Science.gov

Sample records for hydraulic piston pump

  1. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    DOEpatents

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  2. Hydraulic generator with free-piston engine

    SciTech Connect

    Bouthers, P.; Breting, O.

    1983-11-15

    A hydraulic generator is disclosed with a free-piston engine and hydropneumatic return cushion and with an associated hydraulic-fluid pumping piston feeding a hydraulic accumulator intended to be charged between two detected levels of pressure. The generator includes a lock device for the free piston at the power-stroke dead center with voluntary control, and servo-control means for this lock device with means for detection of the aforementioned two pressure levels, to assure locking the piston in response to detection of the aforementioned highest pressure level and to assure its unlocking in response to detection of the aforementioned lowest pressure level, and thus an automatic intermittent running of said engine.

  3. Tribology of hydraulic pumps

    SciTech Connect

    Yamaguchi, A.

    1997-12-31

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation of hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.

  4. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  5. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  6. Reciprocating piston pump system with screw drive

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)

    1981-01-01

    A pump system of the reciprocating piston type is described, which facilitates direct motor drive and cylinder sealing. A threaded middle potion of the piston is engaged by a nut connected to rotate with the rotor of an electric motor, in a manner that minimizes loading on the rotor by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded piston portion, with an oil-carrying groove in the nut being interrupted. A fluid emitting seal located at the entrance to each cylinder, can serve to center the piston within the cylinder, wash the piston, and to aid in sealing. The piston can have a long stroke to diameter ratio to minimize reciprocations and wear on valves at high pressures. The voltage applied to the motor can be reversed prior to the piston reaching the end of its stroke, to permit pressure on the piston to aid in reversing the motor.

  7. Applying Switched Reluctance Motor to Oil Hydraulic Pump Use

    NASA Astrophysics Data System (ADS)

    Yamai, Hiroyuki; Sawada, Yuzo; Ohyama, Kazunobu

    Hydraulic pump units are widely used to operate hydraulic actuators. In a typical machine shop, conventional constant speed hydraulic pump units consume more than 20% of the total electric power necessary to operate CNC machine tools. Most of that energy are wasted to run the axial piston pump at idle. This paper describes a variable speed hydraulic pump unit using a switched reluctance motor (SRM), which saves energy drastically. SRM was selected as the most suitable motor for this application. Design and control strategy of this motor are described. Application examples to machine tools shows the effectiveness of the new hybrid pump system in saving energy and in reducing acoustic noise.

  8. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  9. Hydraulic pump with in-ground filtration and monitoring capability

    DOEpatents

    Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.

    1996-10-29

    A hydraulically operated pump is described for in-ground filtering and monitoring of waters or other fluid sources, includes a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis. 5 figs.

  10. Hydraulic pump with in-ground filtration and monitoring capability

    DOEpatents

    Hopkins, Charles D.; Livingston, Ronald R.; Toole, Jr., William R.

    1996-01-01

    A hydraulically operated pump for in-ground filtering and monitoring of ws or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.

  11. Hydraulic pump with in-ground filtration and monitoring capability

    DOEpatents

    Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.

    1995-01-01

    A hydraulically operated pump is described for in-ground filtering and monitoring of wells or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of O-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.

  12. Mathematical modeling of bent-axis hydraulic piston motors

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    Each of the DSN 70-m antennas uses 16 bent-axis hydraulic piston motors as part of the antenna drive system. On each of the two antenna axes, four motors are used to drive the antenna and four motors provide counter torque to remove the backlash in the antenna drive train. This article presents a mathematical model for bent-axis hydraulic piston motors. The model was developed to understand the influence of the hydraulic motors on the performance of the DSN 70-m antennas' servo control system.

  13. Output characteristics of a series three-port axial piston pump

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei

    2012-05-01

    Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made

  14. Know your triplex mud pump - 7. piston motion affects pump operation

    SciTech Connect

    Collier, S.L.

    1982-06-01

    The root cause of fluctuations in pump pressure and flow, which can lead to system vibration and wear, is the way the piston moves naturally through a stroke. To gain a clear understanding of pump operation, then, it is essential to see how pump geometry leads to variations in piston motion in an individual cylinder.

  15. Piston pump and method of reducing vapor lock

    DOEpatents

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  16. Piston pump and method of reducing vapor lock

    SciTech Connect

    Phillips, Benjamin A.; Harvey, Michael N.

    2001-01-30

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  17. Electromagnetic liquid pistons for capillarity-based pumping.

    PubMed

    Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H

    2011-02-01

    The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces. PMID:21127823

  18. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    NASA Astrophysics Data System (ADS)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  19. An update of free-piston Stirling engine heat pump development

    SciTech Connect

    Ackermann, R.A.; Clinch, J.M.; Privon, G.T.

    1986-01-01

    A Free-Piston Stirling Engine Heat Pump (FPSE/HP) for residential applications has been under development for the past five years. The system consists of a natural gas combustor, free-piston Stirling engine, and a variable-stroke resonant piston refrigerant compressor. The compressor is linked to the engine via a unique hydraulic transmission that provides for both efficient power transfer and hermetic sealing between the engine working fluid (helium) and the compressor refrigerant. This development effort has led to a breadboard heat pump power module, engine/transmission/compressor, that has undergone a comprehensive test program to evaluate the performance of an FPSE/HP and to judge its potential for further development. The results obtained from this testing are presented in this paper.

  20. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  1. Piston

    SciTech Connect

    Donahue, Richard J.

    2009-02-24

    A number of embodiments of a piston may have a shape that provides enhanced piston guidance. In such embodiments, the piston shape may include an axial profile that is configured to provide certain thrust load characteristics.

  2. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  3. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    The 0.1-m solar liquid piston pump (SLPP) model is shown to exhibit stable operation over a wide range of conditions, provided the heat input (at T = 85 C) and the heat rejected (at T = 22 C) are maintained above the critical values for stalling. Under these conditions, the pumps operation is affected primarily by the heating coil position and the geometries of the inlet and outlet water tubes. It is found that the optimum output power of the model SLPP is 4.5 W at a pumping heat of 2 m, a mass flow rate of 0.23 kg/s, and an overall efficiency of 1%. It is noted that further optimization of the model would at best only marginally increase the output power and efficiency. It is thought that larger mass flow rates can be obtained by increasing the cross sectional area of the working tube and/or staging a number of pumps in parallel. It is possible to increase the pump head by staging a number of pumps in series.

  4. 21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON OF STEAM ENGINE NO. 4; CONTROL PANEL MOUNTED ON THE ENGINE; FLOOR VALVES CONTROL THE STEAM. - Deer Island Pumping Station, Boston, Suffolk County, MA

  5. Hydraulically-operated pump jack with chain drive

    SciTech Connect

    Ratell Jr., R. E.

    1985-02-05

    My invention relates to pumping apparatus, particularly to a hydraulically-operated pump jack for oil, brine water and the like. The apparatus is fabricated from steel plate to make a strong, but light-weight tower which may be easily transported from one site to another by a small boom truck or gin pole truck. In contrast to pump jacks of the walking beam type which are massive in size, my improved pump jack is compact and is seated on and secured directly to the head of an oil well casing. A vertically-arranged hydraulic cylinder has its piston rod connected to a cross head on which a pair of sprockets are journalled. Chains pass around respective sprockets, one reach of each chain extending upwardly and is anchored to a stationary part of the tower. The other reach of each chain extends upwardly and over and around an upper sprocket journalled on a shaft carried by the upper end of the tower, each chain then extending downwardly to a yoke to which the polish rod is connected. This arrangement will result in a 2 to 1 ratio between the movement of the polish rod and the stroke of the hydraulic cylinder.

  6. 39. THREECYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. THREE-CYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND MACHINERY COMPANY, HOLYOKE MASSACHUSETTS) IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE OIL TANK ABOVE PUMP MOTOR. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  7. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  8. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  9. The hydraulic ram (or impulse) pump

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2014-03-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described, along with a working demonstration model constructed from plastic waste pipe and fittings.

  10. The Hydraulic Ram (Or Impulse) Pump

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described,…

  11. Pre-compression volume on flow ripple reduction of a piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  12. Gas-to-hydraulic power converter

    NASA Technical Reports Server (NTRS)

    Galloway, C. W. (Inventor)

    1982-01-01

    A gas piston driven hydraulic piston pump is described in which the gas cycle is of high efficiency by injecting the gas in slugs at the beginning of each power stroke. The hydraulic piston is disposed to operate inside the as piston, and the two pistons, both slidably but nonrotatably mounted, are coupled together with a rotating but non-sliding motion transfer ring extending into antifriction grooves in the sidewalls of the two pistons. To make the hydraulic piston move at a constant speed during constant hydraulic horsepower demand and thus exert a constant pressure on the hydraulic fluid, these grooves are machined with variable pitches and one is the opposite of the other, i.e., the gas piston groove increases in pitch during its power stroke while the hydraulic piston groove decreases. Any number of piston assembly sets may be used to obtain desired hydraulic horsepower.

  13. Reducing the net torque and flow ripple effects of multiple hydraulic piston motor drives

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    The torque and flow ripple effects which result when multiple hydraulic motors are used to drive a single motion of a mechanical device can significantly affect the way in which the device performs. This article presents a mathematical model describing the torque and flow ripple effects of a bent-axis hydraulic piston motor. The model is used to show how the ripple magnitude can be reduced when multiple motors are used to drive a motion. A discussion of the hydraulic servo system of the 70-m antennas located with the Deep Space Network is included to demonstrate the application of the concepts presented.

  14. The hydraulic design of pump turbine for Xianyou pumped storage power station

    NASA Astrophysics Data System (ADS)

    Zheng, J. S.; Liu, W. C.; Fu, Z. Y.; Shi, Q. H.

    2012-11-01

    This paper presents the hydraulic design of pump turbines for Xianyou pumped storage power station. The method of improving the hydraulic performance of pump turbine with CFD analysis is given. The results of model test indicate that the final hydraulic design of pump turbine for Xianyou pumped storage power station is of high efficiencies, good

  15. Rotary hydraulic engine having oppositely disposed pistons in a scotch yoke assembly

    SciTech Connect

    Courtright, H.D.

    1986-07-08

    A rotary hydraulic engine is described comprising, in combination; frame means; crankshaft means supported by aid frame means in substantially fixed relation therewith and having an eccentric crank portion; housing means encircling the crankshaft means and being rotatable relative thereto, the housing means defining a plurality of pairs of cylinders disposed in laterally opposed sets such that each cylinder is laterally opposed to and co-axial with an opposed cylinder; a piston slidingly disposed within each of the cylinders; a scotch yoke assembly having a pair of discrete slide members each of which interconnects the pistons disposed within the laterally opposed set of cylinders and has cooperative relation with the eccentric crank portion so as to effect tandem movement of the interconnected pistons and thereby effect relative movement between the housing means and the crankshaft means; external valve means operatively associated with each of the cylinders so as to enable selective application of fluid pressure to the pistons in a manner adapted to effect predetermined sequential movement of the pistons and associated scotch yoke assembly, thereby imparting rotary motion to the housing.

  16. Intermittent chaos and sliding window symbol sequence statistics-based early fault diagnosis for hydraulic pump on hydraulic tube tester

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Jia, Mingxing; Wang, Fuli; Wang, Shu

    2009-07-01

    To ensure the safety, continuity of production, make a reasonable maintenance plan, save the cost of maintenance for hydraulic tube tester, it is needed to quickly identify an assignable cause of a fault. This paper is concerned with early fault diagnosis of hydraulic pump which are the heart of hydraulic tube tester. Considering that the signal of the hydraulic pump early fault is a periodic weak signal, an intermittent chaos, sliding window symbol sequence statistics-based method is proposed to detect the early fault of one single piston loose shoes of hydraulic pump on a hydraulic tube tester. The approach presented is based on the insight that the phase transition of chaos oscillator, for example, the Duffing oscillator, is very sensitive to a periodic weak signal having little angular frequency difference with the referential signal of the oscillator. While observing the intermittent chaos phenomenon through figure is not easy for computer, a sliding window symbol sequence statistics is developed to realize real-time computer observation of this phenomenon. Rather more, this paper takes a trick to decreasing the computational complexity of the sliding window symbol sequence statistics method, also analyzes the influences of different window size, depths of the symbol tree on the information entropy. At last, a control limit is introduced to realize automatic early fault alarm. The resultant approach is experimented with data simulated from an AMESim model of hydraulic tube tester. The results indicate that the proposed approach is capable of detecting the signal of hydraulic pump early fault on hydraulic tube tester.

  17. Simulation of a Hydraulic Pump Control Valve

    NASA Technical Reports Server (NTRS)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  18. Hydraulic gas pump: A discussion of its power usage

    SciTech Connect

    Amani, M.

    1995-12-31

    This paper presents the results of a study that compares the theoretically calculated power consumption of a Hydraulic Gas Pump, rod pumps, and electric submersible pumps. The results indicate that, depending on the flowing bottomhole pressure of a well, a Hydraulic Gas Pump can have lower power costs than a rod pump or a submersible pump. The author presents a method for calculating the power cost of a Hydraulic Gas Pump and discusses the relationship of the power cost of this pump to the flowing bottomhole pressure. Several graphs compare the calculated power consumption of a rod pump, submersible pump, and Hydraulic Gas Pump for well depths ranging between 6,000 and 10,000 feet; flowing bottomhole pressure ranging between 500 and 2,000 psi; and production rates of 300 and 500 BLPD.

  19. Hydraulic stud tensioning aids pump performance

    SciTech Connect

    Marchand, G.J.

    1986-03-31

    This article considers the use of hydraulic stud tensioners on mud pump fluid ends. It contains tensioner testing and application. A typical problem involving a fluid end stud is presented to illustrate the use of hydraulic tensioning. Hydraulic stud tensioners give optimum preload reliability over traditional torque tensioning methods. Accurately controlling preload increases stud fatigue life and minimizes maintenance. At one time it was acceptable just to get fluid end connections tight by means of slogging wrenches, impact wrenches, or two of your biggest men on a 10-ft cheater pipe. If the connection did not leak during hydrotest, it was accepted and put into operation. Users of mud pumps are faced with fluid ends that may ''breathe'' excessively due to improper stud preload. Today's equipment is smaller in size and larger in horsepower than ever before, using large retaining studs requiring torques of 3,000 ft-lb and up. In present compact designs, many bolted connections have become virtually inaccessible using traditional tightening procedures. No longer will large wrenches, cheater pipes, and sledge hammers clear surrounding equipment.

  20. Free-piston Stirling hydraulic engine and drive system for automobiles

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  1. 93. STARBOARD CATAPULT HYDRAULIC PUMP PORT LOOKING TO STARBOARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. STARBOARD CATAPULT HYDRAULIC PUMP - PORT LOOKING TO STARBOARD SHOWING ONE OF THE SEVEN (7) HYDRAULIC USED TO OPERATE THE CATAPULT. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  2. Dynamics and design of a power unit with a hydraulic piston actuator

    NASA Astrophysics Data System (ADS)

    Misyurin, S. Yu.; Kreinin, G. V.

    2016-07-01

    The problem of the preselection of parameters of a power unit of a mechatronic complex on the basis of the condition for providing a required control energy has been discussed. The design of the unit is based on analysis of its dynamics under the effect of a special-type test conditional control signal. The specific features of the approach used are a reasonably simplified normalized dynamic model of the unit and the formation of basic similarity criteria. Methods of designing a power unit with a hydraulic piston actuator that operates in point-to-point and oscillatory modes have been considered.

  3. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.

  4. RE-1000 free-piston Stirling engine hydraulic output system description

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Geng, Steven M.

    1987-01-01

    The NASA Lewis Research Center was involved in free-piston Stirling engine research since 1976. Most of the work performed in-house was related to characterization of the RE-1000 engine. The data collected from the RE-1000 tests were intended to provide a data base for the validation of Stirling cycle simulations. The RE-1000 was originally build with a dashpot load system which did not convert the output of the engine into useful power, but was merely used as a load for the engine to work against during testing. As part of the interagency program between NASA Lewis and the Oak Ridge National Laboratory, (ORNL), the RE-1000 was converted into a configuration that produces useable hydraulic power. A goal of the hydraulic output conversion effort was to retain the same thermodynamic cycle that existed with the dashpot loaded engine. It was required that the design must provide a hermetic seal between the hydraulic fluid and the working gas of the engine. The design was completed and the hardware was fabricated. The RE-1000 was modified in 1985 to the hydraulic output configuration. The early part of the RE-1000 hydraulic output program consisted of modifying hardware and software to allow the engine to run at steady-state conditions. A complete description of the engine is presented in sufficient detail so that the device can be simulated on a computer. Tables are presented showing the masses of the oscillating components and key dimensions needed for modeling purposes. Graphs are used to indicate the spring rate of the diaphragms used to separate the helium of the working and bounce space from the hydraulic fluid.

  5. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program. Volume 1: Technical discussion

    NASA Astrophysics Data System (ADS)

    Ackermann, R. A.

    1988-01-01

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95 F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation.

  6. 50. VIEW OF HYDRAULIC PUMP INSIDE 'CATFISH' SILO Everett Weinreb, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. VIEW OF HYDRAULIC PUMP INSIDE 'CATFISH' SILO Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  7. 12. VIEW OF HYDRAULIC PUMP INSIDE SILO. ACTUATING ARMS FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF HYDRAULIC PUMP INSIDE SILO. ACTUATING ARMS FOR DOORS EXPOSED Everett Weinreb, photographer, April 1988 - Los Pinetos Nike Missile Site, Santa Clara Road, Los Angeles National Forest, Sylmar, Los Angeles County, CA

  8. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  9. Hydraulic optimization of "S" characteristics of the pump-turbine for Xianju pumped storage plant

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Zheng, J. S.; Cheng, J.; Shi, Q. H.

    2012-11-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the "S" characteristic in the development of the model pump-turbine. This paper presents the cause of "S" characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the "S" characteristics of the machine at Xianju pumped storage plant and a big step for removing the "S" characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  10. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads

    NASA Astrophysics Data System (ADS)

    Liu, X.; Y Luo, Y.; Wang, Z. W.

    2014-03-01

    As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption.

  11. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    NASA Technical Reports Server (NTRS)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  12. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  13. The combustion process in a DI diesel hydraulic free piston engine

    SciTech Connect

    Somhorst, J.H.E.; Achten, P.A.J.

    1996-09-01

    In a free piston engine the piston is neither connected to a crankshaft mechanism nor to any other kinematic system. Instead the piston movement is determined by the free forces that act upon it. This difference between the kinematic principle of the crankshaft engine and the free piston principle has a significant influence on the combustion process. In this paper the combustion process in a free piston engine is described on the basis of experiments. The experimental data were obtained from measurements on the free piston engine that has been developed by the Dutch company Innas. This article discusses the influence of the free piston principle on cold start, ignition delay, heat release, heat transfer, indicated efficiency and emissions. In the optimum point the engine has an indicated efficiency of 51%, a NOx emission of 6 gr/kWhi and a soot emission corresponding to a Bosch Filter Number of less than 0.5. The combustion process of the free piston engine is furthermore characterized by a nearly constant volume combustion process.

  14. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  15. 52. Interior of launch support building, hydraulic pumping unit at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Interior of launch support building, hydraulic pumping unit at lower center, service disconnect at right, view towards south - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  16. 24. VIEW OF BOXES CONTAINING SOLENOIDS AND HYDRAULIC PUMP CONTRACTORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF BOXES CONTAINING SOLENOIDS AND HYDRAULIC PUMP CONTRACTORS FOR ENVIRONMENTAL DOORS AND BREAKERS FOR RECEPTACLES ON SEVERAL STATIONS. BOXES LOCATED IN THE SOUTHEAST CORNER OF SLC-3W MST STATION 63. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Design and operation of an advanced hydraulic piston corer. Technical report

    SciTech Connect

    Peterson, M.N.A.

    1984-07-01

    The Deep Sea Drilling Project Technical Report documents the history, incentives, development and testing of the Advanced Piston Corer (APC) - the third generation in the wireline retrievable, piston coring technology in DSDP. Description and operational guidelines of the latest design iteration, APC Mod. II, are included. Operational sea trials of the Mod. I version are summarized. Appendices are included with related reports, design calculations and machine drawings.

  18. Position Sensorless Drive o SRM Mounted on Hydraulic Pump Unit

    NASA Astrophysics Data System (ADS)

    Kosaka, Takashi; Nabeya, Yoshinari; Ohyama, Kazunobu; Matsui, Nobuyuki

    Recently, Switched Reluctance Motors (SRM)have been applied to several industrial products such as fans, blowers, pumps and so forth because of their simple construction and relatively high e ciency.As one of the examples, Daikin Industries Ltd.has been successful in manufacturing hydraulic pump unit using 2.2kW three-phase SRM with shaft mounted position sensor for its control. This paper presents the position sensorless drive o the SRM for the purposes of reducing cost and down sizing of the hydraulic pump unit system.The controller, intentionally designed for this special application, realizes the following characteristics;the maximum and minimum speeds are 5000 and 300rpm, the speed response between the maximum and minimum speeds is within 100msec and the starting torque is less than 20% of the rated torque.The experimental studies using the hydraulic pump unit show that the proposed sensorless control scheme satis es the requirements for this application.

  19. Parametric performance evaluation of a hydraulic centrifugal pump

    NASA Astrophysics Data System (ADS)

    Heo, M. W.; Y Kim, K.; Ma, S. B.; Yoo, I. S.; Choi, W. C.; Kim, J. H.; Choi, Y. S.

    2014-03-01

    Parametric study of a hydraulic centrifugal pump with backward curved blades has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model was used for analysis of turbulence. The finite volume method and an unstructured grid system were used for the numerical solution. The optimal grid system in the computational domain was selected through a grid dependency test. Tested parameters were related to the geometry of the impeller and volute: seven variables defining the hub and shroud contours and the blades angle of impeller, and two variables defining the inlet width and expansion angle of volute. The effects of these parameters on the hydrodynamic performance of the centrifugal pump have been investigated. It was found that the centrifugal water pump with the twisted blades has the enhancing efficiency compared to the straight blades pump.

  20. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.

    PubMed

    Dame, D

    1996-06-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. PMID:8817965

  1. Low-power microfluidic electro-hydraulic pump (EHP).

    PubMed

    Lui, Clarissa; Stelick, Scott; Cady, Nathaniel; Batt, Carl

    2010-01-01

    Low-power electrolysis-based microfluidic pumps utilizing the principle of hydraulics, integrated with microfluidic channels in polydimethylsiloxane (PDMS) substrates, are presented. The electro-hydraulic pumps (EHPs), consisting of electrolytic, hydraulic and fluidic chambers, were investigated using two types of electrodes: stainless steel for larger volumes and annealed gold electrodes for smaller-scale devices. Using a hydraulic fluid chamber and a thin flexible PDMS membrane, this novel prototype successfully separates the reagent fluid from the electrolytic fluid, which is particularly important for biological and chemical applications. The hydraulic advantage of the EHP device arises from the precise control of flow rate by changing the electrolytic pressure generated, independent of the volume of the reagent chamber, mimicking the function of a hydraulic press. Since the reservoirs are pre-filled with reagents and sealed prior to testing, external fluid coupling is minimized. The stainless steel electrode EHPs were manufactured with varying chamber volume ratios (1 : 1 to 1 : 3) as a proof-of-concept, and exhibited flow rates of 1.25 to 30 microl/min with electrolysis-based actuation at 2.5 to 10 V(DC). The miniaturized gold electrode EHPs were manufactured with 3 mm diameters and 1 : 1 chamber volume ratios, and produced flow rates of 1.24 to 7.00 microl/min at 2.5 to 10 V(AC), with a higher maximum sustained pressure of 343 KPa, suggesting greater device robustness using methods compatible with microfabrication. The proposed technology is low-cost, low-power and disposable, with a high level of reproducibility, allowing for ease of fabrication and integration into existing microfluidic lab-on-a-chip and analysis systems. PMID:20024053

  2. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  3. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, K.C.

    1987-08-18

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensile specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen regardless whether there is initial misalignment between the specimen load column assembly and housing axis. 4 figs.

  4. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, Kenneth C.

    1987-01-01

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensil specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen irregardless whether there is initial misalignment between the specimen load column assembly and housing axis.

  5. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  6. Method and apparatus for stimulating hydraulically pumped wells

    SciTech Connect

    Moore, B.K.; Morris, D.R.

    1989-09-12

    This patent describes a method of stimulating a well having a production tubing extending in a well casing with a production packer therebetween in which the production tubing includes an internal shoulder and a fluid port above the shoulder communicating between the inside of the tubing and the casing, with a hydraulic pump seated on the shoulder for pumping fluid from the well. The method comprises removing the hydraulic pump from the production tubing while leaving the production tubing in place, lowering a coil tubing having a fluid injector at its lower end into the production tubing, sealingly seating the injector onto the shoulder, pressuring fluid against the top of the seated injector and against the top of the production packer for maintaining the injector on the seat and maintaining the packer in place and stimulating the well through the coil tubing through the injector. This patent describes an apparatus for stimulating wells in which a production tubing extends in a well casing with a production packer therebetween in which the production tubing includes an internal shoulder and a fluid port above the shoulder communicating between the inside of the tubing and the casing. The apparatus comprising, coil tubing with a fluid injector at its lower end, the injector including means for seating on the internal shoulder and means for sealingly engaging the internal shoulder, and a fluid inflatable packer connected to the coil tubing at a position above the injector for positioning above the fluid port when the injector is seated on the shoulder.

  7. Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon.

    PubMed

    Garvin, Michael R; Bielawski, Joseph P; Gharrett, Anthony J

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm. PMID:21969854

  8. Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    PubMed Central

    Garvin, Michael R.; Bielawski, Joseph P.; Gharrett, Anthony J.

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm. PMID:21969854

  9. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    NASA Technical Reports Server (NTRS)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  10. Further developments in the design of a free-piston Stirling engine heat pump for residential applications

    SciTech Connect

    Ackermann, R.A.; Clinch, J.M.; Privon, G.T.

    1987-01-01

    During the past year (1986/1987), the development of an improved Stirling engine driver for the Free-Piston Stirling Engine Heat Pump (FPSE/HP) has led to a significant increase in heat pump performance. With the improved engine, named the MARK I, the FPSE/HP has achieved its two critical milestones of producing 3.0 refrigeration tons (RT) at the 35/sup 0/C (95/sup 0/F) ambient temperature conditions and an engine efficiency of 25%, as measured from the fuel input energy, based on the higher heating value of the natural gas and mechanical power developed by the engine. This paper describes the latest configuration of the FPSE/HP module and presents measured performance data. Performance has been measured over a broad range of ambient temperature conditions and engine operating parameters. The results obtained from this testing are presented.

