mo{sub 5}O{sub 16}]{sup 2-} layer has been investigated.

  10. Characterization of organic-inorganic hybrid layered perovskite and intercalated compound (n-C12H25NH3)2ZnCl4

    NASA Astrophysics Data System (ADS)

    Abdel-Kader, M. M.; Aboud, A. I.; Gamal, W. M.

    2016-05-01

    We report on some electrical properties and solid-solid phase transitions of organic-inorganic hybrid layered halide perovskite and intercalated compound (n-C12H25NH3)2ZnCl4 which is one member of the long-chain compounds of the series (n-CnH2n+1NH3)2,(n = 8-18). The complex dielectric permittivity ɛ*(ω,T) and the ac conductivity σ (ω,T) were measured as functions of temperature 100 K < T < 390 K and frequency 5 kHz < f < 100 kHz. Moreover, the differential scanning calorimetery and the differential thermal analysis thermograms were performed. The analysis of our data confirms the existence of a structural phase transition at T ≈ (362 ± 2) K, where the compound changes its state from intercalation to non-intercalation with a drastic increase in the c-axis by about 16.4%. The behavior of the frequency-dependent conductivity follows the Jonscher universal power law: σ (ω, T) αῳs(ῳ,T). The mechanism of electrical conduction in the low-temperature phase (phase II) can be described as quantum mechanical tunneling model.

  11. Studies on the synthesis, spectral, optical and thermal properties of L-Valine Zinc Sulphate: An organic inorganic hybrid nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Puhal Raj, A.; Ramachandra Raja, C.

    2012-11-01

    Nonlinear optical (NLO) organic inorganic hybrid L-Valine Zinc Sulphate (LVZS) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at 36 °C using a constant temperature bath (CTB) with an accuracy of ±0.01 °C. This crystal is reported with its characterization by single crystal and powder XRD, FTIR, UV-Vis-NIR, TG/DTA analysis and SHG test. Single crystal XRD study reveals that LVZS crystallizes in monoclinic system with the lattice constants a = 9.969(3) Å, b = 7.238(3) Å, c = 24.334(9) Å and cell volume is 1736.00 Å3. Sharp peaks observed in powder X-ray diffraction studies confirm the high degree of crystallinity of grown crystal. The incorporation of sulphate ion with L-valine is confirmed by FTIR spectrum in LVZS crystal. A remarkable increase in optical transparency has been observed in LVZS when compared to L-valine and zinc sulphate heptahydrate Thermal properties of LVZS have been reported by using TG/DTA analysis. Kurtz powder second harmonic generation (SHG) test confirms NLO property of the crystal and SHG efficiency of LVZS was found to be 1.34 times more than pure L-valine.

  12. Synthesis and structure of the first organic-inorganic hybrid tin (II) chlorosulfate: [C 6N 2H 14][SnCl 2SO 4

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xu, Jia-ning; Sun, Jin-yu; Wang, Li; Sun, Fu-xing; Fan, Yong; Xin, Ming-hong; Shi, Su-hua; Zhu, Guang-shan

    2006-09-01

    The first organic-inorganic hybrid tin (II) chlorosulfate [C 6N 2H 14][SnCl 2SO 4] ( I) has been synthesized hydrothermally in the presence of organic amine 1,4-diazobicyclo[2,2,2]octane (DABCO) and characterized by single-crystal X-ray diffraction, IR, ICP and elemental analysis and thermogravimetric analysis and its structure solved by single-crystal X-ray diffraction. The structure of I consists of [SnCl 2SO 4] 2- anions and diprotonated DABCO cations resulting in the formation of a 2D supramolecular network based on hydrogen bonds which contact between diprotonated DABCO cations and [SnCl 2SO 4] 2- anions. Crystal data for compound I, orthorhombic space group C222 1, a = 9.354(6) Å, b = 9.6880(7) Å, c = 13.2888(9) Å, V = 1204.32(14) Å 3, Z = 4, M = 399.84(1), Dcalc = 2.205 g cm -3, Mo Kα, R1 = 0.0254, wR2 = 0.0616, GOF = 1.092.

