Science.gov

Sample records for hydraulic properties soil

  1. Hydraulic Properties of Unsaturated Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agrophysical applications require knowledge of the hydraulic properties of unsaturated soils. These properties reflect the ability of a soil to retain or transmit water and its dissolved constituents. The objective of this work was to develop an entry for the Encyclopedia of Agrophysics that w...

  2. Rock Content Influence on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Parajuli, K.; Sadeghi, M.; Jones, S. B.

    2015-12-01

    Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.

  3. BOREAS HYD-1 Soil Hydraulic Properties

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Kelly, Shaun F.; Stangel, David E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team coordinated a program of data collection to measure and monitor soil properties in collaboration with other science team measurement needs. This data set contains soil hydraulic properties determined at the Northern Study Area (NSA) and Southern Study Area (SSA) flux tower sites based on analysis of in situ tension infiltrometer tests and laboratory-determined water retention from soil cores collected during the 1994-95 field campaigns. Results from this analysis are saturated hydraulic conductivity, and fitting parameters for the van Genuchten-Mualem soil hydraulic conductivity and water retention function at flux tower sites. The data are contained in tabular ASCII files. The HYD-01 soil hydraulic properties data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  4. Microbial effect on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  5. Determination of soil hydraulic properties using the soil pedostructure concept

    NASA Astrophysics Data System (ADS)

    Braudeau, E.; Mohtar, R. H.

    2003-04-01

    The observed soil water properties such as Field Capacity, Permanent Wilting Point, Water Potential and Hydraulic Conductivity are expressions of the internal soil structure and are all connected to Water Matric Potential. Our research describes these properties in a context of a new concept of the internal hierarchal soil structure and the tension that exists inside the soil matrix due to the presence of clay particles. This concept will be demonstrated using laboratory experiments of simultaneous and continuous measurements of the soil water potential curve and of the shrinkage and swelling curves. The soil shrinkage curve has been used to explain the hydraulic and functional properties of soil with its assembly of swelling aggregates according to the conceptual pedostructure model. In that model two water pools held in two distinguished macro- and micro-porosity are described in addition to specific characteristics of the primary peds such air entry point, maximum swelling, and plasmic porosity. The water potential will be calculated according to these water pools. In this context, the empirical agronomical soil physical properties like wilting point and field capacity, will be defined relative to a particular hydrostructural state of the soil rather than to a hypothetical soil water potential. These properties could then be accurately determined starting from the measured shrinkage curve determined by retractometry.

  6. Effects of Land Use and Management on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Horel, Ágota; Tóth, Eszter; Gelybó, Györgyi; Kása, Ilona; Bakacsi, Zsófia; Farkas, Csilla

    2015-11-01

    Soil hydraulic properties are among the most important parameters that determine soil quality and its capability to serve the ecosystem. Land use can significantly influence soil properties, including its hydraulic conditions; however, additional factors, such as changes in climate (temperature and precipitation), can further influence the land use effects on soil hydraulic properties. In order to develop possible adaptation measures and mitigate any negative effects of land use and climatic changes, it is important to study the impact of land use and changes in land use on soil hydraulic properties. In this paper, we summarize recent studies examining the effect of land use/land cover and the associated changes in soil hydraulic properties, mainly focusing on agricultural scenarios of cultivated croplands and different tillage systems.

  7. Effects of Long-term Soil and Crop Management on Soil Hydraulic Properties for Claypan Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional and national soil maps and associated databases of soil properties have been developed to help land managers make decisions based on soil characteristics. Hydrologic modelers also utilize soil hydraulic properties provided in these databases, in which soil characterization is based on avera...

  8. Hydraulic properties of saltstone and Z-Area soil

    SciTech Connect

    Cook, J.R.; Langton, C.A.; Wilhite, E.L.

    1986-04-04

    Basic hydraulic characteristics of disturbed and undisturbed Z-Area soil and of sandstone have been obtained. These data will aid modeling of the release of soluble ions from saltstone after disposal. Modeling of the release of soluble ions from saltstone and the migration of those materials to the water table has been underway for some time. Data needed for modeling were inferred from data available on burial ground soils and soils near Z-Area. To improve the accuracy of modeling, the hydraulic properties of Z-Area soil and saltstone were measured. A report is attached; results are summarized below. 7 refs., 7 figs. 1 tab.

  9. Predicting the impact of biochar additions on soil hydraulic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic con...

  10. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de

    2016-05-01

    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  11. USING ENSEMBLE PREDICTIONS TO SIMULATE FIELD-SCALE SOIL WATER TIME SERIES WITH UPSCALED AND DOWNSCALED SOIL HYDRAULIC PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic prope...

  12. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  13. LANDSCAPE AND CONSERVATION MANAGEMENT EFFECTS ON HYDRAULIC PROPERTIES ON A CLAYPAN-SOIL TOPOSEQUENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on effects of landscape and its interaction with management on soil hydraulic properties is scarce. This study investigated effects and interactions of landscape position and conservation management systems on soil bulk density, saturated hydraulic conductivity (Ksat), soil water retenti...

  14. Effect of soil hydraulic properties on the relationship between soil moisture variability and its mean value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of soil moisture and its variability is needed for many environmental applications. We analyzed dependencies of soil moisture variability on average soil moisture contents in bare soils using ensembles of non-stationary water flow simulations by varying soil hydraulic properties under diff...

  15. Soil hydraulic properties of sphagnum moss and peat

    NASA Astrophysics Data System (ADS)

    Weber, Tobias K. D.; Iden, Sascha C.; Scharnagl, Benedikt; Durner, Wolfgang

    2015-04-01

    The moisture state of the vadose zone (acrotelm) of ombrotrophic peatlands decisively determines whether carbon is contained in soil organic matter or released to the atmosphere. As the pore space is variably saturated with water throughout the year, oxygen diffusion, heat, and solute transport and thus the redox state are a function of water content over time. For prediction purposes, the hydrological processes must be epitomised in computer models which establish a link between the terrestrial water cycle and the carbon cycle. This requires a proper representation of effective soil hydraulic properties which are a mandatory input to the Richards equation, the standard model for variably-saturated flow processes in porous media. By applying the Richards equation to peatlands, one assumes that the acrotelm can be conceptualised as a rigid porous material. To test this approximation and select the most adequate set of soil hydraulic property functions, we conducted a series of specifically designed laboratory evaporation experiments on sphagnum moss and decomposed sphagnum peat. Sampling was carried out in five centimeter depth increments of an ombrotrophic bog profile in the Harz mountains. We selected sphagnum moss as it is a predominant plant species colonising bogs of the Boreal. Inverse modelling was used to test the adequacy of different parameterizations of soil hydraulic property functions. We used pressure head data measured by two tensiometers in the objective function to identify soil hydraulic properties. The Richards equation was used as process model. We critically assess the applicability of the van Genuchten/Mualem model, which finds frequent application in peatland hydrology, and discuss alternatives which account for (1) multimodal pore size distributions, (2) physical plausibility towards the dry end, (3) capillary and non-capillary storage and flow, and (4) isothermal flow of water vapour. Finally, our results indicate that applying the Richards

  16. A promising new device to assess key soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; Schwilch, Gudrun

    2016-04-01

    Hydraulic functions measured at the core or plot scale are notoriously variable in natural soils, with properties such as infiltration rate ranging across several orders of magnitude within a typical field. Because the information required to create a continuous map of these properties' variability is unobtainable, plot- and field-scale models of flow processes generally use average or "effective" soil hydraulic properties to represent the processes. This makes it difficult to scale up knowledge from the local to the catchment scale, as soil heterogeneity increases with scale. Overcoming this difficulty requires an instrument that enables rapid and easy assessment of the relevant soil properties and their changes under varying land uses and climatic conditions. For this reason, we devised a new infiltrometer that makes it possible to rapidly and reliably assess soil infiltration capacity in the field. Based on laboratory and field data, we then developed a software (Soil Quality Analyzer) to determine key hydraulic properties such as saturated hydraulic conductivity, saturated water content, total porosity, and the van Genuchten parameters. Our device consists of a Plexiglas tube about 4 cm in diameter mounted on a semisoft, porous tube of the same diameter which easily adapts to surrounding soil, and ending in a conic steel point that facilitates insertion into the soil at different depths. We first calibrated our infiltrometer based on reconstructed soil columns of different textures with no coarse structures (i.e. organic material, macropores). A second series of infiltration experiments was carried out in situ in undisturbed soils under forest and grassland that had the same textures as those in the laboratory experiments. Finally, we analyzed all samples in the laboratory to determine the key hydraulic parameters. Linear relationships between the infiltrated water volume and the corresponding time intervals of infiltration were determined for each sample

  17. Impacts of Salinity on Soil Hydraulic Properties and Evaporation Fluxes

    NASA Astrophysics Data System (ADS)

    Fierro, V.; Cristi Matte, F.; Suarez, F. I.; Munoz, J. F.

    2014-12-01

    Saline soils are common in arid zones, where evaporation from shallow groundwater is generally the main component of the water balance. Thus, to correctly manage water resources in these zones, it is important to quantify the evaporation fluxes. Evaporation from saline soils is a complex process that couples the movement of salts, heat, liquid water and water vapor, and strongly depends on the soil water content. Precipitation/dissolution reactions can change the soil structure and alter flow paths, modifying evaporation fluxes. We utilized the HYDRUS-1D model to investigate the effects of salinity on soil hydraulic properties and evaporation fluxes. HYDRUS-1D simulates the transport of liquid water, water vapor, and heat, and can incorporate precipitation/dissolution reactions of the major ions. To run the model, we determined the water retention curve for a soil with different salinities; and we used meteorological forcing from an experimental site from the Atacama Desert. It was found that higher sodium adsorption ratios in the soil increase the soil water retention capacity. Also, it was found that evaporation fluxes increase salts concentration near the soil surface, changing the soil's water retention capacity in that zone. Finally, movement of salts causes differences in evaporation fluxes. It is thus necessary to incorporate salt precipitation/dissolution reactions and its effects on the water retention curve to correctly simulate evaporation in saline soils

  18. Climatic controls on soil hydraulic properties along soil chronosequences on volcanic parent material

    NASA Astrophysics Data System (ADS)

    Beal, L. K.; Lohse, K. A.; Godsey, S.; Huber, D. P.

    2013-12-01

    Soil development is influenced by physical and chemical weathering processes and accumulation of eolian sediment. These weathering processes have often been examined using chronosequences that take advantage of deposited lava flows ranging in age. These studies typically characterize the physical and sometimes chemical properties, but rarely have these studies examined how hydraulic properties change with time. In addition, many of these studies occur in tropical climates where weathering occurs rapidly; relatively little is known about weathering processes in cool dry climates. This is important not only to understand how water and energy move in these water limited systems, but also to understand how they might change as climate patterns shift. The objectives of this research were to 1) measure and model the soil water retention, θ(h), and hydraulic conductivity, K(h), functions across a chronosequence of cinder cone sites in a cold desert region, 2) compare soil hydraulic properties across soil ages to examine how soil development in semi-arid climates moderates soil hydraulic processes, and 3) compare soil hydraulic characteristics in a dryland environment to those of a wet tropical climate across similarly aged lava flows. We contrast 2.1, 6.9 and 13.9 ka cinder cones soils at Craters of the Moon (COTM) National Monument, Idaho, USA. Soil development at COTM is sparse and is concentrated in joints and crevices of the basalt. The soils contrast slightly in texture with age. The young (2.1 ka) soils are coarser grained with at least 20% greater sand content than the older (6.9, 13.9 ka) soils. Preliminary hydraulic modeling suggests that older soils have lower θ values than younger soils. This is likely due to a higher bulk density values from higher accumulations of secondary minerals in the old soils from loess input. The models show that the air entry points (α) occur at lower tensions in the young soils, likely caused by a greater pore size distribution

  19. Estimation of Soil Hydraulic Properties from Numerical Inversion of Tension Disk Infiltrometer Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many applications involving variably saturated flow and transport require estimates of the unsaturated soil hydraulic properties. Numerical inversion of cumulative infiltration data during transient flow, complemented with initial or final soil water content data, is an increasingly popular approach...

  20. Hydraulic and mechanical properties of soil aggregates under organic and conventional soil management

    NASA Astrophysics Data System (ADS)

    Wójciga, A.; Kuś, J.; Turski, M.; Lipiec, J.

    2009-04-01

    Variation in hydraulic and mechanical properties of soil aggregates is an important factor affecting water storage and infiltration because the large inter-aggregate pores are dewatered first and the transport of water and solutes is influenced by the properties of the individual aggregates and contacts between them. A high mechanical stability of soil aggregates is fundamental for the maintenance of proper tilth and provides stable traction for farm implements, but limit root growth inside aggregates. The aggregate properties are largely influenced by soil management practices. Our objective was to compare the effects of organic and conventional soil management on hydraulic and mechanical properties of soil aggregates. Experimental fields subjected to long-term organic (14 years) and conventional managements were located on loamy soil at the Institute of Soil Science and Plant Cultivation - National Research Institute in Pulawy, Poland. Soil samples were collected from two soil depths (0-10 cm and 10-20 cm). After air-drying, two size fractions of soil aggregates (15-20 and 30-35 mm) were manually selected and kept in the dried state in a dessicator in order to provide the same boundary conditions. Following properties of the aggregates were determined: porosity (%) using standard wax method, cumulative infiltration Q (mm3 s-1) and sorptivity S (mm s -1/2) of water and ethanol using a tube with a sponge inserted at the tip, wettability (by comparison of sorptivity of water and ethanol) using repellency index R, crushing strength q (MPa) using strength testing device (Zwick/Roell) and calculated by Dexter's formula. All properties were determined in 15 replicates for each treatment, aggregates size and depth. Organic management decreased porosity of soil aggregates and ethanol infiltration. All aggregates revealed rather limited wettability (high repellency index). In most cases the aggregate wettability was lower under conventional than organic soil management

  1. Laboratory evaporation experiments in undisturbed peat columns for determining peat soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Dettmann, Ullrich; Frahm, Enrico; Bechtold, Michel

    2013-04-01

    One of the key parameters controlling greenhouse gas (GHG) emissions from organic soils is water table depth. Thus, a detailed analysis of the hydrology is essential for an accurate spatial upscaling of the information of local GHG emission measurements to the regional and national scale. For the interpretation and numerical modeling of water table fluctuations, knowledge about soil hydraulic parameters is crucial. In contrast to mineral soils, the hydraulic properties of organic soils differ in several aspects. Due to the high amount of organic components, strong heterogeneity, and shrinkage and swelling of peat, accompanied by changing soil volume and bulk density, it is difficult to describe peat soil moisture dynamics with standard hydraulic functions developed for mineral soils. The objective of this study was to determine soil hydraulic properties for various undisturbed peat columns (diameter: 30 cm, height: 20 cm). Laboratory evaporation experiments were conducted for peat soils from five different test sites of the German joint research project "Organic Soils". Due to different land use histories, the peat samples covered a broad range of degradation states, which is known to strongly influence peat soil hydraulic properties. Pressure head, moisture content, weight loss and water level were monitored during the evaporation experiment. In numerical simulations using HYDRUS-1D the experimental data were used for an inverse-estimation of the soil hydraulic parameters using "shuffled complex evolution" and "covariance matrix adaption" optimization schemes. Besides the commonly applied van Genuchten-Mualem parameterization, several alternative soil parameterizations are evaluated.

  2. Effects of Native Forest Restoration on Soil Hydraulic Properties, Auwahi, Maui

    NASA Astrophysics Data System (ADS)

    Perkins, K. S.; Nimmo, J. R.; Medeiros, A.

    2012-12-01

    Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock; less than 10% of original dryland forest habitat remains. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration rate (Kfs), hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent exclosure where active reforestation has been going on for fourteen years. Results from field experiments support the hypothesis that reforestation at the Auwahi site has significantly altered plant-relevant soil hydraulic properties.

  3. Spatial and temporal variability of soil hydraulic properties of topsoil affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonin; Kodesova, Radka; Jaksik, Ondrej; Jirku, Veronika; Klement, Ales; Fer, Miroslav

    2014-05-01

    This study is focused on the comparison of soil hydraulic properties of topsoil that is affected by erosion processes. In order to include variable morphological and soil properties along the slope three sites - Brumovice, Vidim and Sedlčany were selected. Two transects (A, B) and five sampling sites along each one were chosen. Soil samples were taken in Brumovice after the tillage and sowing of winter wheat in October 2010 and after the wheat harvest in August 2011. At locality Vidim and Sedlčany samples were collected in May and August 2012. Soil hydraulic properties were studied in the laboratory on the undisturbed 100-cm3 soil samples placed in Tempe cells using the multi-step outflow test. Soil water retention data points were obtained by calculating water balance in the soil sample at each pressure head step of the experiment. The single-porosity model in HYDRUS-1D was applied to analyze the multi-step outflow and to obtain the parameters of soil hydraulic properties using the numerical inversion. The saturated hydraulic conductivities (Ks) and unsaturated hydraulic conductivities (Kw) for the pressure head of -2 cm of topsoil were also measured after the harvest using Guelph permeameter and Minidisk tensiometer, respectively. In general soil water retention curves measured before and after vegetation period apparently differed, which indicated soil material consolidation and soil-porous system rearrangement. Soil water retention curves obtained on the soil samples and hydraulic conductivities measured in the field reflected the position at the elevation transect and the effect of erosion/accumulation processes on soil structure and consequently on the soil hydraulic properties. The highest Ks values in Brumovice were obtained at the steepest parts of the elevation transects, that have been the most eroded. The Ks values at the bottom parts decreased due to the sedimentation of eroded soil particles. The change of the Kw values along transects didn't show

  4. Effects of long-term soil and crop management on soil hydraulic properties for claypan soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional and national soil maps have been developed along with associated soil property databases to assist users in making land management decisions based on soil characteristics. These soil properties include average values from soil characterization for each soil series. In reality, these propert...

  5. Effect of increasing biochar application rate on soil hydraulic properties of an artificial sandy soil

    NASA Astrophysics Data System (ADS)

    Lopez, V.; Ghezzehei, T. A.

    2013-12-01

    Biochar, a product of the pyrolysis of biomass, has become an increasingly studied subject of interest as an agricultural soil amendment to address issues of carbon emission, population density, and food scarcity. Biochar has been reported to increase content and retention of nutrients, pH, cation-exchange capacity, vegetative growth, microbial community, and carbon sequestration. A number of studies addressing the usefulness of biochar as a soil amendment have focused on chemical and biological properties, disregarding the effects on soil physical properties of amended soil. Aside from biochar, lime (calcium carbonate) addition to soils has also been utilized in agricultural practices, typically to raise the pH value of acidic soils, increase microbial activity, and enhance soil stability and productivity as a result. Both biochar and lime amendments may be beneficial in increasing the soil physical properties, particularly through the formation of aggregates. In previous studies an increase in soil particle aggregates resulted in higher rates of biological activity, infiltration rates, pore space, and aeration, all of which are a measure of soil quality. While the effectiveness of biochar and lime as soil amendments has been independently documented, their combined effectiveness on soil physical properties is less understood. This study aims to provide a further understanding on the effect of increasing biochar application rate on soil particle aggregation and hydraulic properties of a low reactive pre-limed artificial sandy soil with and without microbial communities. Microbial communities are known to increase soil aggregates by acting as cementing agents. Understanding the impact of biochar addition on soil physical properties will have implications in the development of sustainable agricultural practices, especially in systems undergoing climate stress and intensive agriculture.

  6. Saturated hydraulic conductivity and soil water retention properties across a soil-slope transition

    NASA Astrophysics Data System (ADS)

    Mohanty, Binayak P.; Mousli, Zak

    2000-11-01

    The hydraulic properties of soil and their spatial structures are important for understanding soil moisture dynamics, land surface and subsurface hydrology, and contaminant transport. We investigated whether landscape features, including relative position on a slope, contribute to the variability of soil hydraulic properties in a complex terrain of a glacial till material. Using 396 undisturbed soil cores collected along two orthogonal transects, we measured saturated hydraulic conductivity (Ksat) and soil water retention functions at two (15 and 30 cm) depths across a glacial till landscape in central Iowa that encompassed two soil types (Nicollet loam with 1-3% slope on the hilltop position and Clarion loam with 2-5% slope on the shoulder position). The van Genuchten-Mualem model was fitted to the experimental data using the RETC optimization computer code. At the 15 cm depth a statistical comparison indicated significant differences in Ksat, saturated water content (θs), water content at permanent wilting point (θ15,000) and van Genuchten fitting parameters (α and n) between soil types and landscape positions. At the 30 cm depth, θs, θ15,000, and residual water content (θr) were found to be significantly different across the soil-slope transition. Available water content (θ333-15,000) did not show any significant difference across the soil-slope transition for either depth. No clear directional trend was observed, with some exceptions for Ksat, θs, and α on specific transect limbs and depths. Drifts in the soil hydraulic parameters due to soil-slope transition were removed using a mean-polishing approach. Geostatistical analyses of these parameters showed several important characteristics including the following: (1) The spatial correlation lengths and semivariogram patterns of the independently measured (or estimated) loge Ksat and θs at 30-cm depth matched extremely well; (2) better spatial structures with large correlation lengths were observed for

  7. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan

    2015-04-01

    Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. It is undergoing degradation under the background of global climate change, human activities and overgrazing. Soil moisture is important to alpine meadow ecology for its water and energy transfer processes, therefore soil hydraulic properties become key parameters for local eco-hydrological processes studies. However, little research focus on the changes and it's mechanisms of soil hydraulic properties during the degradation processes. In this study, soil basic and hydraulic properties at 0-10 cm and 40-50 cm soil layer depths under different degraded alpine meadow were analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil saturated hydraulic conductivity (Ks) as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. For soil unsaturated hydraulic conductivity, it reduced more slowly with decreasing pressure head under degraded conditions than non-degraded conditions. However, soil moisture showed no significant changes with increasing degradation. Soil Ks was significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most substantial decrease observed for

  8. Laboratory-field scaling of soil hydraulic properties: numerical validation based on soil water content measurements

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Coppola, Antonio; Basile, Angelo

    2010-05-01

    Hydraulic properties should be determined at the scale of the process modeled. The methods to hydraulically characterize a soil in situ remain extremely difficult to implement, needing measurements of water content and pressure head with adequate time-depth resolution. The authors recently proposed a method of scaling, physically based, that allows to obtain the field soil hydraulic parameters from the laboratory hydraulic characterization and the maximum water content in field. The procedure is based on the hypothesis that the field retention curve represents a secondary internal curves of the hysteresis loop. Assuming the sample as the REV (Representative Elementary Volume) of the soil, the drying and wetting laboratory curve represent the primaries curves. The procedure, recently validated on different soil samples, has been applied in four case studies (Cerese, Lodi, Scafati and Eboli). In each site, the soil water content was monitored at different depths along the soil profile with Time Domain Reflectometry technique (TDR)(years 2002-2003 for Cerese and Lodi, and years 2005-2006 for Scafati and Eboli). The SWAP hydrological simulation model, based on the Richard's equation, was applied to test in a composite field water flow processes the goodness of the proposed procedure. In particular, we compared water content measured in field and estimated by SWAP in two different runs, applying the same boundary conditions and crop parameterization, using hydraulic parameters obtained from (i) trials and errors calibration procedure and (ii) proposed scaling procedure. The agreement between observed and predicted values was expressed by the indexes RMSE (root mean squared error) and r (Pearson correlation). In the preliminary analysis, the statistical indexes has shown that the results obtained from scaling procedure are very similar or better of those obtained from calibration procedure. The main advantage arising from such scaling procedure rely on the significant

  9. Soil hydraulic properties of topsoil along two elevation transects affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonin; Kodesova, Radka; Jaksik, Ondrej; Jirku, Veronika; Fer, Miroslav; Klement, Ales; Zigova, Anna

    2013-04-01

    This study is focused on the comparison of soil hydraulic properties of topsoil that is affected by erosion processes. Studied area is characterized by a relatively flat upper part, a tributary valley in the middle and a colluvial fan at the bottom. Haplic Chernozem reminded at the flat upper part of the area. Regosols were formed at steep parts of the valley. Colluvial Chernozem and Colluvial soils were formed at the bottom parts of the valley and at the bottom part of the studied field. Two transects and five sampling sites along each one were selected. The soil-water retention curves measured on the undisturbed 100-cm3 soil samples taken after the tillage and sowing of winter wheat (October 2010) were highly variable and no differences between sampling sites within the each transect were detected. Variability of soil-water retention curves obtained on soil samples taken after the wheat harvest (August 2011) considerably deceased. The parts of the retention curves, which characterized the soil matrix, were very similar. The main differences between the soil-water retention curves were found in parts, which corresponded to larger capillary pores. The fractions of the large capillary pores (and also saturated soil water-contents) were larger after the harvest (soil structure reestablishment) than that after the tillage and sawing (soil structure disturbance). Greater amount of capillary pores was observed in soils with better developed soil structure documented on the micromorphological images. The saturated hydraulic conductivities (Ks) and unsaturated hydraulic conductivities (K) for the pressure head of -2 cm of topsoil were also measured after the wheat harvest using Guelph permeameter and Minidisk tensiometer, respectively. The highest Ks values were obtained at the steepest parts of the elevation transects, that have been the most eroded. The Ks values at the bottom parts decreased due to the sedimentation processes of eroded soil particles. The change of the

  10. Scaling the flood regime with the soil hydraulic properties of the catchment

    NASA Astrophysics Data System (ADS)

    Peña Rojas, Luis Eduardo; Francés García, Félix; Barrios Peña, Miguel

    2015-04-01

    The spatial land cover distribution and soil type affect the hydraulic properties of soils, facilitating or retarding the infiltration rate and the response of a catchment during flooding events. This research analyzes: 1) the effect of land cover use in different time periods as a source of annual maximum flood records nonstationarity; 2) the scalability of the relationship between soil hydraulic properties of the catchment (initial abstractions, upper soil capillary storage and vertical and horizontal hydraulic conductivity) and the flood regime. The study was conducted in Combeima River basin in Colombia - South America and it was modelled the changes in the land uses registered in 1991, 2000, 2002 and 2007, using distributed hydrological modelling and nonparametric tests. The results showed that changes in land use affect hydraulic properties of soil and it has influence on the magnitude of flood peaks. What is a new finding is that this behavior is scalable with the soil hydraulic properties of the catchment flood moments have a simple scaling behavior and the peaks flow increases with higher values of capillary soil storage, whereas higher values, the peaks decreased. Finally it was applied Generalized Extreme Values and it was found scalable behavior in the parameters of the probability distribution function. The results allowed us to find a relationship between soil hydraulic properties and the behavior of flood regime in the basin studied.

  11. Tillage Effects on Soil Hydraulic Properties in Space and Time: State of the Science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil tillage practices can affect soil hydraulic properties and processes in space and time with consequent and coupled effects on chemical movement and plant growth. This literature review addresses the quantitative effects of soil tillage and associated management (e.g., crop residues) on the tem...

  12. Effective soil hydraulic properties in space and time: some field data analysis and modeling concepts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil hydraulic properties, which control surface fluxes and storage of water and chemicals in the soil profile, vary in space and time. Spatial variability above the measurement scale (e.g., soil area of 0.07 m2 or support volume of 14 L) must be upscaled appropriately to determine “effective” hydr...

  13. Environmental and management impacts on temporal variability of soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10

  14. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  15. The effect of dynamic changes in soil bulk density on hydraulic properties: modeling approaches

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2014-05-01

    Natural and artificial processes, like rainfall-induced soil surface sealing or mechanical compaction, disturb the soil structure and enhance dynamic changes of the related pore size distribution. These changes may influence many aspects of the soil-water-plant-atmosphere system. One of the easiest measurable variables is the soil bulk density. Approaches are suggested that could model the effect of the change in soil bulk density on soil permeability, water retention curve (WRC) and unsaturated hydraulic conductivity function (HCF). The resulting expressions were calibrated and validated against experimental data corresponding to different soil types at various levels of compaction, and enable a relatively good prediction of the effect of bulk density on the soil hydraulic properties. These models allow estimating the impact of such changes on flow processes and on transport properties of heterogeneous soil profiles.

  16. A modified hood infiltrometer to estimate the soil hydraulic properties from the transient water flow measurements

    NASA Astrophysics Data System (ADS)

    Moret-Fernández, D.; González-Cebollada, C.; Latorre, B.; Pérez, V.

    2015-11-01

    In-situ measurements of soil hydraulic properties on covered soil surfaces (i.e. vegetated or residue covered surfaces) are of paramount importance in many agronomic or hydrological researches. These soil parameters are commonly estimated with the tension infiltrometry technique. This paper presents a portable and modified design of the hood infiltrometer (MHI) that, unlike to the original hood infiltrometer, allows estimating the soil hydraulic properties from the transient cumulative infiltration curve. The MHI consists of a water-supply reservoir attaches to a hat-shaped base placed on the soil surface. The base of the hat is closed by a system of sticks and a malleable material ring. To test the viability of this new design, the hydraulic conductivity (Ks) estimated with MHI in a loam soil using the multiple head approach was compared to the corresponding values calculated from the transient infiltration curve analysis. Next, the MHI was tested on three different soils at saturated conditions, and the sorptivity (S) and Ks estimated by the transient infiltration curve analysis were compared to the corresponding values obtained with a disc infiltrometer (DI). An additional field experiment was performed to compare the hydraulic properties measured with MHI on a bare soil and a soil covered with plants. Results demonstrated that this design allows hermetically closing the base of the hat without disturbing the soil surface. The Ks estimated with the multiple head approach was not statistically different (p = 0.61) to that obtained with the transient infiltration curve analysis. No significant differences between the Ks (p = 0.66) and S (p = 0.50) values estimated with DI and MHI were observed. The S values measured with MHI on the covered soil surface were significantly higher than that measured on the adjacent bare soil. These results indicate that MHI can be a viable alternative to estimate the hydraulic properties of covered soils from the measured transient

  17. Estimation of hydraulic properties of vertically heterogeneous forest soil from transient matric pressure data

    NASA Astrophysics Data System (ADS)

    Kosugi, Ken'ichirou; Inoue, Mitsuhiro

    2002-12-01

    Conventional methods for determining the hydraulic properties of unsaturated soil are laborious and time consuming. Although the inverse method can be an effective alternative, it occasionally produces nonunique solutions. The problem becomes more difficult when the inverse method is applied to vertically heterogeneous soil profiles. This study evaluated the method proposed by Kosugi and Nakayama, which estimates retention and hydraulic conductivity functions simultaneously for each horizontal layer of a vertically heterogeneous soil using transient matric pressure profiles. Artificial rainfall experiments were conducted on an undisturbed forest soil sample, and 14 unknown parameters that are contained in both retention and conductivity functions were estimated for seven layers. The estimated hydraulic properties corresponded well with those measured using conventional methods. Various initial parameter guesses converged at very similar final parameters, indicating the unique, stable solution. In addition, the effects of model selection, the soil pore tortuosity parameter, and experimental errors on the estimation results are discussed.

  18. The Effect of Soil Hydraulic Properties vs. Soil Texture in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Gutmann, E. D.; Small, E. E.

    2005-01-01

    This study focuses on the effect of Soil Hydraulic Property (SHP) selection on modeled surface fluxes following a rain storm in a semi-arid environment. SHPs are often defined based on a Soil Texture Class (STC). To examine the effectiveness of this approach, the Noah land surface model was run with each of 1306 soils in a large SHP database. Within most STCs, the outputs have a range of 350 W/m2 for latent and sensible heat fluxes, and 8K for surface temperature. The average difference between STC median values is only 100 W/m2 for latent and sensible heat. It is concluded that STC explains 5-15% of the variance in model outputs and should not be used to determine SHPs.

  19. Unraveling the Spatial Complexity of Soil Hydraulic Properties in Semiarid Ecosystems

    NASA Astrophysics Data System (ADS)

    Levi, M. R.; Rasmussen, C.; Schaap, M. G.

    2011-12-01

    Soils serve as the living filter that controls cycling of energy, water, carbon, and nutrients. Land surface models that estimate soil-vegetation-atmosphere transfers require soil hydraulic property information to produce accurate results. Accurate datasets of hydraulic soil properties are of utmost concern for modeling soil-water dynamics in semiarid ecosystems because of the tight coupling of soil-water availability, storage and distribution, and primary productivity in water-limited ecosystems. Furthermore, soil properties in semiarid ecosystems exhibit tremendous spatial variability that is not captured well in existing soil datasets. Thus, a fundamental knowledge gap in understanding land-atmosphere interactions is accurate, high resolution representation of soil physical and hydraulic properties. Remote sensing techniques can bridge the gap between site-specific soil properties and landscape variability, thereby improving predictions of soil attributes. The overall objective of this research was to predict soil physical and hydraulic properties important for modeling semiarid ecosystem soil-water dynamics using digital soil mapping techniques that couple remotely sensed data, high resolution digital elevation models (DEM's) and spatial modeling with the aim of producing improved soil datasets for modeling land-atmosphere interactions. Surface reflectance (Landsat data pan sharpened to 15-m resolution) and 5-m resolution IFSAR derived elevation data were coupled with a data reduction technique that used an iterative principal component analysis (PCA) and factor loading determination to facilitate selection of the key auxiliary data layers for describing landscape soil variability. A conditioned Latin hypercube sampling design was used to optimize sampling and identify 53 sampling locations that best represent the distribution of auxiliary data layers determined by iterative PCA for a 6,070 ha landscape. Soils were sampled by genetic horizon to 30 cm depth and

  20. The Comparison of Predicted and Measured Hydraulic Conductivities of Soils having Different Physical Properties

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal; Karakuş, Hüseyin

    2015-04-01

    Hydraulic conductivity is one of the most important parameter of earth science related studies such as engineering geology, soil physics, agriculture etc. In order to estimate the ability of soils to transport fluid through particles, field and laboratory tests have been performed since last decades of 19th century. Constant and falling head tests are widely used to directly measure hydraulic conductivity values in laboratory conditions for soils having different particle size distributions. The determination of hydraulic conductivity of soils by performing these methods are time consuming processes and also requires undisturbed samples to reflect in-situ natural condition. Considering these limitations, numerous approaches have been proposed to practically estimate hydraulic conductivity of soils by utilizing empirical equations based on simple physical and index properties such as grain size distribution curves related parameters, porosity, void ratio, etc. Many previous studies show that the hydraulic conductivity values calculated by empirical equations deviate more than two order magnitude than the measured hydraulic conductivity values obtained from convenient permeability tests. In order to investigate the main controlling parameters on hydraulic conductivity of soils, a comprehensive research program was carried out on some disturbed and undisturbed soil samples collected from different locations in Turkey. The hydraulic conductivity values of samples were determined as changing between 10-6 and 10-9 m/s by using falling head tests. In addition to these tests, basic soil properties such as natural water content, Atterberg limits, specific gravity and grain size analyses of these samples were also defined to be used as an input parameters of empirical equations for prediction hydraulic conductivity values. In addition, data from previous studies were also used for the aim of this study. The measured hydraulic conductivity values were correlated with all

  1. Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods

    NASA Astrophysics Data System (ADS)

    Chirico, G. B.; Medina, H.; Romano, N.

    2007-02-01

    SummarySeveral hydrological applications require the characterisation of the soil hydraulic properties at large spatial scales. Pedotransfer functions (PTFs) are being developed as simplified methods to estimate soil hydraulic properties as an alternative to direct measurements, which are unfeasible for most practical circumstances. The objective of this study is to quantify the uncertainty in PTFs spatial predictions at the hillslope scale as related to the sampling density, due to: (i) the error in estimated soil physico-chemical properties and (ii) PTF model error. The analysis is carried out on a 2-km-long experimental hillslope in South Italy. The method adopted is based on a stochastic generation of patterns of soil variables using sequential Gaussian simulation, conditioned to the observed sample data. The following PTFs are applied: Vereecken's PTF [Vereecken, H., Diels, J., van Orshoven, J., Feyen, J., Bouma, J., 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56, 1371-1378] and HYPRES PTF [Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185]. The two PTFs estimate reliably the soil water retention characteristic even for a relatively coarse sampling resolution, with prediction uncertainties comparable to the uncertainties in direct laboratory or field measurements. The uncertainty of soil water retention prediction due to the model error is as much as or more significant than the uncertainty associated with the estimated input, even for a relatively coarse sampling resolution. Prediction uncertainties are much more important when PTF are applied to estimate the saturated hydraulic conductivity. In this case model error dominates the overall prediction uncertainties, making negligible the effect of the input error.

  2. Long-term effects of restoration on soil hydraulic properties in revegetation-stabilized desert ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, X.-P.; Young, M. H.; Yu, Z.; Li, X.-R.; Zhang, Z.-S.

    2007-12-01

    Improving structure of soils found at 0-5 cm depth, and increasing the thickness of biological soil crusts are both associated with sand dune revegetation-stabilization in arid northwestern China. Since 1956, research on sand dune stabilization has included the use of straw chequer-boards to facilitate development of soil structure. One method to gauge the degree of stabilization is to compare undisturbed soil hydraulic properties, including water retention [h($\\theta$)] and hydraulic conductivity [K(h)] functions, with properties from stabilized sites of different ages. This study examined properties at five experimental sites of different ages since revegetation (51, 42, 34, 20 and 0 years). Saturated hydraulic conductivity (K s ) was determined in-situ from all five sites, and the h($\\theta$) curve was determined from samples collected from three sites. A significant negative correlation existed between K s and the clay, silt and organic matter contents. Differences in most van Genuchten parameters for h($\\theta$) were observed between the revegetated plots and the migrating sand dune area. Results of this long-term study show that changes in soil hydraulic properties and improvement in soil structure were associated with migrating dune stabilization.

  3. Effect of biofilm on soil hydraulic properties: laboratory studies using xanthan as surrogate

    NASA Astrophysics Data System (ADS)

    Rosenkranz, H.; Iden, S. C.; Durner, W.

    2012-04-01

    Many soil bacteria produce extracellular polymeric substances (EPS) in which they are embedded while residing in the porous matrix. EPS are often attached as a biofilm to both the bacteria cell and the soil particles. As a consequence, their influence on water flow through variably saturated porous media often cannot be neglected. While the influence of attached microbial biomass and EPS on saturated water flow has been studied extensively, its investigation for unsaturated flow in soils has found significantly less attention. The objective of this study was the quantification of the effect of biofilms on the unsaturated soil hydraulic properties. We determined the soil water retention and unsaturated hydraulic conductivity functions of biofilm-affected soils by using xanthan as an EPS surrogate. Evaporation experiments were conducted on two sandy soil materials. The amount of added xanthan was varied in 6 stages from zero to 0.25 %. Additional measurements of soil water retention using the dewpoint method closed the remaining gap from the evaporation method to air-dryness. The experimental data were evaluated by the simplified evaporation method of Schindler. The results show that the unsaturated hydraulic conductivity is reduced markedly by added xanthan and the shape of the soil water retention curve is alterated significantly for all stages of xanthan addition. The reduction in hydraulic conductivity is high enough to fully suppress stage-one evaporation for xanthan-sand mixtures. The water-holding capacity of the xanthan and the alteration of the effective pore size distribution explain these results.

  4. Effects of spatial variability of soil hydraulic properties on water dynamics

    NASA Astrophysics Data System (ADS)

    Gumiere, Silvio Jose; Caron, Jean; Périard, Yann; Lafond, Jonathan

    2013-04-01

    Soil hydraulic properties may present spatial variability and dependence at the scale of watersheds or fields even in man-made single soil structures, such as cranberry fields. The saturated hydraulic conductivity (Ksat) and soil moisture curves were measured at two depths for three cranberry fields (about 2 ha) at three different sites near Québec city, Canada. Two of the three studied fields indicate strong spatial dependence for Ksat values and soil moisture curves both in horizontal and vertical directions. In the summer of 2012, the three fields were equipped with 55 tensiometers installed at a depth of 0.10 m in a regular grid. About 20 mm of irrigation water were applied uniformly by aspersion to the fields, raising soil water content to near saturation condition. Soil water tension was measured once every hour during seven days. Geostatistical techniques such as co-kriging and cross-correlograms estimations were used to investigate the spatial dependence between variables. The results show that soil tension varied faster in high Ksat zones than in low Ksatones in the cranberry fields. These results indicate that soil water dynamic is strongly affected by the variability of saturated soil hydraulic conductivity, even in a supposed homogenous anthropogenic soil. This information may have a strong impact in irrigation management and subsurface drainage efficiency as well as other water conservation issues. Future work will involve 3D numerical modeling of the field water dynamics with HYDRUS software. The anticipated outcome will provide valuable information for the understanding of the effect of spatial variability of soil hydraulic properties on soil water dynamics and its relationship with crop production and water conservation.

  5. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan; Wang, Quanjiu; Chen, Yingying; Joswiak, Daniel R.

    2013-01-01

    SummaryAlpine meadow soil is an important ecosystem component of the Qinghai-Tibetan Plateau. However, the alpine meadow soil is undergoing serious degradation mainly due to global climate change, overgrazing, human activities and rodents. In this paper, spatial sequencing was chosen over time succession sequencing to study the changes of soil hydraulic properties under different degrees of alpine meadow degradation. Soil saturated hydraulic conductivity (Ks) and Gardner α both at the surface and at 40-50 cm depth were investigated in the field using tension infiltrometers. Soil physical and chemical properties, together with the root index at 0-10 cm and 40-50 cm soil layer depths were also analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil Ks and Gardner α as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. However, soil moisture showed no significant changes with increasing degradation. With decreasing pressure head, soil unsaturated hydraulic conductivity reduced more slowly under degraded conditions than non-degraded conditions. Soil Ks and Gardner α were significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most

  6. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands

    USGS Publications Warehouse

    Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.

    2012-01-01

    Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.

  7. Using the NRCS National Soils Information System (NASIS) to provide soil hydraulic properties for engineering applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern agricultural, biological, and environmental engineers have a multitude of uses for soil hydraulic parameters that quantify the ability of soils and sediments to retain and transmit water. These parameters are difficult and costly to obtain, especially if large areas of land need to be charac...

  8. Measuring Particle Size Distribution using Laser Diffraction: Implications for Predicting Soil Hydraulic Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to predict soil hydraulic properties frequently require information on the particle size distribution (PSD). The objectives of this study were to investigate various protocols for rapidly measuring PSD using the laser diffraction technique, compare the obtained PSDs with those determined usi...

  9. Modeling the hydrologicEffects of Spatial Heterogeneity in Soil Hydraulic Properties in a Mountainous Watershed, Northwest China

    NASA Astrophysics Data System (ADS)

    He, C.; Jin, X.; Zhang, L.; Zhang, X.

    2014-12-01

    Heterogeneity of soil hydraulic properties directly affects variations of hydrological processes at corresponding scales. Understanding spatial variation of soil hydraulic properties such as soil moisture is therefore fundamental for modeling watershed ecohydrological processes. As part of the National Science Foundation of China (NSFC) funded ''Integrated Ecohydrological Research Plan of the Heihe River Watershed'', this study established an observation network that consists of sampling points, zones, and tributaries to analyze spatial variations of soil hydraulic properties in the Upper Reach of the Heihe River Watershed, a second largest inland river (terminal lake) with a drainage area of over 128,000 km2 in Northwest China. Spatial heterogeneity of soil properties was analyzed based on the large number of soil sampling and in situ observations. The spatial clustering method, Full-Order-CLK was employed to derive five soil heterogeneous zones (Configuration 97, 80, 65, 40, and 20). Subsequently, SWAT model was used to quantify the impact of the spatial heterogeneity of soil hydraulic properties on hydrologic process in the study watershed. Results show the simulations by the SWAT model with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil datasets (Gansu Soil Handbook at 1:1,000,000 scale). Thus, incorporating detailed field sampling soil heterogeneity data greatly improves performance in hydrologic modeling.

  10. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling.

    PubMed

    Daly, Keith R; Mooney, Sacha J; Bennett, Malcolm J; Crout, Neil M J; Roose, Tiina; Tracy, Saoirse R

    2015-04-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. PMID:25740922

  11. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling

    PubMed Central

    Daly, Keith R.; Mooney, Sacha J.; Bennett, Malcolm J.; Crout, Neil M. J.; Roose, Tiina; Tracy, Saoirse R.

    2015-01-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. PMID:25740922

  12. Alterations of hydraulic soil properties influenced by land-use changes and agricultural management systems

    NASA Astrophysics Data System (ADS)

    Weninger, Thomas; Kreiselmeier, Janis; Chandrasekhar, Parvathy; Jülich, Stefan; Schwärzel, Kai; Schwen, Andreas

    2016-04-01

    Estimation and modeling of soil water movement and the hydrologic balance of soils requires sound knowledge about hydraulic soil properties (HSP). The soil water characteristics, the hydraulic conductivity function and the pore size distribution (PSD) are commonly used instruments for the mathematical representation of HSP. Recent research highlighted the temporal variability of these functions caused by meteorological or land-use influences. State of the art modeling software for the continuous simulation of soil water movement uses a stationary approach for the HSP which means that their time dependent alterations and the subsequent effects on soil water balance is not considered. Mathematical approaches to describe the evolution of PSD are nevertheless known, but there is a lack of sound data basis for parameter estimation. Based on extensive field and laboratory measurements at 5 locations along a climatic gradient across Austria and Germany, this study will quantify short-term changes in HSP, detect driving forces and introduce a method to predict the effects of soil and land management actions on the soil water balance. Amongst several soil properties, field-saturated and unsaturated hydraulic conductivities will be determined using a hood infiltration experiments in the field as well as by evaporation and dewpoint potentiometer method in the lab. All measurements will be carried out multiple times over a span of 2 years which will allow a detailed monitoring of changes in HSP. Experimental sites where we expect significant inter-seasonal changes will be equipped with sensors for soil moisture and matric potential. The choice of experimental field sites follows the intention to involve especially the effects of tillage operations, different cultivation strategies, microclimatically effective structures and land-use changes. The international project enables the coverage of a broad range of soil types as well as climate conditions and hence will have broad

  13. Effect of mineral reactions on the hydraulic properties of unsaturated soils: Model development and application

    NASA Astrophysics Data System (ADS)

    Wissmeier, L.; Barry, D. A.

    2009-08-01

    The selective radius shift model was used to relate changes in mineral volume due to precipitation/dissolution reactions to changes in hydraulic properties affecting flow in porous media. The model accounts for (i) precipitation/dissolution taking place only in the water-filled part of the pore space and further that (ii) the amount of mineral precipitation/dissolution within a pore depends on the local pore volume. The pore bundle concept was used to connect pore-scale changes to macroscopic soil hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and, consequently, in the effective porosity. In a time step of the numerical model, mineral reactions lead to a discontinuous pore-size distribution because only the water-filled pores are affected. The pore-size distribution is converted back to a soil moisture characteristic function to which a new water retention curve is fitted under physically plausible constraints. The model equations were derived for the commonly used van Genuchten/Mualem hydraulic properties. Together with a mixed-form solution of Richards' equation for aqueous phase flow, the model was implemented into the geochemical modelling framework PHREEQC, thereby making available PHREEQC's comprehensive geochemical reactions. Example applications include kinetic halite dissolution and calcite precipitation as a consequence of cation exchange. These applications showed marked changes in the soil's hydraulic properties due to mineral precipitation/dissolution and the dependency of these changes on water contents. The simulations also revealed the strong influence of the degree of saturation on the development of the saturated hydraulic conductivity through its quadratic dependency on the van Genuchten parameter α. Furthermore, it was shown that the unsaturated hydraulic conductivity at fixed reduced water content can even increase during precipitation due to changes in the pore-size distribution.

  14. Soil hydraulic properties estimate based on numerical analysis of disc infiltrometer three-dimensional infiltration curve

    NASA Astrophysics Data System (ADS)

    Latorre, Borja; Peña-Sancho, Carolina; Angulo-Jaramillo, Rafaël; Moret-Fernández, David

    2015-04-01

    Measurement of soil hydraulic properties is of paramount importance in fields such as agronomy, hydrology or soil science. Fundamented on the analysis of the Haverkamp et al. (1994) model, the aim of this paper is to explain a technique to estimate the soil hydraulic properties (sorptivity, S, and hydraulic conductivity, K) from the full-time cumulative infiltration curves. The method (NSH) was validated by means of 12 synthetic infiltration curves generated with HYDRUS-3D from known soil hydraulic properties. The K values used to simulate the synthetic curves were compared to those estimated with the proposed method. A procedure to identify and remove the effect of the contact sand layer on the cumulative infiltration curve was also developed. A sensitivity analysis was performed using the water level measurement as uncertainty source. Finally, the procedure was evaluated using different infiltration times and data noise. Since a good correlation between the K used in HYDRUS-3D to model the infiltration curves and those estimated by the NSH method was obtained, (R2 =0.98), it can be concluded that this technique is robust enough to estimate the soil hydraulic conductivity from complete infiltration curves. The numerical procedure to detect and remove the influence of the contact sand layer on the K and S estimates seemed to be robust and efficient. An effect of the curve infiltration noise on the K estimate was observed, which uncertainty increased with increasing noise. Finally, the results showed that infiltration time was an important factor to estimate K. Lower values of K or smaller uncertainty needed longer infiltration times.