  11. Further developments in the design of a free-piston Stirling engine heat pump for residential applications

    SciTech Connect

    Ackerman, R.A.; Clinch, J.M.; Privon, G.

    1987-06-01

    During the past year (1986/1987), the development of an improved Stirling engine driver for the Free-Piston Stirling Engine Heat Pump (FPSE/HP) has led to a significant increase in heat pump performance. With the improved engine, the MARK I, the FPSE/HP has achieved its two critical milestones of producing 3.0 refrigeration tons (RT) at the 95 F (35/sup 0/C) ambient temperature conditions and an engine efficiency of 25%, as measured from the fuel input energy, based on the higher heating value of the natural gas and mechanical power developed by the engine. This paper describes the latest configuration of the FPSE/HP module and presents measured performance data. Performance has been measured over a broad range of ambient temperature conditions and engine operating parameters. The results obtained from this testing are presented.

  12. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump

    ERIC Educational Resources Information Center

    Dell, Timothy W.

    2012-01-01

    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  13. Importance of mechanical testing of hydraulic fluids

    SciTech Connect

    Reichel, J.

    1997-12-31

    Anti-wear properties of hydraulic fluids are important because hydraulic pump and motor wear is costly. Hydraulic fluid performance specifications represent minimum requirements. International hydraulic fluid performance standards are being developed by ISO/TC28/SC4 committee as draft (ISO DIS 11158 ``Specifications for Mineral Oil Hydraulic Fluids``). Performance specifications for non-mineral oil hydraulic fluids are also being developed. Typically, both the user and fluid manufacturer have insufficient information relating to the anti-wear properties of a new fluid to be used in hydraulic equipment, such as axial piston pumps, vane pumps or radial piston motors. Therefore, pump lubrication and operation requirements, preferably pre-existing in pump manufacturer`s specifications, must be determined. The required fluid lubrication properties may be determined by either laboratory pump tests or by a field trial, often at the expense of the customer. More preferably, the lubrication properties of the hydraulic fluid should be determined under mechanical conditions equivalent to field practice. In this paper, the use of both the vane pump test and the FZG Gear Test to predetermine the recommended hydraulic fluid lubrication performance will be discussed. In this way, fluid performance may be determined at significantly lower cost than more expensive large scale hydraulic pump and motor tests which are slower and more energy consuming.

  14. Preliminary assessment of a magnetically coupled free-piston Stirling engine heat pump compressor

    SciTech Connect

    Beale, W.T.; Chen, G.

    1988-01-01

    The potential advantages of direct magnetic coupling of a free-piston Stirling engine with a vapor compressor are being investigated experimentally. Results to date indicate no problems with dynamics, mechanical arrangements, efficiency or deterioration. The problems of size and cost remain, but these are determined by the properties of the magnetic material, which are improving rapidly. If the magnet material becomes available at a satisfactory price, the work undertaken here will facilitate a commercially attractive magnet drive system. 4 figs.

  15. Passive characterization of hydrofracture properties using signals from hydraulic pumps

    SciTech Connect

    Rector III, J.W.; Dong, Q.; Patzek, T.W.

    1999-01-02

    Massive hydraulic fracturing is used to enhance production from the low-permeability diatomite fields of Kern County, CA. Although critical for designing injection and recovery well patterns, the in-situ hydraulic fracture geometry is poorly understood. In 1990, Shell conducted an extensive seismic monitoring experiment on several hydrofractures prior to a steam drive pilot to characterize hydrofracture geometry. The seismic data were recorded by cemented downhole geophone arrays in three observation holes (MO-1, MO-2, and MO-3) located near the hydraulic fracture treatment wells. Using lowpass filtering and moveout analysis, events in the geophone recordings are identified as conical shear waves radiating from tube waves traveling down the treatment well. These events appear to be created by the hydraulic pumps, since their amplitudes are correlated with the injection rate and the wellhead pressure. Conical wave amplitudes are related to the tube wave attenuation in the treatment well and to wave-propagation characteristics of the shear component traveling in the earth. During the main fracturing stage, geophones above the fracture zone for wells MO-1 and MO-2 (both roughly along the inferred vertical fracture plane) exhibited conical-wave amplitude increases that are caused by shear wave reflection/scattering off the top of a fracture zone. From changes in the reflection amplitude as a function of depth, we interpret that the fracture zone initially extends along a confined vertical plane at a depth that correlates with many of the microseismic events. Toward the end of the main fracturing stage, the fracture zone extends upward and also extends in width, although we cannot determine the dimensions of the fracture from the reflection amplitudes alone. For all wells, we observe that the reflection (and what we infer to be the initial fracture) begins during a time period where no marked change in fracture pressure or injection rate or slurry concentration is

  16. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  17. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  18. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  19. Examples of oil cavitation erosion in positive displacement pumps

    NASA Technical Reports Server (NTRS)

    Halat, J. A.; Ellis, G. O.

    1974-01-01

    The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.

  20. Review Of Low-Flow Bladder Pump And High-Volume Air Piston Pump Groundwater Sampling Systems At Sandia National Laboratories, New Mexico

    SciTech Connect

    Collins, S. S.; Bailey, G. A.; Jackson, T. O.

    2003-02-25

    Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using

  1. Free-piston Stirling engine-driven heat pump program plan

    SciTech Connect

    Ross, B.A.; Hutchinson, R.A.; Chen, F.C.

    1988-07-01

    Stirling engine driven heat pumps are one of the most attractive potential products based on Stirling engines. Their many advantages in efficiency, fuel adaptability, quietness, compactness, controllability and potential for high reliability are well known. This paper briefly reviews these advantages, then turns to key technical concerns in Sterling engine driven heat pump development. These have been organized into an effective development program that will require about $4 million per year for 8 years to complete basic research, component development, and an estimated 3 generations of system hardware. The planning effort was directed by the Building Equipment Division of the DOE Office of Buildings and Communities Systems. 7 refs., 2 figs.

  2. A review of contamination related hydraulic pump problems in Japanese injection molding, extrusion and rubber molding industries

    SciTech Connect

    Sasaki, Akira

    1997-12-31

    It is known that contamination of hydraulic oil is one of the major factors causing hydraulic pump problems. Many test reports on contaminant sensibility of hydraulic pumps have been published with new oil and standard dusts but the results of these tests could not guarantee to predict in-service performance. This report describes three cases investigated. The first investigation was done on hydraulic pumps used for injection molding machines application. The causes of pump problems were examined by analysis of maintenance records. The second investigation was performed to determine overhaul frequency of hydraulic pumps used for aluminum extruders. By introducing a new method of hydraulic oil management which reduces oil oxidation products, pump life was extended from 3,000 to 15,000 hours. The third investigation was done to determine the relationship between pump problems and contamination levels of hydraulic oils of 411 rubber molding machines for 20 months. The results showed that pump problems appeared at half the recommended oil lifetimes for these fluids. These studies showed that the cause of pump problems was clogging of suction strainers leading to pump cavitation. The clogged strainers were washed with several different solvents to identify the causes of suction strainer clogging. Clogging of suction strainers was attributable to sticky oxidation products of hydraulic oils. Electrostatic oil cleaners removed not only micron range solid particles bu also submicron size particles. Hydraulic pump problems have been substantially reduced by introducing this new method of contamination control.

  3. Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application

    NASA Astrophysics Data System (ADS)

    Yusof, A. A.; Wasbari, F.; Zakaria, M. S.; Ibrahim, M. Q.

    2013-12-01

    Water hydraulics is the sustainable option in developing fluid power systems with environmental friendly approach. Therefore, an investigation on water-based external gear pump application is being conducted, as a low cost solution in the shifting effort of using water, instead of traditional oil hydraulics in fluid power application. As the gear pump is affected by fluid viscosity, an evaluation has been conducted on the slip flow coefficient, in order to understand to what extent the spur gear pump can be used with water-based hydraulic fluid. In this paper, the results of a simulated study of variable-speed fixed displacement gear pump are presented. The slip flow coefficient varies from rotational speed of 250 RPM to 3500 RPM, and provides volumetric efficiency ranges from 9 % to 97% accordingly.

  4. Test Results From a Pair of 1-kWe Dual-Opposed Free-Piston Stirling Power Convertors Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Briggs, Maxwell H.; Penswick, L. Barry; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1-kW-class free-piston Stirling convertors were modified to operate with a NaK (sodium (Na) and potassium (K)) liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The convertors were successfully tested at the Marshall Space Flight Center (MSFC) from June 6 through July 14, 2009. The convertors were operated for a total test time of 66 hr and 16 min. The tests included (a) performance mapping the convertors over various hot- and cold-end temperatures, piston amplitudes, and NaK flow rates and (b) transient test conditions to simulate various startup (i.e., low-, medium-, and high-temperature startups) and fault scenarios (i.e., loss of heat source, loss of NaK pump, convertor stall, etc.). This report documents the results of this testing

  5. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  6. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  7. Cooled spool piston compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  8. Raising the resistance of mainline pump parts to hydraulic abrasion

    SciTech Connect

    Belousov, V.Ya.; Borisenko, V.V.; Zhuravlev, Yu.V.

    1988-01-01

    The authors investigate the diffusion coating of mainline petroleum pump surfaces with boron carbides and the subsequent hardness and abrasion resistance of the working surfaces based on the temperature of the treatment and the depth and concentration of the coating. Industrial testing on an NM 2500 x 230 centrifugal pump demonstrated an increase in service life by a factor of 2 to 2.5. The process has been put into production at an annual savings per pump of 4000 rubles.

  9. Human Aorta Is a Passive Pump

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  10. Compression retaining piston

    SciTech Connect

    Quaglino, A.V. Jr.

    1987-06-16

    A piston apparatus is described for maintaining compression between the piston wall and the cylinder wall, that comprises the following: a generally cylindrical piston body, including: a head portion defining the forward end of the body; and a continuous side wall portion extending rearward from the head portion; a means for lubricating and preventing compression loss between the side wall portion and the cylinder wall, including an annular recessed area in the continuous side wall portion for receiving a quantity of fluid lubricant in fluid engagement between the wall of the recessed and the wall of the cylinder; a first and second resilient, elastomeric, heat resistant rings positioned in grooves along the wall of the continuous side wall portion, above and below the annular recessed area. Each ring engages the cylinder wall to reduce loss of lubricant within the recessed area during operation of the piston; a first pump means for providing fluid lubricant to engine components other than the pistons; and a second pump means provides fluid lubricant to the recessed area in the continuous side wall portion of the piston. The first and second pump means obtains lubricant from a common source, and the second pump means including a flow line supplies oil from a predetermined level above the level of oil provided to the first pump means. This is so that should the oil level to the second pump means fall below the predetermined level, the loss of oil to the recessed area in the continuous side wall portion of the piston would result in loss of compression and shut down of the engine.

  11. Design of hydraulic output Stirling engine

    NASA Technical Reports Server (NTRS)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  12. Note: Development of a compact electromagnetic hydraulic pump for a microrobot joint driving system.

    PubMed

    Chen, Naijian; Wang, Sun'an; Zhang, Jinhua

    2010-04-01

    This note describes a compact electromagnetic hydraulic pump (EMHP) designed primarily to build a microdriving system for a robot joint actuator. A characteristic mathematical model integrating electricity, magnetism, and hydraulics is constructed to represent the working process of the EMHP. Tests show that a volumetric flow rate of up to 430 cm(3)/min and load pressure of up to 2.5 MPa can be achieved. The prototype pump can supply stable pressure of 0-2.4 MPa and acceleration of 1.2 MPa/s for the robot joint actuator. PMID:20441378

  13. Vehicle having hydraulic and power steering systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-06-22

    A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

  14. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  15. Hydraulic design, numerical simulation and BVF diagnosis of high efficiency centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Y. X.; Chen, L.; Zhou, X.; Jiangand, C. W.; Su, M.

    2012-11-01

    Under the Two-dimensional Flow Theory and the Velocity Coefficient Theory, a centrifugal-pump impeller has been designed, based on the parameters of IS150-125-250 centrifugal pump. And self-compiled programs have been used to complete the hydraulic design of the whole flow passage of centrifugal pump. The space bending and twisting characteristics of the design blade are more obvious. Then, numerical simulation is applied to the inner flow field of the two pumps using RANS (Reynolds Averaged N-S) Equation with a standard k-ε two-equation turbulence model. The compare of the numerical simulation data of two centrifugal pumps, getting from 13 working points including design condition, shows that, the design pump has higher head and efficiency in the range of lower flow rate. Based on the numerical results of the inner flow of the design pump and model pump, the boundary vorticity flux (BVF) diagnostics has been used to analyze the BVF distribution of suction surface and pressure surface of two pumps. The result shows that, the BVF distribution of the design pump is more uniform and smooth, with smaller peak value.

  16. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  17. Free-piston Stirling engine development. Annual report, December 1, 1984-December 31, 1985

    SciTech Connect

    Ackermann, R.A.

    1986-04-01

    The free-piston Stirling engine (FPSE) is being developed as a potential gas-fired prime mover for heat-pump applications in the residential market. The heat pump features an advanced FPSE coupled to a Rankine refrigerant compressor through a hermetically sealed diaphragm-activated hydraulic transmission. During the past year, the program has concentrated on developing the engine and compressor component improvement in performance and realiability. The report presents the progress made.

  18. Induced hydraulic pumping via integrated submicrometer cylindrical glass capillaries.

    PubMed

    Cao, Zhen; Yobas, Levent

    2014-08-01

    Here, we report on a micropump that generates hydraulic pressure owing to a mismatch in EOF rates of microchannels and submicrometer cylindrical glass capillaries integrated on silicon. The electrical conductance of such capillaries in the dilute limit departs from bulk linear behavior as well as from the surface-charge-governed saturation in nanoslits that is well described by the assumption of a constant surface charge density. The capillaries show rather a gradual decrease in conduction at low salt concentrations, which can be explained more aptly by a variable surface charge density that accounts for chemical equilibrium of the surface. The micropump uses a traditional cross-junction structure with ten identical capillaries integrated in parallel on a side arm and each with a 750 nm diameter and 3 mm length. For an applied voltage of 700 V, a hydraulic pressure up to 5 kPa is generated with a corresponding flow velocity nearly 3 mm/s in a straight field-free branch 20 μm wide, 10 μm deep, and 10 mm long. The micropump utility has been demonstrated in an open tubular LC of three fluorescently labeled amino acids in just less than 20 s with minimal plate height values between 3 and 7 μm. The submicrometer capillaries are self-enclosed and produced through a unique process that does not require high-resolution advanced lithography or wafer-bonding techniques to define their highly controlled precise structures. PMID:24917552

  19. Lightweight piston

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor)

    1987-01-01

    A lightweight piston composed of carbon-carbon composites is presented. The use of carbon-carbon composites over conventional materials, such as aluminum, reduces piston weight and improves thermal efficiency of the internal combustion reciprocation engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance is so small as to eliminate the necessity for piston rings. Use of the carbon-carbon composite has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  20. Determining optimum pumping rates for creation of hydraulic barriers to ground-water pollutant migration

    SciTech Connect

    Shafer, J.M.

    1984-04-01

    In certain ground-water flow regimes control of the migration of pollutants can be achieved by hydraulic barriers created by ground-water withdrawal and/or injection. However, for complicated flow domains and situations where multiple wells may be installed, the determination of pumping rates to achieve a pollution control objective can be difficult. A nonlinear programming (NLP) algorithm is coupled to a two-dimensional, steady-state, ground-water flow model and an advective transport model for determination of optimum pumping rates for creation of hydraulic barriers. This technique is a screening tool for the selection of pumping rates to be subsequently confirmed with more detailed simulation. Two example applications of this technique are presented. The first example shows how NLP can be used to determine pumping rates required to develop a stagnation point. Optimum pumping rates for eight wells arranged in a circular configuration are determined so as to reduce the ground-water velocity to near zero over a precise region within a nonhomogeneous aquifer. The second example involves the determination of optimum steady-state pumping rates for six wells in a nonhomogeneous flow domain where the objective is the control (i.e., steering) of the trajectory of a contaminant plume. 17 references, 10 figures, 5 tables.

  1. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    NASA Astrophysics Data System (ADS)

    Zhang, Y. X.; Su, M.; Hou, H. C.; Song, P. F.

    2013-12-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model.

  2. Helmholtz resonance in a piezoelectric-hydraulic pump-based hybrid actuator

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2011-01-01

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric-hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator.

  3. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  4. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

    NASA Astrophysics Data System (ADS)

    Ye, D. X.; Li, H.; Wang, Y.

    2013-12-01

    The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore.

  5. Hydraulic losses in the spiral case of low specific speed pumps

    NASA Astrophysics Data System (ADS)

    Klas, Roman; Pochylý, František; Rudolf, Pavel

    2014-03-01

    This contribution is focused on analysis of pressure losses in spiral case of centrifugal pump with thick trailing edges and with recirculation channels. Recirculation channels have different geometrical configuration and influence the size of available specific energy as well as hydraulic efficiency. Subsequently, the contribution analyses the flow in spiral case itself with respect to its function and its filling with liquid. Studied phenomena affect the research of pumps with low specific speed, the stability of specific energy characteristic curves and also the configuration of recirculation channels.

  6. Prognostic for hydraulic pump based upon DCT-composite spectrum and the modified echo state network.

    PubMed

    Sun, Jian; Li, Hongru; Xu, Baohua

    2016-01-01

    Prognostic is a key step of the condition-based maintenance (CBM). In order to improve the predicting performance, a novel method for prognostic for the hydraulic pump is proposed in this paper. Based on the improvement of the traditional composite spectrum, the DCT-composite spectrum (DCS) fusion algorithm is initially presented to make fusion of multi-channel vibration signals. The DCS composite spectrum entropy is extracted as the feature. Furthermore, the modified echo state networks (ESN) model is established for prognostic using the extracted feature. The reservoir is updated and the elements of the neighboring matrix are redefined for improving predicting accuracy. Analysis of the application in the hydraulic pump degradation experiment demonstrates that the proposed algorithm is feasible and is meaningful for CBM. PMID:27547667

  7. Simultaneous transient operation of a high head hydro power plant and a storage pumping station in the same hydraulic scheme

    NASA Astrophysics Data System (ADS)

    Bucur, D. M.; Dunca, G.; Cervantes, M. J.; Cǎlinoiu, C.; Isbǎşoiu, E. C.

    2014-03-01

    This paper presents an on-site experimental analysis of a high head hydro power plant and a storage pumping station, in an interconnected complex hydraulic scheme during simultaneous transient operation. The investigated hydropower site has a unique structure as the pumping station discharges the water into the hydropower plant penstock. The operation regimes were chosen for critical scenarios such as sudden load rejections of the turbines as well as start-ups and stops with different combinations of the hydraulic turbines and pumps operation. Several parameters were simultaneously measured such as the pumped water discharge, the pressure at the inlet pump section, at the outlet of the pumps and at the vane house of the hydraulic power plant surge tank. The results showed the dependence of the turbines and the pumps operation. Simultaneous operation of the turbines and the pumps is possible in safe conditions, without endangering the machines or the structures. Furthermore, simultaneous operation of the pumping station together with the hydropower plant increases the overall hydraulic efficiency of the site since shortening the discharge circuit of the pumps.

  8. Joint Estimation of Hydraulic and Poroelastic Parameters from a Pumping Test.

    PubMed

    Berg, Steven J; Illman, Walter A; Mok, Chin Man W

    2015-01-01

    The coupling of hydraulic and poroelastic processes is critical in predicting processes involving the deformation of the geologic medium in response to fluid extraction or injection. Numerical models that consider the coupling of hydraulic and poroelastic processes require the knowledge of relevant parameters for both aquifer and aquitard units. In this study, we jointly estimated hydraulic and poroelastic parameters from pumping test data exhibiting "reverse water level fluctuations," known as the Noordbergum effect, in aquitards adjacent to a pumped aquifer. The joint estimation was performed by coupling BIOT2, a finite element, two-dimensional, axisymmetric, groundwater model that considers poroelastic effects with the parameter estimation code PEST. We first tested our approach using a synthetic data set with known parameters. Results of the synthetic case showed that for a simple layered system, it was possible to reproduce accurately both the hydraulic and poroelastic properties for each layer. We next applied the approach to pumping test data collected at the North Campus Research Site (NCRS) on the University of Waterloo (UW) campus. Based on the detailed knowledge of stratigraphy, a five-layer system was modeled. Parameter estimation was performed by: (1) matching drawdown data individually from each observation port and (2) matching drawdown data from all ports at a single well simultaneously. The estimated hydraulic parameters were compared to those obtained by other means at the site yielding good agreement. However, the estimated shear modulus was higher than the static shear modulus, but was within the range of dynamic shear modulus reported in the literature, potentially suggesting a loading rate effect. PMID:25243589

  9. Overview of free-piston Stirling technology at the NASA Lewis Research Center

    SciTech Connect

    Slaby, J.G.

    1985-01-01

    The activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ORNL)), and (2) a free-piston Stirling space power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

  10. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2011-01-15

    The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding

  11. Spray bottle apparatus with force multiply pistons

    DOEpatents

    Eschbach, Eugene A.

    1992-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  12. Spray bottle apparatus with pressure multiplying pistons

    DOEpatents

    Moss, Owen R.; Gordon, Norman R.; DeFord, Henry S.

    1990-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and a corresponding piston which is acted upon the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  13. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  14. Hydraulic motor for cars

    SciTech Connect

    Gagnon, D.C.

    1986-09-02

    A hydraulic motor for a car is described comprising, in combination, an automotive vehicle engine for travel self-propulsion, including a block, a plurality of cylinders in the block, a piston slidable in each cylinder, a crankshaft in the block, a piston rod connected between the crankshaft and each of the pistons, a power take-off gear on the crankshaft for the travel self-propulsion, and the engine including a hydraulic means for driving the pistons in the cylinders.

  15. Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies

    SciTech Connect

    Mistry, D.; Cooper, P.; Biswas, C.; Sloteman, D.; Onuschak, A.

    1983-01-01

    This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to the selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.

  16. Investigation and Parameter Optimization of a Hydraulic Ram Pump Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Sarma, Dhrupad; Das, Monotosh; Brahma, Bipul; Pandwar, Deepak; Rongphar, Sermirlong; Rahman, Mafidur

    2016-06-01

    The main objective of this research work is to investigate the effect of Waste Valve height and Pressure Chamber height on the output flow rate of a Hydraulic ram pump. Also the second objective of this work is to optimize them for a hydraulic ram pump delivering water up to a height of 3.81 m (12.5 feet ) from the ground with a drive head (inlet head) of 1.86 m (6.11 feet). Two one-factor-at-a-time experiments have been conducted to decide the levels of the selected input parameters. After deciding the input parameters, an experiment has been designed using Taguchi's L9 Orthogonal Array with three repetitions. Analysis of Variance (ANOVA) is carried out to verify the significance of effect of the factors on the output flow rate of the pump. Results show that the height of the Waste Valve and height of the Pressure Chamber have significant effect on the outlet flow of the pump. For a pump of drive pipe diameter (inlet pipe) 31.75 mm (1.25 in.) and delivery pipe diameter of 12.7 mm (0.5 in.) the optimum setting was found out to be at a height of 114.3 mm (4.5 in.) of the Waste Valve and 406.4 mm (16 in.) of the Pressure vessel providing a delivery flow rate of 93.14 l per hour. For the same pump estimated range of output flow rate is, 90.65-94.97 l/h.

  17. Analyzing pumped-well impeller logs to ascertain vertical hydraulic conductivity variations

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; West, J.; Odling, N. E.; Bottrell, S. H.

    2007-12-01

    Horizontal variations in the hydraulic conductivity of aquifers are generally well characterized through simple pump test analyses. However, vertical variations are often poorly understood and misrepresented in the regional models used by regulatory bodies and water companies. Understanding these is key for predicting flow paths and hence the behavior of contaminants in the aquifer that might present a risk to public drinking water supplies. Traditionally, packer tests were used to characterize these variations, but they can be time consuming and costly to perform. However, other techniques have been developed which can quantify these variations, including impeller logging. This study aims to present new, more rigorous methods of analyzing impeller flow log data. Impeller logs were taken under pumped conditions in open wells in a chalk aquifer located in N. England. Theoretically, hydraulic conductivity can be obtained from the gradient in flow rate with depth. However, data are typically noisy due to turbulent flow and hole diameter variations with depth; so directly converting the flow rate gradient to hydraulic conductivity leads to rapid non-physical variation and negative hydraulic conductivity values. Correcting for hole diameter variations using caliper logs proved difficult due to phenomena such as jetting, whereby when the water enters a widening, it does not instantly slow down. In order to obtain more realistic hydraulic conductivity profiles, we firstly tried a data smoothing algorithm, but this approach distorted the data and still gave an unacceptable noise level. Instead, a layered modeling approach has been developed. A hydraulic conductivity profile consisting of a discrete number of uniform layers is constructed, and layer thicknesses and hydraulic conductivities are varied until a satisfactory fit to the observed flow log is achieved. Results from field sites on the confined Chalk aquifer of East Yorkshire in the United Kingdom showed good

  18. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  19. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.

    2016-05-01

    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  20. Overview of NASA Lewis Research Center free-piston Stirling engine activities

    SciTech Connect

    Slaby, J.G.

    1984-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities is presented. These include (1) a generic free-piston Stirling technology project being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE)/Oak Ridge National Laboratory (ORNL); and (2) a free-piston Stirling space power technology feasibility demonstration project being conducted in support of the Defense Advanced Research Projects Agency (DARPA), DOE, NASA, SP-100 project. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. The newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency greater than or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.

  1. Variable stiffness actuator based on fluidic flexible matrix composites and piezoelectric-hydraulic pump

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Li, Suyi; Wang, K. W.

    2010-04-01

    Recently, a new biological-inspired fluidic flexible matrix composite (in short, F2MC) concept has been developed for linear/torsional actuation and structural stiffness tailoring. Although the actuation and the variable stiffness features of the F2MC have been successfully demonstrated individually, their combined functions and full potentials were not yet manifested. In addition, the current hydraulic pressurization systems are bulky and heavy, limiting the potential of the F2MC actuator. To address these issues, we synthesize a new variable stiffness actuator concept that can provide both effective actuation and tunable stiffness (dual-mode), incorporating the F2MC with a compact piezoelectric-hydraulic pump (in short, PHP). This dual-mode mechanism will significantly enhance the potential of the F2MC adaptive structures.

  2. Absolute hydraulic conductivity estimates from aquifer pumping and tracer tests in a stratified aquifer

    SciTech Connect

    Thorbjarnarson, K.W.; Huntley, D.; McCarty, J.J.