  13. Development of hybrid organic-inorganic surface imprinted Mn-doped ZnS QDs and their application as a sensing material for target proteins.

    PubMed

    Tan, Lei; Huang, Cong; Peng, Rongfei; Tang, Youwen; Li, Weiming

    2014-11-15

    Applying molecular imprinting techniques to the surface of functionalized quantum dots (QDs) allows the preparation of molecularly imprinted polymers (MIPs) with accessible, surface exposed binding sites and excellent optical properties. This paper demonstrates a new strategy for producing such hybrid organic-inorganic imprinted Mn-doped ZnS QDs for specific recognition of bovine hemoglobin. The technique provides surface grafting imprinting in aqueous solutions using amino modified Mn-doped ZnS QDs as supports, acrylamide and methacrylic acid as functional monomers, γ-methacryloxypropyl trimethoxy silane as the grafting agent, and bovine hemoglobin as a template. The amino propyl functional monomer layer directs the selective occurrence of imprinting polymerization at the QDs surface through copolymerization of grafting agents with functional monomers, but also acts as an assistive monomer to drive the template into the formed polymer shells to create effective recognition sites. Using MIP-QDs composites as a fluorescence sensing material, trace amounts of bovine hemoglobin are signaled with high selectivity by emission intensity changes of Mn-doped ZnS QDs, which is embedded into the imprinted polymers. PMID:24951920

  14. Analysis of drugs in plasma samples from schizophrenic patients by column-switching liquid chromatography-tandem mass spectrometry with organic-inorganic hybrid cyanopropyl monolithic column.

    PubMed

    Domingues, Diego Soares; Souza, Israel Donizeti de; Queiroz, Maria Eugênia Costa

    2015-07-01

    This study reports on the development of a rapid, selective, and sensitive column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze sixteen drugs (antidepressants, anticonvulsants, anxiolytics, and antipsychotics) in plasma samples from schizophrenic patients. The developed organic-inorganic hybrid monolithic column with cyanopropyl groups was used for the first dimension of the column-switching arrangement. This arrangement enabled online pre-concentration of the drugs (monolithic column) and their subsequent analytical separation on an XSelect SCH C18 column. The drugs were detected on a triple quadrupole tandem mass spectrometer (multiple reactions monitoring mode) with an electrospray ionization source in the positive ion mode. The developed method afforded adequate linearity for the sixteen target drugs; the coefficients of determination (R(2)) lay above 0.9932, the interassay precision had coefficients of variation lower than 6.5%, and the relative standard error values of the accuracy ranged from -14.0 to 11.8%. The lower limits of quantification in plasma samples ranged from 63 to 1250pgmL(-1). The developed method successfully analyzed the target drugs in plasma samples from schizophrenic patients for therapeutic drug monitoring (TDM). PMID:25984963

  15. Unprecedented 1/∞[β-Mo8O26]4- polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates

    NASA Astrophysics Data System (ADS)

    Du, Hai-Juan; Zun-Zhe, Shu; Niu, Yun-Yin; Song, Li-Sha; Zhu, Yu

    2012-06-01

    AbstrctFour novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [β-Mo8O26] [NH4]2 (1), [BMIM] [β-Mo8O26]0.5·H2O (2), [BMIM] [1D-Mo8O26]0.5 (3) and {3D-[Cu(DIE)2] [1D-Mo8O26]0.5}∞ (4) [DEB= 1,1‧-diethyl-4,4‧-bipyridinium, BMIM=1,1‧-bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [β-Mo8O26]4- anions and [DEB]2+ or [BMIM]2+ organic cations. Compound 3 is the first external template example of Mo-POMs-based supramolecular network incorporated with novel 1/∞[β-Mo8O26]4- polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate 1/∞[β-Mo8O26]4- polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H2O2.