  15. Multiobjective Optimization of Effective Soil Hydraulic Properties on a Lysimeter from a Layered, Gravelly Vadose Zone

    NASA Astrophysics Data System (ADS)

    Werisch, Stefan; Lennartz, Franz

    2013-04-01

    Estimation of effective soil hydraulic parameters for characterization of the vadose zone properties is important for many applications from prediction of solute and pesticide transport to water balance modeling in small catchments. Inverse modeling has become a common approach to infer the parameters of the water retention and hydraulic conductivity functions from dynamic experiments under varying boundary conditions. To gain further inside into to the water transport behavior of an agricultural field site with a layered, gravelly vadose zone, a lysimeter was taken and equipped with a total of 48 sensors (24 tensiometers and 24 water content probes). The sensors were arranged in 6 vertical arrays consisting of 4 sensor pairs, respectively. Pressure heads and water contents were measured in four depths in each of the arrays allowing for the estimation of the soil hydraulic properties of the three individual soil layers by inverse modeling. For each of the soil horizons, a separate objective function was defined to fit the model to the observation. We used the global multiobjective multimethod search algorithm AMALGAM (Vrugt et al., 2007) in combination with the water flow and solute transport model Hydrus1D (Šimúnek et al., 2008) to estimate the soil hydraulic properties of the Mualem van Genuchten model (van Genuchten, 1980). This experimental design served for the investigation of two important questions: a) do effective soil hydraulic properties at the lysimeter scale exist, more specifically: can a single representative parameter set be found which describes the hydraulic behavior in each of the arrays with acceptable performance? And b) which degree of freedom is necessary or required for an accurate description of the one dimensional water flow at each of the arrays? Effective soil hydraulic parameters were obtained for each of the sensor arrays individually, resulting in good agreement between the model predictions and the observations for the individual

  16. Effect of Mineral Reactions on the Hydraulic Properties of Unsaturated Soils: Model Development and Application

    NASA Astrophysics Data System (ADS)

    Wissmeier, L. C.; Barry, D. A.

    2008-12-01

    Precipitation/dissolution induces changes in the pore radii of water-filled pores, and, consequently, affects flow in porous media. The selective radius shift model was developed to relate changes in mineral volume due to precipitation/dissolution reactions to changes in hydraulic properties of unsaturated soils. The model considers the dependency of the amount of mineral precipitation/dissolution within a pore on the local pore volume. Furthermore, it accounts for precipitation/dissolution taking place only in the water-filled part of the pore space. The pore bundle concept was used to relate the pore-scale process of dissolution/precipitation to changes in macroscopic soil hydraulic properties. In the numerical model, the finite change in mineral volume at a discrete time step leads to a discontinuous pore-size distribution, because only the water-filled pores are affected. This pore-size distribution is converted back to a discontinuous soil moisture characteristic to which, at every time step, a new water retention curve is fitted under physically plausible constraints. The model equations were derived for the commonly used van Genuchten/Mualem hydraulic properties. Together with the selective radius shift model a head-based solution of Richards' equation for aqueous phase flow was implemented into the geochemical modelling framework PHREEQC, thereby making available PHREEQC's comprehensive geochemical reactions. The model was applied to kinetic halite dissolution and calcite precipitation as a consequence of cation exchange in a variety of unsaturated flow situations. The applications showed marked changes in the soil's hydraulic properties due to mineral precipitation/dissolution and the dependency of these changes on the water content. Furthermore, it was shown that the unsaturated hydraulic conductivity at fixed reduced water content can even increase during precipitation due to changes in the pore-size distribution.

  17. Scaling soil hydraulic properties: concepts and a research example

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scale issues remain central to hydrological science, and targeted land management decisions depend on predictions of space-time process interactions in complex terrain. Spatial variability in soils above the measurement scale must be quantified and typically scaled up to determine “effective” hydrau...

  18. The effect of rock fragments on the hydraulic properties of soils

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-04-01

    Many soils contain rock fragments the sizes of which are much larger than the average pore size of the sieved soil. Due to the fact that these fragments are often fairly large in relation to the soil testing apparatus, it is common to remove them before performing hydrologic tests on the soil. The question then arises as to whether or not there is a simple way to correct the laboratory-measured values to account for the fragments, so as to arrive at property values that can apply to the soil in situ. This question has arisen in the surface infiltration studies that are part of the site characterization program at Yucca Mountain, where accurate values of the hydraulic conductivities of near-surface soils are needed in order to accurately estimate infiltration rates. Although this problem has been recognized for some time, and numerous review articles have been written there are as yet no proven models to account for the effect of rock fragments on hydraulic conductivity and water retention. In this report we will develop some simple physically-based models to account for the effects of rock fragments on gross hydrological properties, and apply the resulting equations to experimental data taken from the literature. These models are intended for application to data that is currently being collected by scientists from the USGS on near-surface soils from Yucca Mountain.

  19. Scaling Heterogeneous Soil Hydraulic Properties Using Canopy/Interspace Distributions in a Mojave Desert Ecosystem

    NASA Astrophysics Data System (ADS)

    Caldwell, T. G.; Young, M. H.; Zhu, J.; Fenstermaker, L. F.; McDonald, E. V.

    2007-12-01

    Desert piedmonts are a mosaic of interspersed vegetation and open soil or interspaces. The distribution of perennial plants in arid regions is ultimately tied to available soil moisture. Surface soils in deserts undergo different pedologic processes depending on the proximity to plant canopies. For example, bioturbation and the accumulation of aeolian material and organic matter around plant canopies result in a mound-like formation around perennial plant canopies, whereas interspace areas tend to be microtopographic low points with reduced organic matter. Differences in soil structure and texture in undercanopy and interspace microsites can be significant, thus affecting infiltration, plant available water and ET. In this study, we sought to answer the questions: do soil hydraulic properties vary predictably from the undercanopy to interspace at the plot scale, and if so, how does this heterogeneous parameter field affect large-scale hydrologic processes of a heterogeneous landscape in the Mojave Desert? To answer these questions, a total of four radial transects was run on each of six shrubs (three each of L. tridentata and L. paladin) at the Mojave Global Change Facility (MGCF), located at the Nevada Test Site, USA. The extent of heterogeneity in soil physical and hydraulic properties (texture, bulk density, hydraulic conductivity functions K(h)) was measured across microsites by soil sampling and analysis, and by using up to 7 mini-disk tension infiltrometers (MDTI) spaced at 25-cm increments in linear array across a distance of 150 cm. Significant gradients of soil physical and hydraulic properties were observed from canopy to interspace microsites at 1.2 times the mean mound diameter. Despite a decrease in bulk density and fines under shrub canopies, a consistent trend of increasing K(h) and decreasing Gardner's alpha with increasing radial distance from shrubs was measured. Using the results of observed gradients around canopies, hydraulic property

  20. Development of soil hydraulic soil properties below ancient forest, planted forest and grassland

    NASA Astrophysics Data System (ADS)

    Archer, Nicole; Otten, Wilfred; Schmidt, Sonja; Bengough, Glyn; Bonell, Mike; Shah, Nadeem

    2014-05-01

    A number of serious flood events in recent years have focused attention on flood prevention and mitigation and modelling work suggests that climate change will lead to an increase in the intensity and frequency of flood events in many areas. To understand how soil hydraulic characteristics develops in relation to facilitating the infiltration and storage of storm rainfall, a hypothetical pedogensis sequence was first developed and then tested by investigating a grassland site and four Scots pine (Pinus sylvestris) forests of different ages in the Scottish Highlands. These sites are: grassland, six and 45 year-old Scots pine plantations, remnant 300 year old individual Scots pines and a 4000 year old Caledonian Forest. The soil characteristics measured were: field saturated hydraulic conductivity (Kfs) using a constant head well permeameter, root numbers and proportion were estimated from soil pits and soil cores were taken for three different soil depths (0.06 - 0.10, 0.16 - 0.20 and 0.26 to 0.40m) for laboratory measurements to estimate organic matter, soil water release curves, macro-pores, and X - ray tomography measured pore connectivity and soil pore structure. It was observed that cutting down of the plantation increased organic matter because of the increase of dead biomass and decreased pore connectivity, which resulted in reduced hydraulic conductivity during the early years of re-afforestation. Where older trees were left, after cutting and removing younger trees; the range of OM, hydraulic conductivity, pore connectivity, and macropores remained similar to and older Scots pine plantation (45 years old). The undisturbed Ancient Caledonian remnant forest (approximately 4000 years old) was observed to have remarkably heterogeneous soil characteristics, providing extreme values of Kfs (12 to 4992 mm hr-1), OM, and macropores. Such ranges of soil characteristics were considered to be the optimum to reduce local flooding, because the soil matrix could

  1. Soil hydraulic properties and REV study using X-ray microtomography and pore-scale modelling: saturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Karsanina, Marina; Umarova, Aminat; Korost, Dmitry; Matthai, Stephan; Mallants, Dirk

    2016-04-01

    To verify pore-scale modelling approach for determination of soil saturated hydraulic conductivity properties we scanned three cylindrical soil samples taken from A, Ah and B horizons using X-ray microtomography method. Resulting 3D soil images with resolutions of 15.25-20.96 μm were segmented into pores and solids and their maximum inscribed cube subvolumes were used as input data for three major pore-scale modelling methods to simulate saturated flow - lattice-Boltzmann method, finite-difference solution of the Stokes problem, and pore-network model. Provided that imaging resolution is high enough to capture the backbone of effective porosity and the main conducting pores all three methods resulted in simulated soil permeabilities close to experimental values for Ah and B samples. The resolution of A sample was not enough for an accurate modelling and we concluded that this soil requires multi-scale imaging to cover all relevant heterogeneities. We demonstrate that popular SWV method to choose segmentation threshold resulted in oversegmentation and order of magnitude higher permeability values. Careful manual thresholding combined with local segmentation algorithm provided much more accurate results. Detailed analysis of water retention curves showed that air-filled porosity at relevant pressure stages cannot be used for verification of the segmentation results. Representativity analysis by simulating flow in increasing soil volume up to 2.8 cm3 revealed no representative elementary volume (REV) within Ah sample and non-uniqueness of REV for B sample. The latter was explained by soil structure non-stationarity. We further speculate that structures soil horizons can exhibit no REV at all. We discuss numerous advantages of coupled imaging and pore-scale modelling approach and show how it can become a successor of the conventional soil coring method to parametrize large scale continuum models.

  2. A Bayesian inverse modeling approach to estimate soil hydraulic properties of a toposequence in southeastern Amazonia.

    NASA Astrophysics Data System (ADS)

    Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when

  3. Estimation of soil hydraulic properties based on time-lapse Ground-Penetrating Radar (GPR) measurements

    NASA Astrophysics Data System (ADS)

    Jaumann, Stefan; Klenk, Patrick; Roth, Kurt

    2015-04-01

    Recent developments brought surface-based GPR measurements to a precision that make them useful for estimating soil hydraulic properties. For this study, we estimate Mualem-Brooks-Corey parameters for a layered subsurface material distribution employing the Levenberg-Marquardt inversion algorithm. The required measurement data were recorded at our artificial test site ASSESS, where we forced the hydraulic system with a fluctuating water table and observed the dynamic deformation of the capillary fringe with time-lapse GPR. Subsequently, these measurements were simulated based on a model comprising (i) the Richards equation describing the temporal evolution of the soil hydraulic system which was solved with MUPHI, (ii) the Complex Refractive Index Model (CRIM) serving as petrophysical relationship which links the soil hydraulic model to (iii) the electrodynamic model consisting of Maxwell's equations which are solved with MEEP. For the objective function of the optimization algorithm, both measured and simulated GPR data were evaluated with a semi-automated wavelet feature detection algorithm allowing to directly compare the travel time and amplitude of the GPR signal. In this presentation, we discuss the results of the inversion based on the inversion of GPR data and we also discuss how including Time Domain Reflectometry (TDR) measurement data influences the estimated parameters.

  4. Laboratory evaporation experiments in undisturbed peat columns for determining peat soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Dettmann, U.; Frahm, E.; Bechtold, M.

    2013-12-01

    Knowledge about hydraulic properties of organic soils is crucial for the interpretation of the hydrological situation in peatlands. This in turn is the basis for designing optimal rewetting strategies, for assessing the current and future climatic water balance and for quantifying greenhouse gas emissions of CO2, CH4 and N2O, which are strongly controlled by the depth of the peat water table. In contrast to mineral soils, the hydraulic properties of organic soils differ in several aspects. Due to the high amount of organic components, strong heterogeneity, and shrinkage and swelling of peat, accompanied by changing soil volume and bulk density, the applicability of standard hydraulic functions developed for mineral soils for describing peat soil moisture dynamics is often questioned. Hence, the objective of this study was to investigate the applicability of the commonly applied van Genuchten-Mualem (VGM) parameterization and to evaluate model errors for various peat types. Laboratory column experiments with undisturbed peat soils (diameter: 30 cm, height: 20 cm) from 5 different peatlands in Germany were conducted. In numerical simulations using HYDRUS-1D the experimental data were used for an inverse estimation of the soil hydraulic parameters. Using the VGM parameterization, the model errors between observed and measured pressure heads were quantified with a root mean square error (RMSE) of 20 - 65 cm. The RMSE increased for soils with higher organic carbon content and higher porosity. Optimizing the VGM 'tortuosity' parameter (τ) instead of fixing it to its default of 0.5 strongly reduced the RMSE, especially for the soils that showed high pressure head gradients during the experiment. Due to the fact, that very negative pressure heads in peatlands occur rarely, we reduced the range of pressured heads in the inversion to a 'field-relevant' range from 0 to -200 cm which strongly reduced the RMSE to 6 - 12 cm and makes the VGM parameterization applicable for all

  5. Relationship between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy)

    NASA Astrophysics Data System (ADS)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.

    2015-07-01

    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to relate the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of pedotransfer functions taken from the literature and then compared with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relationship between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants. The soils' low water content, together with a lack of depth and a compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  6. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i < 0.02 cm3 cm-3) to near saturation. In the field and in the laboratory replicate measurements were made of ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of water repellency that influences Kf and S(??i). Values of Kf ranged from 4.5 ?? 10-3 to 53 ?? 10-3 cm s-1 for ash; from 0.93 ?? 10-3 to 130 ?? 10-3 cm s-1 for reference soils; and from 0.86 ?? 10-3 to 3.0 ?? 10-3 cm s-1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(??i) could be represented by an empirical non-linear function of ??i with a sorptivity maximum of 0.18-0.20 cm s-0.5, between 0.03 and 0.08 cm3 cm-3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(??i) for rainfall-runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to

  7. Assessing agricultural management effects on structure related soil hydraulic properties by tension infiltrometry

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Loiskandl, W.; Kaul, H.-P.

    2009-04-01

    Soil structure is a dynamic property subject to numerous natural and human influences. It is recognized as fundamental for sustainable functioning of soil. Therefore knowledge of management impacts on the sensitive structural states of soil is decisive in order to avoid soil degradation. The stabilization of the soil's (macro)pore system and eventually the improvement of its infiltrability are essential to avoid runoff and soil erosion, particularly in view of an increasing probability of intense rainfall events. However structure-related soil properties generally have a high natural spatiotemporal variability that interacts with the potential influence of agricultural land use. This complicates a clear determination of management vs. environmental effects and requires adequate measurement methods, allowing a sufficient spatiotemporal resolution to estimate the impact of the targeted management factors within the natural dynamics of soil structure. A common method to assess structure-related soil hydraulic properties is tension infiltrometry. A major advantage of tension infiltrometer measurements is that no or only minimum soil disturbance is necessary and several structure-controlled water transmission properties can readily be derived. The method is more time- and cost-efficient compared to laboratory measurements of soil hydraulic properties, thus enabling more replications. Furthermore in situ measurements of hydraulic properties generally allow a more accurate reproduction of field soil water dynamics. The present study analyses the impact of two common agricultural management options on structure related hydraulic properties based on tension infiltrometer measurements. Its focus is the identification of the role of management within the natural spatiotemporal variability, particularly in respect to seasonal temporal dynamics. Two management approaches are analysed, (i) cover cropping as a "plant-based" agro-environmental measure, and (ii) tillage with

  8. Modeling biofilm dynamics and hydraulic properties in variably saturated soils using a channel network model

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Ravid; Furman, Alex; Dosoretz, Carlos; Shavit, Uri

    2014-07-01

    Biofilm effects on water flow in unsaturated environments have largely been ignored in the past. However, intensive engineered systems that involve elevated organic loads such as wastewater irrigation, effluent recharge, and bioremediation processes make understanding how biofilms affect flow highly important. In the current work, we present a channel-network model that incorporates water flow, substrate transport, and biofilm dynamics to simulate the alteration of soil hydraulic properties, namely water retention and conductivity. The change in hydraulic properties due to biofilm growth is not trivial and depends highly on the spatial distribution of the biofilm development. Our results indicate that the substrate mass transfer coefficient across the water-biofilm interface dominates the spatiotemporal distribution of biofilm. High mass transfer coefficients lead to uncontrolled biofilm growth close to the substrate source, resulting in preferential clogging of the soil. Low mass transfer coefficients, on the other hand, lead to a more uniform biofilm distribution. The first scenario leads to a dramatic reduction of the hydraulic conductivity with almost no change in water retention, whereas the second scenario has a smaller effect on conductivity but a larger influence on retention. The current modeling approach identifies key factors that still need to be studied and opens the way for simulation and optimization of processes involving significant biological activity in unsaturated soils.

  9. The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations

    NASA Astrophysics Data System (ADS)

    Rezaei, Meisam; Seuntjens, Piet; Shahidi, Reihaneh; Joris, Ingeborg; Boënne, Wesley; Al-Barri, Bashar; Cornelis, Wim

    2016-03-01

    Field water flow processes can be precisely delineated with proper sets of soil hydraulic properties derived from in situ and/or laboratory experiments. In this study we analyzed and compared soil hydraulic properties obtained by traditional laboratory experiments and inverse optimization tension infiltrometer data along the vertical direction within two typical Podzol profiles with sand texture in a potato field. The main goal was to identify proper sets of hydraulic parameters and to evaluate their relevance on hydrological model performance for irrigation management purposes. Tension disc infiltration experiments were carried out at four and five different depths for both profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations and depths undisturbed samples were taken to determine Mualem-van Genuchten (MVG) hydraulic parameters (θr, residual water content, θs, saturated water content, α and n, shape parameters and Kls, lab saturated hydraulic conductivity) in the laboratory. Results demonstrated horizontal differences and vertical variability of hydraulic properties. The tension disc infiltration data fitted well in inverse modeling using Hydrus 2D/3D in combination with final water content at the end of the experiment, θf. Four MVG parameters (θs, α, n and field saturated hydraulic conductivity Kfs) were estimated (θr set to zero), with estimated Kls and α values being relatively similar to values from Wooding's solution which used as initial value and estimated θs corresponded to (effective) field saturated water content, θf. The laboratory measurement of Kls yielded 2-30 times higher values than the field method Kfs from top to subsoil layers, while there was a significant correlation between both Ks values (r = 0.75). We found significant differences of MVG parameters θs, n and α values between laboratory and field measurements, but again a significant correlation was observed between laboratory and field MVG

  10. Soil hydraulic properties affected by topsoil thickness in cultivated switchgrass and corn-soybean rotation production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  11. Relation between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy)

    NASA Astrophysics Data System (ADS)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.

    2015-02-01

    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to put the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of some pedotransfer functions taken from the literature and then with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relation between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants and this fact, together with their lack of depth and compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  12. Effects of long-term irrigation with treated wastewater on the hydraulic properties of a clayey soil

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Narkis, K.

    2011-08-01

    The increasing demand for freshwater (FW) for domestic use turns treated wastewater (WW) into an attractive source of water for irrigated agriculture. The main goal of this study was to evaluate the impact of 15 yrs of irrigation with WW on hydraulic properties and flow processes in a clayey soil, compared to FW use. It also quantitatively addressed the distribution with depth along the soil profile of that impact on soil hydraulic properties. Standard methods used in soil physics at the laboratory scale, and numerical solutions of the flow equations on the basis of HYDRUS, were applied to define fundamental soil hydraulic properties of disturbed soil samples from 0-20, 20-40, and 40-60 cm layers in the root zone. Results showed that saturated hydraulic conductivity, sorptivity, and infiltration rates are consistently lower in the WW irrigated soil samples at all depths. Water retention and hydraulic conductivity functions were affected by the use of WW, leading to a smaller, simulated-wetted volume below a dripper for the WW-irrigated soil case. These results illustrate the combined and complex effect of WW use on soil-exchangeable sodium percentage, and suggest changes in contact angle and pore size distribution. They also suggest that WW application will affect differently different zones in the soil profile, depending on irrigation management parameters and plant uptake characteristics.

  13. Wastewater effects on montmorillonite suspensions and hydraulic properties of sandy soils

    SciTech Connect

    Tarchitzky, J.; Golobati, Y.; Keren, R.; Chen, Y.

    1999-06-01

    Recycled wastewater effluent is an important source of irrigation water in arid and semiarid regions. In these regions, however, irrigation water quality is one of the main factors limiting plant growth. Wastewater effluents generally contain high concentrations of suspended and dissolved solids, both organic and inorganic. Inorganic dissolved solids are only minimally removed from the effluent during conventional sewage treatment. As a result, most of the salts added during domestic and industrial usage remain in the irrigation water and may eventually reach the soil. A number of researchers have reported reduced hydraulic conductivity for soils to which treated wastewater has been applied. In this research, the influence of dissolved organic matter (DOM) contained in reclaimed wastewater effluents on the flocculation of montmorillonite and on the hydraulic properties of soils was studied. Flocculation values (FVs) for Na-montmorillonite increased with increasing concentrations of DOM at all pH levels analyzed. Maximum FV levels were exhibited for Na-montmorillonite at the highest DOM concentrations. The effect of DOM on FV can be explained by the mechanisms of edge-charge reversal and mutual flocculation. The hydraulic conductivity (HC) of a sandy soil was determined in the laboratory by leaching columns with an electrolyte solution chemically similar to that of the wastewater effluent (but without DOM). In columns treated with wastewater effluent, the HC exhibited a sharp decrease to only 20% of its initial value. The adverse effect of DOM on HC was evident for this soil despite a relatively low exchangeable sodium percentage (ESP). The reduction in HC is likely to be the result of decreases soil pore-size, which reflects two processes: (1) retention of part of the DOM during water percolation; and (2) a change in pore-size distribution due to swelling and dispersion of clay particles. The latter may result from a higher percentage of adsorbed sodium combined

  14. Estimating water and nitrate leaching in tree crops using inverse modelled plant and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Couvreur, Valentin; Kandelous, Maziar; Mairesse, Harmony; Baram, Shahar; Moradi, Ahmad; Pope, Katrin; Hopmans, Jan

    2015-04-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other (semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, root nitrate and water uptake interact with soil and root properties in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modelling studies are required to allow for unravelling of the relevant complexities that result from typical variations of crop properties, soil texture and layering across farmer-managed fields. A combined field monitoring and modelling approach was developed to quantify from simple measurements the leaching of water and nitrate below the root zone. The monitored state variables are soil water content within the root zone, soil matric potential below the root zone, and nitrate concentration in the soil solution. Plant and soil properties of incremented complexity are optimized with the software HYDRUS in an inverse modelling scheme, which allows estimating leaching under constraint of hydraulic principles. Questions of optimal irrigation and fertilization timing can then be addressed using predictive results and global optimization algorithms.

  15. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Shakofsky, S.

    1995-03-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.

  16. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Shakofsky, S.M.

    1995-01-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semi-arid southeast region of Idaho. The soil samples were collected, using a hydraulically- driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is. by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.

  17. Spatiotemporal Variability of Soil Hydraulic Properties from Field Data and Remote Sensing in the Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Becker, R.; Gebremichael, M.; Marker, M.

    2015-12-01

    Soil moisture is one of the main input variables for hydrological models. However due to the high spatial and temporal variability of soil properties it is often difficult to obtain accurate soil information at the required resolution. The new satellite SMAP promises to deliver soil moisture information at higher resolutions and could therefore improve the results of hydrological models. Nevertheless it still has to be investigated how precisely the SMAP soil moisture data can be used to delineate rainfall-runoff generation processes and if SMAP imagery can significantly improve the results of surface runoff models. Important parameters to understand the spatiotemporal distribution of soil humidity are infiltration and hydraulic conductivities apart from soil texture and macrostructure. During the SMAPVEX15-field campaign data on hydraulic conductivity and infiltration rates is collected in the Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona in order to analyze the spatiotemporal variability of soil hydraulic properties. A Compact Constant Head Permeameter is used for in situ measurements of saturated hydraulic conductivity within the soil layers and a Hood Infiltrometer is used to determine infiltration rates at the undisturbed soil surface. Sampling sites were adjacent to the USDA-ARS meteorological and soil moisture measuring sites in the WGEW to take advantage of the long-term database of soil and climate data. Furthermore a sample plot of 3x3km was selected, where the spatial variability of soil hydraulic properties within a SMAP footprint was investigated. The results of the ground measurement based analysis are then compared with the remote sensing data derived from SMAP and aircraft-based microwave data to determine how well these spatiotemporal variations are captured by the remotely sensed data with the final goal of evaluating the use of future satellite soil moisture products for the improvement of rainfall runoff models. The results

  18. Vadose zone monitoring strategies to control water flux dynamics and changes in soil hydraulic properties.

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquin; Candela, Lucila

    2013-04-01

    For monitoring the vadose zone, different strategies can be chosen, depending on the objectives and scale of observation. The effects of non-conventional water use on the vadose zone might produce impacts in porous media which could lead to changes in soil hydraulic properties, among others. Controlling these possible effects requires an accurate monitoring strategy that controls the volumetric water content, θ, and soil pressure, h, along the studied profile. According to the available literature, different monitoring systems have been carried out independently, however less attention has received comparative studies between different techniques. An experimental plot of 9x5 m2 was set with automatic and non-automatic sensors to control θ and h up to 1.5m depth. The non-automatic system consisted of ten Jet Fill tensiometers at 30, 45, 60, 90 and 120 cm (Soil Moisture®) and a polycarbonate access tube of 44 mm (i.d) for soil moisture measurements with a TRIME FM TDR portable probe (IMKO®). Vertical installation was carefully performed; measurements with this system were manual, twice a week for θ and three times per week for h. The automatic system composed of five 5TE sensors (Decagon Devices®) installed at 20, 40, 60, 90 and 120 cm for θ measurements and one MPS1 sensor (Decagon Devices®) at 60 cm depth for h. Installation took place laterally in a 40-50 cm length hole bored in a side of a trench that was excavated. All automatic sensors hourly recorded and stored in a data-logger. Boundary conditions were controlled with a volume-meter and with a meteorological station. ET was modelled with Penman-Monteith equation. Soil characterization include bulk density, gravimetric water content, grain size distribution, saturated hydraulic conductivity and soil water retention curves determined following laboratory standards. Soil mineralogy was determined by X-Ray difractometry. Unsaturated soil hydraulic parameters were model-fitted through SWRC-fit code and

  19. Retrieving Soil Hydraulic Properties by Diffuse Spectral Reflectance Data in Vis-NIR-SWIR Range

    NASA Astrophysics Data System (ADS)

    Babaeian, E.; Homaee, M.; Vereecken, H.; Montzka, C.; Norouzi, A. A.; Van Genuchten, M.

    2014-12-01

    Information about the soil water characteristics is necessary for modeling water flow and solute transport processes in vadose zone. Soil spectroscopy in the visible, near-infrared and shortwave infrared (Vis-NIR-SWIR) range has been widely used as a rapid, cost-effective and non-destructive technique to predict basic soil properties. In this paper we used three different approaches to retrieve soil hydraulic parameters from spectral data in the visible, near-infrared and shortwave-infrared (Vis-NIR-SWIR) region and basic soil properties. Using stepwise multiple linear statistics coupled with bootstrapping, we derived and validated three types of point and parametric transfer functions: i) spectral transfer functions (STFs), ii) pedotransfer functions (PTFs) and iii) spectral pedotransfer functions (SPTFs) which respectively used spectral data, basic soil properties and spectral based basic soil predictions as their inputs. We further evaluated a direct fit of the van Genuchten (VG) and Brooks-Corey (BC) retention models to the predicted water contents obtained with each approach. According to the results, soil water contents, the VG and BC parameters as well as basic soil properties showed significant (p<0.01) correlation with spectral reflectance values, especially for the SWIR region. The STFs performed slightly better than the PTFs in terms of R2 and RMSE in estimating water contents in the mid and dry parts of retention curve. In the wet range, PTFs were found to perform better than the other two approaches. Compared to the STFs, however, better water content estimates were obtained using the SPTFs in the wet range. The parametric STFs and SPTFs of both the VG and BC models developed from spectral data performed slightly better than parametric PTFs for the retention curve. The best predictions were obtained with a direct fit of the retention models to soil water contents estimated with point transfer functions. Our findings suggest that spectral information

  20. Impact of anthropomorphic soil genesis on hydraulic properties: the case of cranberry production

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    The construction of a cranberry field requires the installation of a drainage system which causes anthropic layering of the natural sequence of soil strata. Over the years, the soil hydraulic properties may change under the influence of irrigation and water table control. In fact, natural consolidation (drainage and recharge cycles), filtration and clogging soil pores by colloidal particle accelerated by water management will alter the hydrodynamic behavior of the soil (Gaillard et al., 2007; Wildenschild and Sheppard, 2013; Bodner et al., 2013). Today, advances in the field of tomography imagery allows the study a number of physicals processes of soils (Wildenschilds and Sheppard, 2013) especially for the transport of colloidal particles (Gaillard et al., 2007) and consolidation (Reed et al, 2006; Pires et al, 2007). Therefore, the main objective of this work is to analyze the temporal evolution of hydrodynamic properties of a sandy soil during repeated drainage and recharge cycles using a medical CT-scan. A soil columns laboratory experiment was setup in fall 2013, pressure head, input and output flow, tracer monitoring (KBr and ZrO2) and tomographic analyses have been used to quantify the temporal variation of the soil hydrodynamic properties of these soil columns. The results showed that the water management (irrigation and drainage) has strong effect on soil genesis and causes significant alteration of soil hydraulic properties, which may reduce soil drainage capacity. Knowledge about the mechanisms responsible of anthropic cranberry soil genesis will allow us to predict soil evolution according to several conditions (soil type, drainage system design, water management) to better anticipate and control their future negative effects on cranberry production. References: Bodner, G., P. Scholl and H.P. Kaul. 2013. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research 133: 1-9. doi

  1. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  2. Soil Hydraulic Properties Influenced by Corn Stover Removal from No-Till Corn in Ohio.

    SciTech Connect

    Blanco-Canqui, H.; Lal, Rattan; Post, W. M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

    2007-01-01

    Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for

  3. Effect of Aggregates Compaction in Soil Hydraulic Properties, due to Root Growth

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Tyler, S. W.; Berli, M.

    2009-12-01

    The rhizosphere is critical for soil-root interactions, however, physical processes within the soil around roots and implications of these processes, such as plant water and nutrient uptake, continue to raise questions. Soil compaction, due to root growth, results in favorable physical conditions in the rhizosphere to foster plant growth by providing aeration under wet conditions and improving water storage and flow toward the roots under dry conditions. In unsaturated conditions, the air transfer occurs through the macropores, while the water transfer occurs through the aggregates; providing the plant with these two vital elements, continuously. At the aggregate-scale, compaction gives connectivity within the aggregates. As the contact area between the aggregates increases, more water may be transfer to the plant. As result, the hydraulic conductivity of the rhizosphere may be higher than that at initial conditions (i.e., before compaction). This idea is important, as usually compaction is associated with decreasing water conductivity. This study focuses on understanding the role of roots to modify the soil, and in particular, their impact on rhizosphere hydraulic properties at the aggregate-scale. Using HYDRUS 3D, an aggregate system was modeled. It was found that the saturated hydraulic conductivity of the system increased following an S-shape as contact area increased due to compaction. This result differs from previous studies that assumed a quadratic relation. In addition, it was found that the compaction of big pores within the aggregates will be more beneficial for water extraction purposes, than the change in pore-size distribution within the aggregates due to compaction.

  4. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    NASA Astrophysics Data System (ADS)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  5. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions

    NASA Technical Reports Server (NTRS)

    Gutmann, Ethan D.; Small, Eric E.

    2007-01-01

    Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.

  6. Deep rooting plants influence on soil hydraulic properties and air conductivity over time

    NASA Astrophysics Data System (ADS)

    Uteau, Daniel; Peth, Stephan; Diercks, Charlotte; Pagenkemper, Sebastian; Horn, Rainer

    2014-05-01

    Crop sequences are commonly suggested as an alternative to improve subsoil structure. A well structured soil can be characterized by enhanced transport properties. Our main hypothesis was, that different root systems can modify the soil's macro/mesopore network if enough cultivation time is given. We analyzed the influence of three crops with either shallower roots (Festuca arundinacea, fescue) or taproots (Cichorium intybus, chicory and Medicago sativa, alfalfa). The crops where cultivated on a Haplic Luvisol near Bonn (Germany) for one, two or three years. Undisturbed soil cores were taken for measurement of unsaturated hydraulic conductivity and air permeability. The unsaturated conductivity was measured using the evaporation method, monitoring the water content and tension at two depths of each undisturbed soil core. The van Genuchten-Mualem model (1991) was fitted to the measured data. Air permeability was measured in a permeameter with constant flow at low pressure gradient. The measurements were repeated at -1, -3, -6, -15, -30 and -50 kPa matric tension and the model of Ball et al. (1988) was used to describe permeability as function of matric tension. Furthermore, the cores equilibrated at -15 kPa matric tension were scanned with X-Ray computer tomography. By means of 3D image analysis, geometrical features as pore size distribution, tortuosity and connectivity of the pore network was analyzed. The measurements showed an increased unsaturated hydraulic conductivity associated to coarser pores at the taprooted cultivations. A enhanced pore system (related to shrink-swell processes) under alfalfa was observed in both transport measurements and was confirmed by the 3D image analysis. This highly functional pore system (consisting mainly of root paths, earthworm channels and shrinking cracks) was clearly visible below the 75 cm of depth and differentiated significantly from the other two treatments only after three years of cultivation, which shows the time

  7. Physical soil properties and slope treatments effects on hydraulic excavator productivity for forest road construction.

    PubMed

    Parsakho, Aidin; Hosseini, Seyed Ataollah; Jalilvand, Hamid; Lotfalian, Majid

    2008-06-01

    Effects of moisture, porosity and soil bulk density properties, grubbing time and terrain side slopes on pc 220 komatsu hydraulic excavator productivity were investigated in Miana forests road construction project which located in the northern forest of Iran. Soil moisture and porosity determined by samples were taken from undisturbed soil. The elements of daily works were measured with a digital stop watch and video camera in 14 observations (days). The road length and cross section profiles after each 20 m were selected to estimate earthworks volume. Results showed that the mean production rates for the pc 220 komatsu excavators were 60.13 m3 h(-1) and earthwork 14.76 m h(-1) when the mean depth of excavation or cutting was 4.27 m3 m(-1), respectively. There was no significant effects (p = 0.5288) from the slope classes' treatments on productivity, whereas grubbing time, soil moisture, bulk density and porosity had significantly affected on excavator earthworks volume (p < 0.0001). Clear difference was showed between the earthwork length by slope classes (p = 0.0060). Grubbing time (p = 0.2180), soil moisture (p = 0.1622), bulk density (p = 0.2490) and porosity (p = 0.2159) had no significant effect on the excavator earthworks length. PMID:18817241

  8. Modeling Hydraulic Properties and Hydrologic Processes in Shrink-swell Clay Soils

    NASA Astrophysics Data System (ADS)

    Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.

    2015-12-01

    Recognizing the need for tractable models that accurately describe the hydrologic behaviors of shrink-swell soils, we propose a new conceptual model that identifies up to five porosity domains based on morphological and hydrological distinctions. We provide governing equations that predict the porosity distribution as a function of soil water content and six additional parameters, all of which can be determined using laboratory measurements conducted on individual soil samples. We next derive new expressions for the hydraulic properties of such soils, which can be used to model infiltration at the plot scale. Finally, we incorporate these expressions into new models that can be used to predict and quantify surface runoff (i.e., overland flow) thresholds, and which may be used to reveal the dominant mechanisms by which water moves through clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale processes, and can be applied to such practical applications as converting measurements between gravimetric and volumetric water contents, as well as to predicting field-scale processes such as the sealing of individual cracks.

  9. Characterization and prediction of spatial variability of unsaturated hydraulic properties in a field soil: Las Cruces, New Mexico

    SciTech Connect

    Yeh, T.C.J.; Greenholtz, D.E.; Nash, M.S.; Wierenga, P.J.

    1991-12-31

    A 91-m transect was set up in an irrigated field near Las Cruces, New Mexico to investigate the spatial variability of unsaturated soil properties. A total of 455 sampling points were monitored along a grid consisting of 91 stations placed 1 m apart by 5 depths per station. Post-irrigation soil water tension and water content measurements were recorded over 45 days at 11 time periods. The instantaneous profile was used to estimate the unsaturated hydraulic conductivity at the 455 sampling points. Fifty soil samples were also taken for analyzing sand, silt, and clay content distributions. The spatial and temporal variability of soil water tension and water content were investigated along with the spatial variability of parameters of an unsaturated hydraulic conductivity model. Results of the analysis show that spatial variation in soil water tension and water content is consistent with the soil texture spatial variability. In addition, the spatial distribution of the estimated parameter value of unsaturated hydraulic conductivity reflects the soil texture distribution. Using the statistics of the estimated hydraulic parameter values, a stochastic soil water tension model was employed to reproduce the variability of observed soil water tension. Although many assumptions were made, the results of the simulation appear promising.

  10. Characterization and prediction of spatial variability of unsaturated hydraulic properties in a field soil: Las Cruces, New Mexico

    SciTech Connect

    Yeh, T.C.J.; Greenholtz, D.E. . Dept. of Hydrology and Water Resources); Nash, M.S. . Dept. of Crop and Soil Sciences); Wierenga, P.J. . Dept. of Soil and Water Science)

    1991-01-01

    A 91-m transect was set up in an irrigated field near Las Cruces, New Mexico to investigate the spatial variability of unsaturated soil properties. A total of 455 sampling points were monitored along a grid consisting of 91 stations placed 1 m apart by 5 depths per station. Post-irrigation soil water tension and water content measurements were recorded over 45 days at 11 time periods. The instantaneous profile was used to estimate the unsaturated hydraulic conductivity at the 455 sampling points. Fifty soil samples were also taken for analyzing sand, silt, and clay content distributions. The spatial and temporal variability of soil water tension and water content were investigated along with the spatial variability of parameters of an unsaturated hydraulic conductivity model. Results of the analysis show that spatial variation in soil water tension and water content is consistent with the soil texture spatial variability. In addition, the spatial distribution of the estimated parameter value of unsaturated hydraulic conductivity reflects the soil texture distribution. Using the statistics of the estimated hydraulic parameter values, a stochastic soil water tension model was employed to reproduce the variability of observed soil water tension. Although many assumptions were made, the results of the simulation appear promising.

  11. May We Identify The Spatial Variability of Soil Hydraulic Properties Based On Measurements With "spatial Tdr"? A) Model Study

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Becker, R.; Schädel, W.

    A dynamic system left without external disturbances, will always tend to a stable equilibrium state that is consistent with the internal physics. For natural soils such an equilibrium state is reached when the gradients of the total hydraulic potential tend to zero. This statement is still valid for heterogeneous soils, because the hydraulic po- tential is an intensive state variable and therefore continuous at discontinuities of the pore space. In contrary the soil water content is as an extensive property discontinu- ous at discontinuities of the pore space. Hence, a small scale soil moisture pattern that persists if the soil state tends to hydraulic equilibrium, reflects the lateral small scale variability of the pore space. The objectives of our study are to show a) whether and how we could use TDR observations to identify the small scale variability of the pore space. For that purpose we analyse artificial TDR measurements, taken from physi- cally based simulations of soil water dynamics in heterogeneous media. b) We want to introduce a new TDR technology which we call "Spatial TDR", that is suitable for that purposes. To produce the artificial TDR-datasets we generate random fields of soil porosity and saturated hydraulic conductivity with different statistical properties based on field data in a Luvisol and simulate artificial water dynamics in this model soil based on Richards-equation. Within this model soil we define several hypothetical "Spatial TDR" clusters, that differ in the lateral spacing and the number of the probes, in the temporal resolution of the hypothetical measurements and in the assumed mea- surement accuracy. If the model soil approaches hydraulic equilibrium, the remaining soil moisture pattern will be dominated by the statistical properties of the porosity. In contrary the variability of the hydraulic conductivity will dominate the soil moisture patterns during infiltration events. The hypothetical Spatial TDR measurements within the

  12. Laboratory analysis of soil hydraulic properties of TA-49 soil samples. Volume I: Report summary

    SciTech Connect

    1995-04-01

    The Hydrologic Testing Laboratory at Daniel B. Stephens & Associates, Inc. (DBS&A) has completed laboratory tests on TA-49 soil samples as specified by Mr. Daniel A. James and summarized in Table 1. Tables 2 through 12 give the results of the specified analyses. Raw laboratory data and graphical plots of data (where appropriate) are contained in Appendices A through K. Appendix L lists the methods used in these analyses. A detailed description of each method is available upon request. Thermal properties were calculated using methods reviewed by Campbell and covered in more detail in Appendix K. Typically, soil thermal conductivities are determined using empirical fitting parameters (five in this case), Some assumptions are also made in the equations used to reduce the raw data. In addition to the requested thermal property measurements, calculated values are also presented as the best available internal check on data quality. For both thermal conductivities and specific heats, calculated and measured values are consistent and the functions often cross. Interestingly, measured thermal conductivities tend to be higher than calculated thermal conductivities around typically encountered in situ moisture contents ({plus_minus}5 percent). While we do not venture an explanation of the difference, sensitivity testing of any problem requiring nonisothermal modeling across this range is in order.

  13. Sensitivity of long-term bare soil infiltration simulations to hydraulic properties in an arid environment

    NASA Astrophysics Data System (ADS)

    Stothoff, Stuart A.

    1997-04-01

    The suitability of Yucca Mountain, Nevada, for emplacement of a high-level nuclear waste geologic repository is currently being evaluated. Assessments of the repository performance suggest that the uncertainty in infiltration rates strongly affects predicted repository performance. Most of the ground surface over the potential repository footprint is characterized by shallow to deep colluvium/alluvium overlying densely fractured, welded tuffs. In order to identify characteristic behavior of infiltration that might be expected at the site, two idealizations of this situation are examined: an effectively semi-infinite column of alluvium and a two-layer column of alluvium over a fractured impermeable matrix. For each idealization the impact of hydraulic properties is assessed. Examining the sensitivity of bare soil simulator predictions for an effectively semi-infinite column, it is found that decreasing the air entry pressure while holding all other parameters at a fixed level tends to increase both the long-term average moisture content and the long-term average net infiltration flux for homogeneous media. In contrast, increasing the van Genuchten scale parameter (m=1 - 17sol;n) or decreasing the porosity tends to decrease the average soil moisture but increase the infiltration. Most interestingly, three regimes are found for permeability. For relatively high permeabilities, there is a trend toward increasing average infiltration and increasing average moisture content with decreasing permeability. For relatively low permeabilities, vapor transport dominates over liquid transport, runoff and evaporation overwhelm infiltration, and the soil becomes very dry with essentially no infiltration flux. Between the extreme cases of high and low permeability, there is a zone where decreasing permeability results in decreased infiltration but increased moisture content, which is explained by the capacity of more permeable media to maintain surface wetness for longer periods of

  14. Feasibility of using LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1985-01-01

    Research activities conducted from February 1, 1985 to July 31, 1985 and preliminary conclusions regarding research objectives are summarized. The objective is to determine the feasibility of using LANDSAT data to estimate effective hydraulic properties of soils. The general approach is to apply the climatic-climax hypothesis (Ealgeson, 1982) to natural water-limited vegetation systems using canopy cover estimated from LANDSAT data. Natural water-limited systems typically consist of inhomogeneous vegetation canopies interspersed with bare soils. The ground resolution associated with one pixel from LANDSAT MSS (or TM) data is generally greater than the scale of the plant canopy or canopy clusters. Thus a method for resolving percent canopy cover at a subpixel level must be established before the Eagleson hypothesis can be tested. Two formulations are proposed which extend existing methods of analyzing mixed pixels to naturally vegetated landscapes. The first method involves use of the normalized vegetation index. The second approach is a physical model based on radiative transfer principles. Both methods are to be analyzed for their feasibility on selected sites.

  15. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we review the use of the van Genuchten Mualem (VGM) model to parameterize the soil moisture retention characteristic (MRC) and the nsaturated hydraulic conductivity curve (HCC), as well as its use in developing pedotransfer functions (PFTs). Analysis of literature data showed that MRC...

  16. A combined monitoring and modeling approach to quantify water and nitrate leaching using effective soil column hydraulic properties

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Kandelous, M. M.; Moradi, A. B.; Baram, S.; Mairesse, H.; Hopmans, J. W.

    2014-12-01

    There is a worldwide growing concern for agricultural lands input to groundwater pollution. Nitrate contamination of groundwater across the Central Valley of California has been related to its diverse and intensive agricultural practices. However, there has been no study comparing leaching of nitrate in each individual agricultural land within the complex and diversely managed studied area. A combined field monitoring and modeling approach was developed to quantify from simple measurements the leaching of water and nitrate below the root zone. The monitored state variables are soil water content at several depths within the root zone, soil matric potential at two depths below the root zone, and nitrate concentration in the soil solution. In the modeling part, unsaturated water flow and solute transport are simulated with the software HYDRUS in a soil profile fragmented in up to two soil hydraulic types, whose effective hydraulic properties are optimized with an inverse modeling method. The applicability of the method will first be demonstrated "in-silico", with synthetic soil water dynamics data generated with HYDRUS, and considering the soil column as the layering of several soil types characterized in-situ. The method will then be applied to actual soil water status data from various crops in California including tomato, citrus, almond, pistachio, and walnut. Eventually, improvements of irrigation and fertilization management practices (i.e. mainly questions of quantity and frequency of application minimizing leaching under constraint of water and nutrient availability) will be investigated using coupled modeling and optimization tools.

  17. Assessment of Temporal and spatial variability of soil hydraulic properties and its implications on soil water content predictions for a maize field in Northern Italy

    NASA Astrophysics Data System (ADS)

    Feki, Mouna; Ravazzani, Giovanni; Ceppi, Alessandro; Mancini, Marco

    2016-04-01

    Use of hydrological models to simulate water movement from soil surface to groundwater requires intensive, time consuming and expensive soil related parameters collection, such as, water retention curve (WRC) parameters and hydraulic conductivity (K).Typically, soils to be characterized, , exhibit large variations in space and time as well during the cropping cycle, due to biological processes and agricultural management practices : tillage , irrigation , fertilization and harvest. Soil properties are subjected to diverse physical and chemical changes that leads to a non-stability in term of water and chemical movements within the soil as well to the groundwater. The aim of this study is to assess the variability of soil hydraulic properties dynamics over a cropping cycle. The study site is a surface irrigated Maize field (typical in this area) located in Secugnago (45°13'31.70'' N, 9°36'26.82 E), in Northern Italy-Lombardy region. The field belongs to the Consortium Muzza Bassa Lodigiana, within which meteorological data together with soil moisture were monitored during the cropping season of 2015 . To investigate soil properties variations, both measurements in the field and laboratory tests on both undisturbed and disturbed collected samples were performed. Soil samples were taken from different locations within the study area and at different depths( 0cm , 20cm and 40cm) as well at different growth stages of the plant ,after irrigation events or tillage and as well after harvest. During three measuring campaigns, for each soil samples several parameters were monitored (Organic matter , bulk density) together with soil-water related parameters (Soil water retention curve parameters , saturated hydraulic conductivity). Soil water retention curves parameters were measured following the evaporative method, using the Hyprop (Hydraulic Property Analyzer; UMS Munich, 2010). Parameters were assessed using Hyprop-fit software, by fitting data to Brooks and Corey and

  18. Estimating the Hydraulic Properties of Mountainous Podzol Soils Using Inverse Modeling Methods

    NASA Astrophysics Data System (ADS)

    Kuraz, Michal; Jacka, Lukas; Havlicek, Vojtech; Pavlasek, Jirka; Pech, Pavel

    2016-04-01

    The aim of this research is an evaluation of the soil hydraulic parameters (SHP) for a mountainous podzolic soil profile. The SHPs for the lower layers can be identified using standard approaches - a single ring (SR) infiltration experiment and a Guelph permeameter (GP) measurement. However, the thickness of the top soil layer is often much lower than the depth required to embed an SR or GP device, and the SHP for the top soil layer exhibits large temporal and spatial changes due to changes in vegetation activity during the seasons and a distinct alternation of wetting and drying cycles. SHPs for the top soil layer are therefore very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the SR infiltration process, where, especially, the initial unsteady part of the experiment can provide very useful data for evaluating the retention curve parameters and the saturated hydraulic conductivity. This inverse analysis is the main topic of this paper. We discuss issues in assigning the initial and boundary condition setup, and the influence of spatial and temporal discretization on the values of the identified SHPs. Since the infiltration process is a typical case of a model that describes the progressive breakthrough of the wetting curve, we made use of adaptive domain decomposition (dd-adaptivity) described by Kuraz et al. (2013, 2014, 2015) for sequential activation and deactivation of the segments of our computational domain. Finally, we conducted a sensitivity analysis of our objective function on the SHP set.

  19. Changes of soil hydraulic properties from long-term irrigation with desalted brackish groundwater

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquin; Candela, Lucila

    2014-05-01

    Long term effects on soil from desalted water irrigation have been assessed in an experimental plot (9 x 5 m2) under semi-arid climate located in Alicante (SE Spain). Water flux monitoring, from volumetric water content and soil pressure head, was performed from two different monitoring strategies. Also, field scale dispersivity was estimated through a BrLi tracer test and by inverse modelling with HYDRUS. Finally, a reactive and multicomponent transport model was developed using HP1 software, coupling of HYDRUS with PHREEQC. From soil profile characterization, three layers were identified, being calcite the most important mineral of the soil solid phase in all them, followed by quartz and gypsum, the latest in low concentration. Reactive transport modelling of major ions supply by irrigation water was performed with the HP1 code. Temporal and spatial variability of saturated hydraulic conductivity were included in the computational process. Chemical results for each time step (precipitation/dissolution of minerals) were used to compute changes in soil porosity and consequently in the hydraulic conductivity, which is used in the following computational time step. Simulations were performed along a 30 years period. Results from field data show that an increase in porosity and saturated hydraulic conductivity can be expected due to the slow but continuous dissolution of gypsum. Calcite dissolution is expected at the root zone (where partial pressure of CO2 is higher) and precipitation occurs below the root zone, where CO2 partial pressure decreases due to the reduction of biological activity. From the baseline case, three different scenarios were proposed: (i) gypsum free profile, (ii) rain-fed irrigation, and (iii) lower CO2 partial pressure at the root zone. For the gypsum free soil profile scenario, the important precipitation of calcite produced below the root zone is not counteract by the gypsum dissolution, which may lead to significant reduction of hydraulic

  20. Using Remotely-Sensed Estimates of Soil Moisture to Infer Soil Texture and Hydraulic Properties across a Semi-arid Watershed

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Peters-Lidard, Christa D.; Garcia, Matthew E.; Mocko, David M.; Tischler, Michael A.; Moran, M. Susan; Thoma, D. P.