    1998-01-01

    Independent estimates of absolute hydraulic conductivity were obtained by a standard aquifer pumping test and a forced-gradient tracer test in a highly heterogeneous aquifer. An aquifer hydraulic test was conducted to evaluate the average hydraulic conductivity (K), and to establish steady-state flow for the tracer test. An average K of 48 m/day was interpreted from the draw-down data in a fully screened well. Type-curve matching and simulation with MODFLOW of the hydraulic response in partially screened wells indicates K of 10 to 15 m/day for the upper section and 71 to 73 m/day for the deeper section. Iodide and fluorescent dye tracers were injected at low rates in wells located approximately 8 m upgradient of the production well. Tracer breakthrough was monitored in the production well and at ten depth intervals within the fully screened monitoring well. Interpretation of tracer response in the production well reveals tracer transport is limited to a 3.9 m thick section of the 20 m thick aquifer, with a hydraulic conductivity of 248 m/day. However, the depth distribution of these permeable strata cannot be determined from the production well tracer response. When sampled at 1.5 m depth intervals in the monitoring well, breakthrough was observed in only three intervals along the entire 18.2 m screened well. K estimates from tracer travel time within discrete high-permeability strata range from 31 to 317 m/day. Inclusion of permeameter K estimates for the lower permeability aquifer sands result in a range in relative K of 0.01 to 1.0. This field site has the highest absolute K estimate for a discrete stratum and the widest range in relative hydraulic conductivity among research field sites with K estimates for discrete strata. Within such a highly stratified aquifer, the use of an average K from an aquifer pumping test to predict solute transport results in great underestimation of transport distances for a given time period.

  3. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump. PMID:19894088

  4. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    SciTech Connect

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.

  5. Numerical analysis on the cavitation and unsteady flow in a scroll hydraulic pump

    NASA Astrophysics Data System (ADS)

    Sun, S. H.; Guo, P. C.; Huang, Y.; Zuo, J. L.; Luo, X. Q.

    2016-05-01

    This paper presents numerical analysis of unsteady flow in a scroll hydraulic pump to discover its flow mechanism. The dynamic mesh model has to be used to simulate the flow field unsteadily. The unsteady flow patterns and pressure distributions in the suction, squeezing and discharge chamber are analysed. The suction process continues until the crank angle reaches the 320 degree. Then the pressure in the chamber rises instantaneously, and the fluid begins to flow out from the chamber. Because of the high pressure difference at the clearance, the jet flow and the vortex appear, and the large flow losses generates with them. In addition, the velocity and static pressure distribution in the two symmetry crescent suction chamber is different remarkably. One reason is that the location of suction port cannot be set symmetrically for the simplification of the pump structure. Another reason for that is the fluid is impelled by different part of the orbiting scroll. The asymmetric pressure distribution will result in the extra force on the scroll. The cavitation generates at the negative pressure region. Therefore, the unsteady simulation shows some important phenomena. The structure of the scroll pump need to be optimized to reduce the maximum pressure, weaken the jet flow, vortex and the uneven pressure distribution to ensure the pump working safely and efficiently.

  6. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  7. Passive characterization of hydrofracture properties using signals from the hydraulic pumps

    SciTech Connect

    Rector, J.W. III; Dong, Qichen

    1995-12-31

    In this study we utilize conical shear wave arrivals recorded in geophone observation wells to characterize a hydrofracture performed in the South Belridge Diatomite oil field. The conical wave arrivals are initially created by the hydraulic pumps on the surface, which send tube waves down the treatment borehole. Since the tube wave velocity in the Diatomite is greater than the shear formation velocity (the shear velocity in the diatomite is about 2,200 ft/s) cortical shear waves are radiated into the formation by the tube waves traveling down the treatment borehole. We use the decrease in amplitude of the tube wave as it passes through the fracture zone to image changes in hydraulic conductivity of the fracture. By combining this information with estimates of the fracture height we obtain estimates of fracture width changes over time using the model of Tang and Cheng (1993). We find an excellent qualitative agreement between tube wave attenuation and pump pressure over time. Fracture widths estimated from the Tang and Cheng model appear to be consistent with the volume of injected fluid and the known length of the hydrofracture. Provided a monitor well can be instrumented, this technique holds potential for obtaining a relatively inexpensive real-time characterization of hydrofracs.

  8. Hydraulic conductivity of sandstones in the Baltic Basin - a comparative study of pumping tests and grain size distribution

    NASA Astrophysics Data System (ADS)

    Perkone, E.; Bikše, J.; Jātnieks, J.; Klints, I.; Delina, A.; Saks, T.; Raga, B.; Retike, I.

    2012-04-01

    Aquifer fluid conductivity properties describe ability of sediments to transmit groundwater, and consequently govern the groundwater flow. Studies and knowledge of hydraulic conductivity (K), transmissivity and storativity for the particular aquifer is of great importance for hydrogeological problem solving process. This study presents the results of the comparative study between hydraulic conductivity, grain size distribution, sediments lithology of the lower Devonian Emsian stage, middle Devonian Eifelian and Givetian stage, upper Devonian Frasnian stage, and Cambrian clastic sediments in the central part of the Baltic Basin. The aim of this study was to find characteristic hydraulic conductivity values for each aquifer based on aquifer grain size distribution and lithology on the one hand and pumping test results one the other. For the calculation of the hydraulic conductivity one has to take into account not only grain size distribution but effective porosity, temperature and kinematic viscosity of the fluid as well, which are lacking in this study. Pumping test results provide a range of at least two orders of hydraulic conductivity values for each aquifer. To characterize the typical values for each aquifer and further subdivide each aquifer into regions of different hydraulic conductivities, pumping test results were correlated with grain size distribution. As a limiting factor for the hydraulic conductivity in the sandstones the fraction of the fine particles with the size less than 0.05 mm were chosen. The correlation of hydraulic conductivity and grain size distribution was carried out by comparing the <0.05 mm fraction and respective hydraulic conductivity values in the wells. The results suggest that grain size distribution in general does not correlate with conductivity obtained from the pumping tests. In general comparing hydraulic conductivity values obtained from pumping tests with calculated values from grain size distribution, calculated values in

  9. Numerical comparisons of the performance of a hydraulic coupling with different pump rotational speeds

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Feng, L. H.; Liu, S. H.; Chen, T. J.; Fan, H. G.

    2013-12-01

    A hydraulic coupling is a hydrodynamic device for transmitting rotating mechanical power. It is widely used in the machinery industry because of its advantages of high energy transmission efficiency, shock absorption and good adaptability, etc. In this paper, SIMPLEC algorithm and SST k-ω turbulence model were employed to simulate the steady state flows at operating conditions of two different rotational speeds (3000r/min and 7500 r/min) of the pump of a specified hydraulic coupling model. The results indicate the existence of similarity in the distributions of the flow fields between the two speeds, but the efficiency at the optimum condition is larger with higher rotational speed. It is concluded that the similarity principle of the efficiency of the hydraulic couplings does not apply in this case due to the relatively high rotating speed and small geometric specifications. It is also shown that the radially stratified pressure distribution on the torus section becomes more obvious with larger speed ratios, since the centrifugal movement plays more dominant roles over the circulating movement in these situations. When the speed ratio is small, with the completion of the circulating flow, the pressure distribution presents in a more circular pattern around the neutral zone of the torus section.

  10. Hydraulic characterisation of carbonate aquifers with pumping tests - comparison of analytical and numerical data evaluation methods

    NASA Astrophysics Data System (ADS)

    Baierl, M.; Kordilla, J.; Reimann, T.; Dörfliger, N.; Sauter, M.; Geyer, T.

    2012-04-01

    This work deals with the analysis of pumping tests in strongly heterogeneous media. Pumping tests were performed in the catchment area of the Lez spring (South of France), which is composed of carbonate rocks. Pumping rates for the different tests varied between 0.04 l/s - 0.7 l/s, i.e. the radius of influence of the cone of depression is small. The investigated boreholes are characterised by tight rocks, moderate fractures and karstified zones. The observed drawdown curves are clearly influenced by the rock characteristics. Single drawdown curves show S-shape character. Data evaluation was performed with the solution approaches of Theis (1935) and Gringarten-Ramey (1974), which are implemented in the employed software AQTESOLV (Pro 4.0). Parameters were varied in reliable data ranges with consideration of reported values in the literature. The Theis method analyses unsteady flow in homogeneous confined aquifers. The Gringarten-Ramey solution describes the drawdown in a well connected to a single horizontal fracture. The Theis curve fails to represent the characteristics for nearly all of the measured drawdown curves, while the Gringarten-Ramey method shows moderate graphical fits with a small residual sum of squares between fitted and observed drawdown curves. This highlights the importance of heterogeneities in the hydraulic parameter field at local scale. The determined hydraulic conductivities of the rock are in reasonable ranges varying between 1E-04 m/s and 1E-08 m/s. Wellbore skin effects need to be discussed further in detail. While the analytical solutions are only valid for specific geometrical and hydraulic configurations, numerical models can be applied to simulate pumping tests in complex heterogeneous media with different boundary conditions. For that reason, a two dimensional, axisymmetric numerical model, using COMSOL (Multiphysics 4.1), is set up. In a first step, the model is validated with the simulated curves from the analytical solutions under

  11. Hydromechanical Pumping Test for the Joint Estimation of Hydraulic and Poroelastic Parameters in a Strongly Heterogeneous Glaciofluvial Aquifer

    NASA Astrophysics Data System (ADS)

    Illman, W. A.; Berg, S. J.

    2009-12-01

    The coupling of hydraulic and geomechanical processes is critical in predicting the magnitude of earthquakes, understanding the effect of hydrofracturing on groundwater resources, designing nuclear waste repositories, predicting land subsidence due to pumping and its reversal through water injection. Therefore, the knowledge of hydraulic and geomechanical properties of soil and rock (collectively known as hydromechanical properties) are crucial for understanding and predicting the behavior of complex geological systems. In this study, we jointly estimated hydraulic and poroelastic parameters (i.e., shear modulus) from pumping test data that exhibited “reverse water level fluctuations” known as the Noordbergum effect observed in aquitards adjacent to pumped aquifers. This was performed by coupling BIOT2, a finite element two-dimensional axisymmetric groundwater model that considers the poroelastic effect with the parameter estimation code PEST. We first tested our inverse approach using a synthetic data set with known parameters. Results of the synthetic case showed that for simple layered systems, it was possible to accurately reproduce both the hydraulic properties and the shear modulus. We then applied the inverse approach to a set of pumping test data collected at the North Campus Research Site (NCRS) located at the University of Waterloo in Ontario, Canada. Based on the knowledge of stratigraphy determined from cores, the field site was simplified for modeling purposes as a 5-layer system. Parameter estimation was performed using two different approaches: 1) matching data individually from each observation port, and 2) matching data simultaneously from all observation ports. The estimated hydraulic parameters and shear modulus were compared to those obtained from other means at the site and to those from the literature. This comparison yielded good agreement. The results collectively suggest that the joint estimation of hydraulic and poroelastic parameters

  12. Double bowl piston

    DOEpatents

    Meffert, Darrel Henry; Urven, Jr., Roger Leroy; Brown, Cory Andrew; Runge, Mark Harold

    2007-03-06

    A piston for an internal combustion engine is disclosed. The piston has a piston crown with a face having an interior annular edge. The piston also has first piston bowl recessed within the face of the piston crown. The first piston bowl has a bottom surface and an outer wall. A line extending from the interior annular edge of the face and tangent with the outer wall forms an interior angle greater than 90 degrees with the face of the piston. The piston also has a second piston bowl that is centrally located and has an upper edge located below a face of the piston crown.

  13. Overview of NASA Lewis Research Center free-piston Stirling engine activities

    SciTech Connect

    Slaby, J.G.

    1984-08-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities is presented. These include (1) a generic free-piston Stirling technology project being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, costshared effort with the Department of Energy (DOE)/Oak Ridge National Laboratory (ORNL); and (2) a free-piston Stirling space power technology feasibility demonstration project being conducted in support of the Defense Advanced Research Projects Agency (DARPA), DOE, NASA, SP-100 project. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. The newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a freepiston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency greater than or equal to70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.

  14. System design and performance prediction of a free-piston Stirling engine/magnetic coupling/compressor assembly in a gas residential heat pump

    NASA Astrophysics Data System (ADS)

    Chen, G.; Beale, W. T.

    Based on the previous evaluation of a magnetic coupling and the described system-design targets, a gas fired free piston Stirling engine/magnetic coupling/compressor (FPSE/MC/C) assembly as a power module for a residential heat pump application was designed and analyzed. A porous combustor/FPSE/magnetic coupling/variable gas control spring/reciprocating compressor assembly was the design selected. Based on the system characteristics, design efforts are described on the following issues: (1) design of a combustor allowing low pressure of natural gas supply; (2) the means to achieve engine power-load matching; (3) the method to maintain the assembly as a resonant system tuning over a wide range of operating conditions; (4) the design of an engine/coupling structure to minimize the magnet mass without sacrificing its mechanical properties; and (5) compressor load capacity modulation. The system analysis and the system performance, which is analytically predicted and described, indicate all the system design goals can be met leading to a strong recommendation for further development.

  15. Effects of volute geometry and impeller orbit on the hydraulic performance of a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Flack, R. D.; Lanes, R. F.

    1983-01-01

    Overall performance data was taken for a Plexiglas water pump with a logarithmic spiral volute and rectangular cross sectioned flow channels. Parametric studies were made in which the center of the impeller was offset from the design center of the volute. The rig was also designed such that the impeller was allowed to synchronously orbit by a fixed amount about any center. The studies indicate that decreasing the tongue clearance decreases the head at low flowrates and increases the head at high flowrates. Also, decreasing the volute area in the first half of the volute and holding the tongue clearance the same, resulted in a decreased head for low flowrates but performance at high flowrates was not affected. Finally, the overall hydraulic performance was not affected by the impeller orbitting about the volute center.

  16. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  17. Collapsible pistons for light-gas guns

    NASA Technical Reports Server (NTRS)

    Teng, R. N.

    1973-01-01

    Moving and expandable parts of gun consist of pump-tube diaphragm, piston, launch-tube diaphragm, and saboted projectile. As a result of improved piston design, pressure cycle has been significantly improved by smoother buildup, increasing muzzle velocities up to 50%.

  18. Hydraulic efficiency of a hydrostatic transmission with a variable displacement pump and motor

    NASA Astrophysics Data System (ADS)

    Coombs, Daniel

    Pumps and motors are commonly connected hydraulically to create hydrostatic drives, also known as hydrostatic transmissions. A typical hydrostatic transmission consists of a variable displacement pump and a fixed displacement motor. Maximum efficiency is typically created for the system when the motor operates at maximum volumetric displacement. The objective of this research is to determine if a hydrostatic transmission with a variable displacement motor can be more efficient than one with a fixed displacement motor. A work cycle for a Caterpillar 320D excavator was created and the efficiency of the hydrostatic drive system, controlling the swing circuit, with a fixed displacement motor was compared to the efficiency with a variable displacement motor. Both multiplicative and additive uncertainty analysis were performed to determine uncertainty models that could be used to analyze the robustness of the system with feedback control applied. A PID and an H∞ controller were designed for a position control model, as well as velocity control. It was found that while it may seem obvious to achieve maximum efficiency at maximum displacement, there are some cases where maximum efficiency is achieved at a lower displacement. It was also found that for the given work cycle, a hydrostatic transmission with a variable displacement motor can be more efficient.

  19. Improvements to the measurement of electrically controlled hydraulic pumps' flow/pressure characteristics

    NASA Astrophysics Data System (ADS)

    Tao, Jian-Feng; Liu, Cheng-Liang; Gu, Jian-Jiang; Shen, Liang-Chong

    2011-12-01

    To increase the measurement accuracy, and also to automate the measurement operation, we modify the electrically controlled hydraulic pumps' (ECHPs') flow/pressure performance characteristic description and improve the test method in existent standards. According to ECHPs' working principle, we divide ECHPs' operation into two models: constant flow operating mode (CFOM) and constant pressure operating mode (CPOM). A direct drive servo-proportional control valve (DDV) is used to load the test pump. In the CFOM, we change the pressure load at a constant rate by driving the DDV's displacement with nonlinear feedback and a proportional-integral (PI) controller. In the CPOM, we take advantage of the DDV's inherent linearity between its input signal and output flow, and change the flow load at a constant rate by using open-loop spool displacement control. A mathematic model is built for the derivation of a stable condition and the analysis of steady-state pressure tracking error. The theoretical analysis shows that the feedback linearization and PI controller with negative proportional and integral gains are able to track a slope pressure load command with a desired rate. The test results also show that the mathematical model is valid and the proposed method can improve the measurement accuracy remarkably.

  20. Free-piston Stirling engine development. Annual report, December 1, 1983-December 31, 1984

    SciTech Connect

    Marusak, T.J.; Ackerman, R.A.

    1985-07-01

    The FPSE/HP is a heat-actuated heat pump that is being developed for residential applications. The system features an advanced free-piston Stirling engine coupled to a Rankine refrigerant compressor through a unique and highly efficient diaphragm-actuated hydraulic transmission. During the past year the program has concentrated on developing the performance of the individual components, and this report presents the progress made. The engine development is being funded by the Gas Research Institute, with the main technical goal of integrating the most advanced, reliable system components into a prototype FPSE heat pump module for laboratory testing and evaluation.

  1. Hydraulic Inflation and Buoyancy Pumping: A Model for Large, Fracture-Mediated Felsic Intrusions

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Ablay, G. J.; Grocott, J.; Petford, N.

    2005-05-01

    increases σH to σH1, then dykes re-orientate to sills, terminating ascent and initiating emplacement. Once stagnated, static ΔPB is typically sufficient to force sill injection at depths less than a critical value D, where ΔPB = σV. Sills growth is dominated by floor depression. Underburden subsidence suppresses roof uplift, influences the sill's plan geometry, expels source magma, processes crust through the melting zone, decreases σH in down-warped crust to favour conduit widening and magma ascent, and drains the source. Hydraulic inflation may end by melting cessation or exhaustion of excess magma volume EMV. Inelastic source swelling (φ) or crack growth (η) relax EMV. Exhaustion of non-relaxed EMV (EMV*) divides intrusion into two regimes; hydraulic inflation and buoyancy pumping. Loss of hydraulic drive (EMV* = 0) occurs either during dyke or sill growth, depending on the initial EMV (source volume and melting dilativity). Once rupture occurs, disequilibrium cracking initiates, and η increases abruptly as stored EMV* converts to crack volume. Equilibrium cracking begins once reduced EMV* balances new crack growth. If a sill is available to decouple shallow and deep crust, buoyancy pumping initiates, where underburden subsidence empties the magma source.

  2. Apparatus for controlling an engine in a hydraulically driven vehicle

    SciTech Connect

    Kitada, T.

    1987-01-27

    An apparatus is described for controlling the internal combustion engine of a hydraulically driven vehicle comprising: a transmission mechanism for transmitting the operation of a fuel control lever to a governor control lever and having a loose spring mechanism with a loose spring therein: a hydraulic decelerator cylinder connected to the transmission mechanism and having a spring and piston therein. The deceleration cylinder spring has a slightly larger spring force than the loose spring in the loose spring mechanism and applies a force absorbing action, in the absence of hydraulic force acting on the piston, to set the governor control lever in its deceleration position when the fuel control lever is moved to its full engine speed position and for moving the governor control lever to its full engine speed position when hydraulic force is applied to the piston; an electromagnetic valve for applying fluid pressure from a control pump driven by the engine to the piston in the decelerator cylinder and releasing the fluid pressure; and an electric circuit including switches operationally associated with levers for operating a hydraulic valve.

  3. Piston rod seal

    DOEpatents

    Lindskoug, Stefan

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  4. Overview of free-piston Stirling technology at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1985-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kw free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

  5. Overview of NASA Lewis Research Center free-piston Stirling engine activities

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1984-01-01

    A generic free-piston Stirling technology project is being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. A newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.

  6. Development of free-piston Stirling engine performance and optimization codes based on Martini simulation technique

    NASA Technical Reports Server (NTRS)

    Martini, William R.

    1989-01-01

    A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included. Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable input and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

  7. Demodulation for hydraulic pump fault signals based on local mean decomposition and improved adaptive multiscale morphology analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Wanlu; Zheng, Zhi; Zhu, Yong; Li, Yang

    2015-06-01

    Scales of IAMMA are adaptively determined by morphological features of signal, thus fault features of a hydraulic pump fault signal presented in multi-scales can be adaptively demodulated. In some coefficient range, IAMMA outperforms AMMA in demodulation ability based on the same SE, and it is less susceptible to noises than AMMA. The best performance of IAMMA with triangle SE is stronger than that of IAMMA with plat and semi-circle SE when they demodulate the same fault signal of hydraulic pump. Compared with traditional demodulation methods of HT and TKEO, IAMMA is adaptive and has stronger demodulation ability. An evaluation method based on kurtosis, power and standard deviation is proposed, by which some PFs which are rich in fault features can be selected as data source.

  8. Liquid-piston Stirling machines

    SciTech Connect

    West, C.D.

    1984-01-01

    Since the invention of the Fluidyne engine in 1969, several research groups have explored and described the potential of liquid-piston Stirling machine designs for a wide variety of applications, including water pumping from solar heat, simple and long-lived fossil-fuel-fired irrigation pumps, and heat-powered heat pumps. A substantial amount of theoretical work has been published, along with experimental results from a number of very different machines and design data for the construction of experimental engines. This paper describes the progress that has been made and the performance of existing systems, identifies outstanding research needs, and outlines some of the potential for further progress.

  9. Squeeze bottle apparatus with force multiplying pistons

    DOEpatents

    Moss, Owen R.; Gordon, Norman R.; DeFord, Henry S.; Eschbach, Eugene A.

    1994-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber, and a corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area, thereby generating greater hydraulic pressure for use in forming the spray.

  10. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump.

    PubMed

    Yang, Xiao-Chen; Zhang, Yan; Gui, Xing-Min; Hu, Sheng-Shou

    2011-10-01

    The advent of various technologies has allowed mechanical blood pumps to become more reliable and versatile in recent decades. In our study group, a novel structure of axial flow blood pump was developed for assisting the left ventricle. The design point of the left ventricular assist blood pump 25 (LAP-25) was chosen at 4 Lpm with 100 mm Hg according to our clinical practice. Computational fluid dynamics was used to design and analyze the performance of the LAP-25. In order to obtain a required hydraulic performance and a satisfactory hemolytic property in the LAP-25 of a smaller size, a novel structure was developed including an integrated shroud impeller, a streamlined impeller hub, and main impeller blades with splitter blades; furthermore, tandem cascades were introduced in designing the diffuser. The results of numerical simulation show the LAP-25 can generate flow rates of 3-5 Lpm at rotational speeds of 8500-10,500 rpm, producing pressure rises of 27.5-148.3 mm Hg with hydraulic efficiency points ranging from 13.4 to 27.5%. Moreover, the fluid field and the hemolytic property of the LAP-25 were estimated, and the mean hemolysis index of the pump was 0.0895% with Heuser's estimated model. In conclusion, the design of the LAP-25 shows an acceptable result. PMID:21517911

  11. 49 CFR 230.93 - Pistons and piston rods.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Pistons and piston rods. 230.93 Section 230.93... Tenders Driving Gear § 230.93 Pistons and piston rods. (a) Maintenance and testing. Pistons and piston rods shall be maintained in safe and suitable condition for service. Piston rods shall be inspected...

  12. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    NASA Astrophysics Data System (ADS)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  13. Composite hydraulic system

    SciTech Connect

    Williamson, W.A.

    1987-03-17

    A composite hydraulic system is described for a work vehicle having an implement hydraulic circuit and a steering hydraulic circuit comprising a first pump which supplies the implement hydraulic circuit primarily, a second pump which supplies the steering hydraulic circuit primarily, a third pump which is operable also as a motor and which transfers hydraulic fluid between the implement and the steering hydraulic circuits, an engine which operates the three pumps simultaneously, and servo system means whereby the third pump under at least one condition of operation operates as a motor to provide regeneration.

  14. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.

    PubMed

    Arvand, Arash; Hahn, Nicole; Hormes, Marcus; Akdis, Mustafa; Martin, Michael; Reul, Helmut

    2004-10-01

    A mixed-flow blood pump for long-term applications has been developed at the Helmholtz-Institute in Aachen, Germany. Central features of this implantable pump are a centrally integrated motor, a blood-immersed mechanical bearing, magnetic coupling of the impeller, and a shrouded impeller, which allows a relatively wide clearance. The aim of the study was a numerical analysis of hydraulic and hemolytic properties of different impeller design configurations. In vitro testing and numerical simulation techniques (computational fluid dynamics [CFD]) were applied to achieve a comprehensive overview. Pressure-flow charts were experimentally measured in a mock loop in order to validate the CFD data. In vitro hemolysis tests were performed at the main operating point of each impeller design. General flow patterns, pressure-flow charts, secondary flow rates, torque, and axial forces on the impeller were calculated by means of CFD. Furthermore, based on streak line techniques, shear stress (stress loading), exposure times, and volume percentage with critical stress loading have been determined. Comparison of CFD data with pressure head measurements showed excel-lent agreement. Also, impressive trend conformity was observed between in-vitro hemolysis results and numerical data. Comparison of design variations yielded clear trends and results. Design C revealed the best hydraulic and hemolytic properties and was chosen as the final design for the mixed-flow rotary blood pump. PMID:15384994

  15. HEP (hydraulic, electronic, pneumatic) pumping unit: performance characteristics, potential applications, and field trial results

    SciTech Connect

    Jesperson, P.J.; Laidlaw, R.N.; Scott, R.J.

    1981-01-01

    THe HEP pumping unit constitutes an alternative to the familiar beam pumping unit as a means of transferring energy from the prime mover to the sucker rod string of a pumping well. This paper addresses some basic concepts which are part of the HEP system design and describes some of the resultant unit performance characteristics. The potential for enhancement of pumping well operations utilizing the high degree of control over rod string motion attainable with the HEP system, is discussed together with the results of a number of field trials and some plans for further unit evaluation and development. A lift capacity comparison with conventional beam pumping units is also included. 8 refs.

  16. Pneumatic actuator with hydraulic control

    NASA Astrophysics Data System (ADS)

    Everett, Hobart R., Jr.