  16. Synthesis, crystal structure, and spectroscopic studies of organic-inorganic hybrid material: [C7H10NO]2BiBr5

    NASA Astrophysics Data System (ADS)

    Aloui, Z.; Ferretti, V.; Abid, S.; Lefebvre, F.; Rzaigui, M.; Ben Nasr, C.

    2016-08-01

    A novel organic-inorganic hybrid compound, 2-methoxyanilinium pentabromobismuthate(III), [C7H10NO]2BiBr5, was synthesized and its structure determined by means of single crystal X-ray diffraction studies at room temperature. The molecule crystallizes in the orthorhombic C2221 space group with cell parameters a = 11.8870(4), b = 23.4775(8), c = 8.1232(3) Å, V = 2267.0(1) Å3 and four molecules in the unit cell. The structure of the title compound is built up from one-dimensional [BiBr5]2n-n polyanionic zig-zag chains composed of deformed BiBr6 octahedra share Br(2) apex and 2-methoxyanilinium cations. The assignment of the vibrational bands was based on comparison with vibrational mode frequencies of homologous compounds. Theoretical calculations were performed using density functional theory (DFT) for studying the vibrational spectrum of the investigated molecule in its ground state. The 13C CP-MAS NMR spectrum is in agreement with the X-ray structure.

  17. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S; Mane, Rajaram S; Lee, Soo-Hyoung

    2016-03-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs. PMID:26864170

  18. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung

    2016-02-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM

  19. Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor into organic-inorganic hybrid solar cells.

    PubMed

    Chen, Zihan; Li, Qinghua; Chen, Chuyang; Du, Jiaxing; Tong, Jifeng; Jin, Xiao; Li, Yue; Yuan, Yongbiao; Qin, Yuancheng; Wei, Taihuei; Sun, Weifu

    2014-11-28

    In this work, dysprosium ion decorated yttrium oxide (Dy(3+):Y2O3) nanocrystal phosphors were incorporated into TiO2 acceptor thin film in a bid to enhance the light harvest, charge separation and transfer in the hybrid solar cells. The results show that the energy level offset between the donor (P3HT) and the acceptor (Dy(3+):Y2O3-TiO2) has been narrowed down, thus leading to the enhanced electron and hole transports, and also photovoltaic performances as compared to pure TiO2 without incorporating Dy(3+):Y2O3. By applying femtosecond transient optical spectroscopy, after the incorporation of dopant Dy(3+):Y2O3 into TiO2 at 6 wt%, both the hot electron and hole transfer lifetimes have been shortened, that is, from 30.2 ps and 6.94 ns to 25.1 ps and 1.26 ns, respectively, and an enhanced efficiency approaching 3% was achieved as compared to 2.0% without doping, indicating that the energetic charges are captured more efficiently benefitting a higher power conversion efficiency. Moreover, these results reveal that both the conduction band (CB) and valence band (VB) edges of the acceptor were elevated by 0.57 and 0.32 eV, respectively, after incorporating 6 wt% Dy(3+):Y2O3. This work demonstrates that distinct energy level alignment engineered by Dy(3+):Y2O3 phosphor has an important role in pursuing efficient future solar cells and underscores the promising potential of rare-earth phosphor in solar applications. PMID:25307965

  20. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-01

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs. PMID:26840992

  1. Comprehensive analysis of photonic effects on up-conversion of β-NaYF4:Er3+ nanoparticles in an organic-inorganic hybrid 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hofmann, C. L. M.; Fischer, S.; Reitz, C.; Richards, B. S.; Goldschmidt, J. C.