    2007-01-01

    Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soils from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed. In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also

  1. Laboratory analysis of soil hydraulic properties of G-5 soil samples

    SciTech Connect

    1995-01-01

    The Hydrologic Testing Laboratory at DBS&A has completed laboratory tests on TA-54 samples from well G5 as specified by Daniel James and summarized in Table 1. Tables 2 through 8 give the results of the specified analyses. Raw laboratory data and graphical plots of data (where appropriate) are contained in Appendices A through G. Appendix H lists the methods used in these analyses. A detailed description of each method is available upon request. Several sample-specific observations are important for data interpretation. Sample G-5 @ 21.5 was a short core and showed indications of preferential flow. Sample G-5 @ 92.5 developed a visually apparent crack during drying which correlates with the higher air permeabilities observed at lower water contents. Several samples yielded negative estimates of extrapolated intrinsic permeability while measured apparent permeabilities were reasonable. For consistency, however, only intrinsic values are presented. While our defined task is to provide data for interpretation, the following comments are offered as a context for some of the common parameter extraction issues. Further details and a more comprehensive summary of TA-54 data can be found in Unsaturated hydraulic characteristics of the Bandelier tuff at TA-54 dated November 17, 1994.

  2. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    In the last years researchers reported an increasing need to have more awareness on the intimate link between land use and soil hydrological properties (soil organic matter storage, water infiltration, hydraulic conductivity) and their possible effects on water retention (e.g., Bens et al., 2006; del Campo et al., 2014; González-Sanchis et al., 2015; Molina and del Campo, 2012). In the Mediterranean ecosystems, special attention needs to be paid to the forest-water relationships due to the natural scarcity of water. Adaptive forest management (AFM) aims to adapt the forest to water availability by means of an artificial regulation of the forest structure and density in order to promote tree and stand resilience through enhancing soil water availability (del Campo et al., 2014). The opening of the canopy, due to the removal of a certain number of trees, is an important practice for the management of forests. It results in important modifications to the microclimatic conditions that influence the ecophysiological functioning of trees (Aussenac and Granier, 1988). However, the effect of thinning may vary depending on the specific conditions of the forest (Andréassian, 2004; Brooks et al., 2003; Cosandey et al., 2005; Lewis et al., 2000; Molina and del Campo, 2012). Different authors reported that a reduction in forest cover increases water yield due to the subsequent reduction in evapotranspiration (Brooks et al., 2003; González-Sanchis et al., 2015; Hibbert, 1983; Zhang et al., 2001). On the other hand, the water increase may be easily evaporated from the soil surface (Andréassian, 2004). In this context, determining soil hydraulic properties in forests is essential for understanding and simulating the hydrological processes (Alagna et al., 2015; Assouline and Mualem, 2002), in order to adapt a water-saving management to a specific case, or to study the effects of a particular management practice. However, it must be borne in mind that changes brought about by

  3. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the centuries, tillage has been an important agronomic practice that has been used to mechanically alter soil properties and enhance the soil ecosystem for growth of crops. A 4-yr study investigated the impact of no-tillage (NT), shallow tillage at a 10-cm depth (ST), and deep tillage at a 30-c...

  4. Organic Carbon Effects on Soil Physical and Hydraulic Properties in a Semi-arid Climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing cropping intensity in the central Great Plains of the United States has led to increased organic carbon being stored in the soil. A study was conducted to investigate changes in soil physical properties associated with increased organic carbon levels. A cropping systems study was started ...

  5. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  6. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    NASA Astrophysics Data System (ADS)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  7. Using scaling factors for evaluating spatial and temporal variability of soil hydraulic properties within one elevation transect

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonín; Kodešová, Radka; Jakšík, Ondřej; Fér, Miroslav; Klement, Aleš

    2016-04-01

    This study was carried out in Southern Moravia, in the Czech Republic. The original soil unit in the wider area is a Haplic Chernozem developed on loess. The intensive agricultural exploitation in combination with terrain morphology has resulted in a highly diversified soil spatial pattern. Nowadays the original soil unit is preserved only on top of relatively flat parts, and is gradually transformed by water erosion up to Regosols on the steepest slopes, while colluvial soils are formed in terrain depressions and at toe slopes due to sedimentation of previously eroded material. Soils within this area has been intensively investigated during the last several years (e.g. Jakšík et al., 2015; Vašát et al., 2014, 2015a,b). Soil sampling (disturbed and undisturbed 100-cm3 soil samples) was performed at 5 points of one elevation transect in November 2010 (after wheat sowing) and August 2011 (after wheat harvest). Disturbed soil samples were used to determine basic soil properties (grain size distribution and organic carbon content etc.). Undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. Scaling factors (alpha-h for pressure head, alpha-theta for soil water contents and alpha-k for hydraulic conductivities) were used here to express soil hydraulic properties variability. Evaluated scaling factors reflected position within the elevation transect as well as time of soil sampling. In general large values of alpha-h, lower values of alpha-k and similar values of alpha-theta were obtained in 2010 in comparison to values obtained in 2011, which indicates development of soil structure during the vegetation season. Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127, 287-299. Vašát, R., Kode

  8. TRANSLATING AVAILABLE BASIC SOIL DATA INTO MISSING SOIL HYDRAULIC CHARACTERISTICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil hydraulic pedotransfer functions transfer simple-to-measure soil survey information into soil hydraulic characteristics, that are otherwise costly to measure. Examples are presented of different equations describing hydraulic characteristics and of pedotransfer functions used to predict paramet...

  9. UNSODA UNSATURATED SOIL HYDRAULIC DATABASE USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This report contains general documentation and serves as a user manual of the UNSODA program. UNSODA is a database of unsaturated soil hydraulic properties (water retention, hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution, b...

  10. An improved description of soil hydraulic and thermal properties of arctic peatland for use in a GCM

    NASA Astrophysics Data System (ADS)

    Hall, Robin L.; Huntingford, Chris; Harding, Richard J.; Lloyd, Colin R.; Cox, Peter M.

    2003-09-01

    The UK Meteorological Office Surface Exchange Scheme (MOSES), which is currently implemented within Version 3 of the Hadley Centre GCM, was tested for an arctic peatland site in northern Finland (Kevo). This implementation of MOSES incorporated a new depth-dependent parameterization of the thermal and hydraulic properties of peat with parameter values derived from measurements reported in the literature. The effect of increasing the number of model soil layers from four to 13 shallower layers was also investigated. Driving data were used that were collected during June, when the peat was still frozen below about 80 mm, to September 1997.Best model performance was given by the 13-layer, depth-dependent parameter description for both surface heat fluxes and soil temperatures. The simulated heat fluxes compared well with measurements, but simulated surface temperatures were too high. In preliminary runs the simulated distribution of unfrozen water in the soil was also unrealistic. In particular the model was unable to predict the rapid transition to above-freezing conditions that occurred throughout the soil profile about the second week in July. Adjusting a parameter (k) of the soil-freezing curve, which for peat can be used as a fitting parameter, produced a big improvement in the soil temperature profiles. A more accurate simulation of the freezing and thawing behaviour of organic soils requires that the processes that are hidden in the modified value of k are explicitly represented. Copyright

  11. Long-term tillage frequency effects on dryland soil physical and hydraulic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term tillage influences physical, chemical, and biological properties of the soil environment and thereby crop production and quality. We evaluated the effect of long-term (> 22 years) tillage frequency [no-till (NT), spring till (ST), and fall and spring till (FST)] under continuous spring whe...

  12. Bayesian inverse modeling of vadose zone hydraulic properties in a layered soil profile with data-driven likelihood function inference

    NASA Astrophysics Data System (ADS)

    Over, M. W.; Wollschlaeger, U.; Osorio-Murillo, C. A.; Ames, D. P.; Rubin, Y.

    2013-12-01

    Good estimates for water retention and hydraulic conductivity functions are essential for accurate modeling of the nonlinear water dynamics of unsaturated soils. Parametric mathematical models for these functions are utilized in numerical applications of vadose zone dynamics; therefore, characterization of the model parameters to represent in situ soil properties is the goal of many inversion or calibration techniques. A critical, statistical challenge of existing approaches is the subjective, user-definition of a likelihood function or objective function - a step known to introduce bias in the results. We present a methodology for Bayesian inversion where the likelihood function is inferred directly from the simulation data, which eliminates subjectivity. Additionally, our approach assumes that there is no one parameterization that is appropriate for soils, but rather that the parameters are randomly distributed. This introduces the familiar concept from groundwater hydrogeology of structural models into vadose zone applications, but without attempting to apply geostatistics, which is extremely difficult in unsaturated problems. We validate our robust statistical approach on field data obtained during a multi-layer, natural boundary condition experiment and compare with previous optimizations using the same data. Our confidence intervals for the water retention and hydraulic conductivity functions as well as joint posterior probability distributions of the Mualem-van Genuchten parameters compare well with the previous work. The entire analysis was carried out using the free, open-source MAD# software available at http://mad.codeplex.com/.

  13. Overland Flow Generation and Soil Hydraulic Properties in Two Catchments in Central Panama

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Elsenbeer, H.; Stallard, R.

    2003-12-01

    Land management decisions in the Panama Canal watershed directly impact the hydrological functioning of the canal itself. Knowledge of the hydrological conditions in the forested portions of the watershed provides a baseline comparison for future land use changes. We chose to work on two streams on Barro Colorado Island that are representative of large regions of the watershed. These two streams respond differently to the same storm events: Conrad Trail Stream exhibits a fairly subdued and delayed response and Lutz Creek stream is flashier. In order to understand these differences, we investigated the soil saturated hydraulic conductivity (Ks) of the two catchments and studied the frequency of overland flow generation. The Ks measurements in dominant geologies in Lutz Creek as well as in Conrad Trail Stream are great enough at shallow depths (median Ks = 29.7, 65.6 and 38.3 mm/hr) that Hortonian overland flow is rare, but a marked decrease in Ks in Lutz Creek catchment at 30 cm (to 1.4 and 5.8 mm/hr) indicates that a perched water table leading to saturated overland flow is the likely runoff mechanism in Lutz Creek. In Conrad, Ks does not decrease as markedly with soil depth, and a perched water table would form at about 60 cm below the surface (median Ks = 0.7 mm/hr). Therefore, more water is able to infiltrate into the soil in Conrad Trail Stream and saturated overland flow is less common. Overland flow was generated much more frequently in Lutz Creek than in Conrad Trail Stream, with lower thresholds of storm magnitude, duration, antecedent wetness and intensity required to generate overland flow. We also quantified the importance of microtopographic features such as concentrated flow lines and the results have implications for experimental design at other field sites. The Lutz Creek and Conrad Trail stream information will provide a useful baseline for land management decisions.

  14. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    In the last years researchers reported an increasing need to have more awareness on the intimate link between land use and soil hydrological properties (soil organic matter storage, water infiltration, hydraulic conductivity) and their possible effects on water retention (e.g., Bens et al., 2006; del Campo et al., 2014; González-Sanchis et al., 2015; Molina and del Campo, 2012). In the Mediterranean ecosystems, special attention needs to be paid to the forest-water relationships due to the natural scarcity of water. Adaptive forest management (AFM) aims to adapt the forest to water availability by means of an artificial regulation of the forest structure and density in order to promote tree and stand resilience through enhancing soil water availability (del Campo et al., 2014). The opening of the canopy, due to the removal of a certain number of trees, is an important practice for the management of forests. It results in important modifications to the microclimatic conditions that influence the ecophysiological functioning of trees (Aussenac and Granier, 1988). However, the effect of thinning may vary depending on the specific conditions of the forest (Andréassian, 2004; Brooks et al., 2003; Cosandey et al., 2005; Lewis et al., 2000; Molina and del Campo, 2012). Different authors reported that a reduction in forest cover increases water yield due to the subsequent reduction in evapotranspiration (Brooks et al., 2003; González-Sanchis et al., 2015; Hibbert, 1983; Zhang et al., 2001). On the other hand, the water increase may be easily evaporated from the soil surface (Andréassian, 2004). In this context, determining soil hydraulic properties in forests is essential for understanding and simulating the hydrological processes (Alagna et al., 2015; Assouline and Mualem, 2002), in order to adapt a water-saving management to a specific case, or to study the effects of a particular management practice. However, it must be borne in mind that changes brought about by

  15. Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Desfonds, V.; Bertrand, N.; Renard, D.

    2014-10-01

    transpiration at the end of the crop cycles. The overestimation of the soil moisture at saturation triggers the underestimation of the soil evaporation during the wet soil periods. The use of field capacity values derived from laboratory retention measurements leads to inaccurate simulation of soil evaporation due to the lack of representativeness of the soil structure variability at the field scale. The most accurate simulation is achieved with the values of the soil hydraulic properties derived from field measured soil moisture. Their temporal analysis over each crop cycle provides meaningful estimates of the wilting point, the field capacity and the rooting depth to represent the crop water needs and accurately simulate the evapotranspiration over the crop succession. We showed that the uncertainties in the eddy-covariance measurements are significant and can explain a large part of the unresolved random differences between the simulations and the measurements of evapotranspiration. Other possible model shortcomings include the lack of representation of soil vertical heterogeneity and root profile along with inaccurate energy balance partitioning between the soil and the vegetation at low LAI.

  16. Monitoring Soil Hydraulic and Thermal Properties using Coupled Inversion of Time-lapse Temperature and Electrical Resistance Data

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Kowalsky, M. B.; Tokunaga, T. K.; Faybishenko, B.; Long, P.

    2014-12-01

    Evaluation of spatiotemporal dynamics of heat transport and water flow in terrestrial environments is essential for understanding hydrological and biogeochemical processes. Electrical resistance tomography has been increasingly well used for monitoring subsurface hydrological processes and estimating soil hydraulic properties through coupled hydrogeophysical inversion. However, electrical resistivity depends on a variety of factors such as temperature, which may limit the accuracy of hydrogeophysical inversion. The main objective of this study is to develop a hydrogeophysical inversion framework to enable the incorporation of nonisothermal processes into the hydrogeophysical inversion procedure, and use of this procedure to investigate the effect of hydrological controls on biogeochemical cycles in terrestrial environments. We developed the coupled hydro-thermal-geophysical inversion approach, using the iTOUGH2 framework. In this framework, the heat transport and water flow are simultaneously modeled with TOUGH2 code, which effectively accounts for the multiphase, multi-component and nonisothermal flow in porous media. A flexible approach is used to incorporate petrophysical relationships and uncertainty to link soil moisture and temperature with the electrical resistivity. The developed approach was applied to both synthetic and field case studies. At the DOE subsurface biogeochemistry field site located near Rifle CO, seasonal snowmelt delivers a hydrological pulse to the system, which in turn influences the cycles of nitrogen, carbon and other critical elements. Using the new approach, we carried out numerical inversion of electrical resistance data collected along a 100 m transect at the Rifle site, and compared the results with field investigations of the soil, vadose zone, including the capillary fringe, and groundwater, as well as temperature and tensiometer measurements. Preliminary results show the importance of accounting for nonisothermal conditions to

  17. Plant root-driven hydraulic redistribution, root nutrient uptake and carbon exudation interact with soil properties to generate rhizosphere resource hotspots that vary in space and time

    NASA Astrophysics Data System (ADS)

    Espeleta, J. F.; Neumann, R. B.; Cardon, Z. G.; Mayer, K. U.; Rastetter, E. B.

    2014-12-01

    Hydraulic redistribution (HR) of soil water by plants occurs in seasonally dry ecosystems worldwide. During drought, water flows from deep moist soil, through plant roots, into dry (often litter-rich) upper soil layers. Using modeling, we explored how physical transport processes driven by transpiration and hydraulic redistribution interact with root physiology (nutrient uptake and carbon exudation) and soil properties (soil texture and cation exchange) to influence nitrogen and carbon concentrations in the rhizosphere. At the single root scale, we modeled a 10-cm radial soil domain, and simulated solute transport, soil cation exchange, and root exudation and nutrient uptake under two water flow patterns: daytime transpiration without nighttime HR, and daytime transpiration with nighttime HR. During HR, water efflux flushed solutes away from the root, diluting the concentrations of key nutrients like nitrate. The transport of cations by transpiration in the day and their accumulation near the root led to competitive desorption of ammonium from soil further from the root and generation of hotspots of ammonium availability at night. HR influenced the spatial and temporal patterns of these hotspots and their intensity. They were also influenced by soil properties of texture and cation exchange capacity. This dynamic resource landscape caused by diel cycling between transpiration and hydraulic redistribution presents a stage for greater complexity of microbial interactions. We are currently embedding a microbial community and small food web into this rhizosphere model in order to explore how organisms responsible for nutrient and soil carbon cycling respond to these fluctuating resource regimes.

  18. Gaining insight into the spatial distribution of soil hydraulic properties on the soil profile scale by high resolution TDR and tensiometer measurements

    NASA Astrophysics Data System (ADS)

    Altfelder, S.; Ganz, C.; Noell, U.; Duijnisveld, W. H. M.; Bachmann, J.

    2010-05-01

    Measurement of the spatial distribution of hydraulic properties in a field with high resolution and good precision is still depending on the laborious and time consuming measurement with invasive equipment, such as TDR probes and tensiometers. If measurements are available, their spatial resolution is often rather coarse. When sensors are applied to monitor soil water dynamics under natural or artificial boundary conditions, the typical distance between probes is in the range of several decimetres. Finer resolutions are usually not realized because they are likely to influence the flow field in an unwanted manner. On the other hand, spatial correlation length especially of the water content in soils is often smaller leaving a question mark on how to interpolate gaps and get the hydraulic structure right. An alternative approach is the destructive measurement of these properties once an experiment has ended. The measurement of soil hydraulic functions on soil cores is very time consuming and if taken on a grid, a spacing of about 15 cm between individual cores is the resolution limit. In this study, we approach the problem by cutting several soil profiles through the experimental plot at the end of an infiltration experiment from a site north of Hannover, Germany. Using TDR and microtensiometer, data pairs of water content and tension are measured on a grid with a resolution of 5 x 5 cm. The measurement is relatively quick once a soil profile is prepared. However, only a single pair of water content and water tension is acquired per measuring location. For a soil profile of approx. 1 by 2 m this adds up to about 700 data pairs. By a visual inspection of the data measured on the profile, bordering structures having similar tensions but different water contents are identified. Some of these structures are much smaller than the usually encountered measuring resolution of several decimetres. In a second step, data pairs are grouped according to their location within the

  19. Tillage Effects on Bulk Density and Hydraulic Properties of a Sandy Loam Soil in the Mon-Dak Region, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of conventional (CT) and strip (ST) tillage practices on bulk density (BD), water content (MC), infiltration rate (Ir) and hydraulic conductivity (Ks) in a Lihen sandy loam soil. Soil cores were collected from each plot at 0 to 10 and 10 to 30 cm depths under each tillage pr...

  20. Bulk density, water content and hydraulic properties of a sandy loam soil following conventional or strip tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of conventional (CT) and strip (ST) tillage practices on bulk density ('b), water content ('w), infiltration rate (Ir) and hydraulic conductivity (Ks) of plots in a Lihen sandy loam soil during the 2007 and 2008 growing seasons. We measured 'b and 'w using soil cores collect...

  1. Estimation of Effective Soil Hydraulic Properties Using Data From High Resolution Gamma Densiometry and Tensiometers of Multi-Step-Outflow Experiments

    NASA Astrophysics Data System (ADS)

    Werisch, Stefan; Lennartz, Franz; Bieberle, Andre

    2013-04-01

    Dynamic Multi Step Outflow (MSO) experiments serve for the estimation of the parameters from soil hydraulic functions like e.g. the Mualem van Genuchten model. The soil hydraulic parameters are derived from outflow records and corresponding matric potential measurements from commonly a single tensiometer using inverse modeling techniques. We modified the experimental set up allowing for simultaneous measurements of the matric potential with three tensiometers and the water content using a high-resolution gamma-ray densiometry measurement system (Bieberle et al., 2007, Hampel et al., 2007). Different combinations of the measured time series were used for the estimation of effective soil hydraulic properties, representing different degrees of information of the "hydraulic reality" of the sample. The inverse modeling task was solved with the multimethod search algorithm AMALGAM (Vrugt et al., 2007) in combination with the Hydrus1D model (Šimúnek et al., 2008). Subsequently, the resulting effective soil hydraulic parameters allow the simulation of the MSO experiment and the comparison of model results with observations. The results show that the information of a single tensiometer together with the outflow record result in a set of effective soil hydraulic parameters producing an overall good agreement between the simulation and the observation for the location of the tensiometer. Significantly deviating results are obtained for the other tensiometer positions using this parameter set. Inclusion of more information, such as additional matric potential measurements with the according water contents within the optimization procedure lead to different, more representative hydraulic parameters which improved the overall agreement significantly. These findings indicate that more information about the soil hydraulic state variables in space and time are necessary to obtain effective soil hydraulic properties of soil core samples. Bieberle, A., Kronenberg, J., Schleicher, E

  2. Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada

    SciTech Connect

    Ebel, Brian A.; Nimmo, John R.

    2009-12-29

    This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

  3. Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Ebel, Brian A.; Nimmo, John R.

    2010-01-01

    This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

  4. The effect of measured and estimated soil hydraulic properties on simulated water regime in the analysis of grapevine adaptability to future climate

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Alfieri, Silvia Maria; Agrillo, Antonietta; Dragonetti, Giovanna; Mileti, Antonio; Monaco, Eugenia; De Lorenzi, Francesca

    2013-04-01

    In the last years many research works have been addressed to evaluate the impact of future climate on crop productivity and plant water use at different spatial scales (global, regional, field) by means of simulation models of agricultural crop systems. Most of these approaches use estimated soil hydraulic properties, through pedotransfer functions (PTF). This choice is related to soil data availability: soil data bases lack measured soil hydraulic properties, but generally they contain information that allow the application of PTF . Although the reliability of the predicted future climate scenarios cannot be immediately validated, we address to evaluate the effects of a simplification of the soil system by using PTF. Thus we compare simulations performed with measured soil hydraulic properties versus simulations carried out with estimated properties. The water regimes resulting from the two procedures are evaluated with respect to crop adaptability to future climate. In particular we will examine if the two procedures bring about different seasonal and spatial variations in the soil water regime patterns, and if these patterns influence adaptation options. The present case study uses the agro-hydrological model SWAP (soil-water-atmosphere and plant) and studies future adaptability of grapevine. The study area is a viticultural area of Southern Italy (Valle Telesina, BN) devoted to the production of high quality wines (DOC and DOCG), and characterized by a complex geomorphology and pedology. The future climate scenario (2021-2050) was constructed applying statistical downscaling techniques to GCMs scenarios. The moisture regime for 25 soils of the selected study area was calculated by means of SWAP model, using both measured and estimated soil hydraulic properties. In the simulation, the upper boundary conditions were derived from the regional climate scenarios. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and

  5. Effect of Tillage on Soil Hydraulic Conductivity in Two Contrasting Soil Textures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage profoundly affects soil physical and hydraulic properties. It is essential to select a tillage system that sustains the soil hydraulic properties required for successful growth of agricultural crops. We compared effects of conventional tillage (CT) and strip tillage (ST) systems on field-sat...

  6. Effects of soil hydraulic properties on the spatial variability of soil water content: Evidence from sensor network data and inverse modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved understanding of the temporal variability and stability of soil water content (SWC) and its relation to local and nonlocal controls is a major challenge in modern hydrology. The objective of this study was to assess the effect of soil hydraulic parameters on temporal stability of SWC with...

  7. Multivariate distributions of soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Pachepsky, Yakov; Huisman, Johan Alexander; Martinez, Gonzalo; Bogena, Heye; Vereecken, Harry

    2014-05-01

    Statistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic properties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation. Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parameters for textural classes are most often used in the parameter field generation. Presence of strong correlations can substantially influence the parameter generation results. The objective of this work was to review and evaluate available data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different approaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generate VGM parameters for a large number of soil compositions within a textural class, and then computes parameter correlations for each of the textural classes. The second approach computes the VGM parameter correlations directly from parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivity data for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedotransfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to develop correlations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US Southern Plains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the second approach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences were encountered between parameter correlations obtained with different approaches and different databases for the same textural classes. The first of the two approaches resulted in generally higher values of correlation coefficients between VGM parameters. However, results of the first approach application depend

  8. Surface Soil Hydraulic and Biophysical Properties Across a Hillslope in the Ozark Highlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterogeneity of infiltration and subsurface redistribution of soil water can have a profound influence on plant growth and productivity as well as water quality. However, substantial uncertainty exists in assessing hydrologic impacts over multiple scales with complexity potentially compounded by mu...

  9. Numerically predicting seepage gradient forces and erosion sensitivity to soil hydraulic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streambank failures result in loss of land, increased stream sediment loads, and increased nutrient loads if nutrient levels are high. Variably saturated flow models integrated with bank stability models are being used to predict bank failure; however, understanding of the soil characterization nece...

  10. A Brazilian soil hydraulic database and field capacity analysis

    NASA Astrophysics Data System (ADS)

    Luiza Lima Ferreira, Ana; Van Dam, Jos Cornelis; de Jong van Lier, Quirijn

    2015-04-01

    Field Capacity (FC) is a widely-used concept by agricultural engineers, hydrologists and soil physicists to quantify the available soil water during growing seasons and the accessible soil water storage during intensive rainfall periods. In the field FC does depend on various environmental factors, including the soil hydraulic properties, rate of evapotranspiration, root density distribution, and groundwater level. Therefore world-wide different approaches are used to determine field capacity, based on both static and dynamic criteria. Dynamic criteria are usually related to the simulation of the soil internal drainage, until the percolation attains a negligible value. Recently Assouline and Or (2014) proposed a soil intrinsic characteristic length to determine the FC pressure head. This characteristic length is related to the loss of hydraulic continuity and is derived from the soil water retention function. In Brazil soil hydraulic properties were not yet organized in a database. Therefore we collected existing data of unsaturated soil hydraulic properties across Brazil, using available PhD thesis and scientific publications. This inquiry resulted in a soil sample data set of 106 horizons. We fitted the soil hydraulic parameters (θr, θs, α, n,gλ and Ks)of the Mualem-Van Genuchten (1980) function to all soil samples. Next we derived FC values based on soil internal drainage and using the characteristic length according to Assouline and Or (2014). The internal drainage is analysed with the agrohydrological model SWAP (Kroes and van Dam, 2008). In the poster we will present the Brazilian soil hydraulic database and the derived FC values.

  11. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    This work focuses on the characterization of natural, spatially variable, semivegetated landscapes using a linear, stochastic, canopy-soil reflectance model. A first application of the model was the investigation of the effects of subpixel and regional variability of scenes on the shape and structure of red-infrared scattergrams. Additionally, the model was used to investigate the inverse problem, the estimation of subpixel vegetation cover, given only the scattergrams of simulated satellite scale multispectral scenes. The major aspects of that work, including recent field investigations, are summarized.

  12. On the effect of soil hydraulic properties on the relationship between spatial variation and spatial mean of soil water contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding soil moisture variability and its relationship with water content at various scales is a key issue in hydrological research. In this work we analyze this relationship by using the Monte-Carlo simulations of unsaturated flow in bare soils for eleven USDA textural classes. Parameters of ...

  13. Hydraulic Conductivity of Residual Soil-Cement Mix

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  14. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect

    Zhang, Z. Fred

    2014-01-01

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  15. Effects of Estimating Soil Hydraulic Properties and Root Growth Factor on Soil Water Balance and Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing water use efficiency (WUE) is one of the oldest goals in agricultural sciences, yet it is still not fully understood and achieved due to the complexity of soil-weather-management interactions. System models that quantify these interactions are increasingly used for optimizing crop WUE, es...

  16. Efficient hydraulic properties of root systems

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Schneider, Christoph; Carminati, Andrea; Hildebrandt, Anke

    2013-04-01

    Understanding the mechanisms of ecosystem root water uptake (RWU) is paramount for parameterizing hydrological models. With the increase in computational power it is possible to calculate RWU explicitly up to the single plant scale using physical models. However, application of these models for increasing our understanding of ecosystem root water uptake is hindered by the deficit in knowledge about the detailed hydraulic parameter distribution within root systems. However, those physical models may help us to identify efficient parameterizations and to describe the influence of these hydraulic parameters on RWU profiles. In this research, we investigated the combined influence of root hydraulic parameters and different root topologies on shaping efficient root water uptake. First, we use a conceptual model of simple branching structures to understand the influence of branching location and transitions in root hydraulic properties on the RWU patterns in typical sub root structures. Second, we apply a physical model called "aRoot" to test our conclusions on complex root system architectures of single plants. aRoot calculates the distribution of xylem potential within arbitrary root geometries to satisfy a given water demand depending on the available water in the soil. Redistribution of water within the bulk soil is calculated using the Richards equation. We analyzed results using a measure of uptake efficiency, which describes the effort necessary for transpiration. Simulations with the conceptual model showed that total transpiration in sub root structures is independent of root hydraulic properties over a wide range of hydraulic parameters. On the other hand efficiency of root water uptake depends crucially on distribution hydraulic parameters in line with root topology. At the same time, these parameters shape strongly the distribution of RWU along the roots, and its evolution in time, thus leading to variable individual root water uptake profiles. Calculating

  17. Joint Application of TDR, GPR and Inverse Hydraulic Modeling to Infer Field Scale Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Wollschläger, U.; Gerhards, H.; Schneider, S.; Roth, K.

    2007-12-01

    Estimating field scale hydraulic properties is still a challenge in hydrology. Most classical methods require undisturbed soil samples that have to be excavated during time consuming and labour intensive field work which is often followed by tedious measurements of hydraulic properties in the laboratory. Since these methods can only be applied with a limited number of samples, often only a few point measurements need to be used to characterize field scale hydraulic properties while layer geometry has to be derived from interpolation of these values and additional drilling. The combination of geophysical measurement techniques and hydraulic modeling offers an attractive alternative to bridge the gap between i) few accurate point measurements that are used to infer local hydraulic properties and ii) spatial mapping of the respective layers over large scales. We use a time series of water contents measured in a soil profile with time domain reflectometry to estimate hydraulic properties of the different soil layers with a 1D hydraulic inverse model. Here, hydraulic properties are estimated from \\it in situ \

  18. Modification of hydraulic conductivity in granular soils using waste materials.

    PubMed

    Akbulut, S; Saglamer, A

    2004-01-01

    This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils. PMID:15120433

  19. A theoretical analysis to estimate the hydraulic properties of a loam soil from a capillary-evaporation process

    NASA Astrophysics Data System (ADS)

    Peña-Sancho, Carolina; Ghezzehei, Teamrat A.; Latorre, Borja; Moret-Fernández, David

    2015-04-01

    The determination of the water retention curve (WRC) parameters and the hydraulic conductivity (K) is of paramount importance in many scientific fields such as hydrology or environmental science. Their direct characterization, however, is typically cumbersome and time consuming. This work analyze the viability to estimate the α and n Van Genuchten (VG) WRC parameters and K from following processes: a capillary wetting process at saturation, an evaporation process and a capillary wetting at saturation followed by an evaporation process. The theoretical analysis was carried out on a 5 cm high and 5 cm diameter cylinder filled with loam soil using numerically generated data with the HYDRUS 2D code. The error maps for the above mentioned processes and the n-K, α-n and K-α planes were generated from the RMSE calculated between the original and the simulated cumulative curves. The deviation (%) between the optimal and original hydraulic parameters was also calculated. Results showed that the capillary plus evaporation method applied on the n-K and α-n planes was the unique process that allowed a unique and well defined minimum. For this last case, the deviation for the α and n parameter were 6'67 and 0'88%, respectively. Taking into account that K can be easy measured from the same soil cylinder by means of Darcy's law, we conclude the capillary + evaporation process can be a simple and effective alternative to estimate the WRC parameters. To this end, the hysteresis phenomena due to the wetting-evaporation process should be taking into account.

  20. THE RETC CODE FOR QUANTIFYING THE HYDRAULIC FUNCTIONS OF UNSATURATED SOILS

    EPA Science Inventory

    This report describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soil...

  1. The effects of vegetation and soil hydraulic properties on passive microwave sensing of soil moisture: Data report for the 1982 fiels experiments

    NASA Technical Reports Server (NTRS)

    Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III

    1983-01-01

    Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.

  2. Assessing soil hydraulic characteristics using HYPROP and BEST: a comparison

    NASA Astrophysics Data System (ADS)

    Leitinger, Georg; Obojes, Nikolaus; Lassabatère, Laurent

    2015-04-01

    Knowledge of ecohydrological characteristics with high spatial resolution is a prerequisite for large-scale hydrological modelling. Data on soil hydraulic characteristics are of major importance, but measurements are often seen as time consuming and costly. In order to accurately model grassland productivity and in particular evapotranspiration, soil sampling and infiltration experiments at 25 grassland sites ranging from 900m to 2300m a.s.l. were conducted in the long term socio-ecological research (LTSER) site Stubai Valley, Tyrolean Alps, Austria, covering 265 km². Here we present a comparison of two methods to determine important hydrological properties of soils: (1) the evaporation method HYPROP (Hydraulic Property Analyzer; UMS Munich, 2010), and (2) the BEST-model (Beerkan Estimation of Soil Transfer Parameters; Lassabatère et al. (2006)), each determining the soil hydraulic characteristics and in particular the water retention curve. For the most abundant soil types we compared the pf-curves calculated from HYPROP data suing the Van Genuchten equation to the ones resulting from the comparatively time efficient BEST approach to find out if the latter is a suitable method to determine pf curves of alpine grassland soils. Except for the soil type Rendzina, the comparison of HYPROP and BEST showed slightly variations in the pF curves and resulting hydraulic characteristics. At the starting point BEST curves presented a slower dehydration, HYPROP a fast and continuous water loss. HYPROP analyses showed the highest variability in the measured values of Rendzina. Regarding BEST, the Alluvial Soils showed the highest variability. To assess equivalence between HYPROP and BEST we deduced several hydraulic characteristics from the pF curves, e.g. saturated water content, field capacity, permanent wilting point, pore size distribution, and minimum water retention. The comparison of HYPROP and BEST revealed that the results of soil water characteristics may depend on

  3. Calculated Hydraulic Conductivity of Soil in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, D.

    2001-12-01

    Because of growing evidence and public concern that the quality of the subsurface environment is being adversely affected by industrial, municipal and agricultural activities, environmental issue relating the unsaturated zone has dramatically increased in recent years. Especially, advection and dispersion mechanism of contaminants should be studied first for accurate prediction and optimal conservation of environmental system in metropolitan area. In this study, physical properties and water retention characteristics of soil samples collected through Seoul area were obtained as primary input data for evaluating unsaturated hydraulic conductivities of the samples. Comparing results of grain size analyses of 11 soil samples with detailed soil map, loam may covers about 50.83% of Seoul area and sandy loam, silt loam, fine sandy loam and silt clay loam account for about 20.9%, 10.18%, 7.93% and 0.86%, respectively. As physical properties of the samples, porosity, wet, saturate and dry densities of 11 soil samples ranged 0.33-0.51, 1.68-2.01, 1.81-2.07, and 1.37-1.78, respectively. In addition, soil water characteristic function of 11 soil samples showing the relation between volumetric moisture content of soil and hydraulic head were obtained. Unsaturated hydraulic conductivities of the samples were also calculated on the basis of theoretical method which predict the conductivity more easily from measured soil water retention data. The calculated conductivities of the samples ranged 1.08-101.44 cm/sec.

  4. Effective Soil Hydraulic Parameters Across Scales for Land-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Mohanty, B. P.; Ines, A. V.; Zhu, J.; Jana, R.; Das, N. N.; Sharma, S. K.

    2006-12-01

    Soil hydraulic properties (hydraulic conductivity, water retention) are by far the most important land surface parameters to govern the partitioning of soil moisture between infiltration and evaporation fluxes at a range of spatial scales. However, an obstacle to their practical application in the field, catchment, watershed, or regional scale is the difficulty of quantifying the "effective" soil hydraulic functions theta(h) and K(h), where theta is the soil water content, h is the pressure head and K is unsaturated hydraulic conductivity. Proper evaluation of the water balance near the land-atmosphere boundary depends strongly on appropriate characterization of soil hydraulic parameters under field conditions and at the appropriate process scale. In recent years we have adopted a multi-facet approach to this problem including: (1) a bottom-up approach, where larger-scale effective parameters are calculated by aggregating point-scale insitu hydraulic property measurements, (2) a top-down approach, where effective soil hydraulic parameters are estimated by inverse modeling using remotely sensed soil moisture measurements, and (3) an artificial neural network approach, where effective soil hydraulic parameters were estimated by exploiting the correlations with soil texture, topographic attributes, and vegetation characteristics at multiple spatial resolutions. Numerical and experimental results using these various effective soil hydraulic parameter estimation approaches including some comparisons between the approaches will be presented for the SGP and SMEX remote sensing experimental regions well as for the Rio Grande river basin.

  5. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  6. Unsaturated Hydraulic Conductivity for Evaporation in Large scale Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhu, J.

    2014-12-01

    In this study we aim to provide some practical guidelines of how the commonly used simple averaging schemes (arithmetic, geometric, or harmonic mean) perform in simulating large scale evaporation in a large scale heterogeneous landscape. Previous studies on hydraulic property upscaling focusing on steady state flux exchanges illustrated that an effective hydraulic property is usually more difficult to define for evaporation. This study focuses on upscaling hydraulic properties of large scale transient evaporation dynamics using the idea of the stream tube approach. Specifically, the two main objectives are: (1) if the three simple averaging schemes (i.e., arithmetic, geometric and harmonic means) of hydraulic parameters are appropriate in representing large scale evaporation processes, and (2) how the applicability of these simple averaging schemes depends on the time scale of evaporation processes in heterogeneous soils. Multiple realizations of local evaporation processes are carried out using HYDRUS-1D computational code (Simunek et al, 1998). The three averaging schemes of soil hydraulic parameters were used to simulate the cumulative flux exchange, which is then compared with the large scale average cumulative flux. The sensitivity of the relative errors to the time frame of evaporation processes is also discussed.

  7. Cautionary notes on the use of the Rawls et al. (1982) soil hydraulic pedotransfer functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental and crop simulation models use a wide range of inputs that include soil hydraulic properties. For many applications, use of laboratory determined soil water retention and hydraulic conductivity data is not feasible; therefore those need to be estimated. The current version of the Agric...

  8. Dynamics of hydraulic properties due to biological clogging

    NASA Astrophysics Data System (ADS)

    Rosenzweig, R.; Shavit, U.; Furman, A.

    2012-04-01

    Classic treatment of soil-water flow is described by the unsaturated version of Darcy's law and Richards' equation, assuming time invariant hydraulic properties, e.g. the saturated hydraulic conductivity, Ks, and van Genuchten-Mualem's α and n. However, when bacteria is present the soil is quite far from being time invariant and biological activity constantly alters the pore-scale structure, leading to macro-scale alteration of the hydraulic properties. This may be of high relevance to processes such as subsurface bioremediation, soil aquifer treatment, wastewater irrigation, and more. In this work we explore the dynamic alteration of soil hydraulic properties by a combination of column experiments and pore-network modeling. We experimentally demonstrate how biological activity clogs an unsaturated soil column and reduces its hydraulic conductivity, while a similar column where biological activity is limited does not clog. Further, we demonstrate that the clogging is preferential to the nutrient input. Next, we develop a pore-network model that uses triangular shape channels. This allows a dual occupancy (water-air) of each channel and high connectivity. The model solves the flow of water, nutrient transport, and biological dynamics. It includes biofilm growth and decay, attachment and detachment, and nutrient exchange between the water and biofilm phases. We perform a sensitivity analysis of the model and qualitatively show through the loss of connectivity how the clogging that was observed in our experiment can be explained.

  9. Impact of long-term conservation tillage cropping systems on soil hydraulic properties in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion can be manipulated through tillage and crop residue management as a consequence of altering the physical attributes of soil that govern soil particle detachment by water and wind. A long-term, field-scale, cropping systems experiment was initiated at Ralston, WA in 1995 to identify alte...

  10. Framework for predicting hydraulic properties of calcareous arid lands

    NASA Astrophysics Data System (ADS)

    Khlosi, Muhammed; Douaik, Ahmed; Habib, Hassan; Gabriels, Donald; Cornelis, Wim

    2014-05-01

    In arid areas, the availability of reliable data on soil hydraulic properties such as the water retention and the hydraulic conductivity curves, particularly of calcareous soils, is low. Such data are needed as input to mathematical models used to support arid land restoration and combating desertification studies. This paper aims at sharing new and pertinent research results that are of interest to the scientific community involved in such studies. The objective of our study was to (1) explore the interaction between soil hydraulic properties, and other physical and chemical properties, (2) test three data mining techniques for developing predictive functions, and (3) set up a framework for predicting soil hydraulic properties of calcareous arid soils. 72 soil samples were collected from rural areas throughout north-west Syria, covering most of its agro-climatic zones and soil types. Soil water content at eight different matric potentials and 11 chemical and physical soil properties were determined. We first found that when destroying carbonates in determining particle size distribution, no significant correlations were found with the water retention points, whereas good correlations were observed when carbonates were not removed and considered as part of the soil's mineralogy. Four principal components (PC) explained 77% of the variation in the data set. Three tested soil-water contents (at -1, -33 and -1500 kPa) were highly linked to PC1 which was correlated to plastic limit, texture, soil carbonate content, and specific surface area. In addition, soil-water content at -1 kPa was also linked to PC4 which is correlated to bulk density. PC2 and PC3, related to gravel, organic matter and hygroscopic water, only explained a negligible amount of variation of soil water content. When setting up predictive functions for the eight water retention points, the support vector machines approach performed significantly better as compared to artificial neural networks and

  11. Evaluating models for predicting hydraulic characteristics of layered soils

    NASA Astrophysics Data System (ADS)

    Mavimbela, S. S. W.; van Rensburg, L. D.

    2012-01-01

    Soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (K-coefficient) are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH) is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964), van Genuchten (1980) and Kasugi (1996) parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM). The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC) were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE) recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988) since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980) performing fairly well on the Orthic and neucutanic horizons while its modified form fitted very

  12. The Soil Hydraulic Response to Disturbance and Recovery

    NASA Astrophysics Data System (ADS)

    Zimmermann, B.; Elsenbeer, H.

    2006-12-01

    While the rate of deforestation in the humid tropics seems to wax and wane with the global demand for certain commodities, the rate of reforestation on degraded lands has been less spectacular. Nonetheless, this process has affected substantial tracts of land in the Amazon basin. We are interested in the rates at which soil hydraulic properties respond to deforestation and reforestation, and in the effect of land-use history before reforestation on these rates. The preliminary results from ongoing true and false time series experiments in the south-western Amazon basin of Brazil and the montane rainforest of eastern Ecuador emphasize a pronounced asymmetry of the soil hydraulic response to disturbance and recovery: whereas just one year of extensive grazing upon pasture establishment reduces infiltrability and topsoil permeability by more than half, more than ten years of secondary succession or afforestation with commercial tree species are required to elicit an increase in these soil properties. The rate of recovery depends on the kind and duration of land-use before abandonment and reforestation: it is slow after prolonged grazing and rapid after short agricultural use. We conclude that a soil hydraulic pasture imprint may be preserved for many years during secondary succession, and hence that secondary forests and plantations continue to behave hydrologically like pastures for many years.

  13. Upscaling Schemes and Relationships for the Gardner and van Genuchten Hydraulic Functions for Heterogeneous Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upscaled soil hydraulic properties are needed for many large-scale hydrologic applications such as regional and global climate studies and investigations of land-atmosphere interactions. Many larger scale subsurface flow and contaminant transport studies also require upscaled hydraulic property esti...

  14. Mucilage: The hydraulic bridge between roots and soil

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarabanadkouki, Mohsen; Kroener, Eva; Ahmed, Mutez A. A.

    2014-05-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the soil near the roots, the so called rhizosphere. Ultimately, as the soil hydraulic conductivity drops and the soil cannot sustain the transpiration demand, roots shrink and lose contact to the soil. Both, water depletion in the rhizosphere and formation of air-filled gaps at the root-soil interface potentially limit the availability of water to plants. How can plants overcome these potential hydraulic barriers at the root-soil interface? One strategy consists in the exudation of mucilage from the root tips. Mucilage is a polymeric gel that is capable of holding large volumes of water. When exuded into the soil, mucilage remains in the vicinity of roots thanks to its relatively high viscosity and reduced surface tension. As mucilage is mainly made of water, its slow penetration into the soil results in higher water content and hydraulic conductivity of the rhizosphere compared to the adjacent bulk soil. Recent measurements with a root pressure probe technique demonstrated that mucilage exudation facilitates the water flow in dry soils. Additionally, mucilage increases the adhesion of soil particles to the roots, reducing the formation of gaps at the root-soil interface. Based on these observations, it is very tempting to conclude that mucilage acts as an optimal hydraulic bridge across the root-soil interface. However, as mucilage dries and ages, it turns hydrophobic. Consequently, the rhizosphere becomes water repellent and its rewetting time increases. Our former experiments showed that after irrigation subsequent to a drying cycle, the rhizosphere of lupines remained markedly dry for 2 days. Recently, we demonstrated that the rhizosphere water repellency is concomitant with a decrease in local water uptake of 4-8 times. We conclude that after drying and rewetting, the rhzisophere temporarily limits root water uptake. In summary, the hydraulic properties of the root-soil

  15. Incorporating Soil Hydraulic Parameter Statistics in Developing Pedo-transfer Functions

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhu, J.; Ye, M.; Meyer, P. D.; Pan, F.; Hassan, A. E.

    2007-12-01

    In this study, we develop artificial neural network (ANN) based pedotransfer functions (PTFs) to predict soil hydraulic properties. The PTF approach is an efficient way of translating less costly available data, such as particle-size distributions, soil textures and other geophysical measurements, to soil hydraulic parameters required for numerical simulations and other applications. The ANN PTFs need to be trained before being used to transfer indirect measurements to soil hydraulic parameters. The traditional training process, in general, is to adjust ANN's coefficients to solely minimize the difference between the estimated and measured soil hydraulic parameters. The training process, however, did not consider the distributions of soil hydraulic parameters and the trained neural networks may yield improper distributions, which may severely affect probabilistic predictions. We incorporate the distributions of the soil hydraulic parameters into the ANN PTF development. In addition, it has been observed that PTFs can introduce unrealistic correlations between the output parameters. The unwanted artificial correlations need to be penalized during the training process, since it is well known that parameter correlations have significant effect on predictions. We achieve these two goals by adding two regularization terms to the ANN objective functions. A suite of new neural network models are developed to estimate soil hydraulic parameters. These neural network models have the same input and output variables, but different objective functions, which incorporate sequentially the site soil hydraulic parameter measurements, parameter probability distributions, and parameter correlations.

  16. Iterative method of finding hydraulic conductivity characteristics of soil moisture

    NASA Astrophysics Data System (ADS)

    Rysbaiuly, Bolatbek; Adamov, Abilmazhin

    2016-08-01

    The work considers an initial boundary value problem for a nonlinear equation of hydraulic conductivity. A method of finding a nonlinear diffusion coefficient is developed and hydraulic conductivity of soil moisture is found. Numerical calculations are conducted.

  17. Using random forests to explore the effects of site attributes and soil properties on near-saturated and saturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Jorda, Helena; Koestel, John; Jarvis, Nicholas

    2014-05-01

    Knowledge of the near-saturated and saturated hydraulic conductivity of soil is fundamental for understanding important processes like groundwater contamination risks or runoff and soil erosion. Hydraulic conductivities are however difficult and time-consuming to determine by direct measurements, especially at the field scale or larger. So far, pedotransfer functions do not offer an especially reliable alternative since published approaches exhibit poor prediction performances. In our study we aimed at building pedotransfer functions by growing random forests (a statistical learning approach) on 486 datasets from the meta-database on tension-disk infiltrometer measurements collected from peer-reviewed literature and recently presented by Jarvis et al. (2013, Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17(12), 5185-5195). When some data from a specific source publication were allowed to enter the training set whereas others were used for validation, the results of a 10-fold cross-validation showed reasonable coefficients of determination of 0.53 for hydraulic conductivity at 10 cm tension, K10, and 0.41 for saturated conductivity, Ks. The estimated average annual temperature and precipitation at the site were the most important predictors for K10, while bulk density and estimated average annual temperature were most important for Ks prediction. The soil organic carbon content and the diameter of the disk infiltrometer were also important for the prediction of both K10 and Ks. However, coefficients of determination were around zero when all datasets of a specific source publication were excluded from the training set and exclusively used for validation. This may indicate experimenter bias, or that better predictors have to be found or that a larger dataset has to be used to infer meaningful pedotransfer functions for saturated and near-saturated hydraulic conductivities. More research is in progress

  18. Interaction between soil mineralogy and the application of crop residues on aggregate stability and hydraulic conductivity of the soil

    NASA Astrophysics Data System (ADS)

    Lado, M.; Kiptoon, R.; Bar-Tal, A.; Wakindiki, I. I. C.; Ben-Hur, M.