    1992-11-01

    The present invention provides a pneumatically powered actuator having hydraulic control for both locking and controlling the velocity of an output rod without any sponginess. The invention includes a double-acting pneumatic actuator having a bore, a piston slidably engaged within the bore, and a control rod connected to the piston. The double-acting pneumatic actuator is mounted to a frame. A first double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and a follower rod mounted to the piston is mounted to the frame such that the follower rod is fixedly connected to the control rod. The maximum translation of the piston within the bore of the first double-acting hydraulic actuator provides a volumetric displacement V1. The present invention also includes a second double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and an output rod mounted to the piston. The maximum translation of the piston within the bore of the second double-acting hydraulic actuator provides a volumetric displacement V2, where V2=V1. A pair of fluid ports in each of the first and second double-acting hydraulic cylinders are operably connected by fluid conduits, one of which includes a valve circuit which may be used to control the velocity of the output rod or to lock the output rod in a static position by regulating the flow of hydraulic fluid between the double-acting cylinders.

  17. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  18. Liquid piston Stirling engines

    SciTech Connect

    West, C.D.

    1983-01-01

    This book is a presentation on piston stirling engines. Topics covered include: liquid piston engines; basic design and power calculations; more advanced power calculations; design example; and past research work and some present research needs.

  19. Piston and connecting rod assembly

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor); Chatten, John K. (Inventor)

    2001-01-01

    A piston and connecting rod assembly includes a piston crown, a piston skirt, a connecting rod, and a bearing insert. The piston skirt is a component separate from the piston crown and is connected to the piston crown to provide a piston body. The bearing insert is a component separate from the piston crown and the piston skirt and is fixedly disposed within the piston body. A bearing surface of a connecting rod contacts the bearing insert to thereby movably associate the connecting rod and the piston body.

  20. HYDRAULIC SERVO CONTROL MECHANISM

    DOEpatents

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  1. Sensing The Position Of A Piston In A Cylinder

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A.; Tetsuka, George M.; Andrews, Thomas W.; Rice, Richard W.

    1989-01-01

    Position of piston in cylinder determined by series of ports and pressure-actuated electrical switches. Position-sensing scheme developed to help control movement of piston, which delivers fist-size objects to automatic mechanism at rate of less than 1 per second. Piston driven by either pressurized gas or hydraulic fluid. Position sensors have only fluid connections to cylinder. If cylinder or piston removed, not necessary to disturb electrical connections to switches. Scheme useful when electrical sensors create hazard or cause interference.

  2. Stirling cycle piston engine

    SciTech Connect

    Morgan, G. R.

    1985-02-12

    This device is an improvement over the conventional type of Stirling cycle engine where the expander piston is connected to a crankshaft and the displacer piston is connected to the same or another crankshaft for operation. The improvement is based on both the expansion and displacer pistons being an integral unit having regenerating means which eliminate the mechanisms that synchronize the regeneration mode.

  3. Hydraulic torque on the guide vane within the slight opening of pump turbine in turbine operating mode

    NASA Astrophysics Data System (ADS)

    Fan, H. G.; Yang, H. X.; Li, F. C.; Chen, N. X.

    2014-03-01

    In a pumped storage power station, the units produce vibration and noise at times when the guide vanes rotate into the slight opening region during the turbine operating mode. According to this phenomenon, the simulation of transient flow in the units during the motion of the guide vane is carried out to investigate the variation of flow state in the process of startup and shutdown in turbine mode. The changing rate of hydraulic torque on a single guide vane is introduced to quantitatively represent the varying acuteness of the flow in the guide vanes and the possibility of the noise induced by the instable flow. The correlation between the frequency of noise and water head is summarized. The research indicates that the repeating reversal of fluid after load rejection is the hydraulic phenomenon which is the cause of the distributor vibration and noises within the slight opening, which is in accordance with the data recorded during the operation of the station. The effect of guide vanes closing law on the flow state in guide vanes and hydraulic torque on a single guide vane is analyzed.

  4. Lightweight piston architecture

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor); Ransone, Philip O. (Inventor)

    1990-01-01

    The invention is an improvement in a lightweight carbon-carbon composite piston, the improvement uses near-net shape knitted or warp-interlock preforms to improve the structural qualities of the piston. In its preferred embodiment, a one piece, tubular, closed-ended, knitted preform (a sock) of carbon fibers embedded within the matrix of the piston structure forms the crown, side wall, skirt and inner surface of the piston, and wrap-interlock preforms strengthen the piston crown and wrist pin bosses.

  5. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    NASA Technical Reports Server (NTRS)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  6. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    NASA Astrophysics Data System (ADS)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  7. 20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS THAT CONTROL THE STEAM FOR EAST PISTON LOCATED BELOW THE PISTON CRANKSHAFT HUB AND ABOVE THE THRUST BEARING; CONTROL RODS FOR PISTON NO. 3 LOCATED AT RIGHT. - Deer Island Pumping Station, Boston, Suffolk County, MA

  8. Conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications. Final Report

    SciTech Connect

    Vatsky, A.; Chen, H.S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developed engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  9. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    NASA Technical Reports Server (NTRS)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-01-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  10. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    NASA Astrophysics Data System (ADS)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  11. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  12. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    SciTech Connect

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  13. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  14. Influence of bearing support structures on shaft vibration of large hydraulic pump/turbines

    SciTech Connect

    Pistner, C.A.; Greenplate, B.S.; Waddell, A.M.

    1995-12-31

    Start-up transient loads from pump/turbine impellers can cause excessive vibration problems in the shaft system. If the radial guide bearing supports are structurally soft or loose, or if the bearings are worn, the resulting radial shaft movement causes abnormal wear. The wear normally occurs at the impeller sealing surfaces, main shaft seals, motor/generator components, piping, brackets, foundation connections, etc. This paper explores the critical factors causing shaft system vibration problems at the Tennessee Valley Authority`s Raccoon Mountain Pumped Storage Plant, as well as the unique modifications which were implemented to strengthen and improve the units. The solution involved extensive three-dimensional finite element structural and thermal transient analyses of the original and re-designed turbine shoe bearing, bearing housings, and support structures. The conclusion compares the calculated and measured shaft system response to transient loads of the original and modified system.

  15. Frequency dependent hydraulic properties estimated from oscillatory pumping tests in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Rabinovich, Avinoam; Barrash, Warren; Cardiff, Michael; Hochstetler, David L.; Bakhos, Tania; Dagan, Gedeon; Kitanidis, Peter K.

    2015-12-01

    Oscillatory pumping tests were conducted at the Boise Hydrogeophysical Research Site. A periodic pressure signal is generated by pumping and injecting water into the aquifer consecutively and the pressure response is recorded at many points around the source. We present and analyze the data from the field test after applying Fourier analysis. We then match the data with a recently derived analytical solution for homogeneous formations to estimate the equivalent aquifer properties: conductivity K, specific storage Ss and specific yield Sy . The estimated values are shown to be in agreement with previous estimates conducted at this site. We observe variations in the estimated parameters with different oscillation periods of pumping. The trend of the parameters with changing period is discussed and compared to predictions by existing theory and laboratory experiments dealing with dynamic effective properties. It is shown that the results are qualitatively consistent with recent works on effective properties of formations of spatially variable properties in oscillatory flow. To grasp the impact of heterogeneity, a simple configuration is proposed, helping explain the observed increase in effective conductivity with decreasing period.

  16. Free piston stirling engines

    SciTech Connect

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  17. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  18. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M.

    2009-08-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm3 s-1 and 22.7 cm3 s-1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation.

  19. Free piston inertia compressor

    DOEpatents

    Richards, William D. C.; Bilodeau, Denis; Marusak, Thomas; Dutram, Jr., Leonard; Brady, Joseph

    1981-01-01

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to excape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  20. Free piston inertia compressor

    DOEpatents

    Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  1. The piston-flow interaction as a model for the deflagration-to-detonation transition

    SciTech Connect

    Brailovsky, Irina; Kagan, Leonid; Sivashinsky, Gregory

    2011-01-15

    The piston-flow interaction induced by a piston pushing hydraulically resisted gas through a long tube is discussed. It is shown that the hydraulic resistance causes a significant precompression and preheating of the gas adjacent to the piston's edge. In the case of an explosive premixture this development may lead to a localized autoignition triggering detonation. It is suggested that the problem may serve as a guide for understanding the deflagration-to-detonation transition in tubes, with the piston modeling the impact of the advancing flame. (author)

  2. Variable delivery, fixed displacement pump

    SciTech Connect

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  3. Hydraulic performance improvement of the bidirectional pit pump installation based on CFD

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Zhou, D. Q.

    2013-12-01

    At present, the efficiency of bidirectional pit pump installation with lift under 2m is still low because of lack of research on it in the past. In the paper, the CFD numerical method and experimental test were applied to study flow characteristic of bidirectional pit pump installation under positive and reverse condition. Through changing airfoil type and position of blade and stay vane, the comprehensive performance of improved model were obtained by calculating many different models. The results showed that when improved model is obtained with type A runner with 4 blades that is 0.7D away from pit exit and unsymmetrical guide vane 0.25dh which away from the impeller outlet, and the flow pattern of the improved solution is steady with high efficiency. Compared with the original scheme, the efficiency of positive and reverse design condition reach to 67.23% and 58.32% respectively, which is increased 6% more than original model on the design condition and 5% on the optimum operating condition, and it achieved the purpose of improvement. According to the runner blade angle of the optimization solution, model synthetic characteristic curve was drawn and internal flow field characteristics was analyzed under optimal positive and reverse conditions. The numerical calculation shows that owing to the lack of stay vane to recycle the energy in outlet runner chamber, the water flow regime is not steady enough in the outlet passage, and that is the main reason for lower efficiency at reverse condition than that at positive condition.

  4. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  5. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  6. Piston Ring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kuhn, M.

    1943-01-01

    The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.

  7. Characterization of spatial variability of hydraulic parameters in fractured rocks: Interpretation of pumping tests at the Altona Flat Rock Experimental Site

    NASA Astrophysics Data System (ADS)

    Castagna, M.; Becker, M. W.; Bellin, A.

    2007-12-01

    We present the results of the interpretation of multiple hydraulic tests conducted at the Altona Flat Rock experimental site, located near Plattsburgh (NY). The purpose of these tests was to establish the nature of flow connectivity in a single sub-horizontal bedrock fracture. The geology of the area is dominated by the Potsdam sandstone which is characterized by sub-horizontal bedding-plane fractures that extend over the scale of kilometres. Seven open boreholes with a diameter of 15 cm have been drilled to a depth of 12.2 m in the formation at reciprocal distances ranging from 7 to 15.8 m. Packer injection tests show the presence of a saturated horizontal fracture at 7.3 meters of depth, which intersects all the wells. The single fracture is characterized by a highly variable aperture which leads to a wide range of hydraulic transmissivity (T) and storativity (S) estimated from slug tests. In order to characterize the hydraulic properties of the fractured rock, a series of pumping tests were performed. The pumping tests were executed at constant rate of 7;e-5; m3/s for about 30 minutes in each well while the drawdown curves were collected in the remaining wells. Cooper-Jacob analyses of the pump tests indicate a large and variable apparent storativity. In highly heterogeneous media, variability in apparent storativity is often interpreted as a test artifact caused by anisotropic and heterogeneous transmissivity. Our objectives in the inversion of the hydraulic data were to (1) attempt to separate true and apparent storativity in the bedrock fracture and (2) investigate improved methods of pump test design that can decouple the influence of storativity and transmissivity on drawdown. The former was investigated primarily using the field data and the later using hypothetical simulations based upon the field data. The inversion was performed within a Bayesian framework by using the pilot point concept and by assuming unknown the stochastic parameters of the spatial

  8. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  9. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. PMID:26303957

  10. In-line hydraulic dashpot

    NASA Astrophysics Data System (ADS)

    Moody, Paul E.

    1992-10-01

    An in-line hydraulic dashpot is disclosed that effectively decelerates the piston of a power cylinder by controllably choking off the oil which is providing pressure to the piston. The in-line hydraulic dashpot of the invention includes a valve spool member movable between an open and closed position along a fluid flow path that supplies oil to the power cylinder. An actuator rod is cooperative with the valve spool member and the piston shaft of the power cylinder to move tile valve spool member between its open and closed positions. The in-line hydraulic dashpot eliminates the clashing of mechanical parts and therewith eliminates the noise that would otherwise be generated thereby. The in-line hydraulic dashpot of the present invention makes possible the adaptation of a fixed stroke power cylinder to applications that call for a variable stroke length.

  11. Free-piston engine

    DOEpatents

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  12. RE-1000 free-piston Stirling engine update

    NASA Technical Reports Server (NTRS)

    Schreiber, J. G.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  13. RE-1000 free-piston Stirling engine update

    SciTech Connect

    Schreiber, J.G.

    1985-01-01

    A free-piston Stirling engine has been under test at the NASA Lewis Research Center test facilities. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free-piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics have been completed at Lewis. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. This report presents some preliminary test results of the tests performed at the NASA Lewis facility along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  14. RE-1000 free-piston Stirling engine update

    NASA Astrophysics Data System (ADS)

    Schreiber, J. G.

    1985-05-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  15. The Estimation of Hydraulic Conductivity Using Pumping Test Data and Vertical Electrical Sounding Measurements - A Case Study of Taiwan's Choshuihsi Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Tsai, J.; Chang, P.; Chen, Y.; Chang, L.; Chiang, C.; Wang, Y.; Huang, C. C.; Chen, J.; Lin, H.

    2013-12-01

    Hydraulic conductivity (K) is an important aquifer parameter and is usually obtained using conventional pumping test. However, only a limited amount of data can be collected, because pumping tests are time consuming and expensive. In recent years, some studies estimated K by using pumping test data and surface electrical resistivity surveys. These studies cost less because less pumping tests are required. Linear regression is then applied to model the relationship between K and the formation factors. The problem is that most of these studies do not consider the effects caused by layers of clay. In fact, clay layers are commonly distributed in middle and distal fan. Therefore, this study divides the Zhuoshui River Alluvial Fan into several zones based on the sediment distribution. A linear regression equation is derived from the pumping test data and formation factors for each zone. This study applies these equations to develop the distribution of K in the shallow aquifer of the major fan. The result shows that the shallow aquifer of Zhuoshui River's major fan can be divided into two zones: top and non-top fan. The regression results show a good correlation between K and the formation factors in each zone. These regression equations are then used to estimate K in the study area. The estimation error is between 11m/day and 58m/day, which is in an acceptable range. The results of this study can be further applied to other analyses such as groundwater modeling or fluctuation methods.

  16. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  17. Dry piston coal feeder

    DOEpatents

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  18. Simulation of dynamics of hydraulic system with proportional control valve

    NASA Astrophysics Data System (ADS)

    Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2016-03-01

    Dynamics of a hydraulic system is influenced by several parameters, in this case mainly by proportional control valve, oil bulk modulus, oil viscosity, mass load etc. This paper will be focused on experimental measurement and mathematical simulation of dynamics of a hydraulic system with proportional control valve, linear hydraulic cylinder and mass load. The measurement is performed on experimental equipment that enables realization of dynamic processes of the hydraulic system. Linear hydraulic cylinder with mass load is equipped with position sensor of piston. The movement control of piston rod is ensured by the proportional control valve. The equipment enables to test an influence of parameter settings of regulator of the proportional control valve on position and pressure system responses. The piston position is recorded by magnetostrictive sensor that is located in drilled piston rod side of the linear hydraulic cylinder. Pressures are measured by piezoresistive sensors on the piston side and the piston rod side of the hydraulic cylinder. The measurement is performed during movement of the piston rod with mass load to the required position. There is realized and verified a mathematical model using Matlab SimHydraulics software for this hydraulic system.

  19. Assessment of hydraulic performance and biocompatibility of a MagLev centrifugal pump system designed for pediatric cardiac or cardiopulmonary support.

    PubMed

    Dasse, Kurt A; Gellman, Barry; Kameneva, Marina V; Woolley, Joshua R; Johnson, Carl A; Gempp, Thomas; Marks, John D; Kent, Stella; Koert, Andrew; Richardson, J Scott; Franklin, Steve; Snyder, Trevor A; Wearden, Peter; Wagner, William R; Gilbert, Richard J; Borovetz, Harvey S

    2007-01-01

    The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the PediVAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to (1/4) in. For the expected range of pediatric flow (0.3-3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future. PMID:18043164

  20. Assessment of Hydraulic Performance and Biocompatibility of a MagLev Centrifugal Pump System Designed for Pediatric Cardiac or Cardiopulmonary Support

    PubMed Central

    Dasse, Kurt A.; Gellman, Barry; Kameneva, Marina V.; Woolley, Joshua R.; Johnson, Carl A.; Gempp, Thomas; Marks, John D.; Kent, Stella; Koert, Andrew; Richardson, J. Scott; Franklin, Steve; Snyder, Trevor A.; Wearden, Peter; Wagner, William R.; Gilbert, Richard J.; Borovetz, Harvey S.

    2011-01-01

    The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the Pedi-VAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to ¼ in. For the expected range of pediatric flow (0.3–3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future. PMID:18043164

  1. Hydraulically Driven Grips For Hot Tensile Specimens

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Johnson, George W.

    1994-01-01

    Pair of grips for tensile and compressive test specimens operate at temperatures up to 1,500 degrees F. Grips include wedges holding specimen inside furnace, where heated to uniform temperature. Hydraulic pistons drive wedges, causing them to exert clamping force. Hydraulic pistons and hydraulic fluid remain outside furnace, at room temperature. Cooling water flows through parts of grips to reduce heat transferred to external components. Advantages over older devices for gripping specimens in high-temperature tests; no need to drill holes in specimens, maintains constant gripping force on specimens, and heated to same temperature as that of specimen without risk of heating hydraulic fluid and acuator components.

  2. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  3. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  4. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  5. Negative feedback system reduces pump oscillations

    NASA Technical Reports Server (NTRS)

    Rosenmann, W.

    1967-01-01

    External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.

  6. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... force to propel the fluid through a narrow tube which determines the flow rate. The device may include... fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  7. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... force to propel the fluid through a narrow tube which determines the flow rate. The device may include... fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  8. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... force to propel the fluid through a narrow tube which determines the flow rate. The device may include... fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  9. Using the motor to monitor pump conditions

    SciTech Connect

    Casada, D.

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  10. Electric-hydraulic car

    SciTech Connect

    Clark, R.W.; Greene, H.

    1993-07-27

    A propulsion system is described for a vehicle having a chassis and at least one drive wheel, the propulsion system including in combination: a constant speed power source comprising an alternating current electric motor operated at a constant speed corresponding to its optimum performance; a source of energy comprising a storage battery and an inverter connected to the electric motor for operating the electric motor of the constant speed power source; a hydraulic fluid system including a main hydraulic pump coupled with the electric motor of the constant speed power source and driven thereby; at least one hydraulic drive motor coupled with the hydraulic pump for receiving fluid flow therefrom; and means for varying the fluid flow through the main hydraulic pump to vary the speed of operation of the hydraulic drive motor.

  11. 49 CFR 229.55 - Piston travel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Piston travel. 229.55 Section 229.55... Piston travel. (a) Brake cylinder piston travel shall be sufficient to provide brake shoe clearance when... piston travel may not exceed 11/2 inches less than the total possible piston travel. The total...

  12. High pressure slurry pump. Sand slurry test loop design and results. Wear parts lifetime analysis

    SciTech Connect

    Fongaro, S.; Severini, P.; Vinciguerra, G.

    2000-07-01

    This paper shows the experimental phase, following previous work presented at the Sixth International Conference on ``Multiphase Flow in Industrial Plants'', Milan, September 98. A Sand Water Slurry Test Loop has been tested using different sand percentages for a total power of 680 HP with a flow-rate of 35,000 [gpm] and pressure of 2300 [psig]. Its design considered, carefully, the particles build-up effect respecting flow velocity and dead space along the loop and into the hydraulics. The test pump is a TRIPLEX SINGLE ACTING that is one third of the COAL SLURRY SEPTUPLEX PUMP designed for a CHINA PROJECT. Wear rate on the main parts of an high pressure slurry pump have been analyzed running at 145 rpm (piston mean speed of 3.3 [ft/s]) with a net flow of 33,290 [gpm] and pressures between 1216 and 1575 [psig]. Tests gave indications of a damaging process on valves, piston seals and the relative weight on the overall damages. Design changes of piston-seal and its material have been done, results being a longer parts lifetime. The authors compared the results with literature on coal slurry and other sand tests. The pump speed, i.e., valve cycle, isn't the main wear factor, while the fluid speed under the valve is. Their goals are to improve the wear parts lifetime and define functions to relate the wear to operating parameters, design choice, and materials used.

  13. Free-piston cutting machine

    DOEpatents

    Ciccarelli, Gaby; Subudhi, Manomohan; Hall, Robert E.

    2000-01-01

    A cutting machine includes a gun barrel for receiving a projectile. A compression tube is disposed in flow communication with the barrel and includes a piston therein. A reservoir is disposed in flow communication with the tube and receives a first gas under pressure. A second gas fills the compression tube on a front face of the piston. And, the pressurized first gas is discharged into the tube on a back face of the piston to accelerate the piston through the tube for compressing the second gas, and in turn launching the projectile through the barrel to impact a workpiece.

  14. Optimized hydrogen piston engines

    SciTech Connect

    Smith, J.R.

    1994-05-10

    Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

  15. Extreme pressure fluid sample transfer pump

    DOEpatents

    Halverson, Justin E.; Bowman, Wilfred W.

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  16. 49 CFR 230.93 - Pistons and piston rods.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Pistons and piston rods. 230.93 Section 230.93 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives...

  17. New piston telemetry applied to spherical joint piston development

    SciTech Connect

    Wiczynski, P.D.; Varo, R.G.; Archuleta, S.A.; Galarno, M.J.

    1996-09-01

    A new telemetry system has been developed for temperature or strain measurements on a spherical joint piston. The system includes a piston mounted signal multiplexer and transmitter. A patented, piston mounted power generator operates in conjunction with a modified cylinder liner. The telemetry system is robust, having high inertia load capability and high environmental temperature operating capability. The telemetry system was installed and operated on an engine motoring test rig. Temperature signals were transmitted at engine speeds from 400 rpm to 2,100 rpm. Over 100 hours of high engine speed testing with oil sump temperatures up to 122 C were completed.

  18. Manual or hydraulic gearshifting apparatus

    SciTech Connect

    Ishida, H.; Kojima, Y.

    1986-04-08

    A vehicle transmission control apparatus is described which consists of: a plurality of shift members for operating a vehicle transmission; a lever adapted for linear movement into a plurality of positions, one each of the lever being operatively coupled to a different one of the shift members in each of the positions; the lever being further adapted for pivotal movement in response to which the one end of the lever actuates the operatively coupled shift member; a select actuator means comprising a select hydraulic cylinder and a select piston retained thereby, the select piston being coupled to the lever and hydraulically controlled to produce the linear movement thereof; a shift actuator means comprising a shift hydraulic cylinder and a shift piston retained thereby, the shift piston being coupled to the lever and hydraulically controlled to produce the pivotal movement thereof; a casing means retaining the lever, the select actuator means, and the shift actuator means; and a control member comprising a portion within the casing means and coupled to the lever and a manually accessible portion always disposed outside the casing means and having means adapted for manual actuation to produce either the linear or the pivotal movement of the lever.

  19. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    NASA Astrophysics Data System (ADS)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  20. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    1999-01-01

    An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  1. Stirling cycle heat pump for heating and/or cooling systems

    SciTech Connect

    Meijer, R.J.; Khalili, K.; Meijer, E.; Godett, T.M.

    1991-03-05

    This patent describes a duplex Stirling cycle machine acting as a heat pump. It comprises: a Stirling engine having pistons axially displaceable within parallel cylinders, the engine further having a swashplate rotatable about an axis of, rotation parallel to the cylinders and defining a plane inclined from the axis of rotation. The pistons connected to the swashplate via crossheads whereby axial displacement of the pistons is converted to rotation of the swashplate, and a Stirling cycle heat pump having a compression heat exchanger, an expansion heat exchanger and a regenerator with pistons equal in number to the engine pistons and axially displaceable within cylinders which are oriented co-axially with the engine cylinders. The crossheads further connected to the heat pump pistons whereby the heat pump pistons move simultaneously with the engine pistons over an equal stroke distance.

  2. 128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON RIGHT; ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  4. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2010-12-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  5. Researches on the Piston Ring

    NASA Technical Reports Server (NTRS)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  6. Transposed compression piston and cylinder

    SciTech Connect

    Ross, M.A.

    1992-04-14

    This patent describes an improved V-type two piston Stirling engine wherein the improvement is a transposed compression piston slidably engaged in a mating cylinder. It comprises: a cylindrical body which is pivotally connected to a connecting rod at a pivot axis which is relatively nearer the outer end of the cylindrical body and has a seal relatively nearer the inner end of the cylindrical body.

  7. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  8. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Macgregor, C.; Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  9. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  10. Internal combustion engine with a central crankshaft and integral tandem annular pistons

    NASA Astrophysics Data System (ADS)

    Esparbes, Bernard

    1993-08-01

    An internal combustion engine with tandem annular pistons and a central crankshaft is disclosed, based on that found in British patent 11027 of 11 May 1914. The piston block formed by the two pistons presents, at each axial extremity, a double axial skirt fitted with an outer crown forming the head of the piston as such, and an inner crown forming an inlet pump with a holding chamber radially located at the inside of the corresponding annular cylinder, in which the piston head delimits a combustion chamber. Radial fingers, crossing axial openings of the crankcase and radial holes of the piston block, have their inner radial ends engaged within wavy sinusoidal peripheral slots arranged in a bulging central portion of the central crankshaft set into rotation by alternating axial movements of the piston block. The admission of fuel or combustion sustaining gas is ensured axially by the extremities, valves, and openings in the end plates closing the holding chambers in which the inner crowns slide, fitted with valves to act as an inlet pump. The invention is particularly applicable to aircraft engines in view of the ease in which the shaft rotation can be adapted to such a use.

  11. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  12. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    Clifton B. Higdon III

    2011-01-07

    energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall

  13. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  14. Piston reciprocating compressed air engine

    SciTech Connect

    Cestero, L.G.

    1987-03-24

    A compressed air engine is described comprising: (a). a reservoir of compressed air, (b). two power cylinders each containing a reciprocating piston connected to a crankshaft and flywheel, (c). a transfer cylinder which communicates with each power cylinder and the reservoir, and contains a reciprocating piston connected to the crankshaft, (d). valve means controlled by rotation of the crankshaft for supplying compressed air from the reservoir to each power cylinder and for exhausting compressed air from each power cylinder to the transfer cylinder, (e). valve means controlled by rotation of the crankshaft for supplying from the transfer cylinder to the reservoir compressed air supplied to the transfer cylinder on the exhaust strokes of the pistons of the power cylinders, and (f). an externally powered fan for assisting the exhaust of compressed air from each power cylinder to the transfer cylinder and from there to the compressed air reservoir.