    2016-04-01

    Upconversion (UC) presents a possibility to exploit sub-bandgap photons for current generation in solar cells by creating one high-energy photon out of at least two lower-energy photons. Photonic structures can enhance UC by two effects: a locally increased irradiance and a modified local density of photon states (LDOS). Bragg stacks are promising photonic structures for this application, because they are straightforward to optimize and overall absorption can be increased by adding more layers. In this work, we present a comprehensive simulation-based analysis of the photonic effects of a Bragg stack on UC luminescence. The investigated organic-inorganic hybrid Bragg stack consists of alternating layers of Poly(methylmethacrylate) (PMMA), containing purpose-built β-NaYF4:25% Er3+ core-shell nanoparticles and titanium dioxide (TiO2). From optical characterization of single thin layers, input parameters for simulations of the photonic effects are generated. The local irradiance enhancement and modulated LDOS are first simulated separately. Subsequently they are coupled in a rate equation model of the upconversion dynamics. Using the integrated model, UC luminescence is maximized by adapting the Bragg stack design. For a Bragg stack of only 5 bilayers, UC luminescence is enhanced by a factor of 3.8 at an incident irradiance of 2000 W/m2. Our results identify the Bragg stack as promising for enhancing UC, especially in the low-irradiance regime, relevant for the application in photovoltaics. Therefore, we experimentally realized optimized Bragg stack designs. The PMMA layers, containing UC nanoparticles, are produced via spin-coating from a toluene based solution. The TiO2 layers are produced by atomic layer deposition from molecular precursors. The reflectance measurements show that the realized Bragg stacks are in good agreement with predictions from simulation.

  2. Development of ethenetetrathiolate hybrid thermoelectric materials consisting of cellulose acetate and semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Sakura, Naoko; Oshima, Keisuke; Shiraishi, Yukihide; Toshima, Naoki

    2016-02-01

    We investigated novel organic/inorganic hybrid thermoelectric materials prepared using several metal-polymer complexes, binders (insulating polymers), and inorganic semiconductor nanomaterials. It was found that the three-component hybrid thermoelectric materials, which consisted of nanodispersed poly(nickel 1,1,2,2-ethenetetrathiolate) (Ni-PETT), cellulose acetate (CA), and carbon nanotubes (CNTs), showed high thermoelectric performance. Ni-PETT had a large negative Seebeck coefficient of -42 µV K-1 and was an n-type semiconducting polymer complex. Ni-PETT sufficiently dispersed p-type CNTs in N-methyl-2-pyrrolidone. The charge transfer interaction between Ni-PETT and CNTs could provide a strong contact. Good films could be obtained by using CA as a binder. In addition, the electrical conductivity of the three-component hybrid films was increased by methanol treatment. The Seebeck coefficient, electrical conductivity, and power factor of Ni-PETT/CA/CNT films normalized on the basis of the CNT mass were 1.9, 5.2, and 2.8 times higher than those of the CNT sheets.

  3. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  4. Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME).

    PubMed

    Alhooshani, Khalid; Kim, Tae-Young; Kabir, Abuzar; Malik, Abdul

    2005-01-01

    A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME). PMID:15679137

  5. Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K

    SciTech Connect

    Bauer, Elvira M. Bellitto, Carlo; Gomez Garcia, Carlos J. Righini, Guido

    2008-05-15

    A new Ni(II) layered hybrid organic-inorganic compound of formula Ni{sub 2}[(NDI-BP)(H{sub 2}O){sub 2}].2H{sub 2}O has been prepared in very mild conditions from N,N'-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl{sub 2}. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 A. The inorganic layers consist of corner sharing [NiO{sub 5}(H{sub 2}O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at T{sub c}{approx}21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound. - Graphical abstract: A new layered hybrid organic-inorganic Ni(II) N,N'-bis(2-phosphonoethyl)-naphthalene 1,4:5,8 tetracarboxydiimide complex has been synthesized and characterized. Magnetic measurements as a function of temperature and at different fields show that the compound is magnetically ordered below T{sub c}{approx}21 K.