    2012-04-01

    One of the main goals of modern agriculture is to achieve sustainability by maintaining crop productivity while avoiding soil degradation. Intensive cultivation could lead to a reduction in soil organic matter that could affect the structure stability and hydraulic conductivity of the soil. Moreover, crops extract nutrients from the soil that are taken away from the field when harvested, and as a consequence, the addition of fertilizers to the soil is necessary to maintain crop productivity. One way to deal with these problems is to incorporate crop residues into the soil after harvest. Crop residues are a source of organic matter that could improve soil physical properties, such as aggregate stability and soil hydraulic conductivity. However, this effect could vary according to other soil properties, such as clay content, clay mineralogy, and the presence of other cementing materials in the soil (mainly carbonates and aluminum and iron oxides). In the present work, the interaction between the addition of chickpea crop residues to the soil and clay mineralogy on aggregate stability and saturated hydraulic conductivity were studied. Chickpea plant residues were added at a rate of 0.5% (w/w) to smectitic, kaolinitic, illitic and non-phyllosilicate soils from different regions. The soils without (control) and with chickpea residues were incubated for 0, 3, 7 and 30 days, and the saturated hydraulic conductivity of the soils was measured in columns after each incubation time. The response of hydraulic conductivity to the addition of residues and incubation time was different in the soils with various mineralogies, although in general, the addition of chickpea residues increased the saturated hydraulic conductivity as compared with the control soils. This positive effect of crop residues on hydraulic conductivity was mainly a result of improved aggregate stability and resistance to slaking during wetting.

  19. Predicting saturated and unsaturated hydraulic conductivity in undisturbed soils from soil water characteristics

    SciTech Connect

    Poulsen, T.G.; Loldrup, P.; Yamaguchi, Toshiko; Jacobsen, O.H.

    1999-12-01

    Hydraulic conductivity is likely the most important soil property controlling water and solute movement in soils. It is also one of the most variable and uncertain soil properties. Models for predicting soil hydraulic conductivity from other soil characteristics are, therefore, useful in both deterministic and stochastic transport studies. A new model for predicting saturated hydraulic conductivity (K{sub s}) in undisturbed soils from macroporosity ({epsilon}{sub 100}), defined as the air-filled porosity at a soil-water potential of {Psi} = {minus}100 cm H{sub 2}O, was developed using data for 23 undisturbed soils. The new K{sub s} model compared well with measurements when tested against independent data sets for 73 undisturbed soils from the UNSODA database and gave improved predictions compared with existing K{sub s} models. Two new models for predicting relative hydraulic conductivity (K/K{sub s}) in relatively moist, ({Psi} > {minus}350 cm H{sub 2}O) undisturbed soils from soil-water content ({theta}) and the Campbell soil-water retention parameter, b, were developed using conductivity and water retention data for the 73 soils from UNSODA. The new K/K{sub s} models represent modifications of the recently presented DLC and SLC models for predicting K/K{sub s} in sieved, repacked soils. The modified DLC and SLC models were combined with the new K{sub s} model, yielding new two-parameter ({epsilon}{sub 100}, b) models for unsaturated hydraulic conductivity (K({theta})) in undisturbed soil. The two new K({theta}) models were successfully tested against independent K({theta}) data. Also, the classical Campbell K/K{sub s} model, combined with the new, more accurate K{sub s} model, gave K({theta}) prediction accuracy almost as good as the modified DLC and SLC K({theta}) models. The suggested two-parameter K({theta}) models require knowledge of only the soil-water retention curve, including a measurement at {Psi} = {minus}100 cm H{sub 2}O, and seem promising for use

  20. Influence of long-term tillage and crop rotations on soil hydraulic properties in the U.S. Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the semi-arid region of the Pacific Northwest, USA, no-tillage continuous spring cereal and spring cereal/chemical fallow rotations are being examined as alternatives to the traditional winter wheat/summer fallow rotation for improving soil and water conservation. There is limited information, ho...

  1. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Simunek, J.; Nimmo, J.R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.

  2. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  3. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  4. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  5. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    PubMed Central

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average

  6. Unsaturated soil hydraulic conductivity: The field infiltrometer method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory: Field methods to measure the unsaturated soil hydraulic conductivity assume presence of steady-state water flow. Soil infiltrometers are desired to apply water onto the soil surface at constant negative pressure. Water is applied to the soil from the Marriott device through a porous membrane...

  7. Using Remotely-Sensed Estimates of Soil Moisture to Infer Soil Texture and Hydraulic Properties across a Semi-arid Watershed 1856

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the diff...

  8. Effective soil hydraulic conductivity predicted with the maximum power principle

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Zehe, Erwin; Dewals, Benjamin

    2016-04-01

    Drainage of water in soils happens for a large extent through preferential flowpaths, but these subsurface flowpaths are extremely difficult to observe or parameterize in hydrological models. To potentially overcome this problem, thermodynamic optimality principles have been suggested to predict effective parametrization of these (sub-grid) structures, such as the maximum entropy production principle or the equivalent maximum power principle. These principles have been successfully applied to predict heat transfer from the Equator to the Poles, or turbulent heat fluxes between the surface and the atmosphere. In these examples, the effective flux adapts itself to its boundary condition by adapting its effective conductance through the creation of e.g. convection cells. However, flow through porous media, such as soils, can only quickly adapt its effective flow conductance by creation of preferential flowpaths, but it is unknown if this is guided by the aim to create maximum power. Here we show experimentally that this is indeed the case: In the lab, we created a hydrological analogue to the atmospheric model dealing with heat transport between Equator and poles. The experimental setup consists of two freely draining reservoirs connected with each other by a confined aquifer. By adding water to only one reservoir, a potential difference will build up until a steady state is reached. From the steady state potential difference and the observed flow through the aquifer, and effective hydraulic conductance can be determined. This observed conductance does correspond to the one maximizing power of the flux through the confined aquifer. Although this experiment is done in an idealized setting, it opens doors for better parameterizing hydrological models. Furthermore, it shows that hydraulic properties of soils are not static, but they change with changing boundary conditions. A potential limitation to the principle is that it only applies to steady state conditions

  9. HYDRAULIC REDISTRIBUTION OF SOIL WATER IN TWO OLD-GROWTH CONIFEROUS FORESTS: QUANTIFYING PATTERNS AND CONTROLS

    EPA Science Inventory

    Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict sea...

  10. Electrical properties of soils

    NASA Astrophysics Data System (ADS)

    Pozdnyakova, Larisa A.

    In this study, thorough analysis is conducted for soil electrical properties, i.e. electrical resistivity, conductivity, and potential. Soil electrical properties are the parameters of natural and artificially created electrical fields in soils and influenced by distribution of mobile electrical charges, mostly inorganic ions, In soils. Distributions of electrical charges and properties in various soil profiles were shown to be results of the soil-forming processes. Soil properties influencing the density of mobile electrical charges were found to be exponentially related with electrical resistivity and potential based on Boltzmann's law of statistical thermodynamics. Relationships were developed between electrical properties and other soil physical and chemical properties, such as texture, stone content, bulk density, water content, cation exchange capacity, salinity, humus content, and base saturation measured in-situ and in soil samples. Geophysical methods of vertical electrical sounding, four-electrode probe, non-contact electromagnetic profiling, and self-potential were modified for measuring soil electrical properties and tested in different soil studies. The proposed methods are extremely efficient, reliable, and non-disturbing. Compared with conventional methods of soil analysis, the electrical geophysical methods allowed evaluating groundwater table, salt content, depth and thickness of soil horizons, Polluted or disturbed layers in soil profiles, and stone content with an estimation error <10%. The methods provide extensive data on spatial and temporal variations in soil electrical properties, which relate to the distributions of other essential soil properties. The electrical properties were incorporated with the data from conventional soil analyses to enhance the estimation of a number of soil physical and chemical properties and to assist soil survey. The study shows various applications of the modified geophysical methods in soil physics, soil

  11. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  12. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    EPA Science Inventory

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  13. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Beckers, Eléonore; Pichault, Mathieu; Pansak, Wanwisa; Degré, Aurore; Garré, Sarah

    2016-08-01

    Determining soil hydraulic properties is of major concern in various fields of study. Although stony soils are widespread across the globe, most studies deal with gravel-free soils, so that the literature describing the impact of stones on the hydraulic conductivity of a soil is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow, and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory experiments and numerical simulations involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned predictive models. Our study suggests that it might be ill-founded to consider that stones only reduce the volume available for water flow. We pointed out several factors of the saturated hydraulic conductivity of stony soils that are not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, laboratory experiments show that an increasing stone content can counteract and even overcome the effect of a reduced volume in some cases: we observed an increase in saturated hydraulic conductivity with volume of inclusions. These differences are mainly important near to saturation. However, comparison of results from predictive models and our experiments in unsaturated conditions shows that models and data agree on a decrease in hydraulic conductivity with stone content, even though the experimental conditions did not allow testing for stone contents higher than 20 %.

  14. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  15. Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J. C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Buis, S.; Desfonds, V.; Bertrand, N.; Renard, D.

    2015-07-01

    Evapotranspiration has been recognized as one of the most uncertain terms in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs (Interaction Sol-Biosphere-Atmosphere) simulations of evapotranspiration are assessed at the field scale over a 12-year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamics of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key parameters which drive the simulation of ET, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. A sensitivity analysis is first conducted to quantify the relative contribution of each parameter on ET simulation over 12 years. The impact of the estimation method used to retrieve the soil parameters (pedotransfer function, laboratory and field methods) on ET is then analysed. The benefit of representing the variations in time of the rooting depth and wilting point is evaluated. Finally, the propagation of uncertainties in the soil parameters on ET simulations is quantified through a Monte Carlo analysis and compared with the uncertainties triggered by the mesophyll conductance which is a key above-ground driver of the stomatal conductance. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. This results in a high sensitivity of simulated evapotranspiration to uncertainties in the soil moisture at field capacity and the soil moisture at saturation, both of which drive the simulation of soil evaporation. Field capacity was proved to be the most

  16. FACTORS AFFECTING THE HYDRAULIC BARRIER PERFORMANCE OF SOIL-BENTONITE MIXTURE CUT-OFF WALL

    NASA Astrophysics Data System (ADS)

    Takai, Atsushi; Inui, Toru; Katsumi, Takeshi; Kamon, Masashi; Araki, Susumu

    Containment technique using cut-off walls is a valid method against contaminants in subsurface soil and/or groundwater. This paper states laboratory testing results on hydraulic barrier performance of Soil-Bentonite (SB), which is made by mixing bentonite with in-situ soil. Since the bentonite swelling is sensitive to chemicals, chemical compatibility is important for the hydraulic barrier performance of SB. Hydraulic conductivity tests using flexible-wall permeameter were conducted on SB specimens with various types and concentrations of chemicals in the pore water and/or in the permeant and with various bentonite powder contents. As a result, hydraulic barrier performance of SB was influenced by the chemical concentration in the pore water of original soil and bentonite powder content. In the case that SB specimens have damage parallel to the permeating direction, no significant leakage in the SB occurs by the self-sealing property of SB. In addition, the hydraulic conductivity values of SB have excellent correlation with their plastic indexes and swelling pr essures, thus these properties of SB have some possibility to be indicators for estimation of the hydraulic barrier performance of SB.

  17. Measurement of soil hydraulic conductivity in relation with vegetation

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cheng, Qinbo

    2010-05-01

    Hydraulic conductivity is a key parameter which influences hydrological processes of infiltration, surface and subsurface runoff. Vegetation alters surface characteristics (e.g., surface roughness, litter absorption) or subsurface characteristics (e.g. hydraulic conductivity). Field infiltration experiment of a single ring permeameter is widely used for measuring soil hydraulic conductivity. Measurement equipment is a simple single-ring falling head permeameter which consists of a hollow cylinder that is simply inserted into the top soil. An optimization method on the basis of objective of minimum error between the measured and simulated water depths in the single-ring is developed for determination of the soil hydraulic parameters. Using the single ring permeameter, we measured saturated hydraulic conductivities (Ks) of the red loam soil with and without vegetation covers on five hillslopes at Taoyuan Agro-Ecology Experimental Station, Hunan Province of China. For the measurement plots without vegetation roots, Ks value of the soil at 25cm depth is much smaller than that of surface soil (1.52×10-4 vs. 1.10×10-5 m/s). For the measurement plots with vegetation cover, plant roots significantly increase Ks of the lower layer soil but this increase is not significant for the shallow soil. Moreover, influences of vegetation root on Ks depend on vegetation species and ages. Ks value of the Camellia is about three times larger than that of seeding of Camphor (2.62×10-4 vs. 9.82×10-5 m/s). Ks value of the matured Camellia is 2.72×10-4 m/s while Ks value of the young Camellia is only 2.17×10-4 m/s. Key words: single ring permeameter; soil hydraulic conductivity; vegetation

  18. Optimizing Soil Hydraulic Parameters in RZWQM2 Under Fallow Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective estimation of soil hydraulic parameters is essential for predicting soil water dynamics and related biochemical processes in agricultural systems. However, high uncertainties in estimated parameter values limit a model’s skill for prediction and application. In this study, a global search ...

  19. Experimental Determination of Hydraulic Properties of Unsaturated Calcarenites

    NASA Astrophysics Data System (ADS)

    Turturro, Antonietta Celeste; Andriani, Gioacchino Francesco; Clementina Caputo, Maria; Maggi, Sabino

    2013-04-01

    Understanding hydraulic properties is essential in the modeling of flow and solute transport through the vadose zone, to which problems of soil and groundwater pollution are related. The vadose zone, in fact, is of great importance in controlling groundwater recharge and transport of contaminants into and through the subsoil. The aim of this work is to determine experimentally in laboratory the hydraulic properties of unsaturated calcarenites using an approach including petrophysical determinations and methods for measuring water retention. For this purpose, samples of calcarenites belonging to the Calcarenite di Gravina Fm.(Pliocene-early Pleistocene), came from two different quarry districts located in Southern Italy (Canosa di Puglia and Massafra), were utilized. The water retention function, θ(h), which binds the water content, θ, to water potential, h, was determined in the laboratory by means two different experimental methods: the WP4-T psychrometer and the suction table. At last, a simple mathematical equation represented by van Genuchten's model is fitted to the experimental data and the unknown empirical parameters of this model are determined. Textural analysis on thin sections using optical petrographic microscopy and evaluation of total and effective porosity by means of standard geotechnical laboratory tests, mercury intrusion porosimetry and image analysis were also performed. In particular, a comparison between mercury porosimetry data and results of photomicrograph computer analysis through the methods of quantitative stereology was employed for providing pore size distributions. The results of this study identify the relationship between the hydraulic behavior, described by the water retention function, and pore size distribution for the calcarenites that are not easy to hydraulically characterize. This relationship could represent a useful tool to infer the unsaturated hydraulic properties of calcarenites and in general this approach could be

  20. The temporal changes in saturated hydraulic conductivity of forest soils

    NASA Astrophysics Data System (ADS)

    Kornél Szegedi, Balázs

    2015-04-01

    I investigated the temporal variability of forest soils infiltration capacity through compaction. I performed the measurements of mine in The Botanical Garden of Sopron between 15.09.2014 - 15.10.2014. I performed the measurements in 50-50 cm areas those have been cleaned of vegetation, where I measured the bulk density and volume of soil hydraulic conductivity with Tension Disk Infiltrometer (TDI) in 3-3 repetitions. I took undisturbed 160 cm3 from the upper 5 cm layer of the cleaned soil surface for the bulk density measurements. Then I loosened the top 10-15 cm layer of the soil surface with spade. After the cultivation of the soil I measured the bulk density and volume of water conductivity also 3-3 repetitions. Later I performed the hydraulic conductivity (Ksat) using the TDI and bulk density measurements on undisturbed samples on a weekly basis in the study area. I illustrated the measured hydraulic conductivity and bulk density values as a function of cumulative rainfall by using simple graphical and statistical methods. The rate of the soil compaction pace was fast and smooth based on the change of the measured bulk density values. There was a steady downward trend in hydraulic conductivity parallel the compaction. The cultivation increased the hydraulic conductivity nearly fourfold compared to original, than decreased to half by 1 week. In the following the redeposition rate declined, but based on the literature data, almost 3-4 months enough to return the original state before cultivation of the soil hydraulic conductivity and bulk density values. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project.

  1. Changes in hydraulic soil conductivity in the walls of zoogenic macropores due to the soil compaction

    NASA Astrophysics Data System (ADS)

    Pelíšek, Igor

    2015-04-01

    This study focuses on assessement of the hydric functions and effectiveness of the preferential zoogenic routes (preferentially lumbricid burrows), with primary focus on the hydric functions and parameters of individual vertical tubular macropores and on the analysis of selected possible detailed effects on these functions. The effect of earthworms (Lumbricidae) on the physical soil properties is notable. During burrowing, earthworms press the material in the vicinity of the hollowed burrows. Several variants of the relationship between the macropores and the soil compaction, permeability and erodibility were verified. Both measurements in the field and laboratory tests of intact collected samples and engineered samples were performed. With regard to preferential focus on the hydraulic processes in gravity macropores, to the limits of the instrumentation and the size of individual earthworms in agricultural soils in the Czech Republic, we assessed the processes in the macropores with diameter of ca 5 mm or larger. In some cases, saturated hydraulic conductivity of zoogenic macropore walls was reduced in order of tens of percent compared with hydraulic conductivity of soil matrix, and the increase of bulk density of soil in the macropore vicinity achieved 25%. The effect of repeated rise and water level stagnation (repeated macropore washing during multiple wetting cycles) was tested. Investigation of water erosion of macropores was limited by adjustable flow, vessel capacity and pump capacity of the accurate continuous infiltrometer. Investigation of the water inlet from above gave more data on the washed-off material in the selected time intervals. Analysis of water rise from below and macropore sealing provided one cumulative data for each testing period.

  2. Polyacrylamide effect on hydraulic conductivity of hardsetting soils in Northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Silva, Laércio; Almeida, Brivaldo; Melo, Diego; Marques, Karina; Almeida, Ceres

    2013-04-01

    Among soil hydro-physical properties, hydraulic conductivity is more sensitive to changes in soil structure. Hydraulic conductivity describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of saturation, and on the density and viscosity of the fluid. Hardsetting soils present very low hydraulic conductivity values. When dry, these soils show high penetration resistance and consistency extremely hard, but change to friable when moist. In this condition are poorly structured, slaking when moist, limit agricultural machinery use and it may reduce the growth of the root system. In Brazil, these soils occur throughout of coastal zone in flat areas called "coastal tableland". Chemical ameliorant, such as polymers based on anionic polyacrylamide (PAM), improve hydraulic conductivity of soil in hardsetting soils. The primary functions of polyacrylamide soil conditioners are to increase soil tilth, aeration, and porosity and reduce compaction and water run-off. PAM effect is attributed to its ability to expand when placed in water, storing it in soil pore space, releasing it gradually to the plants. This process occurs by reducing the water flow through the pores of the soil, due to water molecules can be absorbed by PAM, providing water gradually. Thus, this study tested the hypothesis that PAM reduces the soil hardsetting character. The area is located in coastal zone in Goiana city, Pernambuco, northeastern of Brazil. This soil is typical hardsetting soil. Intact soil cores were collected from four horizons until 70cm depth. In the laboratory, the soil cores were saturated with different PAM concentrations (0.01, 0.005, 0.00125%) and H2O (control). Saturated hydraulic conductivity (Ksat) was determined using a constant head method, according to Klute and Dirksen (1986). Four replicates were used for each horizon and Tukey test at 5% probability was used by

  3. Improved Rosetta Pedotransfer Estimation of Hydraulic Properties and Their Covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2014-12-01

    Quantitative knowledge of the soil hydraulic properties is necessary for most studies involving water flow and solute transport in the vadose zone. However, it is always expensive, difficult, and time consuming to measure hydraulic properties directly. Pedotransfer functions (PTFs) have been widely used to forecast soil hydraulic parameters. Rosetta is is one of many PTFs and based on artificial neural network analysis coupled with the bootstrap sampling method. The model provides hierarchical PTFs for different levels of input data for Rosetta (H1-H5 models, with higher order models requiring more input variables). The original Rosetta model consists of separate PTFs for the four "van Genuchten" (VG) water retention parameters and saturated hydraulic conductivity (Ks) because different numbers of samples were available for these characteristics. In this study, we present an improved Rosetta pedotransfer function that uses a single model for all five parameters combined; these parameters are weighed for each sample individually using the covariance matrix obtained from the curve-fit of the VG parameters to the primary data. The optimal number of hidden nodes, weights for saturated hydraulic conductivity and water retention parameters in the neural network and bootstrap realization were selected. Results show that root mean square error (RMSE) for water retention decreased from 0.076 to 0.072 cm3/cm3 for the H2 model and decreased from 0.044 to 0.039 cm3/cm3 for the H5 model. Mean errors which indicate variable matric potential-dependent bias were also reduced significantly in the new model. The RMSE for Ks increased slightly (H2: 0.717 to 0.722; H5: 0.581 to 0.594); this increase is minimal and a result of using a single model for water retention and Ks. Despite this small increase the new model is recommended because of its improved estimation of water retention, and because it is now possible to calculate the full covariance matrix of soil water retention

  4. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    NASA Astrophysics Data System (ADS)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  5. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  6. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  7. The Dependence of Peat Soil Hydraulic Conductivity on Dominant Vegetation Type in Mountain Fens

    NASA Astrophysics Data System (ADS)

    Crockett, A. C.; Ronayne, M. J.; Cooper, D. J.

    2014-12-01

    The peat soil within fen wetlands provides water storage that can substantially influence the hydrology of mountain watersheds. In this study, we investigated the relationship between hydraulic conductivity and vegetation type for fens occurring in Rocky Mountain National Park (RMNP), Colorado, USA. Vegetation in RMNP fens can be dominated by woody plants and shrubs, such as willows; by mosses; or by herbaceous plants such as sedges. Fens dominated by each vegetation type were selected for study. Six fens were investigated, all of which are in the Colorado River watershed on the west side of RMNP. For each site, soil hydraulic conductivity was measured at multiple locations using a single-ring infiltrometer. As a result of the shallow water table in these fens (the water table was always within 10 cm of the surface), horizontal hydraulic gradients were produced during the field tests. The measured infiltration rates were analyzed using the numerical model HYDRUS. In order to determine the hydraulic conductivity, a parameter estimation problem was solved using HYDRUS as the forward simulator. Horizontal flow was explicitly accounted for in the model. This approach produced more accurate estimates of hydraulic conductivity than would be obtained using an analytical solution that assumes strictly vertical flow. Significant differences in hydraulic properties between fens appear to result at least in part from the effects of different dominant vegetation types on peat soil formation.

  8. In-situ LIF Analysis of Biological and Petroleum-based Hydraulic Oils on Soil

    PubMed Central

    Lemke, Matthias; Fernández-Trujillo, Rebeca; Löhmannsröben, Hans-Gerd

    2005-01-01

    Absorption and fluorescence properties of 4 hydraulic oils (3 biological and 1 petroleum-based) were investigated. In-situ LIF (laser-induced fluorescence) analysis of the oils on a brown sandy loam soil was performed. With calibration, quantitative detection was achieved. Estimated limits of detection were below ca. 500 mg/kg for the petroleum-based oil and ca. 2000 mg/kg for one biological oil. A semi-quantitative classification scheme is proposed for monitoring of the biological oils. This approach was applied to investigate the migration of a biological oil in soil-containing compartments, namely a soil column and a soil bed.

  9. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    SciTech Connect

    Warren, Jeffrey; Brooks, J Renee; Dragila, Maria; Meinzer, Rick

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  10. Comparison of Soil Hydraulic Parameterizations for Mesoscale Meteorological Models.

    NASA Astrophysics Data System (ADS)

    Braun, Frank J.; Schädler, Gerd

    2005-07-01

    Soil water contents, calculated with seven soil hydraulic parameterizations, that is, soil hydraulic functions together with the corresponding parameter sets, are compared with observational data. The parameterizations include the Campbell/Clapp-Hornberger parameterization that is often used by meteorologists and the van Genuchten/Rawls-Brakensiek parameterization that is widespread among hydrologists. The observations include soil water contents at several soil depths and atmospheric surface data; they were obtained within the Regio Klima Projekt (REKLIP) at three sites in the Rhine Valley in southern Germany and cover up to 3 yr with 10-min temporal resolution. Simulations of 48-h episodes, as well as series of daily simulations initialized anew every 24 h and covering several years, were performed with the “VEG3D” soil-vegetation model in stand-alone mode; furthermore, 48-h episodes were simulated with the model coupled to a one-dimensional atmospheric model. For the cases and soil types considered in this paper, the van Genuchten/Rawls-Brakensiek model gives the best agreement between observed and simulated soil water contents on average. Especially during episodes with medium and high soil water content, the van Genuchten/Rawls-Brakensiek model performs better than the Campbell/Clapp-Hornberger model.

  11. Development of a Hydraulic-driven Soil Penetrometer for Measuring Soil Compaction in Field Conditions

    NASA Astrophysics Data System (ADS)

    Tekin, Yucel; Okursoy, Rasim

    Soil compaction is an important physical limiting factor for root emergence and the growth of plants. Therefore it is essential to control soil compaction, which is normally caused by heavy traffic in fields during the growing season. Soil compaction in fields is usually measured by using standard soil cone penetrometers, which can be of several different types according to their design. Most of the time, especially in heavy soil conditions, measuring soil compaction with a standard hand penetrometer produces measurement errors if the cone of the penetrometer cannot be pushed into the soil at a standard rate. Obtaining data with hand penetrometers is also difficult and takes a long time and effort. For this reason, a three-point hitch-mounted and hydraulic-driven soil cone penetrometer has been designed in order to reduce time and effort and to reduce possible measurement errors in the sampling of soil compaction data for research purposes. The hydraulic penetrometer is mounted on the three-point hitch and a hydraulic piston pushes the standard penetrometer cone into the soil at a constant speed. Forces acting on the cone base are recorded with a computer-based 16-bit data acquisition system composed of a load cell, a portable computer, signal amplification and necessary control software for the sampling. As a conclusion, the designed and constructed three-point hitch-mounted hydraulic-driven standard soil cone penetrometer provides with quick and very accurate measurements about soil compaction in clay soil in heavy conditions.

  12. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a method of increasing fluid flow within the subsurface, should improve the effectiveness of several remedial techniques, including pump and treat, vapor extraction, bio-remediation, and soil-flushing. he technique is widely used to increase the yields of oi...

  13. Subgrid spatial variability of soil hydraulic functions for hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kreye, Phillip; Meon, Günter

    2016-07-01

    State-of-the-art hydrological applications require a process-based, spatially distributed hydrological model. Runoff characteristics are demanded to be well reproduced by the model. Despite that, the model should be able to describe the processes at a subcatchment scale in a physically credible way. The objective of this study is to present a robust procedure to generate various sets of parameterisations of soil hydraulic functions for the description of soil heterogeneity on a subgrid scale. Relations between Rosetta-generated values of saturated hydraulic conductivity (Ks) and van Genuchten's parameters of soil hydraulic functions were statistically analysed. An universal function that is valid for the complete bandwidth of Ks values could not be found. After concentrating on natural texture classes, strong correlations were identified for all parameters. The obtained regression results were used to parameterise sets of hydraulic functions for each soil class. The methodology presented in this study is applicable on a wide range of spatial scales and does not need input data from field studies. The developments were implemented into a hydrological modelling system.

  14. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    SciTech Connect

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  15. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils. PMID:27380094

  16. Estimating Saturated Hydraulic Conductivity from Soil Water Retention Curve using Neural Networks

    NASA Astrophysics Data System (ADS)

    Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Sohrabi, S.

    2009-04-01

    Study of soil hydraulic properties like saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Since, direct measurement of soil hydraulic properties is time consuming and expensive, indirect methods such as pedotransfer function and artificial neural networks (ANN) have been developed based on the readily available soil characteristics. In this study, we used soil water retention data i.e. fractal dimension, air entry value and effective porosity, as well as bulk density and developed artificial neural networks in order to estimate saturated hydraulic conductivity. Total of 142 soil samples of the UNSODA, GRIZZLY and Puckett et al. (1985) databases was divided into two groups as 114 for the development and 28 for the validation of ANN model. We used multi-layer perceptron model with 4 layers as the inputs and one layer as the output of ANN model and back propagation algorithm for training procedure. The activation function was selected LOGSIG in the middle and exist layers. The values of statistical parameters such as coefficient of determination (R2) and mean square error (MSE) showed that the best number of neurons in the middle layer of ANN model was 24. We also compared the developed ANN model with Rawls et al. (1993) and Rawls et al. (1998) models using 28 soil samples. The results showed that developed ANN model estimates saturated hydraulic conductivity better than the other methods. The AIC values of ANN, Rawls et al. (1993) and Rawls et al. (1998) were obtained 291.8, 322.3 and 316.4, respectively.

  17. Seasonal variability of near-saturated hydraulic conductivity on cultivated soil

    NASA Astrophysics Data System (ADS)

    Klípa, Vladimír; Zumr, David; Sněhota, Michal

    2014-05-01

    The soil structure and hydraulic properties of arable soils considerably vary during the year due to the periodical tillage and fertilization activities, soil compaction, plant and root grow, climate impact etc. The knowledge of the effect of temporal soil variability is essential when assessing water regime and associated dissolved substance transport in soils. The main aim of this contribution is to describe the temporal development of unsaturated hydraulic conductivity on arable land during a year. The experimental site is located in Nucice catchment (Central Bohemia, Czech republic), where also rainfall-runoff and soil erosion processes are studied. The soil is classified as Cambisol, typical texture ranges from loam to clay loam classes. Soil is conservatively tilled till depth of approximately 17 cm, below the topsoil a compacted subsoil was observed. Tension infiltration experiments were performed repeatedly at single location in order to determine the unsaturated hydraulic conductivity of the topsoil. So far four tension infiltration campaigns were carried out under tension h0 = -3.0 cm with different field conditions: (i) young winter barley (October 2012), (ii) between postharvest stubble breaking and seeding (April 2013), (iii) full-grown oat (June 2013) and (iv) after fresh postharvest stubble breaking (October 2013). Measurements were carried out using newly introduced automated multi minidisk tension infiltrometer (Klipa et al., EGU2014-7230). All experiments were performed on the levelled soil surface after removing upper soil layer (1 to 3 cm). A thin layer of quartz sand (thickness 1 - 2 mm, grain size 0.1 - 0.6 mm) was applied to improve contact between the infiltrometer and the soil surface. Each infiltration campaign consisted of six tension infiltration experiments, the total number of 24 infiltration data sets was obtained for this study. Results show that unsaturated hydraulic conductivity was significantly smaller in April, but rather the

  18. Hydraulic properties of leaves from desert shrubs

    SciTech Connect

    Schulte, P.J. )

    1991-05-01

    Changes in certain tissue hydraulic properties such as elasticity, capacitance, and resistance to water flow were considered as a function of leaf water content. It has been suggested in the literature that variation in such properties may be of significance during changes in leaf hydration. In addition, the author was interested in the potential role of changes in these same tissue properties for maintaining leaf water status during drought. Two shrubs occurring in the Mojave desert, mesquite and live-oak, were studied. Measurements suggest that over the range of leaf water potential from zero to turgor loss, the elastic modulus varies 5-fold, capacitance varies 2-fold, and the resistance to flow between the xylem and storage in the leaf parenchyma tissues 2 to 3-fold. A model for water flow was developed based on these and other tissue properties. This modeling approach is being used as a hypothesis-generating tool for future experimentation. Results of the modeling are discussed in the context of published speculations on the functional role of changes in properties such as elasticity for plants under water stress.

  19. Mechanical and Hydraulic Properties of Wax-coated Sands for Sport Surfaces

    NASA Astrophysics Data System (ADS)

    Bardet, J. P.; Benazza, C.; Bruchon, J. F.; Mishra, M.

    2009-06-01

    Natural soils such as sandy loams are being replaced by synthetic soils for various types of sport and recreational surfaces, including horseracing tracks. These synthetic soils are made of a mixture of sand, microcrystalline wax, synthetic fibers and rubber chips which optimize the mechanical and hydraulic properties of natural soils so that they drain faster after rainstorms and decrease risks of sport injuries while retaining appropriate sport performances. Silica sand, which makes up the largest fraction of synthetic soils, is hydrophyllic by nature, i.e., tends to retain water on sand grain surfaces. After rainstorms, hydrophilic surfaces retain a large amount of water, are difficult to compact, and yield uncontrollable mechanical and hydraulic properties when too moist. The addition of wax contributes to improving both mechanical and hydraulic properties of sands. Wax coats the sand grains with a thin layer, and enhances adherence between sand particles. It repels water from sand grains and influences both compaction and hydraulic properties. This study reports experimental results that help to understand the properties of wax-coated sands used in synthetic surfaces, especially the degradation of synthetic surfaces that have insufficient wax-coatings.

  20. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    PubMed Central

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  1. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.

    PubMed

    Barnes, Rebecca T; Gallagher, Morgan E; Masiello, Caroline A; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  2. Soil moisture and properties estimation by assimilating soil temperatures using particle batch smoother: A new perspective for DTS

    NASA Astrophysics Data System (ADS)

    Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.

    2015-12-01

    Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.

  3. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. PMID:27022106

  4. Alternative methods in the development of pedotransfer functions for soil hydraulic characteristics

    NASA Astrophysics Data System (ADS)

    Merdun, H.

    2010-01-01

    Soil hydraulic properties are needed in the modeling of water flow and solute movement in the vadose zone. Pedotransfer functions (PTFs) have received the attention of many researchers for indirect determination of hydraulic properties from basic soil properties as an alternative to direct measurement. The objective of this study was to compare the performance of cascade forward network (CFN), multiple-linear regression (MLR), and seemingly unrelated regression (SUR) methods using prediction capabilities of point and parametric PTFs developed by these methods. The point PTFs estimated field capacity (FC), permanent wilting point (PWP), available water capacity (AWC), and saturated hydraulic conductivity ( Ks) and the parametric PTFs estimated the van Genuchten retention parameters. A total of 180 soil samples was extracted from the UNSODA database and divided into two groups as 135 for the development and 45 for the validation of the PTFs. The model performances were evaluated with three statistical tools: the maximum error (ME), the model efficiency (EF), and the D index ( D) using the observed and predicted values of a given parameter. Despite the fact that the differences among the three methods in prediction accuracies of the point and parametric PTFs were not statistically significant ( p > 0.05) except θr and α ( p < 0.05) based on the ANOVA test, overall MLR and SUR were somewhat better than CFN in prediction of the point PTFs, whereas CFN performed better than the other two methods in prediction of the parametric PTFs. The F.F values of FC and θr for CFN, MLR, and SUR methods were 0.705. 0.805, 0.795 and 0.356, -0.290, -0.290, respectively, which refer to the best and worst predictions. Properties ( Ks, θr, α) having some difficulty in prediction were better predicted by CFN and SUR methods, where these methods predict all hydraulic properties from basic soil properties simultaneously rather than individually as in MLR. This suggests that multivariate

  5. Irreversible soil degradation due to soil salinity and sodicity, and the role of reduced hydraulic conductivity feedback

    NASA Astrophysics Data System (ADS)

    Mau, Y.; Porporato, A. M.

    2015-12-01

    Soil sodicity is characterized by a high relative amount of sodium cations in the soil, usually measured by the sodium adsorption ratio (SAR) or by the exchangeable sodium percentage (ESP). It negatively affects the soil's physical properties, causing slaking, swelling, and dispersion of clay, which lead to decreased hydraulic conductivity and infiltration rate. Soil sodicity is especially problematic in arid and semi-arid regions, where low-quality waters, such as treated wastewater or sodic/saline groundwater, are often used to meet agricultural demands. The dynamics of sodicity in the soil is intertwined with that of salinity, i.e., the total concentration of salt in the soil, and the soil water balance. We present a model for the coupled dynamics of relative soil water content s, salinity C, and sodicity ESP and investigate the effects of irrigation with water of good and bad quality on the soil. We explicitly account for the major feedback on the soil moisture dynamics due to decreased saturated hydraulic conductivity at low values of C and for high values of ESP, and show that it leads to a bifurcation of steady-state solutions along a control parameter axis (irrigation rate, SAR of irrigation water, etc). We study theoretically such bifurcations, which are related to a runaway sodification process, and determine the conditions in which there is an irreversible soil degradation and the time scales associated with it. Finally, we discuss different soil remediation strategies based on the optimal control theory applied to the proposed system for the coupled water, salinity and sodicy dynamics.

  6. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    NASA Astrophysics Data System (ADS)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  7. Scale-dependency of the hydraulic properties of a variably saturated heterogeneous sandy subsoil

    NASA Astrophysics Data System (ADS)

    Javaux, M.; Vanclooster, M.

    2006-08-01

    SummaryThe effective hydraulic behaviour of heterogeneous sand was experimentally investigated at two scales under transient flow upper boundary conditions. At the monoliths-scale, one-dimensional inverse modelling was performed from a transient infiltration experiment by implementing in the objective function the outflow and pressure head time series at four depths. Notwithstanding the important heterogeneity of the subsoil, principally due to the presence of discontinuous clay and a stone layer, we observed that the effective behaviour was surprisingly well reproduced. It was also observed that the structural features mainly induced a kind of hysteresis between the saturation and drainage cycles of the outflow time series. Subsequently, 104 Kopecky cores (100 cm 3) were sub-sampled throughout the monolith, mainly in the sandy matrix. The variability of local hydraulic parameters was investigated by optimising the local hydraulic parameters from multi-step outflow experiments and measured retention points. The comparison between 1-D optimised, measured and Kopecky-averaged retention curves showed relatively similar shape near saturation. In contrast to this, important discrepancies existed between averaged local scale hydraulic conductivity and effective hydraulic conductivity close to saturation. Different experimental designs at different scales may explain the observed discrepancies. It is further suggested that the monolith-scale effective hydraulic functions are more representative for wet soil conditions. This case study illustrates the complexity of finding validated scaling relationships for the hydraulic properties of heterogeneous soils at scales larger than the usual small column scale.

  8. Atlas of soil reflectance properties

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Biehl, L. L.; Robinson, B. F.

    1979-01-01

    A compendium of soil spectral reflectance curves together with soil test results and site information is presented in an abbreviated manner listing those soil properties most important in influencing soil reflectance. Results are presented for 251 soils from 39 states and Brazil. A narrative key describes relationships between soil parameters and reflectance curves. All soils are classified according to the U.S. soil taxonomy and soil series name for ease of identification.

  9. Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency

    NASA Astrophysics Data System (ADS)

    Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.

  10. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    PubMed

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  11. Percolation testing and hydraulic conductivity of soils for percolation areas.

    PubMed

    Mulqueen, J; Rodgers, M

    2001-11-01

    The results of specific percolation tests are expressed in terms of field saturated hydraulic conductivity (Kfs) of the soil. The specific tests comprise the Irish SR 6 and the UK BS 6297 standard tests and the inversed auger hole and square hole tests employed for the design of land drainage. Percolation times from these tests are converted to Kfs values using unit gradient theory and the Elrick and Reynolds (Soil Sci. 142(5) (1986) 308) model which takes into account gravitational, pressure head and matric potential gradients. Kfs is then expressed as the inverse of the percolation rate times a constant, in this way the percolation rate can be directly related to Kfs of the soil. A plot of Kfs against percolation rate for the Irish SR 6 and the UK BS 6297 standard tests is asymptotic at Kfs values less than 0.2 m/d and greater than 0.8 m/d. This behaviour creates difficulty in setting limits for percolation rates in standards. Curves are provided which enable Kfs values to be read off from percolation tests without the restrictions of head range currently enforced, for example in the Irish SR 6 and BS 6297 standards. Experimental measurements of percolation rates and Kfs were carried out on two sands in the laboratory and in the field on two soils. Kfs of these four materials was also measured using a tension infiltrometer and the Guelph permeameter. The saturated hydraulic conductivities (Ks) of the sands were also estimated in a falling head laboratory apparatus and by the Hazen formula. There was good agreement between the different tests for Kfs on each material. Because percolation time continued to increase significantly in consecutive tests in the same test hole while Kfs became constant, the latter is a better measure of the suitability of soils for percolation. PMID:12230173

  12. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  13. Modeling soil detachment capacity by rill flow using hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Wang, Zhanli; Shen, Nan; Chen, Hao

    2016-04-01

    The relationship between soil detachment capacity (Dc) by rill flow and hydraulic parameters (e.g., flow velocity, shear stress, unit stream power, stream power, and unit energy) at low flow rates is investigated to establish an accurate experimental model. Experiments are conducted using a 4 × 0.1 m rill hydraulic flume with a constant artificial roughness on the flume bed. The flow rates range from 0.22 × 10-3 m2 s-1 to 0.67 × 10-3 m2 s-1, and the slope gradients vary from 15.8% to 38.4%. Regression analysis indicates that the Dc by rill flow can be predicted using the linear equations of flow velocity, stream power, unit stream power, and unit energy. Dc by rill flow that is fitted to shear stress can be predicted with a power function equation. Predictions based on flow velocity, unit energy, and stream power are powerful, but those based on shear stress, especially on unit stream power, are relatively poor. The prediction based on flow velocity provides the best estimates of Dc by rill flow because of the simplicity and availability of its measurements. Owing to error in measuring flow velocity at low flow rates, the predictive abilities of Dc by rill flow using all hydraulic parameters are relatively lower in this study compared with the results of previous research. The measuring accuracy of experiments for flow velocity should be improved in future research.

  14. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    USGS Publications Warehouse

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  15. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  16. Ecohydrological controls on soil moisture and hydraulic conductivity within a pinyon-juniper woodland

    USGS Publications Warehouse

    Lebron, I.; Madsen, M.D.; Chandler, D.G.; Robinson, D.A.; Wendroth, O.; Belnap, J.

    2007-01-01

    The impact of pinyon-juniper woodland encroachment on rangeland ecosystems is often associated with a reduction of streamflow and recharge and an increase in soil erosion. The objective of this study is to investigate vegetational control on seasonal soil hydrologic properties along a 15-m transect in pinyon-juniper woodland with biocrust. We demonstrate that the juniper tree controls soil water content (SWC) patterns directly under the canopy via interception, and beyond the canopy via shading in a preferred orientation, opposite to the prevailing wind direction. The juniper also controls the SWC and unsaturated hydraulic conductivity measured close to water saturation (K(h)) under the canopy by the creation of soil water repellency due to needle drop. We use this information to refine the hydrologic functional unit (HFU) concept into three interacting hydrologic units: canopy patches, intercanopy patches, and a transitional unit formed by intercanopy patches in the rain shadow of the juniper tree. Spatial autoregressive state-space models show the close relationship between K(h) close to soil water saturation and SWC at medium and low levels, integrating a number of influences on hydraulic conductivity. Copyright 2007 by the American Geophysical Union.

  17. Sensitivity of soil water content simulation to different methods of soil hydraulic parameter characterization as initial input values

    NASA Astrophysics Data System (ADS)

    Rezaei, Meisam; Seuntjens, Piet; Shahidi, Reihaneh; Joris, Ingeborg; Boënne, Wesley; Cornelis, Wim

    2016-04-01

    Soil hydraulic parameters, which can be derived from in situ and/or laboratory experiments, are key input parameters for modeling water flow in the vadose zone. In this study, we measured soil hydraulic properties with typical laboratory measurements and field tension infiltration experiments using Wooding's analytical solution and inverse optimization along the vertical direction within two typical podzol profiles with sand texture in a potato field. The objective was to identify proper sets of hydraulic parameters and to evaluate their relevance on hydrological model performance for irrigation management purposes. Tension disc infiltration experiments were carried out at five different depths for both profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations and depths undisturbed samples were taken to determine the water retention curve with hanging water column and pressure extractors and lab saturated hydraulic conductivity with the constant head method. Both approaches allowed to determine the Mualem-van Genuchten (MVG) hydraulic parameters (residual water content θr, saturated water content θs,, shape parameters α and n, and field or lab saturated hydraulic conductivity Kfs and Kls). Results demonstrated horizontal differences and vertical variability of hydraulic properties. Inverse optimization resulted in excellent matches between observed and fitted infiltration rates in combination with final water content at the end of the experiment, θf, using Hydrus 2D/3D. It also resulted in close correspondence of  and Kfs with those from Logsdon and Jaynes' (1993) solution of Wooding's equation. The MVG parameters Kfs and α estimated from the inverse solution (θr set to zero), were relatively similar to values from Wooding's solution which were used as initial value and the estimated θs corresponded to (effective) field saturated water content θf. We found the Gardner parameter αG to be related to the optimized van

  18. Modelling the effect of rock fragment on soil saturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Pellegrini, Sergio; Costanza Andrenelli, Maria; Vignozzi, Nadia

    2014-05-01

    Stoniness may be a key factor in determining the soil hydrological properties. Nevertheless, how coarse fraction takes part in some important processes (e.g., runoff, infiltration and percolation) is not univocally recognized, mainly because of the difficulties in obtaining reliable experimental data and, secondarily, for the employment of different approaches to evaluate the role of the coarse fraction. With that regard, equations developed by hydrogeologists to account for water fluxes in porous media, consider permeability as mere function of grain size distribution (particles >2 mm included), with permeability values increasing when passing from sand to gravel. Conversely, soil scientists consider the saturated hydraulic conductivity (Ksat) of soil exclusively as function of the fine-earth fraction and attribute a contrasting effect to the coarse fraction, both in relation to the decrease of porosity and to the increase of flow path tortuosity. Nevertheless, the Soil Survey Handbook includes all fragmental soils (gravel content ≥35% by weight) into the highest class of soil hydraulic conductivity, and this partly disagrees with the mostly adopted soil scientists' approaches. At the same time, lab- experiments carried out by engineers on particle mixture point out that the addition of increasing amounts of coarse material to finer grains progressively reduces the overall porosity until a critical threshold is reached; beyond this level, the void proportion rises again. In relation to the engineers' results, the present paper attempts to conceptually approach the dual effects of rock fragment content on Ksat by considering a decay of the water transmission properties of the fine-earth fraction at low gravel contents and, conversely, a drastic improvement of the conductivity whenever the porosity increases. For that purpose a data set of 50 soils of different textural classes is used to define the procedure by virtually increasing the rock fragment fraction (SK

  19. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    NASA Astrophysics Data System (ADS)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  20. Soil hydraulic conductivity changes caused by irrigation with reclaimed waste water

    SciTech Connect

    Levy, G.J.; Rosenthal, A.; Tarchitzky, J.; Shainberg, I.; Chen, Y.

    1999-10-01

    Use of reclaimed waste water (RWW) in arid and semiarid regions may alleviate problems of fresh water shortage; however, it also involves some potential risks among which are degradation of soil hydraulic properties. The objectives of the current study were to study the effects of organic matter (OM) loads found in RWW obtained from a secondary treatment plant in Tel Aviv, Israel, and different size fractions of the suspended solids in the RWW on the hydraulic conductivity (HC) of three Israeli soils. The hydraulic conductivity of a clayey grumusol (Typic Chromoxerert), a typic loamy loess (Calcic Haploxeralf), and a sandy loam hamra (Typic Rhodexeralf) was determined in the laboratory using soil columns, by leaching with RWW containing zero, low, or high OM load, followed by leaching with distilled water (DW). The effects of suspended solids' size fraction on the HC was determined by filtering RWW. Leaching with high OM load RWW caused the relative HC of the grumusol, loess and hamra to drop to final values of 13.9, 24.2, and 58.8%, respectively. Filtering out suspended solids {gt}1.2 {micro} in this water improved the HC of the hamra, but did not significantly affect the final relative HC of the grumusol and loess. Leaching with low OM load RWW did not significantly decrease the HC beyond the decrease attributed to the effects of the concentration and composition of the electrolytes present in the zero OM load RWW. Subsequent leaching with DW caused an additional decrease in HC, whose magnitude for a given soil did not depend on the quality of the RWW previously used. The presence of OM in the irrigation water did not seem to have significant residual effects on soil HC. Evidently, in high OM load RWW the OM fraction determines the soils' HC, whereas in low OM load RWW, it is the electrolyte concentration and composition in the water, that seem to pose the hazard to soil hydraulic properties, especially during subsequent leaching with DW.

  1. Vadose-zone monitoring strategy to evaluate desalted groundwater effects on hydraulic properties

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, J.; Candela, L.; Jiménez-Martínez, J.

    2012-04-01

    Desalinated brackish groundwater is becoming a new source of water supply to comply with growing water demands, especially in (semi) arid countries. Irrigation with desalinated or a blend of desalinated and ground/surface water, presents associated impacts on plants, soil and aquifer media. Mixed waters with different salinities can lead to the formation of unexpected chemical precipitates. The use of desalted groundwater for irrigation counts with potential drawbacks, among them: changes of hydraulic properties of soil-aquifer systems (e.g. hydraulic conductivity, porosity) as a consequence of mineral precipitation; root growth blockage and plant uptake of pollutants; as well as leaching of contaminants to groundwater. An experimental plot located at SE Spain, covered by grass and irrigated by sprinklers with a blend of desalted and groundwater from a brackish aquifer, has been monitored in order to characterize at field scale the possible impacts on soil hydraulic properties. The monitoring strategy to control water and heat flux includes traditional and more updated devices. The field instrumentation, vertically installed from the ground surface and spatially distributed, consisted of: ten tensiometers (Soilmoisture Equipment Corp, Goleta, CA, USA) at different depths (two per depth); and, two access tubes (fiber glass, 44mm diameter 2m length) for soil moisture measurements from TRIME-FM TDR probe (Imko GmbH, Ettlingen, Germany). Automatic logging is carried out from a trench located in the border of the experimental plot and it takes in: a set of five 5TE devices (Decagon Devices Inc, Pullman, WA, USA) vertically installed, which measure volumetric water content, electric conductivity and temperature; and additionally, a suction sensor at 0.6m depth. Finally, a periodic sampling of undisturbed soil cores (2m length) takes place for the purpose of imaging porosity changes from environmental scanning electron microscope (ESEM). First results about water and heat

  2. Water repellency in an Alpine forest soil and its impact on hydraulic characteristics under simulated climate change

    NASA Astrophysics Data System (ADS)

    Schwen, Andreas; Zimmermann, Michael; Lamparter, Axel; Woche, Susanne; Bachmann, Jörg

    2014-05-01

    The climate of Alpine environments is expected to change dramatically as a consequence of global climate change. In this ecologically sensitive environment, prolonged dry periods and an increased occurence of extreme rainfall events is forecasted by many climate change models. On the other hand, soil water repellency (SWR) is known to affect hydraulic processes in soils, particularly in acidic forest soils and as a consequence of prolonged dry periods. By changing the soil surface properties, SWR also changes the hydraulically effective properties of soils. The quantification of the spatial occurence and degree of hydrophobicity is a crucial prerequirement for ecological and hydrological impact assessment and developing new models. Therefore, the objective of the present study was to quantify soil water repellency in an Alpine forest with respect to its spatial variability and affected by different simulated climatic regimes. The study was accomplished in the Rosalian mountains, some 60 km south of Vienna, Austria. The vegetation was a mature beech forest and the soil was a Podsolic Cambisol over weathered granitic rock debris. As parts of the experimental plot were covered by plastic roofs and artificially irrigated, three different treatments were tested: Compared to the natural precipitation (control), the irrigation amount was reduced with two drought degrees (moderate and extreme). Within a small grid, 9 samples were taken per treatment in two depths (surface and 0.10 m). The contact angle was determined with the modified sessile drop method. Additionally, total and organic carbon contents and the hydraulic soil properties were quantified. Infiltration experiments were performed with a tension infiltrometer using water and ethanol. The results showed considerable water repellency with at least subcritical contact angles for all treatments. Contact angles increased to above 90 degree at the moderate and extreme drought treatments. Differences between intrinsic

  3. EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: II. NUMERICAL SIMULATION

    EPA Science Inventory

    A numerical model to simulate the distributions of voltage, soil temperature, and hydraulic head during the field test of electroosmosis was developed. The two-dimensional governing equations for the distributions of voltage, soil temperature, and hydraulic head within a cylindri...