  15. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  16. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  17. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  18. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  19. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  20. Subsurface well safety valve with hydraulic strainer

    SciTech Connect

    Morris, A.J.; Knieriemen, J.L.

    1988-12-20

    This patent describes in combination with a subsurface safety valve for controlling fluid flow through a well conduit and including a housing having a bore and a valve closure member moving between open and closed positions for controlling fluid flow through the bore, a flow tube telescopically moving in the housing for controlling the movement of the valve closure member, biasing means for moving the tubular member in a direction to close the valve and a hydraulic piston and cylinder assembly for actuating the valve closure member, of a hydraulic strainer comprising, means defining a closed chamber positioned above the hydraulic piston and cylinder assembly, means defining an inlet fluid passageway having first and second ends, the first end adapted to receive hydraulic control fluid through a control line from the well surface, the second end extending into the chamber, means defining an outlet fluid passageway having first and second ends. The first end of the outlet fluid passageway extending into the chamber, and the second end of the outlet fluid passageway connected in fluid communication to the top of the hydraulic piston and cylinder assembly, the second end of the inlet fluid passageway being positioned away from the first end of the outlet fluid passageway for allowing debris to accumulate in the chamber and protect the piston and cylinder assembly.

  1. Hydraulic catworks system

    SciTech Connect

    Walker, J.L.

    1981-03-03

    A hydraulic catworks system is described for use on a well drilling rig for making up and breaking out a drill string which includes a hydraulic makeup piston and cylinder assembly for actuating a makeup line connected to the makeup tongs, and a breakout piston and cylinder assembly connected to a breakout line for actuating the breakout tongs. A makeup hydraulic control valve controls hydraulic fluid to first and second lines connected to the makeup assembly with the first line connected for extending the makeup line and the second line connected for retracting the makeup line. A breakout hydraulic control valve controls fluid to third and fourth lines with the third line connected for extending the breakout line and the fourth line connected for retracting the breakout line. Manual air control means are provided for selectively actuating the makeup and breakout control valves. A variable pressure control is connected to the second line for controlling the makeup torque. Preferably, the makeup and breakout assemblies are vertically connected to the legs of the drilling rig and rollers are positioned horizontally with the makeup and breakout tongs and connected to the breakout and makeup lines. Preferably, a sheave is connected to the makeup assembly and the makeup line passes over the sheave with its free end fixedly secured. A re-generative system is provided on the makeup assembly for increasing the speed of the makeup line extension. Preferably the makeup and breakout cylinders are of the same cross-sectional area with the stroke of the breakout cylinder being less than the stroke of the makeup cylinder.

  2. Sibling cycle piston and valving method

    NASA Technical Reports Server (NTRS)

    Mitchell, Matthew P. (Inventor); Bauwens, Luc (Inventor)

    1990-01-01

    A double-acting, rotating piston reciprocating in a cylinder with the motion of the piston providing the valving action of the Sibling Cycle through the medium of passages between the piston and cylinder wall. The rotating piston contains regenerators ported to the walls of the piston. The piston fits closely in the cylinder at each end of the cylinder except in areas where the wall of the cylinder is relieved to provide passages between the cylinder wall and the piston leading to the expansion and compression spaces, respectively. The piston reciprocates as it rotates. The cylinder and piston together comprise an integral valve that seqentially opens and closes the ports at the ends of the regenerators alternately allowing them to communicate with the expansion space and compression space and blocking that communication. The relieved passages in the cylinder and the ports in the piston are so arranged that each regenerator is sequentially (1) charged with compressed working gas from the compression space; (2) isolated from both expansion and compression spaces; (3) discharged of working gas into the expansion space; and (4) simultaneously charged with working gas from the expansion space while being discharged of working gas into the compression space, in the manner of the Sibling Cycle. In an alterate embodiment, heat exchangers are external to the cylinder and ports in the cylinder wall are alternately closed by the wall of the piston and opened to the expansion and compression spaces through relieved passages in the wall of the reciprocating, rotating piston.

  3. Two piston V-type Stirling engine

    DOEpatents

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  4. Linear Motor Free Piston Compressor

    NASA Astrophysics Data System (ADS)

    Bloomfield, David P.

    1995-02-01

    A Linear Motor Free Piston Compressor (LMFPC), a free piston pressure recovery system for fuel cell powerplants was developed. The LMFPC consists of a reciprocating compressor and a reciprocating expander which are separated by a piston. In the past energy efficient turbochargers have been used for pressure large (over 50 kW) fuel cell powerplants by recovering pressure energy from the powerplant exhaust. A free piston compressor allows pressurizing 3 - 5 kW sized fuel cell powerplants. The motivation for pressurizing PEM fuel cell powerplants is to improve fuel cell performance. Pressurization of direct methanol fuel cells will be required if PEM membranes are to be used Direct methanol oxidation anode catalysts require high temperatures to operate at reasonable power densities. The elevated temperatures above 80 C will cause high water loss from conventional PEM membranes unless pressurization is employed. Because pressurization is an energy intensive process, recovery of the pressure energy is required to permit high efficiency in fuel cell powerplants. A complete LMFPC which can pressurize a 3 kW fuel cell stack was built. This unit is one of several that were constructed during the course of the program.

  5. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  6. Buoyancy engine utilizing pistons and crankshaft

    SciTech Connect

    De Shon, D.A.

    1987-08-04

    This patent describes a buoyancy engine utilizing pistons and crankshaft, comprising: cylinders, disposed in a vessel contained liquid; the vessel sitting on a base and having an air exhaust orifice at its top; hydrodynamically designed pistons, disposed within the cylinders, designed with air holding spaces to hold injected air, and attached by connecting rods to a hydrodynamically designed crankshaft; sealed connecting rod bearings which connect the piston rods to the crankshaft; wrist pins which connected the piston rods to the pistons, the crankshaft supported on sealed bearing in the vessel walls, and which is rotated by the upward motion of the relatively buoyant pistons which are attached; the crankshaft designed so that its lobes to which the pistons are attached are at angles which insure that power developed by pistons in their lift cycle is successively converted into continuing rotational force on the crankshaft; computer-controlled air injectors, programmed to crankshaft rotational speed, positioned to inject air, compressed by a compressor, into the pistons at the bottom of each piston's stroke, the pistons having pistons rings to retain the air in the piston during its upward power stroke; and vents incorporated into their design for the release of air at the top of their power stroke. An exhaust port in each cylinder conducts air released from pistons to be released into the ambient liquid; a flywheel attached to the crankshaft, stores a part of the mechanical energy produced, provides continuity to the series of energy developing cycles of the pistons; a generator attached to the crankshaft, produces electric power from the rotation of the crankshaft.

  7. A Method of Measuring Piston Temperatures

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Mangniello, Eugene J

    1940-01-01

    A method that makes use of thermocouples has been developed to measure the temperature of engine pistons operating at high speeds. The thermocouples installed on the moving piston are connected with a potentiometer outside the engine by means of pneumatically operated plungers, which make contact with the piston thermocouples for about 10 crankshaft degrees at the bottom of the piston stroke. The equipment is operated satisfactory at engine speeds of 2,400 r.p.m. and shows promise of successful operation at higher engine speeds. Measurements of piston temperatures in a liquid-cooled compression-ignition engine and in an air-cooled spark-ignition are presented.

  8. Pump assembly comprising gas spring means

    SciTech Connect

    Akkerman, N.H.

    1981-10-27

    A pressure actuated, rodless pump is described for pumping fluid, preferably, from a well through a tubing string and comprises a chamber and a check valved movable piston which define a pump cavity. The chamber has a check valved outlet to the tubing string on the cavity side of the piston and a fluid inlet on the other side of the piston. The piston is connected to a spring assembly by a pull rod. The spring assembly includes a cylinder having an elastomeric bladder separating a gas filled chamber from an upper fluid chamber which is separated from a lower fluid chamber by a wall having a fluid passageway formed therein. The lower fluid chamber encloses a stationary piston and both the lower and upper fluid chambers are in fluid communication with the tubing string through a charge valve. Cyclic pressure applied to the fluid in the tubing string forces the cylinder and movable piston downward to draw fluid into the pump cavity and to force fluid from the lower fluid chamber into the upper fluid chamber to compress the gas. The charged valve functions during the pressure cycles to replace fluid lost from the lower fluid chamber past the stationary piston. 28 claims.

  9. Evaluation of Army engine oils in hydraulic/power-transmission-system components. Final report, August 1984-November 1985

    SciTech Connect

    Marbach, H.W.; Lestz, S.J.

    1985-11-01

    The objective of the MACI Hydraulic System and Components Program is to perform technical evaluation and assessment of commerically available qualified and fielded Army engine oils and to determine if such oils can be used as hydraulic fluids in Army commercial construction equipment and material-handling equipment. Five Army specification engine lubricants--four MIL-L-2104D (one grade 10W, one grade 30, two grade 15W-40) and one MIL-L-46167, grade 0W-20--were evaluated using four critical component performance tests used by manufacturers. Data compiled from this and previous work have shown that the limiting factors of the Army engine oils used as hydraulic and multipurpose power transmission fluids appear to be (1) wet-brake chatter noise, (2) hydraulic-pump wear problems with some piston pumps using MIL-L-46167 Arctic engine oils at temperatures hotter-than-expected Arctic conditions, and possibly (3) copper corrosion. The prime area of concern is the wet-brake chatter noise.

  10. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  11. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment

    SciTech Connect

    Spiliotopoulos, Alexandros A.

    2013-03-20

    This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

  12. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  13. 110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Thermally actuated piston micromirror arrays

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Bright, Victor M.

    1997-07-01

    This paper reports design and characterization testing of thermally actuated piston micromirror arrays. The micromirrors were fabricated in the DARPA-sponsored MUMPs polysilicon surface micromachining process. The power averaging characteristic of thermal actuation is exploited in a novel line addressing scheme which reduces wiring for an n2 array to 2n wires. Mirror deflections were measured with a microscope laser interferometer system equipped with a vacuum chamber. Data presented includes device uniformity, frequency response, and deflection versus drive power for varied ambient pressure. Initial test results confirm that thermally actuated piston micromirrors offer several advantages over more common electrostatic designs. Thermally actuated micromirrors offer greater deflections at drive voltages compatible with CMOS circuitry. Measured thermal piston micromirror deflection versus drive voltage is nonlinear, but does not exhibit the 'snap through instability' characteristic of electrostatic devices. Operation of thermally actuated devices in rarefied ambient significantly decreases power dissipation. For a given deflection range, the power reduction facilitated by vacuum operation makes large arrays feasible. Frequency response of thermally actuated devices is limited by the ability of the device to dissipate heat, but operation at 1 kHz rates is feasible.

  15. Piston and spring powered engine

    SciTech Connect

    Samodovitz, A. J.

    1985-12-10

    The invention is an improved piston engine, either two stroke or four stroke. In one, two stroke, one cylinder embodiment, the improvement comprises two springs connecting between the piston and the base of the piston. These springs are relatively relaxed when the crank is at top dead center. Then during the power/intake stroke, some of the fuel's energy is delivered to the crankshaft and some is used to compress the springs. The stored energy in the springs is delivered to the crankshaft during the exhaust/compression stroke while the springs return to their relatively relaxed condition. As a result, energy is delivered to the crankshaft during both strokes of the cycle, and the engine runs smooth. In one, four stroke, two cylinder embodiment, each cylinder has springs as described above, the cranks of each cylinder are aligned, and the cam sets one cylinder in the power stroke while the other is in the intake stroke. As a result, the engine runs smooth because energy is delivered to the crankshaft during all four strokes of the cycle, during two of the strokes by the burning fuel and during the other two by the release of energy in the springs. In both embodiments, a heavy crankshaft is not needed because of the more uniform power delivery.

  16. Vehicle hydraulic cooling fan system

    SciTech Connect

    Nilson, C.A.

    1993-06-08

    A hydraulic cooling system for vehicles having an internal combustion engine cooled by a radiator and a coolant is described, comprising, in combination, a shroud adapted to be mounted adjacent the radiator having a wall forming an air passage and defining a first port disposed adjacent the radiator and a second port spaced from the first port, a fan located within the second port, a hydraulic fan motor operatively connected to the fan, a hydraulic pump operatively connected to the engine for producing a pressurized hydraulic fluid flow, a hydraulic circuit interconnecting the pump to the fan motor, the circuit including a control valve, a hydraulic fluid reservoir and a heat exchanger, the heat exchanger being mounted within the shroud air passage.

  17. Pump for delivering heated fluids

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E. (Inventor)

    1973-01-01

    A thermomechanical pump particularly suited for use in pumping a warming fluid obtained from an RTG (Radioisotope Thermal Generator) through science and flight instrumentation aboard operative spacecraft is described. The invention is characterized by a pair of operatively related cylinders, each including a reciprocating piston head dividing the cylinder into a pressure chamber confining therein a vaporizable fluid, and a pumping chamber for propelling the warming fluid, and a fluid delivery circuit for alternately delivering the warming fluid from the RTG through the pressure chamber of one cylinder to the pumping chamber of the other cylinder, whereby the vaporizable fluid within the pair of pressure chambers alternately is vaporized and condensed for driving the associated pistons in pumping and intake strokes.

  18. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  19. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  20. Tractor Hydraulics. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual was developed to help provide a better understanding of how and why hydraulic principles serve the purposes of weight reduction, increase of physical effort, and more precise control to machines of all types. The four components that are necessary to have a workable hydraulic system--a reservoir, a pump, a valve, and a motor (cylinder)…

  1. Small hydraulic turbine drives

    NASA Technical Reports Server (NTRS)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  2. Stirling engines and irrigation pumping

    SciTech Connect

    West, C.D.

    1987-08-01

    This report was prepared in support of the Renewable Energy Applications and Training Project sponsored by the US Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M/sup 4/ and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison. The liquid-piston Fluidyne is a form of Stirling engine sharing many of the characteristics of conventional kinematic and free-piston Stirling machines. The use of liquid pistons, however, gives it some unique advantages as well as certain problems that are not encountered or are not important in engines with solid pistons. Because the output is naturally available in the form of an oscillating liquid flow or a fluctuating pressure, the Fluidyne is well suited to liquid pumping, but other applications have also been considered. 27 refs., 7 figs., 2 tabs.

  3. Simulated dynamic response of a servovalve controlled hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1990-01-01

    A general purpose math model of a servovalve controlled hydraulic actuator system is derived. The system consists of a linear actuator with unequal piston areas, a single stage servovalve, a gas charged hydraulic accumulator, and the interconnecting piping. The state equations are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic response characteristics. Using this generalized hydraulic actuator system model, response characteristics were determined for various servovalve commands.

  4. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  5. 16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL AND HYDRAULIC ENGINEERS EXAMINING MODEL PUMPS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  6. Spool valve and piston power plant

    SciTech Connect

    Landon, H.A.

    1992-01-21

    This patent describes an engine. It comprises cylinders each containing a piston disposed therein for reciprocating movement, a crankshaft connected to one end of each piston, a drive shaft connected to an end of the crankshaft, a source of pressurized fluid connected by conduits to each cylinder, each piston comprising: a first sealing member acting as the piston head, a second sealing member acting as the bottom of the piston, an arm connected at one end thereof to the bottom of the piston and connected at the other end thereof to the crankshaft, a lower fluid chamber formed by the bottom of the piston and a housing surrounding the arm and the crankshaft, a first port associated with each cylinder for delivering pressurized fluid to the head of the piston, a second port associated with each cylinder for removing pressurized fluid selectively from the upper chamber or delivering pressurized fluid to the lower chamber, a third port for removing pressurized fluid from the lower chamber, and a fourth part connected to the source of pressurized fluid and associated with each cylinder for delivering pressurized fluid to the upper chamber whereby the reciprocating movement of each piston is translated into rotary movement of the drive shaft through the crankshaft.

  7. Two piston V-type Stirling engine

    SciTech Connect

    Corey, J.A.

    1987-01-06

    This patent describes a Stirling cycle engine comprising: a compression piston reciprocal in a cold compression space and an expansion piston operated from a common crank shaft reciprocal in an expansion space out of phase with respect to each other. The pistons reciprocate along axes which are angularly disposed to one another, such that a V-configuration engine is formed. A regenerator means is positioned immediately adjacent a cooling means. The cooling means is axially aligned immediately adjacent the cold compression piston so as to minimize cold duct volume. A heating means is coupled with the regenerator and the expansion space completing the Stirling cycle.

  8. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  9. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimball, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kilowatt tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated.A second portion of this DOE project involves sizing and costing a 15 megawatt tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation's 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one megawatt per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine's Western Passage. All would be connected to a high-pressure (20 megapascals, 2900 pounds per square inch) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, water-miscible fluid. Hydraulic adaptations to ORPC's cross-flow turbines are also discussed.For 15 megawatt of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  10. An investigation of the fluid-structure interaction of piston/cylinder interface

    NASA Astrophysics Data System (ADS)

    Pelosi, Matteo

    The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.

  11. Ballistic piston fissioning plasma experiment.

    NASA Technical Reports Server (NTRS)

    Miller, B. E.; Schneider, R. T.; Thom, K.; Lalos, G. T.

    1971-01-01

    The production of fissioning uranium plasma samples such that the fission fragment stopping distance is less than the dimensions of the plasma is approached by using a ballistic piston device for the compression of uranium hexafluoride. The experimental apparatus is described. At room temperature the gun can be loaded up to 100 torr UF6 partial pressure, but at compression a thousand fold increase of pressure can be obtained at a particle density on the order of 10 to the 19th power per cu cm. Limited spectral studies of UF6 were performed while obtaining the pressure-volume data. The results obtained and their implications are discussed.

  12. Instantaneous engine frictional torque, its components and piston assembly friction

    SciTech Connect

    Nichols, F.A. ); Henein, N.A. . Center for Automotive Research)

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-[omega]) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, [omega], have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-[omega]) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  13. Vacuum system pump down analysis

    SciTech Connect

    Rohrdanz, D.R.

    1990-08-01

    My assignment on the SP-100 Vacuum Vessel Vacuum System Team was to perform a transient pump down analysis for the vacuum vessel that will house the SP-100 reactor during testing. Pump down time was calculated for air and helium. For all cases the proposed vacuum system will be able to pump down the vessel within the required time. The use of a larger rotary piston pump (DUO250) improves the pump down time by 35 minutes and therefore should be considered. The 6-inch duct for the roughing line is optimal, however, because all cases are well below the 24 hour time frame, the 4-inch duct is sufficient. The use of the single turbomolecular pump during pump down is sufficient. A pump down with helium in the vessel and a helium inleakage delays the time to achieve the base pressure marginally and is acceptable.

  14. Thermal-powered reciprocating pump

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1972-01-01

    Waste heat from radioisotope thermal generators in spacecraft is transported to keep instruments warm by two-cylinder reciprocating pump powered by energy from warm heat exchange fluid. Each cylinder has thermally nonconductive piston, heat exchange coil, and heat sink surface.

  15. Stirling engines and irrigation pumping

    SciTech Connect

    West, C.D.

    1988-01-01

    A brief outline is given of the performance that might be achievable from various kinds of Stirling engine driven irrigation pumps. Some emphasis is placed on the very simple liquid piston engines, suitable for low technology manufacture, that have been the recent subject of research. 5 refs., 3 figs., 3 tabs.

  16. Liquid-metal-piston MHD generator

    NASA Technical Reports Server (NTRS)

    Palmer, J. P.

    1969-01-01

    Magnetohydrodynamic generator uses a slug or piston of liquid potassium as the working fluid. An expanding vapor of the metal is allowed to reciprocate the liquid-metal-piston through a magnetic field and the expansion energy is converted directly into electrical energy.

  17. Piston sealing arrangement for a cryogenic refrigerator

    SciTech Connect

    Green, G.F.; Humphrey, J.C.

    1984-02-21

    A sealing arrangement for a rectilinear reciprocable piston within a cryogenic refrigerator comprising a buffer defined by dual O-rings disposed around the circumference of the piston and containing pressurized gas of the same type as the refrigeration gas. The buffer limits or prevents both the entrance of contaminants and also the escape of the refrigeration gas.

  18. 21 CFR 880.5860 - Piston syringe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... Piston syringe. (a) Identification. A piston syringe is a device intended for medical purposes that... connector (nozzle) for fitting the female connector (hub) of a hypodermic single lumen needle. The device...

  19. 21 CFR 880.5860 - Piston syringe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... Piston syringe. (a) Identification. A piston syringe is a device intended for medical purposes that... connector (nozzle) for fitting the female connector (hub) of a hypodermic single lumen needle. The device...

  20. 21 CFR 880.5860 - Piston syringe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... Piston syringe. (a) Identification. A piston syringe is a device intended for medical purposes that... connector (nozzle) for fitting the female connector (hub) of a hypodermic single lumen needle. The device...

  1. 21 CFR 880.5860 - Piston syringe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... Piston syringe. (a) Identification. A piston syringe is a device intended for medical purposes that... connector (nozzle) for fitting the female connector (hub) of a hypodermic single lumen needle. The device...

  2. Wear reduction systems liquid piston ring

    SciTech Connect

    Raymond, R.J.; Chen, T.N.; DiNanno, L.

    1990-09-01

    The overall objective of the program was to demonstrate the technical feasibility of achieving an acceptable wear rate for the cylinder liner, piston, and piston rings in a coal/water-slurry-fueled engine that utilized the concept of a liquid piston ring above the conventional piston rings and to identify technical barriers and required research and development. The study included analytical modeling of the system, a bench study of the fluid motion in the liquid piston ring, and a single-cylinder test rig for wear comparison. A system analysis made on the different variations of the liquid supply system showed the desirability of the once-through version from the standpoint of system simplicity. The dynamics of the liquid ring were modeled to determine the important design parameters that influence the pressure fluctuation in the liquid ring during a complete engine cycle and the integrity of the liquid ring. This analysis indicated the importance of controlling heat transfer to the liquid ring through piston and liner to avoid boiling the liquid. A conceptual piston design for minimizing heat transfer is presented in this report. Results showed that the liquid piston ring effectively reduced the solid particles on the wall by scrubbing, especially in the case where a surfactant was added to the water. The wear rates were reduced by a factor of 2 with the liquid ring. However, leakage of the contaminated liquid ring material past the top ring limited the effectiveness of the liquid ring concept. 8 refs., 33 figs., 1 tab.

  3. Double acting stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  4. Pump control system for windmills

    SciTech Connect

    Avery, D.E.

    1983-07-12

    A windmill control system is disclosed having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  5. Pump control system for windmills

    DOEpatents

    Avery, Don E.

    1983-01-01

    A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  6. Casimir force between integrable and chaotic pistons

    SciTech Connect

    Alvarez, Ezequiel; Mazzitelli, Francisco D.; Wisniacki, Diego A.; Monastra, Alejandro G.

    2010-11-15

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.

  7. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  8. Indexes of pumps for oil field pumping units

    SciTech Connect

    Ibragimov, E.S.

    1995-07-01

    As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

  9. High speed hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Iman, I.

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.

  10. Test of a cryogenic helium pump

    SciTech Connect

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds. (LCL)

  11. Test of a cryogenic helium pump

    NASA Astrophysics Data System (ADS)

    Lue, J. W.; Miller, J. R.; Walstrom, P. L.; Herz, W.

    1981-02-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through internally cooled superconductor magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds.

  12. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  13. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  14. ENVIRONMENTAL HYDRAULICS

    EPA Science Inventory

    The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...

  15. Phasing piston error in segmented telescopes.

    PubMed

    Jiang, Junlun; Zhao, Weirui

    2016-08-22

    To achieve a diffraction-limited imaging, the piston errors between the segments of the segmented primary mirror telescope should be reduced to λ/40 RMS. We propose a method to detect the piston error by analyzing the intensity distribution on the image plane according to the Fourier optics principle, which can capture segments with the piston errors as large as the coherence length of the input light and reduce these to 0.026λ RMS (λ = 633nm). This method is adaptable to any segmented and deployable primary mirror telescope. Experiments have been carried out to validate the feasibility of the method. PMID:27557192

  16. Adjustable expandable cryogenic piston and ring

    DOEpatents

    Mazur, Peter O.; Pallaver, Carl B.

    1980-01-01

    The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

  17. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  18. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  19. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  20. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  1. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  2. 23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULICOPERATED VALVE FOR LATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULIC-OPERATED VALVE FOR LATER CONNECTION OF ENGINE PUMP ENG TO DISCHARGE HEADER. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  3. 22. TEMPORARY CENTRIFIGAL PUMP. NOTE CHAPMAN HYDRAULICOPERATED VALVE FOR LATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. TEMPORARY CENTRIFIGAL PUMP. NOTE CHAPMAN HYDRAULIC-OPERATED VALVE FOR LATER CONNECTION OF ENGINE PUMP END TO DISCHARGE HEADER. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  4. Tests of oil scraper piston ring and piston fitted with oil drain holes

    NASA Technical Reports Server (NTRS)

    Mcdewell, H S

    1922-01-01

    Tests were conducted to determine whether or not a properly located and properly designed oil scraper piston ring, installed on a piston provided with oil drain holes of sufficient area, would prevent the excessive oiling of the Liberty engine, particularly with the engine running at idling speed with full oil pressure. Results showed that excessive oiling was in fact prevented. It is strongly recommended that scraper rings and pistons be adopted for aircraft engines.

  5. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  6. Drift stabilizer for reciprocating free-piston devices

    DOEpatents

    Ward, William C.; Corey, John A.; Swift, Gregory W.

    2003-05-20

    A free-piston device has a stabilized piston drift. A piston having a frequency of reciprocation over a stroke length and with first and second sides facing first and second variable volumes, respectively, for containing a working fluid defining an acoustic wavelength at the frequency of reciprocation. A bypass tube waveguide connects the first and second variable volumes at all times during reciprocation of the piston. The waveguide has a relatively low impedance for steady flow and a relatively high impedance for oscillating flow at the frequency of reciprocation of the piston, so that steady flow returns fluid leakage from about the piston between the first and second volumes while oscillating flow is not diverted through the waveguide. Thus, net leakage about the piston is returned during each stroke of the piston while oscillating leakage is not allowed and pressure buildup on either the first or second side of the piston is avoided to provide a stable piston location.

  7. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  8. Linkage arms for minimizing piston wobble

    SciTech Connect

    Langstroth, S.W.

    1992-07-28

    This patent describes an internal combustion engine having a block within which at least one piston is attached to a crankshaft by a connecting rod between the crankpin of the crankshaft and the wrist pin of the piston. This patent describes improvement in a fixed gear concentric with the axis of the crankshaft and coupled to the block; a follower gear concentric with the crankpin; at least one intermediate gear coupling the fixed gear to the follower gear; wherein the ratio of the gears is such that the follower gear orbits the fixed gear and does not rotate; and linkage arms interconnecting the follower gear and the piston for preventing the rotation of the piston about the wrist pin.