  6. Synthesis and characterization of a new layered organic inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with Tc˜21 K

    NASA Astrophysics Data System (ADS)

    Bauer, Elvira M.; Bellitto, Carlo; Gómez García, Carlos J.; Righini, Guido

    2008-05-01

    A new Ni(II) layered hybrid organic-inorganic compound of formula Ni 2[(NDI-BP)(H 2O) 2]·2H 2O has been prepared in very mild conditions from N, N'- bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl 2. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 Å. The inorganic layers consist of corner sharing [NiO 5(H 2O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at Tc˜21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound.

  7. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    PubMed Central

    Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin

    2014-01-01

    Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171

  8. Self-assembly, crystal structure and photoluminescent properties of a novel organic-inorganic hybrid coordination polymer: [CdCl 3(CH 3) 3NH

    NASA Astrophysics Data System (ADS)

    Ma, Kuirong; Xu, Jianing; Zhang, Ping; Wang, Ying; Wang, Li; Fan, Yong; Song, Tianyou

    2006-12-01

    A novel organic-inorganic coordination polymer [CdCl 3(CH 3) 3NH] 1 was synthesized by the reaction of CdCl 2 with trimethylamine (TMA) at 170 °C for 5 days in ethanol and structurally characterized by means of X-ray single diffraction. The title compound affords a one-dimensional chain structure. It crystallizes in hexagonal system space group P6(3)/m with a=9.1401(13) Å, b=9.1401(13) Å, c=6.7313(13) Å, γ=120.00°, V=487.00(14) Å, Z=2, D=1.895 Mg/m, F(000)=266, Mr=277.86, μ(Mo K)=2.99 mm, the final R=0.0420 and ωR=0.1020 for 355 observed reflections with I>2σ(I). The title compound consists of cation [(CH 3) 3NH] + and anion chain [(CdCl)]n-, and they are combined by static attracting forces in the crystal. TG-DTA, XRD and IR data for the title compound are reported and discussed. The photoluminescent properties of the compound 1 were also investigated.

  9. Electron Microscopy Characterization of Hybrid Metallic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Shindo, Daisuke; Akase, Zentaro

    In order to understand the excellent properties of nanoscale hybridized materials, it is very important to investigate the microstructures and interfaces of these materials at the nanometer scale. In this chapter, we present the basic principles of transmission electron microscopy and its applications to these materials. In addition to high-resolution transmission electron microscopy (HREM) and high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM), analytical electron microscopy, including energy dispersive X-ray spectroscopy (EDS) and electron energyloss spectroscopy (EELS) as well as elemental mapping methods using these spectroscopy techniques will be presented. Also, the electron holographic technique for characterization of magnetic fields of nanohybridized materials will be explained. In addition to electron microscopic observation techniques, recently developed specimen preparation techniques, which are indispensable for obtaining homogeneous and thin films of nanohybridized materials, will be presented. In particular, a focused ion beam (FIB) method will be emphasized. The nanohybridized materials discussed in this chapter include carbon-based core-shell structure, nanocrystalline soft magnetic materials, nanocomposite magnets, and high-T c superconducting oxides. Application data will be provided in order to explain the usefulness of these analytical techniques for characterization of nanohybridized materials.

  10. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots.

    PubMed

    Yang, Xianguang; Liu, Yong; Lei, Hongxiang; Li, Baojun

    2016-08-25

    The capability to detect light over a broad waveband is highly important for practical optoelectronic applications and has been achieved with photodetectors of one-dimensional inorganic nanomaterials such as Si, ZnO, and GaN. However, achieving high speed responsivity over an entire waveband within such a photodetector remains a challenge. Here we demonstrate a broadband photodetector using a single polyaniline nanowire doped with quantum dots that is highly responsive over a broadband from 350 to 700 nm. The high responsivity is due to the high density of trapping states at the enormous interfaces between polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate and enhance the efficiency for light detection. Furthermore, a tunable spectral range can be achieved by size-based spectral tuning of quantum dots. The use of organic-inorganic hybrid polyaniline nanowires in broadband photodetection may offer novel functionalities in optoelectronic devices and circuits. PMID:27417337