  4. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    EPA Science Inventory

    Nocturnal increases in water potential (ψ) and water content () in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the ...

  5. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1998-01-01

    Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems

  6. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  7. A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution

    NASA Astrophysics Data System (ADS)

    Durner, W.; Diamantopoulos, E.

    2014-12-01

    Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.

  8. Estimation of Hydraulic Property of an Unconfined Aquifer by GPR

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Sato, Motoyuki

    2007-06-01

    Controlled water productions were performed at a water source area of Ulaanbaatar city, Mongolia to evaluate the effectiveness of ground penetrating radar (GPR) for detecting and monitoring dynamic groundwater movements in the subsurface and for estimating the hydraulic properties of the aquifer. Field experiments in Ulaanbaatar were carried out in 2001 and 2002. GPR data were acquired using 100 MHz antennas. This paper reports the results of GPR methods to monitor the groundwater migration caused by the pumping operation and GPR’s potential ability to estimate hydraulic properties of the aquifer. The GPR data sets were acquired very carefully by locating the antenna position accurately. The residual trace shows a feature that is a combination of the water level reflections acquired at two different times in the pumping test. It helped to determine travel time and its effective reflection point from the top of the water saturated zone. The residual wavelet varies versus offset from the pumping well for a given residual image. Common midpoint (CMP) data and velocity analysis indicated the depth of the water table and the water content in the unsaturated and saturated zone. Combining hydrogeologic data with quantitative information yielded by GPR data, hydraulic properties of the aquifer could be estimated by assuming a hydraulic model. It was concluded that GPR can be successfully employed to monitor groundwater migration and to estimate hydraulic properties of the aquifer.

  9. Effects of model layer simplification using composite hydraulic properties

    USGS Publications Warehouse

    Sepulveda, Nicasio; Kuniansky, Eve L.

    2010-01-01

    The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.

  10. Agricultural soil moisture experiment, Colby, Kansas 1978: Measured and predicted hydrological properties of the soil

    NASA Technical Reports Server (NTRS)

    Arya, L. M. (Principal Investigator)

    1980-01-01

    Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.

  11. Characterization and cartography of topsoil hydraulic properties in a French mountainous peri-urban catchment

    NASA Astrophysics Data System (ADS)

    Gonzalez-Sosa, E.; Braud, I.; Gonzalez-Sosa, E.; Dehotin, J.; Branger, F.; Lagouy, M.

    2009-04-01

    Due to the increase of urbanization and modification of agricultural practices, peri-urban areas experiment a quick change in land use. The impact of such change on the catchment hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the ability to take into account land use change, and more specifically its effect on surface infiltration capacity. A distributed assessment of infiltration properties and their variability at the catchment scale is thus of great importance if accurate simulation of the water balance are expected on such catchments. This paper presents a field campaign conducted in a 7 km2 peri-urban catchment, located in the "Mont du Lyonnais" area, close to the city of Lyon (France) in order to document the topsoil hydraulic properties. The sampling strategy was set up in order to sample the largest number of soil/land use combinations. The locations were chosen from a GIS analysis based on the overlapping of the pedology and land use maps, and accessibility consideration. At each location, two types of infiltration tests were performed: infiltration tests under suction using mini-disk infiltrometers and single ring infiltration tests under positive head. Three replicates were performed for each method. Particle size data and organic matter analysis were also conducted at each location. Results will be discussed in terms of soil hydraulic properties and particle size data statistics. Relationship with external factors such as pedological unit, land use, slope, texture will be explored. Preliminary results show that forest and pasture soils exhibit the highest hydraulic conductivity and sorptivity. In order to provide models with values at the modelling unit scale (field and/or sub-catchment scale), existing pedotransfer function will be assessed and if necessary calibrated using the local measurements. Finally a methodology for the cartography of the soil hydraulic properties will be proposed.

  12. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    PubMed

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity. PMID:22980909

  13. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; van de Giesen, Nick

    2016-06-01

    This study addresses two critical barriers to the use of Passive Distributed Temperature Sensing (DTS) for large-scale, high-resolution monitoring of soil moisture. In recent research, a particle batch smoother (PBS) was developed to assimilate sequences of temperature data at two depths into Hydrus-1D to estimate soil moisture as well as soil thermal and hydraulic properties. However, this approach was limited to bare soil and assumed that the cable depths were perfectly known. In order for Passive DTS to be more broadly applicable as a soil hydrology research and remote sensing soil moisture product validation tool, it must be applicable in vegetated areas. To address this first limitation, the forward model (Hydrus-1D) was improved through the inclusion of a canopy energy balance scheme. Synthetic tests were used to demonstrate that without the canopy energy balance scheme, the PBS estimated soil moisture could be even worse than the open loop case (no assimilation). When the improved Hydrus-1D model was used as the forward model in the PBS, vegetation impacts on the soil heat and water transfer were well accounted for. This led to accurate and robust estimates of soil moisture and soil properties. The second limitation is that, cable depths can be highly uncertain in DTS installations. As Passive DTS uses the downward propagation of heat to extract moisture-related variations in thermal properties, accurate estimates of cable depths are essential. Here synthetic tests were used to demonstrate that observation depths can be jointly estimated with other model states and parameters. The state and parameter results were only slightly poorer than those obtained when the cable depths were perfectly known. Finally, in situ temperature data from four soil profiles with different, but known, soil textures were used to test the proposed approach. Results show good agreement between the observed and estimated soil moisture, hydraulic properties, thermal properties, and

  14. Hydraulic and thermal soil Parameter combined with TEM data at quaternary coastal regions

    NASA Astrophysics Data System (ADS)

    Grabowski, Ima; Kirsch, Reinhard; Scheer, Wolfgang

    2014-05-01

    In order to generate a more efficient method of planning and dimensioning small- and medium sized geothermal power plants at quaternary subsurface a basic approach has been attempted. Within the EU-project CLIWAT, the coastal region of Denmark, Germany, Netherlands and Belgium has been investigated and air borne electro magnetic data was collected. In this work the regional focus was put on the isle of Föhr. To describe the subsurface with relevant parameters one need the information from drillings and geophysical well logging data. The approach to minimize costs and use existing data from state agencies led the investigation to the combination of specific electrical resistivity data and hydraulic and thermal conductivity. We worked out a basic soil/hydraulic conductivity statistic for the isle of Föhr by gathering all well logging data from the island and sorted the existing soil materials to associated kf -values. We combined specific electrical resistivity with hydraulic soil properties to generate thermal conductivity values by extracting porosity. Until now we generated a set of rough data for kf - values and thermal conductivity. The air borne TEM data sets are reliable up to 150 m below surface, depending on the conductivity of the layers. So we can suppose the same for the differentiated parameters. Since this is a very rough statistic of kf -values, further more investigation has to be made. Although the close connection to each area of investigation either over existing logging data or laboratory soil property values will remain necessary. Literature: Ahmed S, de Marsily G, Talbot A (1988): Combined Use of Hydraulic and Electrical Properties of an Aquifer in a Geostatistical Estimation of Transmissivity. - Groundwater, vol. 26 (1) Burschil T, Scheer W, Wiederhold H, Kirsch R (2012): Groundwater situation on a glacially affected barrier island. Submitted to Hydrology and Earth System Sciences - an Interactive Open Access Journal of the European

  15. Effects of model layer simplification using composite hydraulic properties

    USGS Publications Warehouse

    Kuniansky, Eve L.; Sepulveda, Nicasio

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  16. Soil properties controlling infiltration in volcanic soils

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Tejedor, Marisa; Jiménez, Concepción

    2013-04-01

    Soil water infiltration is an important process whose behaviour depends on external factors and soil properties that vary depending on the type of soil. The soil parameters affecting the infiltration capacity of six soil orders all formed on volcanic materials (andisols, vertisols, alfisols, aridisols, inceptisols, and entisols) and contribute to the differences between them were studied in this paper. A total of 108 sites were selected on the island of Tenerife (Spain). The main soil properties were analysed and the steady-state infiltration rate measured using a double-ring infiltrometer. The relationship between the soil properties and infiltration was modelled using statistical Principal Components Analysis and regressions. The research concludes that the relation between structural development and texture play a decisive role. The high structural development of non-vitric andisols, due to the high organic matter and short-range-order mineral content, leads to an extremely fast infiltration rate. The structural instability and fine texture of aridisols produce low infiltration. In less developed soils (entisols and vitric andisols) where aggregate formation is minimal or non-existent, the coarse grain size is the relevant factor determining their very fast and extremely fast infiltration. In vertisols and alfisols, which have strong aggregation but low stability, clay type and content play an important role and lead to a moderate and moderately fast steady-state infiltration rate, respectively. In the most typic inceptisols, with moderate structural development and stability, the balance of the properties is largely responsible for the intermediate infiltration rate observed.

  17. Validation of soil hydraulic pedotransfer functions at the local and catchment scale for an Indonesian basin

    NASA Astrophysics Data System (ADS)

    Booij, Martijn J.; Oldhoff, Ruben J. J.; Rustanto, Andry

    2016-04-01

    In order to accurately model the hydrological processes in a catchment, information on the soil hydraulic properties is of great importance. These data can be obtained by conducting field work, which is costly and time consuming, or by using pedotransfer functions (PTFs). A PTF is an empirical relationship between easily obtainable soil characteristics and a soil hydraulic parameter. In this study, PTFs for the saturated hydraulic conductivity (Ks) and the available water content (AWC) are investigated. PTFs are area-specific, since for instance tropical soils often have a different composition and hydraulic behaviour compared to temperate soils. Application of temperate soil PTFs on tropical soils might result in poor performance, which is a problem as few tropical soil PTFs are available. The objective of this study is to determine whether Ks and AWC can be accurately approximated using PTFs, by analysing their performance at both the local scale and the catchment scale. Four published PTFs for Ks and AWC are validated on a data set of 91 soil samples collected in the Upper Bengawan Solo catchment on Java, Indonesia. The AWC is predicted very poorly, with Nash-Sutcliffe Efficiency (NSE) values below zero for all selected PTFs. For Ks PTFs better results were found. The Wösten and Rosetta-3 PTFs predict the Ks moderately accurate, with NSE values of 0.28 and 0.39, respectively. New PTFs for both AWC and Ks were developed using multiple linear regression and NSE values of 0.37 (AWC) and 0.55 (Ks) were obtained. Although these values are not very high, they are significantly higher than for the published PTFs. The hydrological SWAT model was set up for the Keduang, a sub-catchment of the Upper Bengawan Solo River, to simulate monthly catchment streamflow. Eleven cases were defined to validate the PTFs at the catchment scale. For the Ks-PTF cases NSE values of around 0.84 were obtained for the validation period. The use of AWC PTFs resulted in slightly lower NSE

  18. Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea.

    PubMed

    Jang, Y S; Kim, Y W; Lee, S I

    2002-01-01

    Hydraulic properties of waste and cover soil from Kimpo Metropolitan Landfill were experimentally measured by laboratory tests. The degree of compaction was changed to identify the effect on hydraulic conductivity, field capacity, and permanent wilting point. Properties were utilized in developing a reliable numerical tool for leachate analysis. HELP, a simulation model for hydrologic evaluation of landfill performance, was adopted for that purpose. For calibration, results from simulation using the parameter values measured by laboratory tests were compared against the field data. The model was applied to predict the leachate level change according to the degree of compaction and cover soil thickness variation. It was found that the increase in the degree of compaction for intermediate cover soil and waste results in the decrease of field capacity and hydraulic conductivity, hence, the increase of leachate level. The effect of cover layer thickness on the leachate level was minor. Based on the findings from laboratory and numerical experiments, a guideline for reclamation practice was recommended. PMID:11952173

  19. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    SciTech Connect

    Dixon, K; John Harbour, J; Mark Phifer, M

    2008-11-25

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  20. Plant roots can actively regulate hydraulic redistribution by modifying the hydraulic properties of the rhizosphere using exudates

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat; Bogie, Nathaniel; Albalasmeh, Ammar

    2015-04-01

    The phenomenon of hydraulic lift by roots of plants has been observed in many arid and semi-arid regions. The process involves water transfer from moist deep soil zone to shallow and dry layers, typically at night when transpiration is shut off. The widely held explanation is that hydraulic lift receives the strong water potential gradient created during the day when the plants are actively transpiring. However, it is not fully understood whether hydraulic lift is actively controlled by plants or it is a spontaneous response to the occurrence of pressure gradient. Here, we will present modeling study that demonstrates that plant roots can exert significant control on hydraulic redistribution via exudation and formation of rhizospheath. The model is based on results of potted experiments conducted by Nambiar in 1976 (Plant and Soil, 44:267-271), which have shown that plants are able to acquire essential micronutrients from very dry soil so long as water is available to the root system in sufficient quantity elsewhere. He also observed that the roots in the water-depleted zones exhibited evidence of substantial root exudation, which suggests that exudates are needed in order to provide moisture for mobilization and diffusion of nutrients in the dry regions. In addition, our own recent model-based research demonstrated that exudates play important role in facilitating water flow in otherwise dry rhizosphere region. Our models show that exudates facilitate the release of hydraulically lifted water to the rhizosphere by ensuring hydraulic continuity between the root walls and the surrounding dry soil. In addition, the high water retention capacity of root exudates permits the hydraulic conductivity to remain elevated even at low potential conditions. The results of this modeling study suggest that hydraulic lift is an actively controlled adaptation mechanism that allows plants to remain active during long dry spells by acquiring nutrients from the dry near surface soils

  1. HYDRAULIC REDISTRIBUTION OF SOIL WATER DURING SUMMER DROUGHT IN TWO CONTRASTING PACIFIC NORTHWEST CONIFEROUS FORESTS

    EPA Science Inventory

    The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow during droughted conditions in a dry ponderosa pine ecosystem and a moist Doug...

  2. CONVERGING PATTERNS OF UPTAKE AND HYDRAULIC REDISTRIBUTION OF SOIL WATER IN CONTRASTING WOODY VEGETATION TYPES

    EPA Science Inventory

    We used concurrent measurements of soil water content and soil water potential (Ysoil) to assess the effects of Ysoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles in six sites characterized by different types and amounts of woo...

  3. Soil Water Sensor Needs for the Evaluation of Hydraulic Lift in Crop Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydraulic lift (HL) in plants is defined as the process by which water is redistributed from wet soil zones to drier soil zones through the plant root system in response to gradients in water potential. Water is released into the dry soil when plant transpiration is low (night) and reabsorbed by th...

  4. HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS

    EPA Science Inventory

    The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...

  5. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  6. Impact of soil properties for European climate simulations

    NASA Astrophysics Data System (ADS)

    Guillod, B. P.; Davin, E. L.; Kündig, C.; Smiatek, G.; Seneviratne, S. I.

    2012-04-01

    Soil properties have a strong influence on the terrestrial water cycle, in particular by influencing soil water distribution and dynamics. This in turn affects evapotranspiration from the land to the atmosphere and thus climate conditions. While many studies have looked at the climatic influence of vegetation characteristics/land cover change, fewer investigated the importance of soil properties for climate, although soil properties can also be indirectly altered by land use changes. In this study, we investigate the influence of soil properties on the European climate using a regional climate model. First, two simulations using two different soil maps are investigated: the soil map of the world from the Food and Agricultural Organization (FAO) and the European Soil Database (ESDB) from the European Commission Joint Research Center (JRC). These simulations highlight the importance of the specified soil texture in summer, with differences of up to 2°C in mean 2-meter temperature and 20% in precipitation due to changes in the partitioning of energy at the land surface into sensible and latent heat flux. In an additional set of experiments, we modify different sets of soil physical parameters to evaluate their relative importance. Hydraulic diffusivity as well as field capacity and plant wilting point are shown to play an important role, unlike hydraulic conductivity. We highlight the importance of the vertical profile of soil moisture for evapotranspiration as it impacts soil moisture dynamics. Our study highlights the importance of soil texture and related parameters for climate simulations. Given the uncertainty associated with the geographical distribution of soil texture, efforts to improve existing databases and their integration in climate and hydrological models are needed. Tackling unresolved issues in land-surface modeling related to the high variability of soil parameters, both spatially and within a soil textural class, would benefit a large community and

  7. Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls.

    PubMed

    Warren, Jeffrey M; Meinzer, Frederick C; Brooks, J Renée; Domec, Jean-Christophe; Coulombe, Rob

    2007-01-01

    Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict seasonal trajectories of HR. We investigated the spatial and temporal variability of HR across multiple years in two old-growth coniferous forest ecosystems with contrasting species and moisture regimes by measurement of soil water content (theta) and water potential (Psi) throughout the upper soil profile, root distribution and conductivity, and relevant climate variables. Large HR variability within sites (0-0.5 mm d(-1)) was attributed to spatial patterns of roots, soil moisture and depletion. HR accounted for 3-9% of estimated total site water depletion seasonally, peaking at 0.16 mm d(-1) (ponderosa pine; Pinus ponderosa) or 0.30 mm d(-1) (Douglas-fir; Pseudotsuga menziesii), then declining as modeled pathway conductance dropped with increasing root cavitation. While HR can vary tremendously within a site, among years and among ecosystems, this variability can be explained by natural variability in Psi gradients and seasonal courses of root conductivity. PMID:17286824

  8. Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands

    NASA Astrophysics Data System (ADS)

    Trivisonno, Franco; Rodriguez, Jose F.; Riccardi, Gerardo; Saco, Patricia; Stenta, Hernan

    2014-05-01

    Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.

  9. Estimating hydraulic conductivities of the soil aggregates and their clay-organic coatings using numerical inversion of capillary rise data

    NASA Astrophysics Data System (ADS)

    Fér, Miroslav; Kodešová, Radka

    2012-10-01

    SummarySoil aggregates are in some soils and their horizons covered by organomineral coatings, which may significantly influence water and solute transfer into the aggregates. Knowledge of a coating occurrence, their structure and hydraulic properties is required for a more precise description of water flow and contaminant transport in soils. The aim of this study was to describe hydraulic properties of clay and organic matter coatings in the iluvial (Bt2) horizon of Haplic Luvisol. Sets of 30 unsorted aggregates, 24 aggregates with mostly clay coatings and 24 aggregates with clay-organic coatings, respectively, were studied to evaluate an impact of various coating composition. The coatings were removed from a half of the aggregates of each set. First, the wetting soil-water retention curve was measured on all soil aggregates. Then the capillary rise from the saturation pan into the multiple aggregates (set of 14 or 15 aggregates) without and with coatings was measured. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program were applied to estimate the saturated hydraulic conductivities of the aggregates, Ks,aggr, and their coatings, Ks,coat. Results were compared with saturated hydraulic conductivities evaluated analytically using the sorptivity method, which was proposed previously. Data of the soil-water retention curves, measured on aggregates with and without coatings, did not allow distinguishing between retention curve parameters of the soil aggregates and their coatings. Therefore the same parameters were evaluated for both. Capillary rise into the soil aggregates without coatings was always faster than into the aggregates with coatings. As result the optimized saturated hydraulic conductivities, Ks,coat, of the clay and the organic matter coatings (the average values for unsorted, mostly clay and clay-organic coatings were 3.69 × 10-7, 2.76 × 10-7 and 1.81 × 10-7 cm min-1, respectively) were one to two order of

  10. Determination of till hydraulic properties for modelling flow and solute transport in a forested hillslope

    NASA Astrophysics Data System (ADS)

    Laine-Kaulio, H.; Karvonen, T.; Koivusalo, H.; Lauren, A.; Saastamoinen, S.

    2009-04-01

    Shallow till layers typically overlay bedrock in forested areas in the boreal region. In forested tills, preferential flowpaths related to the soil structure have a decisive influence on hydrogeological properties such as the soil hydraulic conductivity. Hydraulic conductivity is also proven to depend on the observation scale. Traditional soil core samples cannot capture the impact of soil structure on hillslope scale conductivities. Measurements and observations made at different scales, combined with simulation models, are essential for investigating conductivity properties and flow and transport processes in forest soils. This study combined a set of soil analyses and field experiments with physics-based modelling to investigate the hydraulic properties of a forested till slope in Finland. The main objective was to i) determine the saturated hydraulic conductivity in the study slope with methods related to different scales, and to ii) study the utilisation of the conductivity results in modelling flow and solute transport in the slope. Soil sampling, dye, and ion tracer experiments were conducted in a forested hillslope in Eastern Finland. In the 20 m long study section of the slope the mean slope was about 15 %. The haplic podsol profile above bedrock had a thickness of 0.8 m and was formed of sandy till. The soil was very stony and heterogeneous in terms of granularity and pore size distribution. Granularity, porosity and proportion of macropores reduced clearly with depth. Dye tracer experiments revealed three types of preferential flow routes in the slope: i) stone surfaces, ii) areas of coarse-grained soil material, and iii) decayed root channels. Both living roots and preferential flowpaths reached the transitional zone of the podsol at about 0.5 m depth, but living roots were not found to function unequivocally as preferential flowpaths. The saturated hydraulic conductivity was determined using three methods: i) from soil core samples in laboratory, ii

  11. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    NASA Astrophysics Data System (ADS)

    Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; van Dam, J. C.

    2010-02-01

    Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. The data were used to: i) compare different methods for determining soil hydraulic parameters and ii) evaluate the effect of the uncertainty in these parameters on different variables (i.e. evapotranspiration, average water content in the root zone, flux at the bottom boundary of the root zone) simulated by two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental profile. Two methods were based on a parameter optimization of: a) laboratory measured retention and hydraulic conductivity data and b) field measured retention and hydraulic conductivity data. The remaining three methods were based on the application of widely used Pedo-Transfer Functions: c) Rawls and Brakensiek, d) HYPRES, and e) ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June - October 2006. Results showed a wide range of soil hydraulic parameter values generated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter α of the van Genuchten curve. This is reflected in a variability of the modeling results which is

  12. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    NASA Astrophysics Data System (ADS)

    Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; van Dam, J. C.

    2009-06-01

    Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. These data were used to: i) compare different methods for determining soil hydraulic parameters and ii) evaluate the effect of the uncertainty in these parameters on different outputs (i.e. evapotranspiration, water content in the root zone, fluxes through the bottom boundary of the root zone) of two hydrological models with different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental field. Two methods were based on a parameter optimization of: a) laboratory measured retention and hydraulic conductivity data and b) field measured retention and hydraulic conductivity data. Three methods were based on the application of widely used Pedo-Transfer Functions: c) Rawls and Brakensiek; d) HYPRES; and e) ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June-October 2006. Results showed a wide range of soil hydraulic parameter values evaluated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter α of the Van Genuchten curve. This is reflected in a variability of the modeling results which is, as expected, different for

  13. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources

    PubMed Central

    Carminati, Andrea; Vetterlein, Doris

    2013-01-01

    Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New

  14. Considerations for Modeling Bacterial-Induced Changes in Hydraulic Properties of Variably Saturated Porous Media

    SciTech Connect

    Rockhold, Mark L.; Yarwood, R. R.; Niemet, Michael R.; Bottomley, Peter J.; Selker, John S.

    2002-07-26

    Bacterial-induced changes in the hydraulic properties of porous media are important in a variety of disciplines. Most of the pervious research on this topic has focused on liquid-saturated porous media systems that are representative of aquifer sediments. Unsaturated or variably saturated systems such as soils require additional considerations that have not been fully addressed in the literature. This paper reviews some of the earlier studies on bacterial-induced changes in the hydraulic properties of saturated porous media, and discusses characteristics of unsaturated or variably saturated porous media that may be important to consider when modeling such phenomena in these systems. New data are presented from experiments conducted in sand-packed columns with initially steady unsaturated flow conditions that show significant biomass-induced changes in pressure heads and water contents and permeability reduction during growth of a Pseudomonas fluorescens bacterium.

  15. Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Rockhold, M. L.; Yarwood, R. R.; Niemet, M. R.; Bottomley, P. J.; Selker, J. S.

    Bacterial-induced changes in the hydraulic properties of porous media are important in a variety of disciplines. Most of the previous research on this topic has focused on liquid-saturated porous media systems that are representative of aquifer sediments. Unsaturated or variably saturated systems such as soils require additional considerations that have not been fully addressed in the literature. This paper reviews some of the earlier studies on bacterial-induced changes in the hydraulic properties of saturated porous media, and discusses characteristics of unsaturated or variably saturated porous media that may be important to consider when modeling such phenomena in these systems. New data are presented from experiments conducted in sand-packed columns with initially steady unsaturated flow conditions that show significant biomass-induced changes in pressure heads and water contents and permeability reduction during growth of a Pseudomonas fluorescens bacterium.

  16. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We coupled a radiative transfer approach with a soil hydrological model (HYDRUS 1D) and a global optimization routine SCE-UA to derive soil hydraulic parameters and soil surface roughness from measured brightness temperatures at 1.4 GHz (L-band) and measured rainfall and calculated potential soil ev...

  17. Soil water balance in an unsaturated pyroclastic slope for evaluation of soil hydraulic behaviour and boundary conditions

    NASA Astrophysics Data System (ADS)

    Pirone, Marianna; Papa, Raffaele; Nicotera, Marco Valerio; Urciuoli, Gianfranco

    2015-09-01

    Flowslides in granular soils pose a major threat to life and the environment. Their initiation in unsaturated soils is regulated by rainfall infiltration which reduces the matric suction and hence shear strength. Analysis of such phenomena is of strategic importance especially when it aims to mitigate landslide risk by means of early warning systems (EWSs). In this framework, physically-based models need to reproduce the hydro-mechanical behaviour of the slopes through numerical analyses, whose main uncertainty concerns the hydraulic conditions at the boundaries of the studied domain and hydraulic conductivity functions of unsaturated soils. Hence consummate knowledge of both these factors is absolutely necessary for efficient predictions. In this paper hydraulic boundary conditions and hydraulic conductivity functions are investigated at the scale of the slope through an application of soil water balance based on in-situ monitoring at the test site of Monteforte Irpino (southern Italy). Meteorological data, matric suction and soil water content measurements were collected over four years at the test site. The soil water balance was analysed on a seasonal time scale with regard to the whole pyroclastic cover resting on the steep limestone substratum. Infiltration and runoff are estimated, interaction between the soil cover and the substratum is investigated, and the hydraulic conductivity functions operative at the site scale are defined.

  18. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    SciTech Connect

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  19. Use of a flux-based field capacity criterion to identify effective hydraulic parameters of layered soil profiles subjected to synthetic drainage experiments

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Romano, Nunzio

    2016-01-01

    This study explores the feasibility of identifying the effective soil hydraulic parameterization of a layered soil profile by using a conventional unsteady drainage experiment leading to field capacity. The flux-based field capacity criterion is attained by subjecting the soil profile to a synthetic drainage process implemented numerically in the Soil-Water-Atmosphere-Plant (SWAP) model. The effective hydraulic parameterization is associated to either aggregated or equivalent parameters, the former being determined by the geometrical scaling theory while the latter is obtained through the inverse modeling approach. Outcomes from both these methods depend on information that is sometimes difficult to retrieve at local scale and rather challenging or virtually impossible at larger scales. The only knowledge of topsoil hydraulic properties, for example, as retrieved by a near-surface field campaign or a data assimilation technique, is often exploited as a proxy to determine effective soil hydraulic parameterization at the largest spatial scales. Comparisons of the effective soil hydraulic characterization provided by these three methods are conducted by discussing the implications for their use and accounting for the trade-offs between required input information and model output reliability. To better highlight the epistemic errors associated to the different effective soil hydraulic properties and to provide some more practical guidance, the layered soil profiles are then grouped by using the FAO textural classes. For the moderately heterogeneous soil profiles available, all three approaches guarantee a general good predictability of the actual field capacity values and provide adequate identification of the effective hydraulic parameters. Conversely, worse performances are encountered for the highly variable vertical heterogeneity, especially when resorting to the "topsoil-only" information. In general, the best performances are guaranteed by the equivalent

  20. Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.

    2016-04-01

    The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.

  1. Uncertainty analysis and validation of the estimation of effective hydraulic properties at the Darcy scale

    NASA Astrophysics Data System (ADS)

    Mesgouez, A.; Buis, S.; Ruy, S.; Lefeuve-Mesgouez, G.

    2014-05-01

    The determination of the hydraulic properties of heterogeneous soils or porous media remains challenging. In the present study, we focus on determining the effective properties of heterogeneous porous media at the Darcy scale with an analysis of their uncertainties. Preliminary, experimental measurements of the hydraulic properties of each component of the heterogeneous medium are obtained. The properties of the effective medium, representing an equivalent homogeneous material, are determined numerically by simulating a water flow in a three-dimensional representation of the heterogeneous medium, under steady-state scenarios and using its component properties. One of the major aspects of this study is to take into account the uncertainties of these properties in the computation and evaluation of the effective properties. This is done using a bootstrap method. Numerical evaporation experiments are conducted both on the heterogeneous and on the effective homogeneous materials to evaluate the effectiveness of the proposed approach. First, the impact of the uncertainties of the component properties on the simulated water matric potential is found to be high for the heterogeneous material configuration. Second, it is shown that the strategy developed herein leads to a reduction of this impact. Finally, the adequacy between the mean of the simulations for the two configurations confirms the suitability of the homogenization approach, even in the case of dynamic scenarios. Although it is applied to green roof substrates, a two-component media composed of bark compost and pozzolan used in the construction of buildings, the methodology proposed in this study is generic.

  2. The effect of mineral-ion interactions on soil hydraulic conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reuse of winery wastewater (WW) for irrigation could provide an alternative water source for wine production. The shift of many wineries and other food processing industries to K+-based cleaners requires studies on the effects of K+ on soil hydraulic conductivity (HC). Soils of contrasting mine...

  3. HYDRAULIC REDISTRIBUTION OF SOIL WATER BY ROOTS IN FORESTS OF THE PACIFIC NORTHWEST

    EPA Science Inventory

    One aspect of structural complexity of forest canopies is the root system structure belowground, which influences patterns of soil water utilization by trees. Deeply rooted trees and other plants can hydraulically lift water via their roots from several m below the soil surface ...

  4. Measurement of soil saturated hydraulic conductivity: The method of constant pressure tubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field method to measure the saturated soil hydraulic conductivity is presented that does not require expensive equipment and preserves natural water flow pathways that may be bloked during soil core sampling for laboratory measurements. Vegetation must be removed from the plot prior the measurement...

  5. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study. PMID:25428652

  6. Towards high resolution soil property maps for Austria

    NASA Astrophysics Data System (ADS)

    Schürz, Christoph; Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2015-04-01

    Soil hydraulic properties, such as soil texture, soil water retention characteristics, hydraulic conductivity, or soil depth are important inputs for hydrologic catchment modelling. However, the availability of such data in Austria is often insufficient to fulfill requirements of well-established hydrological models. Either, soil data is available in sufficient spatial resolution but only covers a small extent of the considered area, or the data is comprehensive but rather coarse in its spatial resolution. Furthermore, the level of detail and quality of the data differs between the available data sets. In order to generate a comprehensive soil data set for whole Austria that includes main soil physical properties, as well as soil depth and organic carbon content in a high spatial resolution (10x10 to 100x100m²) several available soil data bases are merged and harmonized. Starting point is a high resolution soil texture map that only covers agricultural areas and is available due to Austrian land appraisal. Soil physical properties for those areas are derived by applying pedotransfer functions (e.g. Saxton and Rawls, 2006) resulting in expectation values and quantiles of the respective property for each soil texture class. For agricultural areas where no texture information is available, the most likely soil texture is assigned applying a Bayesian network approach incorporating information such as elevation, soil slope, soil type, or hydro-geology at different spatial scales. Soil data for forested areas, that cover a large extent of the state territory, are rather sparse in Austria. For such areas a similar approach as for agricultural areas is applied by using a Bayesian network for prediction of the soil texture. Additionally, information to various soil parameters taken from literature is incorporated. For areas that are covered by land use different to agriculture or forestry, such as bare rock surfaces, or wetland areas, solely literature information is used

  7. Variability of matric potential measurements in evaporation experiments and its influence on the derived hydraulic properties

    NASA Astrophysics Data System (ADS)

    Spieckermann, Mathias; Scharnagl, Benedikt; Pertassek, Thomas; von Unold, Georg; Durner, Wolfgang

    2014-05-01

    The simplified evaporation method according to Schindler (1980) is an attractive method for determining hydraulic properties (retention curve and the unsaturated hydraulic conductivity) of a soil sample. In this method, a saturated sample is subject to evaporation, and the temporal course of matric potentials in the core is related to its water content loss by evaporation. Measurement and analysis are automated in the form of the commercially available product HYPROP© (UMS GmbH, Munich). The method and its implementation in the HYPROP system have shown to give accurate and reliable results with a minimum of effort and time required. In the HYPROP system, matric potentials are recorded in two planes of a soil sample by vertically installed tensiometers. The aim of this study was to experimentally investigate how representative and robust the matric potential readings at individual horizontal locations within a depth layer are, and how possible differences in matric potentials at different positions within a depth layer affect the calculated hydraulic soil properties. An additional aim was to verify whether vertically installed tensiometers give identical results to the traditionally horizontally installed tensiometers. The investigations took place in a system called BIG-HYPROP. In principle, it follows the same setup as the standard HYPROP system, but differs with respect to the soil sample size and the number of tensiometers. Whereas standard HYPROP cores are 5 cm high and 8 cm wide (250 cm³), BIG-HYPROP cores have a diameter of 24.5 cm and a height of 10 cm (4714 cm³). Five pairs of tensiometers were positioned in depths of 2.5 cm and 7.5 cm, three of them aligned vertically, and two horizontally. Additionally, temperature was measured at the bottom and in the depths 2 cm, 4 cm, 6 cm, 8 cm as well as directly at the surface. The scatter of the measured matric potentials during stage-1 evaporation was found to be very small (cv <3%). For sand, the scattering

  8. Hydrology and Hydraulic Properties of a Bedded Evaporite Formation

    SciTech Connect

    BEAUHEIM,RICHARD L.; ROBERTS,RANDALL M.

    2000-11-27

    The Permian Salado Formation in the Delaware Basin of New Mexico is an extensively studied evaporite deposit because it is the host formation for the Waste Isolation Pilot Plant, a repository for transuranic wastes. Geologic and hydrologic studies of the Salado conducted since the mid-1970's have led to the development of a conceptual model of the hydrogeology of the formation that involves far-field permeability in anhydrite layers and at least some impure halite layers. Pure halite layers and some impure halite layers may not possess an interconnected pore network adequate to provide permeability. Pore pressures are probably very close to lithostatic pressure. In the near field around an excavation, dilation, creep, and shear have created and/or enhanced permeability and decreased pore pressure. Whether flow occurs in the far field under natural gradients or only after some threshold gradient is reached is unknown. If far-field flow does occur, mean pore velocities are probably on the order of a meter per hundreds of thousands to tens of millions of years. Flow dimensions inferred from most hydraulic-test responses are subradial, which is believed to reflect channeling of flow through fracture networks, or portions of fractures, that occupy a diminishing proportion of the radially available space, or through percolation networks that are not ''saturated'' (fully interconnected). This is probably related to the directional nature of the permeability created or enhanced by excavation effects. Inferred values of permeability cannot be separated from their associated flow dimensions. Therefore, numerical models of flow and transport should include heterogeneity that is structured to provide the same flow dimensions as are observed in hydraulic tests. Modeling of the Salado Formation around the WIPP repository should also include coupling between hydraulic properties and the evolving stress field because hydraulic properties change as the stress field changes.

  9. Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Rings, J.; Vrugt, J. A.; Sorg, J.; Vereecken, H.

    2010-01-01

    SummaryCoupled hydrogeophysical inversion aims to improve the use of geophysical data for hydrological model parameterization. Several numerical studies have illustrated the feasibility and advantages of a coupled approach. However, there is still a lack of studies that apply the coupled inversion approach to actual field data. In this paper, we test the feasibility of coupled hydrogeophysical inversion for determining the hydraulic properties of a model dike using measurements of electrical resistance tomography (ERT). Our analysis uses a two-dimensional (2D) finite element hydrological model (HYDRUS-2D) coupled to a 2.5D finite element electrical resistivity code (CRMOD), and includes explicit recognition of parameter uncertainty by using a Bayesian and multiple criteria framework with the DREAM and AMALGAM population based search algorithms. To benchmark our inversion results, soil hydraulic properties determined from ERT data are compared with those separately obtained from detailed in situ soil water content measurements using Time Domain Reflectometry (TDR). Our most important results are as follows. (1) TDR and ERT data theoretically contain sufficient information to resolve most of the soil hydraulic properties, (2) the DREAM-derived posterior distributions of the hydraulic parameters are quite similar when estimated separately using TDR and ERT measurements for model calibration, (3) among all parameters, the saturated hydraulic conductivity of the dike material is best constrained, (4) the saturation exponent of the petrophysical model is well defined, and matches independently measured values, (5) measured ERT data sufficiently constrain model predictions of water table dynamics within the model dike. This finding demonstrates an innate ability of ERT data to provide accurate hydrogeophysical parameterizations for flooding events, which is of particular relevance to dike management, and (6) the AMALGAM-derived Pareto front demonstrates trade-off in the

  10. Tillage effects on physical properties in two soils of the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage practices profoundly affect soil physical and hydraulic properties. It is essential to select a tillage practice that sustains the soil physical properties required for successful growth of agricultural crops. We evaluated the effects of conventional (CT) and strip (ST) tillage practices on ...

  11. Impacts of an integrated crop-livestock system on soil properties to enhance precipitation capture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping/Livestock systems alter soil properties that are important in enhancing capture of precipitation by developing and maintaining water infiltration and storage. In this paper we will relate soil hydraulic conductivity and other physical properties on managed Old World Bluestem grassland, whea...

  12. Identifying unsaturated soil hydraulic parameters using integrated hydrogeophysical inversion approach on time-lapse ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Jadoon, K. Z.; Weihermüller, L.; Scharnagl, B.; Kowalsky, M. B.; Bechtold, M.; Hubbard, S. S.; Vereecken, H.; Lambot, S.

    2012-04-01

    Recently, ground-penetrating radar (GPR) has proven to have a great potential for high resolution, non-invasive mapping of the soil hydrogeophysical properties at the scale of interest. Common GPR techniques are usually based on ray-based travel time or reflection analyses to retrieve soil dielectric permittivity, which is strongly correlated to soil water content. These methods suffer, however, from two major limitations. First, only a part of the information in the GPR signal is considered (e.g., propagation time). Second, the forward model describing the radar data is subject to relatively strong simplifications with respect to electromagnetic wave propagation phenomena. These limitations typically results in errors in the reconstructed water content images and, moreover, this does not permit to exploit all information contained in the radar data. We explored an alternative method by using full-waveform hydrogeophysical inversion of time-lapse, proximal GPR data to remotely estimate the unsaturated soil hydraulic properties. The radar system is based on international standard vector network analyzer technology and a full-waveform model is used to describe wave propagation in the antenna-air-soil system, including antenna-soil interactions. A hydrodynamic model is used to constrain the inverse electromagnetic problem in reconstructing continuous vertical water content profiles. In that case the estimated parameters reduce to the soil hydraulic properties, thereby strongly reducing the dimensionality of the inverse problem. In this study, we present an application of the proposed method to a data set collected in a field experiment. The GPR model involves a full-waveform frequency-domain solution of Maxwell's equations for wave propagation in three-dimensional multilayered media. The hydrodynamic model used in this work is based on a one-dimensional solution of Richards equation and the hydrological simulator HYDRUS 1-D was used with a single- and dual

  13. Spatial Bias in Field-Estimated Unsaturated Hydraulic Properties

    SciTech Connect

    HOLT,ROBERT M.; WILSON,JOHN L.; GLASS JR.,ROBERT J.

    2000-12-21

    Hydraulic property measurements often rely on non-linear inversion models whose errors vary between samples. In non-linear physical measurement systems, bias can be directly quantified and removed using calibration standards. In hydrologic systems, field calibration is often infeasible and bias must be quantified indirectly. We use a Monte Carlo error analysis to indirectly quantify spatial bias in the saturated hydraulic conductivity, K{sub s}, and the exponential relative permeability parameter, {alpha}, estimated using a tension infiltrometer. Two types of observation error are considered, along with one inversion-model error resulting from poor contact between the instrument and the medium. Estimates of spatial statistics, including the mean, variance, and variogram-model parameters, show significant bias across a parameter space representative of poorly- to well-sorted silty sand to very coarse sand. When only observation errors are present, spatial statistics for both parameters are best estimated in materials with high hydraulic conductivity, like very coarse sand. When simple contact errors are included, the nature of the bias changes dramatically. Spatial statistics are poorly estimated, even in highly conductive materials. Conditions that permit accurate estimation of the statistics for one of the parameters prevent accurate estimation for the other; accurate regions for the two parameters do not overlap in parameter space. False cross-correlation between estimated parameters is created because estimates of K{sub s} also depend on estimates of {alpha} and both parameters are estimated from the same data.

  14. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.

    PubMed

    Bumgarner, Johnathan R; McCray, John E

    2007-06-01

    During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates. PMID:17449084

  15. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land-use

    NASA Astrophysics Data System (ADS)

    Siltecho, S.; Hammecker, C.; Sriboonlue, V.; Clermont-Dauphin, C.; Trelo-ges, V.; Antonino, A. C. D.; Angulo-Jaramillo, R.

    2014-06-01

    Adequate water management is required to improve the efficiency and sustainability of agricultural systems when water is scarce or over-abundant, especially in the case of land-use changes. In order to quantify, to predict and eventually to control water and solute transport into soil, soil hydraulic properties need to be determined precisely. As their determination is often tedious, expensive and time-consuming, many alternative field and laboratory techniques are now available. The aim of this study was to determine unsaturated soil hydraulic properties under different land-uses and to compare the results obtained with different measurement methods (Beerkan, Disk infiltrometer, Evaporation, pedotransfer function). The study has been realised on a tropical sandy soil in a mini watershed in NE Thailand. The experimental plots were positioned in a rubber tree plantation in different positions along a slope, in ruzi grass pasture and in an original forest site. Non parametric statistics demonstrated that van Genuchten unsaturated soil parameters (Ks, α and n), were significantly different according to the measurement methods employed whereas location was not a significant discriminating factor when all methods were considered together. However within each method, parameters n and α were statistically different according to the sites. These parameters were used with Hydrus1D for a one year simulation and computed pressure head did not show noticeable differences for the various sets of parameters, highlighting the fact that for modelling, any of these measurement method could be employed. The choice of the measurement method would therefore be motivated by the simplicity, robustness and its low cost.

  16. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land uses

    NASA Astrophysics Data System (ADS)

    Siltecho, S.; Hammecker, C.; Sriboonlue, V.; Clermont-Dauphin, C.; Trelo-ges, V.; Antonino, A. C. D.; Angulo-Jaramillo, R.

    2015-03-01

    Adequate water management is required to improve the efficiency and sustainability of agricultural systems when water is scarce or over-abundant, especially in the case of land use changes. In order to quantify, to predict and eventually to control water and solute transport into soil, soil hydraulic properties need to be determined precisely. As their determination is often tedious, expensive and time-consuming, many alternative field and laboratory techniques are now available. The aim of this study was to determine unsaturated soil hydraulic properties under different land uses and to compare the results obtained with different measurement methods (Beerkan, disc infiltrometer, evaporation, pedotransfer function). The study has been realized on a tropical sandy soil in a mini-watershed in northeastern Thailand. The experimental plots were positioned in a rubber tree plantation in different positions along a slope, in ruzi grass pasture and in an original forest site. Non-parametric statistics demonstrated that van Genuchten unsaturated soil parameters (Ks, α and n) were significantly different according to the measurement methods employed, whereas the land use was not a significant discriminating factor when all methods were considered together. However, within each method, parameters n and α were statistically different according to the sites. These parameters were used with Hydrus1D for a 1-year simulation and computed pressure head did not show noticeable differences for the various sets of parameters, highlighting the fact that for modeling, any of these measurement methods could be employed. The choice of the measurement method would therefore be motivated by the simplicity, robustness and its low cost.

  17. Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    NASA Astrophysics Data System (ADS)

    WöHling, Thomas; Vrugt, Jasper A.

    2008-12-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multiobjective optimization and Bayesian model averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multiobjective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM and used to generate four different model ensembles. These ensembles are postprocessed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multiobjective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  18. Sask method for testing hydraulic conductivity of soils by flat dilatometer (dmt)

    NASA Astrophysics Data System (ADS)

    Garbulewski, Kazimierz; Żakowicz, Stanisław; Rabarijoely, Simon; Łada, Anna

    2012-10-01

    DMT is one of the most popular methods of determining soil parameters needed to design a safe construction. Apart from the basic outcome parameter obtained from DMT measurements hydraulic conductivity (k) can be determined, previously proposed DMTA and DMTC methods were modified. The basic idea of the method is that the return of the deformed membrane is due to soil and water pressure. In the proposed SASK method the hydraulic conductivity of the soil is determined by measuring time-varying pressures A and C. Research has been performed at the experimental site of the Department of Geotechnical Engineering, WULS. In the paper, the assumptions of the new method for determining the hydraulic conductivity k are presented. The proposed method allows us to determine a reliable value for the hydraulic conductivity of clay soils. Using this method, the value of hydraulic conductivity (k = 5,47*10-11) is similar to the results of BAT, DMTA and laboratory measurements.

  19. Application of Multitemporal Remotely Sensed Soil Moisture for the Estimation of Soil Physical Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.

    1997-01-01

    This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.

  20. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now

  1. Microwave Remote Sensing of Soil Moisture for Estimation of Soil Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, Nandish M.; Engman, Edwin T.; Jackson, Thomas J.

    1997-01-01

    Surface soil moisture dynamics was derived using microwave remote sensing, and employed to estimate soil physical and hydraulic properties. The L-band ESTAR radiometer was employed in an airborne campaign over the Little Washita watershed, Oklahoma during June 10-18, 1992. Brightness temperature (TB) data were employed in a soil moisture inversion algorithm which corrected for vegetation and soil effects. Analyses of spatial TB and soil moisture dynamics during the dry-down period revealed a direct relationship between changes in TB, soil moisture and soil texture. Extensive regression analyses were carried out which yielded statistically significant quantitative relationships between ratio of percent sand to percent clay (RSC, a term derived to quantify soil texture) and saturated hydraulic conductivity (Ksat) in terms of change components of TB and surface soil moisture. Validation of results indicated that both RSC and Ksat can be estimated with reasonable accuracy. These findings have potential applications for deriving spatial distributions of RSC and Ksat over large areas.

  2. Status Report for Remediation Decision Support Project, Task 1, Activity 1.B – Physical and Hydraulic Properties Database and Interpretation

    SciTech Connect

    Rockhold, Mark L.

    2008-09-26

    The objective of Activity 1.B of the Remediation Decision Support (RDS) Project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the objectives of Activity 1.B of the RDS Project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which has most recently been maintained by Fluor-Hanford, Inc., (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The development of the Virtual Library module was to be performed by a third party under subcontract to Fluor. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and

  3. Estimating the Hydraulic Conductivity of Glacial Tills From Soil Index Tests

    NASA Astrophysics Data System (ADS)

    Boateng, S.; Lowery, J. B.

    2002-05-01

    The most important parameter in any groundwater flow or contaminant transport problem is hydraulic conductivity (K). However, for fine-grained soils, the measurement of hydraulic conductivity (K) can be expensive and time-consuming. Previous attempts at estimating K for fine-grained soils have been marginally successful. In this study, 23 glacial till were sampled at seven sites in McLean County, Illinois. The samples were tested for saturated vertical K, grain-size distribution, porosity, plastic limit and plasticity index. Soil characteristics from the soil-index tests were mathematically manipulated into several variable forms and correlated to K by using the Statistical Program for the Social Sciences (SPSS). Variables that correlated significantly with K were then used to perform a step-wise multiple regression analysis, with K as the dependent variable. The resulting equation explained 75% of the variance in K. Plastic limit and clay content showed the strongest correlation to K. Plastic limit showed a positive correlation with K, along with clay contents above 23%. This is likely due to the effect that clay content and plasticity have on structure in shallow, unsaturated soils. Repeated expansion and contraction leads to fracturing in highly plastic soils, which increases K. This study shows the need for a closer examination into the importance of structure on the hydraulic conductivity of shallow, fine-grained soils.