  9. Surface modifications of pistons and cylinder liners

    SciTech Connect

    Suzuki, Y. )

    1988-01-01

    With higher brake mean effective pressure (BMEP) of a diesel engine, pistons and cylinder liners suffer from increasing mechanical and thermal loading which causes several problems on these engine parts. The main critical problems are thermally induced cracking on the piston head and scuffing on the cylinder bore. Hard anodizing the piston head is described. It is currently the most effective countermeasure against heat cracking. Another promising method, to reinforce the piston head by means of SiC-whiskers, is also reported. A new process for improving the surface lubrication of the cylinder liner was developed. The bore has numerous finely distributed micropits which act as good oil reservoir. This improves the antiscuffing property of the cylinder liner.

  10. Spherical Joint Piston and Connecting Rod Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal

  11. Hydraulic induced instability on a vertical service

    NASA Technical Reports Server (NTRS)

    Bosmans, R. F.

    1985-01-01

    The case history contained provides insight toward the mechanical and hydraulic behavior of a vertical pump. It clearly demonstrates the need for measurements on the rotor at or near the impeller area. The results are reported of an analysis on a service water pump. This pump is typical of the water pumps used throughout the power generation industry. Although little is known of the mechanical behavior of vertical pumps because of difficulty in modeling the rotor system, recent developments in the application of submersible proximity transducers have made possible the measurement of pump dynamics under operating conditions. The purpose of this study was to determine the proper selection and installation of vibration-monitoring transducers as well as to measure the effects of imbalance, misalignment, and hydraulics on the performance and reliability of vertical pumps. In addition, the cause of shaft failures on this pump was to be determined.

  12. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  13. Tilt/Tip/Piston Manipulator with Base-Mounted Actuators

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2006-01-01

    A proposed three-degree-of-freedom (tilt/tip/piston) manipulator, suitable for aligning an optical or mechanical component, would offer several advantages over prior such manipulators: Unlike in some other manipulators, no actuator would support the weight of another actuator: All of the actuators would be mounted on a base. Hence, there would be less manipulated weight. The basic geometry of the manipulator would afford mechanical advantage: that is, actuator motions would be larger than the motions they produce in the manipulated object. Mechanical advantage inherently increases the accuracy and resolution of manipulation. Unlike in some other manipulators, it would not be necessary to route power and/or data lines through manipulator joints. The proposed manipulator (see figure) would include three prismatic actuators (T1N1, T2N2, and T3N3) mounted on the base and operating in the same plane. Examples of suitable prismatic actuators include lead-screw mechanisms, linear hydraulic motors, piezoelectric linear drives, inchworm-movement linear stepping motors, and linear flexure drives. The actuators would control the lengths of links R1T1, R2T2, and R3T3. Three spherical joints (P1, P2, and P3) would be located at the corners of an equilateral triangle of side length q on the platform holding the object to be manipulated. Three inextensible limbs (R1P1, R2P2, and R3P3) having length r would connect the spherical joints on the platform to revolute joints (R1, R2, and R3) at the ends of the actuator-controlled links R1T1, R2T2, and R3T3. By varying the lengths of these links, one could control the tilt, tip, and piston coordinates of the platform. Closed-form equations for direct or forward kinematics of the manipulator (given the lengths of the variable links, find the tilt, tip, and piston coordinates) have been derived. The equations of inverse kinematics (find the variable link lengths needed to obtain the desired tilt, tip, and piston coordinates) have also

  14. Reduced energy and volume air pump for a seat cushion

    DOEpatents

    Vaughn, Mark R.; Constantineau, Edward J.; Groves, Gordon E.

    1997-01-01

    An efficient pump system for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers.

  15. Reduced energy and volume air pump for a seat cushion

    DOEpatents

    Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.

    1997-08-19

    An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.

  16. Hand-Operated Hydraulic Tube Expander

    NASA Technical Reports Server (NTRS)

    Hagan, David W.; Wolff, Edwin D.

    1995-01-01

    Hand-operated tool expands end portion of narrow metal or plastic tube to slightly larger diameter. Used on tubes with original inner diameters as small as 0.060 in. Includes replaceable tip comprising ferrule and tubular expansion sleeve sized for sliding fit into tube to be expanded. Expansion sleeve swells in response to internal hydraulic pressure generated by turning handle and thereby advancing piston.

  17. Free-Piston Stirling Power Conversion Unit for Fission Surface Power, Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary; Buffalino, Andrew; Holliday, Ezekiel; Penswick, Barry; Gedeon, David

    2010-01-01

    This report summarizes the design of a 12 kW dual opposed free-piston Stirling convertor and controller for potential future use in space missions. The convertor is heated via a pumped NaK loop and cooling is provided by a pumped water circuit. Convertor efficiency is projected at 27 percent (AC electrical out/heat in). The controller converts the AC electrical output to 120 Vdc and is projected at 91 percent efficiency. A mechanically simple arrangement, based on proven technology, was selected in which the piston is resonated almost entirely by the working space pressure swing, while the displacer is resonated by planar mechanical springs in the bounce space.

  18. Free-piston Stirling Engine system considerations for various space power applications

    NASA Technical Reports Server (NTRS)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  19. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    NASA Astrophysics Data System (ADS)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  20. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  1. Integrated two-cylinder liquid piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  2. Integrated two-cylinder liquid piston Stirling engine

    SciTech Connect

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  3. Accumulator isolator prevents malfunctioning of faulty hydraulic system

    NASA Technical Reports Server (NTRS)

    Walsh, G. D.

    1967-01-01

    Special isolator valve prevents malfunction of a closed hydraulic system by converting the initial accumulator-reservoir to a reservoir function only when the system loses oil, or gaseous nitrogen precharge, or has a jammed piston. This permits near-normal operation until the defect is corrected.

  4. Systematic parametric design/calculation of the piston rod unit

    NASA Astrophysics Data System (ADS)

    Kacani, V.

    2015-08-01

    In this article a modern and economic method for the strength calculation of the piston rod unit and its components under different operating conditions will be presented. Herefore the commercial FEA - Software will be linked with the company-owned calculation tools. The parametric user input will be followed by an automatic Pre- and Postprocessing. Afterwards the strength calculation is processed on all critical points of the piston rod connection, assisted by an extra module, based on general standards and special codes for reciprocating compressors. In this process most arrangements of the piston rod unit as well as the special geometries of the single-components (piston, piston rod and piston nut) can be considered easily. In this article the modeling of the notches, especially on the piston rod, piston as well as the piston nut will be covered in detail.

  5. Laser initiated piston actuator X51-8284-1

    SciTech Connect

    Spomer, E.

    1993-04-27

    This contract is a follow on effort in the development of a laser initiated piston actuator. During the previous contract a miniature piston actuator was developed which had two system related problems. First, during operation of the actuator, combustion gases would escape past the piston shank, overheating the surrounding materials. Secondly, the function of the device seemed to be overly brisant. The purpose of this contract was to improve the performance of the laser initiated piston actuator by developing a means of sealing the device, and to reduce the velocity of the piston. Three sealing concepts were tested; a silicone pad placed on the powder side of the piston, a stainless steel cup placed on the powder side of the piston, and copper plating on the shank of the piston. Piston velocity was to be reduced by changing the powder charge to BCTK or reducing the amount of Ti/KClO{sub 4}.

  6. Drive piston assembly for a valve actuator assembly

    DOEpatents

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  7. 5-kWe Free-piston Stirling Engine Convertor

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and

  8. Nutating spider crank reciprocating piston machine

    SciTech Connect

    Shaffer, J.E.

    1991-07-02

    This patent describes reciprocating piston apparatus. It comprises a housing; a shaft journalled on the housing for rotation about a shaft axis; a plurality of cylinders each having a central longitudinal axis and disposed parallel to the shaft axis and located on the housing at positions angularly-spaced circumferentially about the shaft; a plurality of double-acting pistons having piston axes and centers, each the piston having a transverse bore therein and being respectively mounted for reciprocation within corresponding ones of the cylinders, each the bore having a longitudinal central axis normal to the respective cylinder axis; a mutating spider having a central hub portion mounted on the shaft obliquely of the shaft axis, and having a plurality of branches extending radially outward from the hub portion and terminating at terminal ends; and means directly connecting the terminal ends centrally to corresponding ones of the bores for transferring motion between reciprocation of the pistons and rotation of the shaft, and for restraining the spider from rotating with the shaft.

  9. Balancing mechanism for reciprocating piston engine

    SciTech Connect

    Murata, N.; Ogino, T.

    1987-04-14

    This patent describes a balancing mechanism for a reciprocating piston internal combustion engine which includes a cylinder, a piston reciprocatable in the cylinder, a crankcase, a crankshaft mounted in the crankshaft, a crankpin connected to the piston, and a pair of crank arms bridging the crankshaft and crankpin. The crank arms and crankpin rotate with the crankshaft during operation and form a rotating mass. The balancing mechanism comprises at least one rotating counterweight attached to and rotating with the crankshaft, and eccentric journal means on the crankshaft adjacent the crank arms, rotating with the crankshaft. The journal means has an axis spaced to the side of the crankshaft axis which is opposite from the crankpin. The rotating counterweight and the eccentric journal means counterbalancing the rotating mass.

  10. Internal combustion engine having opposed pistons

    SciTech Connect

    Puzio, E.T.

    1993-07-20

    An internal combustion apparatus is described having opposed sets of pistons comprising: (a) an inner crankcase means defining an inner chamber means therein, the inner crankcase means further defining a first connecting arm aperture means and a second connecting arm aperture means therein; (b) a crankshaft means rotatably mounted within the inner chamber means of the inner crankcase means and defining a crankshaft axis means extending axially there through, the crankshaft means defining a driving means peripherally therearound to facilitate distribution of driving power therefrom; (c) a first outer crankcase means defining a first outer chamber means in fluid flow communication with respect to the inner chamber means through the first connecting arm aperture means; (d) a second outer crankcase means defining a second outer chamber means in fluid flow communication with respect to the inner chamber means through the second connecting arm aperture means, the second outer crankcase means defining a second piston bore means extending longitudinally therein; (e) a crank pin means positioned extending through the crank pin aperture in the crankshaft means, the crank pin means being rotatable with respect to the crank pin aperture means; (f) a first connecting arm means fixedly secured with respect to one end of the crank pin means and extending through the first connecting arm aperture means into the first outer crankcase means; (g) a second connecting arm means fixedly secured with respect to the other end of the crank pin means and extending through the second connecting arm aperture means into the second outer crankcase means; (h) a first piston assembly means positioned extending through the first piston bore means to be reciprocally axially movable therein; (i) a second piston assembly means positioned extending through the second piston bore means to be reciprocally axially movable therein.

  11. Design of hydraulic recuperation unit

    NASA Astrophysics Data System (ADS)

    Jandourek, Pavel; Habán, Vladimír; Hudec, Martin; Dobšáková, Lenka; Štefan, David

    2016-03-01

    This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  12. Hydraulic lifting device

    NASA Technical Reports Server (NTRS)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  13. Afterbay, showing four discharge channels and four hydraulic gate check ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, showing four discharge channels and four hydraulic gate check cylinders, one for each discharge pipe opening. The fifth bay at the left without a hydraulic cylinder is the outlet for the regulatory pumps added in 1972. The still well is visible at right - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  14. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  15. Piston-rotaxanes as molecular shock absorbers.

    PubMed

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response. PMID:20158174

  16. Engine piston having an insulating air gap

    DOEpatents

    Jarrett, Mark Wayne; Hunold,Brent Michael

    2010-02-02

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  17. 123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 40 CFR 63.176 - Quality improvement program for pumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Pumps that are in food/medical service or in polymerizing monomer service shall comply with all.../medical or polymerizing monomer service shall comply with all requirements of this section. (b) The owner... type (e.g., piston, horizontal or vertical centrifugal, gear, bellows); pump manufacturer; seal...

  19. Hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  20. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  1. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  2. Supercritical waste oxidation pump investigation

    SciTech Connect

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications.

  3. Pump Flow Analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Ingersoll-Rand Research, Inc.'s use of COSMIC's computer program MERIDL permits designers to evaluate performance and efficiency characteristics to be expected from the pump's impeller. It also provides information that enables a trained hydraulic engineer to make design improvements. Company was able to avoid the cost of developing new software and to improve some product design features.

  4. Piston rod seal for a Stirling engine

    SciTech Connect

    Shapiro, W.

    1984-01-31

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal. 3 figs.

  5. How Hot Can a Fire Piston Get?

    ERIC Educational Resources Information Center

    Scott-Brown, J. A.; Cunningham, O. A.; Goad, B. C.

    2010-01-01

    The fire piston is just a sealed syringe containing a small amount of tinder. When the plunger is forced downwards, the air inside is compressed and heats up, setting fire to the tinder. It has been used as a convenient and portable way of starting fires "over a wide area from northern Burma and Siam through the Malay Peninsula and the Malayan…

  6. Linear motor free piston compressor. Final report

    SciTech Connect

    Bloomfield, D.P.

    1995-02-17

    A Linear Motor Free Piston Compressor (LMFPC), a free piston pressure recovery system for fuel cell powerplants was developed. The LMFPC consists of a reciprocating compressor and a reciprocating expander which are separated by a piston. In the past energy efficient turbochargers have been used for pressure large (over 50 kW) fuel cell powerplants by recovering pressure energy from the powerplant exhaust. A free piston compressor allows pressurizing 3 - 5 kW sized fuel cell powerplants. The motivation for pressurizing PEM fuel cell powerplants is to improve fuel cell performance. Pressurization of direct methanol fuel cells will IC required if PEM membranes are to be used. Direct methanol oxidation anode catalysts require high temperatures to operate at reasonable power densities. The elevated temperatures above 80 deg C will cause high water loss from conventional PEM membranes unless pressurization is employed. Because pressurization is an energy intensive process, recovery of the pressure energy is required to permit high efficiency in fuel cell powerplants. A complete LMFPC which can pressurize a 3 kW fuel cell stack was built. This unit is one of several that were constructed during the course of the program.

  7. Piston rod seal for a Stirling engine

    DOEpatents

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  8. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  9. Free-piston Stirling engine system considerations for various space power applications

    SciTech Connect

    Dochat, G.R.; Dhar, M. )

    1991-01-05

    The U.S. Government is evaluating power requirements for future space applications. As power requirements increase solar or nuclear dynamic systems become increasingly attractive. Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (AC, DC, high or low voltage, and fixed or variable load). This paper will review potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. Currently free-piston Stirling engine technology for space power applications is being developed under contract with NASA-Lewis Research Center. This paper will also briefly outline the program and recent progress.

  10. The ABCs of pump selection for mine dewatering

    SciTech Connect

    Morgan, S.E.

    2008-10-15

    Choosing the right type of pump for removing water from mine operations can provide significant benefits in overall performance and cost of operation. The article describes the types of pump most commonly used: vertical turbine pumps, electric and hydraulic submersible pumps, horizontal multistage centrifugal pumps and horizontal single-stage centrifugal pumps. It gives points to consider when selecting a suitable pump, including solids handling capacity and acid content, portability, automatic operation, easy maintenance and parts availability. 1 photo.

  11. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Meadville, J. W.

    1980-01-01

    A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.

  12. Hydraulic mining method

    DOEpatents

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  13. Laser light stripe measurements assure correct piston assembly

    NASA Astrophysics Data System (ADS)

    Stein, Norbert; Frohn, Heiko

    1993-12-01

    Two VIKON-3D optical inspection systems assure the correct assembly of piston rings and guard rings in a new Volkswagen piston/rod assembly line. Both systems use laser light stripe measurements to locate and identify the relevant parts with high accuracy. The piston ring assembly is checked dynamically in video real time using laser light stripe and parallel projection techniques. In addition structured light is used to verify the correct piston/rod assembly. Both inspection systems are fully integrated into the manufacturing line. All types of pistons assembled can be checked without any mechanical changes to the measurement setup.

  14. Control rod drive hydraulic system

    DOEpatents

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  15. Fluid pump having magnetic drive

    SciTech Connect

    Phillips, Benjamin A.; Roeder, Jr., John; Harvey, Michael N.

    1996-10-15

    A pump includes a housing defining a cavity, an axial bore coaxially communicating with the cavity, at least one radial bore radially extending between the cavity and an outlet, and an inlet communicating with the radial bore intermediate to the cavity and the outlet. A crankshaft having a longitudinal axis is disposed in the axial bore for rotation about the axis and includes an eccentric portion disposed in the cavity. A piston having a base is disposed in the cavity, and has a head disposed in the radial bore for slidable reciprocation between a discharge position proximate the outlet and an intake position at the inlet between the cavity and the outlet. A cage structure including a cage and a slider block connects the piston base to the eccentric portion of the crankshaft for transforming rotation of the eccentric portion in the cavity to reciprocation of the piston in the radial bore. A valve structure opens and closes the outlet in response to movement of the piston head between the discharge position to the intake position.

  16. Fluid pump having magnetic drive

    SciTech Connect

    Phillips, B.A.; Roeder, J. Jr.; Harvey, M.N.

    1996-10-15

    A pump includes a housing defining a cavity, an axial bore coaxially communicating with the cavity, at least one radial bore radially extending between the cavity and an outlet, and an inlet communicating with the radial bore intermediate to the cavity and the outlet. A crankshaft having a longitudinal axis is disposed in the axial bore for rotation about the axis and includes an eccentric portion disposed in the cavity. A piston having a base is disposed in the cavity, and has a head disposed in the radial bore for slidable reciprocation between a discharge position proximate the outlet and an intake position at the inlet between the cavity and the outlet. A cage structure including a cage and a slider block connects the piston base to the eccentric portion of the crankshaft for transforming rotation of the eccentric portion in the cavity to reciprocation of the piston in the radial bore. A valve structure opens and closes the outlet in response to movement of the piston head between the discharge position to the intake position. 22 figs.

  17. 17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS EXAMINING MODEL PUMPS, VIEW FROM MODEL BED. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  18. A lightweight pumped hydrazine orbit maneuvering space vehicle

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-01-01

    An orbital maneuvering vehicle has a pair of opposed cylindrical piston tanks for hydrazine, and four transverse liquid rocket engines along a longitudinal plane. A new kind of pumped rocket propulsion provides maneuvering thrust on demand, and free-piston pumps which can rapidly start and stop are radially oriented between thrusters. A major advantage of this configuration is that the tanks can be close together, which maximizes the vehicle's longitudinal bending stiffness while minimizing the mass of the central bridging structure. The impulses from pump exhaust and piston reciprocation are directed through the system mass center, so they apply no disturbance torques. All high-temperature components are located on the outside of the central structure, where they are free to expand and radiate heat without detrimental effects. Virtually all lightweight components have been fabricated and tested, and photographs of hardware subassemblies are presented.

  19. High pressure rotary piston coal feeder

    NASA Technical Reports Server (NTRS)

    Gardner, J. F.; Gencsoy, H. T.; Strimbeck, D. C.

    1977-01-01

    This feeder concept uniquely combines the functions of solids feeding, metering, and pressurization into one compact system. Success with the rotary-piston concept would provide a lower-cost alternative to lock-hopper systems. The design of the feeder is presented, with special emphasis on the difficult problem of seal design. Initial tests will be to check seal performance. Subsequent tests will evaluate solids-feeding ability.

  20. Multiple Cylinder Free-Piston Stirling Machinery

    NASA Astrophysics Data System (ADS)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  1. Compression ratio control in reciprocating piston engines

    SciTech Connect

    Doundoulakis, G.J.

    1989-08-29

    The patent describes compression ratio control for reciprocating piston engines. It comprises: a reciprocating engine crankcase; a plurality of compression/expansion cylinders rigidly attached to the crankcase; each of the cylinders including a curved surface and a cylinder head; a fuel mixture in-taken in the cylinders; a piston reciprocating along each cylinder's curved surface for providing compression/expansion to the fuel mixture; a crank mechanism including a crankshaft rotating about an axial line that is substantially equidistant from the heads, crankcheek lobes radially extending from the crankshaft, crankpins inside and in contact with crankpin bearings, axially extending between the crankcheek lobes, and crankshaft journal bearings for providing low frictional support to the crankshaft; a connecting rod for each of the cylinders connecting the piston with the crankpin; crankshaft positioning; a first transmission gear, a crankshaft gear for meshing with the transmission gear, and a slot cut on the crankcase; wherein the constraint in the displacement of the crankshaft in the horizontal sense is provided by the vertical edges of the slot, and wherein the vertical edges of the slot are preferably being curved with a radius of curvature substantially equal to the average pitch diameter of the crankshaft gear and thee first transmission gear for accurate meshing of the gears.

  2. Method for determining piston form for an internal combustion engine

    SciTech Connect

    Yagi, T.; Sumida, K.

    1987-04-14

    A method is described for determining a form of a piston for an internal combustion engine. The method comprises: preparing a prototype piston having dimensions slightly smaller than those of a finally processed piston; applying to an outer peripheral surface of the prototype piston, a composite material composed of 25 to 45% by weight of flake aluminum, 2 to 30% by weight of graphite, and a remainder of epoxy resin; heating the prototype piston thus applied with the composite material at temperatures in the range of 90/sup 0/ to 230/sup 0/C. for more than 20 minutes to form a covering layer on the prototype piston; incorporating the prototype piston thus formed with the covering layer into the internal combustion engine, operating the prototype piston for a predetermined period of time, thereby abrading the covering layer of the piston to form an external configuration corresponding to the internal configuration of a cylinder liner of the internal combustion engine; and utilizing the configuration obtained through abrasion of the covering layer in the design of a production piston.

  3. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  4. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Astrophysics Data System (ADS)

    Slaby, Jack G.

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  5. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 2: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low thrust high performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm and helirotor pump concepts. The centrifugal and gear pumps were carried through detail design and fabrication. After preliminary testing in Freon 12, the centrifugal pump was selected for further testing and development. It was tested in Freon 12 to obtain the hydrodynamic performance. Tests were also conducted in liquid fluorine to demonstrate chemical compatibility.

  6. Electric versus hydraulics versus pneumatics

    SciTech Connect

    Not Available

    1985-01-01

    This book presents a collection of papers from a conference which considered the advantages and disadvantages of electric, hydraulic and pneumatic drives and actuators. The volume follows on the success of the 1983 conference on electric and hydraulic drives. Topics considered include fork lift trucks - an ideal application for regenerative transmissions; a hybrid-electric power system with hydrostatic transmission; electrics and hydraulics on roadheader machinery; hydraulic, electrical, pneumatic control - which way to go. an electrically-powered servo to drive the two axes of a missile launching platform - pros and cons when compared with the traditional hydraulic solution; the encapsulation of a novel intrinsically safe displacement transducer; mobile cryogenic pumping systems; automation of a wood-turning machine, hydraulic or electric. The choice of a servo motor for a specific application; developments in the design and control of pneumatic linear actuators; compressed air purification for instrumentation in the high technology industries; trends in prime mover choice for powered hand tools; and choosing the drive system for the right application.

  7. Oil well pump driving unit

    SciTech Connect

    Gilbertson, T. A.

    1984-11-06

    An oil well pumping apparatus which includes a submerged reciprocating pump mounted in a tubing arrangement communicating with the wellhead, a sucker rod string extending through the tubing arrangement and connected in driving relation with the pump, and a pumping tee and stuffing box arrangement mounted on the casing of the well at the wellhead and including a sealed drive rod arrangement in the stuffing box connected in driving relation to said sucker rod string, and a pump driving unit. The pump driving unit includes a hydraulic cylinder and support means including a gimbal arrangement for supporting the hydraulic cylinder over the stuffing box with the axis of the cylinder rod aligned with the axis of said stuffing box. A coupling means is provided for coupling the cylinder rod to the sealed drive rod arrangement. A hydraulic drive/control unit is coupled to said in/out fluid line for operating cycle consisting of a hydraulic power upstroke and a gravity power downstroke. An assist cylinder and accumulator combination are provided to counteract part of the weight of the rod string and thus reduce the workload on t

  8. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    PubMed

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness. PMID:23516082

  9. Piezohydraulic Pump Development

    NASA Technical Reports Server (NTRS)

    Lynch, Christopher S.

    2005-01-01

    Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.

  10. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  11. Automatic transmission having hydraulic and electronic control systems

    SciTech Connect

    Furukawa, T.; Mori, M.

    1987-06-23

    A shifting apparatus is described for a motor vehicle transmission which comprises: a shift actuator including shift shafts, cylinders, springs and select levers; the shift shafts effecting engagement and disengagement of transmission gears to accomplish shift ranges; each of the cylinders comprising one piston and two chambers defined by the piston, the piston being movable to three positions corresponding to the positions of the shift shaft and being actuated to one of the first or second position by applying working pressure to the chambers corresponding to each position; each of the springs urging the pistons to locate at a neutral position defined between the first or second positions; each of the select levers operatively connecting one of the shift shafts with a respective one of the pistons; an electronic control unit for gear shift operation; a hydraulic control unit comprising first, second and third solenoid valves, only the first solenoid valve actuated at a first shift range; the first and second solenoid valves actuated at a second shift range; only the second solenoid valve is actuated at a third shift range, and second and third solenoid valves are actuated at a fourth shift range; the third solenoid valve is actuated at a fifth shift range, no solenoid valve is actuated at a neutral shift range; and a reverse shift range is accomplished by actuating all the three solenoid valves.

  12. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell Henry

    2014-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling Engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  13. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  14. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  15. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  16. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  17. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    SciTech Connect

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-21

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  18. Hydraulic servo for friction coupling element of automatic transmission

    SciTech Connect

    Sumiya, K.; Kano, T.; Kubo, S.; Watanabe, K.

    1987-07-28

    A hydraulic servo is described for a friction coupling element in an automatic transmission including a casing, the hydraulic servo, comprising: an annular drum having a first cylinder, a second cylinder, and a side wall connecting the first and second cylinders all integrally formed together as a single piece by press forming, the first cylinder having splines on its outer cylindrical surface and fixed to the interior of the casing through the splines and the second cylinder having splines on its inner cylindrical surface; a press-formed third cylinder joined to the side wall of the annular drum by a fully encircling weld; a piston fitted between the first cylinder and the third cylinder; and biasing means provided between the third cylinder and the second cylinder for returning the piston.

  19. Internal position and limit sensor for free piston machines

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor); Wood, James Gary (Inventor)

    2012-01-01

    A sensor for sensing the position of a reciprocating free piston in a free piston Stirling machine. The sensor has a disk mounted to an end face of the power piston coaxially with its cylinder and reciprocating with the piston The disk includes a rim around its outer perimeter formed of an electrically conductive material A coil is wound coaxially with the cylinder, spaced outwardly from the outer perimeter of the disk and mounted in fixed position relative to the pressure vessel, preferably on the exterior of the pressure vessel wall.