  4. Land-use effects on flood generation - considering soil hydraulic measurements in modelling

    NASA Astrophysics Data System (ADS)

    Wahren, A.; Feger, K.-H.; Schwärzel, K.; Münch, A.

    2009-08-01

    The investigation in the catchment of the Mulde (51°0'55" N, 13°15'54" E Saxony, Germany) researches the effect of afforestation measures on the soil hydraulic properties. The concept of a "false chronosequence" was used to quantify the time-dependent dynamical character of the forest impact. Four adjacent plots were identified at a test location with comparable pedological start conditions and a set of tree stands of different age: (1) arable field (initial state); (2) 6-year-old afforestation; (3) 50-year-old afforestation; (4) ancient natural forest ("target" stocking). Water retention curves and unsaturated conductivities were analysed in the lab. In the field, the undisturbed infiltration capacities were measured quantitatively (hood infiltrometer) and qualitatively (brilliant blue tracer). Pronounced differences between all 4 plots were detected. The afforestation causes an increased infiltration and soil water retention potential. Especially the topsoil layers showed a distinct increase in conductivity and portion of coarse/middle pores. The influence of these changes on rainfall-runoff calculations at the test location was analysed in this study.

  5. Predicting Saturated Hydraulic Conductivity from Percolation Test Results in Layered Silt Loam Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The size of on-site waste disposal systems is usually determined by one or more percolation tests performed on the proposed site. The objectives of this study were to develop an empirical relationship between the saturated hydraulic conductivity (Ks) of layered soils and their percolation times (PT)...

  6. EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: I. FIELD OBSERVATIONS

    EPA Science Inventory

    A field test to quantify the changes of soil temperature and hydraulic head during electroosmosis was conducted. The anode (3.1 m x 3.4 m) was created by laying pieces of titanium mesh coated with mixed metal oxides on top of a 3 cm thick sand layer at a depth of 0.4 m. The catho...

  7. A review of the Rawls et al. (1982) soil hydraulic pedotransfer function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many applications that involve the use of environmental simulation models, soil water retention and hydraulic conductivity data are not available and therefore need to be estimated. The current version of the APEX model – that is being used in the national scale CEAP project to evaluate on-site ...

  8. EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: I. FIELD OBSERVATION

    EPA Science Inventory

    A field test to quantify the changes of soil temperature and hydraulic head during electroosmosis has been conducted. The anode (3.1 m x 3.4m) was created by laying pieces of titanium mesh coated with mixed metal oxides on tope of a 3 cm thick sand layer at a depth of 0.4 m. The ...

  9. Effect of biocrust: study of mechanical and hydraulic properties and erodibility

    NASA Astrophysics Data System (ADS)

    Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana

    2016-04-01

    It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is

  10. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-II. Application

    USGS Publications Warehouse

    Neuzil, C.E.; Cooley, C.; Silliman, S.E.; Bredehoeft, J.D.; Hsieh, P.A.

    1981-01-01

    In Part I a general analytical solution for the transient pulse test was presented. Part II presents a graphical method for analyzing data from a test to obtain the hydraulic properties of the sample. The general solution depends on both hydraulic conductivity and specific storage and, in theory, analysis of the data can provide values for both of these hydraulic properties. However, in practice, one of two limiting cases may apply in which case it is possible to calculate only hydraulic conductivity or the product of hydraulic conductivity times specific storage. In this paper we examine the conditions when both hydraulic parameters can be calculated. The analyses of data from two tests are presented. In Appendix I the general solution presented in Part I is compared with an earlier analysis, in which compressive storage in the sample is assumed negligible, and the error in calculated hydraulic conductivity due to this simplifying assumption is examined. ?? 1981.

  11. Construction of Flexible Subterranean Hydraulic Barriers in Soil and Rock

    SciTech Connect

    Carter, E.E.; Carter, P.E.; Cooper, D.C.

    2008-07-01

    In the management of radioactive waste sites, there is sometimes a need to divert infiltration water; or contain or divert contaminated groundwater. This paper discusses several experimental techniques based on super permeating molten wax. Many of the methods are suited to form both vertical or horizontal barriers in-situ in the ground. The first method is based on thermally controlled permeation grouting between drilled holes that produces a very thick barrier in soil, rock, or even fractured rock up to 600 meters deep. The second method is a variation on jet grouting for producing a thin low cost barrier in soil. Also discussed is a technique for forming an infiltration barrier within the surface soil over an underground tank farm and a method for encapsulating a buried waste without excavation. These new methods can produce durable subterranean barriers of high integrity. These barriers are made with a special malleable wax that soaks into the soil or rock matrix. The wax is far more impermeable than clay or cement and can flex and stretch in response to soil movements. The wax contains no water and is not prone to damage from soil moisture changes. (authors)

  12. Estimability analysis for optimization of hysteretic soil hydraulic parameters using data of a field irrigation experiment

    NASA Astrophysics Data System (ADS)

    Ngo, Viet V.; Gerke, Horst H.; Badorreck, Annika

    2014-05-01

    The estimability analysis has been proposed to improve the quality of parameter optimization. For field data, wetting and drying processes may complicate optimization of soil hydraulic parameters. The objectives of this study were to apply estimability analysis for improving optimization of soil hydraulic parameters and compare models with and without considering hysteresis. Soil water pressure head data of a field irrigation experiment were used. The one-dimensional vertical water movement in variably-saturated soil was described with the Richards equation using the HYDRUS-1D code. Estimability of the unimodal van Genuchten - Mualem hydraulic model parameters as well as of the hysteretic parameter model of Parker and Lenhard was classified according to a sensitivity coefficient matrix. The matrix was obtained by sequentially calculating effects of initial parameter variations on changes in the simulated pressure head values. Optimization was carried out by means of the Levenberg-Marquardt method as implemented in the HYDRUS-1D code. The parameters α, Ks, θs, and n in the nonhysteretic model were found sensitive and parameter θs and n strongly correlated with parameter n in the nonhysteretic model. When assuming hysteresis, the estimability was highest for αw and decreased with soil depth for Ks and αd, and increased for θs and n. The hysteretic model could approximate the pressure heads in the soil by considering parameters from wetting and drying periods separately as initial estimates. The inverse optimization could be carried out more efficiently with most estimable parameters. Despite the weaknesses of the local optimization algorithm and the inflexibility of the unimodal van Genuchten model, the results suggested that estimability analysis could be considered as a guidance to better define the optimization scenarios and then improved the determination of soil hydraulic parameters.

  13. Estimating hydraulic conductivity of internal drainage for layered soils in situ

    NASA Astrophysics Data System (ADS)

    Mavimbela, S. S. W.; van Rensburg, L. D.

    2013-11-01

    The soil hydraulic conductivity (K function) of three layered soils cultivated at Paradys Experimental Farm, near Bloemfontein (South Africa), was determined from in situ drainage experiments and analytical models. Pre-ponded monoliths, isolated from weather and lateral drainage, were prepared in triplicate on representative sites of the Tukulu, Sepane and Swartland soil forms. The first two soils are also referred to as Cutanic Luvisols and the third as Cutanic Cambisol. Soil water content (SWC) was measured during a 1200 h drainage experiment. In addition soil physical and textural data as well as saturated hydraulic conductivity (Ks) were derived. Undisturbed soil core samples of 105 mm with a height of 77 mm from soil horizons were used to measure soil water retention curves (SWRCs). Parameterization of SWRC was through the Brooks and Corey model. Kosugi and van Genuchten models were used to determine SWRC parameters and fitted with a RMSE of less 2%. The SWRC was also used to estimate matric suctions for in situ drainage SWC following observations that laboratory and in situ SWRCs were similar at near saturation. In situ K function for horizons and the equivalent homogeneous profiles were determined. Model predictions based on SWRC overestimated horizons K function by more than three orders of magnitude. The van Genuchten-Mualem model was an exception for certain soil horizons. Overestimates were reduced by one or more orders of magnitude when inverse parameter estimation was applied directly to drainage SWC with HYDRUS-1D code. Best fits (R2 ≥ 0.90) were from Brooks and Corey, and van Genuchten-Mualem models. The latter also predicted the profiles' effective K function for the three soils, and the in situ based function was fitted with R2 ≥ 0.98 irrespective of soil type. It was concluded that the inverse parameter estimation with HYDRUS-1D improved models' K function estimates for the studied layered soils.

  14. Sensitivity of Residual Soil Moisture Content in VIC Model Soil Property Parameterizations for Sub-arctic Discontinuous Permafrost Watersheds

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Hinzman, L. D.; Morton, D.; Cable, J.

    2015-12-01

    Most soil property representations in large scale hydrological and atmospheric models are derived from empirical relationships of soil texture, wherein the average hydraulic, thermal and thermodynamic processes are described for each layer of the soil column. Of all the soil hydraulic properties, hydraulic conductivity is one of the most difficult to estimate, particularly in permafrost environments. This is because, for large-scale models, it is estimated from soil properties that are originally estimated from other empirical relationships of soil texture, such as residual soil moisture content. Residual soil moisture content determines the amount of available moisture for evapotranspiration and drainage in unsaturated flow. In cold regions, it is also important to estimate the depth of the freezing front by estimating the antecedent soil moisture status before the soils freeze for the winter. This will have direct and indirect effects on the freeze-thaw depth and runoff generation the following spring. Therefore, inaccurate data on residual soil moisture will impact on hydrological modeling of the discontinuous permafrost watersheds in Interior Alaska, where soil water content is highly variable even within a given soil texture. The main objective of this study is to test the sensitivity of models to variation in residual soil moisture for runoff, evaporation, evapotranspiration and soil moisture simulations in discontinuous permafrost watersheds of Interior Alaska. We use the Variable Infiltration Capacity model, a meso-scale hydrological model, and HYDRUS 1D, a software package for simulating water, heat and solute movement, to estimate the soil hydraulics properties at the two contrasting sub-basins of the Caribou Poker Creek Research Watershed. . Preliminary modeling results show that small variations in the residual soil moisture content results in significant differences in the timing and amount of runoff, evapotranspiration and soil moisture storage. Our

  15. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    PubMed

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D

    2007-05-01

    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides. PMID:17267367

  16. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    SciTech Connect

    Samuelson, Lisa, J.; Stokes, Thomas, A.; Coleman, Mark, D.

    2007-02-01

    Summary Long-term hydraulic acclimation to resource availability was explored in 3-year-bld Populus deltoides Bartr. ex Marsh. clones by examining transpiration. leaf-specific hydraulic conductance (GL), canopy stomatal conductance (Gs) and leaf to sapwood area ratio (AL:Asi)n response to imgation (13 and 551 mm year in addition to ambient precipitation) and fertilization (0 and 120 kg N ha-' year-'). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than imgation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day-', and increased 66% and 90% in response to imgation and fertilization, respectively. Increases in GL, Gs at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf areain response to increases in resource availability were associated with reductions in AL:As and consequently a minimal change in the water potential gradient from soil to leaf. Imgation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m ha-' by irrigation and from 3.7 to 6.7 m2 ha-' by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  17. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences

    PubMed Central

    Cardon, Zoe G.; Stark, John M.; Herron, Patrick M.; Rasmussen, Jed A.

    2013-01-01

    Plant roots serve as conduits for water flow not only from soil to leaves but also from wetter to drier soil. This hydraulic redistribution through root systems occurs in soils worldwide and can enhance stomatal opening, transpiration, and plant carbon gain. For decades, upward hydraulic lift (HL) of deep water through roots into dry, litter-rich, surface soil also has been hypothesized to enhance nutrient availability to plants by stimulating microbially controlled nutrient cycling. This link has not been demonstrated in the field. Working in sagebrush-steppe, where water and nitrogen limit plant growth and reproduction and where HL occurs naturally during summer drought, we slightly augmented deep soil water availability to 14 HL+ treatment plants throughout the summer growing season. The HL+ sagebrush lifted greater amounts of water than control plants and had slightly less negative predawn and midday leaf water potentials. Soil respiration was also augmented under HL+ plants. At summer’s end, application of a gas-based 15N isotopic labeling technique revealed increased rates of nitrogen cycling in surface soil layers around HL+ plants and increased uptake of nitrogen into HL+ plants’ inflorescences as sagebrush set seed. These treatment effects persisted even though unexpected monsoon rainstorms arrived during assays and increased surface soil moisture around all plants. Simulation models from ecosystem to global scales have just begun to include effects of hydraulic redistribution on water and surface energy fluxes. Results from this field study indicate that plants carrying out HL can also substantially enhance decomposition and nitrogen cycling in surface soils. PMID:24191007

  18. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: Effects on soil hydraulic conductivity and overland flow production

    NASA Astrophysics Data System (ADS)

    Ghimire, Chandra Prasad; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, Maciek W.

    2013-12-01

    degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance hydrological conditions but heavy usage of reforested land in the region has been shown to hamper full recovery of soil hydraulic properties. This paper investigates the effect of reforestation and forest usage on field-saturated soil hydraulic conductivities (Kfs) near Dhulikhel, Central Nepal, by comparing degraded pasture, a footpath within the pasture, a 25 year old pine reforestation, and little disturbed natural forest. The hillslope hydrological implications of changes in Kfs with land-cover change were assessed via comparisons with measured rainfall intensities over different durations. High surface and near-surface Kfs in natural forest (82-232 mm h-1) rule out overland flow occurrence and favor vertical percolation. Conversely, corresponding Kfs for degraded pasture (18-39 mm h-1) and footpath (12-26 mm h-1) were conducive to overland flow generation during medium- to high-intensity storms and thus to local flash flooding. Pertinently, surface and near-surface Kfs in the heavily used pine forest remained similar to those for degraded pasture. Estimated monsoonal overland flow totals for degraded pasture, pine forest, and natural forest were 21.3%, 15.5%, and 2.5% of incident rainfall, respectively, reflecting the relative ranking of surface Kfs. Along with high water use by the pines, this lack of recovery of soil hydraulic properties under pine reforestation is shown to be a critical factor in the regionally observed decline in base flows following large-scale planting of pines and has important implications for regional forest management.

  19. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    SciTech Connect

    Murdoch, L.; Slack, B.

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminants in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.

  20. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  1. Percolation and transport in a sandy soil under a natural hydraulic gradient

    USGS Publications Warehouse

    Green, C.T.; Stonestrom, D.A.; Bekins, B.A.; Akstin, K.C.; Schulz, M.S.

    2005-01-01

    [1] Unsaturated flow and transport under a natural hydraulic gradient in a Mediterranean climate were investigated with a field tracer experiment combined with laboratory analyses and numerical modeling. Bromide was applied to the surface of a sandy soil during the dry season. During the subsequent rainy season, repeated sediment sampling tracked the movement of bromide through the profile. Analysis of data on moisture content, matric pressure, unsaturated hydraulic conductivity, bulk density, and soil texture and structure provides insights into parameterization and use of the advective-dispersive modeling approach. Capturing the gross features of tracer and moisture movement with model simulations required an order-of-magnitude increase in laboratory-measured hydraulic conductivity. Wetting curve characteristics better represented field results, calling into question the routine estimation of hydraulic characteristics based only on drying conditions. Measured increases in profile moisture exceeded cumulative precipitation in early winter, indicating that gains from dew drip can exceed losses from evapotranspiration during periods of heavy ("Tule") fog. A single-continuum advective-dispersive modeling approach could not reproduce a peak of bromide that was retained near the soil surface for over 3 years. Modeling of this feature required slow exchange of solute at a transfer rate of 0.5-1 ?? 10-4 d-1 with an immobile volume approaching the residual moisture content.

  2. Hysteresis of unsaturated hydromechanical properties of a silty soil

    USGS Publications Warehouse

    Lu, Ning; Kaya, Murat; Collins, Brian D.; Godt, Jonathan W.

    2013-01-01

    Laboratory tests to examine hysteresis in the hydrologic and mechanical properties of partially saturated soils were conducted on six intact specimens collected from a landslide-prone area of Alameda County, California. The results reveal that the pore-size distribution parameter remains statistically unchanged between the wetting and drying paths; however, the wetting or drying state has a pronounced influence on the water-entry pressure, the water-filled porosity at zero suction, and the saturated hydraulic conductivity. The suction stress values obtained from the shear-strength tests under both natural moisture and resaturated conditions were mostly bounded by the suction stress characteristic curves (SSCCs) obtained from the hydrologic tests. This finding experimentally confirms that the soil-water retention curve, hydraulic conductivity function, and SSCC are intrinsically related.

  3. On the Influence of Topography Upon Scaling Characteristics of Soil Hydraulic Parameters

    NASA Astrophysics Data System (ADS)

    Jana, R. B.; Mohanty, B. P.

    2008-12-01

    One of the most important issues concerning studies into the hydrologic cycle and climate prediction today is the upscaling of soil hydraulic parameters in the unsaturated zone. Ecological phenomena occur differently, and due to different causes, at a wide range of scales. Efforts to model hydrologic processes and phenomena, with particular emphasis on those occurring in the unsaturated zone, are currently ongoing at various scales. Input data are required for these models at their representative scales. However, measurement of parameter data at all such required scales is impractical as it entails huge outlay of finances, time and effort. Inter-connections often exist between information across these scales. However, the exact mathematical or physical nature of these connections is generally a mystery. Over the past few decades, numerous efforts have been conducted to either understand and solve these mysteries, or to find a way around them to obtain effective parameters at multiple scales. Most upscaling efforts thus far have opted to ignore the effect of topography in their derivation of effective parameter values. This approach is reasonable as long as the coarser support dimensions are smaller than hill slopes. When upscaling fine scale hydraulic parameter data to hillslope scales and beyond, however, topography plays a bigger role and cannot be ignored. We present a study of the influence of topographic variations on the effective, upscaled soil hydraulic parameters under different hillslope configurations. Fine resolution parameters were upscaled using the Power Averaging Operator methodology which incorporates features from both mean-type and mode-type aggregation. Simulations of multiple hypothetical scenarios were conducted using the HYDRUS- 3D hydrologic modeling software to develop empirical relationships between the topography and the soil hydraulic parameters for matching hydrologic responses. These relationships may be assimilated into currently

  4. Determination of the pore size distribution and hydraulic properties from Nuclear Magnetic Resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura R.; Weihermüller, Lutz; Haber-Pohlmeier, Sabina; Stapf, Siegfried; Vereecken, Harry; Pohlmeier, Andreas

    2010-05-01

    Known pore size distributions can be directly linked to the water retention characteristic which is essential for the prognosis of water and solute movement through the material. In our study, we evaluated the feasibility to use Nuclear Magnetic Resonance (NMR) relaxometry measurements for the characterization of pore size distribution in four porous samples with different texture and composition. Therefore, NMR T2 and T1 relaxation measurements at 6.47 MHz were carried out for three model samples (medium sand; fine sand; and a homogenous sand / kaolin clay mixture) and a natural soil. To quantify the goodness of the approach, the NMR measurements were compared in terms of cumulated pore size distribution functions and mean pore diameter with the two classical techniques based on water retention and mercury porosimetry measurements. The results showed that T1 and T2 derived mean pore size diameters are in good agreement with each other but deviate from retention curve derived ones. This is especially the case for well sorted sands with n values > 2.7. For finer materials differences are less pronounced. A short study was performed to evaluate the influence of the variations observed in the pore diameter distributions on the hydraulic properties of the samples: θS, α, and n. In conclusion, NMR T1 and T2 relaxation measurements can be used to estimate pore size distribution, mean pore diameter, as well as the retention function and corresponding hydraulic properties.

  5. Flow Cell Sampling Technique: A new approach to analyze physical soil and particle surface properties of undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Krueger, Jiem; Leue, Martin; Heinze, Stefanie; Bachmann, Jörg

    2016-04-01

    During unsaturated water conditions, water flow occurs in the soil mainly by water film flow and depends on moisture content and pore surface properties. More attention is attributed to coatings enclosing soil particles and thus may affect wetting properties as well as hydraulic soil functions. Particle coatings are most likely responsible for many adsorption processes and are expected to favor local heterogeneous microstructure with enhanced biological activity. Many of the effects described cannot be detected on the basis of conventional soil column experiments, which were usually made to study soil hydraulic processes or surface - soil solution exchange processes. The general objective of this study was to develop a new field sampling method to unravel heterogeneous flow processes on small scales in an undisturbed soil under controlled lab conditions. This will be done by using modified flow cells (Plexiglas). Beside the measurements within a flow cell as breakthrough curves, the developed technique has several additional advantages in contrast to common columns or existing flow chamber/cell designs. The direct modification from the sampling frame to the flow cell provides the advantage to combine several analyses. The new technique enables to cut up to 5 thin undisturbed soil slices (quasi-replicates) down to 10 and/or 5 mm. Relative large particles, for instance, may limit this sampling method. The large observation area of up to 150 cm2 allows the characterization of particle surface properties in a high spatial resolution within an undisturbed soil sample. This sampling technique, as shown in our study, has the opportunity to link soil wetting hydraulic and several particle surface properties to spatial soil heterogeneities. This was shown with tracer experiments, small-scale contact angle measurements and analyses of the spatial distribution of functional groups of soil organic matter via DRIFT mapping.

  6. Temporal variability of selected chemical and physical properties of topsoil of three soil types

    NASA Astrophysics Data System (ADS)

    Jirku, Veronika; Kodesova, Radka; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2013-04-01

    Temporal variability of soil properties measured in surface horizons of three soil types (Haplic Cambisol, Greyic Phaeozem, Haplic Luvisol) was studied in years 2007, 2008, 2009 and 2010. Undisturbed soil samples were taken every month to evaluate the actual field soil-water content, bulk density, porosity and hydraulic properties. The grab soil samples were taken every month to evaluate aggregate stability using the WSA (water stable aggregates) index, pHH2O and pHKCl, soil organic matter content and quality. Unsaturated hydraulic conductivity for pressure head of -2 cm was measured directly in the field using the minidisk tension infiltrometer. In addition soil structure was documented on micromorphological images. In some cases, the similar trends of the pHH2O , pHKCl , A400/A600, rod, P, θfield or WSA values were observed in different soils. Interestingly, the similar trends were found mostly for the Haplic Cambisol and the Greyic Phaeozem despite the fact that these soils considerably differed (different soil substrate, pedogenetic processes, etc.) and that variable crops (winter wheat and spring wheat) were planted at both locations during two years (2007 and 2006). Mostly different trends were observed for the Haplic Luvisol and the Greyic Phaeozem (soil of the same substrate). The reason could be attributed to a high vulnerability of the Haplic Luvisol to soil degradation in comparison to that of the Greyic Phaeozem. Parameters of hydraulic properties were highly variable and did not show similar trends for different soils (except the saturated soil water content and the slope of the retention curve at the inflection point for Haplic Cambisol and Greyic Phaeozem). Soil structure, aggregate stability and soil hydraulic properties were interrelated and depended on plant growth, rainfall compaction and tillage. The drier conditions in some soils positively influenced the soil aggregate stability, the slope of the retention curve at the inflection point and

  7. Development and application of laboratory and geophysical methods for the determination of hydraulic properties on desert pavements in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Meadows, Darren G.

    Interactions between pedologic development and hydrology have important implications for arid ecosystems and landscape evolution. The ability to rapidly evaluate hydraulic properties of a soil would greatly enhance our ability to study these relationships. The purpose of this work was (1) to develop a method for determining the hydraulic properties of structured soil peds; (2) to use the method to investigate the impact of surface age on the hydraulic properties; and (3) to investigate the efficacy of noninvasive geophysical methods for estimation of clay content and hydraulic properties of surface soils in arid environments. This work was conducted on multiple aged desert pavements in the Mojave National Preserve, California. To more fully investigate the mechanism of infiltration on desert pavements, we first ran a tension infiltrometer experiment on a well-developed pavement to determine the field hydraulic properties. The area directly underneath the disc was then excavated and brought to the laboratory. The peds that comprised the disc area were individually sampled using the newly developed method, which is a combination of the traditional evaporation experiment and parameter estimation. Hydraulic properties of the individual peds were then areally averaged and compared with the field-determined values. A comparison of the two methods provides an indication of the impact of the interped region on the hydraulic properties because the laboratory method sampled only the peds, whereas the field method sampled both peds and the interped cracks that separate them in the field. This method was then used on three different pavements of varying age (10 ka, 100 ka, and ˜600 ka), with triplicate measurements on each surface. Although the 600 ka is the oldest surface, the Av horizon and desert pavement mantling this surface is similar in age to the 10 ka because the original soil has been stripped and the horizon re-formed, making the Qf3 the oldest surface soil

  8. The Effects of Salinity and Sodium Adsorption Ratio on the Water Retention and Hydraulic Conductivity Curves of Soils From The Pampa del Tamarugal, Chile

    NASA Astrophysics Data System (ADS)

    Lagos, M. S.; Munoz, J.; Suarez, F. I.; Fierro, V.; Moreno, C.

    2015-12-01

    The Pampa del Tamarugal is located in the Atacama Desert, the most arid desert of the world. It has important reserves of groundwater, which are probably fed by infiltration coming from the Andes Mountain, with groundwater levels fluctuating between 3 and 10-70 m below the land surface. In zones where shallow groundwater exists, the capillary rise allows to have a permanently moist vadose zone, which sustain native vegetation such as the Tamarugos (Prosopis tamarugo Phil.) and Algarrobos (Prosopis alba Griseb.). The native vegetation relies on the soil moisture and on the evaporative fluxes, which are controlled by the hydrodynamic characteristics of the soils. The soils associated to the salt flats of the Pampa del Tamarugal are a mixture of sands and clays, which have high levels of sulfates, chloride, carbonates, sodium, calcium, magnesium, and potassium, with high pH and electrical conductivity, and low organic matter and cationic exchange capacity. In this research, we are interested in evaluating the impact of salinity and sodium adsorption ratio (SAR) on the hydrodynamic characteristics of the soil, i.e., water retention and hydraulic conductivity curves. Soils were collected from the Pampa del Tamarugal and brought to the laboratory for characterization. The evaporation method (HYPROP, UMS) was used to determine the water retention curve and the hydraulic conductivity curve was estimated combining the evaporation method with direct measurements using a variable head permeameter (KSAT, UMS). It was found that higher sodium concentrations increase the water retention capacity and decrease the soiĺs hydraulic conductivity. These changes occur in the moist range of the hydrodynamic characteristics. The soil's hydraulic properties have significant impact on evaporation fluxes, which is the mayor component of the water balance. Thus, it is important to quantify them and incorporate salt precipitation/dissolution effect on the hydrodynamic properties to correctly

  9. Interrelations among the soil-water retention, hydraulic conductivity, and suction-stress characteristic curves

    USGS Publications Warehouse

    Lu, Ning; Kaya, Murat; Godt, Jonathan W.

    2014-01-01

    The three fundamental constitutive relations that describe fluid flow, strength, and deformation behavior of variably saturated soils are the soil-water retention curve (SWRC), hydraulic conductivity function (HCF), and suction-stress characteristic curve (SSCC). Until recently, the interrelations among the SWRC, HCF, and SSCC have not been well established. This work sought experimental confirmation of interrelations among these three constitutive functions. Results taken from the literature for six soils and those obtained for 11 different soils were used. Using newly established analytical relations among the SWRC, HCF, and SSCC and these test results, the authors showed that these three constitutive relations can be defined by a common set of hydromechanical parameters. The coefficient of determination for air-entry pressures determined independently using hydraulic and mechanical methods is >0.99, >0.98 for the pore size parameter, and 0.94 for the residual degree of saturation. One practical implication is that one of any of the four experiments (axis-translation, hydraulic, shear-strength, or deformation) is sufficient to quantify all three constitutive relations.

  10. Improved Artificial Neural Network-Pedotransfer Functions (ANN-PTFs) for Estimating Soil Hydraulic Parameters

    NASA Astrophysics Data System (ADS)

    Gautam, M. R.; Zhu, J.; Ye, M.; Meyer, P. D.; Hassan, A. E.

    2008-12-01

    ANN-PTFs have become popular means of mapping easily available soil data into hard-to-measure soil hydraulic parameters in the recent years. These parameters and their distributions are the indispensable inputs to subsurface flow and transport models which provide basis for environmental planning, management and decision making. While improved ANN prediction together with the preservation of probability distributions of hydraulic parameters in ANN training is important, ANN-PTFs have been typically found using conventional ANN training approach with the mean square error as an error function, which may not preserve the probability distribution of the parameters. Moreover, the conventional ANN training can itself introduce correlation among predicted parameters and could not preserve the actual correlation among the measured parameters. The present study describes approaches to deal with such shortcomings of conventional ANN- PTF training algorithms by using new types of error functions and presents a group of improved ANN-PTF models developed on the basis of the new approaches with different levels of data availability. In the study, the bootstrap method is used as part of ANN-PTF development for generating independent training and validation sets, and calculating uncertainty estimates of the ANN predictions. The results demonstrate the merit of the new approaches of the ANN training and the physical significance of various types of less costly soil data in the prediction of soil hydraulic parameters.

  11. In situ bioremediation of petroleum in tight soils using hydraulic fracturing

    SciTech Connect

    Stavnes, S.; Yorke, C.A.; Thompson, L.

    1996-12-31

    This case study evaluated the effectiveness of in situ bioremediation of petroleum hydrocarbons in tight soils. The study area was contaminated with cutting oil from historic releases from underground piping, probably dating back to the 1940`s. Previous site assessment work indicated that the only chemicals of concern were total petroleum hydrocarbons (TPH). Two fracture sets (stacks) were installed at different locations to evaluate this in situ bioremediation technique under passive and active conditions. Several injection wells were drilled at both locations to provide entry for hydraulic fracturing equipment. A series of circular, horizontal fractures 40 to 50 feet in diameter were created at different depths, based on the vertical extent of contamination at the site. The injection wells were screened across the contaminated interval which effectively created underground bioreactors. Soils were sampled and analyzed for total petroleum hydrocarbons on five separate occasions over the nine-month study. Initial average soil concentrations of total petroleum hydrocarbons of 5,700 mg/kg were reduced to 475 mg/kg within nine months of hydraulic fracturing. The analytical results indicate an average reduction in TPH at the sample locations of 92 percent over the nine-month study period. This project demonstrates that in situ bioremediation using hydraulic fracturing has significant potential as a treatment technology for petroleum contaminated soils.

  12. Identifying Basin-scale Heterogeneity of Soil Properties Using River Stage Tomography

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Zha, Y.; Yeh, T. C. J.

    2014-12-01

    Observations and simulation of soil heterogeneity were carried out to understand the characteristics of the soil properties in the alluvial fan of Chuoshui river, Taiwan. The fan is located at middle Taiwan with an area of 1800 km2 and has at least one unconfined and three confined aquifers. All aquifers are connected to each other at apex of the fan. The distribution of soil hydraulic conductivity was estimated by fusing naturally recurrent stimuli and groundwater head. Specifically, the covariance and correlation information provided by temporal and spatial change of groundwater head in response to river stage variations are used to estimate heterogeneity of hydraulic conductivity. The results of the estimate compared with other geo-investigate method are discussed. Keywords: river stage tomography, hydraulic tomography, heterogeneity, hydraulic conductivity

  13. Towards soil property retrieval from space: Proof of concept using in situ observations

    NASA Astrophysics Data System (ADS)

    Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.

  14. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport.

    PubMed

    Warren, Jeffrey M; Brooks, J Renée; Dragila, Maria I; Meinzer, Frederick C

    2011-08-01

    Nocturnal increases in water potential (ψ) and water content (θ) in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in θ (Δθ), confounding efforts to determine the actual magnitude of HR. We estimated liquid (J(l)) and vapor (J(v)) soil water fluxes and their impacts on quantifying HR in a seasonally dry ponderosa pine (Pinus ponderosa) forest by applying existing datasets of ψ, θ and temperature (T) to soil water transport equations. As soil drying progressed, unsaturated hydraulic conductivity declined rapidly such that J (l) was irrelevant (<2E-05 mm h(-1) at 0-60 cm depths) to total water flux by early August. Vapor flux was estimated to be the highest in upper soil (0-15 cm), driven by large T fluctuations, and confounded the role of HR, if any, in nocturnal θ dynamics. Within the 15-35 cm layer, J(v) contributed up to 40% of hourly increases in nocturnal soil moisture. While both HR and net soil water flux between adjacent layers contribute to θ in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the daily recovery in θ. The absolute magnitude of HR is not easily quantified, yet total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux. PMID:21400193

  15. Integrating models to simulate emergent behaviour: effects of organic matter on soil hydraulics in the ICZ-1D soil-vegetation model

    NASA Astrophysics Data System (ADS)

    Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos

    2014-05-01

    Soil develops as a result of interacting processes, many of which have been described in more or less detailed models. A key challenge in developing predictive models of soil function is to integrate processes that operate across a wide range of temporal and spatial scales. Many soil functions could be classified as "emergent", since they result from the interaction of subsystems. For example, soil organic matter (SOM) dynamics are commonly considered in relation to carbon storage, but can have profound effects on soil hydraulic properties that are conventionally considered to be static. Carbon fixed by plants enters the soil as litterfall, root turnover or via mycorrhizae. Plants need water and nutrients to grow, and an expanding root system provides access to a larger volume of soil for uptake of water and nutrients. Roots also provide organic exudates, such as oxalate, which increase nutrient availability. Carbon inputs are transformed at various rates into soil biota, CO2, and more persistent forms of organic matter. The SOM is partly taken up into soil aggregates of variable sizes, which slows down degradation. Water availability is an important factor as both plant growth and SOM degradation can be limited by shortage of water. Water flow is the main driver for transport of nutrients and other solutes. The flow of water in turn is influenced by the presence of SOM as this influences soil water retention and hydraulic conductivity. Towards the top of the unsaturated zone, bioturbation by the soil fauna transports both solid material and solutes. Weathering rates of minerals determine the availability of many nutrients and are in turn dependent on parameters such as pH, water content, CO2 pressure and oxalate concentration. Chemical reactions between solutes, dissolution and precipitation, and exchange on adsorption sites further influence solute concentrations. Within the FP7 SoilTrEC project, we developed a model that incorporates all of these processes, to

  16. Soil fauna, soil properties and geo-ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2012-04-01

    The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.

  17. Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Elsenbeer, Helmut

    2008-10-01

    SummaryTropical montane rain forests are subject to both natural and anthropogenic disturbances, such as shallow landslides and forest-to-pasture conversion. Vegetation regrowth is rapid upon attaining hillslope stability and pasture abandonment, respectively, and apt to affect soil hydrology via changes in soil structure, a sensitive indicator of which is soil saturated hydraulic conductivity ( Ks). Our objective was to quantify the influence of these regionally widespread and important disturbances on Ks and the subsequent recovery of Ks, and to describe the resulting spatial patterns. In a 2 km 2 large research area in southern Ecuador, we used a mixed design- and model-based sampling strategy for measuring Ks in situ at soil depths of 12.5, 20, and 50 cm ( n = 30-150/depth) under landslides of different ages (2 and 8 years), under actively grazed pasture, fallows following pasture abandonment (2-25 years of age), and under natural forest, and for elucidating its spatial patterns. Global means of soil permeability generally decrease with increasing soil depth. Ks does not differ among landslides and in comparison to the natural forest, which suggests a marginal effect of the regional landslide activity on soil hydrology. In contrast, results from the human-induced disturbance regime show a permeability decrease of two orders of magnitude after forest conversion to pasture at shallow soil depths, and a slow regeneration after pasture abandonment that requires a recovery time of at least one decade. Disturbances affect the Ks spatial structure, in particular the correlation length, in the topsoil. The largest differences in the covariance parameters, however, are found for the subsoil Ks, where the spatial structure is independent of land cover. This case study suggests a rather disparate soil hydraulic response to regionally important disturbances. Cattle grazing strongly affects the spatial mean of Ks, whereas landslides do not, and both the processes affect the

  18. Pharmaceuticals' sorptions relative to properties of thirteen different soils.

    PubMed

    Kodešová, Radka; Grabic, Roman; Kočárek, Martin; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Jakšík, Ondřej

    2015-04-01

    Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles. Here we evaluate the sorption isotherms for 7 pharmaceuticals on 13 soils, described by Freundlich equations, and assess the impact of soil properties on various pharmaceuticals' sorption on soils. Sorption of ionizable pharmaceuticals was, in many cases, highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH, and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity, and positively related to base cation saturation. The sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Positive correlations between sorption coefficients and clay content were found for clindamycin, clarithromycin, atenolol, and metoprolol. Positive correlations between sorption coefficients and organic carbon content were obtained for trimethoprim and carbamazepine. Pedotransfer rules for predicting sorption coefficients of various pharmaceuticals included hydrolytic acidity (sulfamethoxazole), organic carbon content (trimethoprimand carbamazepine), base cation saturation (atenolol and metoprolol), exchangeable acidity and clay content (clindamycin), and soil active pH and clay content (clarithromycin). Pedotransfer rules, predicting the Freundlich sorption coefficients, could be applied for prediction of pharmaceutical mobility in soils with similar soil properties. Predicted sorption coefficients together with pharmaceutical half-lives and other imputes (e.g., soil-hydraulic, geological, hydro-geological, climatic) may be used for

  19. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina

    2016-04-01

    showed that the removal of the crust lead generally to a decrease in hydraulic conductivity. The process of crust removal represented a severe disturbance of the surface soil which to our understanding causes particle mobilisation and subsequent pore clogging. The first hypothesis could neither be rejected nor accepted. The second set of experiments showed that the hydraulic conductivity significantly dropped in particular after the first drying event.. This was observed for both undisturbed and repacked samples. The following drying cycles further decreased the hydraulic conductivity in the repacked samples. The decrease in hydraulic conductivity was positively correlated to turbidity values in the effluent of the samples, indicating particle mobilisation in all samples. The results imply that hydraulic properties in such substrates undergo rapid changes that depend on the temporal dynamics of atmospheric drivers, precipitation and evaporative demand, controlling the degree of wetness and the rate and degree of drying during the very early stage after placement. Associated with the dynamics of the atmospheric drivers are the biological changes due to the formation of biological soil crusts and the establishment of vegetation, both of them contributing to the stabilisation of hydraulic properties.

  20. Vital Soil: Function, Value and Properties.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is a review of the book, Vital Soil: Function, Value and Properties. Soil vitality has been defined as the ability of soil ecosystems to stay in balance in a changing world. The soil environment and the life that it supports developed over centuries and millennia, but careless human ac...

  1. Laboratory Studies to Examine the Impact of Polyacrylamide (PAM) on Soil Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Moran, E. A.; Young, M. H.; Yu, Z.

    2005-12-01

    Polyacrylamide (PAM) is a long-chain synthetic polymer made of the monomer acrylamide (AMD). PAM has numerous uses ranging from food processing to drilling to wastewater treatment. More recently it has been proposed as a canal sealant in the western US to improve water conservation. To support a larger field-based experimental program being implemented in Grand Junction, CO, soil column experiments are being conducted to evaluate the mechanisms of how, and to what extent, PAM reduces soil hydraulic conductivity. The goal of the experiments is to find the optimum concentration and application method of PAM that reduces hydraulic conductivity to the greatest extent. Column tests were conducted, in triplicate, using a constant head method in acrylic columns of 15 cm length and 6.4 cm diameter. An unbalanced multi-factorial design was used with experimental variables including soil type (medium silica sand, locally-derived sand, and locally-derived loam), PAM concentration (11, 22, 44, 88 kg/canal-ha), turbidity (0, 100, 350 NTU), and application method (hydrated PAM on dry soil and powdered PAM applied to water column above saturated soil). Non-crosslinked anionic PAM with a molecular weight of 12 to 24 Mg/mol was used for all experiments. Additional experiments were conducted in graduated cylinders to evaluate interactions between PAM, turbidity and water chemistry. Results of the laboratory tests will be presented and discussed in the context of water conservation in the western US.

  2. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    SciTech Connect

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2002-09-30

    To predict contaminant release to the groundwater, it is necessary to understand the hydraulic properties of the material between the release point and the water table. Measurements of the hydraulic properties of the Hanford unsaturated sediments that buffer the water table are available from many areas of the site; however, the documentation is not well cataloged nor is it easily accessible. The purpose of this report is to identify what data is available for characterization of the unsaturated hydraulic properties at Hanford and Where these data can be found.

  3. Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect

    Rockhold, Mark L.; Middleton, Lisa A.

    2009-03-31

    This report documents the requirements for transferring physical and hydraulic property data compiled by PNNL into the Hanford Environmental Information System (HEIS). The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and one of their current site contractors - CH2M-Hill Plateau Remediation Company (CHPRC). The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library.1 These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database

  4. [Effects of Cultivation Soil Properties on the Transport of Genetically Engineered Microorganism in Huabei Plain].

    PubMed

    Zhang, Jing; Liu, Ping; Liu, Chun; Chen, Xiao-xuan; Zhang, Lei

    2015-12-01

    The transport of genetically engineered microorganism (GEM) in the soil is considered to be the important factor influencing the enhanced bioremediation of polluted soil. The transport of an atrazine-degrading GEM and its influencing factors were investigated in the saturated cultivation soil of Huabei Plain. The results showed that horizontal infiltration was the main mechanism of GEM transport in the saturated cultivation soil. The transport process could be simulated using the filtration model. Soil properties showed significant effects on pore water flow and GEM transport in saturated soil. When particle size, porosity and sand component of the soil increased, the hydraulic conductivity constant increased and filtration coefficient of GEM decreased in saturated soil, indicating the reduced retention of GEM in the soil. An increase in infiltration flow also increased hydraulic conductivity constant in saturated soil and consequently decreased filtration coefficient of GEM. When hydraulic conductivity constants ranged from 5.02 m · d⁻¹ to 6.70 m · d⁻¹ in the saturated soil, the filtration coefficients of GEM varied from 0.105 to 0.274. There was a significantly negative correlation between them. PMID:27012008

  5. Transition to saturation in a gradually layered soil: effect of the hydraulic conductivity decrease with depth

    NASA Astrophysics Data System (ADS)

    Peli, M.; Barontini, S.; Ranzi, R.

    2012-04-01

    The soil hydraulic conductivity at saturation Ks typically decreases with depth across the upper soil layers, thus strongly characterising the water partitioning and playing an important role in the groundwater recharge. Peaks of water content and perched waters can in fact take place even if the porosity and the soil-water retention relationship are homogeneous, and if the soil lies on a capillary barrier. Aiming at better understanding these processes, a one dimensional infiltration at constant rate, into a finite depth gradually layered soil, was numerically investigated by means of Hydrus1D and compared with theoretical approaches. Ks was assumed to exponentially decrease with depth and the soil to be saturated at the bottom. After a preliminar dimensional analysis on the basis of the Buckigham π-theorem, two sets of simulations were performed, in order to investigate a strongly Ks-decreasing soil and a more homogeneous one. According to an analytical solution of the Richards equation, peaks of water content onset at the soil surface and they are enveloped as the maximum water content moves downward. Then either the saturation is reached within the soil, thus leading to a perched water table which rapidly reaches steady conditions, or the peak vanishes. In this case, depending on the infiltration rate, a perched water can anyway onset growing from the bottom of the domain, or the solution can recover its monotonicity allowing a water flow to take place in the direction of the increasing water content. The infiltration rate at which the soil is lead to waterlogging depends on the whole Ks profile and it is therefore less than the Ks of the upper soil layer.

  6. Applicability of Different Hydraulic Parameters to Describe Soil Detachment in Eroding Rills

    PubMed Central

    Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wagner, Jean-Frank; Ries, Johannes B.

    2013-01-01

    This study presents the comparison of experimental results with assumptions used in numerical models. The aim of the field experiments is to test the linear relationship between different hydraulic parameters and soil detachment. For example correlations between shear stress, unit length shear force, stream power, unit stream power and effective stream power and the detachment rate does not reveal a single parameter which consistently displays the best correlation. More importantly, the best fit does not only vary from one experiment to another, but even between distinct measurement points. Different processes in rill erosion are responsible for the changing correlations. However, not all these procedures are considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They predict the fluvial incising in the rill's bottom, but the main sediment sources are not considered sufficiently in its equations. The results of this study show that there is still a lack of understanding of the physical processes underlying soil erosion. Exerted forces, soil stability and its expression, the abstraction of the detachment and transport processes in shallow flowing water remain still subject of unclear description and dependence. PMID:23717669

  7. Physical and hydraulic characteristics of bentonite-amended soil from Area 5, Nevada Test Site

    SciTech Connect

    Albright, W.

    1995-08-01

    Radioactive waste requires significant isolation from the biosphere. Shallow land burial using low-permeability covers are often used to prevent the release of impounded material. This report details the characterization of a soil mixture intended for use as the low-permeability component of a radioactive waste disposal site. The addition of 6.5 percent bentonite to the sandy soils of the site reduced the value of saturated hydraulic conductivity (K{sub s}) by more than two orders of magnitude to 7.6 {times} 10{minus}{sup 8} cm/sec. Characterization of the soil mixture included measurements of grain density, grain size distribution, compaction, porosity, dry bulk density, shear strength, desiccation shrinkage, K{sub s}, vapor conductivity, air permeability, the characteristic water retention function, and unsaturated hydraulic conductivity by both experimental and numerical estimation methods. The ability of the soil layer to limit infiltration in a simulated application was estimated in a one-dimensional model of a landfill cover.

  8. Applicability of different hydraulic parameters to describe soil detachment in eroding rills.

    PubMed

    Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wagner, Jean-Frank; Ries, Johannes B

    2013-01-01

    This study presents the comparison of experimental results with assumptions used in numerical models. The aim of the field experiments is to test the linear relationship between different hydraulic parameters and soil detachment. For example correlations between shear stress, unit length shear force, stream power, unit stream power and effective stream power and the detachment rate does not reveal a single parameter which consistently displays the best correlation. More importantly, the best fit does not only vary from one experiment to another, but even between distinct measurement points. Different processes in rill erosion are responsible for the changing correlations. However, not all these procedures are considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They predict the fluvial incising in the rill's bottom, but the main sediment sources are not considered sufficiently in its equations. The results of this study show that there is still a lack of understanding of the physical processes underlying soil erosion. Exerted forces, soil stability and its expression, the abstraction of the detachment and transport processes in shallow flowing water remain still subject of unclear description and dependence. PMID:23717669

  9. Identification of effective flow processes and properties from virtual soils using inverse modelling

    NASA Astrophysics Data System (ADS)

    Schelle, H.; Iden, S. C.; Schlüter, S.; Vogel, H.-J.; Durner, W.

    2012-04-01

    Simulation of water flow and solute transport in unsaturated soils requires accurate knowledge of soil hydraulic properties. This study aims at developing strategies for deriving the flow and transport parameters for effective models at the scale of an agricultural field. Although hydraulic properties can be estimated from field observations under atmospheric boundary conditions by inverse modeling, the spatial heterogeneity of soil hydraulic properties within a field is known to strongly influence both local observations and the average behavior of the system. To assess the impact of individual or combined structural components on the water dynamics within the system, the interdisciplinary research group INVEST performs water flow simulations in complex two- and three-dimensional virtual realities, representing cultivated soils with spatial heterogeneity on multiple scales. Numerical simulations with a high spatiotemporal resolution yield synthetic datasets of internal state variables and fluxes. These data mimic measurements which could be recorded by typical instruments in a field soil. The simulated datasets are used to analyze the influence of the soil structures on the variability of measured data and to develop and test parameter estimation procedures. The central questions being addressed in this contribution are: (i) How big is the lateral variability of the measured data? (ii) How can within-field structures be related to the effective model parameters that are needed to predict average water dynamics at the field scale? (iii) How do the estimated hydraulic properties depend on measurement type and location? And (iv) what is the impact of the variability of the estimated effective hydraulic properties on the assessment of the soil water budget? To answer these questions we evaluate different data sets in terms of information content and usefulness for identifying suitable effective models and effective model parameters. The simulations show that a general

  10. Composted municipal waste effect on chosen properties of calcareous soil

    NASA Astrophysics Data System (ADS)

    Hamidpour, M.; Afyuni, M.; Khadivi, E.; Zorpas, A.; Inglezakis, V.

    2012-10-01

    A 3-year field study was conducted to assess effects of composted municipal waste on some properties, distribution of Zn, Cu in a calcareous soil and uptake of these metals by wheat. The treatments were 0, 25, 50 and 100 Mg ha-1 of municipal solidwastewhichwas applied in three consecutive years. The application of composted municipal waste increased the saturated hydraulic conductivity, the aggregate stability,the organic carbon content and electrical conductivity, whereas it slightly decreased the soil pH and bulk density. A significant increase in the concentration of Zn and Cu were observed with increasing number and rate of compost application. The distribution of Zn and Cu between the different fractions in untreated and treated soils showed that the majority of Zn and Cu were in the residual form. Finally, the levels of Zn and Cu were higher in grains of wheat grown in composttreated plots compared to that grown in the control plots.

  11. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. PMID:25898984

  12. Characterizing Soil Hydraulic Parameter Heterogeneity Using Cokriging and Artificial Neural Network: A Framework of Integrating Hard and Soft Data

    NASA Astrophysics Data System (ADS)

    Ye, M.; Schaap, M. G.; Khaleel, R.; Zhu, J.

    2005-12-01

    Characterization of the heterogeneity of hydraulic parameters that control transport processes in the vadose zone is always difficult due to prohibitive investments involved with direct parameter measurements (so-called `hard' data). `Soft' data such as moisture content (θ) and results derived from geophysical measurements, however, carry significant information about media heterogeneity and should be included in site characterization, where possible. We developed a method to incorporate both `hard' and `soft' data using cokriging and artificial neural network (ANN) analyses to generate 3D spatially correlated structures of hydraulic parameters. This method was applied to a field injection experiment carried out in 2000 at the `Sisson and Lu' injection site at the U.S. Department of Energy's Hanford Site, WA. Available data included limited measurements of soil hydraulic parameters (i.e., saturated hydraulic conductivity and van Genuchten parameters, totaling 70 datasets) and soil characterization data (bulk density and percentages of gravel, coarse and fine sand, silt, and clay). A 3D initial θ field reflecting the geologic layering was available at 32 observation wells (1344 locations). We used variograms and cross-variograms to investigate the spatial correlation and cross-correlation of the initial θ measurements and soil characterization data variables. We used ANN-based pedotransfer functions to map soil characterization data to hydraulic parameters. Using initial θ as a secondary variable, we used a cokriging scheme to estimate 3D heterogeneous fields of the primary variables, the soil characterization data and, subsequently, 3D fields of the hydraulic parameters with the pedotransfer functions. These hydraulic parameter fields were then used to simulate the field injection experiment. The spatial moments of the measured and simulated θ were compared to evaluate the robustness of the developed method. The θ profiles at observation wells were

  13. The Influence of Glass Leachate on the Hydraulic, Physical, Mineralogical and Sorptive Properties of Hanford Sediment

    SciTech Connect

    Kaplan, Daniel I.; Serne, R. Jeffrey; Schaef, Herbert T.; Lindenmeier, Clark W.; Parker, Kent E.; Owen, Antionette T.; McCready, David E.; Young, James S.

    2003-08-26

    The Immobilized Low Activity Waste (ILAW) generated from the Hanford Site will be disposed of in a vitrified form. It is expected that leachate from the vitrified waste will have a high pH and high ionic strength. The objective of this study was to determine the influence of glass leachate on the hydraulic, physical, mineralogical, and sorptive properties of Hanford sediments. Our approach was to put solutions of NaOH, a simplified surrogate for glass leachate, in contact with quartz sand, a simplified surrogate for the Hanford subsurface sediment, and Warden soil, an actual Hanford sediment. Following contact with three different concentrations of sodium hydroxide solutions, changes in hydraulic conductivity, porosity, moisture retention, mineralogy, aqueous chemistry, and soil-radionuclide distribution coefficients were determined. Under chemical conditions approaching the most caustic glass leachate conditions predicted in the near-field of the ILAW disposal site, approximated by 0.3 M NaOH, significant changes in mineralogy were observed. The clay minerals of the Hanford sediment evidenced the greatest dissolution thereby increasing the relative proportions of the more resistant minerals, e.g., quartz, feldspar, and calcite, in the remaining mass. Some re-precipitation of solids (mostly amorphous gels) was observed after caustic contact with both solids; these precipitates increased the moisture retention in both sediments, likely because of water retained within the gel coatings. The hydraulic conductivities were slightly lower but, because of experimental artifacts, these reductions should not be considered significant. Thus, there does not seem to be large differences in the hydraulic properties of the quartz sand or Warden silt loam soil after 192 days of contact with caustic fluids similar to glass leachate. The long term projected impact of the increased moisture retention has not been evaluated but likely will not make past simplified performance

  14. Hydraulic properties of surface mine spoils of the northern Appalachian Plateau

    SciTech Connect

    Hawkins, J.W.

    1998-12-31

    Aquifer tests were conducted on over 125 mine spoil wells from 18 surface mines located in Pennsylvania, West Virginia, Ohio, and Kentucky. These tests (primarily slug tests) were used to determine the range, variability, and predictability of surface mine spoil hydraulic properties (hydraulic conductivity and transmissivity). Test results show that hydraulic properties of mine spoil aquifers are highly variable and relatively unpredictable. Hydraulic conductivity ranged over 7 orders of magnitude from a very low permeability of 4.45 {times} 10{sup {minus}9} m/s to a highly transmissive 7.58 {times} 10{sup {minus}2} m/s. The hydraulic conductivity measured at mines with 5 or more wells frequently ranged over 3 orders of magnitude and none ranged less than one. A few statistical relationships between geologic and mining conditions and the hydraulic properties were observed. Spoil aquifers that were under 30 months old and those over 100 months old exhibited significantly lower (95% confidence level) hydraulic conductivities than those between 30 and 100 months old. The influence of spoil lithology on the hydraulic conductivity does not appear to be strong, probably because of masking by other factors introduced during reclamation. No significant trends were observed between spoil thickness and hydraulic conductivity. A comparison of hydraulic conductivity derived from slug and constant-discharge tests performed on the same wells indicate that slug tests tend to yield lower values. A few spoil wells exhibited an oscillatory water-level response during slug testing, similar to that observed during testing of some karst and glacial aquifers.

  15. Measurement of soil and rock fractural hydraulic conductivities using falling head infiltration experiment of single-ring permeameter

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zhang, Z. C.; Shi, P.; Cheng, Q. B.

    2012-04-01

    Southwest China Karst is a fragile area for ecological system because of thin soil and underlying rock fracures. Soil and rock fractural hydraulic conductivities in this area determine infiltration, runoff and water retaining in soil and rock fractures for plant utilization. Determination of soil and rock fractural hydraulic conductivities is very tough due to strong heterogeneous. In this paper, we designed a single-ring permeameter to measure the hydraulic conductivities based on falling head infiltration experiment. The experiments were conducted in two karst areas in southwest China: a hillslope in Huanjiang County, northwest Guangxi for measuring soil hydraulic conductivities and a profile at the small catchment of Chenqi in the Puding basin of Guizhou for measuring fractural hydraulic conductivities. The results show that surface soil hydraulic conductivity is 2.386×10-4 m/s, much larger than 2.004×10-5 m/s for the soil at 30cm depth. Soil hydraulic conductivities are generally increased from the bottom to the top along the hillslope, and this increase is particularly significant for the soil at 30cm depth. The fractural hydraulic conductivities were determined for the limestone profile with three fractures crossing in vertical and horizontal directions. The effective fractural aperture was determined according to calibration of water head variations of the ponded water in the single ring permeameter, which can be simulated by a numerical model based on Navier-Stokes equations and measured with an automatic observation equipment. The hydraulic conductivities were then estimated in terms of the cubic law equation. The estimated effective fractural aperture is 0.25mm for the horizontal fracture, and 0.25 and 0.5mm for the two vertical fractures crossing the horizontal in the right and left sides, respectively. The corresponding hydraulic conductivity is 0.051 m/s for the horizontal fracture and 0.051 and 0.204m/s for the two vertical fractures in the right

  16. Variably saturated modeling of transient drainage: sensitivity to soil properties

    NASA Astrophysics Data System (ADS)

    Wise, William R.; Clement, T. P.; Molz, Fred J.

    1994-09-01

    Numerical analysis of a transient, two-dimensional (rectangular symmetry), unconfined-drainage problem, using a variably saturated flow model, shows that the location of the phreatic surface and the height of the seepage face are functions of the capillary forces exerted in the vadose zone. A sensitivity analysis investigating the effects of independent variations in the saturated hydraulic conductivity and the two Van Genuchten parameters is compared to one performed where the saturated hydraulic conductivity is functionally related to the Van Genuchten parameters. The relationship between these descriptive soil parameters, which may be used to describe the pore-size—density function of a porous medium, and the saturated hydraulic conductivity is surmised based upon limited empirical evidence. Expressing the permeability as a function of these soil properties reverses the sensitivities of the variably saturated model to the Van Genuchten parameters. From the preliminary work performed herein, consideration of the number of degrees-of-freedom used when performing a sensitivity analysis is shown to warrant great care, if the predicted sensitivities are to have meaningful physical interpretations.

  17. Relationship between hydraulic conductivity and formation factor of coarse-grained soils as a function of particle size

    NASA Astrophysics Data System (ADS)

    Choo, H.; Kim, J.; Lee, W.; Lee, C.

    2016-04-01

    This theoretical and experimental study investigates the variations of both the hydraulic conductivity and the electrical conductivity of coarse-grained soils as a function of pore water conductivity, porosity, and median particle size, with the ultimate goal of developing the relationship between the hydraulic conductivity (K) and the formation factor (F) in coarse-grained soils as a function of particle size. To monitor the variations of both the hydraulic conductivity and electrical conductivity (formation factor) of six sands with varying particle sizes, a series of hydraulic conductivity tests were conducted using a modified constant head permeameter equipped with a four electrode resistivity probe. It is demonstrated that K of the tested coarse-grained soils is mainly determined by the porosity and particle size. In contrast, the effect of particle size on the measured electrical conductivity (or F) is negligible, and the variation of F of the tested soils is mainly determined by porosity. Because the porosity may act as a connecting characteristic between K and F, the relation between them in coarse-grained soils can be expressed as a function of particle size. Finally, simple charts are developed for estimating the hydraulic conductivity of coarse-grained soils from the measured particle sizes and formations factors.

  18. Communicating soil property variability in heterogeneous soil mapping units

    NASA Astrophysics Data System (ADS)

    Farewell, Timothy

    2014-05-01

    Soil properties and classes can change over very short distances. For the purpose of scale, clarity and field sampling density, soil maps in England and Wales commonly use mapping units which are groupings of taxonomic soil series, commonly found in association with each other in the landscape. These mixed units (Soil Associations), typically contain between 3 and 7 soil series with physical or chemical properties, which can vary across the mapping unit, or may be relatively homogeneous. The degree of variation is not constant between soil properties, for instance, pH may be relatively constant, but volumetric shrinkage potential may be highly variable. Over the past ten years, the number of users of GIS soil property maps has dramatically increased, yet the vast majority of these users do not have a soil or geoscience background. They are instead practitioners in specific industries. As a result, new techniques have been developed to communicate the variation in maps of soil properties to a non-expert audience. GIS data structures allow more flexibility in the reporting of uncertainty or variation in soil mapping units than paper-based maps. Some properties are categorical, others continuous. In England and Wales, the national and regional memberships of soil associations are available, with areal percentages of the comprising soil series being estimated for each association by a combination of expert judgment and field observations. Membership at a local scale can vary considerably from the national average. When summarizing across a whole map unit, for continuous variables, rarely is it appropriate to provide a mean value, or even a weighted average based on membership percentage of the association. Such approaches can make a nonsense of wide-ranging data. For instance a soil association comprising soil series with highly different percentages of sand, silt and clay may result in a 'loamy' mean soil texture which is not reflective of any of the comprising soils

  19. Development and Hydraulic Action of Vegetation Growing From Soil Bioengineering Structures

    NASA Astrophysics Data System (ADS)

    Vollsinger, S.; Rauch, H.-P.; Meixner, H.

    In 1997 and 1998 a test flume was laid out at the Wien river near Vienna, to investigate soil bioengineering methods and their hydraulic effects. Four different soil bioengineering methods were used for bank protection, i.e. brush mattresses with willows, fascine layers, branch layers and willow cuttings. Four and five years after construction, important differences between methods are now becom- ing visible in terms of growth, functionality and damage. The development of individ- ual plants and the entire population is described by - the number of shoots per plant and per m2 (i.e. density), - their basal diameter and the diameter at a height of one metre, - their length, - the shape of their crown. Differences between the soil bioengineering methods are mainly related to the plant's water supply, which leads to a variation in the density of the populations. Typical deficiencies and losses are described phenologically and explained by the drag force of the water acting along different axes of the plant. Growing plants serve as a roughness element in the cross-section, by becoming taller, more rigid and shrubbier although less numerous. This hydraulic influence is de- scribed by the comparison of water levels, which were measured over a period of four years at the same profile and discharge volume. It is shown that the growth of the bank vegetation has a damming-up effect and thus causes the observed water levels to rise significantly.

  20. Hydraulic properties of coarsely and finely ground woodchips

    NASA Astrophysics Data System (ADS)

    Subroy, Vandana; Giménez, Daniel; Qin, Mingming; Krogmann, Uta; Strom, Peter F.; Miskewitz, Robert J.

    2014-09-01

    Recent evidence suggests that leachate from woodchips stockpiled at recycling facilities could negatively impact water quality. Models that can be used to simulate water movement/leachate production require information on water retention and hydraulic conductivity functions of the stockpiled material. The objectives of this study were to (1) determine water retention and hydraulic conductivity functions of woodchips with particle size distributions (PSDs) representative of field stockpiled material by modeling multistep outflow and (2) assess the performance of three pore structure models for their ability to simulate outflow. Six samples with contrasting PSDs were assessed in duplicate. Samples were packed in cylindrical columns (15.3 cm high, 12.1 cm wide) to measure saturated hydraulic conductivity (Ks), cumulative outflow and water content at equilibrium with pressure potentials of -2, -10 and -40 cm. Water retention at pressure potentials between -200 and -10,000 cm were obtained using pressure plate extractors and used to supplement data from the outflow experiment. Hydraulic parameters of the pore models were derived from these measurements using HYDRUS-1D run by DREAM(ZS). Ks was independent of PSD with values between 55 and 80 cm/h. Cumulative outflow at each pressure potential was correlated with the PSD geometric mean diameters, and was best predicted by a model having two interacting pore domains, each with separate hydraulic conductivity and water retention functions (DPeM). Unsaturated conductivities were predicted to drop on an average to 0.24 cm/h at -10 cm and 3 × 10-3 cm/h at -50 cm for the DPeM model, suggesting that water would move slowly through stockpiles except during intense rainfalls.

  1. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity.

    NASA Astrophysics Data System (ADS)

    Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; van Dam, J. C.

    2009-04-01

    Measurements of soil hydraulic properties is often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are troublesome and the accuracy of the results obtained by the different methodologies is still under discussion. Therefore it is licit to wonder whether, in the simulation of water dynamics in the unsaturated zone, the uncertainty in the determination of the soil hydraulic parameters could be so high to become more important than the modelling approach selected for the simulation. In order to explore this issue, in this research the data collected in an intensive monitoring activity conducted in 2006 during the cropping season of a 10 ha maize field located in Northern Italy (Landriano - PV), were used to: i) compare different methods for determining soil hydraulic parameters and ii) evaluate the effect of the uncertainty in these parameters on different outputs (i.e. evapotranspiration, water content in the root zone, fluxes through the bottom boundary of the root zone) of two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. Five are the direct and indirect methods executed to determine soil hydraulic parameters for each horizon of the experimental profile, two based on a parameter optimization to fit: a) the laboratory measured retention and hydraulic conductivity data and b) the field measured retention and hydraulic conductivity data; and three based on the application of widely used Pedo-Transfer Functions to the measurements of texture and organic matter: c) Rawls and Brakensiek (1989); d) HYPRES (Wösten et al., 1999); and e) ROSETTA (Schaap et al., 2001). Simulations were run using meteorological, irrigation and crop data measured at the experimental site for the time period June

  2. Coarse fragments affects soil properties in a mantled-karst landscape of the Ozark Highlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the effect of rock fragments on soil physical hydraulic properties within the mantled karst landscapes of the Savoy Experimental Watershed (SEW), a setting typical of much of the Ozark Plateaus. Water resources in these settings are highly susceptible to contamination. As a r...

  3. Testing the hydrologic utility of geologic frameworks for extrapolating hydraulic properties across large scales

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Halford, K. J.; Sweetkind, D. S.; Fenelon, J.

    2014-12-01

    The utility of geologic frameworks for extrapolating hydraulic conductivities to length scales that are commensurate with hydraulic data has been assessed at the Nevada National Security Site in highly-faulted volcanic rocks. Observed drawdowns from eight, large-scale, aquifer tests on Pahute Mesa provided the necessary constraints to test assumed relations between hydraulic conductivity and interpretations of the geology. The investigated volume of rock encompassed about 40 cubic miles where drawdowns were detected more than 2 mi from pumping wells and traversed major fault structures. Five sets of hydraulic conductivities at about 500 pilot points were estimated by simultaneously interpreting all aquifer tests with a different geologic framework for each set. Each geologic framework was incorporated as prior information that assumed homogeneous hydraulic conductivities within each geologic unit. Complexity of the geologic frameworks ranged from an undifferentiated mass of rock with a single unit to 14 unique geologic units. Analysis of the model calibrations showed that a maximum of four geologic units could be differentiated where each was hydraulically unique as defined by the mean and standard deviation of log-hydraulic conductivity. Consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation were evaluated qualitatively with maps of transmissivity. Distributions of transmissivity were similar within the investigated extents regardless of geologic framework except for a transmissive streak along a fault in the Fault-Structure framework. Extrapolation was affected by underlying geologic frameworks where the variability of transmissivity increased as the number of units increased.

  4. Engineered soils for low-level radioactive waste disposal facilities: Effects of additives on the adsorptive behavior and hydraulic conductivity of natural soils

    SciTech Connect

    Katz, L.E.; Humphrey, D.N.; DeMascio, F.A.

    1996-12-31

    The siting of low-level radioactive waste disposal facilities requires locations having suitable soil materials beneath the proposed facility. These soils should be selected or designed to control water infiltration and ponding and enhance adsorption of radionuclides. This paper has investigated the effect of four soil additives on the hydraulic conductivity and adsorption characteristics of two natural soils, a glacial till and marine clay. The additives studied in this paper were andisol, bentonite, clinoptilolite and hematite. The results of the hydraulic conductivity testing indicated that remolding and recompacting the soils produced a more homogeneous soil having lower hydraulic conductivities. Comparison of the hydraulic conductivity and adsorptive behavior of the background soils, the additives, and mixtures of background soils and additives indicated that andisol and clinoptilolite provided the most improvement with respect to increasing adsorption capacity for iodide and strontium, respectively, with little effect on the hydraulic conductivity. The extent of adsorption and the effects of the additives on adsorption were highly pH dependent. The impact of the additives was most significant at acidic pH for both strontium and iodide adsorption because at high pH iodide adsorption was minimal for any of the materials tested and all of the background soils adsorbed a significant amount of strontium at high pH. These results suggest that engineered soils, comprised of a mixture of soil and additives, when used below a low-level radioactive waste disposal facility can enhance the ability of a site to retard off-site migration of radionuclides. 40 refs., 15 figs., 6 tabs.

  5. Challenges associated with sampling dynamic soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The determination of dynamic soil properties (DSPs) for agricultural practices poses significant challenges, particularly in the context of values derived as part of the National Soil Survey. Although DSPs have been defined as those properties that change over human time scales, limits on the time ...

  6. Hydraulic properties of three types of glacial deposits in Ohio

    USGS Publications Warehouse

    Strobel, M.L.

    1993-01-01

    The effects of thickness, grain size, fractures, weathering, and atmosphericconditions on vertical ground-water flow in glacial deposits were studied at three sites that represent ground moraine, end moraine, and lacustrine depositional environments. Vertical hydraulic conductivities computed from pumped-well tests were 3.24 x 10-1 to 6.47 x 10-1 ft/d (feet per day) at the site representing end moraine and 1.17 ft/d at the site representing lacustrine deposits. Analysis of test data for the ground moraine site did not yield estimates of hydraulic conductivities, but did indicate that ground water flows through the total thickness of deposits in response to discharge from a lower gravel unit. Vertical hydraulic conductivities computed from pumped-well tests of nested wells and data from drill-core analyses indicate that fractures affect the migration of ground water downward through the glacial deposits at these sites. Flow through glacial deposits is complex; it is controlled by fractures, gram-size distribution, clay content, thickness, and degree of weathering, and atmospheric conditions.

  7. Determination of hydraulic properties in the vicinity of a landfill near Antioch, Illinois. Water Resources Investigation

    SciTech Connect

    Kay, R.T.; Earle, J.D.

    1990-01-01

    The report describes the hydraulic properties of the confined aquifer and an overlying confining unit in the vicinity of a landfill near Antioch, Illinois, and establishes the existence of hydraulic connection between the primary hydrogeologic units near the landfill. A description of the hydrogeology of the study area is given, and the results and interpretation of water-level monitoring and aquifer testing are presented.

  8. Effect of spatial variability of soil properties on infiltration

    NASA Astrophysics Data System (ADS)

    Domenech, Marisa; Castro Franco, Mauricio; Aparicio, Virginia; Costa, José Luis

    2013-04-01

    Topography and soil properties are key determinants of spatial variability of water content. Prediction of soil hydraulic properties are essential for modeling water flow and solute transport. In the southeastern of Buenos Aires Province, the effect of the relief on soil spatial variability is result of the relationship between elevation and effective depth (ED). Digital elevation models (DEM) provide quantitive information about relief. The objective was to determine the effect of spatial variability of soil properties on infiltration. The field was 50 ha and the soil classes were vertic Hapludoll, typic and petrocalcic Argiudoll. ED was measured using Gidding_Soil_Sampler® in 30x30m grid size. Elevation data were measured ussing a DGPS Trimble_R3®. From this, a DEM was generated. Two elevation and ED areas were delineated named High and Low zones. Three soil samples were taken at each zone with three replications at depth 0-30 and 30-90 cm. Texture, bulk density (δb) and organic matter (OM) were determined. A disc infiltrometer was used to determine the water infiltration rate (i). Clay content (As) and OM were homogeneous in the profile of the High zone. However, As content at 30-90 cm decreased in the Low zone. At the High zone, δb ranged from 1.31 to 1.34 g cm-3 and was higher than at the Low zone (δb=1.16 - 1.27 g cm-3). Also the i had less variation at the High zone. Under pressure head of -1 cm , the i increased in the Low zone. At lower pressure heads, the i was greater in the High zone. Higher i at the Low zone could be due to major ED, textural heterogeneity and higher OM content. Textural homogeneity, shallow ED and high δb allowed a more stable i at the High zone. Using topography and ED is a promising way of characterizing soil hydraulic behavior and its spatial variability across a field.

  9. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. PMID:26086811

  10. Field-Obtained Soil Water Characteristic Curves and Hydraulic Conductivity Functions

    NASA Astrophysics Data System (ADS)

    Elvis, Ishimwe

    A compacted clay liner (test pad) was constructed and instrumented with volumetric water content and soil matric potential sensors to determine soil water characteristic curves (SWCC) and hydraulic conductivity (k) functions. Specifically, the compacted clay liner was subjected to an infiltration cycle during a sealed double ring infiltrometer (SDRI) test followed by a drying cycle. After the drying cycle, Shelby tube samples were collected from the compacted clay liner and flexible wall permeability (FWP) tests were conducted on sub-samples to determine the saturated hydraulic conductivity. Moreover, two computer programs (RETC and UNSAT-H) were utilized to model the SWCCs and k-functions of the soil based on obtained measurements including the volumetric water content, the soil matric potential, and the saturated hudraulic conductivity (ks). Results obtained from the RETC program (s, r, α, n and ks) were ingested into UNSAT-H program to calculate the movement of water (rate and location) through the compacted clay liner. Although a linear wetting front (location of water infiltration as a function of time) is typically utilized for SDRI calculations, the use of a hyperbolic wetting front is recommended as a hyperbolic wetting front was modeled from the testing results. The suggested shape of the wetting front is associated with utilization of the desorption SWCC instead of the sorption SWCC and with relatively high values of ks (average value of 7.2E-7 cm/sec) were measured in the FWP tests while relatively low values of ks (average value of 1.2E-7 cm/sec) were measured in the SDRI test.

  11. How do alternative root water uptake models affect the inverse estimation of soil hydraulic parameters and the prediction of evapotranspiration?

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Salima-Sultana, Daisy; Selle, Benny; Ingwersen, Joachim; Wizemann, Hans-Dieter; Högy, Petra; Streck, Thilo

    2016-04-01

    Soil water extraction by roots affects the dynamics and distribution of soil moisture and controls transpiration, which influences soil-vegetation-atmosphere feedback processes. Consequently, root water uptake requires close attention when predicting water fluxes across the land surface, e.g., in agricultural crop models or in land surface schemes of weather and climate models. The key parameters for a successful simultaneous simulation of soil moisture dynamics and evapotranspiration in Richards equation-based models are the soil hydraulic parameters, which describe the shapes of the soil water retention curve and the soil hydraulic conductivity curve. As measurements of these parameters are expensive and their estimation from basic soil data via pedotransfer functions is rather inaccurate, the values of the soil hydraulic parameters are frequently inversely estimated by fitting the model to measured time series of soil water content and evapotranspiration. It is common to simulate root water uptake and transpiration by simple stress functions, which describe from which soil layer water is absorbed by roots and predict when total crop transpiration is decreased in case of soil water limitations. As for most of the biogeophysical processes simulated in crop and land surface models, there exist several alternative functional relationships for simulating root water uptake and there is no clear reason for preferring one process representation over another. The error associated with alternative representations of root water uptake, however, contributes to structural model uncertainty and the choice of the root water uptake model may have a significant impact on the values of the soil hydraulic parameters estimated inversely. In this study, we use the agroecosystem model system Expert-N to simulate soil moisture dynamics and evapotranspiration at three agricultural field sites located in two contrasting regions in Southwest Germany (Kraichgau, Swabian Alb). The Richards

  12. Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces

    NASA Astrophysics Data System (ADS)

    Khoury, Charbel N.

    Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear

  13. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  14. Physical and hydraulic properties of volcanic rocks from Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, L.E.

    2003-01-01

    A database of physical and hydraulic properties was developed for rocks in the unsaturated zone at Yucca Mountain, Nevada, a site under consideration as a geologic repository for high-level radioactive waste. The 5320 core samples were collected from 23 shallow (<100 m) and 10 deep (500-1000 m) vertical boreholes. Hydrogeologic units have been characterized in the unsaturated zone [Flint, 1998] that represent rocks with ranges of welding, lithophysae, and high and low temperature alteration (as a result of the depositional, cooling, and alterational history of the lithostratigraphic layers). Lithostratigraphy, the hydrogeologic unit, and the corresponding properties are described. In addition, the physical properties of bulk density, porosity, and particle density; the hydraulic properties of saturated hydraulic conductivity and moisture retention characteristics; and the field water content were measured and compiled for each core sample.

  15. Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA

    USGS Publications Warehouse

    Rotzoll, Kolja; Gingerich, Stephen B.; Jenson, John W.; El-Kadi, Aly I.

    2013-01-01

    Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ~0.01–0.4, estimated hydraulic conductivities are ~20–800 m/day for peripheral wells, and ~2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.

  16. Impact of soil water property parameterization on atmospheric boundary layer simulation

    NASA Astrophysics Data System (ADS)

    Cuenca, Richard H.; Ek, Michael; Mahrt, Larry

    1996-03-01

    Both the form of functional relationships applied for soil water properties and the natural field-scale variability of such properties can significantly impact simulation of the soil-plant-atmosphere system on a diurnal timescale. Various input parameters for soil water properties including effective saturation, residual water content, anerobiosis point, field capacity, and permanent wilting point are incorporated into functions describing soil water retention, hydraulic conductivity, diffusivity, sorptivity, and the plant sink function. The perception of the meaning of these values and their variation within a natural environment often differs from the perspective of the soil physicist, plant physiologist, and atmospheric scientist. This article investigates the sensitivity of energy balance and boundary layer simulation to different soil water property functions using the Oregon State University coupled atmosphere-plant-soil (CAPS) simulation model under bare soil conditions. The soil parameterizations tested in the CAPS model include those of Clapp and Hornberger [1978], van Genuchten [1980], and Cosby et al. [1984] using initial atmospheric conditions from June 16, 1986 in Hydrologic Atmospheric Pilot Experiment-Modélisation du Bilan Hydrique (HAPEX-MOBILHY). For the bare soil case these results demonstrate unexpected model sensitivity to soil water property parameterization in partitioning all components of the diurnal energy balance and corresponding boundary layer development.

  17. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.

    1974-01-01

    The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.

  18. Passive characterization of hydrofracture properties using signals from hydraulic pumps

    SciTech Connect

    Rector III, J.W.; Dong, Q.; Patzek, T.W.

    1999-01-02

    Massive hydraulic fracturing is used to enhance production from the low-permeability diatomite fields of Kern County, CA. Although critical for designing injection and recovery well patterns, the in-situ hydraulic fracture geometry is poorly understood. In 1990, Shell conducted an extensive seismic monitoring experiment on several hydrofractures prior to a steam drive pilot to characterize hydrofracture geometry. The seismic data were recorded by cemented downhole geophone arrays in three observation holes (MO-1, MO-2, and MO-3) located near the hydraulic fracture treatment wells. Using lowpass filtering and moveout analysis, events in the geophone recordings are identified as conical shear waves radiating from tube waves traveling down the treatment well. These events appear to be created by the hydraulic pumps, since their amplitudes are correlated with the injection rate and the wellhead pressure. Conical wave amplitudes are related to the tube wave attenuation in the treatment well and to wave-propagation characteristics of the shear component traveling in the earth. During the main fracturing stage, geophones above the fracture zone for wells MO-1 and MO-2 (both roughly along the inferred vertical fracture plane) exhibited conical-wave amplitude increases that are caused by shear wave reflection/scattering off the top of a fracture zone. From changes in the reflection amplitude as a function of depth, we interpret that the fracture zone initially extends along a confined vertical plane at a depth that correlates with many of the microseismic events. Toward the end of the main fracturing stage, the fracture zone extends upward and also extends in width, although we cannot determine the dimensions of the fracture from the reflection amplitudes alone. For all wells, we observe that the reflection (and what we infer to be the initial fracture) begins during a time period where no marked change in fracture pressure or injection rate or slurry concentration is

  19. Long-term acclimatization of hydraulic properties, xylem conduit size, wall strength and cavitation resistance in Phaseolus vulgaris in response to different environmental effects.

    PubMed

    Holste, Ellen K; Jerke, Megan J; Matzner, Steven L

    2006-05-01

    Phaseolus vulgaris grown under various environmental conditions was used to assess long-term acclimatization of xylem structural characteristics and hydraulic properties. Conduit diameter tended to be reduced and 'wood' density (of 'woody' stems) increased under low moisture ('dry'), increased soil porosity ('porous soil') and low phosphorus ('low P') treatments. Dry and low P had the largest percentage of small vessels. Dry, low light ('shade') and porous soil treatments decreased P50 (50% loss in conductivity) by 0.15-0.25 MPa (greater cavitation resistance) compared with 'controls'. By contrast, low P increased P50 by 0.30 MPa (less cavitation resistance) compared with porous soil (the control for low P). Changes in cavitation resistance were independent of conduit diameter. By contrast, changes in cavitation resistance were correlated with wood density for the control, dry and porous soil treatments, but did not appear to be a function of wood density for the shade and low P treatments. In a separate experiment comparing control and porous soil plants, stem hydraulic conductivity (kh), specific conductivity (ks), leaf specific conductivity (LSC), total pot water loss, plant biomass and leaf area were all greater for control plants compared to porous soil plants. Porous soil plants, however, demonstrated higher midday stomatal conductance to water vapour (gs), apparently because they experienced proportionally less midday xylem cavitation. PMID:17087467

  20. Validation of International Scale Soil Hydraulic Pedotransfer Functions for National Scale Applications

    NASA Astrophysics Data System (ADS)

    Nemes, A.; Schaap, M. G.; Wosten, J. H. M.

    2003-04-01

    To test the geographical validity of pedotransfer functions (PTFs), we used data of different scale databases as input to calibrate neural network models. Hungarian data were used to derive ‘national scale’ soil hydraulic PTFs, the HYPRES database was the basis of ‘continental scale’ PTFs, and a database containing mostly American and European data was used to develop ‘intercontinental scale’ PTFs. Accuracy of the estimations was tested at two levels, using independent Hungarian data. First, soil water retention curves (WRCs) were estimated. Average errors of 0.02 to 0.06 cm3cm-3 were obtained using national scale PTFs. International scale PTFs provided errors from 0.025 to 0.088 cm3cm-3. Estimated WRCs were then used to simulate soil moisture time-series of seven Hungarian soils. No significant differences were found among the different PTFs. Differences - averaged over a growing season - ranged from 0.064 to 0.069 cm3cm-3 while simulations using laboratory measured WRCs had an error of 0.061 cm3cm-3. International databases may offer alternatives to separate smaller databases and direct measurements, however, the degree of their representativity may be reflected in the results.

  1. Mechanics and hydraulics of unsaturated soils: what makes interfaces an indispensable part of a physically-based model

    NASA Astrophysics Data System (ADS)

    Nikooee, E.; Hassanizadeh, S. M.

    2014-12-01

    The foundations of the current theories for hydraulics and mechanics of unsaturated soils have been mainly based on the empirically introduced equations. There are various characteristics of unsaturated soils for which lots of different empirical equations have been proposed such as hydraulic conductivity, water retention curve, and effective stress parameter. One of the remarkable challenges which all current models face is hysteresis, i.e., for a certain matric suction, values of saturation, hydraulic conductivity and effective stress parameter in drying state and wetting are different. Conventional models of hydraulic and mechanical behaviour of unsaturated soils try to account for the hysteresis phenomenon by means of different empirical equations for each hydraulic path. Hassanizadeh and Gray (1993) claimed that the hysteresis in capillary pressure-saturation curves can be modelled through the inclusion of air-water interfaces as a new independent variable [1]. It has recently been stated that the same conjecture can be made for suction stress [2]. Therefore, it seems to better portray hydraulic and mechanical behaviour of unsaturated soils, interfaces are required as an indispensable part of the framework [3, 4]. This presentation aims at introducing the drawbacks of current theories of hydraulics and mechanics of unsaturated soils. For this purpose, the role of interfaces in the mechanics and hydraulics of unsaturated soils is explained and different possibilities to account for the contribution of interfaces are discussed. Finally, current challenges and future research directions are set forth. References[1] Hassanizadeh, S.M. & Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour.Res. 29(1993), 3389-3405.[2] Nikooee, E., Habibagahi, G., Hassanizadeh, S.M. & Ghahramani, A.: Effective Stress in unsaturated Soils: a thermodynamic approach based on the interfacial energy and hydromechanical coupling. Transport porous Med. 96

  2. Peat hydraulic conductivity in different landuses

    NASA Astrophysics Data System (ADS)

    Mustamo, Pirkko; Hyvärinen, Maarit; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2013-04-01

    Information on hydraulic conductivity and water retention properties of peatlands is needed, e.g., for modelling hydrology and soil carbon balance of peat soils. Ability to model the behaviour of peat soils, especially those drained for agricultural use, is important as cultivated peatlands act as a major source of CO2 and N2O emissions in Nordic countries. Peat soil hydraulic conductivity and water retention properties vary greatly, and their relationship to soil depth and degree of decomposition is not straightforward. The aim of this study was to produce new information about peat physical properties in different land uses and the relationship between peat soil hydraulic conductivity and variables such as soil porosity and degree of humification. Peat hydraulic conductivity was measured in situ with infiltrometer (direct push piezometer) in six study sites (two pristine bogs, two sites drained for forestry, a cultivated peat land site and a peat extraction site). Measurements were made in several depths according to soil profile. To examine relationship of soil properties and the hydraulic conductivity, undisturbed peat cores of known volume and also disturbed peat samples were collected from the study sites for determination of von Post humification factor, ash content, porosity and bulk density. Surface layer of the agricultural site had high ash content and bulk density and low porosity compared to the soil beneath it and the soil in other study sites. This was due to added sand and compaction by agricultural practice. Bog, in contrast, had very low bulk density and high porosity. Results show a great variation in hydraulic conductivity within the study sites even when the observations were in the same soil layer. Hydraulic conductivity was lowest in the peat extraction site and the agricultural site, and had higher correlation with study site (= landuse) and the measured layer than with soil porosity.

  3. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status.

    PubMed

    Caldeira, Cecilio F; Bosio, Mickael; Parent, Boris; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-04-01

    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture. PMID:24420931

  4. Estimating hydraulic properties of coastal aquifers using wave setup

    NASA Astrophysics Data System (ADS)

    Rotzoll, Kolja; El-Kadi, Aly I.

    2008-05-01

    SummaryWave setup is the elevated mean water-table at the coast associated with the momentum transfer of wave breaking, which occurs generally over several days. Groundwater responses to wave setup were observed as far as 5 km inland in central Maui, Hawaii. The analysis showed that at times of energetic swell events wave-driven water-table overheights dominate low-frequency groundwater fluctuations associated with barometric pressure effects. Matching peak frequencies at 1.7 × 10 -6 Hz and 3.7 × 10 -6 Hz were identified in setup and observed head using spectral decomposition. Similar to tides, the setup propagation through the aquifer shows exponentially decreasing amplitudes and linearly increasing time lags. Due to the longer periods of setup oscillations, the signal propagates deeper into the aquifer (˜10 km in central Maui) than diurnal tides (5 km) and can therefore provide information on greater length scales. Hydraulic diffusivity was estimated based on the setup propagation. An effective diffusivity of 2.3 × 10 7 m 2/d is consistent with aquifer parameters based on aquifer tests and tides. A one-dimensional numerical model supports the results of the analytical solution and strengthens the suitability to estimate hydraulic parameters from setup propagation. The methodology is expected to be beneficial to high-permeability coastal environments, such as on volcanic islands and atolls.

  5. Tillage Effects on Soil Properties & Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  6. Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Fang, Zhufeng; Bogena, Heye; Kollet, Stefan; Vereecken, Harry

    2016-05-01

    In distributed hydrological modelling one often faces the problem that input data need to be aggregated to match the model resolution. However, aggregated data may be too coarse for the parametrization of the processes represented. This dilemma can be circumvented by the adjustment of certain model parameters. For instance, the reduction of local hydraulic gradients due to spatial aggregation can be partially compensated by increasing soil hydraulic conductivity. In this study, we employed the information entropy concept for the scale dependent parameterization of soil hydraulic conductivity. The loss of information content of terrain curvature as consequence of spatial aggregation was used to determine an amplification factor for soil hydraulic conductivity to compensate the resulting retardation of water flow. To test the usefulness of this approach, continuous 3D hydrological simulations were conducted with different spatial resolutions in the highly instrumented Wüstebach catchment, Germany. Our results indicated that the introduction of an amplification factor can effectively improve model performances both in terms of soil moisture and runoff simulation. However, comparing simulated soil moisture pattern with observation indicated that uniform application of an amplification factor can lead to local overcorrection of soil hydraulic conductivity. This problem could be circumvented by applying the amplification factor only to model grid cells that suffer from high information loss. To this end, we tested two schemes to define appropriate location-specific correction factors. Both schemes led to improved model performance both in terms of soil water content and runoff simulation. Thus, we anticipate that our proposed scaling approach is useful for the application of next-generation hyper-resolution global land surface models.

  7. A harmonized vocabulary for soil observed properties

    NASA Astrophysics Data System (ADS)

    Simons, Bruce; Wilson, Peter; Cox, Simon; Vleeshouer, Jamie

    2014-05-01

    Interoperability of soil data depends on agreements concerning models, schemas and vocabularies. However, observed property terms are often defined during different activities and projects in isolation of one another, resulting in data that has the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, many soil property vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance being observed, and procedure. Effectively, this bundles separate information elements into a single slot. We have developed a vocabulary for observed soil properties by adopting and extending a previously defined water quality vocabulary. The observed property model separates the information elements, based on the Open Geospatial Consortium (OGC) Observations & Measurements model and extending the NASA/TopQuadrant 'Quantities, Units, Dimensions and Types' (QUDT) ontology. The imported water quality vocabulary is formalized using the Web Ontology Language (OWL). Key elements are defined as sub-classes or sub-properties of standard Simple Knowledge Organization System (SKOS) elements, allowing use of standard vocabulary interfaces. For the soil observed property vocabulary, terms from QUDT and water quality are used where possible. These are supplemented with additional unit of measure (Unit), observed property (ScaledQuantityKind) and substance being observed (SubstanceOrTaxon) vocabulary entries required for the soil properties. The vocabulary terms have been extracted from the Australian Soil and Land Survey Field Handbook and Australian Soil Information Transfer and Evaluation System (SITES) vocabularies. The vocabulary links any chemical substances to items from the Chemical Entities of Biological Interest (ChEBI) ontology. By formalizing the model for observable properties, and clearly labelling the separate elements, soil property observations may

  8. Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

    2014-01-01

    During 2013–14, the USGS, in cooperation with the U.S. Department of Energy, focused on further characterization of the sedimentary interbeds below the future site of the proposed Remote Handled Low-Level Waste (RHLLW) facility, which is intended for the long-term storage of low-level radioactive waste. Twelve core samples from the sedimentary interbeds from a borehole near the proposed facility were collected for laboratory analysis of hydraulic properties, which also allowed further testing of the property-transfer modeling approach. For each core sample, the steady-state centrifuge method was used to measure relations between matric potential, saturation, and conductivity. These laboratory measurements were compared to water-retention and unsaturated hydraulic conductivity parameters estimated using the established property-transfer models. For each core sample obtained, the agreement between measured and estimated hydraulic parameters was evaluated quantitatively using the Pearson correlation coefficient (r). The highest correlation is for saturated hydraulic conductivity (Ksat) with an r value of 0.922. The saturated water content (qsat) also exhibits a strong linear correlation with an r value of 0.892. The curve shape parameter (λ) has a value of 0.731, whereas the curve scaling parameter (yo) has the lowest r value of 0.528. The r values demonstrate that model predictions correspond well to the laboratory measured properties for most parameters, which supports the value of extending this approach for quantifying unsaturated hydraulic properties at various sites throughout INL.

  9. Hydraulic and nutritional feedback controls surface patchiness of biological soil crusts at a post-mining site.

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Gypser, Stella; Subbotina, Maria; Veste, Maik

    2015-04-01

    In a recultivation area located in Brandenburg, Germany, five types of biocrusts (initial BSC1, developed BSC2 and BSC3, mosses, lichens) and non-crusted mineral substrate were sampled on tertiary sand deposited in 1985-1986 to investigate hydrologic properties of crust patches. It was the aim of the study to demonstrate that (I) two types of BSC with alternative nutritional and hydraulic feedback modes co-exist in one area and that (II) these feedback modes are synergic. The sites to sample were selected by expertise, trying to represent mixed sites dominated by mosses, by lichens, and by visually in the field observable surface properties (colour and crust thickness) for the non-crusted substrate and BSC1 to 3. The non-crusted samples contained minor incrustations of the lichen Placynthiella oligotropha, young leaflets of the moss Ceratodon purpureus, as well as very sparsely present individuals of the green algae Ulothrix spec., Zygogonium spec. and Haematococcus spec. The sample BSC1 was not entirely covered with microphytes, crust patches were smooth, and P. oligotropha was observed to develop on residues of C. purpureus and on unspecified organic detritus. BSC2 covered the surface entirely and was dominated by P. oligotropha and by Zygogonium spec. The sample BSC3 consisted of pad-like patches predominantly growing on organic residues. The moss sample was dominated by C. purpureus and Zygogonium spec. growing between the moss stemlets directly on the mineral surface, the lichen sample was dominated by Cladonia subulata with sparsely scattered individuals of C. purpureus. Hierarchical cluster analysis revealed that BSC2 was floristically and chemically most similar to the moss crust, whereas BSC3 was floristically and chemically most similar to the lichen crust. Crust biomass was lowest in the non-crusted substrate, increased to the initial BSC1 and peaked in the developed BSC2, BSC3, the lichens and the mosses. Water infiltration was highest on the substrate

  10. Nitrogen Dynamics in the Soil-Root-Plant Continuum: Competitive and Mutualistic Dependencies through Hydraulic Redistribution

    NASA Astrophysics Data System (ADS)

    Quijano, J. C.; Kumar, P.; Drewry, D. T.

    2011-12-01

    Below ground processes occurring in natural ecosystems such as root water uptake and hydraulic redistribution (HR) have significant influence on the water dynamics. However, the real implications of these processes in the cycling of biogeochemical elements as N or P remain unknown. HR is a process by which plant roots are able to transport water passively in the soil column. Due to the capacity of HR to influence soil moisture and soil temperature it is believed that the presence of HR influences the rates of mineralization and ion diffusion in the soil enhancing nutrient uptake by plants. Furthermore, there is experimental evidence that HR enhances the interaction between species by facilitation of water from deeper to shallow rooted plants. Thus HR could also influence plant nutrient uptake in some species by facilitating a pathway from other species. In this study we use a numerical model to analyze the effects of HR on the N dynamics in the soil. We examine the effect of HR in decomposition of organic matter and passive transport of nitrogen in the soil column including plant uptake and leaching. We analyze the dynamics under two different cases of species composition (single or multiple species) to understand the nitrogen cycling in the presence of multiple plant species that coexist and the capacity of HR to enhance these dynamics. The model used in this study is multi species MLCan which is a multi-layer above- and below-ground soil-root-canopy model that is able to simulate species interaction using a "shared resource" conceptualization. MLCan is coupled with a C:N model (1) where only two pools of soil carbon, namely soil organic matter and microorganisms, are considered and soil N dynamics are calculated based on C:N ratio formulations. The forcing data is obtained from the Ameriflux Tower located in Blodgett Forest, Sierra Nevada, California. Three plant species are considered. We found that HR enhances the mineralization of organic matter at the surface

  11. Mapping specific soil functions based on digital soil property maps

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor

    2016-04-01

    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" (DOSoReMI.hu) numerous soil property maps have been compiled so far with proper DSM techniques partly according to GSM.net specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even DOSoReMI.hu was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in

  12. Development of a New Apparatus for Investigating Acoustic Effects on Hydraulic Properties of Low-Permeability Geo-Materials

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Sawada, A.; Sugita, H.; Takeda, M.; Komai, T.; Zhang, M.

    2006-12-01

    feasibility of the EASD method and to obtain the fundamental but important knowledge for the design of this method, it is first necessary to understand the effects of acoustic wave application on pore water flow behavior. A new apparatus is developed to investigate the effects of acoustic wave on hydraulic properties of soil sample. This test apparatus enables to confine a cylindrical specimen under hydrostatic pressure conditions and to apply acoustic wave simultaneously. Preliminary results associated with the effects of acoustic wave frequency on changes of permeability of kaolin clay samples are illustrated in this report. A program investigating the effects of electricity and pore water chemistry on efficiency of decontamination using the same samples is also ongoing and briefly presented. The two strategies for enhancing the efficiency of remediation for low permeable soils will be combined in the near future

  13. Experimental and numerical study of infiltration into arid soils with contrasting physical and textural properties

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill; Edde, Ambre; Mallants, Dirk

    2013-04-01

    Dye infiltration tests were performed in the arid environments of the Ti Tree catchment, Central Australia. This area has a mean annual precipitation of 300 mm and is further known to have infrequent intensive rainfall events linked to short-term flooding. The mechanisms of groundwater recharge in these arid environments are generally unknown. The upper 1-2 m of soil play an important role in water redistribution with preferential flow often contributing to inhomogeneous moisture storage, soil water flow and groundwater recharge. Reducing uncertainty in recharge estimation thus requires a detailed study of water flow especially near the soil surface where heterogeneity may be enhanced by biological activity and geomorphological processes. Each of three infiltration tests involved application of 100 L of a mixed dye solution applied by using a standard 60-cm diameter ring infiltrometer under constant-head ponded conditions. After complete water infiltration several vertical soil sections were prepared in a soil block of approximately 1.5-2 m3. Staining patterns were photographed to provide evidence of preferential flow while numerous disturbed and undisturbed samples were collected and analysed in the laboratory to determine soil physical and hydraulic properties including saturated hydraulic conductivity, water retention curve, initial moisture content prior to dye application and bulk densities. Staining patterns in the top 30-40 cm were relatively homogeneous with some fingering. However, presence of a textural break (fine over coarse sand) hypothesized to represent a paleo-riverbed significantly affected redistribution of water, possibly acting as a capillary barrier. Measurements of soil physical properties and soil profile digital photos were used to build a 3D heterogeneous soil hydraulic property model in HYDRUS-3D. Model results for the infiltration tests were quantitatively and qualitatively compared to staining patterns obtained during field experiments

  14. Effect of the method of estimation of soil saturated hydraulic conductivity with regards to the design of stormwater infiltration trenches

    NASA Astrophysics Data System (ADS)

    Paiva coutinho, Artur; Predelus, Dieuseul; Lassabatere, Laurent; Ben Slimene, Erij; Celso Dantas Antonino, Antonio; Winiarski, Thierry; Joaquim da Silva Pereira Cabral, Jaime; Angulo-Jaramillo, Rafael

    2014-05-01

    Best management practices are based on the infiltration of stormwater (e.g. infiltration into basins or trenches) to reduce the risk of flooding of urban areas. Proper estimations of saturated hydraulic conductivity of the vadose zone are required to avoid inappropriate design of infiltration devices. This article aims at assessing (i) the method-dependency of the estimation of soils saturated hydraulic conductivity and (ii) the consequences of such dependency on the design of infiltration trenches. This is illustrated for the specific case of an infiltration trench to be constructed to receive stormwater from a specific parking surface, 250 m2 in area, in Recife (Brazil). Water infiltration experiments were conducted according to the Beerkan Method, i.e. application of a zero water pressure head through a disc source (D=15 cm) and measures of the amount of infiltrated water with time. Saturated hydraulic conductivity estimates are derived from the analysis of these infiltration tests using several different conceptual approaches: one-dimensional models of Horton(1933) and Philip(1957), three-dimensional methods recently developed (Lassabatere et al., 2006, Wu et al., 1999, and Bagarello et al., 2013) and direct 3-dimensional numerical inversion. The estimations for saturated hydraulic conductivity ranged between 65.5 mm/h and 94 mm/h for one-dimensional methods, whereas using three-dimensional methods saturated hydraulic conductivity ranged between 15.6 mm/h and 50 mm/h. These results shows the need for accounting for 3D geometry, and more generally, the physics of water infiltration in soils, if a proper characterization of soil saturated hydraulic conductivity is targeted. In a second step, each estimate of the saturated hydraulic conductivity was used to calculate the stormwater to be stored in the studied trench for several rainfall events of recurrence intervals of 2 to 25 years. The calculation of these volumes showed a great sensitivity with regards to the

  15. Innovative in-situ determination of unsaturated hydraulic properties in deep loess sediments in north-west Bulgaria

    SciTech Connect

    Mallants, Dirk; Perko, Janez; Antonov, Dimitar; Karastanev, Doncho

    2007-07-01

    In the framework of selecting a suitable site for final disposal of low- and intermediate level short-lived radioactive waste (LILW-SL) in Bulgaria, site characterization is ongoing at the Marichin Valog site, North-West Bulgaria. The site is characterized by a complex sequence of loess, clayey gravel, and clay layers, of which the first 30-40 m are unsaturated. Proper knowledge about unsaturated water flow and concomitant radionuclide transport is key input to safety assessment calculations. Constant-head infiltrometer tests were carried out at several meters below ground surface to determine the unsaturated hydraulic properties of silty loess, clayey loess, and clayey gravel layers. Individual infiltrometers were equipped with 0.5-m-long filter sections; the shallowest filter was from 2 to 2.5 m depth, whereas the deepest was from 9.5 to 10 m depth. Infiltration tests provided data on cumulative infiltration and progression of the wetting front in the initially unsaturated sediments surrounding the infiltrometer. A cylindrical time-domain reflectometry TRIME probe was used to measure water content variations with time during progression of the wetting front. Access tubes for the TRIME probe were installed at 0.3 to 0.5 m from the infiltrometer tubes. By means of an inverse optimization routine implemented in the finite element code HYDRUS-2D, field-scale soil hydraulic parameters were derived for all layers. Results show a great consistency in the optimized parameter values, although the test sites were several meters apart. Apparently the size of the affected volume of soil was large enough to reduce the effect of spatial variability and to produce average field-scale hydraulic parameters that are relevant for large-scale predictions of flow patterns and radionuclide migration pathways. (authors)

  16. In-Situ Hydraulic Conductivities of Soils and Anomalies at a Future Biofuel Production Site

    NASA Astrophysics Data System (ADS)

    Williamson, M. F.; Jackson, C. R.; Hale, J. C.; Sletten, H. R.