  20. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  1. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  2. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  3. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  4. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  5. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps. PMID:2312140

  6. Hydraulic control for automatic transmission wherein sequential clutch engagement is controlled by an accumulator

    SciTech Connect

    Oguri, K.

    1987-05-19

    A hydraulic control is described for an automatic transmission which comprises, in combination: a source of operating fluid; and an accumulator having a working chamber fluid-connected with the first fluid passage. The accumulator comprises a piston and a spring for urging the piston in one direction, the piston comprising a switching member which controls the supply of operating fluid to the second fluid passage. The switching member is operable to establish the second fluid passage when the operating fluid supplied into the working chamber attains a predetermined value required to displace the piston against the spring to regulate the pressure of the operating fluid for minimizing a shock which would result when one of the first and second friction coupling members is brought into the coupled position.

  7. Stability analysis of free piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  8. Quantum optomechanical piston engines powered by heat

    NASA Astrophysics Data System (ADS)

    Mari, A.; Farace, A.; Giovannetti, V.

    2015-09-01

    We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. From a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.

  9. Heat Treat of 3Z Valve Piston

    SciTech Connect

    Hern, P.J.

    1999-04-22

    To improve the processing of 3Z valve pistons in LF7 assemblies, material qualities are being investigated. After a review of the fracture toughness curve, it was noted that a change of a few degrees variation from the 900 F called for by the drawing would affect the fracture toughness of the product. After this observation it was decided to determine how close to the 900 F the parts were heat-treated. The subsequent study indicated that Federal Manufacturing & Technologies (FM&T) equipment held the product at 900 F {+-} 1.8 F.

  10. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  11. Fluorocarbon seal replaces metal piston ring in low density gas environment

    NASA Technical Reports Server (NTRS)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  12. Experiment on performance of adjustable jet pump

    NASA Astrophysics Data System (ADS)

    Zhu, J. M.; Long, X. P.; Zhang, S. B.; Lu, X.

    2012-11-01

    When the water level of upper or lower reaches of hydraulic power station changes, the adjustable jet pump which is different from traditional fixed jet pump can maintain stable pressure and flow rate for the system of technical water supply of hydraulic power plant. The model test indicates that the efficiency of the adjustable jet pump is slightly lower than fixed jet pump near rating operation point. With the decrease of opening degree, both efficiencies are more and more close to each other. The fundamental performance of I-type adjustable jet pump is better than II-type and the cavitation performance of I-type adjustable jet pump is worse than II-type. Test data also indicate that the performance of adjustable jet pump is very different from fixed jet pump, so the theory of fixed jet pump is not able to be copied to adjustable jet pump. It is necessary to farther study on the performance of the adjustable jet pump. This paper has reference value for analogous design of system of circulation water supply to turbine units in hydraulic power station.

  13. CNC grinding of valve housing piston holes

    SciTech Connect

    Ashbaugh, F.A.

    1991-11-01

    Grinding has traditionally been used for machining operations requiring close dimensional tolerances and better surface finishes than can be obtained from other metal removal techniques. Using a grinding process for the last metal removal operation, the close tolerances and surface finishes can be easily held while eliminating the adverse conditions from the current metal removal processes. Pre-machined test parts were sent to a machine tool supplier to have the critical inside features of a typical piston bore finish machined using an internal CNC grinder equipped with high-frequency spindles. The piston bore and sealing angle were ground using a standard 120-grit silicon carbide wheel. The wafer step was machined using a solid carbide tool designed and built at Allied-Signal Inc., Kansas City Division (KCD). Six consecutive parts were machined for evaluation. The repeatability on all six parts was within print requirements. The inside corner radii was less than 0.002 in. and the surface finish was 8.2 arithmetical average or better as defined by ANSI B46.1, Surface Texture. Machining parts by this grinding process would eliminate bellmouth, chatter, waviness, and traveler polishing operations. It would produce a superior surface finish, small inside radii, and small easily removable burrs. It would also hold tolerances closer and significantly reduce scrap, rework, rejects, and deviations. 1 fig.

  14. Spectral Functions for Generalized Piston Configurations

    NASA Astrophysics Data System (ADS)

    Morales-Almazan, Pedro Fernando

    In this work we explore various piston configurations with different types of potentials. We analyze Laplace-type operators P = --gij 1Ei1Ej + V where V is the potential. First we study delta potentials and rectangular potentials as examples of non-smooth potentials and find the spectral zeta functions for these piston configurations on manifolds I x N , where I is an interval and N is a smooth compact Riemannian d - 1 dimensional manifold. Then we consider the case of any smooth potential with a compact support and develop a method to find spectral functions by finding the asymptotic behavior of the characteristic function of the eigenvalues for P. By means of the spectral zeta function on these various configurations, we obtain the Casimir force and the one-loop effective action for these systems as the values at s = -1/2 and the derivative at s = 0. Information about the heat kernel coefficients can also be found in the spectral zeta function in the form of residues, which provide an indirect way of finding this geometric information about the manifold and the operator.

  15. 130. RELAY SWITCHES AT SOUTH END OF HYDRAULIC CONTROL PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. RELAY SWITCHES AT SOUTH END OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. 124. ACCUMULATORS AT LOWER RIGHT SIDE OF HYDRAULIC CONTROL PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. ACCUMULATORS AT LOWER RIGHT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 129. INTERIOR OF RELAY BOX FOR HYDRAULIC CONTROL PANEL IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. INTERIOR OF RELAY BOX FOR HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 107. UMBILICAL MAST HYDRAULIC CONTROL PANEL IN CENTER OF ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. UMBILICAL MAST HYDRAULIC CONTROL PANEL IN CENTER OF ROOM UMBILICAL MAST PUMP ROOM (109), LSB (BDLG. 770), FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. 108. ACCUMULATORS AT LOWER RIGHT SIDE OF HYDRAULIC CONTROL PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. ACCUMULATORS AT LOWER RIGHT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 111. RELAY BOX AND SWITCHES AT SOUTH END OF HYDRAULIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. RELAY BOX AND SWITCHES AT SOUTH END OF HYDRAULIC CONTROL PANEL, UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Design and Operation of a Borehole Straddle Packer for Ground-Water Sampling and Hydraulic Testing of Discrete Intervals at U.S. Air Force Plant 6, Marietta, Georgia

    USGS Publications Warehouse

    Holloway, Owen G.; Waddell, Jonathan P.

    2008-01-01

    A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted

  2. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  3. External combustion engine with improved piston and crankshaft linkage

    SciTech Connect

    Lopez, F.

    1991-03-12

    This patent describes improvement in an external heat engine having a piston mounted for movement between a first position and a second position, means for forcibly moving the piston from the first position to the second position (power stroke), a crankshaft rotatable about a main axis, and means for linking the piston and crankshaft so that linear movement of the piston from the first position to the second position during the power stroke is transformed into rotational movement of the crankshaft, the power stroke corresponding to a first portion of one rotation of the crankshaft about the main axis, the piston moving from the second position to the first position during a second portion of one rotation of the crankshaft (compression stroke). The improvement comprises: means for linking the piston and crankshaft comprises a rotatable member; means connected to the piston for rotatably supporting the rotatable member, the rotatable member being rotatable about a first point and being connected to the crankshaft at a second point offset from the first point, for rotation about the first point in response to rotation of the crankshaft about its main axis, the first point being disposed so that when the piston is in the first position, the first point is substantially aligned with the main axis of the crankshaft during a third portion of one rotation of the crankshaft about the main axis.

  4. Piston ring microwelding: Field/lab correlation and prevention

    SciTech Connect

    Shuster, M.; Mahler, F.; Deis, M.; Macy, D.; Frame, R.

    1996-12-31

    This paper will discuss the microwelding phenomenon between aluminum pistons and iron piston rings in internal combustion engines. The mechanism of microwelding as observed on field run engine hardware has been correlated with the microwelding mechanism generated in an accelerated laboratory bench test. Hardness distribution measurements, metallography, scanning electron microscopy, and EDS spectrometer have been used in the analysis of this surface damage mechanism. In this work, the metallurgical parameters were formulated which describe the microwelding phenomenon after field usage and after accelerated testing. It was demonstrated that the high output water-cooled two-stroke engine accelerated bench test reproduces the field run engine microwelding phenomenon in 30 minutes. It was shown that the best prevention of the microwelding phenomenon was provided when the piston and piston ring surfaces were separated by a soft, wear and heat resistant coating, integrally bonded to the piston ring.

  5. Afterbay, looking west at the discharge channels and hydraulic gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, looking west at the discharge channels and hydraulic gate check cylinders. The outlet at left without a hydraulic cylinder is the outlet for the ca. 1974-1975 outdoor regulatory pumps. The gate box for the spillback is visible at the far left on the west side of the canal - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  6. 92. STARBOARD CATAPULT HYDRAULIC MANIFOLD FORWARD LOOKING AFT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. STARBOARD CATAPULT HYDRAULIC MANIFOLD - FORWARD LOOKING AFT SHOWING THE SEVEN (7) DISCHARGE LINES FROM THE SEVEN (7) HYDRAULIC PUMPS THROUGH SHUT-OFF VALVES TO ACCUMULATOR TANKS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  7. 40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE HOISTS IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE HYDRAULIC OIL TANK AT UPPER RIGHT AND SCHEMATIC DRAWING OF PUMPING SYSTEM AT LEFT. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  8. 127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON UPPER RIGHT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. 125. HYDRAULIC CONTROLS FOR MAST TRENCH DOORS ON LEFT SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. HYDRAULIC CONTROLS FOR MAST TRENCH DOORS ON LEFT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 69. (Credit JTL) View beneath marble meter bench showing hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. (Credit JTL) View beneath marble meter bench showing hydraulic lines leading to water valve hydraulic control cylinders from control handles in bench; strings and pulleys activate meters. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  11. A Hydraulic Blowdown Servo System For Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  12. Bipropellant propulsion with reciprocating pumps

    NASA Astrophysics Data System (ADS)

    Whitehead, John C.

    1993-06-01

    A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.

  13. Thermo-optical piston in gases

    SciTech Connect

    Chermyaninov, I. V.; Chernyak, V. G.

    2014-12-09

    The new steady state of the gas – thermo-optical pressure difference is considered. This condition occurs in the gas that is in a closed capillary in the field of resonant laser radiation and a temperature gradient. The pressure difference at the ends of the capillary is determined by the interaction of three fluxes – thermal creep, the light-induced drift and Poiseuille flux. Laser radiation and the temperature gradient play the role of thermo-optical piston (TOP) which compresses the gas in different ends of the capillary. The problem is solved based on the linearized Boltzmann kinetic equations that take into account the induced and spontaneous transitions in atoms or molecules. Expressions for the kinetic coefficients defining TOP-effect are obtained in the case of a nearly free-molecular regime. Numerical estimates of the TOP-effect are given for sodium vapor.

  14. New Outboard Motor Firing on All Pistons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Seven years ago, NASA was in the planning stages of producing an aluminum alloy with higher strength and resistance at elevated temperatures for aerospace applications. At that time, a major automobile manufacturer happened to approach NASA for solutions to lowering engine emissions and the costs associated with developing aluminum engine pistons. The Space Agency realized the answers to the manufacturer's problems could lie within the proposed alloy. Jonathan Lee, a structural materials engineer at Marshall Space Flight Center s Materials, Processes, and Manufacturing Department, and PoShou Chen, a scientist with Huntsville, Alabama-based Morgan Research Corporation, partook in the development project as the inventors. The resulting NASA High-Strength Aluminum Alloy, or "MSFC-398," was capable of casting metal components at both high volume and low cost, making it extremely attractive for commercial application, not just in automotives, but in a variety of other industries, as well. NASA patented the technology and introduced it for public licensing in 2001.

  15. Ultralean combustion in general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1979-01-01

    The role of ultralean combustion in achieving fuel economy in general aviation piston engines was investigated. The aircraft internal combustion engine was reviewed with regard to general aviation requirements, engine thermodynamics and systems. Factors affecting fuel economy such as those connected with an ideal leanout to near the gasoline lean flammability limit (ultralean operation) were analyzed. A Lycoming T10-541E engine was tested in that program (both in the test cell and in flight). Test results indicate that hydrogen addition is not necessary to operate the engine ultralean. A 17 percent improvement in fuel economy was demonstrated in flight with the Beechcraft Duke B60 by simply leaning the engine at constant cruiser power and adjusting the ignition for best timing. No detonation was encountered, and a 25,000 ft ceiling was available. Engine roughness was shown to be the limiting factor in the leanout.

  16. Hydraulic fracturing-1

    SciTech Connect

    Not Available

    1990-01-01

    This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

  17. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump. PMID:17813707

  18. Spiral groove seal. [for hydraulic rotating shaft

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  19. Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump

    NASA Astrophysics Data System (ADS)

    Ji, J. J.; Luo, X. W.; Y Wu, Q.

    2013-12-01

    In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.

  20. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  1. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  2. Hot piston ring/cylinder liner materials: Selection and evaluation

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1988-01-01

    In current designs of the automotive (kinematic) Stirling engine, the piston rings are made of a reinforced polymer and are located below the pistons because they cannot withstand the high temperatures in the upper cylinder area. Theoretically, efficiency could be improved if hot piston rings were located near the top of the pistons. Described is a program to select piston ring and cylinder coating materials to test this theory. Candidate materials were screened, then subjected to a pin or disk friction and wear test machine. Tests were performed in hydrogen at specimen temperatures up to 760 C to simulate environmental conditions in the region of the hot piston ring reversal. Based on the results of these tests, a cobalt based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring reduced specific fuel consumption by up to 7 percent for some operating conditions and averaged about 3 percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as back-up lubricants are also described.

  3. Quasi-steady Bingham plastic analysis of an electrorheological flow mode bypass damper with piston bleed

    NASA Astrophysics Data System (ADS)

    Lindler, Jason; Wereley, Norman M.

    2003-06-01

    We present an improved experimental validation of our nonlinear quasi-steady electrorheological (ER) and magnetorheological damper analysis, using an idealized Bingham plastic shear flow mechanism, for the flow mode of damper operation with leakage effect. To validate the model, a double-acting ER valve or bypass damper was designed and fabricated. Both the hydraulic cylinder and the bypass duct have cylindrical geometry, and damping forces are developed in the annular bypass via Poiseuille flow. The ER fluid damper contains a controlled amount of leakage around the piston head. The leakage allows ER fluid to flow from one side of the piston head to the opposite side without passing through the ER bypass. For this flow mode damper, the damping coefficient, defined as the ratio of equivalent viscous damping of the Bingham plastic material, Ceq, to the Newtonian viscous damping, C, is a function of the non-dimensional plug thickness only. The damper was tested for varying conditions of applied electric field and frequency using a mechanical damper dynamometer. In this analysis, the leakage damping coefficient with incorporated leakage effects, predict the amount of energy dissipated for a complete cycle of the piston rod. Measured force verses displacement cycles for multiple frequencies and electric fields validate the ability of the non-dimensional groups and the leakage damping coefficient to predict the damping levels for an ER bypass damper with leakage. Based on the experimental validation of the model using these data, the Bingham plastic analysis is shown to be an effective tool for the analysis-based design of double-acting ER bypass dampers.

  4. Rotating-Pump Design Code

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Chen, Shu-Cheng; Scheer, Dean D.

    2006-01-01

    Pump Design (PUMPDES) is a computer program for designing a rotating pump for liquid hydrogen, liquid oxygen, liquid nitrogen, water, methane, or ethane. Using realistic properties of these fluids provided by another program called GASPAK, this code performs a station-by-station, mean-line analysis along the pump flow path, obtaining thermodynamic properties of the pumped fluid at each station and evaluating hydraulic losses along the flow path. The variables at each station are obtained under constraints that are consistent with the underlying physical principles. The code evaluates the performance of each stage and the overall pump. In addition, by judiciously choosing the givens and the unknowns, the code can perform a geometric inverse design function: that is, it can compute a pump geometry that yields a closest approximation of given design point. The code contains two major parts: one for an axial-rotor/inducer and one for a multistage centrifugal pump. The inducer and the centrifugal pump are functionally integrated. The code can be used in designing and/or evaluating the inducer/centrifugal-pump combination or the centrifugal pump alone. The code is written in standard Fortran 77.

  5. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  6. Loss terms in free-piston Stirling engine models

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  7. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  8. Afterbay, looking north at hydraulic gate check cylinders and lamps. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, looking north at hydraulic gate check cylinders and lamps. The gate lift in the foreground is an addition associated with the ca. 1974-1975 regulatory pumps - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  9. Afterbay, showing the six discharge channels and six hydraulic gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, showing the six discharge channels and six hydraulic gate check cylinders, one for each of the discharge pipes. A stilling well is in the right foreground, and the Pumping Plant is visible in the background. View to the north - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  10. Simulation and control of an electro-hydraulic actuated clutch

    NASA Astrophysics Data System (ADS)

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu

    2011-08-01

    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  11. Hydraulic servo for friction coupling element of automatic transmission

    SciTech Connect

    Sumiya, K.; Watanabe, K.; Kubo, S.

    1987-09-01

    A hydraulic servo is described for a friction coupling element in an automatic transmission including a casing, comprising: an annular drum fixed to the automatic transmission casing and having an outer cylinder, as in inner cylinder, a sidewall connecting the outer and inner cylinders, and an intermediate cylinder connected to the sidewall between the outer and inner cylinders to divide the interior of the drum into outer and inner annular spaces; a piston slidably mounted within the outer annular space, between the outer and intermediate cylinders, the piston having a terminal axially extending guide sleeve portion; and return biasing means including: a connecting member having one end fixed to the piston and abutting the guide sleeve portion and the other end located in the inner annular space, between the inner cylinder and the intermediate cylinder; a retainer fixed to the inner cylinder, at a position axially inward of the guide sleeve with respect to the sidewall when the piston is fully retracted, and; return springs interposed within the inner annular space between the other end of the connecting member and the retainer.

  12. Pumping test evaluation of stream depletion parameters.

    PubMed

    Lough, Hilary K; Hunt, Bruce

    2006-01-01

    Descriptions are given of a pumping test and a corresponding analysis that permit calculation of all five hydrogeological parameters appearing in the Hunt (2003) solution for stream depletion caused by ground water abstraction from a well beside a stream. This solution assumes that flow in the pumped aquifer is horizontal, flow in the overlying aquitard or system of aquitards is vertical, and the free surface in the top aquitard is allowed to draw down. The definition of an aquitard in this paper is any layer with a vertical hydraulic conductivity much lower than the horizontal hydraulic conductivity of the pumped aquifer. These "aquitards" may be reasonably permeable layers but are distinguished from the pumped aquifer by their hydraulic conductivity contrast. The pumping test requires a complete set of drawdown measurements from at least one observation well. This well must be deep enough to penetrate the pumped aquifer, and pumping must continue for a sufficient time to ensure that depleted streamflow becomes a significant portion of the well abstraction rate. Furthermore, two of the five parameters characterize an aquitard that overlies the pumped aquifer, and values for these parameters are seen to be dependent upon the initial water table elevation in the aquitard. The field test analyzed herein used a total of eight observation wells screened in the pumped aquifer, and measurements from these wells gave eight sets of parameters that are used in a sensitivity analysis to determine the relative importance of each parameter in the stream depletion calculations. PMID:16857031

  13. Stirling Engines and Irrigation Pumping

    SciTech Connect

    West, C.D.

    1987-01-01

    This report was prepared in support of the Renewable Energy Applications and Training Project that is sponsored by the U.S. Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M4 and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison.

  14. A new oil-free mechanical vacuum pump

    NASA Astrophysics Data System (ADS)

    Bez, E.; Guarnaccia, D.; Hablanian, M.

    1988-09-01

    A number of entirely oil-free, four-stage reciprocating-piston vacuum pumps which produce an ultimate pressure of approximately 15 mTorr have been in operation for periods approaching two years. These pumps have been used for pre-evacuation of high and ultra-high vacuum chambers and devices, backing of turbomolecular pumps, molecular drag pumps and Roots-type blowers, regeneration of cryo-pumps, pumping of vacuum furnances and process chambers for degassing solids and liquids. Basic performance characteristics are generally similar to conventional mechanical vacuum pumps with a comparable ultimate pressure but with the advantage of being free of hydrocarbons in the residual gas content. Practical operational experience regarding longevity, maintenance requirements, inlet pressure, and power relationships are presented.

  15. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA).

    SciTech Connect

    Leick, Michael T.; Moses, Ronald W.

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.

  16. 13. View of disassembled steam engine showing cylinder, piston rod, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of disassembled steam engine showing cylinder, piston rod, parallel motion links and steam chest. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  17. Inducing dynamical bistability by reversible compression of an optical piston

    NASA Astrophysics Data System (ADS)

    Schnoering, Gabriel; Genet, Cyriaque

    2015-04-01

    We study the reversible crossover between stable and bistable phases of an overdamped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers's theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat balanced between potential energy changes and the total amount of work performed by the piston. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.

  18. 26. Detail showing piston which is one of two steam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Detail showing piston which is one of two steam powered drive units for winches for Marine Railways #1. and #2, Marine Railway Headhouse. - Thames Tow Boat Company, Foot of Farnsworth Street, New London, New London County, CT

  19. Turbocharger with sliding piston, and having vanes and leakage dams

    DOEpatents

    Roberts, Quentin; Alnega, Ahmed

    2011-12-06

    A turbocharger having a sliding piston for regulating exhaust gas flow into the turbine wheel includes a set of first vanes mounted on a fixed first wall of the turbine nozzle and projecting axially toward an opposite second wall of the nozzle, and/or a set of second vanes mounted on the end of the piston and projecting in an opposite axial direction toward the first wall of the nozzle. For the/each set of vanes, there are leakage dams formed on the wall that is adjacent the vane tips when the piston is closed. The leakage dams are closely adjacent the vane tips and discourage exhaust gas from leaking in a generally radial direction past the vane tips as the piston just begins to open from its fully closed position.

  20. Performance of a New Lightweight Reciprocating Pump

    SciTech Connect

    Whitehead, J C

    2005-06-09

    A new four-chamber piston pump design has been fabricated and tested. The small-scale propellant pump is intended to be powered by gas at elevated temperatures, e.g. in a gas-generator cycle rocket propulsion system. Two key features are combined for the first time: leak-tight liquid-cooled seals, and a high throughput per unit hardware mass. Measured performance curves quantify flows, pressures, leakage, volumetric efficiency, and tank pressure requirements. A pair of 300-gram pumps operating with significant margin could deliver fuel and oxidizer at 5 MPa to a compact lightweight 1000-N engine, while tank pressure remains at 0.35 MPa. Pump weight is well below one percent of thrust, as is typical for launch vehicle engines. Applications include small upper stages, aggressive maneuvers in space, and miniature launch vehicles for Mars ascent.

  1. Trouble-free hydraulic valve package for crane winches

    SciTech Connect

    DeLamatyr, G.

    1983-12-01

    Baker Marine Corporation has been producing hydraulically powered pedestal type cranes for the offshore industry for approximately three years. The original hydraulic system cranes was of the open loop type with multiple gear pumps driven by a single diesel engine. One pump in the stack serviced the main and auxiliary hook winches, while another worked the boom winch, and a third pump sent oil to the crane swing motor. For reasons of economy and simplicity, it was decided that this scheme would be kept as part of the new design.

  2. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  3. Structural design of Stirling engine with free pistons

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  4. A contribution to film coefficient estimation in piston cooling galleries

    SciTech Connect

    Torregrosa, A.J.; Broatch, A.; Olmeda, P.; Martin, J.

    2010-02-15

    The need to reduce fuel consumption and exhaust emissions in internal combustion engines has been drastically increased during last years. One of the most important processes affecting these parameters is heat transfer from the in-cylinder gas to the surrounding walls, as this mechanism has a direct influence on the combustion process. Regarding the different walls (liner, cylinder head and piston surfaces), heat flow to the piston is especially important, as it is essential to avoid excessively high temperatures that could result in material damage and/or oil cracking. With this purpose different cooling strategies are used, among which the improvement of the piston cooling system by using oil galleries is preferred. In this work, the heat flow through the oil gallery in a Diesel piston was investigated on a dedicated test bench. This bench consists of a controlled heat source and a piston oil cooling system in which different test conditions were evaluated in order to obtain a correlation for the film coefficient associated with piston oil cooling. These experimental results were then incorporated into a lumped model for engine heat transfer. Finally, in order to evaluate the accuracy of this model and the effects of the correlation for oil gallery coefficient on engine heat flows, results obtained on a conventional engine test bench equipped with a Diesel engine, in which two piston temperatures had been measured, were used. The results show an improvement in piston temperature predictions when compared with those obtained using a previously reported expression for the calculation of the oil film coefficient. (author)

  5. A Gas Pressure Scale Based on Primary Standard Piston Gauges

    PubMed Central

    Olson, Douglas A.; Driver, R. Greg; Bowers, Walter J.

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine their effective area and expanded (k = 2) uncertainty. Two piston gauges operating to 7 MPa were compared to the 1.4 MPa gauges, and two piston gauges operating to 17 MPa were compared to the 7 MPa gauges. Distortion in the 7 MPa piston gauges was determined by comparing those gauges to a DH Instruments PG7601 type piston gauge, whose distortion was calculated using elasticity theory. The relative standard uncertainties achieved by the primary standards range from 3.0 × 10−6 to 3.2 × 10−6. The relative standard uncertainty of the secondary standards is as low as 4.2 × 10−6 at 300 kPa. The effective areas and uncertainties were validated by comparison to standards of other National Metrology Institutes (NMIs). Results show agreement in all cases to better than the expanded (k = 2) uncertainty of the difference between NIST and the other NMIs, and in most cases to better than the standard (k = 1) uncertainty of the difference. PMID:27134793

  6. Thermal Hydraulic Computer Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-07-16

    Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

  7. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  8. Piston designs keep pace with increased engine performance

    SciTech Connect

    Mullins, P.

    1996-12-01

    Piston technology for medium-speed diesel engines is having to keep pace with steadily increasing engine performance criteria. Specific output of medium-speed diesel engines has increased some 50% since 1970, according to Walter Griffiths, chief engineer at the UK-based AE Geotze Special Products Ltd. To satisfy the higher performance now required, a two-piece piston has been developed and went into production in 1995. This type still uses an aluminum alloy forged body, but incorporates a steel crown. The composite piston can carry higher engine ratings and resists the abrasive deposits formed by heavy fuel operation. It has become well established for bore sizes above 300 mm and is becoming increasingly specified for engines down to 200 mm. The latest solution to the carbon deposits on the top of the piston that has gained widespread acceptance within the industry is to reduce the diameter of the bore above the top ring and cut back the top land to maintain the normal operating clearance. This requires an insert to be fitted into the liner after the piston has been assembled. The effect is to limit the carbon build-up on the top land to a specific diameter, which is always less than the bore diameter. Thus there is no possibility of top land contact with the bore over the effective stroke of the piston rings. 2 figs.

  9. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  10. Method for hydraulic fracturing cased wellbores

    SciTech Connect

    Schmidt, J.H.

    1991-12-24

    This patent describes a method of hydraulically fracturing a cased wellbore in an earth formation. It comprises determining the angle with respect to the wellbore axis and a reference point on the circumference of the wellbore which will provide for initiation of a hydraulic fracture in the formation which will turn with the largest radius of curvature into a fracture plane normal to the minimum in situ stress in the formation; perforating the wellbore casing at the angle with respect to the reference point; initiating a hydraulic fracture in the formation by pumping a liquid through the perforation and into the formation to force the initiation of a fracture in the formation at a point which develops the highest tensile stress in the formation in relation to increasing the hydraulic pressure in the wellbore; extending the fracture by pumping a relatively proppant-free quantities of proppant per unit volume of pumped fluid and in successive discrete stages of increasing proppant density to provide a propped portion of increasing proppant density to provide a propped portion of the fracture in the near wellbore region of the fracture which will prevent reclosing of the fracture in the near wellbore region.

  11. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  12. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  13. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  14. Space Power Free-Piston Stirling Engine Scaling Study

    NASA Technical Reports Server (NTRS)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  15. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  16. An analytical model for hydraulic fracturing in shallow bedrock formations.

    PubMed

    dos Santos, José Sérgio; Ballestero, Thomas Paul; Pitombeira, Ernesto da Silva

    2011-01-01

    A theoretical method is proposed to estimate post-fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos-Cooper model (1967), which includes wellbore storage effects, and the Gringarten-Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008), which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post-fracturing geometry and resulting post-fracturing well yield can be estimated before the actual hydrofracturing. PMID:20572875

  17. Rapid field application of hydraulic tomography

    NASA Astrophysics Data System (ADS)

    Brauchler, R.; Hu, R.; Hu, L.; Parras, S. J.; Bayer, P.; Dietrich, P.; Ptak, T.

    2013-12-01

    The motivation of this field study is the need for investigation methods that are both rapid and well suited for resolving the spatial distribution of hydraulic properties in aquifers. Therefore, we propose a field strategy for hydraulic tomography that can be analyzed and performed with a similar speed as direct-push profiling. The field implementation is designed in a way that a suite of tomographic measurements can be recorded in one day. We utilize direct-push technology for the well installation and limit the pumping time to 300 s, which permits us to record 30 transient pressure response curves between two wells in one working day. For the inversion, we applied a computationally efficient inversion scheme which is based on the transformation of the ground water flow equation into a form of the eikonal equation. By exploiting the early part of a transient hydraulic pressure response recorded during cross-well tests only short-term pumping tests are required. The main advantages of the inversion scheme are the low computational requirements of eikonal solvers and that no information about the hydraulic boundaries is needed. The short pumping time in combination with the straightforward inversion technique allows for the reconstruction of hydraulic conductivity and specific storage distributions already in the field, which is particularly useful for an adaptive site investigation approach. Additionally, direct-push injection logging is performed at the field site, and the obtained field data is utilized for successful validation of the hydraulic tomograms. We also compare both methods with respect to the necessary requirements, time demand in the field and complexity of interpretation.

  18. Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    NASA Technical Reports Server (NTRS)

    Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.

    1972-01-01

    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.

  19. The development of a free-piston Stirling engine power conversion system for multiple applications utilizing alternative fuel sources

    NASA Astrophysics Data System (ADS)

    Marusak, T. J.

    The thermodynamic and mechanical advantages of free-piston Stirling engines developed to date by NASA, and their future potential as small powerplants, are discussed. Applications include heat-pumps, mobile electric power systems, solar thermal electric power generation and multiple heat source-capability power systems. Existing prototypes have demonstrated engine efficiencies of 33% even at low output levels, and an advanced design capable of 40% efficiency and an output power of more than 3 kW is currently undergoing extensive testing.

  20. Mathematic Modeling of Complex Hydraulic Machinery Systems When Evaluating Reliability Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Yu; Shipovalov, A. N.; Zemenkov, Yu D.

    2016-04-01

    The main technological equipment of pipeline transport of hydrocarbons are hydraulic machines. During transportation of oil mainly used of centrifugal pumps, designed to work in the “pumping station-pipeline” system. Composition of a standard pumping station consists of several pumps, complex hydraulic piping. The authors have developed a set of models and algorithms for calculating system reliability of pumps. It is based on the theory of reliability. As an example, considered one of the estimation methods with the application of graph theory.

  1. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    NASA Astrophysics Data System (ADS)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  2. Piston temperature measurement in a natural gas engine. Topical report, January-December 1990

    SciTech Connect

    Burrahm, R.W.; Davis, J.K.

    1991-04-01

    The objective of the research was to determine piston operating temperatures in a high-output natural gas-fueled 454 Chevrolet engine using an SwRI developed telemetry-based system and to perform validation testing to verify the effect of piston cooling on engine durability. The project was part of the GRI program to develop a cost effective natural gas-fueled prime mover in the 300 horsepower range. The problem of piston cracking with the development piston in this natural gas engine can be overcome if sufficient data is accumulated to allow a better piston to be designed. Adequate piston temperature data are prerequisite to performing FEA modeling during the design of new pistons. The particular project was directed at obtaining this data as well as exploring the effects of piston cooling and operating conditions on piston temperatures. Piston temperature data was obtained at various engine speeds and loads including 300 horsepower at 3,600 rpm. Crown temperatures were recorded in excess of 500 F while piston pin boss and skirt temperatures remained at or below 300 F. The effects of limited piston cooling were explored at 300 horsepower. At low piston cooling oil flow rates, no decrease in piston crown temperatures were observed.

  3. A system to damp the free piston oscillations in a two-stage light-gas gun used for hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Pavarin, D.; Francesconi, A.; Angrilli, F.

    2004-01-01

    Hypervelocity impact experiments that reproduce on-orbit collisions between micrometeoroids or orbital debris and space structures are commonly performed by means of propellant-driven two-stage light-gas guns. Such devices accelerate projectiles using the thrust of a light propellant gas that is compressed to high pressure and temperature by a piston running in a pump tube. Though these guns have the unique capability of accelerating particles up to 9 km/s, many components of the gun must be checked and/or substituted after each shot making test sessions long and expensive. In order to have a lot of and many different types of hypervelocity impact data, the Center of Studies and activities for Space CISAS "G. Colombo" of Padua University developed a high-shot-frequency two-stage light-gas gun that can increase the shot repetition rate of standard facilities by a factor of 5 or more and at the same time reduce the shot cost by a factor of 2 or more. This is made possible through the use of special mechanical and diagnostic solutions that were designed to operate the gun for more than 50 shots in sequence without having to carry out maintenance operations. This article presents the design and operation of the CISAS two-stage light-gas gun damping system, which is one of the subsystems that makes it possible to achieve high-shot frequency. The damping system is in charge of controlling the piston oscillations in the pump tube, making it possible for the piston to withstand more than 100 shots without any damage. In particular, the damping system avoids piston strikes onto the gun head at the end of each compression stroke and allows the piston to be positioned at the base of the pump tube after each shot. The sensitivity of the piston oscillations to the damping operations and main subsystem design parameters were identified using numerical simulations, carried out according to a model that describes every working phase of the gun. Moreover, in this paper, the

  4. Low head, high volume pump apparatus

    DOEpatents

    Avery, Don E.; Young, Bryan F.

    1989-01-01

    An inner cylinder and a substantially larger outer cylinder are joined as two verticle concentric cylinders. Verticle partitions between the cylinders divide the space between the cylinders into an inlet chamber and an outlet chamber which is substantially larger in volume than the inner chamber. The inner cylinder has a central pumping section positioned between upper and lower valve sections. In the valve section ports extend through the inner cylinder wall to the inlet and outlet chambers. Spring loaded valves close the ports. Tension springs extend across the inlet chamber and compression springs extend across the inner cylinder to close the inlet valves. Tension springs extend across the inner cylinder the close the outlet valves. The elastomeric valve flaps have rigid curved backing members. A piston rod extends through one end cover to move a piston in the central section. An inlet is connected to the inlet chamber and an outlet is connected to the outlet chamber.

  5. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    NASA Astrophysics Data System (ADS)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in

  6. Mapping Three-Dimensional Hydraulic Heterogeneities in Fractured Granite through Transient Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Zha, Y.; Yeh, T. C. J.; Illman, W. A.; Tanaka, T.; Bruines, P.; Onoe, H.; Saegusa, H.; Mao, D.

    2014-12-01

    Between 2005 and 2010, three independent sequential pumping tests were conducted in a fractured granite formation at the Mizunami Underground Research Laboratory (MIU) site in central Japan. Additional pumping operations were undertaken in the course of excavation of two vertical shafts at the site. During these events, groundwater responses were monitored in multiple observation intervals in several shallow and deep boreholes. In this study, we first visually inspected these responses at all observation intervals induced by each pumping event. We found that some intervals at far-distance boreholes showed rapid, and strong responses, while intervals of boreholes near the vicinity of the pumping locations showed little responses. Moreover, the locations of the rapid and slow responses varied with pumping locations. This preliminary inspection suggested that some boreholes are likely connected via fractures and some are separated by flow barrier(s). Subsequently, these drawdown data sets were analyzed using a three-dimensional (3-D) transient hydraulic tomography (HT) code to estimate the hydraulic conductivity (K) and specific storage (Ss) distributions. Results of the analysis depicted several large-scale high K and low K zones and some small-scale features at the MIU site. The locations of these high and low K estimates explain the observed fast and slow groundwater responses, and corroborate with the locations of fractures and fault zones estimated based on geologic information. The HT analysis nevertheless provides a detailed description of the hydraulic characteristics of the fracture and fault zones.

  7. Research on One Borehole Hydraulic Coal Mining System

    NASA Astrophysics Data System (ADS)

    XIA, Bairu; ZENG, Xiping; MAO, Zhixin

    The Borehole Hydraulic Coal Mining System (BHCMS) causes fragmentation of coal seams and removes coal slump through a drilled hole using high-pressure water jet. Then the mixture of coal and water as slurry are driven out of the borehole by hydraulic or air-lifting method, and are separated at the surface. This paper presents a case study of hydraulic borehole coal mining. The three key techniques of the BHCMS, namely, hydraulic lift of jet pump, air lift, and water jet disintegration are discussed and analyzed in this paper based on theoretical analysis and field experiments. Some useful findings have been obtained: (1) The design of jet pump, air lift system, and water jet has to be integrated appropriately in order to improve mining efficiency and coal recovery rate, and to decrease energy consumption. The design of hydraulic lift jet pump must meet the requirement of the minimum floating speed of coal particles. The optimization of nondimensional parameters and prevention of cavitation have to be considered in the design; (2) With regard to selecting the nozzle types of jet pump, center nozzle or annular nozzle can be selected according to the size of the removed particles; (3) Through air-lift and back pressure, the water head can be decreased to improve the lift capacity of jet pump and decrease the power loss. The air lift has great limitation if it is used solely to extract coal, but if it is employed in conjunction with jet pump, the lift capacity of jet pump can be increased greatly; (4) With water jets, the air lift can improve the fragmentation radius and capacity. The main factors that affect the effect of water jet are the submergible status of jet, jet pressure, and flowrate. The ideal jet of the monitor in the borehole hydraulic coal-mining system is a nonsubmergible free jet. Through air lift, the nonsubmergible free jet can be set up in the mining hole.

  8. Linear harmonic analysis of free-piston Stirling engines

    SciTech Connect

    Chen, N.C.J.; Griffin, F.P.

    1986-06-01

    The equations that govern the behavior of free-piston Stirling engines are nonlinear differential equations. Traditional solution methods have been time-stepping integrations that can be plagued by numerical instabilities and can use large amounts of computer time. Closed-form analytical solutions are possible if the working gas behaves isothermally or if the nonlinear terms in the governing equations are replaced with accurate approximations. An almost closed-form solution method, called the linear harmonic analysis (LHA), has been developed for free-piston Stirling engine applications by representing all of the periodic variables with harmonic functions. The solution method accounts for the important thermodynamic losses that are coupled together in free-piston engines, yet it is efficient enough for optimization studies. The LHA method was compared with a standard numerical integration method to verify its mathematical accuracy. The LHA and numerical predictions for a sample free-piston Stirling engine configuration differed by <5% for all important parameters. Sensitivity studies using the LHA method have also shown that the thermodynamic loss assumptions used in an analysis can have a significant impact on the predicted dynamic behavior of a free-piston Stirling engine.

  9. Numerical and semiclassical analysis of some generalized Casimir pistons

    SciTech Connect

    Schaden, M.

    2009-05-15

    The Casimir force due to a scalar field in a cylinder of radius r with a spherical cap of radius R>r is computed numerically in the world-line approach. A geometrical subtraction scheme gives the finite interaction energy that determines the Casimir force. The spectral function of convex domains is obtained from a probability measure on convex surfaces that is induced by the Wiener measure on Brownian bridges the convex surfaces are the hulls of. Due to reflection positivity, the vacuum force on the piston by a scalar field satisfying Dirichlet boundary conditions is attractive in these geometries, but the strength and short-distance behavior of the force depend strongly on the shape of the piston casing. For a cylindrical casing with a hemispherical head, the force on the piston does not depend on the dimension of the casing at small piston elevation a<piston near its periphery. A semiclassical estimate reproduces the numerical results for the small-distance behavior of the force within statistical errors, whereas the proximity force approximation is off by one order of magnitude when R{approx}r.

  10. Three-dimensional Casimir piston for massive scalar fields

    SciTech Connect

    Lim, S.C. Teo, L.P.

    2009-08-15

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a{sup 4} when a{yields}0{sup +} and decays exponentially when a{yields}{infinity}. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  11. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  12. MACAO-VLTI piston issue: achieving the interferometry requirements

    NASA Astrophysics Data System (ADS)

    Ivanescu, Liviu; Arsenault, Robin; Fedrigo, Enrico; Kasper, Markus E.; Oberti, Sylvain; Paufique, Jerome; Stroebele, Stefan

    2004-10-01

    MACAO-VLTI is a set of four adaptive optics systems dedicated to interferometry with the ESO 8 meter telescopes in Paranal, Chile. One of the most important requirements for the MACAO-VLTI is to keep the piston variations of the bimorph deformable mirror below 25 nm RMS in a time window of 48 msec. For this purpose, a piston removal algorithm has been developed, that uses a pre-calibrated set of voltages to compensate the natural piston of each influence function. This pre-calibration constitutes a critical laboratory measurement of the influence functions. Using Hadamard matrices, a (64 x 64) Shack-Hartman sensor and a capacitive sensor located at the center of the mirror (back-side), an accuracy better than 1% has been reached to characterize them. Various configurations were investigated to minimize the dynamical residual piston: the control matrix, the loop speed and the loop gain. Particular attention was paid to the influence functions non-linearities. An original indirect method was developed to measure the residual piston in real-time. We present here the methods and results obtained so far.

  13. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Flemig, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficiency of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficieny points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  14. Magnetic bearings for free-piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Curwen, P. W.; Flemig, D. P.; Rao, D. K.; Wilson, D. S.

    The feasibility and efficiency of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficieny points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  15. Magnetic bearings for free-piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-08-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  16. Hydraulic gradient control for groundwater contaminant removal

    USGS Publications Warehouse

    Fisher, Atwood D.; Gorelick, S.M.

    1985-01-01

    The Rocky Mountain Arsenal near Denver, Colarado, U.S.A., is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. The simulation-management model eliminates wells far from the plume perimeter and activates wells near the perimeter as the plume decreases in size. This successfully stablizes the hydraulic gradient during aquifer cleanup.The Rocky Mountain Arsenal near Denver, Colorado, USA, is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. Refs.

  17. Grout pump selection process for the Transportable Grout Facility

    SciTech Connect

    McCarthy, D.; Treat, R.L.

    1985-01-01

    Selected low-level radioactive liquid wastes at Hanford will be disposed by grouting. Grout is formed by mixing the liquid wastes with solid materials, including Portland cement, fly ash, and clay. The mixed grouts will be pumped to disposal sites (e.g., trenches and buried structures) where the grout will be allowed to harden and, thereby, immobilize the wastes. A Transportable Grout Facility (TGF) will be constructed and operated by Rockwell Hanford Operations to perform the grouting function. A critical component of the TGF is the grout pump. A preliminary review of pumping requirements identified reciprocating pumps and progressive cavity pumps as the two classes of pumps best suited for the application. The advantages and disadvantages of specific types of pumps within these two classes were subsequently investigated. As a result of this study, the single-screw, rotary positive displacement pump was identified as the best choice for the TGF application. This pump has a simple design, is easy to operate, is rugged, and is suitable for a radioactive environment. It produces a steady, uniform flow that simplifies suction and discharge piping requirements. This pump will likely require less maintenance than reciprocating pumps and can be disassembled rapidly and decontaminated easily. If the TGF should eventually require discharge pressures in excess of 500 psi, a double-acting duplex piston pump is recommended because it can operate at low speed, with only moderate flow rate fluctuations. However, the check valves, stuffing box, piston, suction, and discharge piping must be designed carefully to allow trouble-free operations.

  18. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  19. 25 kWe solar thermal stirling hydraulic engine system: Final conceptual design report

    SciTech Connect

    Not Available

    1988-01-01

    This report documents the conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to the 11-meter Test Bed Concentrator at Sandia National Laboratories. A manufacturing cost assessment for 10,000 units per year was made by Pioneer Engineering and Manufacturing. The design meets all program objectives including a 60,000-hr design life, dynamic balancing, fully automated control, >33.3% overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs of $300/kW. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high-pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk. The engine design is based on a highly refined Stirling hydraulic engine developed over 20 years as a fully implantable artificial heart power source. 4 refs., 19 figs., 3 tabs.

  20. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-off or other mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they... suction or to the cargo tank. (b) A liquid chlorine pump may not be installed on a cargo tank intended...

  1. 15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL SCALE: 1' = 26'). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  2. Variable speed pumping: A guide to successful applications - Executive summary

    SciTech Connect

    None, None

    2004-05-01

    This document is the result of a collaboration between the Hydraulic Institute, Europump, and the U.S. DOE Industrial Technologies Program, and describes the cost and energy savings potential of pumping applications with variable duty requirements.

  3. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  4. 18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ENGINEERING AIDE AT CONTROL BOX. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  5. The valvo-pump. An axial, nonpulsatile blood pump.

    PubMed

    Mitamura, Y; Yozu, R; Tanaka, T; Yamazaki, K

    1991-01-01

    The valvo-pump, an axial, nonpulsatile blood pump implanted at the heart valve position while preserving diseased heart muscle, has several advantages over an artificial heart replacement, including 1) a good anatomic fit to the natural heart, 2) less blood contacting surface, and 3) ease of implantation. The housing for the pump is a tube, 37 mm in diameter (maximum) and 33 mm in length. Within the housing there is an impeller with either 10 vanes (33 mm in diameter) or 5 vanes (22 mm in diameter). The impeller is connected to a samarium-cobalt-rare-earth magnet direct current (DC) brushless motor measuring 23.8 mm in diameter and 30.2 mm in length. Sealing is achieved by means of a magnetic fluid seal. A guiding wheel with 4 vanes is located behind the impeller. The pump was studied on a hydraulic mock circulatory system to evaluate its performance characteristics. A pump flow of 6.9 L/min was obtained at a pump differential pressure of 48 mmHg, and flow of 3.1 L/min was obtained at 58 mmHg. The valvo-pump can be made feasible by developing a small, high-output, power motor and an endurable seal, as well as by optimizing the impeller design. PMID:1751257

  6. Casimir piston for massless scalar fields in three dimensions

    SciTech Connect

    Edery, Ariel

    2007-05-15

    We study the Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in a three-dimensional cavity with sides of arbitrary lengths a, b, and c where a is the plate separation. We obtain an exact expression for the Casimir force on the piston valid for any values of the three lengths. As in the electromagnetic case with perfect-conductor conditions, we find that the Casimir force is negative (attractive) regardless of the values of a, b, and c. Though cases exist where the interior contributes a positive (repulsive) Casimir force, the total Casimir force on the piston is negative when the exterior contribution is included. We also obtain an alternative expression for the Casimir force that is useful computationally when the plate separation a is large.

  7. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  8. Hot piston ring/cylinder liner materials - Selection and evaluation

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1988-01-01

    A materials testing program to determine whether automotive Stirling engine efficiency can be improved by locating 'hot piston rings' near the top of the pistons is described. Candidate materials were screened theoretically and experimentally by friction and wear tests. Based on the test results, a cobalt-based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring did reduce specific fuel consumption by up to 7 percent for some operating conditions and averaged about three percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as backup lubricants for gas bearings are also described.

  9. Stochastic analysis of the hydraulic conductivity estimated for a heterogeneous aquifer via numerical modelling

    NASA Astrophysics Data System (ADS)

    Lu, C.; Zhang, Y.; Shu, L.; Chen, X.; Chen, S.; Li, S.; Wang, G.; Li, J.

    2015-05-01

    The paper aims to evaluate the impacts of the average hydraulic conductivity of the heterogeneous aquifer on the estimated hydraulic conductivity using the observations from pumping tests. The results of aquifer tests conducted at a karst aquifer are first introduced. A MODFLOW groundwater flow model was developed to perform numerical pumping tests, and the heterogeneous hydraulic conductivity (K) field was generated using the Monte Carlo method. The K was estimated by the Theis solution for an unconfined aquifer. The effective hydraulic conductivity (Ke) was calculated to represent the hydraulic conductivity of a heterogeneous aquifer. The results of numerical simulations demonstrate that Ke increase with the mean of hydraulic conductivity (EK), and decrease with the coefficient of variation of the hydraulic conductivity (Cv). The impact of spatial variability of K on the estimated Ke at two observation wells with smaller EK is less significant compared to the cases with larger EK.

  10. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity

  11. Transient two-phase performance of LOFT reactor coolant pumps

    SciTech Connect

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  12. Continuing Development for Free-Piston Stirling Space Power Systems

    NASA Astrophysics Data System (ADS)

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  13. Lightweight piston-rod assembly for a reciprocating machine

    DOEpatents

    Corey, John A.; Walsh, Michael M.

    1986-01-01

    In a reciprocating machine, there is provided a hollow piston including a dome portion on one end and a base portion on the opposite end. The base portion includes a central bore into which a rod is hermetically fixed in radial and angular alignment. The extending end of the rod has a reduced diameter portion adapted to fit into the central bore of a second member such as a cross-head assembly, and to be secured thereto in radial and axial alignment with the piston.

  14. Assembly for electrical conductivity measurements in the piston cylinder device

    DOEpatents

    Watson, Heather Christine; Roberts, Jeffrey James

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  15. Free-piston Stirling coolers for intermediate lift temperatures

    NASA Astrophysics Data System (ADS)

    Berchowitz, David M.

    Irreversibilities in Stirling cycle coolers are discussed with reference to designing machines for operation at warmer temperatures rather than cryogenic applications. It is shown that the sensitivity of the cycle to some losses is dependent on the temperature ratio. The free-piston configuration employs a linear motor which greatly reduces side loads and facilitates the implementation of noncontact gas bearings. Mechanism efficiencies are therefore much higher than in crank machines which leads to an overall performance advantage. It is expected that an optimized free-piston Stirling refrigerator cooler could exceed 60 percent of Carnot overall.

  16. Development free-piston Stirling test-bed engine

    NASA Astrophysics Data System (ADS)

    Dochat, G. R.; Vitale, N. G.; Moynihan, T. M.

    The free-piston Stirling Technology Demonstrator Engine (TDE) designed and instrumented to provide data to aid in understanding free-piston Stirling engine operation and performance, is described. It is noted that the system includes instrumentation to measure the internal thermodynamic operation and to permit calculation of system power flows. Near-term testing of the engine will assess three mechanisms for engine loss. It is pointed out that recent testing has demonstrated that the power and efficiency are strong functions of heater head temperature. A maximum power output of 1,800 watts and a thermodynamic efficiency of 30% have been demonstrated at 450 C and 40 bar.

  17. Homogeneous Charge Compression Ignition Free Piston Linear Alternator

    SciTech Connect

    Janson Wu; Nicholas Paradiso; Peter Van Blarigan; Scott Goldsborough

    1998-11-01

    An experimental and theoretical investigation of a homogeneous charge compression ignition (HCCI) free piston powered linear alternator has been conducted to determine if improvements can be made in the thermal and conversion efficiencies of modern electrical generator systems. Performance of a free piston engine was investigated using a rapid compression expansion machine and a full cycle thermodynamic model. Linear alternator performance was investigated with a computer model. In addition linear alternator testing and permanent magnet characterization hardware were developed. The development of the two-stroke cycle scavenging process has begun.

  18. Compact and stress-released piston tip-tilt mirror

    NASA Astrophysics Data System (ADS)

    Noell, W.; Overstolz, T.; Stanley, R.; de Rooij, N. F.

    2006-04-01

    Devices based on SOI technology are subject to bow due to residual stress induced by the buried oxide. We have designed and fabricated a compact tunable piston tip-tilt mirror device in which the shape and the arrangement of the suspension beams result in both a reduced stress in the suspension beams and an optically flat mirror. The piston tip-tilt mirror is characterized by an accurate vertical displacement of up to 18 μm @ 80 V with good repeatability, and a tip-tilt of up to 2 mrad @ 50 V.

  19. MAXIMIZE THE EFFICIENCY OF PUMP AND TREAT SYSTEMS

    EPA Science Inventory

    This paper focuses on methodology for determing extent of hydraulic control and remediation effectiveness of site specific pump and treat systems. Maximum potential well yield is estimated on the basis of hydraulic characteristics described by the cooper and Jacob Equation. A ma...

  20. Hypereutectic aluminum - A piston material for modern high specific output gasoline engines

    SciTech Connect

    Whitacre, J.P.

    1987-01-01

    (Piston requirements for (gasoline engines) have changed dramatically in the last ten years. Several factors have combined to tax traditionally used alloys to their limits. This paper is concerned with the used of high silicon ''(hypereutectic)'' aluminum alloy in gasoline engine pistons. Problem areas with standard piston alloys are discussed, along with the benefits to be gained by the use of hypereutectic material. Manufacturing problems associated with the production of quality hypereutectic pistons are also discussed.