    2010-12-01

    Forested hillslopes of the Upper Coastal Plain at the Savannah River Site, SC, feature a shallow clay loam argillic layer with low median saturated hydraulic conductivity. Observations from a grid of shallow, maximum-rise piezometers indicate that perching on this clay layer is common. However, flow measurements from an interflow-interception trench indicate that lateral flow is rare and most soil water percolates through the clay layer. We hypothesize that the lack of frequent lateral flow is due to penetration of the clay layer by roots of pine trees. We used ground penetrating radar (GPR) to map the soil structure and potential anomalies, such as root holes, down to two meters depth at three 10×10-m plots. At each plot, a 1×10-m trench was later back-hoe excavated along a transect that showed the most anomalies on the GPR maps. Each trench was excavated at 0.5-m intervals until the clay layer was reached (two plots were excavated to a final depth of 0.875 m and the third plot was excavated to a final depth of 1.0 m). At each interval, compact constant-head permeameters (CCHPs) were used to measure in-situ hydraulic conductivities in the clay-loam matrix and in any visually apparent anomalies. Conductivity was also estimated using a second 1×10-m transect of CCHP measurements taken within randomly placed augur holes. Additional holes targeted GPR anomalies. The second transect was created in case the back-hoe impacted conductivity readings. High-conductivity anomalies were also visually investigated by excavating with a shovel. Photographs of soil wetness were taken at visually apparent anomalies with a multispectral camera. We discovered that all visually apparent anomalies found are represented on the GPR maps, but that not all of the predicted anomalies on the GPR maps are visually apparent. We discovered that tree root holes create anomalies, but that there were also many conductivity anomalies that could not be visually distinguished from low

  17. Quasi-steady centrifuge method for unsaturated hydraulic properties

    USGS Publications Warehouse

    Caputo, M.C.; Nimmo, J.R.

    2005-01-01

    [1] We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations. Copyright 2005 by the American Geophysical Union.

  18. Setting properties and sealing ability of hydraulic temporary sealing materials.

    PubMed

    Ogura, Yoko; Katsuumi, Ichiroh

    2008-09-01

    This study sought to investigate the setting progress and sealing ability of hydraulic temporary sealing materials used in endodontic treatment: Lumicon, Caviton, and HY-Seal. To evaluate setting progress, the materials were filled into glass tubes with one end sealed and immersed in water. After immersion, a measurement apparatus was inserted from the non-immersed end and the set area was determined by subtracting the unset area from the sample thickness. To evaluate sealing ability, materials were filled into glass tubes and divided into four groups based on different immersion times. Thermal cycling and dye penetration were performed. At 7 days, the setting depths of HY-Seal and Caviton were almost equivalent to full sample thickness, while that of Lumicon was only half of full sample thickness (p < 0.01). On sealing ability, Lumicon ranked the highest followed by Caviton, whereas HY-Seal was unstable (p < 0.01). These results suggested that there was no correlation between setting progress and sealing ability. PMID:18972791

  19. Investigating thickness and physical properties of forest soil along headwater hillslopes by hole drilling method

    NASA Astrophysics Data System (ADS)

    Han, Xiaole; Liu, Jintao

    2015-04-01

    Mountain torrents along headwater hillslopes usually occur during heavy rainfall and bring damage to people's lives and properties. Thus, the mechanism for flood generation process in mountain areas must be well studied. Soil acts as an important factor controlling this process. However, systematic studies the spatial distribution of soil properties, including soil thickness, bulky density, texture and infiltration rate along headwater hillslopes are rarely obtained. Therefore, the objective of this study is to explore the variation trend of these soil properties in a 3-D perspective. To do this, a total of 39 probe measurements were made by using a 70-mm-diameter gasoline vibrating drill in a small catchment (0.42 hectare). Measurements were made by push the gasoline drill into the soil until the bedrock was encounted. Then, the drill was pushed out from the soil and the undisturbed soil was obtained. The main results of the experiment show that: (a) soil thickness decreased significantly from the valley to the ridge (e.g., the maximum soil thickness in the valley and ridge are 164cm and 81 cm, respectively). (b)Vertically, taking borehole #1 as an example (148cm deep), the saturated hydraulic conductivity decreased significantly from 1.5 mm/min (0cm deep) to 0.01 mm/min (140cm deep). Spatially, the saturated hydraulic conductivity at same depth increased with the elevation increasing. (c) Particle size analysis indicated that the soil clay content increased with increasing sampling depth. To conclude, our study reveals the spatial distribution of soil properties which can help us to explore flowpaths and store in three-dimensional at hillslope scale and develop a parsimonious 3-D physics-based model to simulate hillslope hydrological response.

  20. Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semi-arid environment 1891

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of this study is the role of precipitation uncertainty in determining the accuracy and retrieveability of estimated soil texture and hydraulic properties. This work builds on and extends recent work conducted as part of the ongoing development of the Army Remote Moisture System (ARMS), in...

  1. Analysis of effective Green-Ampt hydraulic parameters for vertically layered soils

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Zhu, Jianting

    2016-07-01

    While Green-Ampt model has been widely used in infiltration calculations through unsaturated soils, upscaling this model for applications in heterogeneous formations remains difficult. In this study, how to upscale soil parameters in the Green-Ampt model for vertically layered soils is examined. The main idea of upscaled effective parameters is to capture infiltration behavior in layered soil formations using only one set of parameters derived from the parameters of individual layers, such that the layered system can be replaced by an equivalent homogeneous medium. The general p-order power mean was proposed to represent the upscaling schemes of the Green-Ampt model. The optimal p value was determined by a general requirement of same total infiltration time for the layered formation and the equivalent homogeneous medium. The p-order power mean for the Green-Ampt parameters can capture the infiltration rates in the layered formations well, illustrating that the proposed upscaling schemes are reasonable to represent the overall behaviors of the heterogeneous layered formations. The structure of layered formations can significantly influence the upscaling results. However, when the number of layers becomes large, the layered formations tend to show homogeneity and the layer structure becomes less important. The results demonstrated that the scheme based on the harmonic mean for the saturated hydraulic conductivity and the general p-order power mean for the wetting front suction head can well capture the overall infiltration behaviors in both the coarse-layer-on-top and fine-layer-on-top formations, and thus is recommended as a general upscaling scheme when using the upscaled Green-Ampt model in layered formations.

  2. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also

  3. Effect of cryogel on soil properties

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Fufaeva, M. S.; Filatov, D. A.; Svarovskaya, L. I.; Rozhdestvenskii, E. A.; Gan-Erdene, T.

    2014-05-01

    Samples from the A1 and A1A2 horizons of sandy loamy gray forest soil containing 3.1% organic matter have been mixed with a 5% solution of polyvinyl alcohol (PVA) at a ratio of 7 : 1 under laboratory conditions. The samples were frozen at -20°C in a refrigerator; after a freezing-thawing cycle, the evaporation of water from their surface, their thermal conductivity coefficient, their elasticity modulus, and other properties were studied. It has been experimentally found that the thermal conductivity coefficient of cryostructured soil is lower than that of common soil by 25%. It has been shown that the cryostructured soil retains water for a longer time and that the water evaporation rate from its surface is significantly lower compared to the control soil. Cryogel has no negative effect on the catalase activity of soil; it changes the physical properties of soils and positively affects the population of indigenous soil microflora and the growth of the sown plants.

  4. Performance of demining sensors and soil properties

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Preetz, Holger; Igel, Jan

    2011-06-01

    Metal detector has commonly been used for landmine detection and ground-penetrating radar (GPR) is about to be deployed as dual sensor that is in combination with metal detector. Since both devices employ electromagnetic techniques, they are influenced by magnetic and dielectric properties of soil. To observe the influence, various soil properties as well as their spatial distributions were measured in four types of soil where a field test of metal detectors and GPRs took place. By analyzing soil properties these four types of soil were graded based on the estimated amount of influence on the detection techniques. The classification was compared to the detection performance of devices obtained from the blind test and a clear correlation between the difficulty of soil and the performance was observed; the detection and identification performance were degraded in soils that were classified as problematic. Therefore, it was demonstrated that the performance of metal detector and GPR for landmine detection can qualitatively be assessed by geophysical analyses.

  5. Variability of magnetic soil properties in Hawaii

    NASA Astrophysics Data System (ADS)

    van Dam, Remke L.; Harrison, J. Bruce J.; Hendrickx, Jan M. H.; Borchers, Brian; North, Ryan E.; Simms, Janet E.; Jasper, Chris; Smith, Christopher W.; Li, Yaoguo

    2005-06-01

    Magnetic soils can seriously hamper the performance of electromagnetic sensors for the detection of buried land mines and unexploded ordnance (UXO). Soils formed on basaltic substrates commonly have large concentrations of ferrimagnetic iron oxide minerals, which are the main cause of soil magnetic behavior. Previous work has shown that viscous remanent magnetism (VRM) in particular, which is caused by the presence of ferrimagnetic minerals of different sizes and shapes, poses a large problem for electromagnetic surveys. The causes of the variability in magnetic soil properties in general and VRM in particular are not well understood. In this paper we present the results of laboratory studies of soil magnetic properties on three Hawaiian Islands: O"ahu, Kaho"olawe, and Hawaii. The data show a strong negative correlation between mean annual precipitation and induced magnetization, and a positive correlation between mean annual precipitation and the frequency dependent magnetic behavior. Soil erosion, which reduces the thickness of the soil cover, also influences the magnetic properties.

  6. Large scale characterization of unsaturated soil properties in a semi-arid region combining infiltration, pedotransfer functions and evaporation tests

    NASA Astrophysics Data System (ADS)

    Shabou, Marouen; Angulo-Jaramillo, Rafael; Lassabatère, Laurent; Boulet, Gilles; Mougenot, Bernard; Lili Chabaane, Zohra; Zribi, Mehrez

    2016-04-01

    Water resource management is a major issue in semi-arid regions, especially where irrigated agriculture is dominant on soils with highly variable clay content. Indeed, topsoil clay content has a significant importance on infiltration and evaporation processes and therefore in the estimation of the volume of water needed for crops. In this poster we present several methods to estimate wilting point, field capacity volumetric water contents and saturated hydraulic conductivity of the Kairouan plain (680 km2), central Tunisia (North Africa). The first method relies on the Beerkan Estimation of Soil Transfer parameters (BEST) method, which consists in local estimate of unsaturated soil hydraulic properties from a single-ring infiltration test, combined with the use of pedotransfer functions applied to the Kairouan plain different soil types. Results are obtained over six different topsoil texture classes along the Kairouan plain. Saturated hydraulic conductivity is high for coarse textured and some of the fine textured soils due to shrinkage cracking-macropore soil structure. The saturated hydraulic conductivity values are respectively 1.31E-5 m.s-1 and 1.71E-05 m.s-1. The second method is based on evaporation tests on different test plots. It consists of analyzing soil moisture profile changes during the dry down periods to detect the time-to-stress that can be obtained from observation of soil moisture variation, albedo measurements and variation of soil temperature. Results show that the estimated parameters with the evaporation method are close to those obtained by combining the BEST method and pedotransfer functions. The results validate that combining local infiltration tests and pedotransfer functions is a promising tool for the large scale hydraulic characterization of region with strong spatial variability of soils properties.

  7. Soil cultivation in vineyards alters interactions between soil biota and soil physical and hydrological properties

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Winter, Silvia; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Stiper, Katrin; Potthoff, Martin; Guernion, Muriel; Scimia, Jennifer; Cluzeau, Daniel

    2016-04-01

    Several ecosystem services provided by viticultural landscapes result from interactions between soil organisms and soil parameters. However, to what extent different soil cultivation intensities in vineyards compromise soil organisms and their interactions between soil physical and hydrological properties is not well understood. In this study we examined (i) to what extent different soil management intensities affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), and (ii) how soil physical and hydrological properties influence these interactions, or vice versa. Investigating 16 vineyards in Austria, earthworms were assessed by hand sorting, Collembola via pitfall trapping and soil coring, litter decomposition by using the tea bag method. Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. Results showed complex ecological interactions between soil biota and various soil characteristics altered by management intensity. These investigations are part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management recommendations for various stakeholders.

  8. Predicting Soil Biological and Physical Properties Using Hydrological Properties

    NASA Astrophysics Data System (ADS)

    Geiger, L.; Hofmockel, K.; Kaleita, A.; Hargreaves, S.

    2012-12-01

    Soil biological and chemical properties vary at different spatial scales, which make predicting processes associated with these properties difficult. However, soil biological and chemical properties are important to fertility and ecosystem functioning. In this study, we used a Self Organizing Map (SOM) to determine whether soil hydrological characteristics can be used to characterize the distribution of a suite of soil biological and chemical properties. From a row crop field in south-central Iowa, we generated 36 sampling locations via a SOM, which were grouped into three categories according to hydrological properties by the SOM. Soil samples were then analyzed for microbial biomass, carbon and nitrogen mineralization potential, and organic and inorganic pools of carbon and nitrogen. We found that sampling locations in category 1 (potholes and toe slopes) had greater microbial biomass, total carbon, total nitrogen, and extractable organic carbon than compared locations in the two well-drained categories. Nitrogen and carbon mineralization and inorganic nitrogen pools did not differ significantly among the categories. These results demonstrate that hydrological characteristics can be used to predict relatively stable biological and chemical soil properties. However, prediction of nitrogen and carbon fluxes remains a challenge.

  9. Outflow methods for evaluating the soil hydraulic functional relationships between NAPL pressure and saturation in porous media

    SciTech Connect

    Bali, K.M.; Grismer, M.E.; Hopmans, J.W.

    1996-12-31

    Remediation and cleanup of petroleum product contaminated ground water often require modeling of fluid transport processes when immiscible liquid phases are present. Modeling of such multiphase transport systems requires knowledge of the functional relationships between fluid pressures, saturations, and permeabilities. The authors evaluated the applicability of the multistep outflow method used in soil science to determine these functions for two porous media (loam and sand) using Soltrol 130 and water as wetting fluids. The analytical retention and permeability functions of van Genuchten and Mualem were used, with an inverse method that has been shown to be reliable in estimating water retention and unsaturated hydraulic conductivity in soils, to estimate soil hydraulic function parameters for Soltrol 130 and water. The water and Soltrol 130 cumulative drainage as a function of time and the equilibrium saturations were used as input to a numerical model (MLSTPM) to optimize, through an inverse solution of the Richards equation, the parameters needed for the hydraulic functions. Optimizations were carried out for saturation paths corresponding to monotonically decreasing wetting phase saturations only. The functional relationships between oil pressures, saturations, and permeabilities in Oso-Flaco fine sand were accurately predicted from the optimized water retention curve parameters based on scaling by the ratio of interfacial tensions. However, this scaling procedure was inadequate to predict oil hydraulic function parameters from those of water in Yolo loam.

  10. Sprinkler Irrigation Effects on Infiltration and Near-Surface Unsaturated Hydraulic Conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic carbon (SOC) from dairy manure can help to restore productivity of eroded soil. SOC, irrigation, or both may alter soil hydraulic properties. We evaluated effects of SOC and simulated center-pivot irrigation on infiltration and near-surface hydraulic conductivity (K) measured under tens...

  11. Innovative Field Methods for Characterizing the Hydraulic Properties of a Complex Fractured Rock Aquifer (Ploemeur, Brittany)

    NASA Astrophysics Data System (ADS)

    Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Jimenez-Martinez, J.; De Dreuzy, J. R.; Schuite, J.; Boudin, F.; Labasque, T.; Aquilina, L.

    2014-12-01

    Characterizing the hydraulic properties of heterogeneous and complex aquifers often requires field scale investigations at multiple space and time scales to better constrain hydraulic property estimates. Here, we present and discuss results from the site of Ploemeur (Brittany, France) where complementary hydrological and geophysical approaches have been combined to characterize the hydrogeological functioning of this highly fractured crystalline rock aquifer. In particular, we show how cross-borehole flowmeter tests, pumping tests and frequency domain analysis of groundwater levels allow quantifying the hydraulic properties of the aquifer at different scales. In complement, we used groundwater temperature as an excellent tracer for characterizing groundwater flow. At the site scale, measurements of ground surface deformation through long-base tiltmeters provide robust estimates of aquifer storage and allow identifying the active structures where groundwater pressure changes occur, including those acting during recharge process. Finally, a numerical model of the site that combines hydraulic data and groundwater ages confirms the geometry of this complex aquifer and the consistency of the different datasets. The Ploemeur site, which has been used for water supply at a rate of about 106 m3 per year since 1991, belongs to the French network of hydrogeological sites H+ and is currently used for monitoring groundwater changes and testing innovative field methods.

  12. Quantifying Hydraulic Properties and Connections Between Structural Blocks at Pahute Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Jackson, T. R.; Halford, K. J.; Garcia, C. A.

    2014-12-01

    Underground testing of high-yield nuclear devices on eastern Pahute Mesa in the Nevada National Security Site during the period from 1965-92 has introduced radionuclides into the groundwater system. Groundwater flow is complex because Pahute Mesa is underlain by a thick sequence of alternating lava flows and tuffs which have been faulted into distinct structural blocks. Hydraulic properties of volcanic-rock aquifers, confining units, and fault structures have been quantified across a 50 mi² area where radionuclide transport occurs. This large area has been investigated by pumping 60 million gallons of groundwater during 16 large-scale aquifer tests. Water-level changes have been detected in observation wells more than 3 mi from pumped wells and were interpreted simultaneously with multiple groundwater flow models—one model for each well site. Hydraulic properties were distributed with a single hydrogeologic framework model that was sampled by each groundwater-flow model. Hydraulic properties were estimated across structural blocks with offsets of 1,500 ft where pumping signals were measured across fault structures. The resulting large-scale estimates of hydraulic conductivity distributions and regional transmissivity map will improve predictions of radionuclide transport.

  13. Scaling of material properties for Yucca Mountain: literature review and numerical experiments on saturated hydraulic conductivity

    SciTech Connect

    McKenna, S.A.; Rautman, C.A.

    1996-08-01

    A review of pertinent literature reveals techniques which may be practical for upscaling saturated hydraulic conductivity at Yucca Mountain: geometric mean, spatial averaging, inverse numerical modeling, renormalization, and a perturbation technique. Isotropic realizations of log hydraulic conductivity exhibiting various spatial correlation lengths are scaled from the point values to five discrete scales through these techniques. For the variances in log{sub 10} saturated hydraulic conductivity examined here, geometric mean, numerical inverse and renormalization adequately reproduce point scale fluxes across the modeled domains. Fastest particle velocities and dispersion measured on the point scale are not reproduced by the upscaled fields. Additional numerical experiments examine the utility of power law averaging on a geostatistical realization of a cross-section similar to the cross-sections that will be used in the 1995 groundwater travel time calculations. A literature review on scaling techniques for thermal and mechanical properties is included. 153 refs., 29 figs., 6 tabs.

  14. Effect of almond shell biochar addition on the hydro-physical properties of an arable Central Valley soil

    NASA Astrophysics Data System (ADS)

    Lopez, V.; Ghezzehei, T. A.

    2014-12-01

    Biochar is composed of any carbonaceous matter pyrolyzed under low oxygen exposure. Its use as a soil amendment to address soil infertility has been accelerated by studies reporting positive effects of enhanced nutrient retention, cation exchange capacity, microbial activity, and vegetative growth over time. Biochar has also been considered as a carbon sequestration method because of its reported environmental persistence. While the aforementioned effects are positive benefits of biochar's use, its impact on soil physical properties and water flow are equally important in maintaining soil fertility. This study aims to show how soil physical and hydraulic properties change over time with biochar addition. To address these aims, we conducted a 9 week microcosm incubation experiment with local arable loamy sand soils amended with biochar. Biochar was created from locally collected almond shells and differs by pyrolysis temperatures (350°C, 700°C) and size (<250 μm, 1-2mm). Additionally, biochar was applied to soil at a low (10 t/ha) or high (60 t/ha) rates. Changes in soil water flow properties were analyzed by infiltration or pressure cell experiments immediately after creating our soil-biochar mixtures. These experiments were repeated during and after the incubation period to observe if and how flow is altered over time. Following incubation and hydraulic experiments, a water drop penetration time (WDPT) test was conducted to observe any alterations in surface hydrophobicity. Changes in soil physical properties were analyzed by determining content of water stable aggregates remaining after wet sieving. This series of experiments is expected to provide a greater understanding on the impact biochar addition on soil physical and hydraulic properties. Furthermore, it provides insight into whether or not converting local agricultural waste into biochar for soil use will be beneficial, especially in agricultural systems undergoing climate stress.

  15. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    USGS Publications Warehouse

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  16. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-02-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  17. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE PAGESBeta

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  18. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-08-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  19. Hydraulic testing around Room Q: Evaluation of the effects of mining on the hydraulic properties of Salado Evaporites

    SciTech Connect

    Domski, P.S.; Upton, D.T.; Beauheim, R.L.

    1996-03-01

    Room Q is a 109-m-long cylindrical excavation in the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site. Fifteen boreholes were drilled and instrumented around Room Q so that tests could be conducted to determine the effects of room excavation on the hydraulic properties of the surrounding evaporate rocks. Pressure-buildup and pressure-pulse tests were conducted in all of the boreholes before Room Q was mined. The data sets from only eight of the boreholes are adequate for parameter estimation, and five of those are of poor quality. Constant-pressure flow tests and pressure-buildup tests were conducted after Room Q was mined, producing eleven interpretable data sets, including two of poor quality. Pre-mining transmissivities interpreted from the three good-quality data sets ranged from 1 x 10{sup -15} to 5 x 10{sup -14} m{sup 2}/s (permeability-thickness products of 2 x 10{sup -22} to 9 x 10{sup -21} m{sup 3}) for test intervals ranging in length from 0.85 to 1.37 m. Pre-mining average permeabilities, which can be considered representative of undisturbed, far-field conditions, were 6 x 10{sup -20} and 8 x 10{sup -20} m{sup 2} for anhydrite, and 3 x 10{sup -22} m{sup 2} for halite. Post-mining transmissivities interpreted from the good-quality data sets ranged from 1 x 10{sup -16} to 3 x 10{sup -13} m{sup 2}/s (permeability-thickness products of 2 x 10{sup -23} to 5 x 10{sup -20} m{sup 3}). Post-mining average permeabilities for anhydrite ranged from 8 x 10{sup -20} to 1 x 10{sup -19} m{sup 2}. The changes in hydraulic properties and pore pressures that were observed can be attributed to one or a combination of three processes: stress reduction, changes in pore connectivity, and flow towards Room Q. The effects of the three processes cannot be individually quantified with the available data.

  20. Decoupling the Influence of Leaf and Root Hydraulic Conductances on Stomatal Conductance and its Sensitivity to Vapor Pressure Deficit as Soil Dries in a Drained Loblolly Pine Plantation

    NASA Astrophysics Data System (ADS)

    Domec, J.; Noormets, A.; King, J. S.; McNulty, S. G.; Sun, G.; Gavazzi, M. J.; Boggs, J. L.

    2008-12-01

    The conversion of wetlands to intensively managed forest lands in eastern North Carolina is widespread and the consequences on plant hydraulic properties and water balances are not well studied. Precipitation and soil moisture in North America will be modified in the future and forest trees in the US will be challenged by warmer temperature, higher leaf-to-air water vapor pressure deficit (D), and more frequent summer droughts. Many studies have examined the relationships between whole tree hydraulic conductance (Ktree) and stomatal conductance (gs), but Ktree remains an ill-defined quantity because it depends on a series of resistances, mainly controlled by the conductance in roots (Kroot) and leaves (Kleaf). To explain the variation in Ktree, we characterized Kroot and Kleaf and how they responded to environmental drivers such as soil moisture availability and D. In addition, the role of dynamic variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to D was studied. The 2007 summer drought was used as a means to challenge the hydraulic system, allowing testing how broadly predictions about its behaviour hold outside the range of typical conditions. Roots and leaves were the weakest points in the whole tree hydraulic system, and contributed for more than 75% of the total tree hydraulic resistance. Effects of drought on Ktree altered the partitioning of the resistance between roots and leaves and as soil moisture declined below 50% relative extractable water (REW), Kroot declined faster than Kleaf and became the dominant hydraulic fuse regulating Ktree. Although Ktree depended on soil moisture, its dynamics was tempered by current-year needle elongation that increased significantly Kleaf during the dry months when REW was below 50%. To maintain the integrity of the xylem hydraulic continuum from roots to leaves, stomata were highly responsive in coordinating transpiration with dynamic variation in Ktree. Daily maximum gs and

  1. Prototype Data Models and Data Dictionaries for Hanford Sediment Physical and Hydraulic Properties

    SciTech Connect

    Rockhold, Mark L.; Last, George V.; Middleton, Lisa A.

    2010-09-30

    The Remediation Decision Support (RDS) project, managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC), has been compiling physical and hydraulic property data and parameters to support risk analyses and waste management decisions at Hanford. In FY09 the RDS project developed a strategic plan for a physical and hydraulic property database. This report documents prototype data models and dictionaries for these properties and associated parameters. Physical properties and hydraulic parameters and their distributions are required for any type of quantitative assessment of risk and uncertainty associated with predictions of contaminant transport and fate in the subsurface. The central plateau of the Hanford Site in southeastern Washington State contains most of the contamination at the Site and has up to {approx}100 m of unsaturated and unconsolidated or semi-consolidated sediments overlying the unconfined aquifer. These sediments contain a wide variety of contaminants ranging from organic compounds, such as carbon tetrachloride, to numerous radionuclides including technetium, plutonium, and uranium. Knowledge of the physical and hydraulic properties of the sediments and their distributions is critical for quantitative assessment of the transport of these contaminants in the subsurface, for evaluation of long-term risks and uncertainty associated with model predictions of contaminant transport and fate, and for evaluating, designing, and operating remediation alternatives. One of the goals of PNNL's RDS project is to work with the Hanford Environmental Data Manager (currently with CHPRC) to develop a protocol and schedule for incorporation of physical property and hydraulic parameter datasets currently maintained by PNNL into HEIS. This requires that the data first be reviewed to ensure quality and consistency. New data models must then be developed for HEIS that are

  2. Effects of historic charcoal burning on soil properties

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Buras, Allan; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Wilmking, Martin

    2015-04-01

    In Northeastern Germany the production of ironware between the 16th and 19th century left behind a remarkable amount of charcoal kiln remains. At the study site in the forests north of Cottbus, Rubic Brunic Arenosols are developed on Weichselian glaciofluvial deposits. Remote sensing surveys, underpinned by archaeological studies, show that charcoal was gained from several thousand kilns. The round charcoal kiln remains with inner diameters up to 20 m are smooth platforms elevated a few decimeters higher than the surrounding area. The remaining mounds consist of an about 40 cm thick sheet containing residuals of the charcoal production process such as charcoal fragments, ash but also organic material covering the Rubic Brunic Arenosols. The charcoal kiln remains are distanced only up to 100 m from each other. For the 32 square kilometers large study site, the ground area covered by such charcoal production residuals is about 0.5 square kilometer, i.e. 1.5% of the study area. The charcoal kiln sites are a remarkable carbon accumulator on the sandy parent material. Against this background, we aim to characterize the effects of pyrolysis and the enrichment of carbon, induced by the charcoal production, on soil properties. Field work was done during archaeological rescue excavations on three charcoal kiln relicts having diameters of about 15 m. We applied 150 l of Brilliant Blue solution on six 1 square meter plots (three inside, three outside of the charcoal kiln mound) and afterwards trenched horizontal and vertical profiles for recording the staining patterns. Undisturbed soil samples to study soil micromorphology and further undisturbed samples for characterizing soil physical and hydraulic properties were taken. Outside of the charcoal kiln remain the Brilliant Blue solution drained within less than 10 minutes, whereas on the charcoal kiln remains the draining took between 20 and 40 minutes. Preliminary laboratory analyses underline the findings from the field and

  3. Soil Chemical Properties of an Urban Catchment

    NASA Astrophysics Data System (ADS)

    Yesilonis, I. D.; Pouyat, R.; Smith, B.; Kloze, A.; Donovan, K.; Norris, L.

    2006-05-01

    Soils are affected by urbanization directly and indirectly from a variety of sources. Within the urban environment, landuse and cover may affect soil chemical properties. This study was conducted to determine if soil metals and nutrient concentrations vary by landuse and cover (ecotope) categories. Surface soil metals and nutrients were measured in a sewershed named 263 located in southwest Baltimore City. The 65 soil samples to a depth of 5 cm were taken randomly stratified by an ecotope classification system. The five classes were 1) constructed; 2) disturbed: mixed, annual and perennial; 3) ornamental use: annual vegetation; 4) ornamental use: mixed vegetation; and 5) ornamental use: perennial vegetation. The soils were digested with nitric acid and analyzed for a suite of metals and nutrients using an ICP-MS. The elemental sources were speculated using toxic release inventory stacks, geology/soils, and roads. The ecotope "disturbed" classes had higher concentrations of S, Cu, Ca, and Pb; and the "ornamental" classes had higher concentrations of As and Cr. In conclusion, soil metal and nutrient concentrations deposited from the urban environment differed among ecotope classes.

  4. Improvement of hydrologic simulations in CLM4 by modified soil properties

    NASA Astrophysics Data System (ADS)

    Du, E.; Di Vittorio, A. V.; Collins, W.

    2014-12-01

    Runoff and soil moisture biases were found by comparing fully coupled CCSM4 simulations and observations. The CLM underestimated runoff in the areas where soils have high clay content, but overestimated in the areas covered by volcanic ash soils (i.e. Andisols). Clayey soils tend to exhibit aggregation structure that prone to form macropores. Macropores enable water to flow through unsaturated soil more rapidly than it would in a soil matrix defined by Darcy's law. The existence of macropores increases effective hydraulic conductivity, thus decreases water content in the surface soils. Without this mechanism, CLM4 may overestimate evapotranspiration and in turn underestimate runoff by retaining too much plant available water. We hypothesize that lack of macropore flow mechanism is partially responsible for the underestimation and insufficient soil porosity representation is associated with overestimation. Andisols are soils formed in volcanic ash with very high porosity (often >0.60 cm3 cm-3) and water holding capacity. The mineral soil porosity is defined by sand content in CLM and is much lower than it would have been for Andisols. CLM may retain insufficient plant available water and underestimate evapotranspiration therefore partitioning too much to runoff. We propose more detailed soil maps in the CLM to improve the representations of soil physical properties that are critical in the terrestrial water modeling.

  5. Status Report on Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect

    Rockhold, Mark L.; Middleton, Lisa A.; Cantrell, Kirk J.

    2009-06-30

    This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS. The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and their contractors. The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft

  6. Reservoir hydraulic properties from oscillating pore pressure method

    NASA Astrophysics Data System (ADS)

    Hasanov, A.; Batzle, M. L.

    2014-12-01

    We use the oscillatory pore pressure method for simultaneous measurements of rock transport properties, such as intrinsic permeability and specific storage capacity. The pore pressure pulsing method has been described by several researchers; however we examine the relationship between a rock's transport properties and dynamic pressure parameters, such as amplitude and frequency. We confirm that the oscillating pore pressure method accurately measures permeability; however storage capacity values suffer from measurement uncertainties. We further developed a novel method to infer the permeabilities from frequency-dependent data. Permeabilities are calculated by non-linear least-squares fitting of the pressure attenuation and phase data, measured on three rock samples at various confining pressures and oscillating pore pressure frequencies. Permeabilities estimated for three tested specimen were in close agreement with steady-state values. Storage capacities, however, exhibit significant absolute errors. Frequency dependence of derived values were furtherexplored, and an apparent increase in permeability has been noticed. These observations do not necessarily indicate a dispersion effect of the absolute permeability of the rock sample. We explain this effect by the deviation in phase shifts, caused by non-Darcy or radial flow. Permeabilities still can be inverted with high accuracy from the frequency-dependent amplitude ratio data, as well as lower frequency limit of phase data by nonlinear least-squares fitting of the theoretical permeability curve. Our future work includes measuring lower permeability rocks, such as tight gas sandstones and shales. We also plan to expand the working frequency range by utilizing pore pressure intensifier as a source of pressure oscillations.

  7. Controls of soil hydraulic characteristics on modeling groundwater recharge under different climatic conditions

    NASA Astrophysics Data System (ADS)

    Wang, Tiejun; Franz, Trenton E.; Zlotnik, Vitaly A.

    2015-02-01

    To meet the challenge of estimating spatially varying groundwater recharge (GR), increasing attention has been given to the use of vadose zone models (VZMs). However, the application of this approach is usually constrained by the lack of field soil hydraulic characteristics (SHCs) required by VZMs. To tackle this issue, SHCs based on the van Genuchten or Brooks-Corey model are generally estimated by pedotransfer functions or taken from texture based class averages. With the increasing use of this method, it is important to elucidate the controls of SHCs on computing GR mostly due to the high nonlinearity of the models. In this study, it is hypothesized that the nonlinear controls of SHCs on computing GR would vary with climatic conditions. To test this hypothesis, a widely used VZM along with two SHCs datasets for sand and loamy sand is used to compute GR at four sites in the continental Unites States with a significant gradient of precipitation (P). The simulation results show that the distribution patterns of mean annual GR ratios (GR ‾ / P ‾ , where GR ‾ and P ‾ are mean annual GR and P, respectively) vary considerably across the sites, largely depending on soil texture and climatic conditions at each site. It is found that GR ‾ / P ‾ is mainly controlled by the shape factor n in the van Genuchten model and the nonlinear effect of n on GR ‾ / P ‾ varies with climatic conditions. Specifically, for both soil textures, the variability in GR ‾ / P ‾ is smallest at the Andrews Forest with the highest P ‾ (191.3 cm/year) and GR ‾ / P ‾ is least sensitive to n; whereas, the variability in GR ‾ / P ‾ at the Konza Prairie (P ‾ = 84.2 cm/year) is the largest and GR ‾ / P ‾ is most sensitive to n. With further decreasing P ‾ , the nonlinear effect of n weakens at the Barta Brothers (P ‾ = 57.3 cm/year) and Sevilleta (P ‾ = 20.3 cm/year), leading to smaller GR ‾ / P ‾ variability at those two sites than at the Konza Prairie. The

  8. Temporal changes of hydraulic conductivity of cultivated soil studied with help of multipoint tension infiltrometer and X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Klipa, Vladimir; Zumr, David; Snehota, Michal; Dohnal, Michal

    2016-04-01

    Soil aggregates, its shape, size and spatial distribution affect the pores arrangement and thus govern the hydraulic conductivity of soil and soil moisture regime. On arable lands the soil is exposed to rapid structural changes within each growing season due to agrotechnical practices, quick crop and root growth, soil biota and climatic conditions. This contribution is mainly focused on temporal changes of unsaturated hydraulic conductivity of cultivated soil. The research is supplemented by detailed analysis of CT images of soil samples for better understanding of structural change of soil during the year and its impact on soil hydraulic conductivity. The infiltration experiments were done using automated multipoint tension infiltrometer recently developed at CTU in Prague on the plots located on the Nucice experimental catchment. The catchment is situated in a moderately hilly area in central Bohemia (Czech Republic). Fourteen regular infiltration campaigns (77 individual infiltration experiments) were conducted from October 2012 until July 2015 on a single arable plot. In general, agricultural practice captured involved complete life cycle from sowing, through harvest, to postharvest stubble breaking. Weather conditions during infiltration experiments ranged from clear-sky to light rain, with temperatures between 8 and 30°C. All measurements were consistently performed with small suction of 3 cm and hydraulic conductivities were determined using extended semiempirical estimation procedure of Zhang. Results show that unsaturated hydraulic conductivity was the lowest in early spring and did increase at beginning of summer in the years 2012 - 2014. During the summer and autumn (2012 - 2014) the unsaturated hydraulic conductivity remained relatively unchanged. On the contrary, results in the year 2015 show opposite trend - the highest hydraulic conductivity was observed in early spring and did gradually decrease until the end of July. In both cases, however, the

  9. Spectral reflectance of surface soils: Relationships with some soil properties

    NASA Technical Reports Server (NTRS)

    Kiesewetter, C. H.

    1983-01-01

    Using a published atlas of reflectance curves and physicochemical properties of soils, a statistical analysis was carried out. Reflectance bands which correspond to five of the wavebands used by NASA's Thematic Mapper were examined for relationships to specific soil properties. The properties considered in this study include: Sand Content, Silt Content, Clay Content, Organic Matter Content, Cation Exchange Capacity, Iron Oxide Content and Moisture Content. Regression of these seven properties on the mean values of five TM bands produced results that indicate that the predictability of the properties can be increased by stratifying the data. The data was stratified by parent material, taxonomic order, temperature zone, moisture zone and climate (combined temperature and moisture). The best results were obtained when the sample was examined by climatic classes. The middle Infra-red bands, 5 and 7, as well as the visible bands, 2 and 3, are significant in the model. The near Infra-red band, band 4, is almost as useful and should be included in any studies. General linear modeling procedures examined relationships of the seven properties with certain wavebands in the stratified samples.

  10. Hydraulic resistances and root geometry parameters in plant transpiration analysis

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dusek, Jaromir; Dohnal, Michal

    2016-04-01

    Three approximate mesoscopic solutions of soil water flow towards roots: (1) finite difference approximation, (2) steady-state solution, and (3) steady-rate solution, were examined from the point of view of their ability to predict the pressure head variations in the vicinity of roots. The individual solutions were then alternatively used to determine the macroscopic soil hydraulic resistance between bulk soil and root surface. In the next step, macroscopic simulations of coupled soil water flow and root water uptake at a forest site under humid temperate climate were performed. The predicted soil water pressure heads and actual transpiration rates were compared with observed data. The simulation results illustrate uncertainties associated with the estimation of root geometric and hydraulic properties. Regarding the prediction of actual transpiration, the correct characterization of active root system geometry and its hydraulic properties seems far more important than the choice of a particular macroscopic soil hydraulic resistance formula.

  11. Hydraulic and Seismic Properties of Methane-Bearing Coal

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Gritto, R.; Tomutsa, L.

    2002-12-01

    In the last 10 years, coalbed methane (CBM) has transformed from being a coal mine hazard to a low-risk source of long term dry natural gas. The benefit of this clean burning natural gas as an energy source in conjunction with vast amounts stored in coal basins has led to the development of an industry that produces CBM. Reduction of carbon emissions to the atmosphere through carbon dioxide injection into coal has added another benefit to the production of CMB, as carbon dioxide may be used to desorb methane from coal seams. In order to successfully produce CBM, more information is needed on the migration of methane through fractures and cleats and on the replacement of methane by carbon dioxide in the coal seam. Laboratory experiments are underway to address these questions. Tests on core samples are being performed under in-situ pressure to gain insights on processes occurring in CBM extraction and carbon dioxide sequestration. A variety of techniques are being used including measuring physical properties, electrical resistivity, and saturation and phase location using x-ray computed tomography. Simultaneously measurements of seismic waves are performed including P- and S-wave velocities as well as amplitudes of body waves as a function of methane and carbon dioxide concentration in coal. The results can be used to design an experiment to monitor time-lapse changes and thus the production of gas from a coal seam during methane production.

  12. Carbofuran biodegradation in brackish groundwater and its effect on the hydraulic properties of the porous medium

    NASA Astrophysics Data System (ADS)

    Amiaz, Yanai; Ronen, Zeev; Adar, Eilon; Weisbrod, Noam

    2015-04-01

    A chalk fractured aquitard beneath an industrial site is subjected to intense contamination due to percolation of contaminants from the different facilities operating at the site. In order to reduce further contamination, draining trenches were excavated and filled with coarse gravel (3-4 cm in diameter) forming a porous medium, to which the contaminated groundwater discharges from the fractures surrounding the trenches. This research is aimed at establishing a biodegrading process of high efficiency and performance within the draining trenches. The research includes both field and laboratory experiments. An experimental setup of five columns (50 cm length and 4.5 cm in diameter) was constructed under highly controlled conditions. Over the course of the experiments, the columns were filled with different particle sizes and placed in a temperature controlled chamber. Filtered groundwater (0.2 µm) from the site groundwater, enriched by a model contaminant carbofuran (CRF), was injected to the columns; as two of the columns were inoculated by CRF degrading microorganisms native in the site's groundwater, two columns were inoculated by CRF degrading bacteria from the external environment, and one column was used as a control. During the experiment, measurements were taken from different locations along each column. These include: (a) CRF concentration and (b) hydraulic pressure and solution viscosity (in order to obtain the changes in permeability). A tracer test using uranine was carried out in parallel, in order to obtain the changes in hydraulic parameters. Correlating CRF concentration variations to changes of hydraulic parameters enable the deduction due to the effect that biological activity (under different temperature regimes) has on the hydraulic properties of the porous medium and its effect on the process of contaminant groundwater bodies' remediation. Preliminary results suggest that although biodegradation occurs, microbial activity has minor effect on

  13. Contrasting effects of soil development on hydrological properties and flow paths

    NASA Astrophysics Data System (ADS)

    Lohse, Kathleen A.; Dietrich, William E.

    2005-12-01

    Runoff pathways strongly influence hydrologic and biogeochemical losses and landscape evolution. On an evolving landscape, soil development may alter hydrologic properties and thereby change through time the relative importance of various pathways. Here we report in situ soil water retention, unsaturated and saturated hydraulic conductivity, and flow path characteristics of a 300 year old Andisol and a 4.1 million year old Oxisol, located at the extreme ends of a soil substrate age gradient across the Hawaiian Islands. The two soils contrasted in depth and texture; the young soil was shallow and coarse textured, while the old soil was deep and highly weathered with a near-surface plinthite horizon overlying numerous clay-rich subsurface horizons. The young soil drained freely under modest suction, whereas subsurface clay horizons at the old site required significantly more suction to start to drain than the upper horizons. Similarly, saturated hydraulic conductivity (Ks) was high throughout the soil profile at the young site, whereas Ks was two to three orders of magnitude lower through the subsurface clay horizons than the upper ones at the old site. Irrigation experiments with deuterium tracer demonstrated that water was downward advecting at the young site, while water at the old site moved both laterally along the subsurface clay horizon contact and slowly downward through it. Rainfall frequency distributions indicated a high probability of rainfall events exceeding subsurface Ks values in old soil. In Hawaii the addition of dust influences the time evolution of soil, but the tendency for subsoil clay accumulation in older soils leading to alteration in hydrologic flow paths has been proposed in other environments. Our findings together suggest that as soils develop with time, subsurface horizon Ks values decline, impeding rates of vertical water flow but also increasing the importance of shallow subsurface lateral flow.

  14. Minimum property dataset and sampling requirement tool for soil change studies in soil survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic soil properties (DSP) are those properties that change over human time scales. The new sampling guide “Soil and Resource Inventory Guide for Dynamic Soil Properties and Soil Change” includes a minimum DSP dataset and an interactive tool to determine sampling requirements. The minimum dataset...

  15. Soil characteristics and landcover relationships on soil hydraulic conductivity at a hillslope scale: A view towards local flood management

    NASA Astrophysics Data System (ADS)

    Archer, N. A. L.; Bonell, M.; Coles, N.; MacDonald, A. M.; Auton, C. A.; Stevenson, R.

    2013-08-01

    There are surprisingly few studies in humid temperate forests which provide reliable evidence that soil permeability is enhanced under forests. This work addresses this research gap through a detailed investigation of permeability on a hillslope in the Eddleston Catchment, Scottish Borders UK, to evaluate the impact of land cover, superficial geology and soil types on permeability using measurements of field saturated hydraulic conductivity (Kfs) supported by detailed topsoil profile descriptions and counting of roots with diameters >2 mm. Kfs was measured at depth 0.04-0.15 m using a constant head well permeameter across four paired landcover sites of adjacent tree and intensely grazed grassland. The measured tree types were: 500-year-old mixed woodland; 180-year-old mixed woodland; 45-year-old Pinus sylvestris plantation; and 180-year-old Salix caprea woodland. The respective paired grids of trees and grassland were compared on similar soil texture and topography. This study highlights the significant impact of broadleaf woodland at a hillslope scale on Kfs in comparison to grassland areas: median Kfs values under 180-year-old S. caprea woodland (8 mm h-1), 180-year-old mixed woodland (119 mm h-1) and 500-year-old broadleaf woodland (174 mm h-1) were found to be respectively 8, 6 and 5 times higher than neighbouring grazed grassland areas on the same superficial geology. Further statistical analysis indicates that such Kfs enhancement is associated with the presence of coarse roots (>2 mm diameter) creating conduits for preferential flow and a deeper organic layer in the topsoil profile under woodlands. By contrast the P. sylvestris forest had only slightly higher (42 mm h-1), but not statistically different Kfs values, when compared to adjacent pasture (35 mm h-1). In the grassland areas, in the absence of course roots, the superficial geology was dominant in accounting for differences in Kfs, with the alluvium floodplain having a significantly lower median Kfs

  16. Prototype Database and User's Guide of Saturated Zone Hydraulic Properties forthe Hanford Site

    SciTech Connect

    Thorne, Paul D.; Newcomer, Darrell R.

    2002-09-01

    Predicting the movement of contaminants in groundwater beneath the Hanford Site is important for both understanding the impacts of these contaminants and for planning effective cleanup activities. These predictions are based on knowledge of the distribution of hydraulic properties within the aquifers underlying the Hanford Site. The Characterization of Systems (CoS) Task, under the Groundwater/Vadose Integration Project, is responsible for establishing a consistent set of data, parameters, and conceptual models to support estimates contaminant migration and impact.

  17. Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Seuntjens, P.; Joris, I.; Boënne, W.; Van Hoey, S.; Campling, P.; Cornelis, W. M.

    2016-01-01

    Monitoring and modelling tools may improve irrigation strategies in precision agriculture. We used non-invasive soil moisture monitoring, a crop growth and a soil hydrological model to predict soil water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. The sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. A time-dependent sensitivity analysis of the hydraulic parameters showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks and the Mualem-van Genuchten retention curve shape parameters n and α. Results further showed that different parameter optimization strategies (two-, three-, four- or six-parameter optimizations) did not affect the calculated water stress and water content as significantly as does the bottom boundary. In this case, a two-parameter scenario, where Ks was optimized for each layer under the condition of a constant groundwater depth at 135-140 cm, performed best. A larger yield reduction, and a larger number and longer duration of stress conditions occurred in the free drainage condition as compared to constant boundary conditions. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to 12-22 % irrigation water as compared to the current irrigation regime. This resulted in a yield increase of 4.5-6.5 %, simulated by the crop growth model.

  18. Estimating hydraulic properties of volcanic aquifers using constant-rate and variable-rate aquifer tests

    USGS Publications Warehouse

    Rotzoll, K.; El-Kadi, A. I.; Gingerich, S.B.

    2007-01-01

    In recent years the ground-water demand of the population of the island of Maui, Hawaii, has significantly increased. To ensure prudent management of the ground-water resources, an improved understanding of ground-water flow systems is needed. At present, large-scale estimations of aquifer properties are lacking for Maui. Seven analytical methods using constant-rate and variable-rate withdrawals for single wells provide an estimate of hydraulic conductivity and transmissivity for 103 wells in central Maui. Methods based on constant-rate tests, although not widely used on Maui, offer reasonable estimates. Step-drawdown tests, which are more abundantly used than other tests, provide similar estimates as constant-rate tests. A numerical model validates the suitability of analytical solutions for step-drawdown tests and additionally provides an estimate of storage parameters. The results show that hydraulic conductivity is log-normally distributed and that for dike-free volcanic rocks it ranges over several orders of magnitude from 1 to 2,500 m/d. The arithmetic mean, geometric mean, and median values of hydraulic conductivity are respectively 520, 280, and 370 m/d for basalt and 80, 50, and 30 m/d for sediment. A geostatistical approach using ordinary kriging yields a prediction of hydraulic conductivity on a larger scale. Overall, the results are in agreement with values published for other Hawaiian islands. ?? 2007 American Water Resources Association.

  19. Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Seuntjens, P.; Joris, I.; Boënne, W.; Van Hoey, S.; Campling, P.; Cornelis, W. M.

    2015-07-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. We used non-invasive soil moisture monitoring, a crop growth and a soil hydrological model to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. The sensitivity of the model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed. Free drainage and incremental constant head conditions was implemented in a lower boundary sensitivity analysis. A time-dependent sensitivity analysis showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks and the Mualem-van Genuchten retention curve shape parameters n and α. Results further showed that different parameter optimization strategies (two-, three-, four- or six-parameter optimizations) did not affect the calculated water stress and water content as significantly as does the bottom boundary. For this case, a two-parameter scenario, where Ks was optimized for each layer under the condition of a constant groundwater depth at 135-140 cm, performed best. A larger yield reduction, and a larger number and longer duration of stress conditions occurred in the free drainage condition as compared to constant boundary conditions. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to 12-22 % irrigation water as compared to the current irrigation regime. This resulted in a yield increase of 4.5-6.5 %, simulated by crop growth model.

  20. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  1. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    NASA Astrophysics Data System (ADS)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket